
Final Cut Pro 4
Using FXScript

20752.FCP4FXScript.qxp  4/7/03  1:05 PM  Page 1



 

K

 

Apple Computer, Inc.

 

© 

 

2003 Apple Computer, Inc. All rights reserved. 

Under the copyright laws, this manual may not be copied, in whole or in part, without the written consent of Apple. 
Your rights to the software are governed by the accompanying software license agreement. 

The Apple logo is a trademark of Apple Computer, Inc., registered in the U.S. and other countries. Use of the 
“keyboard” Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may 
constitute trademark infringement and unfair competition in violation of federal and state laws.

Every effort has been made to ensure that the information in this manual is accurate. Apple Computer, Inc. is not 
responsible for printing or clerical errors. 

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014-2084
408-996-1010
www.apple.com 

Apple, the Apple logo, AppleTalk, AppleWorks, DVD Studio Pro, Final Cut, Final Cut Pro, FireWire, Geneva, Mac, 
Macintosh, PowerBook, Power Mac, Power Macintosh, QuickTime, and TrueType are trademarks of Apple Computer, 
Inc., registered in the U.S. and other countries.

Cinema Tools for Final Cut Pro, Extensions Manager, Finder, iDVD, iMovie, and Sound Manager are trademarks of 
Apple Computer, Inc.

Adobe is a trademark of Adobe Systems, Inc.

Times is a registered trademark of Heidelberger Druckmaschinen AG, available from Linotype Library GmbH.

Other company and product names mentioned herein are trademarks of their respective companies. Mention of 
third-party products is for informational purposes only and constitutes neither an endorsement nor a 
recommendation. Apple assumes no responsibility with regard to the performance or use of these products.

 

20752.Book  Page 2  Thursday, March 6, 2003  6:46 PM



 

 

 

3

 

Contents

 

Using FXBuilder to Create, Test, and Modify Effects     5

 

What Is Scripting?     5

Building Scripts     6

Using FXBuilder     7

 

Learning the FXBuilder Interface     8

Using Effects That Come With Final Cut Pro     9

Creating a New Script     9

Testing a Script in FXBuilder     11

Applying Scripts in the Timeline     12

Preventing Scripts From Being Modified or Viewed     13

Exporting FXBuilder Scripts as Text     13

Installing Scripts     15

 

Understanding the Structure of a Script     15

 

Reviewing the Script for the Tint Effect     16

Example: Customizing a Script     17

 

About the FXScript Commands     18

 

Statements     18

Loops     19

Subroutines     19

Variables     20

Constants     20

Data     20

Arrays     21

Operators and Expressions     21

 

20752.Book  Page 3  Thursday, March 6, 2003  6:46 PM



 

4

 

Contents  

 

Functions     21

Comments     21

 

Commands and Functions Used in FXScript     23

 

Scripting Parameters     23

Expressions in FXScript     23

Data Types     25

Functions     26

Geometry     27

Shapes     29

Transform     31

Blit     32

Process     34

Distort     38

Composite     41

Key     43

External     45

String     47

Text     48

Clip     49

Utility     50

Constants and Predeclared Variables     53

Input     57

Definition     59

Parser     61

Assignment     62

Flow Control     63

 

Index     67

 

20752.Book  Page 4  Thursday, March 6, 2003  6:46 PM



 

 

 

5

 

1

 

Using FXBuilder to Create, Test, 
and Modify Effects

 

FXBuilder is a scripting utility in Final Cut Pro that gives you the ability to create, test, and 
modify custom video effects, such as filters, text generators, or transitions. You can build and 
connect effects, modify existing Final Cut Pro effects, and combine several effects into one 
FXBuilder script. FXScript is the scripting language you use to build the effect in FXBuilder.

You can also save effects you’ve created or modified in a write-protected format that allows 
them to run, but prevents anyone from viewing their code. This lets you create and distribute 
copyrighted effects without losing control of their content.

 

What Is Scripting?

 

A set of instructions that performs a specific function is called a 

 

script. 

 

Scripting is the process 
of putting together a series of instructions in a way that Final Cut Pro understands, similar to 
programming. Scripting allows you to put many smaller instructions, or scripts, together in a 
sequence, so that you can perform complex tasks automatically.

For example, if you want to add a color tint to a video clip, Final Cut Pro does this by looking at 
the dots in each frame of the clip and then changing some of them to the color of the tint you 
want. Doing this without a script would be a tedious and error-prone task. With a script, all the 
instructions for creating the tint effect can be applied to the clip in one simple step. Scripting 
also guarantees that a particular effect will look and behave in the same way every time it is 
used, making a video effect consistent over multiple projects.

Scripts have elements in common with written language as well as with programming. Scripts 
have structural and syntactical rules, but the words you use are very similar to English. 

 

20752.Book  Page 5  Thursday, March 6, 2003  6:46 PM



 

6

 

  

 

Building Scripts

 

There are four stages in the process of building a good, well-structured script. 

 

Step 1: Planning

 

What do you want your script to do? It’s important to have clear goals in mind before you 
start. It should be possible to describe the function of a script in one or two sentences. You 
can write a script’s description as a comment line in the script code. 

 

Step 2: Creating the structure

 

The purpose of your script determines its structure to a great extent. Code that is broken up 
into structural “building blocks” is easier to test and modify than code written without careful 
attention to structural detail. 

FXScript allows you to break scripts up into subroutines that can be “called” from other parts 
of the script. This means that you only need to write code once, regardless of how many 
times it will be used. You should also group variable definitions together as much as possible, 
and use comments to break up the script’s text and provide information about what each 
part does.

 

Step 3: Coding

 

Once you know your script’s purpose and have an idea of how it will be structured, you can 
begin writing the code. When you’re coding, remember that the exact format (“syntax”) of each 
word or statement is important. Misspelled words, or words that are not accompanied by all the 
necessary information, will cause errors in the script. It’s also a good idea to keep your script 
lines as short as possible. This makes the code easier to read and interpret. You can also use 
upper- and lowercase characters throughout, since FXBuilder is not case-sensitive.

 

Step 4: Testing

 

Is your script working, and if not, how do you fix it? Testing is a crucial part of the scripting 
process. If you’ve written a simple script, you may only need to run it once or twice to be 
satisfied that it works. More complex scripts may need to be tested on different clips and 
incorporated into the Timeline to see how the final product will look. 

 

20752.Book  Page 6  Thursday, March 6, 2003  6:46 PM



 

 

 

7

 

Some scripts will not run at all because they contain syntax errors. Syntax errors are like 
spelling mistakes in the code. If you try to run a script that contains syntax errors, FXBuilder 
stops the script and highlights the first line that contains an error. Use the reference 
information in the following chapter to check the syntax of your script.

If your script contains input controls, or controls that can be changed by the user, make sure 
you test the script with a representative range of input settings. This ensures that all 
combinations of settings will work together. If you find that certain combinations of settings 
give a result that is unacceptable, you may need to modify the range of values accepted by 
one or more of the input controls, to prevent those combinations from being chosen. 
Another option is to fix the code so it works on all combinations.

 

Tip:  

 

It’s possible to create filters of your own that work in real time. You must make sure 
that the Realtime According To Budget option in the Real-Time Effects (RT) pop-up menu in 
the Timeline is not selected. This allows your own FXScript filters, transitions, and generators 
to run in real time.

 

Using FXBuilder

 

You can do several things with effects scripts in FXBuilder:

 

m

 

Open an existing script

 

m

 

Make changes to a script

 

m

 

Test a script to see how it looks

 

m

 

Create a new script

FXBuilder has two integral parts:

 

m

 

FXBuilder window:  

 

This is where you create, test, and edit effects scripts. This contains 
two tabs, one for script entry and one for the input controls that modify the behavior of 
the script when it is run.

 

m

 

FXScript language:  

 

This is the scripting language you use. FXScript commands and 
functions are listed in the following chapter.

 

Important  

 

FXBuilder does not support multiple levels of undo. So if you make a change 
and want to undo it, don’t wait—undo it right away.

 

20752.Book  Page 7  Thursday, March 6, 2003  6:46 PM



 

8

 

  

 

Learning the FXBuilder Interface

 

The FXBuilder window has two tabs:  FXBuilder Text Entry and FXBuilder Input Controls. 
Text Entry is where you enter the actual code and Input Controls is where you test your 
script on source video. FXBuilder also has menu commands that let you quickly perform 
various functions.

 

m

 

FX Builder Text Entry:

 

  Click this tab to review, enter, and edit script code.

 

m

 

FXBuilder Input Controls:

 

  Click this tab to test your script on source video. Some scripts 
require input from you in order to run. For example, if you’re testing a script that adds a 
color tint, you need to specify which color you want the tint to be. You also need to set 
the input controls for a script when you apply it to a clip in a sequence’s Timeline.

 

20752.Book  Page 8  Thursday, March 6, 2003  6:46 PM



 

 

 

9

 

m

 

FXBuilder menu commands:

 

  When an FXBuilder window is active, the FXBuilder menu 
appears next to the Tools menu. This menu lets you easily insert script words, run a script 
on a sample of video, or save your script as a file that can’t be modified. 

 

Using Effects That Come With Final Cut Pro

 

Final Cut Pro comes with various video effects that you can modify by changing the script 
code. You can also use these as a starting point for creating your own scripts.

You can get to the effects in the Effects tab in the Browser and by using the Effects menu. 
Video effects are divided into several groups:

 

m

 

Video Transitions:

 

  Change the picture from one clip to another.

 

m

 

Video Filters:

 

  Modify the picture in a single clip.

 

m

 

Video Generators:

 

  Create new video information, such as text.

 

Creating a New Script

 

You create and test effects scripts in the FXBuilder environment. You can open an existing 
script, or you can open a new FXBuilder window and begin creating a script from scratch. For 
information on how scripts are structured, see “Understanding the Structure of a Script” on 
page 15.

When the FXBuilder window is 
active, a menu item appears.

 

20752.Book  Page 9  Thursday, March 6, 2003  6:46 PM



 

10

 

  

 

To create a new script:

 

1

 

Choose Tools>FXBuilder. 

You can open as many FXBuilder windows as you want. 

 

2

 

If necessary, click the FXBuilder Text Entry tab.

 

3

 

Enter your scripting code.

For more information, see “Understanding the Structure of a Script” on page 15.

If you want to create a unique name for the script, make sure you enter the name on the first 
line of the script. The names of effects that appear in the Effects tab in the Browser and in 
the Effects menu are determined by the first line of the script and not the exported filename. 

When you’re ready to test the code, see “Testing a Script in FXBuilder” on page 11 or 
“Applying Scripts in the Timeline” on page 12. 

 

To open a script so that you can view its code:

 

1

 

In the Browser’s Effects tab, locate and select the effect you want to view.

 

2

 

Choose View>Effect Editor.

An FXBuilder window shows the script for the selected effect. 

 

3

 

If desired, change the script.

For more information, see “Understanding the Structure of a Script” on page 15. 

An empty FXBuilder
window ready for

a new script.

 

20752.Book  Page 10  Thursday, March 6, 2003  6:46 PM



 

 

 

11

 

Testing a Script in FXBuilder

 

You can run scripts in real time, without rendering them first. This lets you easily test an 
effect, then modify it if necessary.

 

To test a script:

 

1

 

Open the effects script you want to use.

 

2

 

Click the FXBuilder Input Controls tab.

 

3

 

Drag a clip from the Browser, Timeline, or Viewer into the Source 1 area.

