
Apple Type Services for Fonts Programming
Guide
Carbon > Text & Fonts

2007-12-11

Apple Inc.
© 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, Macintosh, Quartz, QuickDraw, and
TrueType are trademarks of Apple Inc.,
registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Apple Type Services for Fonts Programming Guide 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

Chapter 1 Managing Fonts: ATS Concepts 9

Font Services in Mac OS X 9
Font Formats and File Types 10
Font Locations and Installation 11
The ATS Server, Notifications, and Queries 12
Font User Interface 13

Chapter 2 Managing Fonts: ATS Tasks 15

Guidelines for Using ATS for Fonts 15
Enumerating Font Families and Fonts 16

Enumerating Font Families From Within a Loop 17
Enumerating Fonts From Within a Loop 18
Enumerating Using an Applier Function 19

Activating and Deactivating Fonts 20
Setting Up Notifications 22
Notifying ATS for Fonts of Actions 23
Handling Font Queries 23
Providing a Fonts Panel in a Carbon Application 26

Showing and Hiding the Fonts Panel 27
Handling a Selection Event in the Fonts Panel 29
Setting a Selection in the Fonts Panel 31
Handling Change of User Focus 33

Storing Font Information in a Document 36
Getting Font Metrics 37
Migrating Data Types from the Font Manager 38

Document Revision History 39

3
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

4
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Managing Fonts: ATS Concepts 9

Figure 1-1 Applications and Mac OS X font services 10
Figure 1-2 The ATS server in Mac OS X 13
Figure 1-3 The Fonts panel 14
Figure 1-4 A hierarchical Font menu 14
Table 1-1 Standard domains and font directories 11

Chapter 2 Managing Fonts: ATS Tasks 15

Figure 2-1 Font queries and the ATS server 24
Figure 2-2 Setting the command for the Show Fonts menu item 27
Figure 2-3 User focus in the top window 34
Figure 2-4 User focus in the window on the right side 34
Table 2-1 The interaction of context and scope in an enumeration 16
Table 2-2 Parameters for the event the kEventFontSelection 30
Table 2-3 Functions that convert between Font Manager and ATS for Fonts data types 38
Listing 2-1 Enumerating font families 17
Listing 2-2 Creating an iterator 18
Listing 2-3 A function that counts font references 19
Listing 2-4 A function that uses an applier function to enumerate fonts 20
Listing 2-5 Activating and deactivating a font in Mac OS X v10.4 and earlier 21
Listing 2-6 A function that handles a font query in Mac OS X v10.4 and earlier 25
Listing 2-7 An function that handles events related to the Fonts panel 28
Listing 2-8 A function that obtains the current selection in the Fonts panel 30
Listing 2-9 A function that programmatically sets a selection in the Fonts panel 31
Listing 2-10 A function that handles user-focus events 35
Listing 2-11 A function that obtains font metrics 37

5
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

6
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled Managing Fonts: ATS.

Apple Type Services for Fonts Programming Guide provides an overview of font management in Mac OS X,
describes the concepts needed to understand font management, and shows you how to perform the most
common font management tasks. The Apple Type Services for Fonts programming interface is a collection
of functions and data types that you can use to access and manage font data. It is designed to handle all the
font formats and associated data models supported in Mac OS X. The programming interface is designed
with performance, scalability, and consistency in mind, and is available to Cocoa and Carbon applications
through the Apple Type Services (ATS) framework in Mac OS X.

Apple Type Services for Fonts offers better stability and enhanced performance than previous versions, and
features the following improvements:

 ■ Error checking and exception handling are improved.

 ■ More information is cached to disk, speeding up login and logout times.

 ■ Font data is retrieved faster.

 ■ Memory allocation is more efficient.

 ■ Corrupt or invalid font files are disabled automatically.

 ■ Better font streaming supports PDF embedding and downloading fonts to a printer.

Who Should Read This Document

You should read this document if you plan to write a Mac OS X application that

 ■ activates or deactivates fonts

 ■ needs to keep track of fonts available in the ATS font database

 ■ provides font utility services to other applications

 ■ supports the Fonts panel user interface

 ■ plans to store persistent font information in a document

 ■ uses basic font metrics

Organization of This Document

This document is organized into the following chapters:

Who Should Read This Document 7
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Apple Type Services for Fonts Programming
Guide

 ■ “Managing Fonts: ATS Concepts” (page 9), details the fonts services available in Mac OS X, defines font
terminology, provides information on where fonts are installed, gives an overview of the ATS server, and
describes the user interface for fonts.

