
Automator Framework Reference
Apple Applications > Automator

2006-10-26



Apple Inc.
© 2004, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Cocoa, Leopard, Mac, Mac OS, Objective-C,
QuickTime, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Introduction Introduction 5

Part I Classes 7

Chapter 1 AMAction Class Reference 9

Overview 9
Tasks 10
Instance Methods 11

Chapter 2 AMAppleScriptAction Class Reference 21

Overview 21
Tasks 21
Instance Methods 22

Chapter 3 AMBundleAction Class Reference 23

Overview 23
Tasks 24
Instance Methods 25

Chapter 4 AMShellScriptAction Class Reference 29

Overview 29
Tasks 29
Instance Methods 30

Chapter 5 AMWorkflow Class Reference 33

Overview 33
Tasks 34
Class Methods 35
Instance Methods 35

Chapter 6 AMWorkflowController Class Reference 41

Overview 41
Tasks 41
Instance Methods 43
Delegate Methods 46

3
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.



Chapter 7 AMWorkflowView Class Reference 51

Overview 51
Tasks 51
Instance Methods 52

Part II Constants 55

Chapter 8 Automator Constants Reference 57

Overview 57
Constants 57

Document Revision History 63

Index 65

4
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS



Framework /System/Library/Frameworks/Automator.framework

Header file directories /System/Library/Frameworks/Automator.framework/Headers

Declared in AMAction.h
AMAppleScriptAction.h
AMBundleAction.h
AMShellScriptAction.h
AMWorkflow.h
AMWorkflowController.h
AMWorkflowView.h
AutomatorErrors.h

The Automator framework supports the development of actions for the Automator application, as well as
the ability to run a workflow in developer applications. An action is a bundle that, when loaded and run,
performs a specific task, such as copying a file or cropping an image. Using Automator, users can construct
and execute workflows consisting of a sequence of actions. Developers can also load and execute workflows
in their applications. As a workflow executes, the output of one action is typically passed as the input to the
next action. Automator loads action bundles from standard locations in the file system:
/System/Library/Automator, /Library/Automator, and ~/Library/Automator.

5
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction



6
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction



 

7
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Classes



8
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Classes



Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/Automator.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Automator/AMAction.h

Companion guide Automator Programming Guide

Related sample code Apply Firmware Password
CoreRecipes
UnsharpMask

Overview

AMAction is an abstract class that defines the interface and general characteristics of Automator actions.
Automator is an Apple-provided application that allows users to construct and execute workflows consisting
of a sequence of discrete modules called actions. An action performs a specific task, such as copying a file
or cropping an image, and passes its output to Automator to give to the next action in the workflow. Actions
are currently implemented as loadable bundles owned by objects of the AMBundleAction class, a subclass
of AMAction.

The critically important method declared by AMAction is runWithInput:fromAction:error: (page 17).
When Automator executes a workflow, it sends this message to each action object in the workflow (in
workflow sequence), in most cases passing in the output of the previous action as input. The action object
performs its task in this method and ends by returning an output object for the next action in the workflow.

Subclassing Notes

Subclassing AMAction is not recommended. For most situations requiring an enhancement to the Automator
framework, it is sufficient to subclass AMBundleAction or one of its public subclasses, AMAppleScriptAction
or AMShellScriptAction.

Overview 9
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



Tasks

Initialization and Encoding

– initWithDefinition:fromArchive: (page 14)
Initializes the receiver with the specified definition.

– initWithContentsOfURL:error: (page 13)
Loads an Automator action from a file URL.

– writeToDictionary: (page 19)
Examines the parameters and other configuration information specified in the passed dictionary and
add its own information to it if appropriate.

– definition (page 12) Deprecated in Mac OS X v10.4
Returns the definition of the receiver. (Deprecated. Removed for performance reasons. There is no
replacement.)

Controlling the Action

– reset (page 16)
Resets the receiver to its initial state.

– runAsynchronouslyWithInput: (page 16)
Causes Automator to wait for notification that the receiver has completed execution, which allows
the receiver to perform an asynchronous operation.

– runWithInput:fromAction:error: (page 17)
Requests the receiver to perform its task using the specified input from the specified action.

– stop (page 18)
Stops the receiver from running.

Initializing and Synchronizing the Action User Interface

– activated (page 11)
Invoked when the window of the Automator workflow to which the receiver belongs becomes the
main window. This allows the receiver to synchronize its information with settings in another
application.

– opened (page 15)
Invoked when the receiver is first added to a workflow, allowing it to initialize its user interface.

Updating Action Parameters

– parametersUpdated (page 15)
Requests the receiver to update its user interface from its stored parameters, which have changed.

– updateParameters (page 18)
Requests the receiver to update its stored set of parameters from the settings in the action’s user
interface.

10 Tasks
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



Getting Information About the Action

– closed (page 11)
Invoked by Automator when the receiving action is removed from a workflow, allowing it to perform
cleanup operations.

– didFinishRunningWithError: (page 12)
Sent by the receiver to itself when it has finished running asynchronously.

– ignoresInput (page 13)
Returns a Boolean value that indicates whether the action acts upon its input or the input is ignored.

– name (page 14)
Returns the name of the action.

– output (page 15)
Returns the receiver’s output.

– willFinishRunning (page 18)
Invoked by Automator when the receiver has essentially completed its run phase.

Instance Methods

activated
Invoked when the window of the Automator workflow to which the receiver belongs becomes the main
window. This allows the receiver to synchronize its information with settings in another application.

- (void)activated

Discussion
Be sure to invoke the superclass implementation of this method as the last thing in your implementation.

Availability
Available in Mac OS X v10.4 and later.

See Also
– opened (page 15)

Declared In
AMAction.h

closed
Invoked by Automator when the receiving action is removed from a workflow, allowing it to perform cleanup
operations.

- (void)closed

Discussion
This method is intended to be overridden, so that your action can perform its specific cleanup operations.

Instance Methods 11
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



Availability
Available in Mac OS X v10.5 and later.

Declared In
AMAction.h

definition
Returns the definition of the receiver. (Deprecated in Mac OS X v10.4. Removed for performance reasons.
There is no replacement.)

- (NSMutableDictionary *)definition

Return Value
A mutable dictionary containing the current parameters of the action as well as other information.

Discussion
If your action has non-persistent data, it may override this method to append that data to the definition
supplied by the superclass and return it.

Special Considerations

This method was removed to allow for performance improvements in the underlying implementation. There
is no replacement.

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

See Also
– initWithDefinition:fromArchive: (page 14)

Declared In
AMAction.h

didFinishRunningWithError:
Sent by the receiver to itself when it has finished running asynchronously.

- (void)didFinishRunningWithError:(NSDictionary *)errorInfo

Parameters
errorInfo

If an error occurred during asynchronous running of the action, upon return contains an instance of
NSError that describes the problem.

