
FxPlug SDK Overview
Apple Applications > Final Cut Pro/Final Cut Express

2008-07-04

Apple Inc.
© 2005, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Final Cut, Final Cut Pro,
Mac, Mac OS, Objective-C, Quartz, and Xcode
are trademarks of Apple Inc., registered in the
United States and other countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 FxPlug SDK Overview 5

Versions of the FxPlug SDK 5
Backward Compatability 6

Plug-in Concepts 6
SDK Headers 6
Types of Plug-ins 7

Bundling and Installing a Plug-in 7
Packaging 7
Registration 8

API Overview 8
Protocols 8
Properties 8
Parameters 8
Rendering 10
Images 10
Parameter Interaction 10
Custom Parameter UI 11
On-Screen Controls 11
Host Capabilities 11

Features of FxPlug SDK 1.2 12
The FxPlug 1.2 Framework 12
Plug-in Manager 1.7 13
Final Cut Pro 6 13
Remaining Issues in Final Cut Pro 6 15
Motion 3 15

Features of FxPlug SDK 1.2.1 17
The FxPlug 1.2.1 Framework 17
New Examples 17
Final Cut Pro 6.0.1 Changes 17
Motion 3.0.1 Changes 18

Features of FxPlug SDK 1.2.2 19
The FxPlug 1.2.2 Framework 19
Final Cut Pro 6.0.2 Changes 19
Motion 3.0.2 Changes 21

FAQs 22
How can I debug my plug-in? 22
How can I retrieve resource files from my plug-in bundle? 22
Copying and pasting UUIDs from Terminal is tedious. How can I simplify this step? 22
How can I determine if an input frame is interlaced? 23
How can I access a single field from an interlaced frame? 23
How can I determine what application my plug-in is running in? 23

3
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

How can I specify another clip as input? 23
How can I get the current time? 24
Can I define multiple plug-in bundles that populate the same group? 24

Document Revision History 25

4
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Developed by Apple’s Professional Applications group, FxPlug is a compact yet powerful image processing
plug-in architecture that lets you create new effects for Final Cut Pro, Final Cut Express, and Motion.

Leveraging technologies such as OpenGL, Quartz, Quartz Composer, and Core Image, you can develop unique
plug-ins that include on-screen controls and custom UI elements—all running seamlessly in the host
application. FxPlug supports both hardware-accelerated and CPU-based effects.

To write an FxPlug plug-in, you need to use the FxPlug SDK. The bulk of this SDK consists of Objective-C
protocol definitions. You create a plug-in by writing code in Objective-C or Objective-C++ that conforms to
these protocols. That is, you implement the methods declared by the protocols.

Note: After reading this document, an excellent way of learning the FxPlug framework is to study the
examples installed in /Developer/Examples/FxPlug.

Versions of the FxPlug SDK

FxPlug SDK 1.0 was introduced together with Motion 2.0 in April, 2005. A few months later, version 1.0.2 was
released with support for Universal Binary plug-ins but no API changes.

Version 1.1 of the FxPlug SDK was the first version that worked with Final Cut Pro 5.1.2 . Version 1.1 added
a number of new features, including:

 ■ Transitions.

 ■ New FxBaseEffect parent protocol for filters, generators, and transitions.

 ■ String parameters.

 ■ A new -properties method that returns a dictionary describing plug-in attributes.

 ■ 8-bit and floating-point YUV ('r408' and 'r4fl') bitmaps.

 ■ Rowbytes support in bitmaps.

 ■ SMPTE wipe equivalents for transitions.

 ■ A new FxHostCapabilities class for determining the capabilities of the host application.

Version 1.2 of the FxPlug SDK was released with Final Cut Pro 6.0 and Motion 3.0. The features in this version
of the SDK are detailed below in the section “Features of FxPlug SDK 1.2” (page 12).

Version 1.2.1 of the FxPlug SDK was released with Final Cut Pro 6.0.1 and Motion 3.0.1. The features of this
version of the SDK are described below in the section “Features of FxPlug SDK 1.2.1” (page 17)

Version 1.2.2 of the FxPlug SDK was released with Final Cut Pro 6.0.2 and Motion 3.0.3. The features of this
version of the SDK are described below in the section “Features of FxPlug SDK 1.2.2” (page 19)

Versions of the FxPlug SDK 5
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Version 1.2.3 of the FxPlug SDK provides minor bug fixes and documentation corrections.

Backward Compatability

In general, to make your plug-in work with any version of a host application, have the plug-in first check for
availability of a host API for an SDK feature, and then only use that feature if the API is available. If a particular
host API is not available, your plug-in needs to fall back to an alternative behavior.

Plug-in Concepts

An FxPlug plug-in is a type of ProPlug, which in turn is a flavor of CFBundle. ProPlug is a generalized Apple
architecture for writing plug-ins that can interact with a host application and extend its functionality.