 ■ “Managing Fonts: ATS Tasks” (page 15), shows how to accomplish the most common programming
tasks using ATS for Fonts and provides guidelines for increasing performance and making efficient use
of memory in your application.

See Also

In addition to this document, you may find the following documents useful:

 ■ ATSUI Programming Guide in Carbon Text Manipulation Documentation provides an overview on how
text is laid out and displayed, defines typographical concepts, and discusses the style and text layout
objects and attributes used by the Apple Type Services for Unicode Imaging (ATSUI) programming
interface.

 ■ Managing Fonts: QuickDraw in Carbon Typography Documentation defines font terminology, provides
an overview of QuickDraw-based font management and discusses how to use the Font Manager to
manage fonts in both Mac OS 9 and Mac OS X. If your application runs only in Mac OS X, you may not
need to read this document. However, the discussion of font terminology may be useful if you are new
to font management.

The following website provides font-related information, including the TrueType Reference Manual and links
to other typography and font websites:

http://developer.apple.com/fonts

8 See Also
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Apple Type Services for Fonts Programming Guide

http://developer.apple.com/fonts

The chapter provides an overview of font services in Max OS X and information on the key concepts you
need to use ATS for Fonts in your application. It assumes that you are already familiar with fonts and font
data, but that you need information specific to managing fonts in Max OS X. In particular, you should be
familiar with the following terminology:

 ■ Outline and bitmap fonts

 ■ Font naming conventions

 ■ Type face, font families, and font family instances

 ■ Font metrics such as point size, left-side bearing, advance width, baseline and leading

The following topics, specific to Mac OS X, are discussed in this chapter:

 ■ Font formats and file types supported in Mac OS X

 ■ Locations in which fonts can be installed

 ■ The role of the ATS server in font management

 ■ Font user interface

Font Services in Mac OS X

Figure 1-1 shows the interaction of applications with Mac OS X font services. Various applications (Cocoa,
Carbon, HTML-based) communicate with the Application Services framework through the QuickDraw or
Quartz frameworks. Each of these frameworks communicate with the ATS client framework. Apple Type
Services for Unicode Imaging (ATSUI) communicates through the QuickDraw and Quartz subframeworks but
can also call directly into the ATS client framework. The ATS client framework provides the programming
interface used by developers (ATS for Fonts) and the private programming interface used by the system.

Font Services in Mac OS X 9
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Managing Fonts: ATS Concepts

Figure 1-1 Applications and Mac OS X font services

Application Services

CocoaCarbon HI
ToolboxHTML

ATSUI
(AppleType Services for Unicode Imaging)

ATS client
(AppleType Services)

ATS server

QuickDraw
Text rendering

Quartz
Text rendering

The ATS client communicates directly to the ATS server, which is a separate process. The ATS server maintains
the font database and performs such tasks as activating and deactivating fonts, supplying glyph outline data,
and obtaining information from font tables. The ATS server is discussed in more detail in “The ATS Server,
Notifications, and Queries” (page 12).

Font Formats and File Types

The font formats and file types supported for rendering, previewing, and printing documents in Mac OS X
are:

 ■ Macintosh TrueType font suitcases and data-fork (.dfont) suitcases. A data fork font suitcase contains
the resources associated with a Macintosh font, including 'FOND' and 'NFNT' resources. The only difference
is that the information is stored in a data fork rather than a resource fork. However, the data fork suitcase
format is not the same as the format used for a data fork TrueType font used in the Windows OS.

 ■ Windows TrueType (.ttf/.ttc) outline/bitmap fonts

 ■ PostScript OpenType Roman outline/bitmap fonts

 ■ PostScript OpenType CID Chinese, Japanese, Korean, and Vietnamese outline/bitmap fonts

 ■ PostScript Type 1 outline font with Macintosh bitmap font suitcases (LWFN)

 ■ Macintosh PostScript Type 1 enabled font suitcases ('sfnt')

 ■ Macintosh PostScript Type 1 CID enabled font suitcases ('sfnt'/CID)

 ■ Multiple Master PostScript fonts (available starting with Mac OS X version 10.2). There are two types
available—LWFN and 'sfnt'.

10 Font Formats and File Types
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Managing Fonts: ATS Concepts

Note: Bitmap font resources are not supported in Mac OS X. Font families that consist entirely of bitmap
font resources are ignored by Quartz-based applications that use Cocoa, Apple Type Services for Unicode
Imaging (ATSUI), or Multilingual Text Engine (MLTE). These font families are not available for use in such user
interface elements as menus, windows, and static and editable text controls.

