
iMovie Plug-ins
(Legacy)

Apple Applications > iMovie

2007-09-04

Apple Inc.
© 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, iMovie, and Mac are
trademarks of Apple Inc., registered in the
United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 iMovie Plug-ins 7

Plug-in Overview 8
Loading plug-ins 8
Initialization Phase 9

Enabling User Interface Elements 10
Processing Phase 11

Drawing 11
Working With Clips 12
Working With Thumbnails 12
Working With Saved Files 12
The HYPluginGetInfo Data Structure 12
Video Standards: PAL versus NTSC 14
Video Compression Quality 14
API Release Versions 14

Termination phase 15
Result Codes 15

Title Plug-ins 16
Enabling User Interface Elements 16
Obtaining User’s Direction Choice 17
Justifying Text 17
The HYPluginTitleInfo Structure 18

Transition Plug-ins 19
Obtaining User’s Direction Choice 19

Effect Plug-ins 20
Enabling User Interface Elements 20

3
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

4
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Chapter 1 iMovie Plug-ins 7

Table 1-1 Valid plug-in type constants 10
Table 1-2 Plug-in choice flag constants 10
Table 1-3 Fields in HYPluginGetInfo 12
Table 1-4 Fields in HY2PluginGetInfo (Corresponds to version 2 of the iMovie API.) 13
Table 1-5 Fields in HY3PluginGetInfo (Corresponds to version 3 of the iMovie API.) 14
Table 1-6 Fields in HY4PluginGetInfo (Corresponds to version 4 of the iMovie API.) 14
Table 1-7 iMovie application and API version designations 15
Table 1-8 Result codes in iMovie 15
Table 1-9 Ttile pane plug-in choice flag constants 16
Table 1-10 Effects pane plug-in choice flag constants 20
Listing 1-1 Main entry prototype 8
Listing 1-2 HYPluginTitlePair structure 16
Listing 1-3 HYPluginTitleInfo structure 18
Listing 1-4 HY2PluginTitleInfo structure 18
Listing 1-5 HY4PluginTitleInfo structure 19
Listing 1-6 HYPluginTransitionInfo structure 19
Listing 1-7 HY2PluginTransitionInfo structure 20

5
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

6
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

TABLES AND LISTINGS

Important: The information in this document is obsolete and should not be used for new development.

In addition to the basic movie editing capabilities such as cutting, adding, and rearranging frames, iMovie
provides access to a number of enhancements such as titles, effects, and transitions. For example, in the
Titles pane, the user can enter title text and pick from various title treatments, as shown below.

These enhancements are provided by plug-ins that use the plug-in architecture built into iMovie. For example,
as shown in the figure above, the user might enter a movie title and select Flying Words. Clicking Preview
would then cause iMovie to start the Flying Titles plug-in, which would then render the title frames in the
iMovie monitor.

These enhancements are provided by plug-ins that use the plug-in architecture built into iMovie. For example,
as shown in figure 1, the user might enter a movie title and select Flying Words. Clicking Preview would then
cause iMovie to start the Flying Titles plug-in, which would then render the title frames in the iMovie monitor.

iMovie provides support for plug-ins as well as an application programming interface (API) that allows you
to write your own plug-ins. The plug-in architecture allows you to take advantage of the built-in user interface
elements such as directional buttons common to many plug-ins, and it allows you to add UI elements required
by your plug-in.

7
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

At startup, iMovie finds and loads all valid plug-ins. After successfully loading a plug-in, iMovie communicates
with it only when necessary. This communication starts when the user selects a service from the menu in
the Titles, Transitions, or Effects pane .

From the perspective of the plug-in, this communication typically takes place during a session that includes
three phases: initialization, processing, and termination. There can be multiple instances of a single plug-in
(for example, rendering instances, in-line proxies in the iMovie that can be ”played through”, and preview
instances). All three phases are performed for each plug-in instance.

Note that you can attach data to the instance pointer using the API, but be very careful about GLOBAL data
because of re-entrancy issues (several instances may start before any of them finish).

