
Dashboard Programming Topics
Apple Applications > Dashboard

2009-02-04

Apple Inc.
© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, Aqua,
Carbon, Cocoa, iBook, iTunes, Logic, Mac, Mac
OS, Macintosh, Objective-C, Quartz, QuickTime,
Safari, Spaces, Tiger, and Xcode are trademarks
of Apple Inc., registered in the United States
and other countries.

Finder and WebScript are trademarks of Apple
Inc.

Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction to Dashboard Programming Topics 11

Who Should Read This Document? 11
Organization of This Document 11
See Also 12

Widget Basics 13

The Dashboard Environment 13
What Is a Dashboard Widget? 14
Creating a Simple Widget 15

Widget Bundle Structure 15
HTML, CSS, and JavaScript Files 16
Widget Property Lists 17
Icons and Default Images 18
Implement the Widget 19
Assemble and Load the Widget 20

Designing Widgets 23

Main Interface Design Guidelines 23
Widget Back Side Design Guidelines 29
Widget Bar Icons 32
Other Tips 32

Widget Programming 32
Drop Shadows 33
Integrated Menus 33
Search Fields 35
Help Tags 35
Universal Access 35

Introduction to the Apple Classes 37

Including an Apple Class 37
Backwards Compatible Usage 37
For Widgets on Mac OS X v.10.4.3 and Later 38

Using an Apple Class 38

Using Scroll Areas 39

Working with Scroll Areas 39
Scroll Areas and Scroll Bars, in HTML 39

3
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Scroll Areas and Scroll Bars, in CSS 40
Scroll Areas and Scroll Bars, in JavaScript 41

Using an Apple Slider 47

Working with an Apple Slider 47
An Apple Slider, in HTML 47
An Apple Slider, in CSS 48
An Apple Slider, in JavaScript 49

Using Animation 53

Working with Animation 53
Apple Animator and Animation, In HTML 53
Apple Animator and Animation, in JavaScript 54

Full Setup and Usage 54
Quick Setup 55
Properties of Apple Animator and Animation 55

The Apple Rectangle Animation Subclass 56
Properties of Apple Rectangle Animation and Apple Rectangle 57

Using an Apple Button 59

Working with an Apple Button 59
An Apple Button, in HTML 59
An Apple Button, in CSS 60
An Apple Button, in JavaScript 60
The Apple Glass Button Subclass 62

Widget Backs and Preferences 65

Providing Preferences 65
Displaying a Back Side 66

In Your HTML File 66
In Your JavaScript File 67
In Your CSS File 69

Syncing Widgets 71

Dashboard Sync Details 71
Handling a Sync Event 71
Excluding Preferences from Syncing 72

Using Widget Events 73

Dashboard Activation Events 73

4
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Focus Events 74
Widget Drag Events 74
Widget Removal Event 75

Declaring Control Regions 77

The -apple-dashboard-region 77

Resizing Widgets 81

Resizing Methods 81
Live Resizing 81
Adjusting the Close Box 82

Using the Canvas 85

Introduction to the Canvas 85
Defining the Canvas 85
Drawing on a Canvas 86

Using the Pasteboard From JavaScript 89

Introduction to JavaScript Pasteboard Operations 89
Adding Pasteboard Handlers to Elements 89
Manipulating Pasteboard Data 90

Using Drag and Drop From JavaScript 91

Introduction to JavaScript Drag and Drop 91
Adding Handlers to Elements 92
Making an Element Draggable 92
Manipulating Dragged Data 93
Changing Drag Effects 93
Changing the Appearance of Dragged Elements 94

Changing the Snapshot With CSS 94
Specifying a Custom Drag Image 95

Cross-Browser Compatibility 95

Localizing Widgets 97

Language Projects 97
What Dashboard Does for You 98
What You Need to Provide Dashboard 98
Localized Strings Example 99
Localized Widget Names 100

5
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Specifying Access Keys 101

Using Access Keys 101

Accessing External Resources 103

URL Opening 103
Application Activation 104

Accessing Command Line Utilities 105

The System Method 105
Synchronous Operation 106
Asynchronous Operation 106

Sample Code 108

Creating a Widget Plug-in 111

Widget Plug-in Interface 111
Widget Plug-in Bundle 112
Additional Resources 113

Using Objective-C From JavaScript 115

How to Use Objective-C in JavaScript 115
A Sample Objective-C Class 115

Delivering Widgets 119

Packaging Your Widget 119
Delivery Tips 119

Document Revision History 121

6
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Widget Basics 13

Figure 1 Dashboard displays active widgets in an area that floats above the desktop 13
Figure 2 The Weather widget displays the weather forecast for the user’s selected location

14
Figure 3 A simple Hello World widget is a good first project 15
Figure 4 The Hello World widget bar icon 18
Figure 5 The Hello World widget default image 19
Figure 6 The Hello World widget being previewed in Safari 20
Figure 7 The Hello World widget installed and running in Dashboard 21
Table 1 File extension mappings for web technologies 16
Table 2 Widget Info.plist properties 17
Listing 1 The Hello World HTML file 19
Listing 2 The Hello World CSS file 19

Designing Widgets 23

Figure 8 A cluttered widget is a jack of all trades, master of none 23
Figure 9 Three simple widgets, each focused on a single task 24
Figure 10 A large widget monopolizes valuable screen space 24
Figure 11 A small widget provides information and leaves room for other widgets 25
Figure 12 Color makes your widget stand out—can you spot the Calendar? 26
Figure 13 An offensive widget–be careful with color! 27
Figure 14 Aqua controls don’t belong on the face of your widget 27
Figure 15 A widget with custom controls 28
Figure 16 Don’t waste valuable space in your widget with advertising 28
Figure 17 Put information not vital to the widget on the back 29
Figure 18 A non-standard control for showing your widget’s back 30
Figure 19 The standard info button—users know what this means 30
Figure 20 Proper info button placement 30
Figure 21 Aqua controls on a widget’s back 31
Figure 22 Different backgrounds distinguish between front and back 31
Figure 23 Branding is appropriate on a widget’s back 32
Figure 24 Voice’s popup menu fits in with its design 33

Using Scroll Areas 39

Table 3 AppleScrollbar Subclasses 41
Table 4 AppleScrollArea object properties and methods 42
Table 5 AppleScrollbar object properties and methods 43

7
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Slider 47

Table 6 AppleSlider Subclasses 49
Table 7 AppleSlider object properties and methods 49

Using an Apple Button 59

Table 8 AppleButton Constructor Parameters 61
Table 9 AppleButton object properties and methods 62
Table 10 AppleGlassButton Constructor Parameters 63
Table 11 AppleGlassButton object properties and methods 63

Syncing Widgets 71

Listing 1 Providing an onsync handler 71
Listing 2 Excluding a preference using the SyncExclusions Info.plist key 72
Listing 3 A function for making unique per-instance preferences 72
Listing 4 Using per-instance preferences 72

Using Widget Events 73

Figure 25 The Calculator widget, active and inactive 74

Declaring Control Regions 77

Figure 26 The Calculator widget and its control circles and rectangles 77
Figure 27 Control region example 79
Table 12 Required dashboard-region() parameters 77
Table 13 Optional dashboard-region() parameters 78

Using the Canvas 85

Figure 1 The World Clock canvas region 85

Using Drag and Drop From JavaScript 91

Table 1 Values for -khtml-user-drag attribute 92
Table 2 Options for dragging and dropping an element 93

Localizing Widgets 97

Table 16 Common languages and corresponding language project names 98

8
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Specifying Access Keys 101

Table 17 Info.plist Keys for the Widget resource access 101

Accessing External Resources 103

Listing 7 Assembling a URL and passing it to widget.openURL 103

Accessing Command Line Utilities 105

Table 18 widget.system() parameters 105
Table 19 widget.system() properties during synchronous usage 106
Table 20 widget.system() end handler parameter object properties 107
Table 21 widget.system() properties and methods available during asynchronous usage

107

9
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

10
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

This document provides an overview of Dashboard and the widgets that exist in it. It discusses optional
features that may be implemented in a widget, various WebKit technologies you may find useful, and touches
on native code integration through a widget plug-in.

Who Should Read This Document?

Dashboard Programming Topics is for anyone who wants to create and enhance a Dashboard widget. It will
provide you with an understanding of different techniques useful for improving your widget's functionality.

If you haven't developed a Dashboard widget before, be sure to start with “Widget Basics” (page 13).

Organization of This Document

This document contains the following articles:

 ■ “Widget Basics” (page 13) introduces the Dashboard environment and describes how to develop a
simple widget.

 ■ “Designing Widgets” (page 23) provides guidelines and tips for designing successful widgets.

 ■ “Introduction to the Apple Classes” (page 37) discusses the Apple Classes, what they offer, and how to
include them in your widget.

 ■ “Using Scroll Areas” (page 39) talks about integrating a scroll area into your widget.

 ■ “Using an Apple Slider” (page 47) tells you how to use a slider control in your widget.

 ■ “Using Animation” (page 53) discusses using the animation-focused Apple Classes.

 ■ “Using an Apple Button” (page 59) talks about using the AppleButton class to build your own buttons,
and how to use the AppleGlassButton subclass for standard-style buttons.

 ■ “Widget Backs and Preferences” (page 65) tells you how to display, save, and retrieve preferences.

 ■ “Syncing Widgets” (page 71) looks at the Dashboard Sync feature in Mac OS X v.10.5 and how you can
handle syncing in your widget.

 ■ “Using Widget Events” (page 73) discusses Dashboard and widget events that your widget may want
to be aware of.

 ■ “Declaring Control Regions” (page 77) defines and explains how to work with control regions, areas
where controls are present in a widget.

 ■ “Resizing Widgets” (page 81) provides code useful for implementing resizing in your widget.

 ■ Using the Canvas (page 85) talks about using the Canvas feature of WebKit within your widget.

Who Should Read This Document? 11
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Dashboard Programming
Topics

 ■ Using the Pasteboard from JavaScript (page 89) talks about supporting copy, cut, and paste in a widget.

 ■ Using Drag and Drop From JavaScript (page 91) tells you about the handlers needed to support drag
and drop in your widget.

 ■ “Localizing Widgets” (page 97) discusses offering your widget with international users in mind, using
localizable strings and other resources.

 ■ “Specifying Access Keys” (page 101) describes the widget access keys, used to turn on resource access
for your widget.

 ■ “Accessing External Resources” (page 103) talks about opening applications or web pages in a browser
with your widget.

 ■ “Accessing Command Line Utilities” (page 105) tells you how to access command-line utilities and scripts
from within your widget.

 ■ “Creating a Widget Plug-in” (page 111) discusses native code plug-ins that your widget uses to interact
with other applications.

 ■ Using Objective-C From JavaScript (page 115) provides more detail on bridging Objective-C and JavaScript.

 ■ “Delivering Widgets” (page 119) tells you about packaging and distributing your widget.

This document also contains a revision history.

See Also

All of the Dashboard-specific information discussed in this document is covered more in depth in Dashboard
Reference. Additional Dashboard documents and sample code can be found in Reference Library > Apple
Applications > Dashboard.

In addition to these documents, WebKit DOM Reference provides reference information on most of these
topics.

The XMLHttpRequest object allows you to parse XML in JavaScript and use the results. Read Dynamic HTML
and XML: The XMLHttpRequest Object for more information.

12 See Also
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Introduction to Dashboard Programming Topics

http://developer.apple.com/internet/webcontent/xmlhttpreq.html
http://developer.apple.com/internet/webcontent/xmlhttpreq.html

Dashboard widgets provide an easy way for people to access important information and perform simple
tasks without disturbing their work on the desktop. The Dashboard application, available in Mac OS X v10.4
and later, provides the environment widgets run in and allows users to manage their widgets. This article
introduces the Dashboard environment and explains how to create a simple widget.

The Dashboard Environment

Users show Dashboard by using a key stroke, as specified in the Exposé & Spaces pane of System Preferences.
By default, the key is F12. Alternatively, users can click the Dashboard icon in the Dock. When Dashboard
runs, it overlays the windows currently visible on the desktop and displays the active widgets, as shown in
Figure 1.

Figure 1 Dashboard displays active widgets in an area that floats above the desktop

Multiple widgets, including multiple instances of one widget, can exist in Dashboard at one time. Users have
complete control over what widgets are visible and can freely move them anywhere they please in Dashboard.
The widgets appear when Dashboard is launched and disappear when Dashboard is dismissed.

The Dashboard Environment 13
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

Dashboard also provides ways for users to manage their widgets. Clicking the button in the lower-left corner
of Dashboard displays:

 ■ The set of enabled widgets in the widget bar across the bottom of the screen, as shown in Figure 1.
(Enabled widgets are those that are installed and ready to place in Dashboard.)

 ■ The Manage Widgets button and the Widgets widget, both of which open a list of all installed widgets
and give users an easy way to download more widgets.

 ■ A close button at the upper-left of each widget in Dashboard (shown in Figure 1), which allows users to
remove the widget from Dashboard without deleting it.

What Is a Dashboard Widget?

A widget is a mini application that exists exclusively in Dashboard. From the user’s perspective, it behaves
as an application should: it shows useful information or helps them perform a simple task with a minimum
of input. For example, Weather (shown in Figure 2) displays a 6 day weather forecast for the location the user
selects.

Figure 2 The Weather widget displays the weather forecast for the user’s selected location

Despite the fact that widgets look like applications to the user, widgets are powered by web technologies
and standards such as HTML, CSS, and JavaScript. In addition to web technology, Apple provides useful
additions such as preferences, localization, and system access.

Above all, widgets are small, lightweight, and narrowly focused on a single task. Users reveal Dashboard
when they want to check on something or perform a quick, simple task while they are in the midst of using
their desktop applications. For this reason, users expect widgets to be instantly available, quick to use, and
easy to dismiss.

14 What Is a Dashboard Widget?
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

Creating a Simple Widget

To develop a widget you must work with the bundle structure, a property list, and some combination of
HTML, CSS, and JavaScript. This section describes these components and helps you create a simple Hello
World widget, similar to the one shown in Figure 3.

Figure 3 A simple Hello World widget is a good first project

As you create this widget, you become familiar with a widget's bundle structure, its information property list
file, a basic style sheet, and the HTML file needed to make the widget function. You also learn how to put
these pieces together and install the widget in the right place.

All of the files needed to implement this widget are available as sample code from the Apple Developer
Connection website at Sample Code > Apple Applications > Dashboard. (If you’re working with Mac OS X
v10.4.3 or earlier, you may see these files installed in /Developer/Examples/Dashboard.)

Note: The sample code included in this article is simplified and may not conform to strict HTML specifications.

Widget Bundle Structure

Widgets are distributed as bundles. A bundle is a directory in the file system that groups related resources
together in one place. A widget's bundle contains at least four files: an information property list file
(Info.plist), an HTML file, and two PNG images. There may or may not be a fifth file that contains the style
sheet for the widget.

For the Hello World widget, the bundle structure contains the following files:

Hello World.wdgt/
 Icon.png
 Info.plist
 Default.png
 HelloWorld.html
 HelloWorld.css

Creating a Simple Widget 15
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

http://developer.apple.com/samplecode/AppleApplications/idxDashboard-date.html

Note: Depending on the version of the sample code you get, you may or may not see the HelloWorld.css
file included in the bundle. This is because later versions of the sample place the CSS content within the
HTML file.

HTML, CSS, and JavaScript Files

The HTML, CSS, and JavaScript files provide the implementation of the widget. In these files, you can use any
technique or trick that you would use when designing a webpage. This includes, but is not limited to, HTML,
CSS, and JavaScript. In general, you use HTML to define the structure of your widget, CSS to provide the
visual style, and JavaScript to support interactivity.

Note: You should try to avoid using Flash in your widget because widgets function best when they are as
lightweight as possible.

Although you can place all of your HTML, CSS, and JavaScript code into one file, you may find it more
manageable to split these into separate files, as shown in Table 1. Splitting your markup, design, and logic
into separate files may also make localization easier, as discussed in “Localizing Widgets” (page 97). The file
extensions listed in Table 1 are used to reflect the purpose of the file:

Table 1 File extension mappings for web technologies

ExampleFile extensionPurposeTechnology

HelloWorld.html.htmlStructureHTML

HelloWorld.css.cssDesignCSS

HelloWorld.js.jsLogicJavaScript

These file extensions are not enforced by Dashboard, but it is recommended that you adhere to these
standards.

It is advisable to create a single HTML file for your widget. If a widget contains more than one HTML file, the
resulting reloads can make your widget seem less like a mini application and more like a website.

To load your CSS and JavaScript, you need to import them inside of your HTML file. To import a style sheet
(in other words, a CSS file), you add HTML code that looks similar to this:

<style type="text/css">
 @import "HelloWorld.css";
</style>

To load a JavaScript file, use the <script> tag:

<script type='text/javascript' src='HelloWorld.js'></script>

Note that if your widget does not use CSS or JavaScript, there is no need to use these includes or to include
blank CSS or JavaScript files. Conversely, you can use multiple @import statements and <script> tags to
include more than one CSS or JavaScript file.

16 Creating a Simple Widget
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

Widget Property Lists

Each widget must have an information property list (Info.plist) file associated with it. This file provides
Dashboard with information about your widget. Dashboard uses this information to set up a space in which
it can operate.

The Info.plist file contains the needed information. In a basic widget’s Info.plist file are five mandatory
keys and four optional keys. These keys are listed in Table 2 along with their definitions and some example
values used in the Hello World widget:

Table 2 Widget Info.plist properties

DefinitionExample valueKey

Required. A string that uniquely identifies the
widget, in reverse domain format.

com.apple.widget.Hello-
World

CFBundleIdentifier

Required. A string that contains the name of
your widget. Must match the name of the widget
bundle on disk, minus the .wdgt file extension.

Hello WorldCFBundleName

Required. A string that contains the actual name
of the widget, to be displayed in the widget bar
and the Finder.

Hello WorldCFBundleDisplayName

Required. A string that gives the version number
of the widget.

1.0CFBundleVersion

Optional. An integer between 0 and 100 that
sets the placement of the widget’s close box on
the x-axis.

16CloseBoxInsetX

Optional. An integer between 0 and 100 that
sets the placement of the widget’s close box on
the y-axis.

14CloseBoxInsetY

Optional. A number that gives the height, in
pixels, of your widget. If not specified, the height
of Default.png is used.

126Height

Required. A string that gives the name of the
HTML file that implements your widget.