See the following resources for more details:

 ■ TrueType reference manual

http://developer.apple.com/fonts

 ■ The Adobe Type Technology website, for information on the OpenType specification, Multiple Master
fonts, and CID-keyed fonts:

http://partners.adobe.com/public/developer/opentype/index.html

Font Locations and Installation

Installing fonts is easy. You need only copy or move font files to any of the standard font directories of the
Mac OS X file system listed in Table 1-1. The directories are arranged so that resources local to the user's
computer are segregated from those on the network. On a computer, system resources are segregated from
those under the control of the user or system administrator.

Fonts, applications, documents, and other resources can be installed in one of several file system domains.
A domain is an area of the file system segregated from other parts of the file system. A domain has structural
elements identical to other domains. For example each of the domains listed in Table 1-1 has a /Library/Fonts/
directory.

Changes to the font directories are registered automatically with the operating system when an application
launches or a user logs in to the account or computer on which the changes occurred. The ATS server, which
maintains the font database, resolves duplicate fonts based on the order of precedence defined for the
standard domains. The standard domains described in Table 1-1 are listed in the table from the highest to
lowest priority.

Table 1-1 Standard domains and font directories

CommentDirectoryDomain

The User domain is specific to the user who is logged into the
system and is associated with the user's home directory, which
can either be on the startup volume or on the network. The user
has complete control over the contents of this domain.

~/Library/Fonts/User

The Local domain is for fonts shared among all users of a
particular computer and not required by the operating system
to run. Users with system administrator privileges can add,
remove, and modify items in this domain, which is also the
recommended location for fonts that are shared among
applications.

/Library/Fonts/Local

Font Locations and Installation 11
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Managing Fonts: ATS Concepts

http://developer.apple.com/fonts
http://partners.adobe.com/public/developer/opentype/index.html

CommentDirectoryDomain

The Network domain is for fonts shared among all users of a
local area network. The contents of this domain are typically
located on network file servers and are under the control of a
network administrator.

/Network/Library/Fonts/Network

The System domain contains the default fonts required by the
operating system to run and should not be altered.

/System/Library/Fonts/System

The Classic domain contains the default fonts required by the
Classic environment to run and should not be altered.

System Folder: Fonts:Classic

Note: In Mac OS X version 10.2 and later, you can install directories of fonts within the Fonts directory. Using
nested directories provides more flexibility for you to install and organize fonts.

The domain in which a font is placed defines the accessibility for that font. For example, if a user installs a
custom font in the user domain, the font is accessible only to that user. If an administrator installs the same
font in the network domain, the font is accessible to everyone on the network.

The ownership and permissions model of the file system is fundamentally different in Mac OS X than from
previous releases of the operating system. This difference affects how you install and use fonts. For each file
and directory in the file system there are three categories of users (owner, group, and other). For each type
of user there are three specific permissions that affect access to the file or directory (read, write, and execute).
When you install a font, check that the permissions of the files associated with the font are set to enable read
access for the appropriate categories of users for the domain.

You can programmatically activate fonts from any directory, including the application library directory and
bundle, and from an application resource fork.

The ATS Server, Notifications, and Queries

The ATS server is a process that is responsible for maintaining the font database for Mac OS X. It activates
and deactivates fonts, maintains and scales glyph outline data, maintains font caches, and communicates
information about font availability between font clients and font utility applications. The ATS server ‘s role
in font support in Mac OS X is shown in Figure 1-2.

The ATS server also handles font notifications. A font notification is a message from the ATS server that
informs applications of changes in the font database. The ATS server passes the font activation and deactivation
information to any application that has subscribed to receive notifications. Currently, the only types of
notification an application can receive are the result of a global font activation or deactivation.

Applications that subscribe to notifications receive up-to-date information about the font database.
Notifications eliminate the need for an application to check generation values and to periodically enumerate
fonts and font families.

12 The ATS Server, Notifications, and Queries
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Managing Fonts: ATS Concepts

Note: Only applications that use a Core Foundation run loop can receive notifications. Carbon and Cocoa
applications automatically have a Core Foundation run loop (CFRunLoopRef data type). Other applications,
such as a faceless tool or utility, must explicitly create a Core Foundation run loop.