The following sections provide details of how you write a plug-in to communicate properly with iMovie.

Plug-in Overview

A plug-in must be a bundle or shared library with a single entry point, which should be compiled as main.
The main entry prototype is HYPluginMainProcPtr:

Listing 1-1 Main entry prototype

typedef HYPluginResult (*HYPluginMainProcPtr) (short which, HYPluginParams
*params);

iMovie passes the plug-in a selector in the selector field of the HYPluginParams structure. The plug-in must
then perform the appropriate action for that selector. Three selectors of particular note are kPlugInitialize,
kPlugDoFrame, and kPlugTerminate, which correspond respectively to the initialization, processing, and
termination phases introduced above.

The whichparameter identifies the item the user has chosen by name from the menu. Menu name functionality
is described in detail in the section “Loading plug-ins” (page 8).

iMovie creates an opaque pointer, HYPluginInstance, that it uses to track the plug-in. If, for example, the
user has created several simultaneously rendering effects based on a single plug-in, iMovie uses the
HYPluginInstance to differentiate between the plug-in instances rendering those effects. The
HYPluginInstance may be passed to the plug-in. The plug-in is expected to preserve it unchanged and
possibly to return it in some of the API calls.

Loading plug-ins

When iMovie starts, it looks in the iMovie Plugins folder for plug-in bundles or files, as identified by their
creator, 'Hway' and type:

 ■ 'titl', for title plug-ins

 ■ 'trans', for transition plug-ins

 ■ 'filt', for effects plug-ins

Constants for these creator and type values are as follows:

8 Plug-in Overview
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

kPluginFileCreator ' Hway'

kPluginTitleFileType 'titl'

kPluginTransitionFileType 'tran'

kPluginFilterFileType 'fltr'

When your plug-in is identified by its type and creator, it must check its compatibility with the current version
of iMovie. If it is not compatible, it must return an error code, upon receipt of which, iMovie will discontinue
loading the plug-in. For further version information, see the section “API Release Versions” (page 14).

If the plug-in reports itself to be compatible, it must pass iMovie a string with one or more menu names to
be presented in the menus to identify the services your plug-in can provide for the user. The name string is
in KResMenuNames, a STR# resource with ID 16000.

Note that the ability to use multiple names allows you to provide multiple services within a single plug-in.
If your plug-in takes advantage of this facility, it must be able to recognize any of its names and perform the
service associated with that name.

As part of the calling sequence, the index of the selected menu name in the STR# resource is passed to the
plug-in in the which parameter. The plug-in uses this index to identify and perform the appropriate service.
For example, the services Flying Letters and Flying Words, shown in the menu in figure 1, are provided by
the Flying Titles plug-in. These two services, then, correspond to indexes of 0, and 1, and the menu names
for those services are retrieved from the STR# resource using those resource indices.

A STR# resource of ID 18000, identified by the constant kResGroupNames, must be created to provide for
group names, to allow the future possibility of grouping related menu names into sub-menus. Although
group names are not currently used, it is recommended that your plug-in provide this string. For example,
you might want to provide a short version of your company name.

A STR# resource of ID 15000, identified by the constant kResProgrammerNames, must be created to allow
for a file to be associated with the specific plug-in servicethat created it. See “Processing Phase” (page 11)for
more detail.

Initialization Phase

Much of the communication between iMovie and your plug-in during the initialization phase is accomplished
by passing settings information in a predefined HYPluginGetInfo structure. See “The HYPluginGetInfo
Data Structure” (page 12), for more detail on this structure.

When the user selects a service from the menu in the Titles, Transitions, or Effects pane, iMovie calls the
plug-in with the kPlugGetInfo selector. It is assumed that the plug-in has set the information in the
HYPluginGetInfo data structure identified by HYPluginParams.getInfo. If, for some reason, the plug-in cannot
run, it can return an error code and/or fill in 0 for the framesToBeRendered field of the HYPluginGetInfo
structure.

A plug-in informs iMovie as to what type it is by setting HYPluginGetInfo.pluginType to one of the type
constants shown in Table 1-1.