 

Note:  

 

Controls, or settings, don’t appear in the FXBuilder Input Controls tab until you run 
your script in the FXBuilder Text Entry tab.

 

4

 

Click the FXBuilder Text Entry tab, then choose FXBuilder>Run.

A separate FXBuilder window opens and runs the scripted effect on the clip over and over, 
with the In point used as a source.

Drag the clip you want
to test the effect on into

the Source 1 area.

If you’re testing a
transition, you need to

place another clip here.

Click these buttons to 
stop or run your effect.

Move the playhead to 
step through the effect 
frame by frame or move 
rapidly through it.

 

20752.Book  Page 11  Thursday, March 6, 2003  6:46 PM



 

12

 

  

 

5

 

Click the FXBuilder Input Controls tab and adjust any settings.

You can do this while the script is running. If you click the Stop button or choose 
FXBuilder>Stop, the input settings revert to the default, or saved, settings.

 

6

 

If desired, encode your script to protect it from modification.

See “Preventing Scripts From Being Modified or Viewed” on page 13. 

 

7

 

Save your settings.

See “Exporting FXBuilder Scripts as Text” on page 13.

To run the script on another clip, drag the other clip from the Browser, Timeline, or Viewer 
to the Source 2 area.

 

Applying Scripts in the Timeline

 

You can apply scripts to video parts of a sequence in the Timeline. You can place effects 
anywhere in the clip you want to apply them to. You can also apply multiple effects to the 
same clip. When you place effects in the Timeline, you can adjust their inputs. If you do not 
set the input controls, the defaults apply.

 

To apply a scripted effect to a sequence:

 

1

 

Drag the script from the Effects tab in the Browser to the desired location in the Timeline. 

If the effect is a transition or generator, an icon appears. If you’re placing transitions in the 
Timeline, you can place them at the center, beginning, or end of the cut.

 

2

 

Open the effect in the Viewer.

 

m

 

For a transition or generator effect:

 

  Double-click the effect’s icon.

 

m

 

For filter effects:

 

  Double-click the clip that includes the filter, then click the Filters tab in 
the Viewer.

 

3

 

Adjust any settings.

Click this tab, then
adjust the settings.

 

20752.Book  Page 12  Thursday, March 6, 2003  6:46 PM



 

 

 

13

 

4

 

If necessary, render your scripted effects.

When you apply scripts in the Timeline, you must render them before you can play them. If 
you do not render video to which scripts have been applied, you will see a blue display with 
the word “Unrendered” in the Canvas.

To see what an effect looks like in real time, see “Testing a Script in FXBuilder” on page 11. 

 

Preventing Scripts From Being Modified or Viewed

 

Now that you’ve spent some time and creative effort coming up with new scripts, you may 
not want others to view or modify your work. 

 

To encode a script:

 

1

 

Open the script in FXBuilder.

 

2

 

Do one of the following:

 

m

 

To save a script so that it can be viewed only in Final Cut Pro:  

 

Choose 
FXBuilder>Create Plugin.

 

m

 

To save a script so that it can’t be viewed or changed:  

 

Choose FXBuilder>Create 
Encoded Plugin. 

 

3

 

Enter a name and select a destination for the effect, then click Save.

 

Exporting FXBuilder Scripts as Text

 

If you export your script as a text file, it can be opened, viewed, and changed. Use this option 
when you are working on a script or if you are using scripts that are in the public domain.

 

Important  

 

Names for effects that appear in the Effects tab in the Browser and in the Effects 
menu are determined by the first line of the script and not the exported filename. When you 
are creating your script, make sure you give it a unique name in the first line of the script.

 

20752.Book  Page 13  Thursday, March 6, 2003  6:46 PM



 

14

 

  

 

To export a script as a text file:

 

1

 

Make sure that the FXBuilder window for the script is active. 

 

2

 

Choose FXBuilder>Export Text.

 

3

 

Enter a name and select a destination for the effect, then click Save.

To use the exported script, you need to install it in the appropriate location in the 
Final Cut Pro folder. For more information, see the next section, “Installing Scripts.”

 

To use an exported script in Final Cut Pro:

 

1

 

Quit Final Cut Pro.

 

2

 

Place the exported script in Home/Library/Preferences/Final Cut Pro User Data/Plugins. 

 

3

 

Open Final Cut Pro.

Your script appears in the designated location in the Effects tab.

Choose a place
to save the file.

If you want, enter a
name for the file.

Your script appears in
the designated location

in the Effects tab.

 

20752.Book  Page 14  Thursday, March 6, 2003  6:46 PM



 

 

 

15

 

Installing Scripts

 

You can install scripts that you’ve created or ones that you’ve gotten from other sources so 
you can use them in Final Cut Pro. Once effects are installed, they are available in the Effects 
tab in the Browser and from the Effects menu.

 

To install and use a script:

 

1

 

Quit Final Cut Pro.

 

2

 

Place the exported script in Home/Library/Preferences/Final Cut Pro User Data/Plugins. 

3 Open Final Cut Pro. 

Final Cut Pro loads the new effects and they are available from the Effects menu or within the 
Effects tab in the Browser. 

Understanding the Structure of a Script
All scripts have the same simple structure, which makes it easy to understand and change 
them. A script is divided into lines. Each line contains a statement, or a group of statements. 
There are several rules to follow when scripting:

m You can’t end a line in the middle of a statement.

If you break the line in the middle of this code, the script will not run. For example, in the 
Tint script shown in the next section, the statement yuvtint = RGBtint must all 
appear on the same line. 

m The semicolon character (;) denotes the end of a line. 

You can also use a carriage return (the Return key). 

m Use a semicolon character (;) to join two short lines together. 

Your script appears in
the designated location

in the Effects tab.

20752.Book  Page 15  Thursday, March 6, 2003  6:46 PM



16   

Reviewing the Script for the Tint Effect

The following is an example is from a script that comes with Final Cut Pro, the Tint script. 
This script applies a color tint to the video. 

To view the Tint script:

1 In the Browser, click the Effects tab, then select Tint in the Image Control bin within the 
Video Filters bin.

2 Choose View>Effect Editor.

First two lines

The first two lines state the script’s name and type, and assign it to a group in the Browser. 
This script is named “Tint.” It is a filter script and has been assigned to the group Image 
Control. It is stored in the Browser’s Image Control bin.

filter "Tint";

group "Image Control";

Note:  If you want to create a unique name for the script, make sure you enter the name on 
the first line of the script. Names for effects that appear in the Effects tab in the Browser and 
in the Effects menu are determined by the first line of the script.

Third and fourth lines

The third line specifies the input control needed. In this case, all that is needed is a standard 
color selection control. If more input controls were needed, they would appear in this part of 
the script, on separate lines. 

This input control takes a number corresponding to the color selected and places it in a 
variable called RGBtint. All input controls place the result of the input into a variable, so that 
it can be used later on in the script code. 

input RGBtint, "Tint Color", color, 0, 0, 0, 0;

input amt, "Amount", slider, 100, 0, 100;

20752.Book  Page 16  Thursday, March 6, 2003  6:46 PM



 17

Fifth line

This line indicates that the script is capable of processing colors in YUV ( YCrCb) color space.

InformationFlag("YUVaware")

Sixth line

This line shows where the actual script code begins. Every line that follows it is script code.

code

Remaining lines

The remaining lines are the code required to take the selected color and apply it to the video 
by changing the colors in individual pixels of video. The line (second from the final) that 
begins with the word channelFill is the one that actually applies the selected color. 

YUVcolor yuvtint;

RGBtint.a = 255;

yuvtint = RGBtint;

yuvtint += 128;

ConvertImage(src1, dest, kFormatYUV219);

channelFill(Dest, -1, -1, yuvtint.u, yuvtint.v);

blend(src1, dest, dest, amt/100);

Example: Customizing a Script

There are many ways to customize scripts. For example, you can change the Tint script by 
adding a brightness control that can be set by the user. 

To customize the Tint script:

1 Set the input control for the brightness level. 

Enter the line below under the Tint Color input command at the top of the script:  

input brightness, “Brightness”, slider, 100, 0, 200 label “%”;

The input is then used to change the brightness of the clip. 

2 Use the channelMultiply command to multiply the luminance channel by the input variable.

Enter the following line of code below the channelFill line in the body of the script:  

channelMultiply (dest, dest, 1, brightness/100, 1, 1);

The next time you run the script, you can change the brightness as well as the color tint.

20752.Book  Page 17  Thursday, March 6, 2003  6:46 PM



18   

About the FXScript Commands
FXScript commands have various functions, which are briefly reviewed here.

Statements

A statement is a command that accomplishes a single action. There are several types of 
statements in FXScript.

The Definition Statement

The first statement in every script should be the definition statement. This tells Final Cut Pro 
what the name of the script is, and what type of script it is (filter, transition, or generator). 
Final Cut Pro uses this information to place the script in the Browser’s Effects tab. If you 
don’t place a definition statement in your script, it will not run.

Conditional Statements

A conditional statement says that something should happen if a certain condition is met.

Conditional statements always begin with if and end with end if.

This example comes from the Bevel filter script, which places a beveled border around the 
picture. 

if framewidth<frameheight

framemin=framewidth;

framemax=frameheight;

else

framemin=frameheight;

framemax=framewidth;

end if;

This statement is conditional upon the values of two variables, framewidth and frameheight. 
It changes the values of two other variables, framemin and framemax, depending upon the 
relative values of the variable pair mentioned in the conditional statement. 

You can add more conditions by placing else if clauses into the conditional statement. 
Each else if clause allows you to add one more condition to the statement. 

The else clause means “in all other cases not covered by the previous condition or 
conditions.” It is not essential to place else statements in scripts unless you want to specify 
what should happen if none of the conditions are met.

20752.Book  Page 18  Thursday, March 6, 2003  6:46 PM



 19

Input Statements

Input statements are extremely powerful and versatile. They enable you to place user 
controls into a script, so that an effect can be finely adjusted. The user controls appear in the 
Input Controls tab in the FXBuilder window, and also in the Viewer when a script is added to 
the Timeline for a sequence.

There are several types of input control. You can choose the type of control that meets the 
needs of the script most closely. You can have more than one input control in a script; some 
have three or four.

Loops

A loop is a section of code that repeats, usually according to certain conditions specified by 
the needs of the script. There are several types of loops in FXScript:

m For/Next loop 

m Repeat/End Repeat loop:  This has several specific forms.

m Repeat While (conditional loop)

m Repeat With Counter (similar to the For/Next loop)

m Repeat With List (list)

Subroutines

A subroutine is a section of the code that can be “called” from another part of the script. 
When the subroutine is called, it runs and then returns the script flow to the place from 
which it was called. Subroutines are a useful way to break code up, and they minimize the 
amount of code in a script, because they can be reused.

m You begin a subroutine in a script using the on command, like this:

on mcysub (parameter 1, parameter 2...)

m You end a subroutine with the word end on a line by itself.

m All the code between the on and end commands is part of the subroutine.

“Mysub” is the subroutine’s name, and the “parameters” in brackets are information the 
subroutine needs to do its job. Sometimes the parameters are taken from input controls in 
the script.

The script can call the subroutine at any time just by using its name in a line of code. In a 
sense, the subroutine has become a new scripting word, which you have created. When the 
subroutine has been run, the script returns to the line immediately after it was called.

