
Calendar Store Programming Guide
Apple Applications > iCal

2007-10-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Cocoa, iCal, and Mac are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Calendar Store Programming Guide 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 8

Calendar Store Overview 9

Calendar Store Architecture 9
Calendar Store Objects 10
Using Predicates 11
Updating Your Objects 11
Fetching in Batches 12

Fetching Objects 13

Fetching Calendars 13
Fetching Events 13

Fetching Individual Events 14
Using Predicates to Fetch Events 14
Fetching Recurring Events 14

Fetching Tasks 15
Fetching Individual Tasks 15
Using Predicates to Fetch Tasks 15

Creating Objects 17

Creating Calendars 17
Creating Events 17
Creating Tasks 18
Creating Alarms 18

Creating Recurring Events 19

Recurrence Rule Classes and Methods 19
Specifying an Interval 20
Creating a Recurrence End 20
Creating Daily Recurrence Rules 21
Creating Weekly Recurrence Rules 21
Creating Monthly Recurrence Rules 22
Creating Yearly Recurrence Rules 22

3
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Saving Changes 25

Saving Changes to Calendars 25
Saving Changes to Events 25
Saving Changes to Tasks 26

Observing Changes 27

Observing External Notifications 27
Observing Internal Notifications 27
Applying Changes 28
Observing User Changes Using Cocoa Bindings 29

Document Revision History 31

4
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Calendar Store Overview 9

Figure 1 Calendar Store architecture 9
Figure 2 CalEvent object diagram 10
Figure 3 CalTask object diagram 11

Fetching Objects 13

Listing 1 Fetching Current Year Events 14

Creating Recurring Events 19

Table 1 Initialization method arguments 20

Saving Changes 25

Listing 1 Saving events 25

Observing Changes 27

Listing 1 Applying changes 28

5
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

6
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Calendar Store is a framework that allows Cocoa applications to access iCal data. You can fetch iCal
records—such as calendars, events, and tasks—and receive notifications when these records change in iCal.
You can also make some local changes to records and save them to the Calendar Store database. This
document describes Calendar Store concepts and common programming tasks.

Warning: If your application uses the Sync Services and Calendar Store frameworks together, then you
should not use Sync Services to sync data shared with the Calendar Store framework. The Calendar
Store framework already syncs its records with Sync Services, so applications sharing the Calendar Store
data do not have to (and should not) sync those records. The results are unpredictable and may result
in data loss, if you attempt to sync the same data as the Calendar Store framework.

Who Should Read This Document?

You should read this document if you want to display or edit iCal data in your application. Calendar Store is
ideal for integrating subsets of iCal data into your application. Calendar Store simplifies fetching and saving
changes to records since you don’t have to implement your own persistent storage or deal with the complexity
of the Calendars schema. Calendar Store also notifies applications of changes made in iCal so your application
data stays fresh. It is suitable for developing widgets, plug-ins, and augmenting other types of applications
that use calendar data. It is not suitable for implementing full-featured calendar applications.

Note: Calendar Store does not provide complete read/write database access to all iCal records. Use Sync
Services and the Calendars schema if you need access to every calendar entity and property.

Organization of This Document

You should read these articles if you just want to fetch Calendar Store objects:

 ■ “Calendar Store Overview” (page 9) describes the Calendar Store architecture and core classes.

 ■ “Fetching Objects” (page 13) explains how to fetch calendar, event, and task objects.

 ■ “Observing Changes” (page 27) explains how to observe changes made to these objects by other
processes.

You should also read these articles if you want to create or modify Calendar Store objects:

 ■ “Creating Objects” (page 17) explains how to create commonly used objects: calendars, events, tasks,
and alarms.

Who Should Read This Document? 7
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Introduction to Calendar Store Programming
Guide

 ■ “Creating Recurring Events” (page 19) explains how to create recurring events—events that repeat
according to a custom pattern.

 ■ “Saving Changes” (page 25) explains how to save changes you make locally to Calendar Store objects.

See Also

For an in-depth description of the Calendar Store API, read:

 ■ Calendar Store Framework Reference

The following projects contain more sample code:

 ■ Checklist

 ■ SimpleCalendar

If you decide to use Sync Services to access records in the Calendars schema directly, read:

 ■ Apple Applications Schema Reference

 ■ Sync Services Programming Guide

 ■ Sync Services Framework Reference

8 See Also
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Introduction to Calendar Store Programming Guide

The goal of Calendar Store is to provide robust and reliable access to some iCal data for applications that
want to integrate iCal features—such as displaying events or tasks—but don’t need read/write access to
every record used by iCal. For this reason, Calendar Store only allows you to programmatically create objects
that you can create using the iCal controls—for example, using this framework you can not create more
sophisticated recurring events than you can using iCal. Calendar Store greatly simplifies the tasks of fetching,
updating, and saving records—you do not need to implement your own persistent storage to use Calendar
Store.

Calendar Store Architecture

Applications that use the Calendar Store framework have the ability to fetch and save a subset of the records
used by iCal. Your application, as well as iCal, are clients of the Calendar Store server as depicted in Figure
1.