Discussion
An action that overrides runAsynchronouslyWithInput: (page 16) should invoke
didFinishRunningWithError: on completion, so that Automator can resume running the workflow that
the action is part of.

Availability
Available in Mac OS X v10.5 and later.

12 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



See Also
– willFinishRunning (page 18)

Declared In
AMAction.h

ignoresInput
Returns a Boolean value that indicates whether the action acts upon its input or the input is ignored.

- (BOOL)ignoresInput

Return Value
YES if the action acts upon its input, otherwise NO.

Discussion
Many actions act upon their input, but an action may merely pass on its input or, rarely, ignore it.

Special Considerations

Although this method was documented in Mac OS X version 10.4, and an action would respond to this
message, the method was not made public, and using it would generate a warning in Xcode.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMAction.h

initWithContentsOfURL:error:
Loads an Automator action from a file URL.

- (id)initWithContentsOfURL:(NSURL *)fileURLerror:(NSError **)outError

Parameters
fileURL

URL that specifies the location of an action file.

outError
If no action is found or if an error occurs in initializing or running it, upon return contains an instance
of NSError that describes the problem. For keys and error constants used with action errors, see
Automator Constants Reference.

Return Value
The initialized action.

Discussion
This method is typically invoked by applications that use the AMWorkflow class to embed Automator
workflows. It is used to allow creation of actions for a workflow.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 13
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



Declared In
AMAction.h

initWithDefinition:fromArchive:
Initializes the receiver with the specified definition.

- (id)initWithDefinition:(NSDictionary *)dict fromArchive:(BOOL)archived

Parameters
dict

Describes the action, including any custom definition properties.

archived
If the receiver is being unarchived, YES, otherwise NO.

Return Value
The initialized action.

Discussion
This is the primary initializer for all Automator classes. The Automator application sends this message to
instances of AMAction both when it loads actions bundles and when it unarchives them.

The AMAction object being instantiated should perform whatever initializations are necessary after invoking
super’s implementation of this method. It can then examine the values in dict, particularly if the receiver
had been archived with custom definition properties.

Availability
Available in Mac OS X v10.4 and later.

See Also
– definition (page 12)
– writeToDictionary: (page 19)

Declared In
AMAction.h

name
Returns the name of the action.

- (NSString *)name

Return Value
The name of the receiving action.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMAction.h

14 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



opened
Invoked when the receiver is first added to a workflow, allowing it to initialize its user interface.

- (void)opened

Discussion
You should perform all initializations of an action’s user interface in this method and not in awakeFromNib.
Be sure to invoke the superclass implementation of this method as the final step of your implementation.

Availability
Available in Mac OS X v10.4 and later.

See Also
– activated (page 11)

Declared In
AMAction.h

output
Returns the receiver’s output.

- (id)output

Return Value
The receiving action’s output, or nil if called before the action is run.

Discussion
This method is used in conjunction with the AMWorkflow class, which allows access to the actions in a
workflow.  Within a workflow, for example, you might iteratively inspect the output of each action. Or, on
completion of a workflow, you might examine the output of the last action, to determine the output of the
workflow.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
AutomatorHandsOn
CoreRecipes
UnsharpMask

Declared In
AMAction.h

parametersUpdated
Requests the receiver to update its user interface from its stored parameters, which have changed.

- (void)parametersUpdated

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 15
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



See Also
– updateParameters (page 18)

Declared In
AMAction.h

reset
Resets the receiver to its initial state.

- (void)reset

Discussion
Resetting causes the action to release its output generated from the current execution of the workflow.

Availability
Available in Mac OS X v10.4 and later.

See Also
– stop (page 18)

Declared In
AMAction.h

runAsynchronouslyWithInput:
Causes Automator to wait for notification that the receiver has completed execution, which allows the receiver
to perform an asynchronous operation.

- (void)runAsynchronouslyWithInput:(id)input

Parameters
input

The input for the action. Should contain one or more objects compatible with one of the types specified
in the action’s AMAccepts property.

Discussion
This method should be overridden only by actions that need to make asynchronous calls. After
runAsynchronouslyWithInput: is invoked, Automator does not continue until the action invokes
didFinishRunningWithError: (page 12). So in your override of this method, you can make an
asynchronous call, wait to be notified of its completion, then invoke didFinishRunningWithError: to
signal to Automator that the action has completed.

Warning: Failure to invoke didFinishRunningWithError: can cause a workflow to stall indefinitely.

For actions that do not need to make asynchronous calls, the preferred method is
runWithInput:fromAction:error: (page 17).

Availability
Available in Mac OS X v10.5 and later.

16 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



Declared In
AMAction.h

runWithInput:fromAction:error:
Requests the receiver to perform its task using the specified input from the specified action.

- (id)runWithInput:(id)input fromAction:(AMAction *)anAction error:(NSDictionary 
**)errorInfo

Parameters
input

The input for the receiving action. Should contain one or more objects compatible with one of the
types specified in the action’s AMAccepts property.

By default, actions can only accept and provide the following types. However, by overriding this
method, you can change the types your action can use:

 ■ Objective-C actions: Accepts and provides types must inherit from com.apple.cocoa.string,
com.apple.cocoa.path, com.apple.cocoa.url, or, starting in Mac OS X version 10.5 (v10.5),
com.apple.cocoa.data.

 ■ Shell script actions: Accepts and provides types must inherit from com.apple.cocoa.string or,
starting in Mac OS X v10.5, com.apple.cocoa.data.

 ■ AppleScript actions: Accepts and provides types must inherit from com.apple.applescript.object.

anAction
The action from which the input object was obtained.

errorInfo
If an error occurs, the action returns an error dictionary in this parameter. The keys and values for this
dictionary are:

 ■ OSAScriptErrorNumber (a string constant) — The value for this key is an instance of NSNumber
whose integer value indicates an error code. See the header file MacErrors.h in the Carbon
Core framework for a list of valid error codes, particularly the section on OSA errors.

 ■ OSAScriptErrorMessage (a string constant) —The value for this key is an instance of NSString
describing the error.

For an example of how to create such a dictionary, see “Implementing runWithInput:fromAction:error:”
in “Implementing an Objective-C Action" in Automator Programming Guide.

Return Value
An object containing one or more objects of a data type compatible with a type specified in the receiving
action’s AMProvides property. If the receiver does not modify the data passed in input, it should return it
unchanged.

Discussion
The input and output objects for actions are usually instances of NSArray. If the receiver encounters problems,
it should return by indirection an error dictionary that describes the error.

This method is intended to be overridden. AppleScript actions, however, usually will not need to override
this method because the same functionality is provided by an AppleScript script.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 17
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



See Also
– reset (page 16)
– runAsynchronouslyWithInput: (page 16)
– stop (page 18)

Declared In
AMAction.h

stop
Stops the receiver from running.

- (void)stop

Discussion
The output acquired by the action during execution of the current workflow is still accessible to Automator.