Initialization Phase 9
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

Table 1-1 Valid plug-in type constants

NotesConstant name

Value: 0. Default value—no valid plug-in available.kPluginUnknownType

Value: 101. A title plug-inkPluginTitleType

An effect plug-inkPluginFilterType

A transition performed between two clipskPluginTransitionBetweenType

A transition performed before the current clipkPluginTransitionBeforeType

A transition performed after the current clipkPluginTransitionAfterType

A transition is considered to be one of three types: before, between, or after. A between-type transition, the
most common type, is displayed between two clips. An example of a before-type transition is a fade-in; it is
displayed before the clip it fades in (and doesn’t require another clip in front of it). A fade-out is an example
of an after-type transition.

iMovie then calls the plug-in with the kPlugInitialize selector. At this time the plug-in should set up any
required data structures. The plug-in can attach arbitrary data to the HYPluginParams structure using the
pointer in that structure’s clientData field. That pointer is then returned with each subsequent call. The plug-in
is responsible for destroying such data during the termination phase of the session.

Enabling User Interface Elements

Part of the initialization phase is to set the default state of the user interface (UI) elements in the plug-in
pane. The plug-in sets plug-in choice flags (HYPluginGetInfo.pluginFlags) to specify user interface
elements to be enabled to accept user data, settings, and selections. Plug-in choice flags applicable to the
Title, Transition, and Effects panes are shown in Table 1-2. (Flags for UI elements specific to a plug-in type
are described below in a section for that plug-in type.)

Table 1-2 Plug-in choice flag constants

NotesConstant name

Value: 1L. Enable up and down buttonskPluginChoiceVertical

Value: 2L. Enable left and right buttonskPluginChoiceHorizontal

Value: 4L. Enable speed sliderkPluginChoiceSpeed

Value: 7L. Enable up, down, left, right buttons and speed sliderkPluginChoiceAll

Value: 5L. Enable up, down buttons and speed sliderPLUGIN_COMBO_VERTICAL

Value: 6L. Enable left, right buttons and speed sliderPLUGIN_COMBO_HORIZONTAL

PLUGIN_COMBO_NOMOTION

Value: 1024L. Enable X,Y coordinate selection.kPluginChoiceXYLocation

10 Initialization Phase
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

Directional Arrows

The arrows in the directional button cluster on the left side in the Title, Transition, and Effects panes are
enabled using the vertical and horizontal plug-in choice flags listed in Table 1-2 (page 10). They can be ORed
together to achieve the desired combinations.

X,Y Location

If the plug-in enables the XYLocation flag, the iMovie small preview rectangle provides a cross-hair that the
user can drag to specify an XY location. This feature was introduced in iMovie 2.1.1 and is ignored by prior
versions

Processing Phase

The processing phase is when the plug-in does most of its work. iMovie controls the processing phase through
a loop that calls the plug-in as many times as necessary, as specified by the value of
HYPluginGetInfo.framesToBeRendered. These calls are made with the kPlugDoFrame selector, and
with each call HYPluginParams.renderFrame is updated. The value of the first frame in the movie,
HYPluginParams.startFrame, is expressed in global frame numbers. The value of renderFrame is a
zero-based index relative to startFrame. This approach allows the plug-in to request frames relative to the
current frame using the callbacks (for example, the previous frame would be renderFrame-1. The value of
HYPluginParams.frameCount gives the plug-in the total number of frames to render. Thus, renderFrame
can range from 0 to frameCount.

The plug-in can call back into iMovie using a variety of procedures that are provided through the
HYPluginParams.procs pointer. These include procedures for drawing, working with frames, clips, and
movies, and so forth. Memory allocation should be done through these procedure pointers, so that iMovie
can keep track of plug-in memory use. See the HYPluginProcs.h header file for the details and prototypes.