Figure 1-2 The ATS server in Mac OS X

ATS client
(AppleType Services)

Font server
application

Font notification

Finder
ATS server

Font
Scaler

Font
Scaler

Font
scaler

ATS supports the ability for ATS clients to send font queries. A font query is simply a message that is generated
by an application in need of font information. Currently there is only one type of query supported—a query
for a missing font. A missing-font query is generated automatically whenever an application looks for a font
that is not currently active. If the ATS server does not have the queried font in the font database, the server
passes the font query to any application that has signed up to handle queries. Typically this is a font utility,
often a faceless process, specifically designed to handle font queries. If the font utility has access to the font,
the utility can activate the font using the appropriate ATS function.

The query process is opaque to the application that needs a font. Query management is handled by the ATS
server. To the requesting application, activation of the needed font is automatic.

Font User Interface

Your application can display fonts to the user by providing a Font menu or a Fonts panel. The Font menu,
shown in Figure 1-4 (page 14), is the user interface available in Mac OS 9. Prior to Mac OS X version 10.1, the
Font menu was the only Font interface available to Carbon applications. With the release of Mac OS X version
10.2, Carbon applications can provide a Fonts panel, shown in Figure 1-3 (page 14). The Fonts panel was
previously available only to Cocoa applications. If your application runs only in Mac OS X, you should provide
a Fonts panel rather than a Font menu. The Fonts panel is the preferred user interface for Fonts.

Fonts Panel is the programming interface that provides the functions you need to support the Fonts panel.
Using these functions along with Carbon events, your application can do the following:

 ■ Show and hide the Fonts panel

 ■ Set selections programmatically in the Fonts panel

 ■ Obtain user selections from the Fonts panel

Font User Interface 13
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Managing Fonts: ATS Concepts

Figure 1-3 The Fonts panel

As shown in Figure 1-3, the columns in the Fonts panel improve the viewing and selection of large collections
of fonts compared to the hierarchical Font menu shown in Figure 1-4. The columns provide easy access for
users to select font, style, and size. The Fonts panel also supports font color, although color is not shown in
Figure 1-3. See “Providing a Fonts Panel in a Carbon Application” (page 26) for instructions and code examples
on supporting a Fonts panel in your application.

Figure 1-4 A hierarchical Font menu

14 Font User Interface
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Managing Fonts: ATS Concepts

This chapter provides sample code and instructions for most of the programming tasks you can accomplish
with ATS for Fonts. It also provides guidelines that you can follow to increase performance and make efficient
use of memory in your application. You’ll find details in this chapter about the following tasks:

 ■ Enumerating fonts and font families. You can restrict an enumeration by providing a filter, a context,
and/or a scope.

 ■ Activating and deactivating fonts. You can activate and deactivate fonts that are under the control of
your application.

 ■ Subscribing to notifications. Notifications allow your application to track changes in the font database,
which is more efficient than polling for them.

 ■ Notifying ATS of fonts your application activates or deactivates. The system can then make these fonts
available (or unavailable) to other applications.

 ■ Handling font queries. Font utility applications use the ATS query mechanism to provide fonts to other
applications that need them.

 ■ Supporting a Fonts panel. The Fonts panel is the preferred user interface for fonts in Mac OS X.

 ■ Storing font information in a document. If your application stores the appropriate font information, it
can retrieve the information whenever the document is opened.

 ■ Obtaining font metrics. ATS for Fonts lets you obtain the most common font metrics, such as ascent,
descent, and leading.

 ■ Migrating data types from the Font Manager. You can convert Font Manger data types to ones that are
compatible with ATS for Fonts.

Guidelines for Using ATS for Fonts

There are a number of guidelines you should follow to assure optimal performance and efficient memory
use when you use ATS for Fonts. This section summarizes them. The code in this chapter shows you how to
apply most of the following guidelines:

 ■ Restrict an iteration to the fonts or font families for which your application needs information. If you
need to gather information about all the installed fonts, you should do so once and then cache the
results because iterating over all fonts can degrade performance. See “Enumerating Font Families and
Fonts” (page 16) for more information.

 ■ Implement the Fonts panel instead of the Font menu. Applications that run in Mac OS X should have a
consistent user interface. The Fonts panel, formerly available only to Cocoa applications, is now available
to Carbon applications in Mac OS X. To be consistent with Cocoa applications, Carbon applications should
provide a Fonts panel. You should only provide a Font menu if your application runs in Mac OS 9. See
“Providing a Fonts Panel in a Carbon Application” (page 26) for more information.

Guidelines for Using ATS for Fonts 15
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

 ■ Set up notifications to keep informed of changes in the font database. This lets you avoid querying the
generation seed in the font database to track changes. See “Setting Up Notifications” (page 22) for more
information.

