
Dashboard Reference
Apple Applications > Dashboard

2009-02-04

Apple Inc.
© 2004, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Dashcode, Mac, Mac OS,
Objective-C, QuickTime, and Safari are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder and WebScript are trademarks of Apple
Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO

THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Dashboard Reference 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 7

Chapter 1 Widget Object 9

Properties 9
identifier 9
ondragstart 9
ondragend 10
onhide 10
onremove 10
onshow 10

Methods 11
openApplication 11
openURL 11
preferenceForKey 11
prepareForTransition 11
performTransition 12
setCloseBoxOffset 12
setPreferenceForKey 12
system 12

Chapter 2 Regions 15

Properties 15
-apple-dashboard-region 15

Parameters 15
dashboard-region 16
none 17

Chapter 3 Dashboard Info.plist Keys 19

Chapter 4 Widget Plug-in Interface 21

Methods 21
initWithWebView: 21
windowScriptObjectAvailable: 21

3
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

Document Revision History 23

4
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Tables

Chapter 1 Widget Object 9

Table 1-1 widget.system properties available during synchronous usage 13
Table 1-2 widget.system properties and methods available during asynchronous usage

13

Chapter 2 Regions 15

Table 2-1 dashboard-region() parameters 16

Chapter 3 Dashboard Info.plist Keys 19

Table 3-1 Custom property list keys 19

5
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

6
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

TABLES

This document contains reference material for creating Dashboard widgets. It documents the JavaScript
objects available to widgets and the interfaces used to configure and extend the behavior of a widget. It also
covers the Objective-C interface used to create widget plug-ins.

Who Should Read This Document?

Dashboard Reference is for any widget creator looking for detailed information about the various interfaces
available to widgets.

Organization of This Document

This document contains the following chapters:

 ■ “Widget Object” (page 9) describes the methods and properties of the Widget object—a JavaScript
object you use to manage widget-specific behavior.

 ■ “Regions” (page 15) describes the use of regions within your widget. Regions allow you to specify areas
for specific uses.

 ■ “Dashboard Info.plist Keys” (page 19) describes the custom and expected keys to include in your widget’s
information property list file.

 ■ “Widget Plug-in Interface” (page 21) describes the interface used to create custom plug-ins for your
widget.

See Also

For an introduction to Dashboard widgets, see “Widget Basics” in Dashboard Programming Topics. Read the
other articles in Dashboard Programming Topics for information on the various technologies available to
widget developers. To learn how to use Dashcode to create widgets, see Dashcode User Guide.

For more information on the HTML, CSS, and JavaScript capabilities found in WebKit, the technology behind
Dashboard widgets, consult:

 ■ Safari HTML Reference

 ■ Safari CSS Reference

 ■ WebKit DOM Reference

Who Should Read This Document? 7
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Dashboard Reference

8 See Also
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Dashboard Reference

The Widget object is a JavaScript object that provides Dashboard-specific extensions. When your widget is
loaded, Dashboard automatically creates an instance of this object for use in the JavaScript code of your
widget. The name of this instance is widget.

Note: The properties and methods found in this chapter are those supported by Apple for developing
widgets. Any widget properties and methods not found here are subject to change without notice.

Properties

The following sections describe the properties of the Widget object.

identifier

Contains a unique identifier for this instance of the widget.

widget.identifier

This read-only property contains a string value that is unique among all of the instances of a single widget.
This value is assigned by Dashboard and persists between instantiations of each widget instance.

Note: The identifier property should not be confused with the CFBundleIdentifier property list key,
which is described in “Dashboard Info.plist Keys” (page 19). The value of the CFBundleIdentifier property
list key is used to differentiate between widgets from different projects, not between different instances of
the same widget.

ondragstart

Contains the event handler to be called upon the start of a widget drag.

widget.ondragstart

Assign a function to this property if you want to be notified when your widget has begun a drag. You use
this function to change your widget’s user interface while it is being dragged. Your function declaration
should look like the following:

function MyDragStartHandler() { ... }

Properties 9
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Widget Object

ondragend

Contains the event handler to be called upon the finish of a widget drag.