20752.Book  Page 19  Thursday, March 6, 2003  6:46 PM



20   

Variables

A variable is a “container” for information that is unknown and that can change, such as 
the result of an input control selection. You can treat variables as if they were numbers or 
sequences of text; they’re like placeholders. 

Any time you use a variable in a script, it must be introduced to the script in a declaration 
statement. The exception to this rule is any predefined variable included in the FXScript 
language. 

There are three types of variables in FXScript:

m Predefined variables:  These are part of the FXScript language. Examples are color 
specifications, used by drawing routines, and the constants used by the numeric 
formatter. Another example is the variable fps, which contains the number 
corresponding to the current frame rate for the sequence. 

m Global variables:  These are variables that you define in the code section of the script. 
They reset to zero after each video frame on which the effect is applied, and can be 
referred to in any part of the script following their declaration statement. The declaration 
statement for a global variable must specify the data type of the variable being defined, as 
well as the name. 

m Static variables:  These are declared before the code section of the script and are 
initialized to a constant (kUndefined) only once. They maintain their values between 
frames of video, unless the script code changes them. Use static variables to get values 
from previous frames. 

Constants

A constant is a number that always has the same value, such as colors (kRed, kGreen, and 
kBlue). Several are available for use in your scripts.

Data

Data is any type of information processed in a script. FXScript can handle several types of data:

m Strings:  A string is a sequence of characters. Strings are processed as characters only and 
do not have mathematical or arithmetical meaning, even if they contain numbers. 

m Numbers:  FXScript allows you to work with several types of numbers. You can use 
floating-point numbers, numeric coordinates, and numbers corresponding to colors.

m Images:  These are buffers that can hold frames of video.

m Regions:  These define an area of a video frame.

m Clips:  These are buffers that can hold entire clips.

20752.Book  Page 20  Thursday, March 6, 2003  6:46 PM



 21

Arrays

An array is a grid of one or more dimensions. In a sense, a video picture is a two-dimensional 
grid made up of colored dots. Arrays are often used in scripts that calculate which pixels or 
regions of a frame need to be modified. 

Operators and Expressions

An expression is a statement about the value of a number or numbers. It consists of numbers 
themselves, or variables, combined with relational operators. 

A relational operator is a symbol that defines a mathematical, logical, or arithmetical function 
such as addition or subtraction, or a condition, such as the state of being greater than or less 
than something else. FXScript understands a wide variety of relational operators suited to 
different scripting purposes.

Functions 

A function is a predefined calculation. Functions are very useful in graphical calculations, 
such as the arctangent or cosine of a number. Some functions are used in color processing, 
and others are used when processing digital video information on a pixel-by-pixel level. 
Functions can be references in your scripts in the same way as variables.

Comments

Comments are an essential part of a script. They give information about the script and what it 
is doing. They can make a script much easier to understand, test, and change by giving useful 
explanatory detail about the script’s code and structure. Any script line that begins with the 
characters // is a comment. You can place a comment line anywhere in a script. 

20752.Book  Page 21  Thursday, March 6, 2003  6:46 PM



20752.Book  Page 22  Thursday, March 6, 2003  6:46 PM



 23

2 Commands and Functions 
Used in FXScript
This chapter lists all the commands and functions in the FXScript language. They are grouped 
by the FXBuilder submenu they appear in. Each command includes information about its 
syntax, any parameters it requires, and any special information about its use. 

When creating a script, you can place command templates into an FXBuilder Text Entry tab by 
choosing them from the FXBuilder menu.

Scripting Parameters

Many FXScript commands require parameters for the calculations they perform. These have 
names that indicate their uses. Any parameter required by FXScript functions and commands 
can be replaced by a variable, as long as the variable is of the correct data type and has been 
correctly declared elsewhere in the script. Some functions and commands can use numeric 
parameters as well as variables.

Expressions in FXScript

Expressions are like phrases made up from scripting words, numbers, and operators, together 
with parentheses. The operators determine what sort of calculation or evaluation (also known 
as an operation) is done, and the parentheses determine the order in which calculations are 
performed.

The rules are as follows:

m An expression is interpreted from left to right. 

m Multiplication and division take precedence over addition and subtraction.

m Parts of the expression that are enclosed in parentheses are given priority over parts that 
are outside the parentheses. If there are several layers of parentheses, the expression is 
evaluated in order from the innermost parentheses to the outermost.

20752.Book  Page 23  Thursday, March 6, 2003  6:46 PM



24   

Operators

The following table lists all the operators that can be included in your scripts.

Note:  Numbers are assumed to be floating-point unless preceded by “0x,” which denotes 
hexadecimal.

Operator Meaning

+ Add (This operator can also be used to indicate a positive number.)

– Subtract (This operator can also be used to indicate a negative number.)

* Multiplication

/ Division

! or not Logical NOT

~ Bitwise NOT

% or mod Modulo

== Equal

!= Not equal

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<< Shift left

>> Shift right

& Bitwise AND

| Bitwise OR

ˆ or xor Bitwise XOR

&& or and Logical AND

|| or or Logical OR

? and : <conditional> ? <value 1> : <value 2>

If the conditional is true, it will return value 1; if it is false, it will return 
value 2.

20752.Book  Page 24  Thursday, March 6, 2003  6:46 PM



 25

Compound Operators

In an assignment statement, you can use the compound assignment operators. These are 
+=, –=, *=, /=, %=, &=, |=, and ˆ=. 

Operators and Regions

For regions, only a few operators can be used. These are

m + (add)

m – (subtract)

m & (and)

m |(or)

m ˆ (exclusive or; means one or the other, but not both)

Operators and Strings

Only the + operator can be used for concatenating, or appending, strings together. 

Data Types

Data types allow you to declare variables and assign specific data types to them. Data type 
statements are always followed by one or more variable names, separated by commas. You 
can create arrays by following a data type statement with up to 5 dimensions of the array in 
brackets. For example, the code below creates a 3 by 4 array of points and names it “p”:

point p [3] [4]

Data type Syntax Description

float float variablename Declares a floating-point 
variable.

point point variablename Declares a variable that contains 
a two-dimensional point 
coordinate.

point3d point3d variablename Declares a variable that contains 
a three-dimensional floating-
point coordinate.

image image variablename 

[width][height]

Declares a two-dimensional 
buffer of pixels to be operated 
on.

region region variablename Declares a named region (A 
region is an arbitrary shape.)

20752.Book  Page 25  Thursday, March 6, 2003  6:46 PM



26   

Functions

Functions can be used with variables as well as with known numbers.

string string variablename Declares a text string.

color color variablename Declares a variable with four 
fields (one each for a, r, g, and 
b) that contains an ARGB color 
value.

YUVcolor YUVcolor variablename Declares a variable with four 
fields (one each for a, y, u, and 
v) that contains a YUV color 
value.

clip clip variablename Declares a variable that holds a 
video clip.

value value variablename Declares a non-modifiable 
parameter in a subroutine.

Data type Syntax Description

Function Syntax Description

Sin Sin(angle) The sine of the specified angle 
(as a floating-point number in 
degrees).

Cos Cos(angle) The cosine of the specified 
angle (as a floating-point 
number in degrees).

Tan Tan(angle) The tangent of the specified 
angle (as a floating-point 
number in degrees).

ASin ASin(value) The arcsine of the value in 
degrees.

ACos ACos(value) The arccosine of the value in 
degrees.

ATan ATan(value) The arctangent of the value in 
degrees.

20752.Book  Page 26  Thursday, March 6, 2003  6:46 PM



 27

Geometry

Sqrt Sqrt(value) The square root of the value.

Abs Abs(value) The absolute integer value of 
the value.

Power Power(value, exponent) The value raised to the specified 
exponent.

Exp Exp(value) The mathematical constant e 
raised to the power corresponding 
to the specified value.

Log Log(value) The base e logarithm of the 
value.

Log10 Log10(value) The base 10 logarithm of the 
value.

Integer Integer(value) Converts the value into an 
integer number.

Sign Sign(value) The sign of the value. This is –1 
if the value is less than zero, 0 if 
the value equals zero, and 1 if 
the value is greater than zero. 

Function Syntax Description

Command Syntax Description

DistTo DistTo(p1, p2) The distance from p1 to p2, 
where p1 and p2 are two-
dimensional point coordinates.

AngleTo AngleTo(p1, p2) Returns the angle from p1 to 
p2, where p1 to p2 is a vector.

Interpolate Interpolate(p1, p2, 

percent, result)

Interpolates between two 
points. The result is a two-
dimensional point variable.

20752.Book  Page 27  Thursday, March 6, 2003  6:46 PM



28   

CenterOf CenterOf(poly, point) Places the center point of the 
polygon represented by “poly” 
into the variable represented by 
“point.”

BoundsOf BoundsOf(image, result) Fills in the polygon represented 
by “result” with a four-sided 
rectangle that is the bounds of 
“image.” The result must be a 4 
point array.

DimensionsOf DimensionsOf(image, width, 

height)

Returns the width and height of 
the specified image buffer.

AspectOf AspectOf(image) Returns a floating-point value 
that is the aspect ratio of the 
pixels of the specified image 
buffer. This buffer must have 
been previously declared and 
have the image data type.

Grid Grid(srcPoly, destPoly) Splits a rectangular polygon, 
“srcPoly,” and divides it into a 
grid of rectangles based on the 
dimensions of “destPoly.”

Mesh Mesh(srcPoly, destPoly) Makes a mesh out of a 
rectangular polygon, “srcPoly,” 
based on the dimensions of 
“destPoly.”

Convert2dto3d Convert2dto3d(point/poly, 

point3d/poly3d, 

zvalue)

Fills in the values of “point3d” or 
“poly3d” with the corresponding 
values from “point” or “poly,” 
using the number represented 
by “zvalue” for the z-axis 
dimension of each point.

Convert3dto2d Convert3dto2d(point3d/

poly3d, point/poly, 

eye3d)

Fills in the values of “point” or 
“poly” with the corresponding 
values from “point3d” or 
“poly3d.” “Eye3d” is the view 
point for the conversion. If it is 
zero, then parallel projection is 
used for the conversion. 

Command Syntax Description

20752.Book  Page 28  Thursday, March 6, 2003  6:46 PM



 29

Shapes

Command Syntax Description

Line Line(p1, p2, image, color, 

width)

Draws a line in the buffer 
corresponding to “image,” from 
p1 to p2, with the specified 
color (expressed as an RGB 
value) and width (in pixels).

MakeRect MakeRect(result, left, 

top, width, height)

Fills in a rectangular polygon, 
“result,” with the dimensions 
specified. “Left” and “top” are 
two-dimensional points and 
width and height are distances 
in pixels.

MakeRegion MakeRegion(poly, rgn) Turns the specified polygon into 
a region, stored in the region 
named “rgn.”

OvalRegion OvalRegion(poly, rgn) Makes an oval from the upper-
left and lower-right corners of 
the specified polygon, and 
stores it in the region named 
“rgn.” 

RegionIsEmpty RegionIsEmpty(rgn) Returns “true” if the region 
specified contains no pixels. 
“True” has a value of 1.

FrameRegion1 FrameRegion(rgn, image, 

color, width)

Draws a line around the 
specified region, “rgn,” with the 
specified color and width in the 
image buffer.

FillRegion1 FillRegion(rgn, image, 

color)

Fills the specified region with 
the specified color and stores 
the result in the specified image 
buffer.