HelloWorld.htmlMainHTML

Optional. A number that gives the width, in
pixels, of your widget. If not specified, the width
of Default.png is used.

235Width

Of note are the values for the CloseBoxInsetX and CloseBoxInsetY keys. These values determine the
placement of the close box of your widget. You should position the close box so that the "X" is centered over
the top-left corner of the widget.

The complete information property list file for the Hello World sample widget looks like this:

<?xml version="1.0" encoding="UTF-8"?>

Creating a Simple Widget 17
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDisplayName</key>
 <string>Hello World</string>
 <key>CFBundleIdentifier</key>
 <string>com.apple.widget.helloworld</string>
 <key>CFBundleName</key>
 <string>Hello World</string>
 <key>CFBundleShortVersionString</key>
 <string>1.0</string>
 <key>CFBundleVersion</key>
 <string>1.0</string>
 <key>CloseBoxInsetX</key>
 <integer>16</integer>
 <key>CloseBoxInsetY</key>
 <integer>14</integer>
 <key>MainHTML</key>
 <string>HelloWorld.html</string>
</dict>
</plist>

Note that in this Info.plist file, the Width and Height keys are omitted. As previously mentioned, these
keys are optional. Because they aren’t included, this widget is automatically sized based on the dimensions
of its default image.

There are more optional Info.plist keys than those described here; you can read about them in Dashboard
Info.plist Keys. Of particular note are the access keys, which allow you to turn on access to external resources.
“Using Access Keys” (page 101) discusses these in more depth.

Note: While an Info.plist file is just a text file, it's easiest to edit one using the Property List Editor
application, located in /Developer/Applications/Utilities/ on your hard disk when you install the
Xcode Tools.

Icons and Default Images

The two image files required in a widget are the icon and default image files. They need to be formatted as
Portable Network Graphics (PNG) files and must be named Icon.png and Default.png, respectively.

The icon file, Icon.png, is used in the widget bar as a representation of your widget:

Figure 4 The Hello World widget bar icon

The default image, Default.png, is shown while your widget loads. It can be the background used by your
widget or any other appropriate image. This file also sets the size of your widget if you don’t use the Height
and Width properties in your Info.plist file.

18 Creating a Simple Widget
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

Figure 5 The Hello World widget default image

For more on widget bar icon sizes and other design elements, see Designing Widgets (page 23).

Note: When assembling your Hello World sample widget, make sure that the Icon.png and Default.png
file names have their leading letter capitalized.

Implement the Widget

Your widget’s HTML file provides the implementation of the widget. You can name it anything you like, but
it must reside at the root level of the widget bundle and must be specified in the Info.plist file. For the
Hello World sample widget, the HTML file displays an image and the words "Hello, World!" The contents of
the HelloWorld.html file is shown in Listing 1:

Listing 1 The Hello World HTML file

<html>
<head>
<style>
 @import "HelloWorld.css";
</style>
</head>

<body>

 Hello, World!

</body>
</html>

The HTML for this widget specifies the image used as the background and the text to display. Notice, however,
that the above HTML file doesn’t contain any style information. Instead, it imports another file that has this
information: HelloWorld.css. As discussed in “HTML, CSS, and JavaScript Files” (page 16), you don’t have
to break your CSS and JavaScript out of the HTML file, but it is recommended. The file HelloWorld.css
contains all of the style information for the widget, as shown in Listing 2:

Listing 2 The Hello World CSS file

body {
 margin: 0;
}

.helloText {
 font: 26px "Lucida Grande";

Creating a Simple Widget 19
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

 font-weight: bold;
 color: white;
 position: absolute;
 top: 41px;
 left: 32px;
}

The style sheet defines the styles for the body and for an arbitrary span class called helloText. This class is
applied to the "Hello, World!" text in the HelloWorld.html file.

Figure 6 shows what the code looks like when rendered in Safari.

Figure 6 The Hello World widget being previewed in Safari

In fact, when testing your widget, you can open it in Safari and get the same appearance you would get if it
were loaded into Dashboard.

Assemble and Load the Widget

Now that you have completed the three basic components for the widget, you can assemble them into a
bundle and load your widget into Dashboard.

First, create a new directory named Hello World. Then, place these files in it at the root level:

Default.png

HelloWorld.html

HelloWorld.css

Icon.png

Info.plist

When the files are in place, rename the directory Hello World.wdgt.

20 Creating a Simple Widget
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

Note: Finder will ask you to confirm this action. Go ahead and choose Add and the bundle will be made for
you.

After the bundle has been renamed, double click its icon in the Finder to install it. This displays an install
dialog that, when you click Install, copies the widget to ~/Library/Widgets/ and opens it in Dashboard.
It should look like the view in Figure 7.

Figure 7 The Hello World widget installed and running in Dashboard

Congratulations! You’ve just created your first Dashboard widget.

Now you're ready to enhance your widget with some of the features Apple provides in Dashboard and WebKit.
Begin by reading about the guidelines that govern great widgets in “Designing Widgets” (page 23). Then,
read other articles in this document to learn about details that interest you, such as “Using Animation” (page
53) or “Accessing External Resources” (page 103).

Creating a Simple Widget 21
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

22 Creating a Simple Widget
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Basics

Now that you know how to assemble a basic widget, you can start thinking about which higher-level features
you want to add to your own widget. Before going any further, you should consider how your widget presents
itself to the user.

Generally speaking, widget interface design isn't as constrained to Apple Human Interface Guidelines as
Cocoa or Carbon applications are. Despite this freedom, there are basic software design principles that should
be followed. This chapter presents some guidelines that you should consider when creating your widget.

Note: Read Human Interface Design Principles from Apple Human InterfaceGuidelines for more on the design
of effective user interfaces.

Main Interface Design Guidelines

The main face of your widget is the front side (your widget displays preferences on its back). This is the side
users recognize and interact with the most.

Follow these guidelines as you design your widget’s front side:

 ■ The design of your widget should focus on immediately conveying its primary purpose.

 ■ Make effective use of space. Strive to clearly show only useful information.

 ■ Display your information immediately. Dashboard is shown and hidden quickly, so forcing the user to
wait for content to display can be annoying and time-consuming.

 ■ Design your widget to have a discrete functionality. It should require no explanation or configuration.
Instead of creating a widget that does three things, try creating three widgets that do one thing each.
This makes each task discrete and lets your users choose what is useful for them.

Figure 8 A cluttered widget is a jack of all trades, master of none

Main Interface Design Guidelines 23
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Figure 9 Three simple widgets, each focused on a single task

 ■ Design widgets for small screens. An iBook screen has a resolution of 1024 by 768 pixels, so your design
should be a good citizen and leave room for other widgets. Users have multiple widgets open at once,
so you shouldn’t monopolize screen space. Otherwise, your widget may not be used because of an
impractical size.

Figure 10 A large widget monopolizes valuable screen space

24 Main Interface Design Guidelines
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Figure 11 A small widget provides information and leaves room for other widgets

 ■ Use scroll bars sparingly. The default set of information your widget displays should be minimal and
should not required scrolling. If, however, the widget’s function is to provide a lot of information (e.g. a
dictionary), using a scroll bar may be prudent to make the widget smaller overall. Consider offering a
preference for a simple view that doesn’t require a scroll bar.

 ■ Use color to distinguish your widget. A unique color scheme ensures that when users want to use your
widget, it’s quickly recognized.

Main Interface Design Guidelines 25
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Figure 12 Color makes your widget stand out—can you spot the Calendar?

 ■ Avoid garish color schemes. Contrasting colors can be offensive to users. Instead of mixing red, green,
and purple in an interface, try out shades of the same color. Sometimes using various distinct colors may
be appropriate, but most of the time, keeping your colors in one color space makes the widget more
pleasing to the eye.

26 Main Interface Design Guidelines
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Figure 13 An offensive widget–be careful with color!

 ■ Use clear, readable fonts. Users expect to obtain information quickly from widgets. Avoid sacrificing
readability to achieve a particular appearance. Instead, focus on building the widget’s personality into
its contours and controls. Try using bold san serif fonts, like Helvetica Neue, for labels and controls.

 ■ Avoid using Aqua controls on your main interface. Aqua controls should only be used for the back side
of your widget. Instead, design custom controls for your widget’s main interface. Ensure that controls
look and behave like the objects they’re representing. A checkbox should look like a checkbox and
buttons should look clickable even though they aren’t specifically Aqua controls. (To learn how to
integrate a menu into your design, read “Integrated Menus” (page 33).)

Figure 14 Aqua controls don’t belong on the face of your widget

Main Interface Design Guidelines 27
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Figure 15 A widget with custom controls

 ■ Avoid advertising on the face of your widget. Branding your widget is acceptable and important, but
advertising takes away valuable space in your widget. Presence on a user’s Dashboard is a privilege. Use
the back of the widget for information that isn’t vital to the widget’s purpose, such as branding, licensing
information, and copyright notices.

Figure 16 Don’t waste valuable space in your widget with advertising

28 Main Interface Design Guidelines
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Figure 17 Put information not vital to the widget on the back

 ■ Use the CloseBoxInsetX and CloseBoxInsetY Info.plist keys to place your widget’s close box over
the top left of your widget’s artwork. Since many widgets have transparency around their edges, the
default location of the close box may seem to be floating off to the side of the widget. It should be
moved so that it’s located over the widget. This shows the relation between the close box and the widget.

 ■ Support pasteboard operations whenever possible. Many users expect to be able to copy and paste
elements between applications and expect the same of widgets.

 ■ Support drag-and-drop where appropriate. Users may expect to drop files or other dragged items on
your widget.

 ■ Use standard graphics and controls whenever possible. Some standard controls are provided in
/System/Library/WidgetResources/:

 ❏ The Info Button (discussed in “Displaying a Back Side” (page 66))

 ❏ Buttons (discussed in “The Apple Glass Button Subclass” (page 62))

 ❏ Resize control (discussed in “Live Resizing” (page 81))

Widget Back Side Design Guidelines

Note: Read Layout Examples from Apple Human Interface Guidelines for specific metrics regarding control
and element layout in your widget’s back.

If your widget requires configuration, you can display preferences on the back of your widget. Here are some
tips for designing your widget’s back:

 ■ Use the info button graphic to signify that you are using the back of your widget for preferences or
information. The info button consists of an "i" with a circle that appears when the cursor is over it. Clicking
the info button triggers the flip animation. The info button is a standard used across all widgets, so users
immediately know what it stands for and what happens when it’s clicked.

Widget Back Side Design Guidelines 29
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Figure 18 A non-standard control for showing your widget’s back

Figure 19 The standard info button—users know what this means

 ■ Place the info button in the bottom-right corner of your widget whenever possible. It’s OK to place it in
other corners, but the bottom-right corner is where most users expect to find this button.

Figure 20 Proper info button placement

 ■ Use the flip animation only to show your widget’s back. The back side is for showing preferences or
important information that may interest your users. Overusing the animation makes your widget appear
unprofessional.

 ■ Use Aqua elements when displaying preferences. Small-sized versions of Aqua-styled controls are
preferred. Unlike your main interface, your preferences should use standard Aqua controls. Here they
provide a standard appearance and behaviors familiar to users, traits that are valuable since users won’t
be dealing with them often and should be able to use them right away.

30 Widget Back Side Design Guidelines
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Figure 21 Aqua controls on a widget’s back

 ■ Provide a Done button. When the user has finished setting the preferences, clicking the Done button
should flip the widget back to its front side. Use the button graphics available in
/System/Library/WidgetResources/ for any buttons on the back of your widget.

 ■ Use a darker or subdued background color for your widget’s back. Reusing the background color from
your main interface is not advised because it leads to confusion about which side is the main interface.

Figure 22 Different backgrounds distinguish between front and back

 ■ If necessary, show licensing information, logos, and minimal help information on the back of your widget.
As you did with the main interface, avoid placing advertising here.

Widget Back Side Design Guidelines 31
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Figure 23 Branding is appropriate on a widget’s back

 ■ Use standard graphics and controls, as found in /System/Library/WidgetResources/, whenever
possible.

Widget Bar Icons

Widgets are represented by an icon in the widget bar. The dimensions below define the standard icon size
and shadow for a widget bar icon:

Body: 75 pixels by 75 pixels
Drop shadow:

50% opacity
90 degree angle from horizontal
3 pixel offset (distance from source)
3 pixel size, using Gaussian blur

Other Tips

Follow these tips when designing and implementing your widget.

Widget Programming

 ■ Use JavaScript whenever possible. Animation and widget logic is possible using JavaScript and results
in faster execution and a smaller memory footprint.

32 Widget Bar Icons
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

 ■ Use custom Widget and WebKit plug-ins sparingly. Plug-ins add significant complexity to your widget
and should only be used whenever a task isn’t possible using JavaScript.

 ■ Avoid using Java applets, Flash animations, and QuickTime movies. They are heavyweight and take up
a considerable amount of memory.

Drop Shadows

Widget backgrounds tend to feature drop shadows. The dimensions below define the standard drop shadow
for a widget:

50% opacity
90 degree angle from horizontal
4 pixel offset (distance from source)
10 pixel size, using Gaussian blur

Integrated Menus

As previously noted, you should design unique, custom controls that integrate well into your widget’s overall
design instead of using standard Aqua controls. Displaying a menu in this context is common and features
an implementation that is a little unusual but not difficult to make work.

First, you need to design a custom control that resembles a popup menu, like the Voices sample code does:

Figure 24 Voice’s popup menu fits in with its design

Note the characteristics shared between an Aqua popup menu and the custom control used here: the arrow
icons, the left aligned text, and a defining outline that specifies the bounds of the control. Also, note the
differing color versus the widget’s background. These are all things to take into account when making your
own custom menu control.

Other Tips 33
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Three elements, one of which is unseen here, make this menu work: an image that represents the popup
menu, a line of text that shows the current menu option, and, unseen here, a hidden <select> popup menu
element that provides the actual menu used to select an option.

Implementing Your Custom Menu Control

After designing your popup menu, you need to set up three elements in HTML: the popup image you designed,
a text element that reflects the currently selected menu option, and a <select> element that holds your
actual menu:

<div id="popupMenuText">Available Voices</div>
<select id='popupMenu' onchange='popupChanged(this);'>
 <option value="One">One</option>
 <option value="Two">Two</option>
</select>

Now that the elements are in place, position them using CSS. The menu image is placed first, with the text
over it. The linchpin is the <select> element, which provides the menu when clicked; it’s placed over the
text and image, but its opacity is set to zero.

.popupMenuImage {
 position: absolute;
 left: 28px;
 top: 169px;
 z-index: 18;
}

#popupMenuText {
 font: 13px "Helvetica Neue";
 font-weight: Bold;
 color: white;
 text-shadow: black 0px 1px 0px;
 position: absolute;
 left: 44px;
 top: 176px;
 z-index: 19;
}

#popupMenu {
 position:absolute;
 top: 169px;
 left: 28px;
 width: 163px;
 height: 30px;
 opacity: 0.0;
 z-index: 20;
}

Doing this makes your custom image look like the control being clicked, but in reality, the <select> receives
the click and displays its menu. Rest assured that while the popup menu itself is transparent, the menu shown
is opaque.

The final piece is changing the custom popup menu text when a user chooses an option in the menu. In the
HTML, a function is set that’s called when the popup’s selection changes. This function changes the menu
text to reflect the new selection:

34 Other Tips
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

function popupChanged(elem)
{
 var chosenOption = elem.options[elem.selectedIndex].value;
 document.getElementById("popupMenuText").innerText = chosenOption;

 // Other code that handles the menu selection change
}

Search Fields

Many widgets feature a search field that allows users to find content that your widget displays. WebKit offers
a new type of <input> type, called search that provides the look and behavior of a standard search field
for a widget:

<input type="search">

In addition to the search type of the <input> element, these attributes are available when this type is used:

placeholder
Allows you to specify placeholder text for the search field; this text is shown inside the field when it
does not have key focus and should be a label indication what type of input it expects.

results
Allows you to specify how many results are saved. Saved search terms are displayed in a menu that’s
displayed when the search field’s magnifying glass is clicked upon.

onsearch
Allows you to specify a handler that is called when the enter or return keys are pressed.

incremental
Including this attribute means that the onsearch handler is called every time a character is entered
into the search field.

onkeypress
Allows you to specify a handler that is called when any key is pressed.

Help Tags

Many applications feature help tags that appear to users as they hold their cursor over an element. Your
widget should display help tags for controls and any other elements that would benefit from further
explanation. To provide a help tag for an element, use the title attribute:

<div id="helloText" title="This is a helpful explanation of this element">Hello,
 World!</div>

Universal Access

Mac OS X v.10.4 "Tiger" includes a new feature named VoiceOver. VoiceOver is a system-wide screen reader
that benefits visually impaired users by audibly describing the current window.

To ensure that VoiceOver properly describes your widget, you need to take two things into account when
creating it:

Other Tips 35
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

 ■ In your HTML, structure your elements logically. If your widget has a top-down orientation, make sure
the corresponding HTML elements are in an order that reflects their orientation. Likewise, if your widget
displays its information from the left to the right, make sure that the left-most element is the first in your
HTML and that each subsequent section follows in the file’s structure.

 ■ Use alt attributes to describe images. VoiceOver reads these aloud when it comes to an image in your
widget:

36 Other Tips
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Designing Widgets

Starting with Mac OS X 10.4.3, Apple provides you with a set of JavaScript classes that make it easy to
incorporate common controls and utilities into your widget. These classes, called Apple Classes, include:

 ■ A scroll area and scroll bars

 ■ Sliders

 ■ Animation timers

 ■ Buttons, including the standard glass-style button

 ■ The Info button

The Apple Classes are found in /System/Library/WidgetResources/AppleClasses/ and can be used
from there or from within your widget, depending on whether backward compatibility is a concern.

Including an Apple Class

There are two ways to use any Apple Class in your widget: so that your widget is backward compatible with
Mac OS X versions 10.4 to 10.4.2, or so your widget runs on Mac OS X 10.4.3 and later.

Backwards Compatible Usage

Since the Apple Classes are included with Mac OS X starting with version 10.4.3, you may want to use a class
yet deploy the widget on Mac OS X versions 10.4 to 10.4.2. To do this, follow these steps:

1. Copy the needed Apple Classes out of /System/Library/WidgetResources/ into a folder, named
AppleClasses, at the top level of your widget's bundle.

2. In your main HTML file, include the needed classes using a local file path, like this:

<script type='text/javascript' src='AppleClasses/AppleInfoButton.js'
charset='utf-8'/>

3. In your Info.plist information property list file, include the key BackwardsCompatibleClassLookup
and set its value to the boolean value YES.