When a plug-in needs to access host application functionality—such as requesting video stream
information—it uses methods in a host API. A host API is an object, provided by the host application, that
implements methods that can be called by a plug-in. It is analogous to a callback suite in other plug-in
architectures, but is implemented as an Objective-C protocol. For more information about protocols, see the
Protocols section in The Objective-C 2.0 Programming Language.

For example, the FxPlug SDK defines host protocols that include methods for requesting layer information,
converting between canvas and object coordinate spaces, building a list of plug-in parameters, getting and
setting parameter values, and evaluating input images at arbitrary times. Not all hosts are guaranteed to
support all host-API protocols specified in FxPlug, so a plug-in must request the host API object before
invoking its methods.

SDK Headers

The principal header for the FxPlug SDK is FxPlugSDK.h, which is located in
/Library/Frameworks/FxPlug.framework/Headers. It imports all of the other FxPlug headers. The
comments in the header files generate the reference documentation for the FxPlug SDK.

6 Plug-in Concepts
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Types of Plug-ins

You can write three types of plug-ins with the FxPlug SDK: video filters, video generators, and video transitions.
A filter operates on an input video image to produce an output video image. A generator does not require
an input image. A transition combines two input video images to yield an output video image. In each case,
the video images may be traditional RAM-based bitmaps or hardware-accelerated OpenGL buffers. A single
plug-in can support either software rendering or hardware rendering, or both. Implementing a software path
is always recommended to provide compatibility with older machines that may not have
Quartz-Extreme-compatible video hardware.

Bundling and Installing a Plug-in

The easiest way to build a new FxPlug plug-in is to create a New Project in Xcode and use one of the FxPlug
templates in the Standard Apple-Plug-ins category: FxPlug Filter, FxPlug Generator, or FxPlug Transition.

For examples of complete FxPlug plug-ins, see the directory /Developer/Examples/FxPlug.

Note: To avoid plug-in conflicts, you must edit the UUID entries in the Info.plist file. You can create
unique UUIDs by issuing the uuidgen command in the Terminal application. (See the “Frequently Asked
Questions” section below for details on using uuidgen.)

Two Mac OS X folders are reserved for FxPlug installation. When scanning for plug-ins, host applications
recursively search the folder hierarchy from these locations:

/Library/Plug-Ins/FxPlug/

~/Library/Plug-Ins/FxPlug/

As you develop your plug-in and test it with the host application, you may find it convenient to perform the
installation via a Copy Files build phase. Alternatively, you can create a symbolic link inside
/Library/Plug-Ins/FxPlug/, pointing to the build-product directory specified in Xcode’s Project
Preferences. Depending on your settings, you can create the symbolic link in the Terminal application like
this:

% ln -s ~/build/MyPlug.fxplug /Library/Plug-Ins/FxPlug/MyPlug.fxplug

Packaging

A completed FxPlug plug-in is packaged in a CFBundle. Each bundle contains one or more plug-ins. A bundle
also contains an Info.plist property-list file that describes the plug-ins in the bundle. This description can
be static or dynamic. With a static list, the plug-ins are recognized and loaded automatically; for a dynamic
list, the bundle’s principal class is asked to register the plug-ins. The distinction depends on the value of a
Boolean tag ProPlugDynamicRegistration in the property list. Dynamic registration incurs a plug-in
scanning performance hit. So you should ordinarily use static registration. You can find more information
about dynamic registration in <PluginManager/PROPlugInBundleRegistration.h>.

Bundling and Installing a Plug-in 7
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Registration

Before a host application can display a list of available plug-ins, it recursively scans the plug-in folders for
available CFBundles that conform to the FxFilter, FxGenerator, or FxTransition protocol. Plug-in properties
such as name, group name, description, and so on are specified in the bundle’s property list for statically
registered plug-ins. The host application can display the list of grouped plug-ins in its UI, and allow the user
to choose and apply particular plug-ins to particular tracks.

API Overview

Protocols

The primary protocols defined by the FxPlug SDK are FxFilter, FxGenerator, and FxTransition. Each plug-in
conforms to one of these protocols. For more information about the methods in these protocols, see the
reference documentation for the header files FxFilter.h, FxGenerator.h, and FxTransition.h. Note
that these protocols inherit methods from a superprotocol FxBaseEffect, which is defined in FxBaseEffect.h.

Properties

The FxPlug SDK 1.1 introduced the plug-in properties dictionary. One of the methods defined by the new
FxBaseEffect protocol was -properties. From this method, a plug-in returns an NSDictionary with key-value
pairs that describe the capabilities of a plug-in.

Parameters

Once a plug-in is applied, the host application asks for its parameter list by calling the -addParameters
method. This method is declared in the FxBaseEffect protocol, which is inherited by the FxGenerator, FxFilter,
and FxTransition protocols. The host application then displays the parameters with the appropriate UI.