20752.Book  Page 29  Thursday, March 6, 2003  6:46 PM



30   

FramePoly FramePoly(poly, image, 

color, width)

Draws a frame around the 
bounds of the specified 
polygon, with the specified 
color (as an RGB value) and the 
specified width (in pixels). 
Stores the result in the specified 
image buffer.

FillPoly FillPoly(poly, image, 

color)

Fills the specified polygon with 
the specified color and stores 
the result in the specified image 
buffer.

DrawSoftDot DrawSoftDot(dest, point/

poly, shape, size, 

softness, subSteps, 

color(s), 

opacity(s), aspect)

Draws one or more sub-pixel-
positioned shapes in a buffer. 
This command can be used to 
draw circles, squares, and 
diamonds in the specified color, 
size, softness, positioning 
accuracy, and opacity. The color 
and opacity can be an array or a 
single value.

FillOval FillOval(poly, dest, 

color)

Fills the oval bounded by the 
specified polygon with the 
specified color and stores the 
result in the specified image 
buffer.

FrameOval FrameOval(poly, dest, 

color, width)

Draws a frame around the oval 
bounded by the specified 
polygon, with the specified 
color (as an RGB value) and the 
specified width (in pixels). 
Stores the result in the specified 
image buffer.

FillArc FillArc(center, radius, 

startAngle, 

endAngle, dest, 

color, aspect)

Draws an arc from “startAngle” 
to “endAngle” to the “dest” 
output.

The size of the arc is specified 
by “radius” and the position is 
specified by “center.” The arc is 
filled with the specified color.

Command Syntax Description

20752.Book  Page 30  Thursday, March 6, 2003  6:46 PM



 31

Transform

FrameArc FrameArc(center, radius, 

startAngle, 

endAngle, sides, 

dest, color, width, 

aspect)

Draws a frame of the arc from 
“startAngle” to “endAngle” to 
the “dest” output.  

The size of the arc is specified 
by “radius” and the position is 
specified by “center.” The frame 
is in the specified color and 
width.

“Sides” is a Boolean. If it is true, 
it will draw two lines (of same 
color and width as the arc) from 
the ends of the arc to the center 
point; otherwise, no lines are 
drawn.

CurveTo CurveTo(startPt, 

tangentPt, endPt, 

dest, color, width)

Draws a curve from “startPt” to 
“endPt” to the “dest” output. The 
shape of the curve is determined 
by “tangentPt.” The curve is in 
the specified color and width. 

1 The Region routine fills the alpha channel with black.

Command Syntax Description

Command Syntax Description

Rotate Rotate(point/poly, center, 

angle, aspect)

Rotates the specified point or 
polygon through the specified 
angle in degrees, around the 
specified center.

Rotate3d Rotate3d(point3d/poly, 

center3d, xrotate, 

yrotate, zrotate)

Rotates the specified three-
dimensional point or polygon 
through the specified angles, 
around the specified center. 
Note that “center3d” has three 
fields, corresponding to height, 
width, and depth.

20752.Book  Page 31  Thursday, March 6, 2003  6:46 PM



32   

Blit

Scale Scale(point/poly, center, 

hScale, vScale)

Scales a point or polygon 
around the specified center by 
the amounts specified in 
“hscale” and “vscale.”

Scale3d Scale3d(point3d/poly3d, 

center3d, xscale, 

yscale, zscale)

Scales a three-dimensional point 
or polygon around the specified 
center by the three scaling 
factors.

Offset Offset(point/poly, 

hAmount, vAmount)

Moves a point or polygon by the 
specified amount on each 
dimension in the amount 
specified.

Offset3d Offset3d(point3d/poly3d, 

xoffset, yoffset, 

zoffset)

Moves a three-dimensional 
point or polygon by the 
specified amount in each plane.

Outset3d Outset3d(poly3d, center3d, 

amount)

Moves a four-sided polygon 
towards or away from the 
specified center point in three 
dimensions.

Command Syntax Description

Command Syntax Description

RegionCopy RegionCopy(srcImage1, 

srcImage2, 

destImage, rgn, 

softness)

Copies the two source images 
into the destination image 
buffer using the specified region 
as a mask, softening the edges 
of the mask according to the 
value given for softness.

Blit Blit(sourceImage, 

sourcePoly, 

destImage, 

destPoly, opacity)

Copies the pixels inside
“sourcePoly” in “sourceImage” 
into the “destPoly” in 
“destImage,” applying the 
specified opacity.

20752.Book  Page 32  Thursday, March 6, 2003  6:46 PM



 33

BlitRect BlitRect(sourceImage, 

sourcePoly, 

destImage, 

destPoly)

Copies the pixels inside 
“sourcePoly” in “sourceImage” 
into the “destPoly” in 
“destImage.” The source and 
destination polygons must be 
four-sided and the alpha 
channel of the source is treated 
as opaque.

MeshBlit MeshBlit(sourceImage, 

sourcePoly, 

destImage, 

destPoly, opacity)

Copies the pixels from 
“sourceImage” into “destImage,” 
using two point meshes as the 
transformation and applying the 
specified opacity.

MeshBlit3D MeshBlit3d(sourceImage, 

sourcePoly, 

destImage, 

destPoly3d, 

opacity, center3D)

Copies the pixels from 
“sourceImage” into “destImage,” 
using two 3D point meshes as 
the transformation and applying 
the specified opacity.

MaskCopy MaskCopy(sourceImage1, 

sourceImage2, 

maskImage, 

destImage,softness, 

amount)

Copies from the two source 
images into the destination 
image, using a gradient mask. 
The value given for “softness” 
defines the threshold amount 
for the gradient, and “amount” 
specifies the gradient 
percentage. This command is 
the same as RegionCopy, but 
the mask is derived from an 
image buffer.

Command Syntax Description

20752.Book  Page 33  Thursday, March 6, 2003  6:46 PM



34   

Process

PagePeel PagePeel(srcImage1, 

srcImage2, 

destImage, 

centerPoint, 

radius, angle, 

peel, aspect)

Performs a “page peel” effect, 
using the srcImage1 and 2 
buffers as the front and back of 
the page. The result is placed in 
the “destImage” buffer. The 
center point and angle specify 
the location and angle of the 
“cut line” for the peel. “Radius” 
is the radius of the curvature for 
the peel. The value given for 
“peel” determines the type of 
peel that occurs: if it is zero, the 
image is rolled up along one 
side, like a scroll, and if it is any 
value other than zero, the image 
peels upward and away, starting 
at one corner, from the image 
below. 

Command Syntax Description

Command Syntax Description

Blur Blur(srcImage, destImage, 

radius, aspect)

Performs a blur operation on 
the source image buffer and 
places the result in the 
destination image buffer. 
“Radius” specifies the radius of 
blur.

BlurChannel BlurChannel(srcImage, 

destImage, radius, 

doAlpha, doRed, 

doGreen, doBlue, 

aspect)

Performs a blur operation on 
the specified channels of the 
source image buffer and places 
the result in the destination 
image buffer. “Radius” specifies 
the radius of blur. The 
doChannel values are Boolean 
numbers, either known 
numbers or variables.

20752.Book  Page 34  Thursday, March 6, 2003  6:46 PM



 35

Diffuse Diffuse(srcImage, 

destImage, 

repeatEdges, hMin, 

hMax, vMin, vMax)

Fills each pixel in the 
destination image buffer with a 
pixel from the source image 
buffer, which is offset spatially 
by a random number. The range 
for this random number is 
defined by the values assigned 
to “hMin” and “hMax” on the 
horizontal axis, and “vMin” and 
“vMax” on the vertical axis. 
“RepeatEdges” is a Boolean 
operation that determines 
whether pixels that would be 
beyond the bounds of the 
source image are filled with 
copies of the nearest edge pixel, 
or with transparent black pixels.

DiffuseOffset DiffuseOffset(srcImage, 

destImage, 

repeatEdges, hMin, 

hMax, vMin, vMax, 

hTable[width], 

vTable[height])

This is similar to Diffuse, but the 
horizontal and vertical offset for 
each pixel is added to the 
“hTable” and “vTable,” which 
contain the horizontal and 
vertical position for each pixel.

MotionBlur MotionBlur(srcImage, 

destImage, hDist, 

vDist, steps)

Copies the source image buffer 
into the destination image 
buffer, adding a motion blur 
with a magnitude specified by 
“hDist” and “vDist.” “Steps” 
determines how many 
intermediate steps are added.

Command Syntax Description

20752.Book  Page 35  Thursday, March 6, 2003  6:46 PM



36   

RadialBlur RadialBlur(srcImage, 

destImage, 

centerPt, amount, 

spin, steps, 

aspect)

Copies the source image buffer 
into the destination image buffer, 
adding radial blur with a 
magnitude specified by 
“amount,” around the center 
specified in “centerPt.” “Steps” 
specifies how many intermediate 
steps are added to the blur 
effect. “Spin” can be either true 
or false. If true, “amount” is a 
rotation angle. If false, “amount” 
is the distance that the blur 
extends from the center point.

Blend Blend(srcImage1, 

srcImage2, 

destImage, amount)

Blends the two source image 
buffers and places the result in 
the destination image buffer. 
“Amount” specifies the blend 
percentage.

ColorTransform ColorTransform(srcImage, 

destImage, matrix, 

float[3], float[3])

Performs color transformation 
from the source image buffer to 
the destination image buffer, 
based on the specified 3x3 float 
matrix. The two float arrays 
specify the offsets to be added 
to the source and destination 
buffers during the operation. If 
the matrix is an RGB-to-RGB 
transformation, the arrays 
should be filled with zeros. 

LevelMap LevelMap(src, dest, 

alphaMap[256], 

redMap[256], 

greenMap[256], 

blueMap[256])

Maps the source image buffer 
into the destination image 
buffer, passing each component 
of the source image through a 
256-entry floating-point lookup 
table. The tables are alpha, red, 
green, and blue, in that order.

Command Syntax Description

20752.Book  Page 36  Thursday, March 6, 2003  6:46 PM



 37

ChannelCopy ChannelCopy(src, dest, 

copyAlpha, copyRed, 

copyGreen, 

copyBlue)

Copies a set of channels from 
the source image buffer to the 
destination image buffer. Each 
channel is copied from the 
channel specified by its 
corresponding parameter. The 
“copy” parameters are the 
predefined variables kAlpha, 
kRed, kGreen, and kBlue.

Convolve Convolve(srcImage, 

destImage, kernel, 

divisor, offset)

Performs a 3x3 convolution 
from the source image buffer to 
the destination image buffer. 
The sum of the contents of the 
3x3 array specified as “kernel” is 
divided by the specified divisor, 
and “offset” is added in.

ChannelFill ChannelFill(destImage, 

alphaValue, 

redValue, 

greenValue, 

blueValue)

Fills the channels of the 
destination image buffer with 
the color values specified.

ChannelMultiply ChannelMultiply(srcImage, 

destImage, 

alphaValue, 

redValue, 

greenValue, 

blueValue)

Copies the source image buffer 
into the destination image 
buffer, multiplying each channel 
by the corresponding color 
value. If any of these is set to 
1.0, the channel is unchanged.

Desaturate Desaturate(SrcImage, 

DestImage)

This converts the image to black 
and white in the most efficient 
way possible, depending on 
color space.

Command Syntax Description

20752.Book  Page 37  Thursday, March 6, 2003  6:46 PM



38   

Distort

Distort is a group of routines that distort a clip. 