Availability
Available in Mac OS X v10.4 and later.

See Also
– reset (page 16)

Declared In
AMAction.h

updateParameters
Requests the receiver to update its stored set of parameters from the settings in the action’s user interface.

- (void)updateParameters

Discussion
This message is sent just before an action is saved, copied, or run. Preferably, an action’s settings should not
solely reside in the controls of its view, but if they do, the action can fetch and save them in this method.

Availability
Available in Mac OS X v10.4 and later.

See Also
– parametersUpdated (page 15)

Declared In
AMAction.h

willFinishRunning
Invoked by Automator when the receiver has essentially completed its run phase.

- (void)willFinishRunning

18 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



Discussion
This method is intended to be overridden. An action can use this method to perform cleanup operations,
such as closing windows and deallocating memory.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMAction.h

writeToDictionary:
Examines the parameters and other configuration information specified in the passed dictionary and add its
own information to it if appropriate.

- (void)writeToDictionary:(NSMutableDictionary *)dictionary

Parameters
dictionary

Possibly contains parameter and other configuration information about the receiver.

Discussion
Automator sends this message to an action object prior to archiving it. In its implementation of this method,
the action object should first invoke the superclass implementation.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithDefinition:fromArchive: (page 14)

Declared In
AMAction.h

Instance Methods 19
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



20 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

AMAction Class Reference



Inherits from AMBundleAction : AMAction : NSObject

Conforms to NSCoding (AMBundleAction)
NSCopying (AMBundleAction)
NSObject (NSObject)

Framework /System/Library/Frameworks/Automator.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Automator/AMApppleScriptAction.h

Companion guide Automator Programming Guide

Overview

Instances of the AMAppleScriptAction class own Automator actions whose runtime behavior is driven by
an AppleScript script. An AMAppleScriptAction object holds the compiled script as an instance of the
OSAScript class. By default, the OSAScript object is instantiated from the script in the Xcode project file
main.applescript.

When you create a Automator Applescript Action project in Xcode, the project template supplies an
AMAppleScriptAction instance as File’s Owner of the action bundle. This ready-made instance provides
a default implementation of the AMAction runWithInput:fromAction:error: (page 17) method that
uses the logic defined in the script. You can substitute your own subclass of AMAppleScriptAction for
File’s Owner if you need to.

Tasks

Accessing the Script

– script (page 22)
Returns the OSAScript object representing the receiver’s script containing the on run command
handler.

– setScript: (page 22)
Set’s the receiver’s script to newScript.

Overview 21
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AMAppleScriptAction Class Reference



Instance Methods

script
Returns the OSAScript object representing the receiver’s script containing the on run command handler.

- (OSAScript *)script

Discussion
By default, this script is main.applescript, which is stored in the action bundle.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AMAppleScriptAction.h

setScript:
Set’s the receiver’s script to newScript.

- (void)setScript:(OSAScript *)newScript

Discussion
newScript must be an OSAScript object that could be instantiated from a script in the action bundle. The
script must contain the on run command handler.

Availability
Available in Mac OS X v10.4 and later.

Declared In
AMAppleScriptAction.h

22 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

AMAppleScriptAction Class Reference



Inherits from AMAction : NSObject

Conforms to NSCoding
NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Automator.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Automator/AMBundleAction.h

Companion guide Automator Programming Guide

Related sample code Apply Firmware Password
AutomatorHandsOn
CoreRecipes
UnsharpMask

Overview

Instances of the AMBundleAction class (or its public subclasses) manage Automator actions that are loadable
bundles. Automator loads action bundles from standard locations in the file system:
/System/Library/Automator, /Library/Automator, and ~/Library/Automator.

AMBundleAction objects have several important properties:

 ■ The NSBundle object associated with the action’s physical bundle

 ■ The action’s view, which holds its user interface

 ■ A parameters dictionary that reflects the settings in the user interface

When you create a Cocoa Automator Action project in Xcode, the project template includes a custom subclass
of AMBundleAction. (This custom class is given the name of the project.) The sole requirement for this
custom class is to provide an implementation of runWithInput:fromAction:error: (page 17), which
is declared by the superclass AMAction.

Overview 23
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

AMBundleAction Class Reference



Subclassing Notes

As noted in “Class Description” (page 23), the project template for Cocoa Automator actions includes partially
completed header and source files for a custom subclass of AMBundleAction. The name of this custom class
is the name of the Xcode project. To complete the implementation of this subclass, you must override
runWithInput:fromAction:error: (page 17) (declared by AMAction).

Another reason for subclassing AMBundleAction is to obtain a class that is a peer to AMAppleScriptAction,
itself a subclass of AMBundleAction. For example, the AMShellScriptAction class is a subclass of
AMBundleAction whose instances can control the behavior of an action through shell, Perl, and Python
scripts.

Methods to Override

To subclass AMBundleAction, you must override the runWithInput:fromAction:error: (page 17) to
implement the task performed by the action. If you have added any instance variables, you must override
the initWithDefinition:fromArchive: (page 26) method and the writeToDictionary: method of
AMAction to work with them.

Tasks

Initializing the Action

– awakeFromBundle (page 25)
Sent to the receiver when all objects in its bundle have been unarchived.

– initWithDefinition:fromArchive: (page 26)
Initializes and returns an allocated AMBundleAction object.

Setting and Getting Action Properties

– bundle (page 25)
Returns the receiver’s bundle object.

– hasView (page 25)
Returns whether the receiver has a view associated with it.

– view (page 27)
Returns the receiver’s view object.

– parameters (page 26)
Returns the receiver's parameters.

– setParameters: (page 27)
Sets the parameters of the receiver to newParameters.

24 Tasks
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

AMBundleAction Class Reference



Instance Methods

awakeFromBundle
Sent to the receiver when all objects in its bundle have been unarchived.

- (void)awakeFromBundle

Discussion
This method allows an action object to perform set-up tasks requiring the presence of all bundle objects,
such as adding itself as an observer of notifications, dynamically establishing bindings, and dynamically
setting targets and actions.

Availability
Available in Mac OS X v10.4 and later.

See Also
– initWithDefinition:fromArchive: (page 26)

Declared In
AMBundleAction.h

bundle
Returns the receiver’s bundle object.

- (NSBundle *)bundle

Discussion
Returns nil if no bundle has been set.

Availability
Available in Mac OS X v10.4 and later.

See Also
– view (page 27)

Declared In
AMBundleAction.h

hasView
Returns whether the receiver has a view associated with it.

- (BOOL)hasView

Availability
Available in Mac OS X v10.4 and later.

See Also
– view (page 27)

Instance Methods 25
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

AMBundleAction Class Reference



Declared In
AMBundleAction.h

initWithDefinition:fromArchive:
Initializes and returns an allocated AMBundleAction object.