In the -addParameters method, a plug-in adds its parameters, one by one, using methods in the
FxParameterCreation protocol. First, the plug-in calls the -apiForProtocol: method, defined by the
PluginManager framework, to obtain the host’s API object that implements the protocol. Then it calls the
parameter creation methods to add the parameters. For example, this is an -addParameters method from
a simple opacity filter:

-(BOOL) addParameters
{
 id <FxParameterCreation> paramsApi =
 [_apiManager apiForProtocol:@protocol(FxParameterCreationAPI)];

 if (paramsApi != NULL)
 {
 [paramsApi addFloatSliderWithName:@"Opacity"
 parmId: OPACITY_ID
 defaultValue: 1.0
 parameterMin: 0.0
 parameterMax: 3.0

8 API Overview
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

 sliderMin: 0.0
 sliderMax: 1.0
 delta: 0.01
 parmFlags: kFxParameterFlag_DEFAULT];
 return YES;
 }
 else
 return NO;
}

You can find more information about adding parameters in the reference documentation for the header files
FxParameterAPI.h, FxOptionalParameterAPI.h, and FxOptionalParameterAPI.h.

Protocols in these headers include methods for adding these standard types of parameters:

 ■ Floating-point slider

 ■ Integer slider

 ■ Angle slider

 ■ Toggle button (checkbox)

 ■ RGB color

 ■ RGBA color

 ■ Point

 ■ Popup menu

 ■ Image reference

 ■ Group start

 ■ Group end

 ■ String

Note: String parameter support was added in FxPlug SDK 1.1. The methods for creating string parameters
and retrieving and setting their values are defined in new protocols FxParameterCreationAPI_v2,
FxParameterRetrievalAPI_v2, and FxParameterSettingAPI_v2. These new “_v2” protocols inherit all of the
methods in their parent protocols, FxParameterCreationAPI, FxParameterRetrievalAPI, and
FxParameterSettingAPI. If you are using string parameters, you should use the new _v2 protocols. Otherwise,
you should use the older parent protocols, so that your plug-in will work in host applications that don’t
support the _v2 protocols.

There are also optional parameters that may be supported by some host applications but not by others:

 ■ Histogram

 ■ Gradient

In addition to the standard parameter types, you may create a custom parameter with an opaque data type,
using the method:

-addCustomParameterWithName:parmId:defaultValue:parmFlags

API Overview 9
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Each custom parameter must be associated with a custom parameter view, which is defined by the methods
in FxCustomParameterUI.h. More details about custom parameter UI can be found in the reference
documentation.

Other protocols in these headers include accessor methods for getting and setting parameter values.

Rendering

In order to render an output frame for a filter plug-in, the host application calls the following sequence of
plug-in methods:

 -(BOOL)frameSetup:(FxRenderInfo)renderInfo
 inputInfo:(FxImageInfo)inputInfo
 hardware:(BOOL*)canRenderHardware
 software:(BOOL*)canRenderSoftware;

 -(BOOL)renderOutput:(FxImage *)output
 withInput:(FxImage*)inputImage
 withInfo:(FxRenderInfo)renderInfo;

 -(BOOL)frameCleanup;

Generator and transition plug-ins render with a similar sequence, but with different numbers of inputs passed
to their -frameSetup and -renderOutput methods.

In its implementation of the method -renderOutput:...withInfo: , a plug-in requests parameter values
and renders an output frame. The output object is an instance of one of two subclasses of the FxImage class:
FxBitmap or FxTexture.

Note: In floating-point rendering, it is important to avoid clipping values to the 0.0-1.0 range. The superblack
and superwhite pixel values outside this range are valid in digital video.

Images

In its implementation of the method -frameSetup:, a plug-in specifies whether it can render in software
on the CPU, in hardware on the GPU, or in both. If the plug-in requests both kinds of rendering, the host
application decides which to use. For example, Motion is more likely to choose a hardware path, while Final
Cut Pro tends to prefer software rendering.

When rendering in software, input and output images are FxBitmap objects; in hardware, FxTexture objects.
You can find more information about these image classes in the reference documentation for the header
files FxImage.h, FxBitmap.h, and FxTexture.h.

Parameter Interaction

When a user changes a parameter control for an FxPlug plug-in, the host application calls the plug-in method
-parameterChanged:. In response, the plug-in can change the state of other parameters. For example, if
the value of a toggle button changes, the plug-in can hide or reveal other parameter controls, or change
their values.

10 API Overview
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Note: In FxPlug 1.0, the -parameterChanged: method was included in the FxFilter protocol, but not in
the FxGenerator protocol. In FxPlug 1.1, the -parameterChanged: method was moved to the FxBaseEffect
protocol and is now inherited by all three types of FxPlug plug-ins. For applications such as Motion 2.0
through 2.1.x that do not support this new feature in FxPlug SDK 1.1, you can use custom parameter UI to
create a generator plug-in that responds to parameter changes.

Custom Parameter UI

For a custom UI parameter, user interaction is handled differently. In this case,the plug-in conforms to
theFxParameterViewHost protocol by implementing a -createViewForParm: method, to provide an
NSView subclass to the host app. Like any other NSView subclass, that custom view draws itself in a window,
and receives notification of user actionssuch as mouse, key, and tablet events.