Command Syntax Description

Cylinder Cylinder(srcImage, 

destImage, center, 

radius, amount, 

vertical)

Copies the source image buffer 
into the destination image 
buffer, distorting the pixels so 
that they appear to have been 
mapped onto the surface of a 
cylinder. “Center” specifies the 
two-dimensional center point 
for the cylinder; “radius” 
specifies the width of the 
affected area. “Vertical” is a 
Boolean number (true or false) 
that specifies whether the 
cylinder is horizontal or vertical. 
“Amount” specifies the intensity 
of the effect.

Fisheye FishEye(srcImage, 

destImage, 

centerPt, radius, 

amount, aspect)

Copies the source image buffer 
into the destination image 
buffer and distorts the image 
outwards, creating a fisheye lens 
effect. “Radius” specifies the 
effect’s radius from the center 
point in pixels. You can use a 
negative number for “amount,” 
which creates a reverse effect.

Whirlpool Whirlpool(srcImage, 

destImage, 

repeatEdges, 

centerPt, amount, 

aspect)

Copies the source image buffer 
into the destination image 
buffer, distorting the image 
outwards from the center point 
by spinning the pixels around 
by the “amount” specified. If 
“repeatEdges” is true, then the 
edge pixels are repeated; 
otherwise transparent black 
pixels are introduced at the 
edges.

20752.Book  Page 38  Thursday, March 6, 2003  6:46 PM



 39

Ripple Ripple(srcImage, 

destImage, 

repeatEdges, 

centerPt, 

amplitude, 

wavelength, aspect)

Copies the source image buffer 
into the destination image 
buffer, distorting the image by 
applying waves from the edges. 
“Amplitude” and “wavelength” 
control the size and number of 
waves in the ripple.

Wave Wave(srcImage, destImage, 

repeatEdges, 

centerPt, 

amplitude, 

wavelength, 

vertical, aspect)

Copies the source image buffer 
into the destination image 
buffer, distorting the image 
outwards from the center point 
in such a way that the image 
appears horizontally or vertically 
rippled. The number and size of 
the waves are controlled by 
“amplitude” and “wavelength.” 
The Boolean number (true or 
false) represented by “vertical” 
determines whether the waves 
are arranged horizontally or 
vertically. If “repeatEdges” is 
true, then the edge pixels are 
repeated; otherwise transparent 
black pixels are introduced at 
the edges.

PondRipple PondRipple(srcImage, 

destImage, 

centerPt, 

radius[n], 

thickness[n], 

amplitude, 

luminance, aspect)

Copies the source image buffer 
into the destination image 
buffer, distorting the image 
outward from the center point 
in a pond ripple pattern. The 
two parameters must be 
floating-point arrays of the same 
size. “n” ripples are created, 
with radius and thickness 
corresponding to “n.”

Command Syntax Description

20752.Book  Page 39  Thursday, March 6, 2003  6:46 PM



40   

Displace Displace(srcImage, 

destImage, 

mapImage, 

repeatEdges, 

xScale, yScale, 

lumaScale, aspect)

Performs a pixel operation by 
taking the red and green 
channel values of a clip to offset 
the source clip horizontally and 
vertically, respectively.

BumpMap BumpMap(srcImage, 

destImage, 

mapImage, 

repeatEdges,

angle, scale, 

lumaScale, 

aspect)

Performs a pixel operation by 
taking the luminance value of a 
clip to offset the source clip.

OffsetPixels OffsetPixels(srcImage, 

destImage, 

repeatEdges, 

hDisplace[width], 

vDisplace[height], 

aspect)

Performs a row and column 
operation by using two arrays to 
offset the source clip.

Command Syntax Description

20752.Book  Page 40  Thursday, March 6, 2003  6:46 PM



 41

Composite

Command Syntax Description

Matte Matte(overImage, 

baseImage, 

destImage, amount, 

type)

Composites the image buffer 
specified as “overImage” onto 
the buffer specified as 
“baseImage,” and places the 
result in the destination image 
buffer. “Type” can be one of the 
predeclared variables kAlpha, 
kWhite, or kBlack. These allow 
alpha channel compositing or 
black or white matte alpha 
channel compositing. “Amount” 
controls the opacity of the 
image being overlaid.

Screen Screen(srcImage1, 

srcImage2, 

destImage, amount, 

type)

Mixes the white areas of source 
image 1 into source image 2, 
placing the result in the 
destination image buffer. 
“Amount” controls the 
percentage of the blend.

Multiply Multiply(srcImage1, 

srcImage2, 

destImage, amount, 

type)

Mixes the black areas of source 
image 1 into source image 2, 
placing the result in the 
destination image buffer. 
“Amount” controls the 
percentage of the blend.

Overlay Overlay(srcImage1, 

srcImage2, 

destImage, amount, 

type)

Mixes the white areas of source 
image 1 into source image 2, 
where the color values of pixels 
in source image 1 are over 127, 
and mixes the black areas of 
source image 1 into source 
image 2 elsewhere. The result is 
placed in the destination image 
buffer. “Amount” controls the 
percentage of the blend.

20752.Book  Page 41  Thursday, March 6, 2003  6:46 PM



42   

Lighten Lighten(srcImage1, 

srcImage2, 

destImage, percent, 

type)

For each pixel in the destination 
image buffer, this function 
chooses the corresponding 
pixel in the source image that 
has the lighter grayscale value.

Darken Darken(srcImage1, 

srcImage2, 

destImage, percent, 

type)

For each pixel in the destination 
image buffer, this function 
chooses the corresponding 
pixel in the source image that 
has the darker grayscale value. 

Difference Difference(srcImage1, 

srcImage2, 

destImage, type)

Fills each pixel in the destination 
image buffer with a color value 
corresponding to the absolute 
value of the difference between 
each of the channels in the two 
source image buffers.

Add Add(srcImage1, srcImage2, 

destImage, percent, 

type)

Fills each pixel in the 
destination image buffer with a 
color value corresponding to 
the sum of the pixels in source 
image 1 and the fraction of 
source image 2 specified by 
“percent.”

AddOffset AddOffset(srcImage1, 

srcImage2, 

destImage, offset)

Fills each pixel in the 
destination image buffer with a 
color value corresponding to 
the sum of the pixels in source 
image 1 and source image 2. 
The amount of offset is 
specified by adding or 
subtracting a value.

Subtract Subtract(srcImage1, 

srcImage2, 

destImage, percent, 

type)

Fills each pixel in the 
destination image buffer with a 
color value corresponding to 
that for the same pixel in source 
image 1 less the values of the 
matching pixels in the portion 
of source image 2 specified by 
“percent.”

Command Syntax Description

20752.Book  Page 42  Thursday, March 6, 2003  6:46 PM



 43

Key

ImageAnd ImageAnd(srcImage1, 

srcImage2, 

destImage)

Fills the destination image 
buffer with a logical AND of all 
the pixels in the two source 
image buffers.

ImageOr ImageOr(srcImage1, 

srcImage2, 

destImage)

Fills the destination image 
buffer with a logical OR of all 
the pixels in the two source 
image buffers.

ImageXor ImageXor(srcImage1, 

srcImage2, 

destImage)

Fills the destination image 
buffer with a logical “Exclusive 
OR” of all the pixels in the two 
source image buffers.

Invert Invert(srcImage, 

destImage)

Inverts the image.

InvertChannel InvertChannel(srcImage, 

destImage, doAlpha, 

doRed, doGreen, 

doBlue)

Inverts one or more channels 
selectively.

UnMultiply UnMultiply(srcImage, 

srcImagetype)

Removes black or white 
pre-multiplication.

Command Syntax Description

Command Syntax Description

BlueScreen BlueScreen(srcImage, 

destImage, min, 

max, fillRGB)

Creates a mask from the source 
image buffer, extracting the blue 
areas of the image. “Min” and 
“max” control the range of color 
extraction. If “fillRGB” is 1, the 
RGB channels are filled with a 
grayscale mask. Otherwise only 
the alpha channel is filled. 

20752.Book  Page 43  Thursday, March 6, 2003  6:46 PM



44   

GreenScreen GreenScreen(srcImage, 

destImage, min, 

max, fillRGB)

Creates a mask from the source 
image buffer, extracting the 
green areas of the image. “Min” 
and “max” control the range of 
color extraction. If “fillRGB” is 1, 
the RGB channels are filled with 
a grayscale mask. Otherwise 
only the alpha channel is filled. 

BGDiff BGDiff(srcImage, 

destImage, min, 

max, fillRGB)

Creates a mask from the source 
image buffer, extracting the 
areas of maximum difference 
between the blue and green 
channels. “Min” and “max” 
control the range of color 
extraction. If “fillRGB” is 1, the 
RGB channels are filled with a 
grayscale mask. Otherwise only 
the alpha channel is filled.

RGBColorKey RGBColorKey(srcImage, 

destImage, 

redTarget, redPass, 

greenTarget, 

greenPass, 

blueTarget, 

bluePass, softness, 

fillRGB)

Fills either the alpha or RGB 
channels of the destination 
image buffer with a mask 
created by comparing the values 
of the pixels in the source 
image to the “pass” values and 
“target” numbers specified. 
“Softness” specifies the softness 
of the mask. “FillRGB” specifies 
whether the alpha or RGB 
channels are filled with the 
results.

Command Syntax Description

20752.Book  Page 44  Thursday, March 6, 2003  6:46 PM



 45

External

YUVColorKey YUVColorKey(srcImage, 

destImage, yTarget, 

yPass, uTarget, 

uPass, vTarget, 

vPass, softness, 

fillRGB)

Fills either the alpha or RGB 
channels of the destination 
image buffer with a mask 
created by comparing the YUV 
values of the pixels in the 
source image to the “pass” 
values and “target” numbers 
specified. “Softness” specifies 
the softness of the mask. 
“FillRGB” specifies whether the 
alpha or RGB channels are filled 
with the results. 

Command Syntax Description

Command Syntax Description

Filter Filter("name", source, 

dest, frame, 

duration, fps, 

["parmName", 

parmValue, ...])

Calls another script, which must 
be a filter. It passes one source 
and one destination image 
buffer, as well as values 
corresponding to the frame 
where the filter is to begin, the 
frames per second for the video 
where the frame is found, and 
the duration of the filter effect. 
You can also set the inputs for 
the filter using the parameters 
in square brackets. These 
should correspond to the 
variable names declared to hold 
the inputs in the filter script 
being called.

20752.Book  Page 45  Thursday, March 6, 2003  6:46 PM



46   

Transition Transition("name", src1, 

src2, dest, frame, 

duration, fps, 

["parmName", 

parmValue, ...])

Calls another script, which must 
be a transition. It passes two 
source image buffers and one 
destination image buffer, as well 
as values corresponding to the 
frame where the transition is to 
begin, the frames per second 
for the video where the frame is 
found, and the duration of the 
transition effect. You can also 
set the inputs for the transition 
using the parameters in square 
brackets. These should 
correspond to the variable 
names declared to hold the 
inputs in the transition script 
being called.

Generator Generator("name", dest, 

frame, duration, 

fps, ["parmName", 

parmValue, ...])

Calls another script, which must 
be a generator. It passes one 
destination image buffer, as well 
as values corresponding to the 
frame where the generator is to 
begin, the frames per second 
for the video where the frame is 
found, and the duration of the 
generator effect. You can also 
set the inputs for the generator 
using the parameters in square 
brackets. These should 
correspond to the variable 
names declared to hold the 
inputs in the generator script 
being called. 