There is one Calendar Store server and Calendar Store database for each user on each computer. The Calendar
Store database stores the local copies of records belonging to the Calendars schema. If .Mac is configured
to sync the Calendars schema, then your changes to these records, using the Calendar Store programming
interface, are also synced. Read Sync Services Programming Guide for more information on syncing over .Mac.

Figure 1 Calendar Store architecture

Calendar Store
Database

iCal OtherApp

Calendar Store
Server

MyApp

Calendar Store Architecture 9
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Calendar Store Overview

Calendar Store Objects

The Calendar Store database stores records, but the Calendar Store programming interface returns objects
to your application. These objects hide the complexity of the Calendars schema and encapsulate a common
subset of the data useful to most applications. The primary objects you fetch from Calendar Store are calendars,
events, and tasks.

Figure 2 depicts the relationships between an event object, an instance of CalEvent, and other objects. An
event object has a to-one relationship to its calendar and a to-many relationship to its attendees and alarms.
Attendees are instances of CalAttendee that may correspond to a person in the Address Book.

The other classes in the diagram help describe the recurrence rule for recurring events—for example, an
event that occurs every Tuesday and Thursday of the week for the next two months. A CalRecurrenceEnd
object describes how a recurring event ends, and a CalNthWeekDay object helps describe the recurring
pattern.

Figure 2 CalEvent object diagram

CalCalendar

CalNthWeekDay

CalRecurrenceEnd

CalEvent

CalRecurrenceRule

CalAlarm

CalAttendee

calendar
attendees
recurrenceRule
alarms recurrenceEnd

nthWeekDaysOfTheMonth

Figure 3 depicts the relationships between a task object, an instance of CalTask, and other objects. A task
object is much simpler than an event object. A task has just a to-one relationship to a calendar and a to-many
relationship to its alarms.

Both events and tasks can have multiple alarms. The CalAlarm class encapsulates information on the type
of alarm and how it is triggered.

Notice that events and tasks have a to-one relationship to a calendar, but there is not an inverse to-many
relationship from a calendar to its events and tasks. This is purposely done to make fetching objects more
efficient. Fetching a calendar object does not automatically fetch its events and tasks. This would be grossly
inefficient, and in some cases impossible, because recurring events can result in an infinite number of event
objects—recurrences are represented by multiple event objects with the same unique identifier (UID).

10 Calendar Store Objects
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Calendar Store Overview

Instead you fetch the calendars, events, and tasks separately by sending messages to a shared
CalCalendarStore object. The CalCalendarStore object is a direct interface to the Calendar Store
database. The CalCalendarStore class provides many convenience methods for fetching just the calendars,
events, and tasks your application needs.

Figure 3 CalTask object diagram

CalCalendar

CalAlarm

CalTask
...
calendar
alarms

Using Predicates

A predicate is an object used to define logical conditions to constrain a search or to filter objects. In database
terminology, a predicate is equivalent to a query.

Predicates provide the maximum flexibility in specifying a subset of the objects you want to fetch. For example,
using predicates, you can fetch events that occur on a single day, month, or year. Or specify an exact date/time
range. You can also fetch events that belong to particular calendars. Similarly, you can fetch tasks that have
specific completion dates or all tasks that have been completed by a specific date.

The CalCalendarStore class makes it simple to use predicates by providing convenience methods for
creating common queries. Read “Fetching Objects” for more information on the different ways to fetch
objects.

Updating Your Objects

When designing your application, you need to decide if you are going to retain the objects fetched by
Calendar Store or use the data you obtain and release the objects. Note that Calendar Store doesn’t
automatically update objects that were previously fetched. Instead you register for notifications when Calendar
Store objects change internally or externally—for example, when the user changes an event in iCal. Then
implement your handler to apply the external changes to your local objects.

Using Predicates 11
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Calendar Store Overview

If you do not retain the objects you fetch, then you should at least retain the unique identifier for each object.
The notification object user information dictionary contains the unique identifier for the object that was
either added, updated, or deleted. You can use the unique identifier to find the corresponding local object
and apply the change.

Read “Observing Changes” (page 27) for more information on updating objects, including tips on using
Cocoa bindings.

Fetching in Batches

As stated above, for performance reasons, you cannot simply fetch all events. Recurring events are represented
by multiple event objects, which are infinite in quantity if the recurring event never ends. Therefore, Calendar
Store limits the time span for fetching recurring events to just four years. For example, if you define a predicate
that fetches all events for a ten year span, the shared CalCalendarStore object fetches only recurring
events for the first four years.

Because of this, you typically design your application to fetch events in batches. Use predicates to define a
custom fetch that is efficient for your application. Basically, just fetch the events that your application needs
at the moment. For example, fetch events for the current month and fetch events for the next month only
when the user clicks the Next button.

12 Fetching in Batches
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Calendar Store Overview

Calendar Store provides several methods for fetching objects—such as calendars, events, and tasks—from
the Calendar Store database. You can fetch all calendars or specific ones using a unique identifier. You can
fetch events and tasks specifying a date range or use a predicate to fetch a custom set of objects. However,
you cannot fetch all events because recurring events may result in an infinite number of event objects—there
are multiple event objects for a recurring “master” event. Typically, you fetch objects in batches as your
application uses them—for example, fetch the next month or year of events when the user clicks the Next
button. This article describes the methods you use to fetch these Calendar Store objects.