Drawing

With each kPlugDoFrame call, iMovie passes a pointer (in HYPluginParams.frame) to a gWorld that
contains the current (uncompressed) frame of video. The plug-in performs its service and draws into the
gWorld before returning. For example, an effect might use the GetFrame callback to get the pixels for its
starting frame, perform its calculations, and then draw into the gWorld before returning. In the less complicated
example of a title, for which only the current frame is of interest, the plug-in might simply compute the X,Y
location based on the frame number, and draw some text into the gWorld.

It is important to note that the plug-in may be asked to draw in an arbitrary GWorld with a rectangle.
Consequently, the scale of text is not fixed, but should be computed relative to the size of the rectangle. For
example, the plug-in may be called to preview its results in the large video window, in a small preview
window, or even in a thumbnail during rendering. The plug-in must also not assume that the rectangle passed
starts at 0,0

Any frame may be drawn at any time; the plug-in must be able to draw frame N without having drawn frame
N-1. This is so that arrow keys may be used to go forward and back in Preview mode, for example.

The plug-in can call GetFramewith arbitrary frame numbers relative to startFrame, but the requested frames
may or may not exist.

Processing Phase 11
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

iMovie creates an opaque pointer, HYFrameCookie, to keep track of a frame as it goes to and from the
plug-in. The plug-in is expected to preserve this pointer unchanged and possibly to return it in some of the
API calls.

Working With Clips

iMovie passes back the HYPluginClipInfo structure when the plug-in makes the GetClipInfo callback.
This structure allows the plug-in to determine settings for a clip such as the clip name, its audio volume, and
whether it has a fade-in or fade-out. The plug-in can change some of such settings and then pass them back
in with SetClipInfo.

The HY2PluginClipInfo structure was introduced in iMovie version 2.0 to extend HYPluginClipInfo.
This structure contains settings for reverse play, frame speed, and length (in frames) of a fade-in or fade-out.

Note: There is currently no reliable way for the plug-in to find another whole clip.

Working With Thumbnails

The plug-in should set HYPluginGetInfo.bestThumbOffset to specify which frame is to be used for a
thumbnail. Consider, for example, a title that scrolls on-screen; the first frame would contain no visible text.
One simple approach might be to set bestThumbOffset to the middle frame (derived from
HYPluginGetInfo.frameCount).

Working With Saved Files

The plug-in must specify a programmer name (as described above in the section “Initialization Phase”) to
allow iMovie to associate the plug-in with a rendered file (title, transition, filter) created by that plug-in. These
names are stored in the iMovie project file and are also loaded into the record stored in the menu so the
application can select the proper plug-in if the user selects an existing rendered file.

The HYPluginGetInfo Data Structure

The plug-in provides setup information to iMovie primarily through the HYPluginGetInfo data structure,
which includes the fields shown in Table 1-3 (page 12).

Table 1-3 Fields in HYPluginGetInfo

NotesField Name

Either a transition or a titlepluginType

Either single-pair, multi-pair, or blocktitleType

Settings for speed, direction, font, color, etc.pluginFlags

Plug-in returns to iMovie based on settings in UIframesToBeRendered

12 Processing Phase
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

NotesField Name

Frames to be taken from previous clip for renderingtakeFromClipBefore

Frames to be taken from next clip for renderingtakeFromClipAfter

Left endpoint of Speed sliderminSpeedFrames

Right endpoint of Speed slidermaxSpeedFrames

Allow/disallow consuming frames of multiple clipsmustTakeFromSingleClips

Best frame for making thumbnailbestThumbOffset

For when color choice is not supporteddefaultColor

Default direction (up, down, left, right)defaultDirection

Justification for current direction settingsjustify

Default fontdefaultFontNum

Not currently useddefaultFontSize

The size of this structure is fixed. The functionality of the structure has been extended through the addition
of the HY2PluginGetInfo for version 2 of the API (as shown in Table 1-4 (page 13)), HY3PluginGetInfo
for version 3 of the API, as shown in Table 1-5 (page 14), and the HY4PluginGetInfo for version 4 of the
API, as shown in Table 1-6 (page 14). This approach allows existing plug-ins to continue to work without
limiting the access of newer plug-ins to new features.

Table 1-4 Fields in HY2PluginGetInfo (Corresponds to version 2 of the iMovie API.)