Command Syntax Description

20752.Book  Page 46  Thursday, March 6, 2003  6:46 PM



 47

String

Command Syntax Description

NumToString NumToString(number, 

string, format)

Converts a number into a string 
of text, using the format 
specified. The format can be 
any one of the constants used 
to describe text formatting.

StringToNum1 StringToNum(string) Converts a string into a series of 
numbers.

Length Length(string) Returns a number 
corresponding to the number of 
characters in the specified 
string.

CharsOf CharsOf(sourceString, 

first, last, 

destString)

Places a subset corresponding 
to the “first” through the “last” 
characters of the source string 
into the destination string.

ASCIIOf ASCIIOf(string, index) Returns the ASCII value of the 
character at the index in the 
string.

ASCIIToString ASCIIToString(ASCIIValue, 

destString)

Converts an ASCII value into the 
character it represents and 
places this character in the 
destination string specified.

CountTextLines CountTextLines(string) Returns a number 
corresponding to the number of 
lines of text in the string 
specified.

FindString FindString(sourceString, 

startOffset, 

findString)

Finds the characters in 
“FindString” within 
“sourceString,” starting from 
“startOffset.”

1 StringToNum is not double-byte compatible. It properly converts a string to a number if the string contains single-byte 
numbers only. If the string contains a double-byte number, the routine converts to zero.

20752.Book  Page 47  Thursday, March 6, 2003  6:46 PM



48   

Text

Command Syntax Description

DrawString DrawString(string, h, v, 

spacing, image, 

color, aspect)

Draws the specified text string 
in the specified image buffer, 
starting in the position specified 
by “h” and “v.” “Spacing” 
determines the distance in 
pixels between the characters 
(auto-kerning), and “color” 
specifies the color value for the 
text. Can be used with double-
byte characters.

DrawStringPlain DrawStringPlain(string, 

poly, image, color, 

aspect)

A faster string routine which 
does not perform auto-kerning. 
Can be used with double-byte 
characters.

MeasureString MeasureString(string, 

spacing, width, 

height, ascent, 

descent, aspect)

Takes the specified string and 
returns numbers based on its 
dimensions. “Spacing” 
determines the distance in 
pixels between the characters 
(auto-kerning). Can be used 
with double-byte characters.

MeasureStringPlain MeasureStringPlain(string, 

width, height, 

ascent, descent, 

aspect)

Takes the specified string 
without an auto-kerning 
calculation and returns 
numbers based on its 
dimensions. Can be used with 
double-byte characters.

SetTextFont SetTextFont(string) Chooses a font for the text from 
the available system fonts.

SetTextJustify SetTextJustify

(justification)

Specifies right, left, or center 
justification for a text string.

SetTextStyle SetTextStyle(style) Sets plain, bold, italic, or bold 
italic for the text type used in a 
text string.

20752.Book  Page 48  Thursday, March 6, 2003  6:46 PM



 49

Clip

SetTextSize SetTextSize(size) Sets the point size for a text 
string.

ResetText ResetText Resets the text to plain style, 
black text color, 24-point size, 
Times® font, and left-aligned.

Command Syntax Description

Command Syntax Description

GetVideo GetVideo(srcClip, 

timeOffset, 

destImage)

Places a frame from the clip 
specified in “srcClip” into the 
“destImage” buffer, starting at 
the specified time offset.

GetTimeCode GetTimeCode(srcClip, 

timeCode, 

frameRate, 

dropFrame)

Gets the timecode for the 
specified frame.

GetReelName GetReelName(srcClip, 

string)

Places the reel name for the 
source clip into the specified 
string.

GetLimits GetLimits(srcClip, 

duration, offset)

Places the time duration of the 
specified clip into the variable 
represented by “duration.”

20752.Book  Page 49  Thursday, March 6, 2003  6:46 PM



50   

Utility

Command Syntax Description

SysTime SysTime Returns the computer’s current 
clock setting.

Random Random(min, max) Returns a random number no 
less than “min” and no greater 
than “max.”

RandomTable RandomTable(array[n]) Fills the specified float array 
with unique random values 
between 0 and n-1.

RandomSeed RandomSeed(value) Initializes the random number 
generator. If “value” is zero, 
random numbers generated will 
be in a different sequence every 
time.

MatrixConcat MatrixConcat(srcMatrix1, 

srcMatrix2, 

destMatrix)

Concatenates two 3x3 matrices 
and places the result into the 
destination matrix.

ColorOf ColorOf(image, point, 

color)

Places the color value of the 
specified point in the specified 
image buffer into the variable 
specified for “color.”

Truncate Truncate(srcRect1, 

srcRect2)

Takes the two source rectangles 
specified and truncates them 
into two equal-sized rectangles. 
This is used right before Blit 
commands to improve speed if 
sub-pixel accuracy is not 
needed.

20752.Book  Page 50  Thursday, March 6, 2003  6:46 PM



 51

PointTrack PointTrack(fromImage, 

srcPoint, toImage, 

guessPoint, range, 

deltaPoint)

Scans a rectangle of the size 
specified in “range” around the 
specified source point in the 
“fromImage” buffer, looking for 
a match in the “toImage” buffer. 
This assesses the difference in 
position between the two image 
buffers. The offset of the 
matching image data in the 
“toImage” is placed in 
“deltaPoint.”

Highlight Highlight(destImage, 

centerPoint, angle, 

width, softness, 

dither, gaussian, 

foreColor, 

backColor, aspect)

Paints a specular highlight band 
in the destination image buffer, 
using the specified center point 
and angle as the highlight line. 
“Width” and “softness” define 
the size of the highlight band, 
and “color” specifies the color. 
If the value for “dither” is true, a 
random dither is applied to the 
highlight gradient, making it 
smoother over large areas. If 
“gaussian” is true, the gradient 
will have a Gaussian fall-off, 
which looks more natural when 
used for specular highlight, or 
when two highlights are 
screened together.

CircleLight CircleLight(destImage, 

centerPoint, width, 

softness, aspect, 

dither, gaussian, 

foreColor, 

backColor)

Creates a circular highlight 
outwards from “centerPoint.”

RandomNoise RandomNoise(destImage, 

alphaMin, alphaMax, 

redMin, redMax, 

greenMin, greenMax, 

blueMin, blueMax, 

makeColors)

Randomizes the color of all the 
pixels in the destination image 
buffer, according to the bounds 
set by the “min” and “max” 
values for each channel.

Command Syntax Description

20752.Book  Page 51  Thursday, March 6, 2003  6:46 PM



52   

Assert Assert(value) Stops the script with an error.

GetPixelFormat GetPixelFormat(image) Returns the pixel format of the 
image. For example, 
kFormatRGB255, 
kFormatRGB219, 
kFormatYUV219.

SetPixelFormat SetPixelFormat(image, 

format)

Sets the pixel format of an 
image buffer without changing 
the contents of the image 
buffer. Thus, it should generally 
only be used on empty image 
buffers.

GetConversionMatrix GetConversionMatrix( 

srcFormat, 

destFormat, matrix, 

srcOffsets, 

destOffsets)

Returns a matrix and the 
“srcOffsets” and “destOffsets,” 
which would be used with 
ColorTransform to convert a 
buffer from “srcFormat” to 
“destFormat.”

ConvertImage ConvertImage (srcImage, 

destImage, 

format)

Performs a color space 
conversion from the source 
image’s color space, which can 
be obtained by GetPixelFormat 
(srcImage), into the format 
specified. It copies the data into 
“destImage” with the color 
space conversion and sets the 
pixel format of “destImage” to 
“format.” 

Command Syntax Description

20752.Book  Page 52  Thursday, March 6, 2003  6:46 PM



 53

Constants and Predeclared Variables

These are the predeclared variables included in FXScript. They can be used wherever 
appropriate in your scripts but can’t be declared in the script code. You can assign values to 
some of them as necessary in your scripts, including src1, src2, srcType1, scrType2, dest, 
exposedBackground, previewing, RGBtoYUV, and YUVtoRGB.

General

Color

Constant Description

kUndefined A value that static variables initially have.

kAlpha Used to define the alpha channel or straight alpha type.

true A Boolean variable, anything but 0.

false A Boolean variable, 0.

Constant Description

kBlack Used to define black color or black pre-multiplied alpha type

kWhite Used to define white color or white pre-multiplied alpha type.

kGray Used to define gray color.

kRed Used to define red color or the red channel.

kGreen Used to define green color or the green channel.

kBlue Used to define blue color or the blue channel.

kCyan Used to define cyan color.

kYellow Used to define yellow color.

kMagenta Used to define magenta color.

20752.Book  Page 53  Thursday, March 6, 2003  6:46 PM



54   

Formatting

Shapes

Constant Description

kInteger Used to define the integer numerical format.

kFloat2 Used to define the real numerical format with two decimal places.

kFloat4 Used to define the real numerical format with four decimal places.

kFloat6 Used to define the real numerical format with six decimal places.

kSize Used to define the storage format (K, MB, GB, TB).

k24fps Used to define the timecode format 24 frames per second.

k25fps Used to define the timecode format 25 frames per second.

k30fps Used to define the timecode format 30 frames per second, non-drop 
frames.

k60fps Used to define the timecode format 60 frames per second, non-drop 
frames.

k30df Used to define the timecode format 30 frames per second, drop frames.

k60df Used to define the timecode format 60 frames per second, drop frames.

k16mm Used to define the timecode format 16 mm.

k35mm Used to define the timecode format 35 mm.

Constant Description

kRound Used to define an oval geometrical shape.

kSquare Used to define a rectangle geometrical shape.

kDiamond Used to define a diamond geometrical shape.

20752.Book  Page 54  Thursday, March 6, 2003  6:46 PM



 55

Text

Key

Constant Description

kleftjustify Used to define left text alignment.

kcenterjustify Used to define center text alignment.

krightjustify Used to define right text alignment.

kplain Used to define a plain text style.

kbold Used to define a bold text style.

kitalic Used to define an italic text style.

kbolditalic Used to define a bold, italic text style.

Constant Description

kKeyNormal Used to define the composite mode Normal.

kKeyAdd Used to define the composite mode Add.

kKeySubtract Used to define the composite mode Subtract.

kKeyDifference Used to define the composite mode Difference.

kKeyMultiply Used to define the composite mode Multiply.

kKeyScreen Used to define the composite mode Screen.

kKeyOverlay Used to define the composite mode Overlay.

kKeyHardLight Used to define the composite mode HardLight.

kKeySoftLight Used to define the composite mode SoftLight.

kKeyDarken Used to define the composite mode Darken.

kKeyLighten Used to define the composite mode Lighten.

kFormatRGB255 Used to label Final Cut Pro version 1.0/1.2.1 “RGB” buffers, which are RGB 
buffers with “white” at (255,255,255) and “black” at (0,0,0).

20752.Book  Page 55  Thursday, March 6, 2003  6:46 PM



56   

Variables

kFormatRGB219 Used to label “RGB-219” buffers, which are RGB buffers scaled so that 
“white” is at (219,219,219), “CCIR superwhite” is at (238,238,238), and 
“black” is at (0,0,0).

kFormatYUV219 Used to label YUV buffers, in which the Y value of 0 is used for “CCIR 
black,” the Y value of 219 is used for “CCIR white,” and the Y value of 238 is 
used for “CCIR superwhite.” (The CCIR recommended Y–range is 0–219 in 
this space.) The byte order of this packing is “A, Y, Cb, Cr.”1 .