By copying the needed Apple Classes inside in your widget and including the local copy in your main HTML
file, your widget uses the local copies, ensuring that the classes are available to your widget no matter what
version of Mac OS X v.10.4 the widget is running on.

Including an Apple Class 37
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Introduction to the Apple Classes

Note: If you are including the AppleSlider or AppleScrollbar classes in your widget and planning on
backward compatibility, copy the Images directory into your widget, in addition to the class files.

The Info.plist key BackwardsCompatibleClassLookup however has special meaning on Mac OS X v.10.4.3
and later. When Dashboard sees this key and any <script> tag that includes a file with AppleClasses/
as the first part of its path, it automatically provides your widget with the corresponding version located in
/System/Library/WidgetResources/ instead of the local copy. This allows you to use the most up-to-date
version of an Apple Class in future versions of Mac OS X while retaining backward compatibility with earlier
versions of Mac OS X v.10.4.

For Widgets on Mac OS X v.10.4.3 and Later

If you intend for your widget to only work on Mac OS X version 10.4.3 and later, you can omit any backward
compatibility steps and just include the JavaScript files for the needed classes at the their location in
/System/Library/WidgetResources/, like this:

<script type='text/javascript'
src='/System/Library/WidgetResources/AppleClasses/AppleInfoButton.js'
charset='utf-8'/>

Using an Apple Class

Read these articles to learn more about the Apple Classes and how to use them:

Correlating ArticlesApple Class

“Using Scroll Areas” (page 39)AppleScrollArea and AppleScrollbar, used to
create a region with scrollable content.

“Using an Apple Slider” (page 47)AppleSlider, used to add a slider control to your
widget.

“Using Animation” (page 53)AppleAnimator, an automatic timer that generate
values based on a predefined curve.

“Using an Apple Button” (page 59), “Widget Backs
and Preferences” (page 65) (specifically the “In Your
HTML File” (page 66) and “In Your JavaScript
File” (page 67) sections)

AppleButton, used primarily to add a standard
glass-styled button to your widget.

“Widget Backs and Preferences” (page 65)
(specifically the “In Your HTML File” (page 66) and
“In Your JavaScript File” (page 67) sections)

AppleInfoButton, used on a widget's front to
signify that a widget has a back. When clicked, it flips
the widget over.

38 Using an Apple Class
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Introduction to the Apple Classes

Apple provides JavaScript classes that allow you to declare a scroll area and associated scroll bars. The classes
that provide this, AppleScrollArea and AppleScrollbar, are two of the Apple Classes included in Mac
OS X v10.4.3 and later.

For more on using all of the Apple Classes, including AppleScrollArea and AppleScrollbar, read
“Introduction to the Apple Classes” (page 37).

Working with Scroll Areas

To use scroll areas, you need to:

 ■ Include the AppleScrollArea and AppleScrollbar classes in your HTML file

 ■ Provide a <div> element in your HTML for the scrollable content

 ■ Provide a <div> element in your HTML for the scroll bar

 ■ Declare an onload handler, a JavaScript function called when your widget loads that constructs
AppleScrollArea and AppleScrollbar objects

 ■ Place the content and scroll bar <div> elements using CSS

 ■ Construct your scroll area and scroll bars using the AppleScrollArea and AppleScrollbar classes
in JavaScript

By default, the AppleScrollbar uses artwork supplied by Apple to represent the various parts of the scroll
bar. It is possible to provide your own artwork as well.

There are two types of scroll bars available to you: vertical and horizontal. You should take into account which
type of scroll bar you want to use when designing and coding your widget. Both are subclasses of the
AppleScrollbar class and are used in JavaScript to construct the type of scroll bar you want to use.

Scroll Areas and Scroll Bars, in HTML

In order to declare a scroll area and to use it in JavaScript, you need to include the AppleScrollArea and
AppleScrollbar classes in your widget's HTML file, provide <div> elements that represent your scrollable
content and your scroll bars in your widget's structure, and have an onload handler that's called when your
widget's HTML is loaded. The handler is used in JavaScript to construct the scroll areas and scroll bars.

First, you need to include the AppleScrollArea and AppleScrollbar classes in your main HTML file. If
you're planning backward compatibility with pre-Mac OS X v.10.4.3 versions, follow the directions in “Backwards
Compatible Usage” (page 37) and include this path:

Working with Scroll Areas 39
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Scroll Areas

<script type='text/javascript' src='AppleClasses/AppleScrollArea.js'
charset='utf-8'/>
<script type='text/javascript' src='AppleClasses/AppleScrollbar.js'
charset='utf-8'/>

Important: In addition to copying the AppleScrollbar.js file into your widget, you need to copy the
Images directory from /System/Library/WidgetResources/ into your widget's bundle and edit
AppleScrollbar.js so that any references to the image's paths point to the local copies instead. The file
contains paths that look like:

this.trackStartPath =
"file:///System/Library/WidgetResources/AppleClasses/Images/scroll_track_vtop.png";

These paths should be replaced with local paths like:

this.trackStartPath = "file://AppleClasses/Images/scroll_track_vtop.png";

If you plan on requiring Mac OS X v.10.4.3 or newer for your widget, include the AppleScrollArea and
AppleScrollbar classes from their location in /System/Library/WidgetResources/:

<script type='text/javascript'
src='/System/Library/WidgetResources/AppleClasses/AppleScrollArea.js'
charset='utf-8'/>
<script type='text/javascript'
src='/System/Library/WidgetResources/AppleClasses/AppleScrollbar.js'
charset='utf-8'/>

Once you've included the AppleScrollArea and AppleScrollbar classes, you also need to declare <div>
elements for your scrollable content and a scroll bar:

<body onload="setup();">
 ...
 <div id="myScrollArea">...</div>
 <div id="myScrollbar"></div>
 ...
</body>

The only attribute required of either <div> element is an id, which is used by CSS to position scroll area and
scroll bar, and by JavaScript to construct them. The id attribute is required over the class attribute because
elements with id attributes can be accessed via JavaScript.

Also note the declaration of an onload handler within the <body> tag. This handler is called when your
widget's HTML is loaded. It's used to construct the AppleScrollArea and AppleScrollbar objects in your
JavaScript, as discussed in “Scroll Areas and Scroll Bars, in JavaScript” (page 41).

Scroll Areas and Scroll Bars, in CSS

Now that the scroll area and scroll bar are properly declared in your HTML file, you need to position them in
your CSS. This entails including a style with the element's name and any other placement parameters you
see fit to use:

#myScrollArea {
 position: absolute;

40 Scroll Areas and Scroll Bars, in CSS
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Scroll Areas

 top: 10px;
 bottom: 10px;
 left: 10px;
 right: 30px;
}
#myScrollbar {
 position: absolute;
 top: 10px;
 bottom: 10px;
 right: 10px;
 width: 19px;
}

Note the scroll bar's width attribute. A value of 19px is used here because the default artwork provided by
Apple for the scroll bar is 19 pixels wide. If you are providing custom artwork for a scroll bar, use the width
of your artwork instead.

If your scroll area is using a horizontal scroll bar, use the height attribute in place of the width attribute. If
you are using the artwork provided by Apple, specify scroll bar heights as 19 pixels.

Scroll Areas and Scroll Bars, in JavaScript

In your HTML file, you included an onload handler as an attribute of the <body> tag. That handler is called
once Dashboard has loaded your widget's HTML file and is used to call the constructors for the
AppleScrollArea class and an AppleScrollbar subclass. First, you construct the scroll bar.

Based on which type of scroll bar you are using, you call the constructor for either an
AppleHorizontalScrollbar or AppleVerticalScrollbar. The constructors are defined as:

Table 3 AppleScrollbar Subclasses

Vertical Scroll Bar ConstructorHorizontal Scroll Bar Constructor

AppleVerticalScrollbar(scrollbar)AppleHorizontalScrollbar(scrollbar)

Both constructors take in a DOM object that represents where the scroll bar should be built. The DOM object
is the <div> that you defined in your HTML and placed in your CSS.

The AppleScrollArea constructor also takes in a DOM object. This is the <div> specified in your HTML as
the scrollable content:

AppleScrollArea(content)

In your JavaScript, your onload handler needs to use the AppleScrollArea constructor and the constructor
for a subclass of AppleScrollbar. For a vertical scroll bar, your onload handler code looks like:

var gMyScrollArea, gMyScrollbar;

function setup()
{
 gMyScrollbar = new AppleVerticalScrollbar(
 document.getElementById("myScrollbar")
);

Scroll Areas and Scroll Bars, in JavaScript 41
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Scroll Areas

 gMyScrollArea = new AppleScrollArea(
 document.getElementById("myScrollArea")
);

 gMyScrollArea.addScrollbar(gMyScrollbar);
}

In the last line of the setup() function, the addScrollbarmethod is called. This associates the constructed
scroll bar with the scroll area, meaning that any interaction on the scroll bar effects the associated scroll area.

You can associate scroll areas and scroll bars via addScrollbar or you can add them as additional arguments
to the AppleScrollArea constructor:

AppleScrollArea(content, scrollbar, ...)

The AppleScrollArea constructor can accept any number of scroll bars.

These methods and properties are also available to AppleScrollArea objects and allow you to modify its
behavior:

Table 4 AppleScrollArea object properties and methods

ExplanationTypeOption

Read/Write; determines if the scroll area scrolls
vertically

PropertygMyScrollArea.scrollsVertically

Read/Write; determines if the scroll area scrolls
horizontally

PropertygMyScrollArea.scrolls-
Horizontally

Read/Write; the number of pixels the scroll area scrolls
when an arrow key is pressed

PropertygMyScrollArea.singlepress-
ScrollPixels

Read only; the height of the scroll areaPropertygMyScrollArea.viewHeight

Read only; the ratio of the height of the view versus
the total amount of content shown

PropertygMyScrollArea.viewTo-
ContentHeightRatio

Read only; the width of the scroll areaPropertygMyScrollArea.viewWidth

Read only; the ratio of the width of the view versus
the total amount of content shown

PropertygMyScrollArea.viewTo-
ContentWidthRatio

Associates a scroll bar with a scroll areaMethodgMyScrollArea.add-
Scrollbar(scrollbar)

Disassociates a scroll bar and scroll areaMethodgMyScrollArea.remove-
Scrollbar(scrollbar)

Removes the scroll area from the widgetMethodgMyScrollArea.remove()

Redraws the scroll area's scroll bars; call whenever a
content change happens

MethodgMyScrollArea.refresh()

42 Scroll Areas and Scroll Bars, in JavaScript
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Scroll Areas

ExplanationTypeOption

Accepts a DOM element; scrolls the view to make the
element visible

MethodgMyScrollArea.reveal(element)

Gives the scroll area key focus; scroll area responds
to key events made while widget is in focus

MethodgMyScrollArea.focus()

Removes key focus from the scroll area; scroll area no
longer responds to key events

MethodgMyScrollArea.blur()

Accepts an integer; moves the content within the
scroll area to position

MethodgMyScrollArea.verticalScroll-
To(position)

Accepts an integer; moves the content within the
scroll area to position

MethodgMyScrollArea.horizontal-
ScrollTo(position)

Additionally, any object that subclasses AppleScrollbar has these methods and properties available:

Table 5 AppleScrollbar object properties and methods

ExplanationTypeOption

Read/Write; the smallest scroller thumb size allowedPropertygMyScrollbar.minThumbSize

Read/Write; the padding on the scroll barPropertygMyScrollbar.padding

Read only; reflects if the scroll bar is always shown
or only when there is scrollable content

PropertygMyScrollbar.autohide

Read only; TRUE if the scroll bar is hidden, FALSE if
it shown

PropertygMyScrollbar.hidden

Read only; the height of a vertical scroll bar or the
width of a horizontal scroll bar, in pixels

PropertygMyScrollbar.size

Read only; the path to the current image used for
the left end of a horizontal scroll bar's track or the
top end of a vertical scroll bar's track

PropertygMyScrollbar.trackStartPath

Read only; if used on a horizontal scroll bar, the
width of the image specified as trackStartPath
; if vertical, the height of the image specified as
trackStartPath

PropertygMyScrollbar.trackStartLength

Read only; the path to the current image used
middle of the scroll bar's track

PropertygMyScrollbar.trackMiddlePath

Read only; the path to the current image used for
the right end of a horizontal scroll bar's track or the
bottom end of a vertical scroll bar's track

PropertygMyScrollbar.trackEndPath

Scroll Areas and Scroll Bars, in JavaScript 43
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Scroll Areas

ExplanationTypeOption

Read only; if used on a horizontal scroll bar, the
width of the image specified as trackEndPath ; if
vertical, the height of the image specified as
trackEndPath

PropertygMyScrollbar.trackEndLength

Read only; the path to the current image used for
the left end of a horizontal scroll bar's scroller
thumb or the top end of a vertical scroll bar's
scroller thumb

PropertygMyScrollbar.thumbStartPath

Read only; if used on a horizontal scroll bar, the
width of the image specified as thumbStartPath
; if vertical, the height of the image specified as
thumbStartPath

PropertygMyScrollbar.thumbStartLength

Read only; the path to the current image used
middle of the scroll bar's scroller thumb

PropertygMyScrollbar.thumbMiddlePath

Read only; the path to the current image used for
the right end of a horizontal scroll bar's scroller
thumb or the bottom end of a vertical scroll bar's
scroller thumb

PropertygMyScrollbar.thumbEndPath

Read only; if used on a horizontal scroll bar, the
width of the image specified as thumbEndPath ; if
vertical, the height of the image specified as
thumbEndPath

PropertygMyScrollbar.thumbEndLength

Removes the scroll bar from the scroll areaMethodgMyScrollbar.remove()

Associates a scroll area with a scroll barMethodgMyScrollbar.setScrollArea(scroll-
Area)

Redraws a scroll barMethodgMyScrollbar.refresh()

Determines if the scroll bar hides when there is no
need for a scroll bar; pass in TRUE if you want the
scroll bar to hide automatically, FALSE if you want
it to always remain visible

MethodgMyScrollbar.setAutohide(display)

Hides the scroll barMethodgMyScrollbar.hide()

Shows the scroll barMethodgMyScrollbar.show()

Sets the scroll bar's width (if horizontal) or height
(if vertical) to size, in pixels

MethodgMyScrollbar.setSize(size)

Sets the image and width, in pixels, of the left end
of a horizontal scroll bar's track, or the image and
height, in pixels, of the top end of a vertical scroll
bar's track

MethodgMyScrollbar.setTrackStart(path,
size)

44 Scroll Areas and Scroll Bars, in JavaScript
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Scroll Areas

ExplanationTypeOption

Sets image used for the middle portion of a scroll
bar's track

MethodgMyScrollbar.setTrackMiddle(path)

Sets the image and width, in pixels, of the right end
of a horizontal scroll bar's track, or the image and
height, in pixels, of the bottom end of a vertical
scroll bar's track

MethodgMyScrollbar.setTrackEnd(path,
size)

Sets the image and width, in pixels, of the left end
of a horizontal scroll bar's scroller thumb, or the
image and width, in pixels, of the top end of a
vertical scroll bar's scroller thumb

MethodgMyScrollbar.setThumbStart(path,
size)

Sets image used for the middle portion of a scroll
bar's scroller thumb

MethodgMyScrollbar.setThumbMiddle(path)

Sets the image and width, in pixels, of the right end
of a horizontal scroll bar's scroller thumb, or the
image and width, in pixels, of the bottom end of a
vertical scroll bar's scroller thumb

MethodgMyScrollbar.setThumbEnd(path,
size)

Scroll Areas and Scroll Bars, in JavaScript 45
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Scroll Areas

46 Scroll Areas and Scroll Bars, in JavaScript
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Scroll Areas

Apple provides a JavaScript class that functions as a slider control, useful for depicting a range of values that
a user can select between. The class that provides this, AppleSlider, is one of the Apple Classes included
in Mac OS X v10.4.3 and later.

For more on using all of the Apple Classes, including AppleSlider, read “Introduction to the Apple
Classes” (page 37).

Working with an Apple Slider

To use an AppleSlider, you need to:

 ■ Include the AppleSlider class in your HTML file

 ■ Provide a <div> element in your HTML to represent your slider

 ■ Declare an onload handler, a JavaScript function called when your widget loads that constructs an
AppleSlider object

 ■ Place the slider using CSS

 ■ Construct your slider using the AppleSlider class in JavaScript

By default, the AppleSlider uses artwork supplied by Apple to represent the various parts of the slider. It
is possible to provide your own artwork as well.

There are two types of sliders available to you: vertical and horizontal. You should take into account which
type of slider you want to use when designing and coding your widget. Both are subclasses of the
AppleSlider class, and are used in JavaScript to construct the type of slider you want to use.

An Apple Slider, in HTML

In order to declare an AppleSlider and to use it in JavaScript, you need to include the class in your widget's
HTML file, provide a <div> that represents your slider in your widget's structure, and have an onload handler
that's called when your widget's HTML is loaded; the handler is used in JavaScript to construct the
AppleSlider.

First, you need to include the AppleSlider class in your main HTML file. If you're planning backward
compatibility with pre-Mac OS X v.10.4.3 versions, follow the directions in “Backwards Compatible Usage” (page
37) and include this path:

<script type='text/javascript' src='AppleClasses/AppleSlider.js' charset='utf-8'/>

Working with an Apple Slider 47
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Slider

Important: In addition to copying the AppleSlider.js file into your widget, you need to copy the Images
directory from/System/Library/WidgetResources/ into your widget's bundle and editAppleSlider.js
so that any references to the image's paths point to the local copies instead. This means that paths like:

this.thumbPath =
"file:///System/Library/WidgetResources/AppleClasses/Images/slide_thumb.png";

These paths should be replaced with local paths like:

this.thumbPath = "file://AppleClasses/Images/slide_thumb.png";

If you plan on requiring Mac OS X v.10.4.3 or newer for your widget, include the AppleSlider class in its
location in /System/Library/WidgetResources/:

<script type='text/javascript'
src='/System/Library/WidgetResources/AppleClasses/AppleSlider.js'
charset='utf-8'/>

Once you've included the AppleSlider class, you also need to declare a <div> element to represent the
slider:

<body onload="setup();">
 ...
 <div id="mySlider"></div>
 ...
</body>

Typically, this entails using a <div> element somewhere in the <body> portion of your HTML. The only
attribute required of this element is an id, which is used by CSS to position the slider and by JavaScript to
construct the slider. The id attribute is required over the class attribute, because elements with id attributes
can be accessed via JavaScript.