Note: There is one Calendar Store database for each user on each computer represented by a shared
CalCalendarStoreobject. Use thedefaultCalendarStoremethod to get the sharedCalCalendarStore
object.

Fetching Calendars

You can fetch all calendars in the Calendar Store database or specific calendars using a unique identifier
called a UID.

Use the calendars method if you want to fetch all calendars. Note that there is a to-one relationship from
an event or task to a calendar object. However, there is not an inverse to-many relationship from a calendar
to its events and tasks. Therefore, when you fetch calendars, you are just creating instances of the
CalCalendar class. Read “Fetching Events” (page 13)and “Fetching Tasks” (page 15) for how to fetch other
types of objects.

A calendar object’s UID is guaranteed to be unique for the lifetime of the calendar object. So you may retain
the UID and use it to fetch individual calendar objects on an as needed basis. Use the calendarWithUID:
method to fetch a calendar object using a UID.

Fetching Events

You can fetch individual events specifying a UID—for example, if you retain an event UID from a previous
fetch. However, you typically fetch events using a predicate, which provides the maximum flexibility. You
essentially create a database query specifying the property values or range of property values you want the
results to match. For your convenience, Calendar Store provides methods for common types of fetches. The
following sections progress from the most simple to the most complex fetches.

Fetching Calendars 13
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Fetching Objects

Fetching Individual Events

To fetch an individual event, use the eventWithUID:occurrence: method, specifying a UID. If the event
is recurring, specify an occurrence date of the individual event you want—recurring events have the same
UID. If you don’t know the UID for an event, read “Using Predicates to Fetch Events” (page 14) for how to
fetch events using a predicate.

Using Predicates to Fetch Events

It’s very common to fetch events in a date range. For example, fetch all events that occur in the current
month and then fetch all events that occur in the previous and next months. The CalCalendarStore class
provides convenience methods for creating these types of predicates that can be passed to the
eventsWithPredicate: method to perform the actual fetch.

For example, the following code fragment in Listing 1 uses the
eventPredicateWithStartDate:endDate:calendars: class method to create an event predicate for
the current year, and the eventsWithPredicate: method for fetching the events.

Listing 1 Fetching Current Year Events

// Create a predicate to fetch all events for this year
NSInteger year = [[NSCalendarDate date] yearOfCommonEra];
startDate = [[NSCalendarDate dateWithYear:year month:1 day:1 hour:0 minute:0
second:0 timeZone:nil] retain];
endDate = [[NSCalendarDate dateWithYear:year month:12 day:31 hour:23 minute:59
 second:59 timeZone:nil] retain];
NSPredicate *eventsForThisYear = [CalCalendarStore
eventPredicateWithStartDate:startDate endDate:endDate
 calendars:[[CalCalendarStore defaultCalendarStore] calendars]];

// Fetch all events for this year
events = [[CalCalendarStore defaultCalendarStore]
eventsWithPredicate:eventsForThisYear];

Note: Currently, the eventsWithPredicate: method only supports predicates created using either the
eventPredicateWithStartDate:endDate:calendars: or
eventPredicateWithStartDate:endDate:UID:calendars: class method.

Fetching Recurring Events

The Calendar Store framework doesn’t allow you to fetch all events because recurring events may result in
an infinite number of event objects.

You can use an event predicate to fetch all events belonging to the same recurrence within a date range.
Recurring events have the same UID, so use the
eventPredicateWithStartDate:endDate:UID:calendars: method similar to the
eventPredicateWithStartDate:endDate:calendars:method of Listing 1, except specify the common
UID. The events returned include all events within the date range belonging to the same recurrence, or a
single event if it’s not a recurring event.

14 Fetching Events
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Fetching Objects

As explained in “Fetching in Batches” (page 12), the events returned by the eventsWithPredicate:method
contain only recurring events for the first four years of a date range. For this reason, you typically fetch events
in batches—no greater than a four year span—as you need them in your application.

Fetching Tasks

Similar to events, you can fetch individual tasks by specifying a UID or multiple tasks by using a predicate.
Again, fetching tasks using a predicate provides the maximum flexibility. You essentially create a database
query specifying the property values or range of property values you want the results to match. Similar to
creating event predicates, Calendar Store provides convenience methods for creating common task predicates.

Fetching Individual Tasks

To fetch an individual task, use the taskWithUID: method, specifying a UID. If you don’t know the UID for
a task, read “Using Predicates to Fetch Tasks” for how to fetch tasks with specific criteria.

Using Predicates to Fetch Tasks

You can create a predicate to fetch all tasks, fetch all incomplete tasks, fetch all incomplete tasks due before
a specific date, or fetch all completed tasks since a specified date. In all cases, you can specify what calendars
the tasks must belong to.