In response to user events, a plug-in custom view can notify the host application that a parameter value has
changed. A plug-in can create a custom view object programmatically, or may retrieve it from a NIB file
created in Interface Builder and placed in the plug-in’s Resources folder.

Note: In the plug-in's custom view methods, you must call the FxParameterAction host API method
-beginAction: before your plug-in accesses any parameter values, and -endAction: after it has finished
accessing them. This lets the host application set up and restore the internal state. See the reference
documentation for the header file FxCustomParameterUI.h for more details about user interaction with
custom parameters.

On-Screen Controls

In addition to standard and custom parameter UI, a plug-in can also implement custom on-screen controls
that are composited directly onto the host application’s canvas window using OpenGL. Examples of on-screen
controls can be found in the SimplePaint example (/Developer/Examples/FxPlug) and in some of
Motion’s built-in filters such as Kaleidoscope and Basic 3D.

To create an on-screen control, you create a second ProPlug plug-in class that conforms to the
FxOnScreenControl protocol. You package this class in the same bundle as its associated filter, generator, or
transition plug-in.

Note: On-screen controls are supported by Motion 2.0 through Motion 2.1.x, but not by the new version of
Final Cut Pro. To work around this limitation, you might check at runtime for the availability of the
FxOnScreenControl API. If it is unavailable, you can use a custom parameter UI instead.

Host Capabilities

A new class in FxPlug 1.1 defines methods that your plug-in can use to identify key capabilities in the host
application. The FxHostCapabilities class is specified in the new header file FxHostCapabilities.h. Using
the methods in this class, you can tailor the behavior of your plug-in to the context in which it is operating.
Example methods include -upscalesFields and -supportsHiddenParameters. For more details, see the
reference documentation for the FxHostCapabilities.h header.

API Overview 11
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Note that this new class was not implemented in earlier versions of the FxPlug framework. If you reference
the FxHostCapabilities symbol in your plug-in, the plug-in will only link if the version of the installed FxPlug
framework is 1.1 or later. Your plug-in installer should check that FxPlug 1.1 or later is present. (If it’s not, you
can alert the user to run Software Update). Alternatively, you can retrieve the class by name using a string
literal, as in this example:

Class class = NSClassFromString(@"FxHostCapabilities");
id hostCaps = [[class alloc] initWithAPIManager:_apiManager];
if (![hostCaps supportsDisabledParameters])
 ; // Do something

Features of FxPlug SDK 1.2

The focus of FxPlug SDK 1.2 is improved consistency between Motion and Final Cut Pro, and better support
for timing information. In addition to the changes in the FxPlug framework itself, there are other FxPlug-related
changes in Plug-in Manager 1.7, Final Cut Pro 6, and Motion 3.

The FxPlug 1.2 Framework

Timing information

A FxTimingAPI protocol defines the methods provided by the host that allow a plug-in to query the timing
properties of its input image(s), image parameters, effect, timeline, and in/out points. This protocol is the
most significant change in FxPlug SDK 1.2.

Field and Field Order Information

FxImage objects now respond to -field and -fieldOrder accessors. These accessors provide information
about fields in interlaced images: the field identifier for an image, and the field order of an image. The
incorrectly named field FxRenderInfo.field has been renamed FxRenderInfo.fieldOrder. But you
should use the FxImage accessors instead.

Progress and Cancellation

A FxProgressAPI protocol defines methods for plug-ins that render slowly to update a progress bar and
support user cancellation.

Image Retiming in Transitions

Final Cut Pro only: A FxTemporalTransitionImageAPI protocol allows a plug-in to retrieve its A or B input
images at different times. In FxPlug 1.1, retiming was only enabled for images from filter inputs and image
wells, not for transition input images.

12 Features of FxPlug SDK 1.2
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Absolute versus Relative Times

A [FxHostCapabilities timeBase]method allows a plug-in to determine whether the host application
measures times as frame offsets from the start of the timeline, or from the start of a clip, generator, filter, or
transition.

Getting Angle Values

The -getAngle:fromParm:atTime:method is deprecated. Plug-ins should use -getFloatValue: instead.

Plug-in Manager 1.7

Free Access to Host APIs

The Plug-in Manager no longer requires a plug-in Info.plist file to declare which host APIs the plug-in might
use. However, for a plug-in to load on a system with an older version of the Plug-in Manager, the plug-in
should still list these APIs in the ProPlugProtocolList—as illustrated by the example projects and Xcode
templates.

Final Cut Pro 6

Support for Hidden and Disabled Parameters

Final Cut Pro 6 respects kFxParameterFlag_HIDDEN and kFxParameterFlag_DISABLED. A plug-in can
specify these flags when it creates parameters, and change them dynamically with the
-setParameterFlags: selector of FxParameterSettingAPI.

Support for Non-Animatable Parameters

Final Cut 6 respects the kFxParameterFlag_NOT_ANIMATABLE flag if it is set when a parameter is created. A
plug-in cannot change this flag dynamically once a parameter is created.