Also note the declaration of an onload handler within the <body> tag. This handler is called when your
widget's HTML is loaded. It's used to construct the AppleSlider object in your JavaScript, as discussed in
“An Apple Slider, in JavaScript” (page 49).

An Apple Slider, in CSS

Now that the slider is properly declared in your HTML file, you need to position it in your CSS. This entails
including a style with the element's name and any other placement parameters you see fit to use:

#mySlider {
 position: absolute;
 top: 20px;
 left: 20px;
 width: 100px; /* use height for vertical sliders */
}

Of particular note here is the width attribute, which is needed for horizontal sliders. If you plan on using a
vertical slider, specify a height attribute instead.

48 An Apple Slider, in CSS
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Slider

An Apple Slider, in JavaScript

In your HTML file, you included an onload handler as an attribute of the <body> tag. That handler is called
once Dashboard has loaded your widget's HTML file and is used to call the constructor for an AppleSlider
subclass. Based on which type of slider you are using, you call the constructor for either an
AppleVerticalSlider or AppleHorizontalSlider. The constructors are defined as:

Table 6 AppleSlider Subclasses

Vertical Slider ConstructorHorizontal Slider Constructor

AppleVerticalSlider(slider, onchanged)AppleHorizontalSlider(slider, onchanged)

Both constructors take in two parameters: at DOM object that represents where the slider should be built,
and a handler, called when the value of the slider changes. The DOM object is the <div> that you defined
in your HTML and placed in your CSS. For a horizontal slider, your onload handler code looks like:

var gMySlider;

function setup()
{
 gMySlider = new AppleHorizontalSlider(
 document.getElementById("mySlider"),
 sliderChanged
);
}

The onchanged handler is a function that you provide. It is called when the slider is changed and should
take one argument. When your handler is called, it's passed the current value of the slider. The value of a
slider is always a floating point number between 0 and 1.

function sliderChanged(currentValue)
{
 // Do something with the currentValue passed in
}

Note the global variable gMySlider, used in the setup() function. This variable holds a reference to your
AppleSlider object, which lets you interact with the slider at any point after it's been constructed. These
properties and methods are available for you to interact with:

Table 7 AppleSlider object properties and methods

ExplanationTypeOption

Read/Write; the handler called when the slider is
moved

PropertygMySlider.onchanged

Read/Write; a boolean that specifies if the
onchanged handler is called while the slider
thumb is moving (true) or only when its
movement is finished (false); default is true

PropertygMySlider.continuous

An Apple Slider, in JavaScript 49
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Slider

ExplanationTypeOption

Read/Write; an integer that specifies the padding,
in pixels, around the slider control within the
bounds of the <div> element containing it

PropertygMySlider.padding

Read only; the current value of the sliderPropertygMySlider.value

Read only; the height or width of the slider, in
pixels

PropertygMySlider.size

Read only; the path to the current image used
for the left end of a horizontal slider's track or
the top end of a vertical slider's track

PropertygMySlider.trackStartPath

Read only; if used on a horizontal slider, the width
of the image specified as trackStartPath ; if
vertical, the height of the image specified as
trackStartPath

PropertygMySlider.trackStartLength

Read only; the path to the current image used
middle of the slider's track

PropertygMySlider.trackMiddlePath

Read only; the path to the current image used
for the right end of a horizontal slider's track or
the bottom end of a vertical slider's track

PropertygMySlider.trackEndPath

Read only; if used on a horizontal slider, the width
of the image specified as trackEndPath ; if
vertical, the height of the image specified as
trackEndPath

PropertygMySlider.trackEndLength

Read only; the path to the current image used
for the slider's thumb

PropertygMySlider.thumbPath

Read only; if used on a horizontal slider, the width
of the image specified as thumbPath ; if vertical,
the height of the image specified as thumbPath

PropertygMySlider.thumbLength

Remove the slider from the widget's user
interface and the DOM

MethodgMySlider.remove()

Redraws the slider's components; use when you
change any aspect of the slider's display or state
programmatically

MethodgMySlider.refresh()

Moves the slider's thumb to position; takes an
integer, in pixels, in the range of 0 and the height
(if vertical) or width (if horizontal) of the slider

MethodgMySlider.slideTo(position)

Sets the slider's width (if horizontal) or height (if
vertical) to size, in pixels; takes an integer

MethodgMySlider.setSize(size)

50 An Apple Slider, in JavaScript
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Slider

ExplanationTypeOption

Sets the image and width, in pixels, of the left
end of a horizontal slider's track, or the image
and width, in pixels, of the top end of a vertical
slider's track

MethodgMySlider.setTrackStart(imagePath,
length)

Sets image used for the middle portion of a
slider's track

MethodgMySlider.setTrackMiddle(imagePath)

Sets the image and width, in pixels, of the right
end of a horizontal slider's track, or the image
and width, in pixels, of the bottom end of a
vertical slider's track

MethodgMySlider.setTrackEnd(imagePath,
length)

Sets image and width, in pixels, of the thumb on
a horizontal slider, or the image and height, in
pixels, of the thumb on a vertical slider

MethodgMySlider.setThumb(imagePath,
length)

Sets the value of the slider and moves its thumb
to value; takes a floating point number between
0 and 1.

MethodgMySlider.setValue(value)

An Apple Slider, in JavaScript 51
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Slider

52 An Apple Slider, in JavaScript
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Slider

Apple provides a JavaScript class that functions as an animation timer, useful for animating fading elements
or a series of images. The classes that provide this, AppleAnimator and AppleAnimation, are part of the
Apple Classes included in Mac OS X v10.4.3 and later.

For more on using all of the Apple Classes, including AppleAnimator and AppleAnimation, read
“Introduction to the Apple Classes” (page 37).

Working with Animation

Providing an animation in your widget can be achieved using the AppleAnimator and AppleAnimation
classes. AppleAnimator is a timer that fires at designated intervals for a defined duration. The
AppleAnimation contains a set of values and a handler. As AppleAnimations are added to
AppleAnimators, values in the animation's range are provided to the handler each time the animator fires.
To use animators and animations, you need to:

 ■ Include the AppleAnimator class in your HTML file

 ■ Construct an animator timer

 ■ Construct an animation

 ■ Provide a handler used to act when the timer fires

Apple Animator and Animation, In HTML

In order to declare AppleAnimator and AppleAnimation objects and use them in JavaScript, you need to
include the class in your widget's HTML file. If you're planning backward compatibility with pre-Mac OS X
v.10.4.3 versions, follow the directions in “Backwards Compatible Usage” (page 37) and include this path:

<script type='text/javascript' src='AppleClasses/AppleAnimator.js'
charset='utf-8'/>

If you plan on requiring Mac OS X v.10.4.3 or newer for your widget, include the AppleAnimation class in
its location in /System/Library/WidgetResources/:

<script type='text/javascript'
src='/System/Library/WidgetResources/AppleClasses/AppleAnimator.js'
charset='utf-8'/>

Working with Animation 53
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Animation

Apple Animator and Animation, in JavaScript

There are two ways to set up the animation timers and associated animation ranges within your widget's
JavaScript:

 ■ Full setup, allowing you to associate multiple ranges of values with one timer

 ■ Quick setup, allowing you to easily create a timer and an associated range of values

Full Setup and Usage

The AppleAnimator and AppleAnimation classes don't provide actual animations—they provide numerical
values that can be useful when animating elements in your widget's user interface. For instance, if you have
elements that fade, resize, or change over time, these classes can provide you with relevant values over time.

The AppleAnimator class provides an object that functions as a timer. Its constructor takes in two parameters,
the length of time that the timer should fire over, and the interval at which the timer should fire, both in
milliseconds:

currentAnimator = new AppleAnimator(500, 13);

In this instance, the timer, when activated, lasts for 500 milliseconds and fires every 13 milliseconds.

Now that the timer has been created, the animation range needs to be as well. The constructor for the
AppleAnimation class takes three values: a starting value, a finishing value, and a handler:

currentAnimation = new AppleAnimation(0.0, 1.0, animationHandler);

This animation provides values between 0.0 and 1.0 and, whenever its timer fires, calls a handler function
called animationHandler. The handler for the animation needs to accept four arguments: the animator
that is processing the animation, the current value of the animation, the animation's starting value, and its
finishing value.

function animationHandler(currentAnimator, current, start, finish)
{
... // do something with a current value
}

Now that the animation is set up, it needs to be associated with a timer:

currentAnimator.addAnimation(currentAnimation);

By adding, or associating, the animation with the timer, the timer calls the animation's handler whenever it
fires. When the timer fires and provides the appropriate value for the interval, based on the animation's range
mapped to the duration of the timer. Each animator can be associated with multiple animations, allowing
you to track multiple sets of values with one timer.

At this point, the timer and the animation are ready to be run. To begin the timer, send it the start message:

currentAnimator.start();

Additionally, you can stop a time at any point by calling stop() on the animator:

54 Apple Animator and Animation, in JavaScript
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Animation

currentAnimator.stop();

Quick Setup

The previous section described how to perform a full setup of an AppleAnimator timer and an
AppleAnimation. This allows you to include multiple animations with one animator and is appropriate for
circumstances where one animation is associated with one animator.

The AppleAnimator constructor, however, allows you to specify animation specifications in addition to its
usual parameters. This allows you to bypass having a separate AppleAnimation object, useful for when you
only need one animation:

AppleAnimator(duration, interval, start, finish, handler)

The first two values, duration and interval, are the duration of the timer and how often it fires. The next
two values, start and finish, are the starting and finishing values of the range of numbers that are
calculated as the timer runs. Finally, handler is the name of the function that you provide; it is called whenever
the timer fires:

function handler(currentAnimator, current, start, finish)
{
... // do something with a current value
}

As with the animation handler above, this handler needs to accept four arguments: the animator that is
processing the animation, the current value of the animation, the animation's starting value, and its finishing
value.

To start the animation and the animator's timer, call start() on the animator:

currentAnimator.start();

After starting the animator's timer, the handler function is called every interval until the end of the animator's
duration is finished. The current value passed to handler reflects an increasing value between start and
finish. To stop the animator's timer before it has run out, call stop():

currentAnimator.stop();

Properties of Apple Animator and Animation

These properties are available to an AppleAnimator object:

DescriptionProperty

The duration of the animator's timeranimator.duration

The interval at which the animation's handler is calledanimator.interval

An array of the Apple Animation objects associated with an animatoranimator.animations

The current value of the timeranimator.timer

Apple Animator and Animation, in JavaScript 55
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Animation

DescriptionProperty

A handler called when the timer is completeanimator.oncomplete

These properties are available to an AppleAnimation object:

DescriptionProperty

The animation's starting valueanimation.from

The animation's finishing valueanimation.to

The animation's current valueanimation.now

The handler for the animationanimation.callback

The Apple Rectangle Animation Subclass

The AppleRectangleAnimation subclass provides values useful when transitioning between two rectangles.
An AppleRectangleAnimation uses the AppleAnimator timer to trigger its handlers, but require that
starting and finishing rectangles be specified as Apple Rectangles, using the AppleRect subclass.

An AppleRect is defined as:

AppleRect(left, top, right, bottom)

The rectangle is specified by its top left and bottom right coordinates. To create a new AppleRect object,
call its constructor and assign the resulting object into a variable:

startingRect = new AppleRect(0, 0, 100, 100);

Once you have created a starting and finishing rectangle, create an AppleRectAnimation object, passing
in the two AppleRect objects and the name of a handler that's to be called when the rectangle animation's
animator timer fires:

currentRectAnimation = new AppleRectAnimation(startingRect, finishingRect,
rectHandler);

The rectangle animation handler you provide needs to accept four arguments: the rectangle animation that
triggered the handler, an AppleRect object with the current rectangle values, the starting AppleRect
object, and the finishing AppleRect object:

function rectHandler(rectAnimation, currentRect, startingRect, finishingRect
);

Once the AppleRectangleAnimation object is created, construct a new AppleAnimator object, associate
it with your rectangle animation, and start the animator's timer:

currentAnimator = new AppleAnimator (500, 13);
currentAnimator.addAnimation(currentRectAnimation);
currentAnimator.start();

56 The Apple Rectangle Animation Subclass
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Animation

Properties of Apple Rectangle Animation and Apple Rectangle

These properties are available to an AppleRectangleAnimator object:

DescriptionProperty

The animation's starting rectanglerectAnimation.from

The animation's finishing rectanglerectAnimation.to

The animation's current rectanglerectAnimation.now

The handler for the animationrectAnimation.callback

These properties are available to an AppleRect object:

DescriptionProperty

The rectangle's left value, of the top left corner of the rectanglerectangle.left

The rectangle's top value, of the top left corner of the rectanglerectangle.top

The rectangle's right value, of the bottom right corner of the rectanglerectangle.right

The rectangle's bottom value, of the bottom right corner of the rectanglerectangle.bottom

The Apple Rectangle Animation Subclass 57
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Animation

58 The Apple Rectangle Animation Subclass
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Animation

Apple provides a JavaScript class that makes it simple to add custom-styled buttons in your widget's user
interface. The class that provides this, AppleButton, is one of the Apple Classes included in Mac OS X v10.4.3
and newer.

For more on using all of the Apple Classes, including AppleButton, read “Introduction to the Apple
Classes” (page 37).

Working with an Apple Button

The AppleButton class provides all of the standard button behaviors that you expect from a button, including
looking depressed when clicked on and sizing based on the button's label width. To use an AppleButton,
you need to:

 ■ Include the AppleButton class in your HTML file

 ■ Provide a <div> in your HTML to represent your button

 ■ Declare an onload handler, a JavaScript function called when your widget loads that constructs an
AppleButton object

 ■ Place the button using CSS

 ■ Construct your button using the AppleButton class in JavaScript

Once the button has been created, you can also change its parameters in JavaScript.

Most developers are interested in using the AppleButton class for its AppleGlassButton subclass. The
AppleGlassButton is the standard style button commonly used on widget backs and is discussed in “The
Apple Glass Button Subclass” (page 62).

An Apple Button, in HTML

In order to declare an AppleButton and to use it in JavaScript, you need to include the class in your widget's
HTML file, provide a <div> that represents your button in your widget's structure, and have an onload
handler that's called when your widget's HTML is loaded; the handler is used in JavaScript to construct the
AppleButton.

First, you need to include the AppleButton class in your main HTML file. If you're planning backward
compatibility with pre-Mac OS X v.10.4.3 versions, follow the directions in “Backwards Compatible Usage” (page
37) and include this path:

<script type='text/javascript' src='AppleClasses/AppleButton.js' charset='utf-8'/>

Working with an Apple Button 59
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Button

If you plan on requiring Mac OS X v.10.4.3 or newer for your widget, include the AppleButton class in its
location in /System/Library/WidgetResources/:

<script type='text/javascript'
src='/System/Library/WidgetResources/AppleClasses/AppleButton.js'
charset='utf-8'/>

Once you've included the AppleButton class, you also need to declare a <div> element to represent the
button:

<body onload="setup();">
 ...
 <div id="myButton"></div>
 ...
</body>

Typically, this entails using a <div> element somewhere in the <body> portion of your HTML. The only
attribute required of this element is an id, which is used by CSS to position the button and by JavaScript to
construct the button. The id attribute is required over the class attribute, because elements with id
attributes can be accessed via JavaScript.

Also note the declaration of an onload handler within the <body> tag. This handler is called when your
widget's HTML is loaded. It's used to construct the AppleButton object in your JavaScript, as discussed in
“An Apple Button, in JavaScript” (page 60).

An Apple Button, in CSS

Now that the button is properly declared in your HTML file, you need to position it in your CSS. This entails
including a style with the element's name and any other placement parameters you see fit to use:

#myButton {
 position: absolute;
 right: 20px;
 bottom: 20px;
}

An Apple Button, in JavaScript

In your HTML file, you should have included an onload handler as an attribute of the <body> tag. That
handler is called once Dashboard has loaded your widget's HTML file and should be used to call the constructor
for the AppleButton class. The constructor for an AppleButton is defined as:

AppleButton(
 buttonElement,
 label,
 height,
 leftImage,
 leftImageDown,
 leftImageWidth,
 middleImage,
 middleImageDown,

60 An Apple Button, in CSS
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Button

 rightImage,
 rightImageDown,
 rightImageWidth,
 onclick
);

The AppleButton parameters are defined as:

Table 8 AppleButton Constructor Parameters

ExampleExpected ValueParameter

document.getElement-
ById("myButton")

A DOM object; namely, the <div> declared in the
HTML to contain the button

buttonElement

"Click Me"A string; the label to be shown on the buttonlabel

23A number; the height of all of the images used in the
button

height

"button/button-
Left.png"

A string; the path to an image, used for the left portion
of the button

leftImage

"button/buttonLeft-
Down.png"

A string; the path to an image, used for the left portion
of the button as it's being clicked

leftImageDown

11A number; the width of the images for the left portion
of the button

leftImageWidth

"button/button-
Middle.png"

A string; the path to an image, used for the middle
portion of the button

middleImage

"button/buttonMiddle-
Down.png"

A string; the path to an image, used for the middle
portion of the button as it's being clicked

middleImageDown

"button/button-
Right.png"

A string; the path to an image, used for the right
portion of the button

rightImage

"button/buttonRight-
Down.png"

A string; the path to an image, used for the right
portion of the button as it's being clicked

rightImageDown

11A number; the width of the images for the left portion
of the button

rightImageWidth

buttonClickedA function name; the function to be called when the
button is clicked

onclick

The AppleButton constructor is used in the onload handler you specified in your HTML, which is located
within your JavaScript and could look like:

var gMyButton;

function setup()
{
 gMyButton = new AppleButton(

An Apple Button, in JavaScript 61
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Button

 document.getElementById("myButton"),
 "Click Me",
 23,
 "button/buttonLeft.png",
 "button/buttonLeftDown.png",
 11,
 "button/buttonMiddle.png",
 "button/buttonMiddleDown.png",
 "button/buttonRight.png",
 "button/buttonRightDown.png",
 11,
 buttonClicked);
}

Note the global variable gMyButton. This variable holds a reference to the AppleButton object, which lets
you interact with the button at any point after it's been constructed. These properties and methods are
available for you to interact with:

Table 9 AppleButton object properties and methods

ExplanationTypeOption

Read/Write; the handler for when the button is
clicked

PropertygMyButton.onclick

Sets the images used to represent the button after
it is disabled using setEnabled(FALSE)

MethodgMyButton.setDisabledImages(
leftImageDisabled,
middleImageDisabled,
rightImageDisabled)

Read only; returns a boolean reflecting if the button
is active or not

PropertygMyButton.enabled

Sets whether or not the button is active; takes in
either TRUE or FALSE

MethodgMyButton.setEnabled(boolean)

Removes the buttonMethodgMyButton.remove()

Read/Write; the label text element; allows you to style
the label text

PropertygMyButton.textElement

The Apple Glass Button Subclass

Apple provides a subclass of the AppleButton, called the AppleGlassButton, to make it easy to use the
standard glass-style buttons found commonly on widget back sides.