- (id)initWithDefinition:(NSDictionary *)dict fromArchive:(BOOL)archived

Discussion
The definitions dictionary dict contains configuration information specific to the receiver. If archived is
YES, the definitions are coming from an archive. You may examine the definitions dictionary to learn about
specific properties and settings of the action, but some of the keys are private to Automator. You should not
attempt to change the values in dict, but you may add custom key-value pairs to the definition dictionary
by overriding the writeToDictionary: (page 19) method declared by the superclass, AMAction. If at
runtime you need to learn about or change the action’s properties in its information property list
(Info.plist), send the appropriate NSDictionary messages to the action bundle’s infoDictionary;
for example:

[NSDictionary *infoDict = [[self bundle] infoDictionary];
NSString *theApp = [infoDict objectForKey:@"AMApplication"];
if ([theApp isEqualToString:@"Finder"]) {
    // do something appropriate
}

Availability
Available in Mac OS X v10.4 and later.

See Also
– awakeFromBundle (page 25)
– definition (page 12) (AMAction)

Declared In
AMBundleAction.h

parameters
Returns the receiver's parameters.

- (NSMutableDictionary *)parameters

Discussion
The parameters of an action reflect the choices made and values entered in the action’s user interface.

Availability
Available in Mac OS X v10.4 and later.

See Also
– setParameters: (page 27)

Declared In
AMBundleAction.h

26 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

AMBundleAction Class Reference



setParameters:
Sets the parameters of the receiver to newParameters.

- (void)setParameters:(NSMutableDictionary *)newParameters

Discussion
The parameters of an action reflect the choices made and values entered in the action’s user interface. Keys
in the parameters dictionary identify specific user-interface objects. If an action uses the Cocoa bindings
mechanism, the parameters of an AMBundleAction object are automatically set. You can change the
parameters wholesale with this method. Or you can get the current parameters dictionary with the
parameters (page 26) and update individual parameters.

Availability
Available in Mac OS X v10.4 and later.

See Also
– parameters (page 26)

Declared In
AMBundleAction.h

view
Returns the receiver’s view object.

- (NSView *)view

Availability
Available in Mac OS X v10.4 and later.

See Also
– hasView (page 25)
– bundle (page 25)

Declared In
AMBundleAction.h

Instance Methods 27
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

AMBundleAction Class Reference



28 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

AMBundleAction Class Reference



Inherits from AMBundleAction : AMAction : NSObject

Conforms to NSCoding (AMBundleAction)
NSCopying (AMBundleAction)
NSObject (NSObject)

Framework /System/Library/Frameworks/Automator.framework

Availability Available in Mac OS X v10.4 and later.

Declared in Automator/AMShellScriptAction.h

Companion guide Automator Programming Guide

Overview

Instances of the AMShellScriptAction class own Automator actions whose runtime behavior is driven by
a shell script or by a Perl or Python script.

When you create a Shell Script Automator Action project in Xcode, the project template supplies an
AMShellScriptAction instance as File’s Owner of the action bundle. This ready-made instance provides
a default implementation of the AMActionrunWithInput:fromAction:error: (page 17) method that
uses the logic defined in the script. You can substitute your own subclass of AMShellScriptAction for
File’s Owner if you need to.

Tasks

Handling the I/O Separator Character

– inputFieldSeparator (page 30)
Returns the character that is used as the delimiter between items in the string passed in through
standard input.

– outputFieldSeparator (page 30)
Returns the character used as a delimiter in the string output of the receiver.

– remapLineEndings (page 30)
Returns whether you want automatic remapping of carriage return (\r) to newline (\n) characters in
the input string.

Overview 29
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

AMShellScriptAction Class Reference



Instance Methods

inputFieldSeparator
Returns the character that is used as the delimiter between items in the string passed in through standard
input.

- (NSString *)inputFieldSeparator

Discussion
The Automator framework converts the output from the previous action (which is usually in the form of a
list or array) into a single string in which the array elements are concatenated by the input field separator.
By default this separator is the newline character (@”\n”). You could, for example, override this method to
return a null character (@”\0”) to provide null-terminated strings for xargs -0.

Availability
Available in Mac OS X v10.4 and later, Xcode 2.1 and later.

Declared In
AMShellScriptAction.h

outputFieldSeparator
Returns the character used as a delimiter in the string output of the receiver.

- (NSString *)outputFieldSeparator

Discussion
The Automator framework converts this string into an array (or list) whose elements are derived from the
fields delimited by the separator character, and then passes the array (or list) to the next action in the workflow.
The default value is the separator character returned by inputFieldSeparator (page 30). Override this
method if you want a different delimiter for output.

Availability
Available in Mac OS X v10.4 and later, Xcode 2.1 and later.

Declared In
AMShellScriptAction.h

remapLineEndings
Returns whether you want automatic remapping of carriage return (\r) to newline (\n) characters in the
input string.

- (BOOL)remapLineEndings

Discussion
The default is NO. Override to return YES if you want the remapping to occur.

Availability
Available in Mac OS X v10.4 and later, Xcode 2.1 and later.

30 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

AMShellScriptAction Class Reference



Declared In
AMShellScriptAction.h

Instance Methods 31
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

AMShellScriptAction Class Reference



32 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

AMShellScriptAction Class Reference



Inherits from NSObject

Conforms to NSCopying
NSObject (NSObject)

Framework /System/Library/Frameworks/Automator.framework

Availability Available in Mac OS X v10.5 and later.

Declared in Automator/AMWorkflow.h

Companion guides Automator Programming Guide
Automator Framework Reference

Related sample code AutoSample

Overview

The AMWorkflow class lets you use an Automator workflow in your application. You can display a workflow
with an instance of AMWorkflowView and control its operation with an instance of AMWorkflowController.

A workflow consists of one or more actions (discrete tasks), which together can perform complex automation
tasks. Your application can use workflows to package its own features and to take advantage of features
provided by other applications. You create actions with Xcode, while you create workflows with the Automator
application.

You can load and run a workflow with minimal overhead by using the AMWorkflow class method
runWorkflowAtURL:withInput:error: (page 35). However, in situations where you need greater control,
such as the ability to start and stop the workflow, you can use an instance of the AMWorkflowController
class instead. In that case, you’ll have to create and initialize both a workflow and a workflow controller object.

In either case, the workflow is run in a separate process so that any actions it contains are executed in a
separate memory space. That helps to insulate your application from crashes, memory leaks, or exceptions
that might occur from running the actions in the workflow.

Overview 33
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

AMWorkflow Class Reference



Tasks

Running a Specified Workflow

+ runWorkflowAtURL:withInput:error: (page 35)
Loads and runs the specified workflow file.

Creating and Initializing a Workflow

– initWithContentsOfURL:error: (page 36)
Creates and initializes a workflow based on the contents of the specified file.

Saving Changes to a Workflow

– writeToURL:error: (page 40)
Writes the workflow to the specified file.

Getting Information About the Workflow

– actions (page 35)
Returns an array of the workflow’s actions.