 ■ Avoid iterating through font tables if you can obtain the desired information by using a high-level
function. For example, if you need to obtain a font name, use the function
ATSFontFamilyGetQuickDrawName.

 ■ Assess your application’s performance by running such tools as tops or ThreadViewer. These tools can
help you to gauge how often your code triggers ATS server messaging and other behavior. You can use
that information t to optimize your code.

Enumerating Font Families and Fonts

ATS for Fonts provides several functions you can use to enumerate the fonts and font families available in
Mac OS X. You can enumerate fonts and font families in the following ways:

 ■ Create an iterator and then use the iterator from within a loop to enumerate fonts or font families. Provide
your code in the loop to process the enumerated fonts or font families appropriately. See “Enumerating
Font Families From Within a Loop” (page 17) and “Enumerating Fonts From Within a Loop” (page 18)
for more information.

 ■ Write a customized function that can process each enumerated font or font family appropriately. Let
ATS for Fonts automatically iterate through fonts or font families and apply your customized function
for you. See “Enumerating Using an Applier Function” (page 19) for more information.

Regardless of which method you choose to enumerate fonts or font families, an enumeration is restricted
by the context, filter, and scoping options applied to it.

Context refers to the font’s accessibility and can be local or global. A font whose context is local can be
accessed by your application. A font whose context is global can be accessed by all applications on a system.

A filter consists of one or more restrictions that you define to reduce the number fonts or font families
returned during an iteration. For example, you could restrict a font iteration to all those fonts that have the
same manufacturer’s name.

Scope refers to whether a font’s use is restricted or unrestricted. Fonts with a restricted scope can be used
only by your application whereas fonts with an unrestricted scope can be used by any application.

When you specify both a context and a scope, the enumeration is constrained as shown in Table 2-1.

Table 2-1 The interaction of context and scope in an enumeration

Global contextLocal context

Only globally activated fontsFonts activated locally to your
application

Restricted scope

All fonts, which include globally activated fonts
and all other fonts activated locally for an
application. Font utilities typically need to
know all fonts on the system.

Globally activated fonts and fonts
activated locally to your application.
This is the default.

Unrestricted
scope

16 Enumerating Font Families and Fonts
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Enumerating Font Families From Within a Loop

Listing 2-1 shows code that creates an iterator to enumerate all the font families in an application’s context.
Your application would need to add code that does something with the fonts it retrieves. A detailed
explanation for each numbered line of code appears following the listing.

Listing 2-1 Enumerating font families

// 1status = ATSFontFamilyIteratorCreate (
// 2 kATSFontContextLocal,
// 3 &myFontFilter
// 4 &myRefConData
// 5 kATSOptionFlagsUnRestrictedScope,

 &myFamilyIterator);

while (status == noErr)
{
 status = ATSFontFamilyIteratorNext (&myFamilyIterator,

// 6 &myFamilyRef);

 if (status == noErr)
 {
 // Add your code here to do something with font family information.
 }

// 7 else if (status == kATSIterationScopeModified)
 {
 status = ATSFontFamilyIteratorReset (
 kATSFontContextLocal,
 &myFontFilter
 &myRefConData
 kATSOptionFlagsUnrestrictedScope,
 &myFamilyIterator);
 // Add your code here to take any actions needed because of the
 // reset operation.
 }
}

// 8status = ATSFontFamilyIteratorRelease (&myFamilyIterator);

Here’s what the code does:

1. Calls the function ATSFontFamilyIteratorCreate to create the iterator you use to enumerate font
families.

2. Sets up a local context. If you want to set up a global context. use the constant kATSFontContextGlobal.

3. Passes a pointer to an ATS font filter. This is optional. If you do not want to apply a filter to the iteration,
pass NULL. The ATS font filter data structure lets you specify a generation, a font family, or a callback
function as a filter.

4. Passes a pointer to data needed by a font filter callback function. Pass NULL if you aren’t using a font
filter callback or if the callback doesn’t require any data passed to it.

5. Sets up an unrestricted scope. If you want to set up a restricted scope, use the constant
kATSOptionFlagsRestrictedScope.

Enumerating Font Families and Fonts 17
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Note: When you iterate using a local context and an unrestricted scope, you enumerate the default font
families. This includes all globally activated font families and those activated locally to your application.