1 Cb and Cr are both centered on 128. The CCIR recommended Cb and Cr ranges are 16–240. This YUV format is preferred 
to RGB when the codecs support YUV, because it does not cause “clamping” of bright or highly saturated colors. This 
format is identical to the “r408” format described in the QuickTime technical note “Rendering in YCbCr” located at 
http://developer.apple.com/quicktime/icefloe/dispatch027.html. Please see that page for more detailed documentation.

Constant Description

Variable Description

fps Used to define the effects frame rate.

frame Used to define the current frame number.

duration Used to define the length of an effect.

ratio Used to define the ratio of current frame location to duration or frame/
duration.

src1 Used to define the current frame buffer from the source clip in filters and 
outgoing source clip in transitions.

clip1 Used to define the source clip in filters and outgoing source clip in 
transitions.

srcType1 Used to define the source clip’s alpha type.

src2 Used to define the current frame buffer from the incoming source clip in 
transitions.

clip2 Used to define the incoming source clip in transitions.

srcType2 Used to define the incoming source clip’s alpha type.

dest Used to define the current buffer for video output.

exposedBackground Used to define the background visibility.

previewing Used to define the rendering mode, frame render, or sequence render.

20752.Book  Page 56  Thursday, March 6, 2003  6:46 PM



 57

Input

Input statements are used to specify the input controls that appear in the Input Controls tab 
for your script. In each case, “UIName” signifies the label that appears next to the input in 
the Input Controls tab. 

renderRes Used to define the sequence quality.

RGBtoYUV Used to define the matrix conversion from RGB to YUV color space.

YUVtoRGB Used to define the matrix conversion from YUV to RGB color space.

linearRamp A placeholder array that contains 256 fractional values between 0 and 1.0. It 
can be passed to LevelMap for one or more components, when the 
component should not be changed. Using this is somewhat more efficient 
than building your own linear ramp using the parser.

This variable can sometimes be called identity color table. When a color 
value is mapped to this table, you get the same color value as the result.

srcIsGap1 This variable is a Boolean. It is true if src1 is a gap; otherwise, false.

srcIsGap2 This variable is a Boolean. It is true if src2 is a gap; otherwise, false.

Variable Description

Statement Syntax Description

CheckBox input varName, "UIName", 

CheckBox, value

Defines a checkbox. This can 
have a value of either 0 (not 
checked) or 1 (checked).

Slider input varName, "UIName", 

Slider, value, min, 

max [ramp value] 

[label "Units"] 

[detent/snap v1, 

v2, ...]

Creates a slider bar control. You 
can specify an initial default 
value, minimum and maximum 
values, ramp value, “Units” 
specified as the label, and 
optional detent and snap values.

Angle input varName, "UIName", 

Angle, value, min, 

max [label "Units"] 

[detent/snap v1, 

v2, ...]

Creates an angle control.

20752.Book  Page 57  Thursday, March 6, 2003  6:46 PM



58   

Popup input varName, "UIName", 

Popup, value, 

label1, label2, 

..., labelN

Defines a pop-up menu with 
the specified labels, set to the 
default specified in “value.”

RadioGroup input varName, "UIName", 

RadioGroup, 

value, label1, 

label2, ..., 

labelN

Specifies a radio button or 
group of radio buttons with the 
specified label or labels.

Color input varName, "UIName", 

Color, alpha, red, 

green, blue

Defines a color selection tool. 
The chosen color is placed in 
the “color” variable. The default 
color is specified by “alpha,” 
“red,” “green,” and “blue.”

Clip input varName, "UIName", 

Clip

Defines an input control that 
allows you to input a video clip 
or a still image.

Text input varName, "UIName", 

Text, "string" 

[TextHeight h]

Creates a text box.

Point input varName, "UIName", 

Point, x, y

Creates a point entry control.

Label input varName, "UIName", 

Label, "string"

Defines the static text in the 
Name column.

FontList input varName, "UIName", 

FontList 

[, "InitialFont", 

“TextFieldName”]

Creates a pop-up list of 
TrueType fonts to choose from. 
The “TextFieldName” is the 
name of the text box to be 
associated with this font pop-up 
list. When you change the font 
pop-up to (for example) 
Geneva, the text in the text box 
“TextFieldName” will be drawn 
in Geneva.

Statement Syntax Description

20752.Book  Page 58  Thursday, March 6, 2003  6:46 PM



 59

Definition

These statements are used to define and set up the script. They must be included at the 
beginning of the script, before any code. 

Statement Syntax Description

Filter Filter "name" Defines the script as a filter with 
the specified name, which 
means that it appears in the 
Filters bin in the Browser’s 
Effects tab.

Transition Transition "name" Defines the script as a transition 
with the specified name, which 
means that it appears in the 
Transitions bin in the Browser’s 
Effects tab.

Generator Generator "name" Defines the script as a generator 
with the specified name, which 
means that it appears in the 
Generators bin in the Browser’s 
Effects tab.

Group Group "name" Specifies the group the script 
should be placed in. For 
example, the Gaussian blur 
sample script appears in the 
Blur bin in the Filters bin in the 
Browser’s Effects tab.

WipeCode WipeCode(code, accuracy) Defines the transition’s wipe 
code.

KeyType KeyType(type) Defines the transition’s key 
type.

AlphaType AlphaType(type) Defines the alpha type. A 
variable can be kNone (none/
ignore), kAlpha (straight), 
kBlack (black), or kWhite 
(white).

20752.Book  Page 59  Thursday, March 6, 2003  6:46 PM



60   

QTEffect QTEffect("name") Defines the name of a QT real-
time effect. If a QT real-time 
effect with the same name is 
installed on a system, the 
application uses the QT real-
time effect instead.

ProducesAlpha ProducesAlpha Specifies that the effect will 
produce an alpha channel.

FullFrame FullFrame An input definition, states that 
the filter only works on a full 
frame. Final Cut Pro, when 
processing fields, will only pass 
the full frames. This flag is only 
valid for filter scripts.

EffectID EffectID ("name") Reserved for future use.

InvalEntireItem InvalEntireItem Identifies the effect as time- 
dependent (the effect changes 
over time). Thus, the render 
cache of the effect is invalidated 
when the duration of the effect 
changes.

RenderEachFrame
WhenStill

RenderEachFrameWhenStill Identifies the effect as time- 
dependent (the effect changes 
over time). Thus, even if the 
source is a still graphic or non-
animated generator, each frame 
should be rendered.

This can be used to tell 
Final Cut Pro that the script 
needs to be run for each frame, 
even if the parameters are not 
changing. This is useful for still 
graphics and generators or 
filters that are non-animated or 
time-varying, such as the “Blink” 
filter.

Statement Syntax Description

20752.Book  Page 60  Thursday, March 6, 2003  6:46 PM



 61

Parser

InformationFlag InformationFlag( string ) A general tool for supplying 
additional keywords to 
Final Cut Pro.1

1 The most important new keyword is “YUVaware,” which tells Final Cut Pro that the script is aware of the existence of the YUV 
color space. The YUV color space is preferable because it does not “clamp” colors that are extremely bright or saturated. Also, 
if the “YUVaware” keyword is supplied, the Final Cut Pro version 1.0/1.2 matrix variables “RGBtoYUV” and “YUVtoRGB” will 
not be available. (Instead, use GetConversionMatrix.) Another new keyword is “hasfields”, which can be used to tell 
Final Cut Pro that a generator can create field-rendered material. For example, this allows a Crawl text generator to tell 
Final Cut Pro’s render engine that it can generate two fields of material when the user has enabled field rendering. The use of 
field rendering creates a smoother motion.

Statement Syntax Description

Statement Syntax Description

BezToLevelMap BezToLevelMap( array, 

leftPt, ctlPt1, 

ctlPt2, rightPt, 

startIndex, 

endIndex )

Fills in the array from startIndex 
to endIndex with the Bezier 
curve defined by leftPt, ctlPt1, 
ctlPt2, and rightPt.

ChromaAngleKey ChromaAngleKey( src, dest, 

doLuma, lumaMin, 

lumaMax, lumaSoft, 

doSaturation, 

satMin, satMax, 

satSoft, doAngle, 

centerAngle, 

angleWidth, 

angleSoftness, 

fillRGB )

Performs a luma, saturation, 
and/or chroma key from src to 
dest, based on the parameters 
supplied. If fillRGB is not set, 
dest’s alpha channel will contain 
the matte. If fillRGB is set, dest’s 
color channels will also reflect 
the matte.

20752.Book  Page 61  Thursday, March 6, 2003  6:46 PM



62   

Assignment

InitializeArray InitializeArray( theArray, 

startPos, endPos, 

initializeValue )

This is a high-performance way 
of initializing a parser array (or a 
portion of one) to a constant 
value. It fills in array indices 
starting at startPos and ending 
with endPos with the value of 
initializeValue. It is similar to 
using a For loop in the parser to 
initialize an array to a constant 
value, but this method is faster.

LevelAdjust LevelAdjust( src, dest, 

aAdjustSrc, 

aAdjustArray, 

rAdjustSrc, 

rAdjustArray, 

gAdjustSrc, 

gAdjustArray, 

bAdjustSrc, 

bAdjustArray )

Allows each channel of the 
image to be adjusted based on 
the value of another channel. 
For example, the red channel 
could be boosted or decreased 
based on the value of the src’s 
alpha channel. Passing in a zero 
array for a channel copies the 
channel without modifying it.

Statement Syntax Description

Statement Syntax Description

Set Set variable to value Assigns a value to a variable. 
The values that can be assigned 
to a variable depend on its data 
type. 

Set Field Set the field of variable 

to value

Assigns a value to a specific field 
within a variable.

assign variable = value Assigns a value to a variable. 
The values that can be assigned 
to a variable depend on its data 
type.

20752.Book  Page 62  Thursday, March 6, 2003  6:46 PM



 63

Flow Control

Statement Syntax Description

If/Else If (condition1)

Else if (condition2)

Else 

End If

If/Else statements run different 
script code if the stated 
conditions are met. Each If 
statement isolates a single 
condition and directs the flow 
of the script to the statement 
immediately following it only if 
the condition is met.

Else/If statements isolate 
successive conditions and direct 
script flow to the code following 
them, if the condition attached 
to the statement is met. These 
are optional.

Else statements provide for any 
other circumstance. They 
literally mean “in any other 
event.” These are optional. 

The end of an If statement is 
always indicated by an End If 
statement.

Repeat While Repeat While (condition)

End Repeat

A loop that runs the script lines 
between Repeat While and End 
Repeat repeatedly as long as the 
condition in the Repeat While 
statement is true. As soon as the 
condition is no longer true, the 
script moves out of the loop 
and onto the next line.

Repeat With Counter Repeat With Counter = 

start to finish 

[step amount]

End Repeat

A loop that runs the script lines 
between the Repeat and End 
Repeat statements for the 
number of times specified. 
Repeat with counter=1 to 10 
repeats the lines of script 10 
times.

20752.Book  Page 63  Thursday, March 6, 2003  6:46 PM



64   

Repeat With List Repeat With variable in 

[x1, x2, x3, ...]

End Repeat

Repeats the script lines between 
Repeat and End Repeat once for 
each of the values specified in 
the list. At the same time, it 
assigns each value in turn to the 
variable.

Exit Repeat Exit Repeat Directs the script flow to the 
lines immediately following the 
End Repeat statement. It can be 
structured as the result of a 
condition being met.