– fileURL (page 36)
Returns a URL that specifies the location of the workflow file.

– input (page 37)
Returns the input data that is passed to the first action in the workflow.

– setInput: (page 38)
Sets the input data that is passed to the first action in the workflow.

– setValue:forVariableWithName: (page 39)
Sets the value of the workflow variable with the specified name.

– valueForVariableWithName: (page 39)
Returns the value of the workflow variable with the specified name.

Manipulating the Workflow’s Actions

– addAction: (page 36)
Adds the specified action at the end of the receiving workflow.

– insertAction:atIndex: (page 37)
Inserts the specified action at the specified position of the receiving workflow.

– moveActionAtIndex:toIndex: (page 38)
Moves the action from the specified start position to the specified end position in the receiving
workflow.

34 Tasks
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

AMWorkflow Class Reference



– removeAction: (page 38)
Removes the specified action from the receiver.

Class Methods

runWorkflowAtURL:withInput:error:
Loads and runs the specified workflow file.

+ (id)runWorkflowAtURL:(NSURL *)fileURL withInput:(id)input error:(NSError **)error

Parameters
fileURL

URL that specifies the location of a workflow file.

input
Specifies the input for the first action in the workflow. Pass nil if the first action doesn’t need input.

error
If no workflow is found or if an error occurs in initializing or running it, upon return contains an instance
of NSError that describes the problem.

Return Value
On error, returns nil. Otherwise, returns the output of the last action in the workflow. Your application may
need to convert the data to a desired type.

Discussion
Use this method to run a workflow without the overhead of performing a separate allocation, setting up a
workflow controller, and so on. However, in situations where you need greater control, such as the ability to
start and stop the workflow, use an instance of the AMWorkflowController class instead.

The workflow is run in a separate process so that any actions it contains are executed in a separate memory
space. This helps to insulate the application from crashes, memory leaks, or exceptions that might occur from
running the actions in the workflow.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflow.h

Instance Methods

actions
Returns an array of the workflow’s actions.

- (NSArray *)actions

Class Methods 35
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

AMWorkflow Class Reference



Return Value
An array of actions for the workflow file. Actions are instances of classes such as AMBundleAction,
AMAppleScriptAction, and AMShellScriptAction.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflow.h

addAction:
Adds the specified action at the end of the receiving workflow.

- (void)addAction:(AMAction *)action

Parameters
action

The action to add.

Discussion
The workflow retains the action but does not copy it.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflow.h

fileURL
Returns a URL that specifies the location of the workflow file.

- (NSURL *)fileURL

Return Value
URL that specifies the location of the workflow file.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflow.h

initWithContentsOfURL:error:
Creates and initializes a workflow based on the contents of the specified file.

- (id)initWithContentsOfURL:(NSURL *)fileURL error:(NSError **)outError

36 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

AMWorkflow Class Reference



Parameters
fileURL

URL that specifies the location of a workflow file.

outError
If the workflow file can’t be found, or if an error occurs in initializing the workflow, upon return contains
an instance of NSError that describes the problem.

Return Value
The initialized workflow object. On error, returns nil.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflow.h

input
Returns the input data that is passed to the first action in the workflow.

- (id)input

Return Value
The input for the first action in the workflow. Should be a data type the action can use, or a type that can be
converted to one the action can use.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setInput: (page 38)

Declared In
AMWorkflow.h

insertAction:atIndex:
Inserts the specified action at the specified position of the receiving workflow.

- (void)insertAction:(AMAction *)action atIndex:(NSUInteger)index

Parameters
action

The action to insert.

index
The position in the receiver at which to insert the action. If the position is invalid, this method does
nothing.

Discussion
The workflow retains the action but does not copy it.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 37
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

AMWorkflow Class Reference



Declared In
AMWorkflow.h

moveActionAtIndex:toIndex:
Moves the action from the specified start position to the specified end position in the receiving workflow.

- (void)moveActionAtIndex:(NSUInteger)startIndex toIndex:(NSUInteger)endIndex

Parameters
startIndex

The start position of the action to move.

endIndex
The end position for the action that is moved.

Discussion
If either index is invalid, this method does nothing.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflow.h

removeAction:
Removes the specified action from the receiver.

- (void)removeAction:(AMAction *)action

Parameters
action

The action to be removed.

Discussion
The action receives an AMAction closed message before being released.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflow.h

setInput:
Sets the input data that is passed to the first action in the workflow.

- (void)setInput:(id)input

38 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

AMWorkflow Class Reference



Parameters
input

The input for the first action in the workflow. Should be a data type the action can use, or a type that
can be converted to one the action can use.

Availability
Available in Mac OS X v10.5 and later.

See Also
– input (page 37)

Declared In
AMWorkflow.h

setValue:forVariableWithName:
Sets the value of the workflow variable with the specified name.

- (BOOL)setValue:(id)value forVariableWithName:(NSString *)variableName

Parameters
value

The value to set for the named variable.

variableName
The name of a variable to set the value for.

Return Value
YES if variableName was found and its value set; otherwise NO.

Discussion
This method does nothing if the variable specified by variableName is not found.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflow.h

valueForVariableWithName:
Returns the value of the workflow variable with the specified name.

- (id)valueForVariableWithName:(NSString *)variableName

Parameters
variableName

The variable name.

Return Value
The value for the variable. Returns nil if no variable is found with the specified name.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 39
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

AMWorkflow Class Reference



See Also
– setValue:forVariableWithName: (page 39)

Declared In
AMWorkflow.h

writeToURL:error:
Writes the workflow to the specified file.

- (BOOL)writeToURL:(NSURL *)fileURL error:(NSError **)outError

Parameters
fileURL

URL that specifies the file location to write the workflow to.

outError
If the workflow file can’t be written, upon return contains an instance of NSError that describes the
problem.

Return Value
YES if the workflow was successfully written; otherwise NO.

Discussion
You might want to save the workflow, for example, because you have made changes to a variable it contains.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setValue:forVariableWithName: (page 39)

Declared In
AMWorkflow.h

40 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

AMWorkflow Class Reference



Inherits from NSController : NSObject

Conforms to NSCoding (NSController)
NSObject (NSObject)

Framework /System/Library/Frameworks/Automator.framework

Availability Available in Mac OS X v10.5 and later.

Declared in Automator/AMWorkflowController.h

Companion guides Automator Programming Guide
Automator Framework Reference

Related sample code AutoSample

Overview

The AMWorkflowController class lets you manage an Automator workflow in your application. You use
the AMWorkflow class to instantiate a workflow and an instance of AMWorkflowView to display it.

A controller can run and stop a workflow and obtain information about its state. The controller’s delegate
can receive messages as the workflow is executed and its actions are run.

You can load and run a workflow with minimal overhead by using the AMWorkflow class method
runWorkflowAtURL:withInput:error: (page 35). When you use AMWorkflowController, you get
more control of the process, but there’s more work, as you must create and initialize both the workflow and
the workflow controller objects.