To create an AppleGlassButton, follow the directions found above in “An Apple Button, in HTML” (page
59) and “An Apple Button, in CSS” (page 60). When it comes time to use the AppleGlassButton in JavaScript,
however, use the AppleGlassButton constructor instead of the AppleButton constructor, as shown below:

AppleGlassButton(
 buttonElement,
 label,

62 The Apple Glass Button Subclass
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Button

 onclick
);

The AppleGlassButton constructor uses Apple-supplied art to render a standard glass-style button for
your widget. Its parameters are defined as:

Table 10 AppleGlassButton Constructor Parameters

ExampleExpected ValueParameter

document.getElement-
ById("myButton")

A DOM object; namely, the <div> declared in the
HTML to contain the button

buttonElement

"Click Me"A string; the label to be shown on the buttonlabel

buttonClickedA function name; the function to be called when the
button is clicked

onclick

Like the Apple Button constructor, the Apple Glass Button constructor is used in the onload handler in your
JavaScript and could look like:

var gMyGlassButton;

function setup()
{
 gMyGlassButton = new AppleGlassButton(
 document.getElementById("myButton"),
 "Click Me",
 buttonClicked);
}

Note the global variable gMyGlassButton. This variable holds a reference to the AppleGlassButton object,
which lets you interact with the button at any point after it's been constructed. These properties and methods
are available for you to interact with:

Table 11 AppleGlassButton object properties and methods

ExplanationTypeOption

Read/Write; the handler for when the button is clickedPropertygMyGlassButton.onclick

Read only; returns a boolean reflecting if the button
is active or not

PropertygMyGlassButton.enabled

Sets whether or not the button is active; takes in either
TRUE or FALSE

MethodgMyGlassButton.set-
Enabled(boolean)

Removes the buttonMethodgMyGlassButton.remove()

The Apple Glass Button Subclass 63
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Button

64 The Apple Glass Button Subclass
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using an Apple Button

Widgets have the ability to display, record, and retrieve preferences. This allows users to customize your
widget based on options you provide. Preferences should be displayed on the back of your widget. The
section “Displaying a Back Side” (page 66) discusses how to set up your widget for sides and how to provide
the appropriate buttons and animations. “Providing Preferences” (page 65) discusses saving and retrieving
preferences.

Note: Most of the code in this chapter can be found in the Goodbye World sample project.

Providing Preferences

In Dashboard you can have preferences that persist through restarts and logins. You use the following two
methods:

 ■ widget.setPreferenceForKey(preference, key)

 ■ widget.preferenceForKey(key)

The first of these allows you to set a preference for an arbitrary key that you provide:

if(window.widget)
{
 widget.setPreferenceForKey("Goodbye, World!","worldString");
}

Passing in null clears its current value. Do this when your widget’s preferences should not persist after it is
closed.

The second method, widget.preferenceForKey(key), retrieves the preference for the provided key, or
returns undefined if no entry exists for the key:

if(window.widget)
{
 var worldString = widget.preferenceForKey("worldString");

 if (worldString && worldString.length > 0)
 {

Providing Preferences 65
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Backs and Preferences

 worldText.innerText = worldString;
 }
}

Here, a preference is retrieved and placed in the widget. Include this code in a function that is called when
your widget is opened.

Note: Even if you don’t want your widget to remember its preferences after it is closed, you need to consider
that the user may log out or restart while your widget is open. When the user logs back in, Dashboard
automatically opens your widget and the user may expect that your widget be exactly as they left it. Use
preferences to save your state for cases such as this and clear them when your widget is consciously closed.

Strings saved and retrieved through this mechanism are stored as clear text and therefore are not secure
and not recommended for saving passwords or other sensitive information.

Displaying a Back Side

You may find it prudent to provide an interface for setting preferences or displaying information about your
widget. When introducing a back to your widget, you need to design your widget with the back in mind,
include an Apple Info Button, and provide for the transition to the preferences and the return to the widget’s
main interface.

In Your HTML File

First, in the HTML body of your widget, you need to have two <div> layers in place: one for the front part
of your widget and one for the back (which should be hidden via CSS). You also need to include a <div> for
the AppleInfoButton, placed on the widget's front, and a <div> for a Done button, placed on the widget's
back. The code sample below provides a skeleton including all of these elements:

<body onload='setup();'>

 <div id="front">

 <!-- Your widget’s front side here -->
 <div id='infoButton'></div>

 </div>

 <div id="back">

 <!-- Your widget’s back side here -->
 <div id="doneButton"></div>

 </div>

</body>

66 Displaying a Back Side
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Backs and Preferences

Of note is the onload handler, setup(). In the section “In Your JavaScript File” (page 67), setup() creates
objects that provide an AppleInfoButton, used to flip your widget to its back, and an AppleGlassButton,
used when the user is done setting preferences. In order for the setup() function to work correctly (meaning
that the info and glass buttons are properly constructed), you need to include these classes in your widget's
HTML:

<script type='text/javascript'
src='/System/Library/WidgetResources/AppleClasses/AppleInfoButton.js'
charset='utf-8'/>
<script type='text/javascript'
src='/System/Library/WidgetResources/AppleClasses/AppleAnimator.js'
charset='utf-8'/>
<script type='text/javascript'
src='/System/Library/WidgetResources/AppleClasses/AppleButton.js'
charset='utf-8'/>

The required Apple Classes are present on Mac OS X 10.4.3 and newer. If you are targeting your widget for
earlier versions of Mac OS X 10.4, read “Introduction to the Apple Classes” (page 37) to learn how to include
these classes with backward compatibility in mind.

In Your JavaScript File

The JavaScript portion of your widget needs to include code that flips your widget between its sides and
constructs the Info and Done glass buttons.

Constructing the Apple Info and Glass Buttons

The setup() function, declared as the widget's onload handler in its HTML file, is called when the widget's
HTML, CSS, and JavaScript files are loaded. In this function, the constructors for the info and Done button
are called:

var gDoneButton;
var gInfoButton;

function setup()
{
 gDoneButton = new AppleGlassButton(document.getElementById("doneButton"),
"Done", hidePrefs);
 gInfoButton = new AppleInfoButton(document.getElementById("infoButton"),
document.getElementById("front"), "white", "white", showPrefs);
}

Notice that, in addition to the setup() function, two global variables are declared. These variables correspond
to the two buttons being created. Usually, you want to keep the buttons stored as global objects so that you
can interact with them later.

Next, the setup() function calls the constructors for an AppleInfoButton and an AppleGlassButton.
Recall that your HTML file included the necessary classes to instantiate these buttons; setup() is called after
the classes are loaded, and the new call creates new instances of each class. The functions that follow the
new call, AppleGlassButton()and AppleInfoButton() are constructors that take in parameters, like
the DOM element where the button should be placed or the event handler for a click on that button. The
last parameter in both constructors are the handlers that flip the widget over; the handlers are defined in
the next section, “Flipping Sides” (page 68). The constructor returns a reference to an object that represents

Displaying a Back Side 67
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Backs and Preferences

the button. The resulting objects are assigned into the global variables specified earlier. Now that the buttons
are created, you can use the previously declared global variables to interact with them at any time. for
instance, you could change the color of the AppleInfoButton at any point by calling:

gInfoButton.setStyle("black","black");

For more on the methods available for AppleGlassButton, read “The Apple Glass Button Subclass” (page
62).

Flipping Sides

The following function switches your widget to its back. It is designated as the Apple Info Button's event
handler in the button's constructor in the prior section, “Constructing the Apple Info and Glass Buttons” (page
67):

function showPrefs()
{
 var front = document.getElementById("front");
 var back = document.getElementById("back");

 if (window.widget)
 widget.prepareForTransition("ToBack");

 front.style.display="none";
 back.style.display="block";

 if (window.widget)
 setTimeout ('widget.performTransition();', 0);
}

Clicking the Info button (defined as <div id='infoButton'> in your HTML and constructed in your
JavaScript) calls this function, which causes the back to be displayed. In the function, the front and back
layers are obtained and assigned to local variables. Next, widget.prepareForTransition("ToBack")
freezes the current interface, meaning that any changes to your widget’s user interface after this point are
not shown. The front is then hidden and the back is made active. Finally, the transition is run that flips your
widget, with the frozen user interface on the front of the transition and the currently active user interface
on the back.

(As an aside, you may have noticed that setTimeout() is used to call performTransition(). By setting
the timeout to 0, the transition is performed on the next event loop, allowing for the sides to be swapped
before the transition is run. This is an optimization that ensures that both sides of the flip look correct.)

Hiding the preferences and returning to your main user interface follows a similar procedure; note that this
function was assigned to the Done button in its constructor in the previous section, “Constructing the Apple
Info and Glass Buttons” (page 67):

function hidePrefs()
{
 var front = document.getElementById("front");
 var back = document.getElementById("back");

 if (window.widget)
 widget.prepareForTransition("ToFront");

 back.style.display="none";
 front.style.display="block";

68 Displaying a Back Side
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Backs and Preferences

 if (window.widget)
 setTimeout ('widget.performTransition();', 0);
}

This time, however, the back layer is hidden and the front layer is shown. The method
widget.prepareForTransition("ToFront") freezes the current user interface and ensures that the flip
transition occurs in the opposite direction as when the preferences were shown.

In Your CSS File

Now that you have the front and back parts defined for the widget, as well as the Info button’s parts, you
need to use CSS to position them, set their visibility, and set other parameters:

#infoButton {
 position:absolute;
 bottom:12px;
 right:40px;
}

#front {
 display:block;
}

#back {
 display:none;
}

#doneButton {
 position:absolute;
 bottom:20px;
 left:82px;
}

The first style relates to the Info button. It places the button at the bottom right corner of the widget.

Also of note here are the front and back styles, since they set the visibility of the widget sides. When a
widget is first opened, its front side is the viewable side, so the back needs to be hidden. The styles set the
front <div> to be visible and hides the back <div>. The viewable <div> is changed using the JavaScript
code in the next section.

Finally, a style placing the Done button is included.

Displaying a Back Side 69
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Backs and Preferences

70 Displaying a Back Side
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Widget Backs and Preferences

Mac OS X v.10.5 includes Dashboard Sync, a mechanism for syncing a widget’s preferences between multiple
Macs using .Mac. If a widget is installed on both Macs and the Macs are synced using Dashboard Sync in .Mac
preferences, both Macs have a synchronized Dashboard.

Dashboard Sync Details

In order for a widget to be synced between two Macs, you have to set up syncing using the same .Mac
account in .Mac preferences on two or more Macs. Also, the same widget must be installed on all synced
Macs.

Once these conditions are met, Dashboard Sync keeps widget preferences in sync between multiple Macs.
This synchronization is automatic and doesn’t require that you to do anything in your widget. Every time
your widget retrieves a preference (as discussed in “Providing Preferences” (page 65)), the most-recently
synced version is provided to your widget.

Despite the fact that your widget’s preferences sync for free, you may want to do two things to adopt syncing
into your widget:

 ■ Provide a handler for a sync event, as discussed in “Handling a Sync Event” (page 71)

 ■ Exclude certain preferences from syncing, as discussed in “Excluding Preferences from Syncing” (page
72)

Handling a Sync Event

Your widget can be notified when Dashboard is synced using the widget.onsync handler. Listing 1 shows
a handler for widget.onsync that reads a preference and updates a string on the widget interface with the
preference’s value.

Listing 1 Providing an onsync handler

if (window.widget)
{
 widget.onsync = synced;
}

function synced()
{
 document.getElementById("aString").innerText =
widget.preferenceForKey("aKey");
}

Dashboard Sync Details 71
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Syncing Widgets

The handler that you provide for the widget.onsync event is called when a Dashboard sync is complete.
This gives you the opportunity immediately after a sync to read your preferences and update values in your
widget to any new values acquired in the sync.

Excluding Preferences from Syncing

Your widget may have values that you don’t want to include when Dashboard syncs preferences across Macs.
To exclude a preference from syncing, use the SyncExclusions Info.plist key, as shown in Listing 2.

Listing 2 Excluding a preference using the SyncExclusions Info.plist key

<key>SyncExclusions</key>
 <array>
 <dict>
 <key>key</key>
 <string>aKey</string>
 <key>global</key>
 <true/>
 </dict>
 </array>

The SyncExclusions key takes an array of dictionaries as its value. Each dictionary consists of two keys:
key and global. For each key that you want to exclude from syncing, repeat the dictionary containing key
and global values.

The value for key is the name of a preference that you store, while the global key is a boolean value that
specifies if the preference is a global or per-instance preference. Global preferences are not unique to one
widget, while a per-instance preference is unique for each instance of your widget. A preference is a
per-instance preference if the first portion of its key uses the widget.identifier property, yielding a key
like <widget.indentifier>-<key>. If the per-instance preference is not formatted in this way, it can not
be excluded.

To make per-instance preferences that use this format, include a function like the makeKey function in Listing
3.

Listing 3 A function for making unique per-instance preferences

function makeKey(key)
{
 return (widget.identifier + "-" + key);
}

Then, whenever you set or get a preference, use the makeKey function to make the preference per-instance,
as demonstrated in Listing 4.

Listing 4 Using per-instance preferences

widget.setPreferenceForKey(aString, makeKey("aKey"));
...
var foo = widget.preferenceForKey(makeKey("aKey"));

72 Excluding Preferences from Syncing
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Syncing Widgets

Widgets may need to respond to certain events. If your widget is processor intensive, it shouldn't be running
when Dashboard is hidden. If it shows focus by lighting up, it needs to be aware of when it receives focus.
These events are useful for widget developers who want to be aware of widget and Dashboard events.

Dashboard Activation Events

A widget can know when Dashboard is active. When Dashboard is hidden, your widget should not consume
any CPU time or network resources. Assign methods to the properties widget.onshow and widget.onhide
to notify your widget that Dashboard is active. For example, the World Clock widget assigns functions for
starting and halting the display of time.

if (window.widget)
{

 widget.onshow = onshow;
 widget.onhide = onhide;

}

When Dashboard is shown, onshow is called. This function sets a timer in motion:

function onshow () {
 if (timer == null) {
 updateTime();
 timer = setInterval("updateTime();", 1000);
 }
}

When Dashboard is hidden, onhide halts the timer:

function onhide () {
 if (timer != null) {
 clearInterval(timer);
 timer = null;
 }
}

Use these properties when your widget is resource intensive. If your widget continually fetches data from
the Internet (examples are the Stocks and Weather widgets), or constantly draws data (for example, a clock),
there's no need to have it active when Dashboard is hidden.

Dashboard Activation Events 73
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Widget Events

Widget Focus Events

A widget can also know when it is in focus so that it can change behavior if it is the foremost widget. An
example of this behavior is provided by the Calculator widget. Notice that when it is the foremost widget,
as in Figure 3-2, its screen changes from gray to blue.

Figure 25 The Calculator widget, active and inactive

This event is handled by window.onfocus and window.onblur, two properties of the widget window.
Here’s the code the Calculator widget uses to specify which functions to call on each event:

 window.onfocus = focus;
 window.onblur = blur;

The focus function makes the blue LCD visible:

function focus()
{
 document.getElementById("lcd-backlight").style.visibility = "block";
 document.getElementById("calcDisplay").setAttribute("class", "backlightLCD");
}

The blur function hides the blue LCD:

function blur()
{
 document.getElementById("lcd-backlight").style.visibility = "none";
 document.getElementById("calcDisplay").setAttribute("class",
"nobacklightLCD");
}

Widget Drag Events

It might be appropriate for your widget to be aware of when it’s being dragged around Dashboard. Two
properties are available to notify you of when drags start and end:

widget.ondragstart
Called when a widget is at the beginning of a drag.

74 Widget Focus Events
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Widget Events

widget.ondragend
Called when a widget is at the end of a drag.

You assign each of these listeners a handler for when the event that the widget is supposed to be aware of:

widget.ondragstart = widgetDragStartHandler;
widget.ondragend = widgetDragEndHandler;

The handlers are not passed any parameters.

Widget Removal Event

Your widget can be notified when it is removed from Dashboard. This is useful for removing widget preferences
that you don’t want to persist after your widget is dismissed, or for any situation where something needs to
be performed upon the close of your widget.

The onremove listener takes a handler that’s called when your widget is closed:

widget.onremove = removalHandler;

Widget Removal Event 75
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Widget Events

76 Widget Removal Event
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Widget Events

Dashboard offers an extension to be used with style sheets. The -apple-dashboard-region lets you
specify regions for certain purposes and are specific to widgets running inside of Dashboard.

The -apple-dashboard-region

A widget, by default, can be moved around Dashboard by clicking anywhere in it and dragging it around. In
some situations, however, this may not be the most appropriate or desired behavior.

For instance, clicking and holding the mouse on a button should not move the window. Without any
modification, however, a widget allows this to happen. To specify regions from which dragging is not allowed,
you use control circles and rectangles.

The Calculator widget, as shown in Figure 26 (page 77), provides an example of how to create control circles
and rectangles. The highlighted regions are the areas from which dragging is not allowed.

Figure 26 The Calculator widget and its control circles and rectangles

When the Calculator specifies a button as a control region, it applies a style to the image. One of the properties
of that style, and the one that specifies the control region, is the -apple-dashboard-region property. It
takes the parameter dashboard-region() that itself requires two parameters:

Table 12 Required dashboard-region() parameters

DescriptionParameter

Required. Specifies the type of region being defined; control is the only possible value.label

Required. Specifies the shape of the region, either circle or rectangle.geometry-type

The -apple-dashboard-region 77
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Declaring Control Regions

There are also four optional parameters that let you specify region boundary offsets. These parameters may
be omitted; they will be set to 0 if not present.