widget.ondragend

Assign a function to this property if you want to be notified when your widget has ended a drag. You use
this function to change your widget’s user interface after it has been dragged. Your function declaration
should look like the following:

function MyDragEndHandler() { ... }

onhide

Contains the event handler to be called when the Dashboard layer is hidden.

widget.onhide

Assign a function to this property if you want to be notified when your widget is hidden. You use this function
to deactivate your widget and put it into a quiescent state. Your function declaration should look like the
following:

function MyHiddenHandler() { ... }

onremove

Contains the function to be called when your widget is removed from the Dashboard layer.

widget.onremove

Assign a function to this property if you want to be notified when your widget is removed from the Dashboard
layer. Upon receiving this event, your widget should perform any necessary cleanup operations, such as save
its preferences, remove cache files, and release any resources it currently holds. Your function declaration
should look like the following:

function MyRemoveHandler() { ... }

onshow

Contains the function to be called when the Dashboard layer is shown.

widget.onshow

Assign a function to this property if you want to be notified when your widget is shown. You use this function
to activate your widget and begin processing data again after being quiescent. Your function declaration
should look like the following:

function MyShowHandler() { ... }

10 Properties
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Widget Object

Methods

The following sections describe the methods of the Widget object.

openApplication

Launches the application with the specified bundle identifier.

widget.openApplication(bundleId)

Use this method to launch the application indicated by bundleId on the target system. Calling this method
dismisses the Dashboard layer.

openURL

Opens the specified URL in the user’s preferred browser.

widget.openURL(url)

This method opens the specified URL and dismisses the Dashboard layer. This method does not permit the
opening of URLs that use the file: scheme unless the AllowFileAccessOutsideOfWidget key is set in
the widget’s information property list file.

preferenceForKey

Returns the preference associated with the specified key.

widget.preferenceForKey(key)

Use this method to retrieve a preference value previously stored with a call to setPreferenceForKey. The
method returns a string with the contents of the preference, or undefined if no such preference exists.

prepareForTransition

Notifies Dashboard that you are about to perform a transition to or from its reverse side.

widget.prepareForTransition(transition)

This method prepares your widget for either showing or hiding its reverse side.

Passing the string “ToBack” for transition disables screen updates within your widget’s user interface so
that you can prepare it for displaying your widget’s reverse side. Passing the string “ToFront” for transition
freezes your widget’s user interface so that you can prepare it for displaying the main contents again. When
your HTML layers are ready, call performTransition to display them.

Methods 11
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Widget Object

performTransition

Runs an animation to toggle between your widget’s reverse and contents.

widget.performTransition()

You call this method after first calling prepareForTransition, which indicates whether you are displaying
your widget’s reverse side or contents. When you call performTransition, Dashboard begins an animation
that makes the widget appear to flip over and display the new content.

Prior to calling this method, you should also adjust the style sheet properties of your HTML to reflect the
change in what is about to be displayed. For example, before calling this method to show your reverse side,
you should show the HTML elements associated with your reverse side and hide those elements associated
with your widget’s contents.

setCloseBoxOffset

Changes the location of the widget close box.

widget.setCloseBoxOffset(x, y)

Use this method to move your widget’s close box. This method centers the close box x pixels from the left
edge of the widget and y pixels down from the top of the widget. Only values between 0 and 100 are allowed
for x and y.

setPreferenceForKey

Associates a preference with the given key.

widget.setPreferenceForKey(preference, key)

The preference and key parameters contain strings representing the preference you want to store and
the key with which you want to associate it. Specifying null for the preference parameter removes the
specified key from the preferences.

Preferences saved using setPreferenceForKey are saved as clear text and therefore are not recommended
for saving passwords or other sensitive information.

system

Executes a command-line utility.

widget.system(command, endHandler)

The command parameter is a string that specifies a command utility to be executed. It should specify a full
or relative path to the command-line utility and include any arguments. For example:

widget.system("/usr/bin/id -un", null);

12 Methods
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Widget Object

The endHandler parameter specifies a handler to be called when the command has finished executing. If
NULL, the entire method is run synchronously, meaning that all execution inside the widget halts until the
command is finished. When running synchronously, these options are available:

Table 1-1 widget.system properties available during synchronous usage

UsageDefinitionProperty

var output =
widget.system("/usr/bin/id -un",
null).outputString;