Support for Parameter Groups

Final Cut 6 provides some support for parameter groups. Parameter groups are implemented as labels
separating the parameters, similar to After Effects plug-ins in Final Cut Pro. The groups cannot be collapsed
or nested.

Support for FxParameterSettingAPI

Final Cut Pro 5.1.2 did not implement the FxParameterSettingAPI and a plug-in could not set the values of
its parameters after creation. Final Cut 6 supports this API. Plug-ins can now change the values of
their parameters dynamically. For example, an effect might want to implement a “presets” functionality by
changing some parameter values when the user makes a choice from a popup menu.

Features of FxPlug SDK 1.2 13
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Parameters Sampled at Arbitrary Times

A plug-in running under Final Cut Pro 5.1.2 could only sample parameters at the current render time. The
only exception to this was image parameters. In Final Cut Pro 6, a plug-in can sample any type of parameter
at any time. This allows an effect to examine the values of keyframed parameters at multiple times.

Plug-ins Only Instantiated Once at Startup

At startup, Final Cut Pro 5.1.2 instantiated each installed plug-in multiple times, sometimes sending the
plug-in an -initWithAPIManager: message, sometimes sending the plug-in an -init message. At startup,
Final Cut Pro 6 instantiates a plug-in once via -initWithAPIManager:, sends the instance the following
messages:

 ■ -addParameters

 ■ -variesOverTime

 ■ -properties

and releases the plug-in instance.

Plug-ins No Longer Instantiated Multiple Times

Final Cut Pro 5.1.2 created two instances of a plug-in when the plug-in was added to a timeline, using one
instance for rendering and the other instance for parameter management. Final Cut Pro 6 creates one instance
when a plug-in is added to a timeline and uses this single instance for both rendering and parameter
management.

Initial Value of Point Controls Respected

Final Cut Pro 5.1.2 always set the initial value of point controls at the center of the image. Final Cut Pro 6
uses the value specified by the plug-in.

Software Rendering Preferred in More Cases

Final Cut Pro 5.1.2 asked a plug-in to render on the GPU unless the plug-in returned canDoHardware = NO
from -frameSetup. Final Cut Pro 6 asks a plug-in to render in software if:

The plug-in returns canDoSoftware=YES from -frameSetup

AND
The plug-in specifies kFxPropertyKey_SupportsRowBytes = YES

Otherwise, Final Cut Pro 6 asks the plug-in to render in hardware.

Consistent Parameter Change Notification

Final Cut Pro 5.1.2 sent plug-ins the -parameterChanged: message only if the parameter change caused
a render. If the playhead was not on the item with the effect, Final Cut Pro 5.1.2 did not send the message. Final
Cut Pro 6 sends a plug-in this message immediately when a parameter changes, whether the change causes
a render or not.

14 Features of FxPlug SDK 1.2
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Requesting a Nonexistent Parameter

In Final Cut Pro 5.1.2, a plug-in request for the value of a parameter that had not been added created an
Objective-C exception and left Final Cut Pro in an inconsistent state. In Final Cut Pro 6, a request for a
parameter that does not exist simply returns NO.

Output Pixel Aspect Ratio Reported Correctly

In Final Cut Pro 5.1.2, if an FxPlug effect was rendering in software and did not change the size of the output
image, the output image would always have a pixel aspect ratio of 1.0. In Final Cut Pro 6, the pixel aspect
ratio is reported correctly.

Remaining Issues in Final Cut Pro 6

No Support for Onscreen Controls

Final Cut Pro 6 does not support onscreen controls.

No Support for Resizing Output Images

Final Cut Pro 6 does not allow a filter to resize its output image. In addition, it no longer calls
the -getOutputWidth:height: method.

Some APIs Available Only During Render

In Final Cut Pro 6, the FxTimingAPI and FxTemporalImageAPI only work correctly if called during one of the
following selectors:

 ■ -getOutputWidth: height:

 ■ -frameSetup

 ■ -renderOutput

 ■ -frameCleanup

As well, sampling keyframed parameters at arbitrary times only works during these selectors.

Motion 3

Now Notifying Parameter Changes

Motion 2.1 did not call -parameterChanged: when the value of a compound parameter (e.g. point, color,
histogram, gradient) changed. Motion 3 does.

Features of FxPlug SDK 1.2 15
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Fixed Pixel Aspect of Textures from Image Wells

Motion 2.1 did not provide the correct pixelAspect value for FxTexture images retrieved from image well
parameters. Motion 3 corrects this problem.

Float Images pixelFormat Correction

Motion 2.1 ordered pixel components RGBA in floating-point images, but the -pixelFormatmethod returned
ARGB. Motion 3 corrects this problem. You can determine whether floating-point images are mislabeled by
querying [FxHostCapabilities formatsFloatRGBABitmapsAsARGB].

Temporal Image Retrieval for Image Wells

Motion 2.1 had problems retrieving images from image well parameters at arbitrary times. The resulting
images were at incorrect times and upside-down. Motion 3 retrieves these images correctly.