6. Calls the function ATSFontFamilyIteratorNext to obtain the next font family in the iteration.

7. Checks to make sure the font database hasn’t been changed. If it has, resets the iterator to the start of
the iteration. The result code kATSIterationScopeModified indicates one or more changes occurred
in the font database since you started the iteration. In most cases, you should reset the iterator.

8. Releases the font family iterator. You must do this when you no longer need the iterator. If you plan to
use the iterator again in your application, you can reset it rather than release it.

Enumerating Fonts From Within a Loop

Listing 2-2 shows code that creates an iterator to enumerate all the fonts in an application’s context. Your
application would need to add code that does something with the fonts it retrieves. Error-handling code has
been omitted to make the sample function more readable. A detailed explanation for each numbered line
of code appears following the listing.

Listing 2-2 Creating an iterator

// 1status = ATSFontIteratorCreate (
// 2 kATSFontContextGlobal,
// 3 &myFilter,
// 4 &myRefConData,
// 5 kATSOptionFlagsRestrictedScope,

 &FontIterator);

while (status == noErr)
{

// 6 status = ATSFontIteratorNext (&myFontIterator,&myFontRef)
 if (status == noErr)
 {
 // Add your code here to do something with font information.
 }

// 7 else if (status == kATSIterationScopeModified)
 {
 status = ATSFontIteratorReset (
 kATSFontContextGlobal,
 &myFontFilter
 &myRefConData
 kATSOptionFlagsRestrictedScope,
 &myFontIterator);
 // Add your code here to take any actions needed because of the
 // reset operation.
 }
}

// 8status = ATSFontIteratorRelease (&myFontIterator);

Here’s what the code does:

1. Calls the function ATSFontIteratorCreate to create the iterator you use to enumerate fonts.

18 Enumerating Font Families and Fonts
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

2. Sets up a global context. If you want to set up a local context. use the constant kATSFontContextLocal.

3. Passes a pointer to an ATS font filter. This is optional. If you do not want to apply a filter to the iteration,
pass NULL. The ATS font filter data structure lets you specify a generation, a font family, or a callback
function as a filter.

4. Passes a pointer to data needed by a font filter callback function. Pass NULL if you aren’t using a font
filter callback or if the callback doesn’t require any data passed to it.

5. Sets up a restricted scope. If you want to set up an unrestricted scope, use the constant
kATSOptionFlagsUnrestrictedScope.

Note: When you iterate using a global context and a restricted scope, you enumerate only those fonts
that are activated globally. Locally activated fonts, including those activated locally for your application,
are not enumerated.

6. Calls the function ATSFontIteratorNext to obtain the next font in the iteration.

7. Checks to make sure the font database hasn’t been changed. If it has, resets the iterator to the start of
the iteration. The result code kATSIterationScopeModified indicates one or more changes occurred
in the font database since you started the iteration. In most cases, you should reset the iterator.

8. Releases the font iterator. You must do this when you no longer need the iterator. If you plan to use the
iterator again in your application, you can reset it rather than release it.

Enumerating Using an Applier Function

If you want to enumerate fonts or font families that are activated locally and have an unrestricted scope, you
can call the function ATSFontApplyFunction. This function applies the custom function you supply to
each item in an enumeration. By using ATSFontApplyFunction, you can avoid writing a loop to iterate
and process each font or font family in an enumeration.

The function ATSFontFamilyApplyFunction iterates only through default fonts or font families. The default
includes globally activated fonts or font families and fonts or font families that are activated locally to your
application. You can’t specify any other context or scope options.

The custom function you supply can perform any task appropriate to your application. Listing 2-3 shows a
function that increments a counter for each valid font reference passed to the function. Your custom function
can be as simple or complicated as needed.

Listing 2-3 A function that counts font references

OSStatus MyFontApplierFunction (ATSFontRef myFontRef,
 void* myFontRefCon)
{
 OSStatus status = noErr;

 if (myFontRef)
 {
 (ItemCount) myFontRefCon += 1;
 }
 else

Enumerating Font Families and Fonts 19
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

 status = paramErr;
 return status;
}

Listing 2-4 shows a function that supplies the custom function from Listing 2-3 to the function
ATSFontApplyFunction.

Listing 2-4 A function that uses an applier function to enumerate fonts

static OSStatus MyEnumerateFonts (void)
{
 OSStatus status = noErr;

 status = ATSFontApplyFunction (MyFontApplierFunction,
 &myApplierRefCon);
 return status;
}

Activating and Deactivating Fonts

You can control which fonts are available to your users by activating and deactivating fonts. Fonts are activated
and deactivated in groups defined by their representation in the file system in the file formats supported by
ATS for fonts. Fonts must be in one of the formats listed in “Font Formats and File Types” (page 10).