A workflow is run in a separate process so that any actions it contains are executed in a separate memory
space. That helps to insulate your application from crashes, memory leaks, or exceptions that might occur
from running the actions in a workflow.

Tasks

Accessing the Workflow

– setWorkflow: (page 45)
Sets the receiver's workflow.

Overview 41
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



– workflow (page 46)
Returns the receiver's workflow.

Accessing the Workflow View

– setWorkflowView: (page 45)
Sets the receiver's workflow view.

– workflowView (page 46)
Returns the receiver's workflow view.

Accessing the Delegate

– delegate (page 43)
Returns the receiver's delegate.

– setDelegate: (page 44)
Sets the receiver's delegate.

Controlling the Workflow

– canRun (page 43)
Returns a Boolean value that indicates whether the receiver's workflow is able to run.

– isRunning (page 44)
Returns a Boolean value that indicates whether the receiver's workflow is currently running.

– run: (page 44)
Runs the associated workflow, after first clearing any results stored by its actions during any previous
run.

– stop: (page 45)
Stops the associated workflow.

– workflowControllerWillRun: (page 48)  delegate method
Invoked when the workflow is about to run.

– workflowControllerDidRun: (page 48)  delegate method
Invoked after the workflow is run.

– workflowControllerWillStop: (page 48)  delegate method
Invoked when the workflow is about to stop.

– workflowControllerDidStop: (page 48)  delegate method
Invoked after the workflow stops.

Running an Action in the Workflow

– workflowController:didRunAction: (page 47)  delegate method
Invoked when an action in the receiver's workflow is finished running.

– workflowController:willRunAction: (page 47)  delegate method
Invoked when an action in the receiver's workflow is about to run.

42 Tasks
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



Errors Messages

– workflowController:didError: (page 46)  delegate method
Invoked when the receiver's workflow encounters an error.

Instance Methods

canRun
Returns a Boolean value that indicates whether the receiver's workflow is able to run.

- (BOOL)canRun

Return Value
YES if the controller’s workflow is able to run; NO otherwise.

Discussion
You might use this method to determine when to enable a “Run” button or other UI element you use to run
the workflow.

Availability
Available in Mac OS X v10.5 and later.

See Also
– isRunning (page 44)

Declared In
AMWorkflowController.h

delegate
Returns the receiver's delegate.

- (id)delegate

Return Value
The controller’s delegate.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setDelegate: (page 44)

Declared In
AMWorkflowController.h

Instance Methods 43
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



isRunning
Returns a Boolean value that indicates whether the receiver's workflow is currently running.

- (BOOL)isRunning

Return Value
YES if the controller’s workflow is currently running; NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

See Also
– canRun (page 43)

Declared In
AMWorkflowController.h

run:
Runs the associated workflow, after first clearing any results stored by its actions during any previous run.

- (IBAction)run:(id)sender

Parameters
sender

Object that initiated the run action.

Availability
Available in Mac OS X v10.5 and later.

See Also
– stop: (page 45)

Declared In
AMWorkflowController.h

setDelegate:
Sets the receiver's delegate.

- (void)setDelegate:(id)delegate

Parameters
delegate

The delegate object to set. This object will receive updates on the progress and state of the workflow
controller.

Availability
Available in Mac OS X v10.5 and later.

See Also
– delegate (page 43)

44 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



Declared In
AMWorkflowController.h

setWorkflow:
Sets the receiver's workflow.

- (void)setWorkflow:(AMWorkflow *)workflow

Parameters
workflow

A workflow object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– workflow (page 46)

Declared In
AMWorkflowController.h

setWorkflowView:
Sets the receiver's workflow view.

- (void)setWorkflowView:(AMWorkflowView *)view

Parameters
view

A workflow view object.

Availability
Available in Mac OS X v10.5 and later.

See Also
– workflowView (page 46)

Declared In
AMWorkflowController.h

stop:
Stops the associated workflow.

- (IBAction)stop:(id)sender

Parameters
sender

Object that initiated the stop action.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 45
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



See Also
– run: (page 44)

Declared In
AMWorkflowController.h

workflow
Returns the receiver's workflow.

- (AMWorkflow *)workflow

Return Value
The controller’s workflow.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setWorkflow: (page 45)

Declared In
AMWorkflowController.h

workflowView
Returns the receiver's workflow view.

- (AMWorkflowView *)workflowView

Return Value
The controller’s workflow view.

Availability
Available in Mac OS X v10.5 and later.

See Also
– setWorkflowView: (page 45)

Declared In
AMWorkflowController.h

Delegate Methods

workflowController:didError:
Invoked when the receiver's workflow encounters an error.

- (void)workflowController:(AMWorkflowController *)controller didError:(NSError 
*)error

46 Delegate Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



Parameters
controller

The controller object sending the message.

error
If a workflow error occurs, upon return contains an instance of NSError that describes the problem.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflowController.h

workflowController:didRunAction:
Invoked when an action in the receiver's workflow is finished running.

- (void)workflowController:(AMWorkflowController *)controller didRunAction:(AMAction
 *)action

Parameters
controller

The controller object sending the message.

action
The workflow action that ran.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflowController.h

workflowController:willRunAction:
Invoked when an action in the receiver's workflow is about to run.

- (void)workflowController:(AMWorkflowController *)controller willRunAction:(AMAction
 *)action

Parameters
controller

The controller object sending the message.

action
The workflow action that will run.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflowController.h

Delegate Methods 47
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



workflowControllerDidRun:
Invoked after the workflow is run.

- (void)workflowControllerDidRun:(AMWorkflowController *)controller

Parameters
controller

The controller object sending the message.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflowController.h

workflowControllerDidStop:
Invoked after the workflow stops.

- (void)workflowControllerDidStop:(AMWorkflowController *)controller

Parameters
controller

The controller object sending the message.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflowController.h

workflowControllerWillRun:
Invoked when the workflow is about to run.

- (void)workflowControllerWillRun:(AMWorkflowController *)controller

Parameters
controller

The controller object sending the message.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflowController.h

workflowControllerWillStop:
Invoked when the workflow is about to stop.

- (void)workflowControllerWillStop:(AMWorkflowController *)controller

48 Delegate Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



Parameters
controller

The controller object sending the message.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflowController.h

Delegate Methods 49
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



50 Delegate Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

AMWorkflowController Class Reference



Inherits from NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/Automator.framework

Availability Available in Mac OS X v10.5 and later.

Declared in Automator/AMWorkflowView.h

Companion guides Automator Programming Guide
Automator Framework Reference

Related sample code AutoSample

Overview

You use the AMWorkflowView class to provide viewing and editing of Automator workflows in your
application. You use an instance of AMWorkflow to instantiate a workflow and an instance of
AMWorkflowController to control its execution. Together, these three classes provide a
Model-View-Controller suite for working with workflows.