For/Next For variable = start to 

finish [step 

amount]

Next

A loop that runs the script lines 
between the For and Next 
statements for the number of 
times specified. Loop with 
counter=1 to 10 loops, looping 
the lines of script 10 times.

Exit For Exit For Directs the script flow in the For 
loop to the lines immediately 
following the Next statement. It 
can be structured as the result 
of a condition being met.

Subroutine On subName(type parm1, 

type parm2, ...)

End

A part of a script that can be 
called by name from anywhere 
else in the script. Once the 
subroutine has been run, the 
flow of the script returns to the 
line immediately after the 
subroutine call.

You can “pass parameters” to a 
subroutine. This means that 
information, such as numbers 
or text strings, is put into the 
subroutine from the part of the 
script that calls it. 

The subroutine runs the code 
between the On statement and 
the End statement. 

Statement Syntax Description

20752.Book  Page 64  Thursday, March 6, 2003  6:46 PM



 65

Return Return

Return(value)

Directs script flow back to the 
line immediately after the 
subroutine was called; it “jumps 
out” of the subroutine and back 
to the main script. A return 
statement may be the result of a 
particular condition being met.

Return (value) can be used to 
return a numerical value. 

Statement Syntax Description

20752.Book  Page 65  Thursday, March 6, 2003  6:46 PM



20752.Book  Page 66  Thursday, March 6, 2003  6:46 PM



 67

Index
A

Abs function  27
ACos function  26
Add command  42
AddOffset command  42
AlphaType statement  59
Angle statement  57
AngleTo command  27
ASCIIOf command  47
ASCIIToString command  47
ASin function  26
AspectOf command  28
Assert command  52
assign statement  62
ATan function  26

B

BGDiff command  44
black

kBlack constant  53
Blend command  36
Blit command  32
BlitRect command  33
BlueScreen command  43
BlurChannel command  34
Blur command  34
BoundsOf command  27
BumpMap command  40

C

CenterOf command  28
ChannelCopy command  37

ChannelFill command  37
CheckBox statement  57
CircleLight command  51
clip1 variable  56
clip2 variable  56
clip data type  26
Clip statement  58
color data type  26
ColorOf command  50
Color statement  58
ColorTransform command  36
commands

blit commands  32–34
clip commands  49
composite commands  41–43
distort commands  38–40
external commands  45–46
geometry commands  27–28
key commands  43–45
process commands  34–36
shapes commands  29–31
text commands  48–49
transform commands  31
utility commands  50–52

conditional statements  18
Convert2dto3d command  28
Convert3dto2d command  28
ConvertImage command  52
Convolve command  37
Cos function  26
CountTextLines command  47
CurveTo command  31
customizing

20752.Book  Page 67  Thursday, March 6, 2003  6:46 PM



68  

scripts  17
Cylinder command  38

D

Darken command  42
definition statement  18
Desaturate command  37
dest variable  56
Difference command  42
Diffuse command  35
DiffuseOffset command  35
DimensionsOf command  28
Displace command  40
DistTo command  27
DrawSoftDot command  30
DrawString command  48
DrawStringPlain command  48
duration variable  56

E

EffectID statement  60
effects

applying to sequences  12
FXBuilder and  9
modifying with scripts  9

encoding scripts  13
Exit For statement  64
Exit Repeat statement  64
Exp function  27
exporting items

FXBuilder scripts as text  13, 14
scripts  14

exposedBackground variable  56

F

false constant  53
FillArc command  30
FillOval command  30
FillPoly command  30
FillRegion command  29
Filter command  45
Filter statement  59
FindString command  47
Fisheye command  38

float data type  25
FontList statement  58
For/Next statement  64
fps variable  56
FrameArc command  31
FrameOval command  30
FramePoly command  30
FrameRegion command  29
frame variable  56
FullFrame statement  60
FXBuilder  5–21

described  5, 7
interface  8–9
menu commands  9
undoing actions  7
using  7–15
video effects and  9

FXBuilder Input Controls tab  8, 11–12
FXBuilder Text Entry tab  8, 10
FXBuilder window  8–9
FXScript  23–65

arrays  21
blit commands  32–34
clip commands  49
command overview  18–21
comments  21
composite commands  41–43
constants  20, 53–56
data types  20, 25–26
distort commands  38–40
expressions  21, 23–25
external commands  45–46
functions  21, 26–27
geometry commands  27–28
key commands  43–45
loops  19
operators  21, 23–25
parameters  23
process commands  34–36
shapes commands  29–31
statements  18, 57–65
string commands  47
subroutines  19
text commands  48–49
transform commands  31

20752.Book  Page 68  Thursday, March 6, 2003  6:46 PM



 69

utility commands  50–52
variables  20, 56–57

G

Generator command  46
Generator statement  59
GetConversionMatrix command  52
GetLimits command  49
GetPixelFormat command  52
GetReelName command  49
GetTimeCode command  49
GetVideo command  49
GreenScreen command  44
Grid command  28
Group statement  59

H

Highlight command  51

I

If/Else statement  63
ImageAnd command  43
image data type  25
ImageOr command  43
ImageXor command  43
InformationFlag statement  61
input statements  19
installing items

scripts  15
Integer function  27
Interpolate command  27
InvalEntireItem statement  60
InvertChannel command  43
Invert command  43

K

k16mm constant  54
k24fps constant  54
k25fps constant  54
k30fps constant  54
k35mm constant  54
k60df constant  54
kAlpha constant  53

kBlack constant  53
kBlue constant  53
kbold constant  55
kbolditalic constant  55
kcenterjustify constant  55
kCyan constant  53
kDiamond constant  54
KeyType statement  59
kFloat2 constant  54
kFloat4 constant  54
kFloat6 constant  54
kFormatRGB219 constant  56
kFormatRGB255 constant  55
kFormatYUV219 constant  56
kGray constant  53
kGreen constant  53
kInteger constant  54
kitalic constant  55
kKeyAdd constant  55
kKeyDarken constant  55
kKeyDifference constant  55
kKeyHardLight constant  55
kKeyLighten constant  55
kKeyMultiply constant  55
kKeyNormal constant  55
kKeyOverlay constant  55
kKeyScreen constant  55
kKeySoftLight constant  55
kKeySubtract constant  55
kleftjustify constant  55
kMagenta constant  53
kplain constant  55
kRed constant  53
krightjustify constant  55
kRound constant  54
kSize constant  54
kSquare constant  54
kUndefined constant  53
kWhite constant  53
kYellow constant  53

L

Label statement  58
Length command  47
LevelMap command  36

20752.Book  Page 69  Thursday, March 6, 2003  6:46 PM



70  

Lighten command  42
linearRamp variable  57
Line command  29
Log10 function  27
Log function  27

M

MakeRect command  29
MakeRegion command  29
MaskCopy command  33
MatrixConcat command  50
Matte command  41
MeasureString command  48
MeasureStringPlain command  48
MeshBlit3D command  33
MeshBlit command  33
Mesh command  28
MotionBlur command  35
Multiply command  41

N

NumToString command  47

O

Offset3d command  32
Offset command  32
OffsetPixels command  40
Outset3d command  32
OvalRegion command  29
Overlay command  41

P

PagePeel command  34
point3d data type  25
point data type  25
Point statement  58
PointTrack command  51
PondRipple command  39
Popup statement  58
Power function  27
ProducesAlpha statement  60

Q

QTEffect statement  60

R

RadialBlur command  36
RadioGroup statement  58
Random command  50
RandomNoise command  51
Random Seed command  50
RandomTable command  50
ratio variable  56
RegionCopy command  32
region data type  25
RegionIsEmpty command  29
RenderEachFrameWhenStill statement  60
renderRes variable  57
Repeat While statement  63
Repeat With Counter statement  63
Repeat With List statement  64
ResetText command  49
Return statement  65
RGBColorKey command  44
RGBtoYUV variable  57
Ripple command  39
Rotate3d command  31
Rotate command  31

S

Scale3d command  32
Scale command  32
scripting

described  5
rules for  15

scripts
applying in Timeline  12
building  6–7
coding  6
creating  9–10
customizing  17
described  5
encoding  13
examples  16–17
exporting  13, 14
exporting as text  13

20752.Book  Page 70  Thursday, March 6, 2003  6:46 PM



 71

input controls in  7, 16
installing  15
modifying effects with  9
naming  10, 16
opening  10
planning  6
structure of  6, 15–17
testing  6, 11–12
using in Final Cut Pro  14
viewing code  10

sequences
applying scripted effects to  12

Set Field statement  62
SetPixelFormat command  52
Set statement  62
SetTextFont command  48
SetTextJustify command  48
SetTextSize command  49
SetTextStyle command  48
Sign function  27
Sin function  26
Slider statement  57
Sqrt function  27
src1 variable  56
src2 variable  56
srclsGap1 variable  57
srclsGap2 variable  57
srcType1 variable  56
srcType2 variable  56
string data type  26
StringToNum  47
Subroutine statement  64
Subtract command  42
SysTime command  50

T

Tan function  26
Text statement  58
Timeline

applying scripts in  12
Tint effect  16–17
Transition command  46
Transition statement  59
true constant  53
Truncate command  50

U

undo function
FXBuilder  7

UnMultiply command  43

V

variables  20

W

Wave command  39
Whirlpool command  38
WipeCode statement  59

Y

YUVcolor data type  26
YUVColorKey command  45
YUVtoRGB variable  57

20752.Book  Page 71  Thursday, March 6, 2003  6:46 PM


	Final Cut Pro 4: Using FXScript
	Contents
	Using FXBuilder to Create, Test, and�Modify Effects
	What Is Scripting?
	Building Scripts
	Step�1: Planning
	Step�2:� Creating the structure
	Step�3:� Coding
	Step�4:� Testing

	Using FXBuilder
	Learning the FXBuilder Interface
	Using Effects That Come With Final�Cut�Pro
	Creating a New Script
	Testing a Script in FXBuilder
	Applying Scripts in the Timeline
	Preventing Scripts From Being Modified or Viewed
	Exporting FXBuilder Scripts as Text
	Installing Scripts

	Understanding the Structure of a Script
	Reviewing the Script for the Tint Effect
	Example: Customizing a Script

	About the FXScript Commands
	Statements
	The Definition Statement
	Conditional Statements
	Input Statements

	Loops
	Subroutines
	Variables
	Constants
	Data
	Arrays
	Operators and Expressions
	Functions
	Comments


	Commands and Functions Used�in�FXScript
	Scripting Parameters
	Expressions in FXScript
	Operators

	Data Types
	Functions
	Geometry
	Shapes
	Transform
	Blit
	Process
	Distort
	Composite
	Key
	External
	String
	Text
	Clip
	Utility
	Constants and Predeclared Variables
	General
	Color
	Formatting
	Shapes
	Text
	Key
	Variables

	Input
	Definition
	Parser
	Assignment
	Flow Control

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y



	Content navbar: 
	GoBack: 
	GoForward: 
	Return: 
	GoHome: 
	GoIndex: 
	Find: 
	Index navbar: 
	A: 
	B: 
	C: 
	D: 
	E: 
	F: 
	G: 
	H: 
	I: 
	J: 
	K: 
	L: 
	M: 
	N: 
	O: 
	P: 
	Q: 
	R: 
	S: 
	T: 
	U: 
	V: 
	W: 
	X: 
	Y: 
	Z: 