Table 13 Optional dashboard-region() parameters

DescriptionParameter

Optional. Specifies the offset from the top of the wrapped area from where the defined
region should begin. Negative values not allowed.

offset-top

Optional. Specifies the offset from the left of the wrapped area from where the defined
region should begin. Negative values not allowed.

offset-right

Optional. Specifies the offset from the bottom of the wrapped area from where the
defined region should begin. Negative values not allowed.

offset-bottom

Optional. Specifies the offset from the right of the wrapped area from where the defined
region should begin. Negative values not allowed.

offset-left

The dashboard-region() parameters need to be in this order:

dashboard-region(label geometry-type offset-top offset-right offset-bottom
offset-left)

So if you were to specify a circular control region where the edges are inset 5 pixels on all sides from the
edge of the element, the style would look like this:

.control-circle-example {
 ...
 -apple-dashboard-region: dashboard-region(control circle 5px 5px 5px 5px);
 ...
}

You can specify multiple dashboard-region() values per parameter to build complex shapes. For instance,
the Calculator's "=" key may consist of a combination of circular and rectangular control regions:

.equals-button-example {
 ...
 -apple-dashboard-region:
 dashboard-region(control circle 15px 15px 75px 15px)
 dashboard-region(control rectangle 32px 15px 48px 15px)
 dashboard-region(control circle 60px 15px 30px 15px);
 ...
}

In this example, an element is 65 pixels wide by 125 pixels long. Two control circles have a diameter of 35
pixels, and the rectangle will be 35 pixels wide by 45 pixels long. These values map out as shown in Figure
27 (page 79).

78 The -apple-dashboard-region
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Declaring Control Regions

Figure 27 Control region example

75

15

15 15

48

32

15 15

65

125

30

60

15 15

Note that the circle regions are centered within the given bounds.

If you want to remove a control region from an element, set its -apple-dashboard-region property to
none.

The -apple-dashboard-region 79
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Declaring Control Regions

80 The -apple-dashboard-region
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Declaring Control Regions

Widgets can be resized to fit content. Resizing your widget may be appropriate if your content scales well
or if it has varying degrees of detail to display. You can resize to fixed dimensions (for instance, a "More
Information" mode) or provide a resize thumb control for live resizing.

Note: The Resizer sample project shows how to use the Apple Animation and Animator classes animate
widget resizing.

Resizing Methods

There are two ways to resize your widget: relatively and absolutely.

To resize your widget relative to its current size, use the method window.resizeBy(width, height).
This method takes the current size of your widget and adds the values found within the width and height
parameters. Note that these values may be negative, allowing you to shrink the size of your widget.

The other way to resize your widget is to specify the absolute size the widget should be. To do this, use the
method window.resizeTo(width, height).

Live Resizing

Live resizing means that your widget can change its size and contents based on the user's preference. Try
to limit using live-resizing to cases where it is absolutely necessary. If your content can be shown in a fixed,
simple user interface, do so.

To enable live resizing, you need to provide a resize control and an event handler for when it is clicked upon:

 <img id='resize' src='/System/Library/WidgetResources/resize.png'
onmousedown='mouseDown(event);'/>

Also, the resize control is placed in the bottom-right corner of the widget using CSS in your style sheet:

#resize {
 position:absolute;
 top: 208px;
 right: 2px;
 -apple-dashboard-region: dashboard-region(control rectangle);
}

In your JavaScript file, include this code:

var growboxInset;

Resizing Methods 81
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Resizing Widgets

function mouseDown(event)
{

 document.addEventListener("mousemove", mouseMove, true);
 document.addEventListener("mouseup", mouseUp, true);

 growboxInset = {x:(window.innerWidth - event.x), y:(window.innerHeight -
event.y)};

 event.stopPropagation();
 event.preventDefault();
}

function mouseMove(event)
{

 var x = event.x + growboxInset.x;
 var y = event.y + growboxInset.y;

 document.getElementById("resize").style.top = (y-12);
 window.resizeTo(x,y);

 event.stopPropagation();
 event.preventDefault();
}

function mouseUp(event)
{
 document.removeEventListener("mousemove", mouseMove, true);
 document.removeEventListener("mouseup", mouseUp, true);

 event.stopPropagation();
 event.preventDefault();
}

The three functions in this code handle the different mouse events that happen during a drag. First, mouseDown
is called when the resize control is clicked upon. It records the initial placement of the click in lastPos and
registers two handlers for the when the mouse moves and the mouse click ends.

Next, mouseMove is called every time the mouse is moved any distance. The code as listed here has no
constraints, meaning that the widget can be as large or small as the user wants. If you have size constraints
on your widget, add them here.

Finally, mouseUp is called when the mouse click ends. It removes itself and the mouseMove function as
handlers. If you don’t do this, these functions are still called whenever a mouse moves or a click ends.

Adjusting the Close Box

Depending on how your widget resizes and in which directions, you may need to adjust the placement of
your widget’s close box. The setCloseBoxOffset method gives you the ability to do this:

widget.setCloseBoxOffset(x,y);

82 Adjusting the Close Box
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Resizing Widgets

The x and y coordinates that you provide are in relation to the top-left corner of the widget, where the values
0,0 places the center of the close box over the actual top-left corner of the widget window. The x and y
values can not be larger than 100.

Adjusting the Close Box 83
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Resizing Widgets

84 Adjusting the Close Box
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Resizing Widgets

Safari, Dashboard, and WebKit-based applications support the JavaScript canvas object. The canvas allows
you to easily draw arbitrary content within your HTML content.

Introduction to the Canvas

A canvas is an HTML tag that defines a custom drawing region within your web content. You can then access
the canvas as a JavaScript object and draw upon it using features similar to Mac OS X’s Quartz drawing system.
The World Clock Dashboard widget (available on all Apple machines running Mac OS X version 10.4 or later)
shows a good example , though using a canvas is by no means exclusive to Dashboard.

There are two steps to using a canvas in your web page: defining a content area, and drawing to the canvas
object in the script section of your HTML.

Defining the Canvas

To use a canvas in your web page you first set up the drawing region. The World Clock Dashboard widget
designates this region with the following code:

<canvas id="myCanvas" width='172' height='172'/>

In this context, the attributes of <canvas> worth noting are id, width, and height.

The id attribute is a custom identifier used to target a particular canvas object when drawing. The width
and height attributes specify the size of the canvas region.

Within the World Clock widget, this area is defined to be the canvas:

Figure 1 The World Clock canvas region

Now that the canvas region has been defined, it is ready to be filled.

Introduction to the Canvas 85
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using the Canvas

Drawing on a Canvas

Once you have defined the canvas area, you can write code to draw your content. Before you can do this,
you need to obtain the canvas and its drawing context. The context handles the actual rendering of your
content. The World Clock widget does this in its drawHands() function:

function drawHands (hoursAngle, minutesAngle, secondsAngle)
{
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

This function draws the hour, minute, and second hands on the face of the World Clock. As parameters, it
takes the angles at which the three hands should be rotated as passed in by its caller.

You first query the JavaScript environment for the previously defined canvas, using its unique identifier: the
id attribute in the <canvas> tag.

Once your script has acquired the canvas, you need to obtain its context. Using the getContext("2d")
method, assign the canvas’ draw context it to the context variable. From this point on, you call all operations
intended for the canvas on context.

The first operation you perform empties the canvas. As the drawHands() function is called every second, it
is important to empty it each time, so that the previously drawn configuration doesn’t simply draw on top
of the new configuration. The entire region, as defined by standard coordinates in the <canvas> tag, is
cleared:

 context.clearRect(0, 0, 172, 172);

Next, you save the state of the original context space so that you can restore later. In the original context,
the origin (the 0,0 coordinate) of the canvas is in the top left corner. Upon completion of the upcoming
drawing code, you want to return to this context. Use the context’s save method to do so:

 context.save();

Since you want the hands of the clock to rotate around the center of the clock, translate the origin of the
context space to the center of the canvas:

 context.translate(172/2, 172/2);

Then draw the hour hand on the face of the clock. You copy the current context (with the origin at the center
of the clock face), so that it can restored later. Then, you rotate the entire context, so that the y-axis aligns
itself with the angle that the hour hand should point towards. Next, you draw the hour hand image (created
in the code as a JavaScript Image object). The method drawImage() has five parameters: the image to be
drawn, the x and y coordinate for the bottom left hand corner of the image, and the width and height of the
image. Remember that while you draw the image as going straight up within the graphics context, you
rotated the context to be at the correct angle for the hour hand:

 context.save();
 context.rotate(hoursAngle);
 context.drawImage(hourhand, -4, -28, 9, 25);
 context.restore();

Once you draw the hand, you restore the last saved context. This means that the context that you saved four
lines prior, with its origin at the center of the canvas but not yet rotated, will be the active context again.

86 Drawing on a Canvas
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using the Canvas

Use a similar procedure to draw the minute hand on the face of the clock. The differences this time are in
the angle you rotate the context to and the size of the minute hand. Note that you save and rotate the context
again, and then you restore it to its previous state, so that you can draw the next element independent of
the rotation needed for the minute hand:

 context.save();
 context.rotate (minutesAngle);
 context.drawImage (minhand, -8, -44, 18, 53);
 context.restore();

Finally, draw the second hand. Note that this time, the context should not be saved and restored. Since this
is the last time anything will be drawn in this particular context (with the origin at the center of the canvas),
it is not necessary for you to save and restore again:

 context.rotate (secondsAngle);
 context.drawImage (sechand, -4, -52, 8, 57);
 context.restore();
}

Now that the clock face has been drawn, you should restore the context to its original state, as saved before
any drawing occurred. This prepares the canvas for any future drawing that will occur, and gives you a
consistent origin (the top-left corner of the canvas) to work from.

Remember, all of these techniques can be applied to a canvas object within any WebKit-based application.
For more information on the canvas see Canvas.

Drawing on a Canvas 87
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using the Canvas

88 Drawing on a Canvas
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using the Canvas

Safari, Dashboard, and WebKit-based applications include support to let you handle cut, copy, and paste
operations of your HTML content.

Introduction to JavaScript Pasteboard Operations

Support for pasteboard operations is implemented in JavaScript and may be applied to any element of your
HTML page. To handle these operations, you provide functions to handle any of six JavaScript events:

 ■ onbeforecut

 ■ oncut

 ■ onbeforecopy

 ■ oncopy

 ■ onbeforepaste

 ■ onpaste

You can provide handlers for the oncut, oncopy, and onpaste events if you want to define custom behavior
for the corresponding operations. You can also provide handlers for the onbeforecut, onbeforecopy, and
onbeforepaste events if you want to manipulate the target data before it is actually cut, copied, or pasted.

If your oncut, oncopy, and onpaste handlers do the actual work of cutting, copying, or pasting the data,
your handler must call the preventDefault method of the event object. This method takes no parameters
and notifies WebKit that your handler takes care of moving the data to or from the pasteboard. If you do not
call this method, WebKit takes responsibility for moving the data. You do not need to call preventDefault
if you simply want to be notified when the events occur.

Adding Pasteboard Handlers to Elements

You can add handlers for pasteboard events to any element in a web page. When a pasteboard operation
begins, WebKit looks for the appropriate handler on the element that is the focus of the operation. If that
element does not define a handler, WebKit walks up the list of parent elements until it finds one that does.
(If no element defines a handler, WebKit applies the default behavior.) To demonstrate this process, suppose
you have the following basic HTML in a web page:

<body oncut="MyBodyCutFunction()"
 oncopy="MyBodyCopyFunction()"
 onpaste="MyBodyPasteFunction()">
 Cut, copy, or paste here.
</body>

Introduction to JavaScript Pasteboard Operations 89
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using the Pasteboard From JavaScript

If a user initiates a cut or copy operation on the text in the span tag, WebKit calls MyBodyCutFunction or
MyBodyCopyFunction to handle the event. However, if the user tries to paste text into the span tag, WebKit
calls the MySpanPasteFunction to handle the event. The MyBodyPasteFunction function would be called
only if the paste operation occurred outside of the span tag.

Manipulating Pasteboard Data

When an event occurs, your handler uses the clipboardData object attached to the event to get and set
the clipboard data. This object defines the clearData, getData, and setData methods to allow you to
clear, get, and set the clipboard data.

Note: For security purposes, the getDatamethod can be called only from within the onpaste event handler.

WebKit’s pasteboard implementation supports data types beyond those that are typically found in HTML
documents. When you call either getData or setData, you specify the MIME type of the target data. For
types it recognizes, including standard types found in HTML documents, WebKit maps the type to a known
pasteboard type. However, you can also specify MIME types that correspond to any custom data formats
your application understands. For most pasteboard operations, you will probably want to work with simple
data types, such as plain text or a list of URIs.

WebKit also supports the ability to post the same data to the pasteboard in multiple formats. To add another
format, you simply call setData once for each format, specifying the format’s MIME type and a string of data
that conforms to that type.

To get a list of types currently available on the pasteboard, you can use the types property of the
clipboardData object. This property contains an array of strings with the MIME types of the available data.

90 Manipulating Pasteboard Data
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using the Pasteboard From JavaScript

Safari, Dashboard, and WebKit-based applications include support for customizing the behavior of drag and
drop operations within your HTML pages.

Introduction to JavaScript Drag and Drop

Support for Drag and Drop operations is implemented in JavaScript and may be applied to individual elements
of your HTML page. For drag operations, an element can handle the following JavaScript events:

 ■ ondragstart

 ■ ondrag

 ■ ondragend

The ondragstart event initiates the drag operation. You can provide a handler for this event to initiate or
cancel drag operations selectively. To cancel a drag operation, call the cancelDefault method of the event
object. To handle an event, assign a value to the effectAllowed property and put the data for the drag in
the dataTransfer object, which you can get from the event object. See “Changing Drag Effects” (page 93)
for information on the effectAllowed property. See “Manipulating Dragged Data” (page 93) for information
on handling the drag data.

Once a drag is under way, the ondrag event is fired continuously at the element to give it a chance to perform
any tasks it wants to while the drag is in progress. Upon completion of the operation, the element receives
the ondragend event and reports whether the drag was successful.

While a drag is in progress, events are sent to elements that are potential drop targets for the contents being
dragged. Those elements can handle the following events:

 ■ ondragenter

 ■ ondragover

 ■ ondragleave

 ■ ondrop

The ondragenter and ondragleave events let the element know when the user’s mouse enters or leaves
the boundaries of the element. You can use these events to change the cursor or provide feedback as to
whether a drop can occur on an element. The ondragover event is sent continuously while the mouse is
over the element to give it a chance to perform any needed tasks. If the user releases the mouse button, the
element receives an ondrop event, which gives it a chance to incorporate the dropped content.

Introduction to JavaScript Drag and Drop 91
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

If you implement handlers for the ondragenter and ondragover events, you should call the
preventDefault method of the event object. This method takes no parameters and notifies WebKit that
your handler will act as the receiver of any incoming data. If you do not call this method, WebKit receives
the data and incorporates it for you. You do not need to call preventDefault if you simply want to be
notified when the events occur.

Adding Handlers to Elements

You can add handlers for drag and drop events to any element in a web page. When a drag or drop operation
occurs, WebKit looks for the appropriate handler on the element that is the focus of the operation. If that
element does not define a handler, WebKit walks up the list of parent elements until it finds one that does.
If no element defines a handler, WebKit applies the default behavior. To demonstrate this process, suppose
you have the following basic HTML in a web page:

<body ondragstart="BodyDragHandler()"
 ondragend="BodyDragEndHandler()">
 Drag this text.
</body>

If a user initiates a drag operation on the text in the span tag, WebKit calls SpanDragHandler to handle
the event. When the drag operation finishes, WebKit calls the BodyDragEndHandler to handle the event.

Making an Element Draggable

WebKit provides automatic support to let users drag common items, such as images, links, and selected text.
You can extend this support to include specific elements on an HTML page. For example, you could mark a
particular div or span tag as draggable.

To mark an arbitrary element as draggable, add the -khtml-user-drag attribute to the style definition of
the element. Because it is a cascading style sheet (CSS) attribute, you can include it as part of a style definition
or as an inline style attribute on the element tag. The values for this attribute are listed in Table 1.

Table 1 Values for -khtml-user-drag attribute

DescriptionValue

Do not allow this element to be dragged.none

Allow this element to be dragged.element

Use the default logic for determining whether the element should be dragged. (Images, links,
and text selections can be dragged but all others cannot.) This is the default value.

auto

The following example shows how you might use this attribute in a span tag to permit the dragging of the
entire tag. When the user clicks on the span text, WebKit identifies the span as being draggable and initiates
the drag operation.

draggable
text

92 Adding Handlers to Elements
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

Manipulating Dragged Data

When an event occurs, your handler uses the dataTransfer object attached to the event to get and set
the clipboard data. This object defines the clearData, getData, and setData methods to allow you to
clear, get, and set the data on the dragging pasteboard.

Note: For security purposes, the getDatamethod can be called only from within the ondrop event handler.

Unlike many other browsers, the WebKit drag-and-drop implementation supports data types beyond those
that are found in HTML documents. When you call either getData or setData, you specify the MIME type
of the target data. For types it recognizes, WebKit maps the type to a known pasteboard type. However, you
can also specify MIME types that correspond to any custom data formats your application understands. For
most drag-and-drop operations, you will probably want to work with simple data types, such as plain text
or a list of URIs.

Like applications, WebKit supports the ability to post the same data to the pasteboard in multiple formats.
To add another format, you simply call the setData method with a different MIME type and a string of data
that conforms to that type.

To get a list of types currently available on the pasteboard, you can use the types property of the
dataTransfer object. This property contains an array of strings with the MIME types of the available data.

Changing Drag Effects

When dragging content from one place to another, it might not always make sense to move that content
permanently to the destination. You might want to copy the data or create a link between the source and
destination documents instead. To handle these situations, you can use the effectAllowed and dropEffect
properties of the dataTransfer object to specify how you want data to be handled.

The effectAllowed property tells WebKit what types of operation the source element supports. You would
typically set this property in your ondragstart event handler. The value for this property is a string, whose
value can be one of those listed in Table 2.:

Table 2 Options for dragging and dropping an element

DescriptionValue

No drag operations are allowed on the element.none

The contents of the element should be copied to the destination only.copy

The contents of the element should be shared with the drop destination using a link back to
the original.

link

The element should be moved to the destination only.move

The element can be copied or linked.copyLink

The element can be copied or moved. This is the default value.copyMove

Manipulating Dragged Data 93
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

DescriptionValue

The element can be linked or moved.linkMove

The element can be copied, moved, or linked.all

The dropEffect property specifies the single operation supported by the drop target (copy, move, link,
or none). When an element receives an ondragenter event, you should set the value of this property to
one of those values, preferably one that is also listed in the effectAllowed property. If you do not specify
a value for this property, WebKit chooses one based on the available operations (as specified in
effectAllowed). Copy operations have priority over move operations, which have priority over link
operations.