You can use Interface Builder to add an instance of AMWorkflowView to a window in your application. You
can then add an AMWorkflowController object to the nib window and use the controller’s workflowView
outlet to connect it to the workflow view. The controller object also has run and stop actions that can be
connected to buttons or other user interface elements.

Tasks

Configuring the Workflow View

– isEditable (page 52)
Returns a Boolean value indicating whether the workflow view is editable.

– setEditable: (page 52)
Sets whether the workflow view is editable.

Overview 51
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

AMWorkflowView Class Reference



– setWorkflowController: (page 52)
Sets the receiver’s controller to the passed workflow controller.

– workflowController (page 53)
Returns the receiver’s workflow controller.

Instance Methods

isEditable
Returns a Boolean value indicating whether the workflow view is editable.

- (BOOL)isEditable

Return Value
YES if the workflow view is editable, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflowView.h

setEditable:
Sets whether the workflow view is editable.

- (void)setEditable:(BOOL)flag

Parameters
flag

YES to make the workflow view editable, otherwise NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
AMWorkflowView.h

setWorkflowController:
Sets the receiver’s controller to the passed workflow controller.

- (void)setWorkflowController:(AMWorkflowController *)workflowController

Parameters
workflowController

The controller to set for the receiver.

52 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

AMWorkflowView Class Reference



workflowController
Returns the receiver’s workflow controller.

- (AMWorkflowController *)workflowController

Return Value
The receiver’s workflow controller, or nil if it doesn’t have a controller.

Instance Methods 53
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

AMWorkflowView Class Reference



54 Instance Methods
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

AMWorkflowView Class Reference



 

55
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Constants



56
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Constants



Framework: Automator.framework

Declared in Automator/AutomatorErrors.h

Overview

This document defines constants in the Automator framework that are not associated with a particular class.

Constants

Enumerations

NSError Codes
NSError codes in the Automator error domain.

enum {

    // Workflow errors
    AMWorkflowNewerVersionError = -100,
    AMWorkflowPropertyListInvalidError = -101,
    AMWorkflowNewerActionVersionError = -111,
    AMWorkflowOlderActionVersionError = -112,

    // Workflow runtime errors
    AMUserCanceledError = -128,

Overview 57
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Automator Constants Reference



    // Action errors
    AMNoSuchActionError = -200,
    AMActionNotLoadableError = -201,
    AMActionArchitectureMismatchError = -202,
    AMActionRuntimeMismatchError = -203,
    AMActionLoadError = -204,
    AMActionLinkError = -205,
    AMActionApplicationResourceError = -206,
    AMActionApplicationVersionResourceError = -207,
    AMActionFileResourceError = -208,
    AMActionLicenseResourceError = -209,
    AMActionRequiredActionResourceError = -210,
    AMActionInitializationError = -211,
    AMActionExecutionError = -212,
    AMActionExceptionError = -213,
    AMActionPropertyListInvalidError = -214,
    AMActionInsufficientDataError = -215,
    AMActionIsDeprecatedError = -216,

    // Data conversion errors
    AMConversionNotPossibleError = -300,
    AMConversionNoDataError = -301,
    AMConversionFailedError = -302
};

Constants
AMWorkflowNewerVersionError

Attempt to open a workflow document that was saved with a newer version of Automator.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMWorkflowPropertyListInvalidError
Attempt to open a workflow document whose property list (document.wflow) could not be read;
the property list document could be missing, damaged, or constructed improperly.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMWorkflowNewerActionVersionError
An action in a workflow is newer than the installed action; this error is presented to the user as a
warning.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMWorkflowOlderActionVersionError
An action in a workflow is older than the installed action; this error is presented to the user as a
warning.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

58 Constants
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Automator Constants Reference



AMUserCanceledError
The user cancelled. This error is the same as the AppleScript error userCanceledErr, defined in
MacErrors.h. When an Apple Event is canceled by the user, a running action may return this error.
Automator ignores the error and stops the workflow gracefully, without displaying the error to the
user.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMNoSuchActionError
The action could not be located on the system.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionNotLoadableError
The action's executable is of a type that is not loadable in the current process. If the action uses a
custom subclass of AMBundleAction or AMAppleScriptAction, then the most likely problem is
that the bundle's executable is missing or the NSPrincipleClass is not set in the Info.plist.
Users are likely to be confused by a “missing bundle” error, so Automator presents it as the more
generic “action not loadable” error.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionArchitectureMismatchError
The action's binary is not compatible with the current processor; actions compiled for PowerPC, for
example, would encounter this error on Intel systems.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionRuntimeMismatchError
An attempt was made to load an action that is not compiled in a way that is compatible with the
current application; for example, the action may be compiled for 32-bit applications or it may not be
compatible with garbage collection.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionLoadError
The action's executable failed to load; for example, there may have been a problem with a library it
depends on.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionLinkError
The action's executable failed to load due to linking issues.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionApplicationResourceError
An application required by the action is not found.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

Constants 59
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Automator Constants Reference



AMActionApplicationVersionResourceError
An application required by the action is the wrong version.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionFileResourceError
A file required by the action is not found.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionLicenseResourceError
A license required by the action was not found. The only license currently supported is QuickTime
Pro.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionRequiredActionResourceError
An action required by the action is not loaded.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionInitializationError
Automator is unable to initialize an action (reason unknown).

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionExecutionError
An action encounters an error while running.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionExceptionError
An action encounters an exception while running.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionPropertyListInvalidError
The property list (Info.plist) for an action is invalid; it could be missing, damaged, or constructed
improperly.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionInsufficientDataError
The action requires input data to run, but none was supplied.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionIsDeprecatedError
The action has been deprecated. Use a replacement action, if available.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

60 Constants
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Automator Constants Reference



AMConversionNotPossibleError
The converter determines that it is unable to convert from one data type to another. Not displayed
to the user.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMConversionNoDataError
The converter determines that a given conversion, though possible, would produce a nil result. Not
displayed to the user.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMConversionFailedError
Occurs when, for example, the converter encounters an error converting data from one type to another.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

Discussion
The constants in this enumeration are NSError code numbers in the Automator error domain
(AMAutomatorErrorDomain). You’ll obtain these error codes from the instances of NSError returned, for
example, by certain methods of AMWorkflow and AMWorkflowController. For related information, see
AMActionErrorKey (page 61).

Declared In
AutomatorErrors.h

Constants

Automator Constants
These constants are used in the Automator framework.

#define AMAutomatorErrorDomain @"com.apple.Automator"
#define AMActionErrorKey       @"AMActionErrorKey"

Constants
AMAutomatorErrorDomain

This constant defines the Automator error domain.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

AMActionErrorKey
Use this key to obtain, from the userInfo dictionary of an instance of NSError, a reference to the
action (class AMAction) that caused the error.

Available in Mac OS X v10.5 and later.

Declared in AutomatorErrors.h.