For example, this code fragment creates a predicate using the taskPredicateWithCalendars: method
to fetch all tasks in all calendars:

NSPredicate *predicate = [CalCalendarStore
taskPredicateWithCalendars:[[CalCalendarStore defaultCalendarStore] calendars]];
NSArray *tasks = [[CalCalendarStore defaultCalendarStore]
tasksWithPredicate:predicate];

Similarly, use the taskPredicateWithTasksCompletedSince:calendars:,
taskPredicateWithUncompletedTasks:, and
taskPredicateWithUncompletedTasksDueBefore:calendars:methods to create predicates to perform
other types of fetches.

Fetching Tasks 15
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Fetching Objects

16 Fetching Tasks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Fetching Objects

Your application can also create Calendar Store objects—such as calendars, events, and tasks—that are
visible in iCal. Each type of object has properties you set that are either optional or mandatory—for example,
events and tasks have a title and calendar property. Some properties you do not set—they are read-only.
This article describes how to create each type of object.

Note that none of the changes you make to Calendar Store objects, including creating new objects, persist
unless you save the object using one of the save... methods in CalCalendarStore. For example, if you
create a CalEvent object, then use the saveEvent:span:error: method of CalCalendarStore to save
it. Read “Saving Changes” (page 25) for more information on saving Calendar Store objects.

Event and task objects inherit common properties from the CalCalendarItem class. Note that you must
set the calendar property of items before you attempt to save them. (Read “Fetching Calendars” (page 13)
for how to fetch calendar objects that you can use to set the calendar property.) All other properties defined
in the CalCalendarItem class are either optional or read-only. The dateStamp and uid properties are
read-only. All other calendar item properties—such as notes, url, title, and alarms—are optional.

Creating Calendars

You create a calendar object using the calendar class method of CalCalendar. Optionally, you can then
set the color, notes, or title properties. Currently, you can create iCal calendars only. For example, the
following code fragment creates a new calendar titled “Kids”:

// Create an iCal calendar
CalCalendar *kidsCalendar = [CalCalendar calendar];
kidsCalendar.title = @"Kids";

Creating Events

You create a CalEvent object using the event class method of CalCalendar, and, typically, set the
calendar, startDate, endDate, and title properties. For example, the following code fragment creates
a one hour appointment:

// Create a simple event.
CalEvent *event = [CalEvent event];
event.calendar = calendar;
event.title = @"Dentist";
event.startDate = [NSDate dateWithNaturalLanguageString:@"3pm January 9, 2007"];
event.endDate = [NSDate dateWithNaturalLanguageString:@"4pm January 9, 2007"];
event.location = @"1123 Fremont Avenue";

Read “Creating Recurring Events” (page 19) for how to create events that repeat according to a specified
daily, weekly, monthly, or yearly pattern.

Creating Calendars 17
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Creating Objects

Creating Tasks

You create a task object using the task CalTask class method, and typically, set the calendar, title,
dueDate, and priority properties. For example, the following code fragment creates a task:

// Create a simple task.
CalTask *task = [CalTask task];
task.calendar = calendar;
task.title = @"File Tax Return";
task.dueDate = [NSDate dateWithNaturalLanguageString:@"12am April 15, 2007"];
task.priority = CalPriorityHigh;

Note that the isCompleted and completedDate properties are interdependent. If you set one of these
properties, the value of the other property changes too. Read CalTask Class Reference for more details.

Creating Alarms

You can add alarms to both event and task objects. You create an alarm object using the alarm CalAlarm
class method and then set the action property.

If you set the action property to CalAlarmActionEmail, set the emailAddress property to the email
address that is sent a notification when the alarm triggers. If you set the action property to
CalAlarmActionSound, set the sound property to the sound that is played when the alarm triggers. If you
set the action property to CalAlarmActionProcedure, set the URL property to the file that opens when
the alarm triggers.

Optionally, you can specify a relative or an absolute trigger. Only one of these is active at a time. If you set
the relativeTrigger property, then the absoluteTrigger property is set to nil, and vice versa. Use
the relativeTrigger property if you want the alarm to trigger a specified interval before the task dueDate
or event startDate properties. For example, you might want the alarm to trigger 15 minutes or 24 hours
before a task is due. Use the absoluteTrigger property if you want the alarm to trigger at a precise time
on a specified date.

For example, the following code fragment adds an alarm to a task that triggers 15 minutes before the due
date:

// Add an alarm to a task.
CalAlarm *alarm = [CalAlarm alarm];
alarm.action = CalAlarmActionSound;
alarm.sound = @"Basso";
alarm.relativeTrigger = -15*60;
[task addAlarm:alarm];

The addAlarm:method is inherited from the CalCalendarItem class along with other methods for adding
and removing alarms. Note that alarms you add to events and tasks are automatically saved when the events
and tasks are saved.

18 Creating Tasks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Creating Objects

Recurring events are events that repeat daily, weekly, monthly, or yearly. Actually, the pattern that repeats
can be quite complex, such as every Tuesday and Thursday of the first and second week of every month of
the year.