NotesField name

Group name (128 characters maximum)group

Structures for effect-related sliders (currently, a maximum of 3)filterSliders[]

Default number of frames over which to ease in an effectdefaultFadeInFrames

Default number of frames over which to ease out an effectdefaultFadeOutFrames

Left endpoint of Pause sliderminHangFrames

Right endpoint of Pause slidermaxHangFrames

From 0.0 to 1.0. (See note, below.)defaultFontSizeScale

Number of frames selected for an effectselectedFrames

Plug-in returns to iMovie based on user’s choicesspeedFrames

Plug-in returns to iMovie based on user’s choiceshangFrames

Amount ofRAM allocated during initialization phasebaseMemoryNeeded

Processing Phase 13
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

Note: The value of defaultFontSizeScale represents the value of the TitleFontSize slider, not the
actual scale factor. The plug-in must interpret this value in terms of actual font size.

Table 1-5 Fields in HY3PluginGetInfo (Corresponds to version 3 of the iMovie API.)

NotesField name

Starting value on X axisdefaultX

Starting value on Y axisdefaultY

User-selectedvalue on X axisuserX

User-selected value on Y axisuserY

FSSpec of user-selected filefileInfo

31-character title of custom buttonbuttonTitle

Note: The X and Y values are coordinates in a 640 by 480 DV frame.

Table 1-6 Fields in HY4PluginGetInfo (Corresponds to version 4 of the iMovie API.)

NotesField name

Array of title slider informationtitleSliders

Video Standards: PAL versus NTSC

Constants are defined in HYRefDigitalVideoStandard to differentiate between PAL and NTSC video
streams: kRefNTSCStandard, and kRefPALStandard (as well as kRefUnknownStandard). The plug-in can
use either one, but cannot mix them within a project.

Video Compression Quality

The DV standard calls for only a single quality level in compressed form, but DV can be decompressed into
lower quality (faster) or higher quality (better) video. A plug-in might, for example, drive a small preview at
lower quality to improve performance. HYRefDVQuality provides three constants used by some API calls
to ask for different quality levels: kDVLowQuality, kDVHighQuality, kDVHighQualitySingleField.

API Release Versions

Extensions of the iMovie API have been designed so that all released versions of the iMovie API are backward
and forward compatible. A plug-in should be able to claim to be built against version 1 of the interface, and
adjust at runtime for changes in the API.

14 Processing Phase
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

To enable this degree of flexibility, iMovie does not enforce version compatibility; the plug-in must determine
whether it can run in a given version of iMovie. To this end, iMovie defines several version number constants
(shown in Table 1-7), and it passes its version down to the plug-in.

Table 1-7 iMovie application and API version designations

ValueConstantAPIiMovie

1kPluginInterfaceVersion111.0

2

2

kPluginInterfaceVersion2

kPluginInterfaceLastVersion

22.0

3

3.0

kPluginInterfaceVersion

kPluginInterfaceVersionString

32.1.1

4

3

4

4.0

kPluginInterfaceVersion4

kPluginInterfaceLastVersion

kPluginInterfaceVersion

kPluginInterfaceVersionString

43.0.1

In case of a version mismatch, the application can return one of two error codes: kPluginAppIsTooOld or
kPluginAppIsTooNew. In either case, the plug-in won’t load.

Termination phase

The termination phase begins when iMovie passes in the kPlugTerminate selector for the plug-in instance.
At this point it is assumed that the plug-in has completed all of its processing for this instance. The plug-in
should perform all necessary clean-up and return the appropriate result code.

Result Codes

Table 1-8 lists the result codes (defined in HYPluginResult) that the plug-in can return, or that might be
returned to the plug-in by many of the API procedures.