There are two ATS for Fonts functions available to activate fonts:

 ■ ATSFontActivateFromFileReference. This is the preferred function for you to use in Mac OS X v10.5
and later. In earlier versions of Mac OS X, you can use ATSFontActivateFromFileSpecification.

 ■ ATSFontActivateFromMemory. You should use this function only when you have raw TrueType data
that needs to be activated.

You can deactivate any font you’ve activated with an ATS function by calling the function
ATSFontDeactivate.

Note: You should use caution if you deactivate a font that you activated globally because its deactivation
impacts any application that uses that font.

When you activate a font, you can specify a local or global context. A font whose context is local can be
accessed by the local user. This includes fonts available only to the local user as well as those that can be
accessed by all users on a system. A font whose context is global is one that can be accessed by all users on
a system. If you do not specify a context, ATS for Fonts uses a local context by default.

In Mac OS X, font data should be stored in the data fork. If you have a font in which the data is stored in the
resource fork, you can activate this font by supplying the constant
kATSOptionFlagsUseDataForkAsResourceFork in the iOptions parameter of one of the ATS font
activation functions.

20 Activating and Deactivating Fonts
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Listing 2-5 shows how to activate a font from a file specification, and then deactivate the font. The font is
activated locally. On output, the parameter myFontcontainer points to the activated font’s container. You
need the font container to deactivate the font, as shown in the listing. A detailed explanation for each
numbered line of code appears following the listing.

Note: You should use ATSFontActivateFromFileSpecification only in Mac OS X v10.4 and earlier. In
Mac OS X v10.5 and later, this function is deprecated, so you should instead use
ATSFontActivateFromFileReference.

Listing 2-5 Activating and deactivating a font in Mac OS X v10.4 and earlier

status = ATSFontActivateFromFileSpecification (
// 1 &myFontFileSpec,
// 2 kATSFontContextLocal,
// 3 kATSFontFormatUnspecified,
// 4 NULL,
// 5 kATSOptionFlagsDefault,
// 6 &myFontContainer);

status = ATSFontDeactivate (myFontContainer,
// 7 NULL,
// 8 kATSOptionFlagsDefault);

Here’s what the code does:

1. Passes the file specification for the font to be activated.

2. Specifies a local context. When you use this option, the activated font is accessible only from within your
application. You could also specify a global context by passing the constant kATSFontContextGlobal.

3. Specifies a format identifier. You should pass kATSFontFormatUnspecified because the system
automatically determines the format of the font.

4. Passes NULL because this parameter is reserved for future use.

5. Passes the default options flag. If you want to activate a font directory that contains subdirectories, you
must pass the option kATSOptionFlagsProcessSubdirectories. There are a number of other flags
available for you to pass, see Apple Type Services for Fonts Reference for details.

6. Passes a reference to a font container that on return points to the container that references the activated
font. You need the font container to deactivate a font.

7. Passes NULL because this parameter is reserved for future use.

8. Passes the default options flag. If you plan to call this function a number of times to deactivate several
fonts, you can pass kATSOptionFlagsDoNotNotify. Then, when you are done deactivating fonts, you
can call the function ATSFontNotify to signal ATS for Fonts to notify other applications of the font
deactivations. See “Notifying ATS for Fonts of Actions” (page 23) for more information.

Activating and Deactivating Fonts 21
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Setting Up Notifications

Notifications are messages you can receive from ATS for Fonts that inform you of changes to the font database.
Available starting in Mac OS X 10.2, notifications provide an efficient way for your application to keep
up-to-date on font activations and deactivations.

Notifications aren’t sent to you automatically. Your application must subscribe to them and must supply a
callback function to handle any notification you receive. Once you sign up to receive notifications, you never
need to check the generation of the font database to track changes. You also don’t need to iterate periodically
through fonts and font families to check for changes.

You can set up notifications in your application by following these steps:

1. Create a callback to handle the notification. Your callback can update the user interface or perform other
tasks as appropriate. Your callback should look similar to the following:

static void MyNotificationCallback (ATSFontNotificationInfoRef Info,
 void * refCon)
{
 // Your code to handle the notification
 MyRefreshFontUserInterface (. . .);
}]

2. Inform ATS for Fonts to send your application notifications by calling the function
ATSFontNotificationSubscribe and registering the callback you created as shown in the following
code:

status = ATSFontNotificationSubscribe (
 MyNotificationCallback,
 kATSFontNotifyOptionDefault,
 NULL, // iRefCon
 ¬ifyRef);

As of Mac OS X v10.4, the iRefCon parameter is an arbitrary 32-bit value specified by your application
and that you want passed to your callback function. You can pass NULL if your callback does not need
any data or if your application runs in an earlier version of Mac OS X.