Typically, you create an event by sending event to the CalEvent class. Then you set the startDate and
optionally the endDate properties of the new event object returned by this method. Read “Creating
Events” (page 17) for how to create a basic event object. If you are creating a recurring event, you also need
to set the recurrenceRule property. The recurrence rule is the object that describes the recurring pattern.

This article describes how to create recurrence rules.

Recurrence Rule Classes and Methods

A recurrence rule defines a time/date pattern that repeats given some interval. A combination of classes are
used to represent a recurrence rule including CalRecurrenceRule, CalRecurrenceEnd, and
CalNthWeekDay. Figure 2 (page 10) in “Calendar Store Overview” (page 9) depicts the relationship between
these classes and an event.

The CalRecurrenceRule class is used to describe the recurrence rule—the pattern that repeats—for a
recurring event. The patterns you can create are limited to the types of recurring events the user can create
in iCal. CalRecurrenceRule provides convenience methods for creating different types of recurrence rules.

The convenience methods are initialization methods that you send to a newly created CalRecurrenceRule
object. The initialization methods set all the properties of a CalRecurrenceRule object—you cannot set
the properties directly since they are read-only.

Each initialization method creates a particular type of recurrence rule that uses a time unit of measurements
between intervals. You can create daily, weekly, monthly, or yearly recurrence rules. If the initialization method
begins with initMonthly..., then the object returned is a monthly recurrence rule that uses a single month
as the unit of time between intervals. Similarly, use initDaily..., initWeekly..., and initYearly...
methods to create daily, weekly, and yearly recurrence rules respectively. Use the recurrenceType property
of a CalRecurrenceRule to determine the type.

Each of the initialization methods has an ...Interval and an end: argument described in Table 1. The
end rule is a CalRecurrenceEnd object that specifies how a recurring event ends. The other arguments
that may appear in the different initialization methods are used to create more complex recurrence rules—for
example, they specify the day of the week or week of the month in the pattern. Table 1 describes the values
of these additional arguments.

The CalNthWeekDay class depicted in Figure 2 (page 10) is used to get information about a recurring event,
not create one. The nthWeekDaysOfTheMonth property of a CalRecurrenceEnd object is an array of
CalNthWeekDay objects. See CalNthWeekDay Class Reference for more information about this class.

Recurrence Rule Classes and Methods 19
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Creating Recurring Events

Table 1 Initialization method arguments

DescriptionValueArgument

The number of time units between
occurrences of an event where time units
are a day, week, month, or year depending
on the init... method used.

An integer greater than 0....Interval

The day of the week when an event
occurs.

An integer ranging from 1 to 7where
Sunday is 1.

forDayOfTheWeek:

The days of the week when an event
occurs.

An array of integers ranging from 1
to 7 where Sunday is 1.

forDaysOfTheWeek:

The week of the month when an event
occurs.

An integer value of either 1, 2, 3, 4,
or -1where -1 is the last week of the
month.

forWeekOfTheMonth

The day of the month when an event
occurs.

An array of integers ranging from 1
to 31.

forDaysOfTheMonth

The day of the month when an event
occurs.

An array of integers ranging from 1
to 12.

forMonthsOfTheYear

Specifies how a recurring event ends.A CalRecurrenceEnd object.end:

Specifying an Interval

The interval argument is an integer greater than 0 that specifies how often a pattern repeats given the
recurrence end’s unit of time. For example, if the time unit is a week and the interval is 1, then the pattern
repeats every week. If the time unit is a month and the interval is 2, then the pattern repeats bimonthly. If
the time unit is a year and the interval is 3, then the pattern repeats every three years. The convenience
method you use to create the recurrence rule determines the time unit.

Creating a Recurrence End

The recurrence end argument is optional and specifies how the recurring event ends. The recurrence end
argument is a CalRecurrenceEnd object that specifies either a counter or an ending date. If the recurrence
end object uses a counter, the event ends after the counter decrements to 0. Otherwise, it ends on the
specified date.

Use the recurrenceEndWithOccurrenceCount: CalRecurrenceEndmethod to create a recurrence end
that uses a counter, or therecurrenceEndWithEndDate:CalRecurrenceEndmethod to create a recurrence
end that uses an end date.

20 Specifying an Interval
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Creating Recurring Events

Creating Daily Recurrence Rules

The simplest and most common recurring event is one that occurs in daily intervals—for example, an event
that occurs every day or an event that occurs every two days.

Use the initDailyRecurrenceWithInterval:end: method to create an event that occurs once a day
and repeats in daily intervals. Use the ...Interval: argument to specify the number of days between
occurrences (see “Specifying an Interval”) and optionally, use the end: argument to specify when the event
ends (see “Creating a Recurrence End”).

For example, the following code fragment creates a never-ending event that occurs every other day starting
today:

// Create a daily event that occurs every other day.
CalEvent *event = [CalEvent event];
event.calendar = calendar;
event.title = @"Bath Nite";
event.startDate = [NSDate date];
event.endDate = [NSDate distantFuture];
event.recurrenceRule = [[[CalRecurrenceRule alloc]
initDailyRecurrenceWithInterval:2 end:nil] autorelease];

Creating Weekly Recurrence Rules

Weekly recurrence rules are useful for events that occur on the same days of the week—for example, a class
that meets at the same time on Mondays, Wednesdays, and Fridays of every week.