Support for Non-Animated Parameters

Motion 3 adds support for the kFxParameterFlag_NOT_ANIMATABLE flag.

Scale Factor and Resizing Reconciled

Motion 3 corrects an issue in Motion 2.1 that produced incorrect results when resizing either
via -getOutputWidth:height: or down-sampling for low quality render.

16 Features of FxPlug SDK 1.2
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Features of FxPlug SDK 1.2.1

The FxPlug SDK 1.2.1 includes two new protocols, one for managing 3D camera and layer information in
Motion, and another that allows plug-ins to manage backward compatibility issues. The host applications
Final Cut Pro 6.0.1 and Motion 3.0.1 also contain fixes related to the FxPlug APIs.

The FxPlug 1.2.1 Framework

3D Support

Motion only: Plug-ins can use the new Fx3DAPI protocol to get the 3D transforms for the camera and for
the plug-in's layer.

Versioning Support

Plug-ins that include a "version" key in their Info.plist files can use the new FxVersioningAPI protocol to
determine what version of their plug-in was used when a project was created.

Angle Units

For angle parameters, -getFloatValue and -setFloatValue now use degrees in all host applications.

New Examples

In addition to SimpleMatte and SimplePaint, the FxPlug SDK 1.2 provided new example plug-in projects
installed in /Developer/Examples/FxPlug:

 ■ DirectionalBlurExample

 ■ Options Dialog

 ■ ScrollingRichText

 ■ Slow SolidColor

Final Cut Pro 6.0.1 Changes

Correct Duration for Transition Effects

The method [FxTimingAPI durationForEffect] returns the correct duration of FxPlug transition effects.

Features of FxPlug SDK 1.2.1 17
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Correct Start Time and Duration for Untrimmed Media

The methods [FxTimingAPI startTimeOfImageParm] and [FxTimingAPI durationOfImageParm]
return the correct start time and duration for image parameters, even if the media in the image wells do not
have in and out points set.

Group Parameters Can Be Hidden

The kFxParameterFlag_HIDDEN flag works correctly with group start and end markers.

Parameter List No Longer Scrolls Inappropriately

Hiding or showing a parameter no longer causes the parameter list to scroll to the top.

No Artifacts in Parameter List

Hiding a parameter no longer causes a spurious horizontal line to be drawn in the parameter list.

Correct Channel Order

Previously, the output images for RGB-only generators would be labeled as RGBA, but the results would be
interpreted as ARGB in 8-bit. The images are now correctly labeled as ARGB in 8-bit and RGBA in float.

Motion 3.0.1 Changes

No Gamma Shift

Retrieving bitmap images using the temporal image API no longer causes a gamma shift in the retrieved
image.

Correct Rendering

Retrieving bitmap images from a group no longer causes the group to render upside down.

Correct Memory Management

Motion now properly releases custom NSViews when a filter is deleted.

Proper Bit Setting

Retrieving bitmap images from 16-bit per channel footage now returns proper 32-bit per channel footage.

18 Features of FxPlug SDK 1.2.1
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Avoid Unnecessary Rendering

Repeated renders are no longer queued up when a custom control calls -startAction and -endAction
during its -drawRect: method. This keeps the control and the current frame from constantly rerendering.

Fix Crash Bug

Motion no longer crashes under certain circumstances when calling -currentTime: in the
FxCustomParameterActionAPI protocol.

Parameters Updated Correctly

Parameters are now properly updated in the inspector when their enabled-disabled or hidden-shown state
is changed.

Features of FxPlug SDK 1.2.2

The FxPlug 1.2.2 Framework

FxImageColorInfo Enumeration

The new FxImageColorInfo enumerated type identifies some basic color properties of an FxImage. For
YUV images, this enumeration tells you whether you should use the Rec. 601 or Rec. 709 color matrix to
convert an image to RGB. For RGB images, it describes the gamma level of the image.

Xcode Template Location

FxPlug SDK 1.2.2 installs its Xcode templates in the location expected by Xcode 2.5 and later. Symbolic links
are installed into the legacy location, so you can still open the templates using an earlier version of Xcode.

Final Cut Pro 6.0.2 Changes

Parameter Value Retrieval

Plug-ins can now evaluate their parameter values at any time during -parameterChanged, or from within
custom UI code. Previously, parameters could be evaluated at any time during -renderOutput, but otherwise
only at the current time.

Collapsible Groups

Parameter groups now contain disclosure triangles that allow a group to be collapsed and expanded. The
kFxParameterFlag_COLLAPSED flag is also respected; plug-ins can use this flag to create groups that are
initially collapsed, or to programmatically collapse or expand groups in response to other parameter changes.

Features of FxPlug SDK 1.2.2 19
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Start Point, End Point and Reverse Transitions

The start point, end point, and reverse controls in the Transition Viewer are now respected when rendering
FxPlug transitions. These three controls affect the "time fraction" passed to the transition's render method;
the "reverse" control will also swap the A and B images. You should not have to change your plug-in to take
advantage of these controls.