Declared In
AutomatorErrors.h

Constants 61
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Automator Constants Reference



62 Constants
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

Automator Constants Reference



This table describes the changes to Automator Framework Reference.

NotesDate

Added links for new Leopard classes and constants.2006-10-26

New links include Automator Constants Reference, as well as AMWorkflow Class
Reference, AMWorkflowController Class Reference, and AMWorkflowView Class
Reference.

63
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



64
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History



A

actions instance method 35
activated instance method 11
addAction: instance method 36
AMActionApplicationResourceError constant 59
AMActionApplicationVersionResourceError

constant 60
AMActionArchitectureMismatchError constant 59
AMActionErrorKey constant 61
AMActionExceptionError constant 60
AMActionExecutionError constant 60
AMActionFileResourceError constant 60
AMActionInitializationError constant 60
AMActionInsufficientDataError constant 60
AMActionIsDeprecatedError constant 60
AMActionLicenseResourceError constant 60
AMActionLinkError constant 59
AMActionLoadError constant 59
AMActionNotLoadableError constant 59
AMActionPropertyListInvalidError constant 60
AMActionRequiredActionResourceError constant

60
AMActionRuntimeMismatchError constant 59
AMAutomatorErrorDomain constant 61
AMConversionFailedError constant 61
AMConversionNoDataError constant 61
AMConversionNotPossibleError constant 61
AMNoSuchActionError constant 59
AMUserCanceledError constant 59
AMWorkflowNewerActionVersionError constant 58
AMWorkflowNewerVersionError constant 58
AMWorkflowOlderActionVersionError constant 58
AMWorkflowPropertyListInvalidError constant 58
Automator Constants 61
awakeFromBundle instance method 25

B

bundle instance method 25

C

canRun instance method 43
closed instance method 11

D

definition instance method 12
delegate instance method 43
didFinishRunningWithError: instance method 12

F

fileURL instance method 36

H

hasView instance method 25

I

ignoresInput instance method 13
initWithContentsOfURL:error: instance method

13, 36
initWithDefinition:fromArchive: instance method

14, 26
input instance method 37
inputFieldSeparator instance method 30
insertAction:atIndex: instance method 37
isEditable instance method 52
isRunning instance method 44

65
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

Index



M

moveActionAtIndex:toIndex: instance method 38

N

name instance method 14
NSError Codes 57

O

opened instance method 15
output instance method 15
outputFieldSeparator instance method 30

P

parameters instance method 26
parametersUpdated instance method 15

R

remapLineEndings instance method 30
removeAction: instance method 38
reset instance method 16
runAsynchronouslyWithInput: instance method 16
run: instance method 44
runWithInput:fromAction:error: instance method

17
runWorkflowAtURL:withInput:error: class method

35

S

script instance method 22
setDelegate: instance method 44
setEditable: instance method 52
setInput: instance method 38
setParameters: instance method 27
setScript: instance method 22
setValue:forVariableWithName: instance method

39
setWorkflow: instance method 45
setWorkflowController: instance method 52
setWorkflowView: instance method 45

stop instance method 18
stop: instance method 45

U

updateParameters instance method 18

V

valueForVariableWithName: instance method 39
view instance method 27

W

willFinishRunning instance method 18
workflow instance method 46
workflowController instance method 53
workflowController:didError:<NSObject> delegate

method 46
workflowController:didRunAction: <NSObject>

delegate method 47
workflowController:willRunAction: <NSObject>

delegate method 47
workflowControllerDidRun: <NSObject> delegate

method 48
workflowControllerDidStop: <NSObject> delegate

method 48
workflowControllerWillRun: <NSObject> delegate

method 48
workflowControllerWillStop:<NSObject> delegate

method 48
workflowView instance method 46
writeToDictionary: instance method 19
writeToURL:error: instance method 40

66
2006-10-26   |   © 2004, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX


	Automator Framework Reference
	Contents
	Introduction
	Part I: Classes
	AMAction Class Reference
	Overview
	Subclassing Notes

	Tasks
	Initialization and Encoding
	Controlling the Action
	Initializing and Synchronizing the Action User Interface
	Updating Action Parameters
	Getting Information About the Action

	Instance Methods
	activated
	closed
	definition
	didFinishRunningWithError:
	ignoresInput
	initWithContentsOfURL:error:
	initWithDefinition:fromArchive:
	name
	opened
	output
	parametersUpdated
	reset
	runAsynchronouslyWithInput:
	runWithInput:fromAction:error:
	stop
	updateParameters
	willFinishRunning
	writeToDictionary:


	AMAppleScriptAction Class Reference
	Overview
	Tasks
	Accessing the Script

	Instance Methods
	script
	setScript:


	AMBundleAction Class Reference
	Overview
	Subclassing Notes
	Methods to Override


	Tasks
	Initializing the Action
	Setting and Getting Action Properties

	Instance Methods
	awakeFromBundle
	bundle
	hasView
	initWithDefinition:fromArchive:
	parameters
	setParameters:
	view


	AMShellScriptAction Class Reference
	Overview
	Tasks
	Handling the I/O Separator Character

	Instance Methods
	inputFieldSeparator
	outputFieldSeparator
	remapLineEndings


	AMWorkflow Class Reference
	Overview
	Tasks
	Running a Specified Workflow
	Creating and Initializing a Workflow
	Saving Changes to a Workflow
	Getting Information About the Workflow
	Manipulating the Workflow’s Actions

	Class Methods
	runWorkflowAtURL:withInput:error:

	Instance Methods
	actions
	addAction:
	fileURL
	initWithContentsOfURL:error:
	input
	insertAction:atIndex:
	moveActionAtIndex:toIndex:
	removeAction:
	setInput:
	setValue:forVariableWithName:
	valueForVariableWithName:
	writeToURL:error:


	AMWorkflowController Class Reference
	Overview
	Tasks
	Accessing the Workflow
	Accessing the Workflow View
	Accessing the Delegate
	Controlling the Workflow
	Running an Action in the Workflow
	Errors Messages

	Instance Methods
	canRun
	delegate
	isRunning
	run:
	setDelegate:
	setWorkflow:
	setWorkflowView:
	stop:
	workflow
	workflowView

	Delegate Methods
	workflowController:didError:
	workflowController:didRunAction:
	workflowController:willRunAction:
	workflowControllerDidRun:
	workflowControllerDidStop:
	workflowControllerWillRun:
	workflowControllerWillStop:


	AMWorkflowView Class Reference
	Overview
	Tasks
	Configuring the Workflow View

	Instance Methods
	isEditable
	setEditable:
	setWorkflowController:
	workflowController



	Part II: Constants
	Automator Constants Reference
	Overview
	Constants
	Enumerations
	NSError Codes

	Constants
	Automator Constants




	Revision History
	Index
	A
	B
	C
	D
	F
	H
	I
	M
	N
	O
	P
	R
	S
	U
	V
	W