Similar to creating a daily recurrence rule, use the initWeeklyRecurrenceWithInterval:end: method
to create an event that occurs once a week and repeats in weekly intervals. The day of the week defaults to
the day of the week of the start date. If the start date is a Tuesday, the weekly event repeats on Tuesdays at
the specified interval. For example, use this method to create an event that occurs every-other week starting
today as in the following code fragment:

// Create a weekly event that occurs every other week from the start date.
CalEvent *event = [CalEvent event];
event.calendar = calendar;
event.title = @"Pay Day";
event.startDate = [NSDate date];
event.endDate = [NSDate distantFuture];
event.recurrenceRule = [[[CalRecurrenceRule alloc]
initWeeklyRecurrenceWithInterval:2 end:nil] autorelease];

Use the initWeeklyRecurrenceWithInterval:forDaysOfTheWeek:end: method to create an event
that occurs multiple times per week and repeats in weekly intervals. Use the forDaysOfTheWeek: argument
to specify which days of the week the event occurs. This argument is an array of integers ranging from 1 to
7 where Sunday is equal to 1. For example, the following code fragment creates an event that occurs every
3rd week on Mondays and Wednesdays starting today:

CalEvent *event = [CalEvent event];
event.calendar = calendar;
event.title = @"3rd Week MW";
event.startDate = [NSDate date];

Creating Daily Recurrence Rules 21
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Creating Recurring Events

event.endDate = [NSDate distantFuture];
NSArray *days = [NSArray arrayWithObjects:[NSNumber numberWithInt:2], [NSNumber
 numberWithInt:4], nil];
event.recurrenceRule = [[[CalRecurrenceRule alloc]
initWeeklyRecurrenceWithInterval:3 forDaysOfTheWeek:days end:nil] autorelease];

Note that the event occurs on the given start date regardless of whether it matches the weekly pattern. For
example, if the start date is a Tuesday and the days of the weekly pattern are Mondays and Wednesdays,
then the event occurs on the Tuesday start date and thereafter, Mondays and Wednesdays at the specified
interval.

Creating Monthly Recurrence Rules

Similar to weekly recurrence rules, monthly recurrence rules are useful for creating patterns that repeat in
monthly intervals.

Use the initMonthlyRecurrenceWithInterval:end: method to create an event that occurs once a
month and repeats in monthly intervals. For example, use this method to create an event that occurs on the
15th of every month for the next 6 months.

// Create a monthly event that occurs on the 15th of every month for 6 months.
CalEvent *event = [CalEvent event];
event.calendar = calendar;
event.title = @"Loan Payment";
event.startDate = [NSDate dateWithNaturalLanguageString:@"01/15/07"];
event.endDate = [NSDate dateWithNaturalLanguageString:@"06/15/07"];
CalRecurrenceEnd *end = [CalRecurrenceEnd recurrenceEndWithOccurrenceCount:6];
event.recurrenceRule = [[[CalRecurrenceRule alloc]
initMonthlyRecurrenceWithInterval:1 end:end] autorelease];

Use the initMonthlyRecurrenceWithInterval:forDaysOfTheMonth:end:method to create an event
that occurs multiple times a month and repeats in monthly intervals. Use the forDaysOfTheMonth: argument
to specify the days of the month that the event occurs. This argument is an array of integers ranging from 1
to 31 representing the days of the month. For example, use this method to create an event that occurs on
the 1st and 15th of every month.

Use the initMonthlyRecurrenceWithInterval:forDayOfTheWeek:forWeekOfTheMonth:end:
method to create an event that has both a weekly and monthly pattern that repeats in monthly intervals.
Use the forDayOfTheWeek: argument to specify the day of the week that the pattern occurs. Use the
forWeekOfTheMonth: argument to specify the weeks within a month that the pattern occurs. See Table
1 (page 20) for details on these arguments.

Creating Yearly Recurrence Rules

Yearly recurrence rules are needed to create more complex recurring events. For example, events that occur
quarterly or twice a year on the same month and day of the year. Even some complex monthly patterns can
be easier to represent using a yearly recurrence rule.

22 Creating Monthly Recurrence Rules
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Creating Recurring Events

Use the initYearlyRecurrenceWithInterval:end: method to create an event that occurs once a year
and repeats in a yearly interval. For example, if the start date is July 4th, 2006 and the interval is 1, then the
event would occur every 4th of July after the start date.