Undo and Copy/Paste Crashes

Fixed a bug that could result in crashes when undoing the addition of a filter, or when copying and pasting
filters.

Nested Groups

Hiding and disabling groups now work correctly with nested groups. However, there is still no visual indication
that the groups are nested.

YUV Images

Plug-ins can use the new FxImageColorInfo API to determine if a YUV image is Rec. 601 or Rec. 709. This
allows for improved YUV support, or accurate conversion to high-precision RGB within the plug-in.

FxTemporalTransitionImage

Previously, the FxTemporalTransitionImageAPI interpreted the times passed as relative to the requested
source clip. Now the times are interpreted as relative to the transition item. This is consistent with all other
uses of time in Final Cut Pro.

Multiple Monitors

Fixed a bug where custom UI could appear in the wrong location if the filter viewer was dragged to a second
monitor.

Legacy Non-Real-Time Display Path

Fixed a bug where input images in the legacy non-real-time display path were not tagged with the correct
aspect ratio.

Transition Input images now have the correct field order

Fixed a bug where input images for transitions were not labeled with the correct field order.

Hidden Groups

Final Cut no longer ignores the kFxParameterFlag_HIDDEN flag when creating groups. However, groups
must be disabled after the parameters they contain have been added.

20 Features of FxPlug SDK 1.2.2
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

Motion 3.0.2 Changes

Custom Control Saving

Previously, when a user changed a document with a custom control, Motion did not flag the document as
changed and could close it without saving the changes. Motion now properly flags the document as changed.
It also fixes a crash that could occur during an undo.

Image Well Gamma Shift

When you retrieve a bitmap from an image well parameter, the image now has the proper gamma setting
that matches the gamma setting it would have if you had dropped it directly into the timeline.

API Object Refactoring

The various API Objects have been refactored to make them accessible at more times and to reduce the
number of thread related problems. Plug-in developers should test to be sure that the APIs all still work as
expected.

Interpolation for Upsampling

Motion now uses interpolation rather than line doubling to upsample fields to frame size.

Features of FxPlug SDK 1.2.2 21
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

FAQs

How can I debug my plug-in?

To test your plug-in code in a target application, you can choose Project > New Custom Executable in Xcode
and select Final Cut or Motion. Then choose Run > Debug to launch the selected host in the Xcode debugger.

How can I retrieve resource files from my plug-in bundle?

You can put the file in the Resources folder for the plug-in. Then you can access the bundle from a method
of one of the classes in your plug-in, like this:

 NSBundle *bundle = [NSBundle bundleForClass:[self class]];

(The FxPlug Xcode templates does this to get localized strings.) To get data from a file called
“filename.extension” in your Resources folder, you can use this snippet:

NSBundle *bundle = [NSBundle bundleForClass:[self class]];
NSString *path = [bundle pathForResource: @"filename"
ofType: @"extension"];

 NSString *dataString = [NSString stringWithContentsOfFile:path];

Copying and pasting UUIDs from Terminal is tedious. How can I
simplify this step?

You can create an Xcode script to speed this up. To do this in Xcode 3.0, follow these steps:

1. Select Edit User Scripts from the User Scripts menu (identified by the script icon in the Xcode
menu bar).

2. Select Code from the list of script types.

3. Click the Add button and select Shell Script.

4. Double click the name Shell Script and revise it to GenUUID or some other appropriate name.

5. Add the line echo -n `uuidgen` to the script .

6. Change the Output option to Replace Selection.

7. Close the Edit User Scripts window.

You can now generate a UUID in Xcode by choosing your new script from the Code submenu of the User
Scripts menu.

22 FAQs
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

How can I determine if an input frame is interlaced?

If a frame is interlaced, you’ll know in your -renderOutput:method, because the FxRenderInfo structure
that’s passed in will have the “field” member set to either kFxField_UPPER or kFxField_LOWER. Note that
it doesn’t tell you the field you have, but rather what the field order is. If a frame is not interlaced, then the
“field” member will have the value kFxField_NONE.

How can I access a single field from an interlaced frame?

First, get the FxTemporalImageAPI and call one of these two methods:

-getInputBitmap:withInfo:atTime:

or

-getInputTexture:withInfo:atTime:

For the first field of frame t, use time t, and for the second field, use time t + 0.5.

How can I determine what application my plug-in is running in?

The following code snippet returns a string, appIdentity, which specifies the host application:

CFBundleRef appBundle = CFBundleGetMainBundle();
CFStringRef appIdentity = NULL;
if (appBundle != NULL)
 appIdentity = CFBundleGetIdentifier(appBundle);

Motion’s bundle identifier is com.apple.motion; Final Cut Pro’s is com.apple.finalcutpro.

How can I specify another clip as input?

In FxPlug parlance, a reference to another clip or external media file is called an image reference. So, using
the FxParameterCreationAPI protocol, call the following method to create the parameter:

-addImageReferenceWithName:parmId:parmFlags:

To get the parameter’s value, use either:

-getBitmap:layerOffsetX:layerOffsetY:requestInfo:fromParm:atTime:

or

-getTexture:layerOffsetX:layerOffsetY:requestInfo:fromParm:atTime:

FAQs 23
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

How can I get the current time?