When these properties are set by the source and target elements, WebKit displays feedback to the user about
what type of operation will occur if the dragged element is dropped. For example, if the dragged element
supports all operations but the drop target only supports copy operations, WebKit displays feedback indicating
a copy operation would occur.

Changing the Appearance of Dragged Elements

During a drag operation, WebKit provides feedback to the user by displaying an image of the dragged content
under the mouse. The default image used by WebKit is a snapshot of the element being dragged, but you
can change this image to suit your needs.

Changing the Snapshot With CSS

The simplest way to change the drag-image appearance is to use cascading style sheet entries for draggable
elements. WebKit defines the -khtml-drag pseudoclass, which you can use to modify the style definitions
for a particular class during a drag operation. To use this pseudoclass, create a new empty style-sheet class
entry with the name of the class you want to modify, followed by a a colon and the string -khtml-drag. In
the style definition of this new class, change or add attributes to specify the differences in appearance
between the original element and the element while it is being dragged.

The following example shows the style-sheet definition for an element. During normal display, the appearance
of the element is determined by the style-sheet definition of the divSrc4 class. When the element is dragged,
WebKit changes the background color to match the color specified in thedivSrc4:-khtml-dragpseudoclass.

#divSrc4 {
 display:inline-block;
 margin:6;
 position:relative;
 top:20px;
 width:100px;
 height:50px;
 background-color:rgb(202,232,255);
}

#divSrc4:-khtml-drag {
 background-color:rgb(255,255,154)
}

94 Changing the Appearance of Dragged Elements
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

Specifying a Custom Drag Image

Another way to change the drag image for an element is to specify a custom image. When a drag operation
begins, you can use the setDragImagemethod of the dataTransfer object. This method has the following
definition:

function setDragImage(image, x, y)

The image parameter can contain either a JavaScript Image object or another element. If you specify an
Image object, WebKit uses that image as the drag image for the element. If you specify an element, WebKit
takes a snapshot of the element you specify (including its child elements) and uses that snapshot as the drag
image instead.

The x and y parameters of setDragImage specify the point of the image that should be placed directly
under the mouse. This value is typically the location of the mouse click that initiated the drag, with respect
to the upper-left corner of the element being manipulated.

Unfortunately, obtaining this information in a cross-browser fashion is easier said than done. There is no
standard way to determine the position of the mouse relative to the document because different browsers
implement the standard event values in subtly incompatible ways.

For the purposes of Safari and WebKit, clientX and clientY are document relative, as are pageX and
pageY (which are thus always equal to clientX and clientY). For other browsers, Evolt.org has an article
that describes how to obtain the mouse position in a cross-browser fashion, including sample code, at
http://evolt.org/article/Mission_Impossible_mouse_position/17/23335/index.html.

Obtaining the position of the element under the mouse is somewhat easier. QuirksMode has a page (with
code samples) on the subject at http://www.quirksmode.org/js/findpos.html.

Cross-Browser Compatibility

The drag-and-drop functionality built into WebKit and Safari works similarly to support in Microsoft Internet
Explorer. The functionality built into FireFox and other Gecko-based browsers is very different, however.

In currently released versions of FireFox, this form of drag and drop is not generally supported from ordinary
webpages (signed XUL applications notwithstanding) because you cannot register a drop target without
loading an XPCOM component. Thus, with the exception of dropping things onto text areas (which are
already drop targets), drag and drop must be emulated on this browser using mouse event handlers such
as onmouseup.

As a result of differences in browser support, most web developers who need drag-and-drop support use
libraries that mask browser differences. Some of these include the Dojo Tookit, DOM-Drag, ToolMan, Rico,
and others.

Cross-Browser Compatibility 95
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

http://evolt.org/article/Mission_Impossible_mouse_position/17/23335/index.html
http://www.quirksmode.org/js/findpos.html
http://www.dojotoolkit.org/
http://youngpup.net/projects/dom-drag/
http://tool-man.org/
http://openrico.org/

96 Cross-Browser Compatibility
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Drag and Drop From JavaScript

Localizing your widget provides a more comfortable and pleasant experience for foreign language speakers.
If your widget is used in areas where languages other than English are spoken, you should localize it.

There are two sides to localizing your widget:

 ■ What Dashboard does for you

 ■ What you need to provide Dashboard

In addition to localizing your content, this chapter covers how to localize your widget’s name in the Finder
and the widget bar.

Note: The Hello Welt example provides sample code that shows how to localize a widget.

Language Projects

Before talking about localizing a Dashboard widget, you should be familiar with how Mac OS X handles
localization. For most applications on Mac OS X, localized resources such as images, strings, and nib files exist
within the application’s bundle in Contents/Resources/. Each language gets its own directory, named
after the language whose resources it holds. The names and location within the bundle are strict, as Mac OS
X is expecting them to be there if a localization is requested. These folders are called languageproject directories
and always end in the extension .lproj.

When an application is launched, the executable asks Mac OS X for certain localized resources. When this
happens, Mac OS X looks for a language project within the application’s bundle that corresponds with the
first entry in the language precedence list, as set in System Preferences. If no language project for the preferred
language is found, Mac OS X looks for a language project corresponding to the next language in the
precedence list, and so on. Note that this process is mostly automatic, in that the application doesn’t do any
of the actual searching for language projects; it simply requests resources and Mac OS X provides them.

More on changing language and local preferences can be found in Language and Local Preferences.

Language Projects 97
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Localizing Widgets

What Dashboard Does for You

Widgets running within Dashboard use a similar process as Mac OS X applications when trying to load
resources. Any time a resource load occurs in your code, Dashboard first looks for it within the language
project directories in the Widget bundle. If Dashboard finds the resource within that language project directory,
it provides it back to the widget. If not, searches through the rest of the language project directories, based
on the precedence set in System Preferences. Finally, if the resource is not found in any language projects,
Dashboard looks relative to the root level of the bundle.

Dashboard will look for localized resources in the following contexts:

 ■ Any time the @import directive is used

 ■ Any time the src attribute is used, including (but not limited to):

 ■ <script src='myLogic.js' /> ❏

 ❏

 ■ Any other resource load targeted within your widget bundle

This is an additional reason behind recommending that you split your markup, logic, and design into separate
files, as discussed in Dashboard Programming Guide.

What You Need to Provide Dashboard

When localizing your widget, provide Dashboard with localized versions of your resources. These include,
but are not limited to, any strings that your widgets displays, images that change based on a language or
region, and language-specific layouts. If you import a style sheet into your widget instead of including it in
your HTML file, you’ll be able to provide localized style sheets as well.

Each language you localize your widget into needs its own language project directory. In it you place all of
the localized resources for that language. Each language project directory needs to be located at the root
level of your widget. Table 16 (page 98) lists of common languages and their corresponding language project
directory names:

Table 16 Common languages and corresponding language project names

Language project directory nameLanguage

zh-Hans.lprojChinese (Simplified)

zh-Hant.lprojChinese (Traditional)

da.lprojDanish

nl.lprojDutch

en.lprojEnglish

fi.lprojFinnish

98 What Dashboard Does for You
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Localizing Widgets

Language project directory nameLanguage

fr.lprojFrench

de.lprojGerman

it.lprojItalian

ja.lprojJapanese

ko.lprojKorean

nb.lprojNorwegian

pt.lprojPortuguese

sv.lprojSwedish

es.lprojSpanish

Note that these are just some of the possible localizations available. Mac OS X and Dashboard support many
more languages and locals. Language Designations discusses language project directory naming conventions
used for localizing applications on Mac OS X.

Localized Strings Example

An example for widget localization is to have all of your widget’s strings localized. In each localized strings
file, you provide an array of strings whose index is a variable common to all of the localized string files. You
then include that file in your HTML file, and when you need a string, you simply retrieve it from the array.

The first step to implementing this scheme is to have a uniformly named file containing the strings inside of
properly named language project directories. For example, having a file named LocalizedStrings.js
inside each of your language project directories. The file looks like this for the German localization:

var localizedStrings = new Array;

localizedStrings['Hello, World!'] = 'Hallo, Welt!';
localizedStrings['Default'] = 'German';

Notice that the index into the localizedStrings array is a string. This is useful when combined with an
accessor method that tries to retrieve the localized string:

function getLocalizedString (key)
{
 try {
 var ret = localizedStrings[key];
 if (ret === undefined)
 ret = key;
 return ret;
 } catch (ex) {}

 return key;
}

Localized Strings Example 99
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Localizing Widgets

The advantages to this are twofold: first, the index for a string is memorable, and secondly, if the string
retrieval fails, the key string is returned. This way, you are assured that some string will always be returned,
no matter the circumstances. This is especially valuable when you are testing your widget in Safari.

Finally, you’ll need to use the localized string in your widget. This code ties together all of these previous
concepts and inserts the string into your widget:

function setup()
{

 document.getElementById('helloText').innerText = getLocalizedString('Hello,
 World!');
 document.getElementById('language').innerText = getLocalizedString('Default');
}

Since the proper localized strings file is already loaded, this will fetch the localized equivalent of "Hello,
World!" in the localizedStrings array and placing it in your layout.

Note: The “HelloWelt" sample code also includes localized style sheets in each language project directory.
This allows the design of the widget to vary based on the language. Remember to take varying string lengths
into account when localizing your widget.

Localized Widget Names

In addition to localizing the content of your widget, you should localize your widget’s name. The name is
displayed in the Finder and the widget bar and is pulled from your Info.plist information property list
file and localized InfoPlist.strings files.

In your Info.plist, you need to specify the key CFBundleDisplayName and provide a corresponding value:

<key>CFBundleDisplayName</key>
<string>Hello World</string>

This value is a default value that’s used if no localized string can be found. It also needs to be the name of
your widget on disk, without the .wdgt file extension. Inside of each language project directory in your
widget, place a file named InfoPlist.strings and in it provide the proper localized name using this
format:

CFBundleDisplayName = "Hallo Welt";

For a more in-depth look at using CFBundleDisplayName, read Runtime Configuration Guidelines.

100 Localized Widget Names
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Localizing Widgets

If your widget needs resources that extend beyond your widget's bundle or HTML, CSS, and JavaScript
technologies, you need to take Dashboard's Info.plist Access keys into account.

Using Access Keys

Dashboard allows you to "declare your intentions" when you:

 ■ Access files outside of your widget bundle

 ■ Use a WebKit or standard browser plug-in

 ■ Access network resources

 ■ Run a Java applet

 ■ Run a command-line utility

 ■ Use a widget plug-in

"Declaring your intentions" means that before your widget is run, you specify in your widget’s information
property list file which resources you want to use. The keys and their meaning are listed in Table 17 (page
101):

Table 17 Info.plist Keys for the Widget resource access

ExampleDefinitionTypeKey

Access to files
across the file
system; limited
by the user’s
permissions.

BooleanAllowFileAccess-
OutsideOfWidget

N/AAccess to the file
system, WebKit
and standard
browser plug-ins,
Java applets,
network
resources, and
command-line
utilities.

BooleanAllowFullAccess

Using Access Keys 101
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Specifying Access Keys

ExampleDefinitionTypeKey

<embed
src="http://www.foo.com/bar.mov"
type="video/quicktime" width="320"
height="256"></embed>

Access to WebKit
and standard
browser plug-ins,
such as
QuickTime.

BooleanAllowInternetPlugins

<applet code="foo.class" width="320"
height="256"></applet>

Access to Java
applets.

BooleanAllowJava

Access to any
resources that are
not file-based,
including those
acquired through
the network.

BooleanAllowNetworkAccess

var s = widget.system("/usr/bin/foo",
null);

Access to
command-line
utilities using the
widget script
object.

BooleanAllowSystem

foo.widgetpluginSpecifies a widget
plug-in.

StringPlugin

If you attempt to use any of these resources without first specifying them in your widget’s information
property list file, your attempt fails.

102 Using Access Keys
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Specifying Access Keys

Widgets can open applications and web pages outside of their bundle. If your widget provides a subset of
information found on the Internet, a link to the full data set that opens in Safari is appropriate. If your widget
interfaces with an application, for example, iTunes, it should open it first. Dashboard can do this all for you.

Note: Before reading this chapter, read “Specifying Access Keys” (page 101) to learn more about the widget
access keys.

URL Opening

Sometimes you may want your widget to open a webpage when certain information is clicked. For instance,
clicking a stock symbol in a stock ticker widget would probably load a webpage in the default browser
displaying information relevant to the stock.

To open a webpage, use the widget.openURL(url) method. For example, you may use it inside of a
function to dynamically assemble a URL using the contents of a variable you set elsewhere in your code:

Listing 7 Assembling a URL and passing it to widget.openURL

<html>
<head>
<script>
 ...
 function clicked(section)
 {
 if (widget)
 {
 widget.openURL('http://www.apple.com/' + section);
 }
 }
 ...
</script>
</head>
<body>
 ...
 Developer
 Store
 ...
</body>
</html>

In Listing 7, an arbitrary function is called when a user clicks within some text. A portion of a URL is passed
to the clicked function and then appended onto another string, which is then passed to the openURL
method. It then opens the user's default browser with the provided URL.

URL Opening 103
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing External Resources

Alternatively, you can embed the method in any tag:

Apple

Note: You must include http:// in the url argument of the widget.openURL method or the URL will not
open. If, for example, you passed in 'www.apple.com', instead of 'http://www.apple.com', the URL
would not open.

Application Activation

In addition to being able to open a webpage, your widget can open applications. Calling
widget.openApplication() dismisses Dashboard and either opens the specified application or, if it was
already open, brings it to the forefront.

The parameter passed into this method is the bundle ID for an application. For instance, to open iTunes, you
pass in the string com.apple.iTunes:

widget.openApplication("com.apple.iTunes");

Note that there is no facility for passing arguments to an application. For this level of interactivity between
a widget and application, you could try one of these options:

 ■ Use the widget.system()method, as discussed in “Accessing Command Line Utilities” (page 105), with
the open command-line utility

 ■ Implement a widget plug-in, as discussed in “Creating a Widget Plug-in” (page 111)

104 Application Activation
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing External Resources

Dashboard provides you with a method for using command-line utilities and scripts within your widget. With
this capability you can use any standard utilities included with the system or any utilities or scripts you include
within your widget.

Note: Before reading this chapter, read “Specifying Access Keys” (page 101) to learn more about the widget
access keys.

The System Method

Running a command-line utility or script within your widget requires you to use the widget.system()
method. The method is defined as:

widget.system("command", handler)

The parameters of the widget.system() method are:

Table 18 widget.system() parameters

ExampleDefinitionParameter

"/bin/ls -l -a"A string that specifies a command-line utility; may contain parameters
and flags.

command

systemHandlerA function called when the command-line utility finishes execution;
toggles execution of the command between synchronous and
asynchronous modes. If specified, the handler needs to accept an
argument.

handler

Note: When specifying the command, always include the full path to the command or the path to the
command relative to the root level of the widget. If you are unsure what the path is, the command which
can tell it to you.

Also, don't rely on non-standard enviroment variables, custom search paths, and Terminal preferences when
passing a command to widget.system().

Depending on what you pass into the handler parameter, your call to widget.system() will operate in one
of two modes: synchronous or asynchronous.

The System Method 105
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing Command Line Utilities

Synchronous Operation

Using widget.system() synchronously means that you are going to hold up the execution of your widget
until you get the results of the command you are running. You want to use them this way when working
with commands that provide output once and execute in a short period of time.

Note: Using widget.system() synchronously is recommended only for development and debugging
purposes. Do not deliver a widget that useswidget.system() synchronously; instead, usewidget.system()
asynchronously, discussed in “Asynchronous Operation” (page 106), when delivering a shipping widget.

An example of this would be if you wanted to run the command id from within your widget:

widget.system("/usr/bin/id -un", null);

The first argument specifies the command you want to run; here, you’re running id with the flag -un. You
have not specified an event handler for this command, so all execution in your widget halts until this command
is finished.

Running id as shown above executes the command, but any output is lost since you don’t specify that you
want that information. To get its output, specify the outputString property and save it in a variable:

var output = widget.system("/usr/bin/id -un", null).outputString;

You can get either the output string, the error string, or the command’s output status when using
widget.system() synchronously:

Table 19 widget.system() properties during synchronous usage

UsageDefinitionProperty

var output = widget.system("id -un",
null).outputString;

The output of the command, as placed
on stdout.

outputString

var error = widget.system("id -un",
null).errorString;

The output of the command, as placed
on stderr.

errorString

var status = widget.system("id -un",
null).status;

The exit status of the command.status

Asynchronous Operation

Providing a handler as the second argument of widget.system() runs the command in asynchronous
mode. This means that execution within your widget continues while the command is executing. The handler
that you specify is called when the command is finished and needs to accept a single object as a parameter.
That object contains the last output of the command as it finishes execution. You can retrieve these properties
from it:

106 Synchronous Operation
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing Command Line Utilities

Table 20 widget.system() end handler parameter object properties

DefinitionProperty

The last output of the command, as placed on stdout.object.outputString

The last output of the command, as placed on stderr.object.errorString

The exit status of the command.object.status

Because the command is running asynchronously, it may be necessary to interact with the command during
its execution. Using widget.system() asynchronously returns an object that you can use for further
interaction with the command:

var myCommand = widget.system("/sbin/ping foo.bar", endHandler);

The object returned (and saved in myCommand) responds to a number of methods and has various properties:

Table 21 widget.system() properties and methods available during asynchronous usage

DescriptionPurposeOption

The current string written to stdout (standard output)
by the command.

PropertymyCommand.outputString

The current string written to stderr (standard error
output) by the command.

PropertymyCommand.errorString

The command’s exit status, as defined by the command.PropertymyCommand.status

A function called whenever the command writes to
stdout. The handler must accept a single argument; when
called, the argument contains the current string placed
on stdout.

Event HandlermyCommand.onreadoutput

A function called whenever the command writes to
stderr. The handler must accept a single argument; when
called, the argument contains the current string placed
on stderr.