Use the initYearlyRecurrenceWithInterval:forMonthsOfTheYear:end:method to create an event
that occurs multiple times a year and repeats in yearly intervals. For example, if the start date is April 10,
2007, the interval is 1, the forMonthsOfTheYear: argument is an array containing the integers 4 and 12,
then this event occurs on April 10th and December 10th of every year after 2005 as shown in this code
fragment:

// Create a yearly event that occurs on the 10th of April and December of every
 year.
CalEvent *event = [CalEvent event];
event.calendar = calendar;
event.title = @"Property Taxes";
event.startDate = [NSDate dateWithNaturalLanguageString:@"April 10, 2007"];
event.endDate = event.endDate = [NSDate distantFuture];
NSArray *months = [NSArray arrayWithObjects:[NSNumber numberWithInt:4], [NSNumber
 numberWithInt:12], nil];
event.recurrenceRule = [[[CalRecurrenceRule alloc]
initYearlyRecurrenceWithInterval:1 forMonthsOfTheYear:months end:nil]
autorelease];

Use the
initYearlyRecurrenceWithInterval:forDayOfTheWeek:forWeekOfTheMonth:forMonthsOfTheYear:end:
method to create an event that has a predictable weekly, monthly, and yearly pattern.

Creating Yearly Recurrence Rules 23
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Creating Recurring Events

24 Creating Yearly Recurrence Rules
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Creating Recurring Events

Changes you make locally to calendar objects are not persistent until you save them to the Calendar Store
database. This includes calendar, event, and task objects that you create locally. For example, instantiating
a CalEvent object doesn’t automatically add it and save it to the database. This article describes the
CalCalendarStore methods you use to save each type of object.

Although errors are rare, you should always check the return value of the save... CalCalendarStore
methods and if an error occurs, take the appropriate action. For example, the sample code in this article
displays an alert panel when an error occurs.

Saving Changes to Calendars

Use the saveCalendar:error: CalCalendarStore method to save a new CalCalendar object or to
save changes to an existing CalCalendar object. Note that changes to events or tasks belonging to a
calendar are not automatically saved when you save the calendar. Read “Saving Changes to Events” (page
25)and “Saving Changes to Tasks” (page 26) for how to save events and tasks.

Saving Changes to Events

Use the saveEvent:span:error: CalCalendarStoremethod to save a new CalEvent object or to save
changes to an existing CalEvent object. If you are adding a new object, the calendar property of the
CalEvent object needs to be set before you invoke this method.

The code fragment in Listing 1 shows how to save changes to an event object.

Listing 1 Saving events

// Save changes to an event
NSError *calError;
if ([[CalCalendarStore defaultCalendarStore] saveEvent:event span:CalSpanThisEvent
 error:&calError] == NO){
 NSAlert *alertPanel = [NSAlert alertWithError:calError];
 (void) [alertPanel runModal];
 // terminate the application?
}

Similarly, use the removeEvent:span:error: CalCalendarStore method to delete an event from the
Calendar Store database. This method returns YES if successful, and NO if an error occurred.

Saving Changes to Calendars 25
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Saving Changes

You use the span: argument for each of these methods to specify which events of a recurring event to apply
the changes to. Pass the CalSpanThisEvent constant for a nonrecurring event. Otherwise, use the
CalSpanFutureEvents constant to apply the changes to all future events or the CalSpanAllEvents
constant to apply the changes to all events in the recurrence.

Saving Changes to Tasks

Use the saveTask:error:CalCalendarStore method to save a new CalTask object or to save changes
to an existing CalTask object. If you are adding a new object, the calendar property of the CalTask object
needs to be set before you invoke this method.

Use the removeTask:error: CalCalendarStore method to remove a task from the Calendar Store
database. Again, check the return value of this method in case an error occurs.

26 Saving Changes to Tasks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Saving Changes

If you fetch Calendar Store objects, you typically want to observe changes to the objects so your application
data is in sync with the Calendar Store database. You especially need to do this if you retain the calendar
objects or display information about the objects to the user. For example, if an event’s start date changes in
iCal, you might want to update the view of that event in your application too. Similarly, if the user makes
changes to an event in your application, you might want to make the change to the Calendar Store database
so that iCal updates its display. To do this, you need to observe changes made externally and internally. How
you observe end-user changes is application dependent. This article demonstrates how to do this using
Cocoa bindings.

Observing External Notifications

CalCalendarStore defines several notifications that are posted when another process changes fetched
objects. A separate notification is posted for each type of object (calendars, events, and tasks) and contains
information about changes to multiple objects—it does not post a notification for each individual change.
Similar to Core Data change notifications, the notification user dictionary contains information about what
objects were inserted, updated, or deleted. The handlers for these notifications should update the local object
to reflect the changes.

If you are displaying information about calendars, then observe the
CalCalendarsChangedExternallyNotification notification. If you are displaying information about
events, then observe the CalEventsChangedExternallyNotification notification. If you are displaying
information about tasks, then observe the CalTasksChangedExternallyNotification notification.

For example, the following code fragment registers for external event changes:

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(eventsChanged:)
 name:CalEventsChangedExternallyNotification object:[CalCalendarStore
defaultCalendarStore]];

Observing Internal Notifications

You can also observe changes made specifically by your application. For example, update the display when
you change calendar objects internally. The internal notifications are CalCalendarsChangedNotification,
CalEventsChangedNotification, and CalTasksChangedNotification.