Table 1-8 Result codes in iMovie

Returned byNotesResult code

iMovie, plug-inValue: 0. Operation completed successfully.kPluginOK

iMovie, plug-inOperation terminated unsuccessfullykPluginFinished

iMovie, plug-inOne or more parameters received were invalidkPluginBadParams

iMoviePlug-in couldn’t get necessary RAMkPluginOutOfMemory

Termination phase 15
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

Returned byNotesResult code

iMovieTarget disk doesn’t have room to write a filekPluginOutOfDiskSpace

plug-inOperation terminated unsuccessfullykPluginFailed

plug-inPlug-in couldn’t obtain a frame required for its servicekPluginCantGetNeededFrame

iMovieSelected service does not existkPluginUnimplemented

iMovie, plug-inSelected service is not currently availablekPluginTryAgainLater

plug-inPlug-in incompatible with older iMoviekPluginAppIsTooOld

plug-iniMovie incompatible with older plug-inkPluginAppIsTooNew

Title Plug-ins

A title plug-in identifies itself as such to iMovie by setting HYPluginGetInfo.pluginType to
kPluginTitleType. It then further identifies itself by setting HYPluginGetInfo.titleType to cause the
UI in iMovie to adjust to provide field editors for one text pair (a title string and subtitle string), multiple text
pairs, or a block of text. The following values are valid: kTitleUnknown (value 1), kTitleSingleTextPair,
kTitleMultiTextPair, kTitleTextBlock.

When a plug-in calls GetTitleInfo() to ask iMovie for information about a title, iMovie returns an
HYPluginTitlePair structure that represents the text of a title pair (a title and subtitle string):

Listing 1-2 HYPluginTitlePair structure

 typedef struct _HYPluginTitlePair {
 char *title;
 char *subTitle;
 } HYPluginTitlePair;

This structure may be NULL if both the title and subtitle are empty.

Enabling User Interface Elements

A title plug-in sets plug-in choice flags (HYPluginGetInfo.pluginFlags) to specify user interface elements
to be enabled to accept user data, settings, and selections. Plug-in choice flags applicable to the Title pane
are shown in Table 1-9.

Table 1-9 Ttile pane plug-in choice flag constants

NotesConstant name

Value 8L. Enable font size slider.kTitleChoiceSize

Value 16L. Enable font popup menu.kTitleChoiceFont

16 Title Plug-ins
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

NotesConstant name

Value 32L. Enable pause sliderkTitleChoiceHangTime

Enable up, down, left, right buttons; font popup menu; and speed sliderTITLE_COMBO_STANDARD

Enable up and down buttons, font popup menu, and speed sliderTITLE_COMBO_VERTICAL

Enable left and right buttons, font popup menu, and speed sliderTITLE_COMBO_HORIZONTAL

Value 64L. Changes automatic scaling of frames from 720 x 480 pixels to
640 x 480 pixels. This should be used only for very specific situations.

kTitleChoiceNoScaling

Value 127L. Enable all title-related UI elementskTitleChoiceAll

Obtaining User’s Direction Choice

The HYPluginDirection enumeration defines five values for the user-selected direction:

 ■ kPluginDirectionNone

 ■ kPluginDirectionUp

 ■ kPluginDirectionDown

 ■ kPluginDirectionLeft

 ■ kPluginDirectionRight

For example, if the user clicks the right arrow, iMovie provides kPluginDirectionRight value in
HYPluginTitleInfo.direction. The plug-in can also supply HYPluginGetInfo.defaultDirection
to iMovie so it can set up the arrow to the desired default when the plug-in is initially chosen.

Justifying Text

To align the text in the text edit box, the plug-in sets HYPluginGetInfo.justify to one of the following
values:

 ■ kTitleJustCenter

 ■ kTitleJustLeft

 ■ kTitleJustRight

The default value is kTitleJustLeft.

This setting is currently used only in the block style of text plug-in, so, for example, if the plug-in right-justifies
the text when the kPluginDirectionRight direction is chosen, setting HYPluginGetInfo.justify to
kTItleJustRight causes the user’s editing to be in a right-justified text block. This approach is used, for
example, in the Music Video plug-in.