The output of the command, as placed
on stdout.

outputString

var error = widget.system("/usr/bin/id
-un", null).errorString;

The output of the command, as placed
on stderr.

errorString

var status = widget.system("/usr/bin/d
-un", null).status;

The exit status of the command.status

If endHandler is specified, the command is run asynchronously, meaning that the command runs concurrently
and the handler is called when execution is finished. When run asynchronously, widget.system returns an
object that can be saved and used to perform other operations upon the command:

Table 1-2 widget.system properties and methods available during asynchronous usage

DescriptionPurposeOption

The current string written to stdout (standard output) by
the command.

Propertycommand.outputString

The current string written to stderr (standard error output)
by the command.

Propertycommand.errorString

The command’s exit status, as defined by the command.Propertycommand.status

A function called whenever the command writes to stdout.
The handler must accept a single argument; when called,
the argument contains the current string placed on stdout.

Event Handlercommand.onreadoutput

A function called whenever the command writes to stderr.
The handler must accept a single argument; when called,
the argument contains the current string placed on stderr.

Event Handlercommand.onreaderror

Cancels the execution of the command.Methodcommand.cancel()

Writes a string to stdin (standard input).Methodcommand.write(string)

Closes stdin (EOF).Methodcommand.close()

Note: To use widget.system, you need to set the AllowSystem key in your Info.plist. For more
information, see “Dashboard Info.plist Keys” (page 19).

Methods 13
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Widget Object

14 Methods
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Widget Object

Regions are CSS properties that you use to set bounds. Currently, Dashboard specifies only one type of region,
a control region. Specifiying a control region means that if a user attempts to drag a widget from within a
specified region, the drag will not occur and the widget will not move.

Regions come in two shapes: rectangles and circles. Any combination of these shapes is allowed, letting you
create complex control regions for use with odd shapes.

Once you have defined a region within a style element, you need to wrap an element within your markup
with that style. For instance, a control region definition may look like this:

.control-circle-example {
 ...
 -apple-dashboard-region: dashboard-region(control circle 5px 5px 5px 5px);
 ...
}

Now that you’ve defined a style, you need to apply it to an element:

<div class="control-circle-example"></div>

Properties

The following property is defined for use when specifying regions within a widget.

-apple-dashboard-region

Specifies the property to be defined.

-apple-dashboard-region:

This property tells Dashboard that you are about to specify a region. Without any parameters, this property
does nothing. As parameters to this method, you need to specify regions using the dashboard-region
parameter.

Parameters

The following parameters are defined for use when specifying regions within a widget.

Properties 15
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Regions

dashboard-region

Specifies the type and bounds of a region.

dashboard-region(label, geometry-type)
dashboard-region(label, geometry-type, offset-top, offset-right, offset-bottom,
 offset-left)

This parameter function is used in conjunction with the -apple-dashboard-region property. It specifies
a region’s bounds and type, in function form. Table 2-1 (page 16) shows the values expected by the
dashboard-region parameter.

Table 2-1 dashboard-region() parameters

DescriptionParameter

Required; specifies the type of region being defined; control is the only used value.label

Required; specifies the shape of the region, either circle or rectangle.geometry-type

Optional; specifies the offset from the top of the wrapped area from where the defined
region should begin, in pixels. Negative values not allowed.

offset-top

Optional; specifies the offset from the right of the wrapped area from where the defined
region should begin, in pixels. Negative values not allowed.

offset-right

Optional; specifies the offset from the bottom of the wrapped area from where the
defined region should begin, in pixels. Negative values not allowed.

offset-bottom

Optional; specifies the offset from the left of the wrapped area from where the defined
region should begin, in pixels. Negative values not allowed.

offset-left

If you specify circle for the geometry-type parameter, the control region created is centered in between
the specified offsets (or the edges of the region, if no offsets are provided). Of the circle region’s width and
height (which ideally should be equal), the resulting control region’s diameter is the smaller value.

When using the offset parameters, you either provide values for all four offsets or none of them. Note that
if you do not specify values for the offset parameters, a default value of 0 is used for each of them.