For example, the following code fragment registers for internal event changes:

[[NSNotificationCenter defaultCenter] addObserver:self
selector:@selector(eventsChanged:)
 name:CalEventsChangedNotification object:[CalCalendarStore
defaultCalendarStore]];

Observing External Notifications 27
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Observing Changes

Applying Changes

The notification handler method should check to see what objects need to be deleted, inserted, or updated
as shown in Listing 1. Since how you apply changes to local objects is application dependent, those portions
of this method implementation are omitted in the listing.

Listing 1 Applying changes

- (void)eventsChanged:(NSNotification *)notification
{
 // Apply delete changes
 NSArray *deletedRecords = [[notification userInfo]
valueForKey:CalDeletedRecordsKey];
 if (deletedRecords != nil){
 // insert code that deletes local objects
 }

 // Apply insert changes
 NSArray *insertedRecords = [[notification userInfo]
valueForKey:CalInsertedRecordsKey];
 if (insertedRecords != nil){
 // insert code that adds new local objects
 }

 // Apply update changes
 NSArray *updatedRecords = [[notification userInfo]
valueForKey:CalUpdatedRecordsKey];
 if (updatedRecords != nil){
 // insert code that updates existing objects
 }

 return;

Note that the values for the keys contained in the user information dictionary—CalInsertedRecordsKey,
CalDeletedRecordsKey, and CalUpdatedRecordsKey—are arrays of UIDs, not arrays of CalCalendar,
CalEvent, or CalTask objects. Therefore, you need to retain either the corresponding CalCalendar,
CalEvent, or CalTask objects when you originally fetched them, or retain their UIDs to match the remote
changes with the local representation of these objects.

When inserting or updating objects, use the corresponding calendarWithUID:,
eventWithUID:occurrence:, or taskWithUID: method to fetch the inserted or updated objects from
the Calendar Store database.

If you are updating an object, you can either compare property values between the new and old object, or
replace the old object with the new object. Calendar Store does not automatically update existing calendar
objects—for example, it does not update a previously fetched CalEvent object. If you retain CalEvent
objects—for example, add them to an array—then you typically replace the old CalEvent object with the
new CalEvent object to apply an update.

For this reason, you should take precautions when using calendar objects with Cocoa bindings. For example,
implement your own model object that uses the calendar object as an internal representation or release
calendar objects after retaining the UID and other property values.

28 Applying Changes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Observing Changes

Observing User Changes Using Cocoa Bindings

If you have an end-user application that allows the user to edit calendar objects, then you also need to handle
changes made by the user and propagate these changes back to the Calendar Store database. How you do
this is largely application dependent unless you use Cocoa bindings.

If you use Cocoa bindings, then you should observe local changes to calendar object properties. If you retain
a CalEvent object and the user can directly edit the CalEvent object—for example, you use an
NSArrayController object to display an array of CalEvent objects in an editable table view—, then you
should observe changes to CalEvent properties. At least observe changes to all CalEvent properties that
you use in your application.

The following code fragment observes local start and end date changes to a CalEvent object.

// Observe changes to the start and end dates
[event addObserver:self forKeyPath:@"startDate"
 options:(NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld)
 context:NULL];
[event addObserver:self forKeyPath:@"endDate"
 options:(NSKeyValueObservingOptionNew | NSKeyValueObservingOptionOld)
 context:NULL];

Your implementation of the observeValueForKeyPath:ofObject:change:context: method of
NSObject should save the local changes to the Calendar Store database using either the
saveCalendar:error:, saveEvent:span:error:, or saveTask:error: method depending on the
type of object that changed. See “Saving Changes” (page 25) for more information on saving changes to
the Calendar Store database.

If the end-user can also add and delete calendar objects, then you also need to observe changes to your
mutable array—the array that is providing the content to your NSArrayController object. See Cocoa
Bindings Programming Topics for a complete description of Cocoa bindings.

Observing User Changes Using Cocoa Bindings 29
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Observing Changes

30 Observing User Changes Using Cocoa Bindings
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Observing Changes

This table describes the changes to Calendar Store Programming Guide.

NotesDate

New document that describes concepts and common tasks when using the
Calendar Store framework to access iCal data.

2007-10-31

31
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

32
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Document Revision History

	Calendar Store Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Calendar Store Overview
	Calendar Store Architecture
	Calendar Store Objects
	Using Predicates
	Updating Your Objects
	Fetching in Batches

	Fetching Objects
	Fetching Calendars
	Fetching Events
	Fetching Individual Events
	Using Predicates to Fetch Events
	Fetching Recurring Events

	Fetching Tasks
	Fetching Individual Tasks
	Using Predicates to Fetch Tasks

	Creating Objects
	Creating Calendars
	Creating Events
	Creating Tasks
	Creating Alarms

	Creating Recurring Events
	Recurrence Rule Classes and Methods
	Specifying an Interval
	Creating a Recurrence End
	Creating Daily Recurrence Rules
	Creating Weekly Recurrence Rules
	Creating Monthly Recurrence Rules
	Creating Yearly Recurrence Rules

	Saving Changes
	Saving Changes to Calendars
	Saving Changes to Events
	Saving Changes to Tasks

	Observing Changes
	Observing External Notifications
	Observing Internal Notifications
	Applying Changes
	Observing User Changes Using Cocoa Bindings

	Revision History