In your -parameterChanged:method, and in response to an event in a custom parameter view or on-screen
control, you’ll need to determine the current time. You can do this by calling the -currentTime method in
the FxCustomParameterAPI protocol.

Can I define multiple plug-in bundles that populate the same group?

Yes, but the Plug-in Manager places a restriction on how you do this. If you create multiple FxPlug effects in
different bundles, and assign them to the same groups, the different bundles must use different group UUIDs,
but the same group name. If you use the same group UUID in two bundles, the plug-ins in only one of the
two bundles are loaded.

24 FAQs
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

FxPlug SDK Overview

This table describes the changes to FxPlug SDK Overview.

NotesDate

Minor corrections for FxPlug SDK 1.2.3.2008-07-04

Update for FxPlug SDK 1.2.22007-11-16

Update for FxPlug SDK 1.2.12007-06-28

Update for FxPlug SDK 1.2.2007-05-21

Update for FxPlug SDK 1.1, to cover support for Final Cut Pro.2006-09-26

New document that describes how to write plug-ins for Apple professional
applications. FxPlug is currently supported by Motion 2.0.

2005-06-04

25
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

26
2008-07-04 | © 2005, 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	FxPlug SDK Overview
	Contents
	FxPlug SDK Overview
	Versions of the FxPlug SDK
	Backward Compatability

	Plug-in Concepts
	SDK Headers
	Types of Plug-ins

	Bundling and Installing a Plug-in
	Packaging
	Registration

	API Overview
	Protocols
	Properties
	Parameters
	Rendering
	Images
	Parameter Interaction
	Custom Parameter UI
	On-Screen Controls
	Host Capabilities

	Features of FxPlug SDK 1.2
	The FxPlug 1.2 Framework
	Timing information
	Field and Field Order Information
	Progress and Cancellation
	Image Retiming in Transitions
	Absolute versus Relative Times
	Getting Angle Values

	Plug-in Manager 1.7
	Free Access to Host APIs

	Final Cut Pro 6
	Support for Hidden and Disabled Parameters
	Support for Non-Animatable Parameters
	Support for Parameter Groups
	Support for FxParameterSettingAPI
	Parameters Sampled at Arbitrary Times
	Plug-ins Only Instantiated Once at Startup
	Plug-ins No Longer Instantiated Multiple Times
	Initial Value of Point Controls Respected
	Software Rendering Preferred in More Cases
	Consistent Parameter Change Notification
	Requesting a Nonexistent Parameter
	Output Pixel Aspect Ratio Reported Correctly

	Remaining Issues in Final Cut Pro 6
	No Support for Onscreen Controls
	No Support for Resizing Output Images
	Some APIs Available Only During Render

	Motion 3
	Now Notifying Parameter Changes
	Fixed Pixel Aspect of Textures from Image Wells
	Float Images pixelFormat Correction
	Temporal Image Retrieval for Image Wells
	Support for Non-Animated Parameters
	Scale Factor and Resizing Reconciled

	Features of FxPlug SDK 1.2.1
	The FxPlug 1.2.1 Framework
	3D Support
	Versioning Support
	Angle Units

	New Examples
	Final Cut Pro 6.0.1 Changes
	Correct Duration for Transition Effects
	Correct Start Time and Duration for Untrimmed Media
	Group Parameters Can Be Hidden
	Parameter List No Longer Scrolls Inappropriately
	No Artifacts in Parameter List
	Correct Channel Order

	Motion 3.0.1 Changes
	No Gamma Shift
	Correct Rendering
	Correct Memory Management
	Proper Bit Setting
	Avoid Unnecessary Rendering
	Fix Crash Bug
	Parameters Updated Correctly

	Features of FxPlug SDK 1.2.2
	The FxPlug 1.2.2 Framework
	FxImageColorInfo Enumeration
	Xcode Template Location

	Final Cut Pro 6.0.2 Changes
	Parameter Value Retrieval
	Collapsible Groups
	Start Point, End Point and Reverse Transitions
	Undo and Copy/Paste Crashes
	Nested Groups
	YUV Images
	FxTemporalTransitionImage
	Multiple Monitors
	Legacy Non-Real-Time Display Path
	Transition Input images now have the correct field order
	Hidden Groups

	Motion 3.0.2 Changes
	Custom Control Saving
	Image Well Gamma Shift
	API Object Refactoring
	Interpolation for Upsampling

	FAQs
	How can I debug my plug-in?
	How can I retrieve resource files from my plug-in bundle?
	Copying and pasting UUIDs from Terminal is tedious. How can I simplify this step?
	How can I determine if an input frame is interlaced?
	How can I access a single field from an interlaced frame?
	How can I determine what application my plug-in is running in?
	How can I specify another clip as input?
	How can I get the current time?
	Can I define multiple plug-in bundles that populate the same group?

	Revision History