You can chain multiple dashboard-region parameters together in one apple-dashboard-region
property declaration, allowing you to create complex-shaped regions:

.equals-button-example {
 ...
 -apple-dashboard-region:
 dashboard-region(control circle 0px 0px 80px 0px)
 dashboard-region(control rectangle 10px 0px 10px 0px)
 dashboard-region(control circle 80px 0px 0px 0px);
 ...
}

Some elements have control regions assigned to them by default:

 ■ button

16 Parameters
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Regions

 ■ input

 ■ select

 ■ textarea

Whenever you use one of these elements you do not need to manually specify a control region them. The
region specified on these elements extend to their edges:

 button, input, select, textarea {
 -apple-dashboard-region:dashboard-region(control rectangle);
}

none

Removes any regions on an element.

none

Setting the -apple-dashboard-region property to none removes any region applied to an element.

Parameters 17
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Regions

18 Parameters
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Regions

Dashboard widgets provide information to the system and to Dashboard through the use of an information
property list (Info.plist) file. The keys in a widget’s information property list file identify the type of the
bundle and the location of the widget’s main HTML file

Table 3-1 lists the custom keys associated with all widgets. Dashboard uses these keys to configure the widget
and prepare it for display. To learn more about using these keys in a widget, including a sample Info.plist
file that you can base your own widget's Info.plist file off of, read Widget Basics in Dashboard Tutorial.

Table 3-1 Custom property list keys

DescriptionTypeKey

Optional; specify if your widget requires access to the file system
outside of your widget. Access is limited by the user’s permissions.

BooleanAllowFileAccess-
OutsideOfWidget

Optional; specify if your widget requires access to the file system,
WebKit and standard browser plug-ins, Java applets, network
resources, and command-line utilities.

BooleanAllowFullAccess

Optional; specify if your widget requires access to WebKit and
standard browser plug-ins, such as QuickTime.

BooleanAllowInternetPlugins

Optional; specify if your widget requires access to Java applets.BooleanAllowJava

Optional; specify if your widget requires access to any resources
that are not file-based, including those acquired through the
network.

BooleanAllowNetworkAccess

Optional; specify if your widget requires access to command-line
utilities using the widget script object.

BooleanAllowSystem

Optional; specify if your widget uses the Apple-provided JavaScript
classes known as Apple Classes in a backward compatible way. See
Introduction to the Apple Classes for more information.

BooleanBackwardsCompatible-
ClassLookup

Optional; the offset for the location of the widget close box on the
x-axis. Positive values move toward the right. Must be between 0
and 100.

NumberCloseBoxInsetX

Optional; the offset for the location of the widget close box on the
y-axis. Positive values move toward the bottom. Must be between
0 and 100.

NumberCloseBoxInsetY

Optional; contains an array of strings. Each string is the name of a
font included within the widget bundle, located at its root.

ArrayFonts

19
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Dashboard Info.plist Keys

DescriptionTypeKey

Optional; contains a number value indicating the height of the
widget, measured in pixels.

NumberHeight

Required; contains a string with the relative path to the widget’s
main HTML file. This file is the implementation file of the widget.

StringMainHTML

Optional; contains a string with the name of a custom plug-in used
by the widget. Plug-ins are located inside the widget bundle.

StringPlugin

Optional; contains a number value indicating the width of the
widget, measure in pixels. This key is optional.

NumberWidth

In addition to the preceding keys, the following keys are required and should be included in your widget’s
information property list file:

 ■ CFBundleIdentifier

 ■ CFBundleName

 ■ CFBundleDisplayName

You may also include other keys such as CFBundleVersion or other keys that provide information to entities
such as the Finder. For detailed descriptions of how these keys are used, see Property List Key Reference in
Runtime Configuration Guidelines in Mac OS X Documentation.

20
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Dashboard Info.plist Keys

If you want to define a custom plug-in to use with a widget, the principal class of your plug-in must support
the Widget Plug-in interface. This interface provides basic initialization support for your plug-in code along
with access to the web view of your widget. You can also use this interface to register custom JavaScript
objects for use by your widget code.

While the Widget Plug-in interface is required of all widget plug-ins, implementing the optional WebScripting
protocol provides you with the ability to bridge data between your plug-in's native code and your widget's
JavaScript code. Learn more about the WebScripting protocol by reading Using Objective-C From JavaScript
and WebScripting.