Event HandlermyCommand.onreaderror

Cancels the execution of the command.MethodmyCommand.cancel()

Writes a string to stdin (standard input).MethodmyCommand.write(string)

Closes stdin (EOF).MethodmyCommand.close()

For instance, to run the command ping and be notified every time it writes something to stdout, use this
code:

var myCommand = widget.system("/sbin/ping foo.bar", endHandler);
myCommand.onreadoutput = outputHandler;

Alternatively, you can use:

Asynchronous Operation 107
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing Command Line Utilities

widget.system("/sbin/ping foo.bar", endHandler).onreadoutput = outputHandler;

Your onreadoutput handler should accept an argument. When it is called, it is passed a string that has the
most recent string placed on stdout:

function outputHandler(currentStringOnStdout){ // Code that does something
with the command’s current output like...
 document.getElementById("element").innerText = currentStringOnStdout;}

Commands such as ping run indefinitely, so you probably want to end its execution at some point. Use the
cancel() method on the object that you receive from widget.system() to do this:

myCommand.cancel();

Other commands, such as bc, require input at some point in their execution. To write to standard input
(where these commands expect their input), use the write() method:

myCommand.write("8*5");

To close these commands properly (using the end-of-file, or EOF, signal), use close():

myCommand.close();

Don’t forget that in order for this command to run asynchronously, you need to provide an event handler
for the end of execution. This handler is passed the same object that is created when you first use
widget.system(). That means that you can get the command’s status code or, if you didn’t use the
onreadoutput or onreaderror handlers, you can obtain the command’s complete output to stdout or
stderr, respectively.

Sample Code

The Voices sample widget (available in the Voices sample project) uses widget.system() asynchronously.
When Voices is first opened, it introduces itself:

function setup()
{
 if(window.widget) {

108 Asynchronous Operation
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing Command Line Utilities

 currentlyBeingSpoken = widget.system("/usr/bin/osascript -e 'say \"Welcome
 to Voices!\" using \"Fred\"'" , doneSpeaking);
 }
}

By specifying a handler for when the command is finished executing, the command runs asynchronously. A
global variable, currentlyBeingSpoken, is assigned the command object so that commands can be issued
to it during its execution, if needed. The doneSpeaking() function, called when the command is done, sets
currentlyBeingSpoken to NULL.

Later, when a user inputs a phrase to be spoken, this code is called:

if(window.widget) {
 if(currentlyBeingSpoken != null) {
 currentlyBeingSpoken.cancel();
 }
 currentlyBeingSpoken = widget.system("/usr/bin/osascript -e 'say \"" +
textToSpeak + "\" using \"" + chosenVoice + "\"'" , done);
}

Here currentlyBeingSpoken is checked to see if a command is already in execution. If so, the cancel()
method is called on it to stop it and then a new command is issued. The done() function performs some
user interface housekeeping and then calls doneSpeaking() to set currentlyBeingSpoken to NULL.

Voices also has each voice introduce itself when it is selected in a menu. This code follows a similar logic as
the previous sample:

function voiceChanged(elem)
{
 var chosenVoice = elem.options[elem.selectedIndex].value;
 document.getElementById("voiceMenuText").innerText = chosenVoice;

 if(window.widget) {
 if(currentlyBeingSpoken != null) {
 currentlyBeingSpoken.cancel();
 done();
 }
 currentlyBeingSpoken = widget.system(
 "/usr/bin/osascript -e 'say \"Hi, I`m " +
 chosenVoice + ".\" using \"" +
 chosenVoice + "\"'" ,
 doneSpeaking
);
 }
}

Asynchronous Operation 109
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing Command Line Utilities

110 Asynchronous Operation
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Accessing Command Line Utilities

Widgets alone cannot access applications directly, receive distributed notifications, or read files from disk.
To enable these interactions, you need to provide a plug-in. You are required to implement an interface for
your plug-in that makes itself available to the widget. This interface communicates with your application in
whatever manner is most appropriate, for example, by issuing AppleScript commands.

You can use a widget as another way to provide an interface to an application. Providing a widget front end
allows a user to interact with your application in an unobtrusive and simple way that is easily accessible.

A widget plug-in is a Cocoa bundle. In Xcode, use the "Cocoa Bundle" template to create a bundle. In the
plug-in code, implement the widget plug-in interface.

For examples of widgets that use plug-ins, see Birthdays and Reminders sample code projects.

Note: Before reading this chapter, read “Specifying Access Keys” (page 101) to learn more about the widget
access keys.

Widget Plug-in Interface

Any widget plug-in must implement this method in order to be used from within Dashboard:

- (id) initWithWebView:(WebView*)webview

Dashboard calls this when your plug-in is first loaded. At this point, initialize your principal class and prepare
any critical data structures.

To have your plug-in interact with your widget, you will need to implement the WebScripting interface, as
defined in Using Objective-C From JavaScript (page 115) and WebScripting. In addition to this interface,
you also need to implement this method:

- (void) windowScriptObjectAvailable:(WebScriptObject *)windowScriptObject

If implemented, Dashboard calls it before your widget is loaded and allows you to add JavaScript objects
that your widget can use. These objects bridge the gap between JavaScript and Objective-C, and are your
interface with your widget. After this message is received, call setValue: forKey: on the just-received
WebScriptObject to bind it to your own object and to give it a name. In order to function properly, the
object that you bind to the WebScriptObject must implement the WebScripting interface.

This example demonstrates what your implementation of this method should include:

- (void) windowScriptObjectAvailable:(WebScriptObject *) windowScriptObject
{
 [windowScriptObject setValue:self forKey:@"MyWindowScriptObject"];
 ...
}

Widget Plug-in Interface 111
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Creating a Widget Plug-in

Any methods that belong to the object that you bind to the given windowScriptObject will be available
to your widget in JavaScript, via the specified key. However, your methods will be available using the default
name created for it, which can be confusing depending on its Objective-C name. Developers are advised to
implement this method to provide a more human-readable name:

+ (NSString *)webScriptNameForSelector:(SEL)aSelector

In the following example, your plug-in class is bound to a received WebScriptObject, named
windowScriptObject. The key for the object is MyWindowScriptObject, meaning that, from within the
widget, any method belonging to the MyWindowScriptObject class may be called upon it:

<html>
<head>
...
<script>
...
function someFunction()
{
 ...
 if (MyWindowScriptObject)
 {
 MyWindowScriptObject.someMethod(someArg);
 }
 ...
}
...
</script>
</head>
...
</html>

For example, you can use this to notify the plug-in when the widget is finished loading in Dashboard. You
can set up a function to be called when the widget has finished loading. This function will, in turn, call any
method you supply:

<html>
...
<body onload='MyWindowScriptObject.someMethod(someArg)'>
...
</body>
</html>

Widget Plug-in Bundle

The Xcode standard information property list file provides most of the information you need for the plug-in
to function properly. Despite this, you must provide a value for the NSPrincipalClass property.

Once you compile the bundle, you are ready to deploy it. For your widget to use your plugin, place it at the
root level of your widget bundle.

In order for your plug-in to be loaded when you activate your widget, it needs to be specified in your widget’s
Info.plist file. The property Plugin needs to be added, and its value should be a String filled with the
name of your bundle.

112 Widget Plug-in Bundle
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Creating a Widget Plug-in

Additional Resources

For more information on Dashboard plug-ins, seeDashboardReference in Apple Applications Documentation.

To learn more about bridging your widget’s JavaScript environment with your widget plug-in’s Cocoa bundle,
read Using Objective-C From JavaScript (page 115).

When compiling your widget plug-in, make sure you're building it as a Universal plug-in for use on PowerPC
and Intel-based Macintosh computers. For more on Universal binaries, read Technical Q&A QA1451: Intel-
Based Macs, Dashboard, Safari, and You and Universal Binary Programming Guidelines, Second Edition.

Additional Resources 113
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Creating a Widget Plug-in

http://developer.apple.com/qa/qa2005/qa1451.html
http://developer.apple.com/qa/qa2005/qa1451.html

114 Additional Resources
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Creating a Widget Plug-in

The web scripting capabilities of WebKit permit you to access Objective-C properties and call Objective-C
methods from the JavaScript scripting environment.

An important but not necessarily obvious fact about this bridge is that it does not allow any JavaScript script
to access Objective-C. You cannot access Objective-C properties and methods from a web browser unless a
custom plug-in has been installed. The bridge is intended for people using custom plug-ins and JavaScript
environments enclosed within WebKit objects (for example, a WebView).

How to Use Objective-C in JavaScript

The WebScripting informal protocol, defined in WebScriptObject.h, defines methods that you can
implement in your Objective-C classes to expose their interfaces to a scripting environment such as JavaScript.
Methods and properties can both be exposed. To make a method valid for export, you must assure that its
return type and all its arguments are Objective-C objects or basic data types like int and float. Structures
and non object pointers will not be passed to JavaScript.

Method argument and return types are converted to appropriate types for the scripting environment. For
example:

 ■ JavaScript numbers are converted to NSNumber objects or basic data types like int and float.

 ■ JavaScript strings are converted to NSString objects.

 ■ JavaScript arrays are mapped to NSArray objects.

 ■ Other JavaScript objects are wrapped as WebScriptObject instances.

Instances of all other classes are wrapped before being passed to the script, and unwrapped as they return
to Objective-C.

A Sample Objective-C Class

Let’s look at a sample class. In this case, we will create an Objective-C address book class and expose it to
JavaScript. Let’s start with the class definition:

@interface BasicAddressBook: NSObject {
}
+ (BasicAddressBook *)addressBook;
- (NSString *)nameAtIndex:(int)index;
@end

Now we’ll write the code to publish a BasicAddressBook instance to JavaScript:

How to Use Objective-C in JavaScript 115
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Objective-C From JavaScript

BasicAddressBook *littleBlackBook = [BasicAddressBook addressBook];

id win = [webView windowScriptObject];
[win setValue:littleBlackBook forKey:@"AddressBook"];

That’s all it takes. You can now access your basic address book from the JavaScript environment and perform
actions on it using standard JavaScript functions. Let’s make an example showing how you can use the
BasicAddressBook class instance in JavaScript. In this case, we’ll print the name of a person at a certain
index in our address book:

function printNameAtIndex(index) {
 var myaddressbook = window.AddressBook;
 var name = myaddressbook.nameAtIndex_(index);
 document.write(name);
}

You may have noticed one oddity in the previous code example. There is an underscore after the JavaScript
call to the Objective-C nameAtIndex method. In JavaScript, it is called nameAtIndex_. This is an example
of the default method renaming scheme in action.

Unless you implement webScriptNameForSelector to return a custom name, the default construction
scheme will be used. It is your responsibility to ensure that the returned name is unique to the script invoking
this method. If your implementation of webScriptNameForSelector returns nil or you do not implement
it, the default name for the selector will be constructed as follows:

 ■ Any colon (“:”) in the Objective-C selector is replaced by an underscore (“_”).

 ■ Any underscore in the Objective-C selector is prefixed with a dollar sign (“$”).

 ■ Any dollar sign in the Objective-C selector is prefixed with another dollar sign.

The following table shows example results of the default method name constructor:

Default script name for selectorObjective-C selector

setFlag_setFlag:

setFlag_forKey_withAttributes_setFlag:forKey:withAttributes:

propertiesForExample$_Object_propertiesForExample_Object:

set$_$$_forKey_withDictionary_set_$:forKey:withDictionary:

Since the default construction for a method name can be confusing depending on its Objective-C name, you
would benefit yourself and the users of your class if you implement webScriptNameForSelector and
return more human-readable names for your methods.

Getting back to the BasicAddressBook, now we’ll implement webScriptNameForSelector for our
nameAtIndex method. In our BasicAddressBook class implementation, we’ll add this:

+ (NSString *) webScriptNameForSelector:(SEL)sel
{
 ...

 if (sel == @selector(nameAtIndex:))
 name = @"nameAtIndex";

116 A Sample Objective-C Class
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Objective-C From JavaScript

 return name;
}

Now we can change our JavaScript code to reflect our more logical method name:

function printNameAtIndex(index) {
 var myaddressbook = window.AddressBook;
 var name = myaddressbook.nameAtIndex(index);
 document.write(name);
}

For security reasons, no methods or KVC keys are exposed to the JavaScript environment by default. Instead
a class must implement these methods:

+ (BOOL)isSelectorExcludedFromWebScript:(SEL)aSelector;
+ (BOOL)isKeyExcludedFromWebScript:(const char *)name;

The default is to exclude all selectors and keys. Returning NO for some selectors and key names will expose
those selectors or keys to JavaScript.

See WebKit Objective-C Framework Reference for all the information on excluding methods and properties
from the JavaScript environment.

A Sample Objective-C Class 117
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Objective-C From JavaScript

118 A Sample Objective-C Class
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Using Objective-C From JavaScript

After you've created your widget, you need to distribute it to your customers. This chapter outlines steps
that you should take to ensure that your customers have a pleasant experience downloading and installing
your widget.

Packaging Your Widget

Widgets are much less complex than applications and should provide a light-weight install experience. The
preferred packaging experience is to have widgets delivered in zip archive format and placed on your web
server for download. Only archive the .wdgt bundle, omitting all other files. Link to the widget archive from
your website to enable the download.

When downloaded using Safari, the zipped widget is automatically unarchived and the user is presented
with an install dialog, asking them if they want the widget to be installed. When downloaded using other
web browsers, users need to manually open the widget to show the widget installer.

Delivery Tips

Here are some tips for you to keep in mind when readying your widget for delivery:

 ■ Follow these steps to create a zip archive:

 ❏ Select the widget in the Finder

 ❏ Choose File > Create Archive

 ❏ Upload resulting archived widget to your web server

 ■ Avoid multi-step installations, registration, and purchasing after the widget is downloaded. If registration,
purchase, and the display of an End User License Agreement is required, perform these functions locally
on your website prior to download. If it's necessary to communicate with your widget after download,
use cookies.

 ■ Include the instructions below on your widget download page for users to follow:

Mac OS X v.10.4 Tiger is required. If you're using Safari, click the download link. When the widget download
is complete, the widget installer appears. Click Install if you want the widget installed on your Mac. If you're
using a browser other than Safari, click the download link.When thewidget download is complete, unarchive
and open it to show the widget installer.

Packaging Your Widget 119
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Delivering Widgets

120 Delivery Tips
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Delivering Widgets

This table describes the changes to Dashboard Programming Topics.

NotesDate

Made minor corrections.2009-02-04

Added an article that introduces Dashboard and widgets and describes how to
create a simple widget.

2009-01-06

Made minor corrections.2008-10-15

Added an article about the Dashboard Sync feature in Mac OS X v.10.5.2007-04-13

Added information about using widget.system synchronously. Clarified the
descriptions of some Apple Classes.

2006-08-07

Fixed typos in Apple Scroll Area and Apple Glass Button descriptions.2006-04-04

Clarified directions on using Apple Classes with widget backs and preferences.
Added links to Webscripting reference documentation. Fixed typos.

2006-01-10

Added information on JavaScript Apple classes for Dashboard. Changed the
title from "Dashboard Programming Guide."

2005-12-06

121
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

122
2009-02-04 | © 2009 Apple Inc. All Rights Reserved.

Document Revision History

	Dashboard Programming Topics
	Contents
	Figures, Tables, and Listings
	Introduction
	Widget Basics
	The Dashboard Environment
	What Is a Dashboard Widget?
	Creating a Simple Widget
	Widget Bundle Structure
	HTML, CSS, and JavaScript Files
	Widget Property Lists
	Icons and Default Images
	Implement the Widget
	Assemble and Load the Widget

	Designing Widgets
	Main Interface Design Guidelines
	Widget Back Side Design Guidelines
	Widget Bar Icons
	Other Tips
	Widget Programming
	Drop Shadows
	Integrated Menus
	Implementing Your Custom Menu Control

	Search Fields
	Help Tags
	Universal Access

	Introduction to the Apple Classes
	Including an Apple Class
	Backwards Compatible Usage
	For Widgets on Mac OS X v.10.4.3 and Later

	Using an Apple Class

	Using Scroll Areas
	Working with Scroll Areas
	Scroll Areas and Scroll Bars, in HTML
	Scroll Areas and Scroll Bars, in CSS
	Scroll Areas and Scroll Bars, in JavaScript

	Using an Apple Slider
	Working with an Apple Slider
	An Apple Slider, in HTML
	An Apple Slider, in CSS
	An Apple Slider, in JavaScript

	Using Animation
	Working with Animation
	Apple Animator and Animation, In HTML
	Apple Animator and Animation, in JavaScript
	Full Setup and Usage
	Quick Setup
	Properties of Apple Animator and Animation

	The Apple Rectangle Animation Subclass
	Properties of Apple Rectangle Animation and Apple Rectangle

	Using an Apple Button
	Working with an Apple Button
	An Apple Button, in HTML
	An Apple Button, in CSS
	An Apple Button, in JavaScript
	The Apple Glass Button Subclass

	Widget Backs and Preferences
	Providing Preferences
	Displaying a Back Side
	In Your HTML File
	In Your JavaScript File
	Constructing the Apple Info and Glass Buttons
	Flipping Sides

	In Your CSS File

	Syncing Widgets
	Dashboard Sync Details
	Handling a Sync Event
	Excluding Preferences from Syncing

	Using Widget Events
	Dashboard Activation Events
	Widget Focus Events
	Widget Drag Events
	Widget Removal Event

	Declaring Control Regions
	The -apple-dashboard-region

	Resizing Widgets
	Resizing Methods
	Live Resizing
	Adjusting the Close Box

	Using the Canvas
	Introduction to the Canvas
	Defining the Canvas
	Drawing on a Canvas

	Using the Pasteboard From JavaScript
	Introduction to JavaScript Pasteboard Operations
	Adding Pasteboard Handlers to Elements
	Manipulating Pasteboard Data

	Using Drag and Drop From JavaScript
	Introduction to JavaScript Drag and Drop
	Adding Handlers to Elements
	Making an Element Draggable
	Manipulating Dragged Data
	Changing Drag Effects
	Changing the Appearance of Dragged Elements
	Changing the Snapshot With CSS
	Specifying a Custom Drag Image

	Cross-Browser Compatibility

	Localizing Widgets
	Language Projects
	What Dashboard Does for You
	What You Need to Provide Dashboard
	Localized Strings Example
	Localized Widget Names

	Specifying Access Keys
	Using Access Keys

	Accessing External Resources
	URL Opening
	Application Activation

	Accessing Command Line Utilities
	The System Method
	Synchronous Operation
	Asynchronous Operation
	Sample Code

	Creating a Widget Plug-in
	Widget Plug-in Interface
	Widget Plug-in Bundle
	Additional Resources

	Using Objective-C From JavaScript
	How to Use Objective-C in JavaScript
	A Sample Objective-C Class

	Delivering Widgets
	Packaging Your Widget
	Delivery Tips

	Revision History