Title Plug-ins 17
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

The HYPluginTitleInfo Structure

The HYPluginTitleInfo structure is passed back when you call the GetTitleInfo callback. It provides
a wealth of information about the text entered by the user, the options chosen in the Titles panel, and so
forth. Note that some fields are valid only for certain types of plug-ins. For example, if
HYPluginGetInfo.pluginType is kPluginTitleType and HYPluginGetInfo.titleType is
kTitleSingleTextPair, then the blockLen and textBlock fields are not defined.

Listing 1-3 HYPluginTitleInfo structure

// HYPluginTitleInfo
typedef struct _HYPluginTitleInfo {
 RGBColor foreColor; // text color
 RGBColor shadowColor; // shadow color
 Boolean overBlack; // if over black
 Boolean tvSafe; // if TV Safe margins (and colors?) wanted
 short fontID; // Mac font ID
 float speed; // slow to fast, in range 0.0 - 1.0
 long duration; // in frames
 HYPluginDirection direction; // direction of motion for title

 // -- actual text data
 short pairCount; // used for "Pair" style plug-ins
 HYPluginTitlePair *pairs; // used for "Pair" style plug-ins

 long blockLen; // used for "Block" style plug-ins
 char *textBlock; // used for "Block" style plug-ins

 HY2PluginTitleInfo ver2;
 // no changes in version 3
 HY4PluginTitleInfo ver4;

} HYPluginTitleInfo;

The HY2PluginTitleInfo structure was added with iMovie 2.0. It is used only to extend the
HYPluginTitleInfo structure.

Listing 1-4 HY2PluginTitleInfo structure

typedef struct _HY2PluginTitleInfo {
 float fontSizeScale; // 0.0->1.0 This value doesn't represent
 // the actual scale factor, just the
 // value of the TitleFontSize slider. It
 // is up to each plug-in to determine
 // this value in terms of actual font size
 float hangTime; // 0.0->1.0
 } HY2PluginTitleInfo;

Note that a title plug-in can apply its results across multiple clips. In such a case, iMovie applies all the resulting
title frames to the stored movie in a single clip, effectively replacing those clips, and thereby reducing the
number of clips in the movie. If, for example, the user deletes the title, iMovie restores all the affected clips.

The HY4PluginTitleInfo structure was added with iMovie 3.0.1. It is used only to extend the
HYPluginTitleInfo structure.

18 Title Plug-ins
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

Listing 1-5 HY4PluginTitleInfo structure

typedef struct _HY4PluginTitleInfo {
 char fontName[256];
 // font name; this supersedes the "short fontID" in
 // the HYPluginTitleInfo field which is mostly useless on OS X
 float sliderValues[MAX_TITLE_SLIDERS];
} HY4PluginTitleInfo ;//__attribute__ ((aligned (2)));

Transition Plug-ins

Transition plug-ins allow the user to select a visual display that eases an otherwise potentially jarring change
from one clip to another. Typical transitions are wipes, fades, and dissolves.

A transition is applied between clips; it cannot apply across multiple clips as a title can.

Obtaining User’s Direction Choice

The HYPluginDirection enumeration defines five values for the user-selected direction:

 ■ kPluginDirectionNone

 ■ kPluginDirectionUp

 ■ kPluginDirectionDown

 ■ kPluginDirectionLeft

 ■ kPluginDirectionRight

For example, if the user clicks the right arrow, iMovie provides kPluginDirectionRight value in
HYPluginTitleInfo.direction. The plug-in can also supply HYPluginGetInfo.defaultDirection
to iMovie so it can set the arrow to the desired default when the plug-in is initially chosen.

The HYPluginTransitionInfo structure is returned to the plug-in when it makes the GetTransitionInfo
callback. The speed member contains the setting for the Speed slider in the transitions pane; its value can
be in the range 0.0–1.0. The ver2 member is defined in the HYPluginTransitionInfo structure shown
in Listing 1-6 (page 19).

Listing 1-6 HYPluginTransitionInfo structure

// HYPluginTransitionInfo
typedef struct _HYPluginTransitionInfo {
 float speed;
 HY2PluginTransitionInfo ver2;
} HYPluginTransitionInfo;

The HY2PluginTransitionInfo structure is used only to extend HYPluginTransitionInfo. It was
introduced with iMovie 2.0 to provide the direction member.