Methods

The following sections describe the methods of the Widget Plug-in interface.

initWithWebView:

Default initializer for your plug-in.

- (id) initWithWebView:(WebView*)webView

Use this method to perform basic initialization of your widget’s principal class. The webView parameter
contains the view object used to display the widget contents. This method is called before your widget’s
HTML page is fully loaded.

If you need to do additional initialization after your plug-in is loaded, you should expose a method from your
plug-in object to perform that initialization. You can then call that method from the onload event handler
of your widget’s HTML page. See “windowScriptObjectAvailable:” (page 21) for information on how to create
a bridge between your Objective-C classes and JavaScript.

Implementation of this method is required.

windowScriptObjectAvailable:

Indicates that a scriptable object is now available.

- (void) windowScriptObjectAvailable:(WebScriptObject *) windowScriptObject

This method notifies you that the window scripting object is available for your use. You can use this method
to expose your Objective-C classes as JavaScript objects so that they can be accessed by your widget code.

Methods 21
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Widget Plug-in Interface

Note: The objects you expose to JavaScript using this technique may conform to the WebScripting interface
of WebKit, which is available in Mac OS X version 10.4. WebKit uses the methods of this interface to allow
you to control which methods you expose from your Objective-C class. For more information, see “Using
Objective-C From JavaScript” in WebKit DOM Programming Topics.

When your plug-in receives the windowScriptObjectAvailable: message, call the setValue:forKey:
method of windowScriptObject to associate your Objective-C object (the value) with the object name
JavaScript clients should use.

The following example registers an instance of the MyScriptObject class:

- (void) windowScriptObjectAvailable:(WebScriptObject *) scriptObj
{
 MyScriptObject* myObj = [[MyScriptObject* alloc] init];

 [scriptObj setValue:myObj forKey:@"MyScriptObj"];
}

After you publish your object in this manner, you can refer to it in JavaScript code by the name you gave it.
From the preceding example, if the object exposed a method called finishInitialization, you could
call that method using the following JavaScript code:

function MyWebPageLoadHandler()
{
 if (MyScriptObj)
 {
 MyScriptObj.finishInitialization();
 }
...
}

22 Methods
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Widget Plug-in Interface

This table describes the changes to Dashboard Reference.

NotesDate

Made minor corrections.2009-02-04

Fixed description of the Fonts Info.plist key; clarified definition of widget
identifier.

2008-10-15

Revised descriptions on Info.plist keys.2006-05-23

Added information about Apple Classes-related Info.plist keys and links to more
documentation about the WebScripting protocol.

2006-01-10

Added links to Safari Reference documentation and clarified acceptable close
box inset Info.plist values, close box offset parameter values, and saved
preference security.

2005-07-07

Revised Info.plist key and Dashboard Region information.2005-05-20

Revised explanation for the Widget object and added link for additional
documentation for the Webscripting protocol .

2005-04-29

Updated for public release of Mac OS X v10.4. First public version.

Includes revised Widget object, Info.plist, and Dashboard region reference.2004-11-18

Updated Info.plist chapter and widget.onshow/onhide definitions.

Updated Widget object reference. Relocated WebKit Canvas Extension chapter
to Safari JavaScript Reference.

2004-11-02

Updated Canvas, Info.plist, and Widget object reference and added Regions
chapter. Renamed document to Dashboard Reference.

2004-10-04

First version of Dashboard Developer Reference.2004-06-28

23
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

24
2009-02-04 | © 2004, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Dashboard Reference
	Contents
	Tables
	Introduction
	Widget Object
	Properties
	identifier
	ondragstart
	ondragend
	onhide
	onremove
	onshow

	Methods
	openApplication
	openURL
	preferenceForKey
	prepareForTransition
	performTransition
	setCloseBoxOffset
	setPreferenceForKey
	system

	Regions
	Properties
	-apple-dashboard-region

	Parameters
	dashboard-region
	none

	Dashboard Info.plist Keys
	Widget Plug-in Interface
	Methods
	initWithWebView:
	windowScriptObjectAvailable:

	Revision History