Transition Plug-ins 19
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

Listing 1-7 HY2PluginTransitionInfo structure

typedef struct _HY2PluginTransitionInfo {
 HYPluginDirection direction;
} HY2PluginTransitionInfo;

Effect Plug-ins

Effects, also know as filters, are typically applied to video to add some visual stimulus or to force a particular
perspective on the viewer. One of the more popular effects is the water ripple effect, which makes the video
appear as if it were projected on the surface of rippling water.

An effect plug-in identifies itself as such by setting the pluginType field in the HYPluginGetInfo structure
to kPluginFilterType.

An effect plug-in should apply the effect to an entire clip. iMovie attempts to enforce this restriction by
passing only frameCount values that correspond to an entire clip, regardless of what the plug-in requests.
Moreover, an effect cannot "consume" multiple clips. (The user, however, can apply an effect to multiple clip
selections.)

Enabling User Interface Elements

An effect plug-in sets plug-in choice flags (HYPluginGetInfo.pluginFlags) to specify user interface
elements to be enabled to accept user data, settings, and selections. Plug-in choice flags applicable to the
Effects pane are shown in Table 1-10 (page 20).

Table 1-10 Effects pane plug-in choice flag constants

NotesConstant name

Value 128L. Enable fade-in slider.kFilterChoiceFadeIn

Value 256L. Enable fade-out slider.kFilterChoiceFadeOut

Value 512L. Enable pause sliderkFilterChoiceAnimated

Value 2048L. Enable File… button. (Introduced in version 3 of the API.)kPluginChoiceFileButton

Value 4096L. Create and enable a custom button. (Introduced in version
3 of the API.)

kPluginChoiceCustomButton

The kFilterChoiceFadeIn and kFilterChoiceFadeOut flags are used to enable or disable the Effect In
and Effect Out sliders to gradually ease in (or out) an effect. If the plug-in can’t use this functionality, it should
dim these sliders.

If the effect applies differently to each frame as it progresses, the plug-in must enable the
kFilterChoiceAnimated flag. This feature can force a still clip to be expanded into a clip with enough identical
frames such that the effect does not run out of frames before it has completed. If this flag is not set, the effect
may be applied to a single frame in a still clip, which is then displayed for the duration of the clip.

20 Effect Plug-ins
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

Setting the kPluginChoiceFileButton flag enables a File... button in the Effects pane. When the user
clicks that button, iMovie automatically calls NavServices to choose a file, stores the FSSpec for that file in
HYPluginFileOpenInfo.chosenFile, and passes it back to the plug-in. The plug-in must supply acceptable
file types (in the typeCount and hTypes fields of). (This feature was introduced in version 3 of the API.)

Setting the kPluginChoiceCustomButton flag enables a custom button in the Effects pane. The plug-in
is then sent the kPlugCustomButtonClick selector when that button is clicked. The plug-in specifies the
title of the button in HY3PluginGetInfo.buttonTitle. (This feature was introduced in version 3 of the
API.)

Effect Plug-ins 21
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

22 Effect Plug-ins
Legacy Document | 2007-09-04 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

iMovie Plug-ins

	iMovie Plug-ins
	Contents
	Tables and Listings
	iMovie Plug-ins
	Plug-in Overview
	Loading plug-ins
	Initialization Phase
	Enabling User Interface Elements
	Directional Arrows
	X,Y Location

	Processing Phase
	Drawing
	Working With Clips
	Working With Thumbnails
	Working With Saved Files
	The HYPluginGetInfo Data Structure
	Video Standards: PAL versus NTSC
	Video Compression Quality
	API Release Versions

	Termination phase
	Result Codes

	Title Plug-ins
	Enabling User Interface Elements
	Obtaining User’s Direction Choice
	Justifying Text
	The HYPluginTitleInfo Structure

	Transition Plug-ins
	Obtaining User’s Direction Choice

	Effect Plug-ins
	Enabling User Interface Elements