3. When your application no longer needs to receive notifications, call the function
ATSFontNotificationUnsubscribe, as follows:

status = ATSFontNotificationUnsubscribe (notifyRef);

You must supply the notification reference you obtained when you subscribed to notifications.

22 Setting Up Notifications
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Note: Subscriptions are cumulative. You must unsubscribe from each notification you subscribed to.
Subscriptions are cleaned up automatically when your applications quits.

Notifying ATS for Fonts of Actions

If your application is a font utility or other application that manages fonts, you may need to notify ATS for
Fonts of your actions by calling the function ATSFontNotify. Other applications can sign up to receive
notifications of your actions by calling the function ATSFontNotificationSubscribe. When you call the
function ATSFontNotify, ATS for Fonts notifies all subscribers of your actions.

When you call the function ATSFontNotify you must supply a notification action (ATSFontNotifyAction).
If your application activates or deactivates fonts, you should pass kATSFontNotifyActionFontsChanged.
If your application makes changes to a font directory, you should pass the constant
kATSFontNotifyActionDirectoriesChanged. You can also optionally supply a pointer to the data you
want ATS for Fonts to pass to the applications who subscribe to notifications. You can pass NULL if there is
no data associated with your action.

It’s best to call the function ATSFontNotify after your application makes a batch of changes rather than
calling this function after each change you make. For example, if your application calls the functions
ATSFontActivateFromFileSpecification (Mac OS X v10.4 and earlier),
ATSFontActivateFromFileReference (Mac OS X v10.5 and later), or ATSFontDeactivate multiple
times to activate and deactivate fonts, you can set the iOptions parameter in these functions to
kATSOptionFlagsDoNotNotify set. When you are done activating and deactivating fonts you can call the
function ATSFontNotifywith the action parameter set to kATSFontNotifyActionFontsChanged. Then
ATS notifies all applications who subscribe to notifications of the changes you made.

Handling Font Queries

If your application is a font utility that activates and deactivates fonts, you can register with ATS for Fonts to
handle font queries. Figure 2-1 shows the path of a font query. The application asks the ATS client for a font.
The ATS client passes the request to any font utility that is registered to receive queries. When the font utility
finds the font, it obtains the file specification of the font, and then activates the font using the appropriate
ATS function calls.

The query, activation, and notification process is opaque to the application that needs the font. The font
activation appears to happen automatically because the application needing the font is not required to do
anything to activate the font. Font activation occurs behind the scenes, provided the font is available to be
activated somewhere on the system.

Notifying ATS for Fonts of Actions 23
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Figure 2-1 Font queries and the ATS server

ATS server

ATS client
(AppleType Services)

Application

ATS client
(AppleType Services)

Font utility

You must do the following to set up your Carbon or Cocoa application to handle font queries:

1. Create a callback to handle any font queries sent to your application. Your callback should look similar
to the following:

CFPropertyListRef MyQueryCallback (ATSFontQueryMessageID msgID,
 CFPropertyListRef data,
 void * refCon)
{
 CFPropertyListRef reply = NULL;

 switch (msgID)
 {
 case kATSQueryActivateFontMessage:
 // Your code to parse and handle the property list data
 // passed from the query.
 reply = NULL;
 }
 return reply;
}

See Listing 2-6 (page 25) for an example of a function that parses and handles the property list data
passed from the query. The property list data is passed in the form of a Core Foundation dictionary
(CFDictionary).

This callback only handles the case of a font activation query. You would need to add cases for other
types of queries should these be available in the future. Font activation queries should always return
NULL as shown in this example.

2. Register for queries by calling the function ATSCreateFontQueryRunLoopSource as follows:

CFRunLoopSourceRef source =
 ATSCreateFontQueryRunLoopSource (0,
 0,
 MyQueryCallback,
 NULL);

The functionATSCreateFontQueryRunLoopSource creates a Core Foundation run loop source reference
(CFRunLoopSourceRef) to convey font queries from the ATS server to your font utility application

24 Handling Font Queries
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

3. Add the run loop source you obtained from the function ATSCreateFontQueryRunLoopSource by
writing code similar to the following:

CFRunLoopAddSource (CFRunLoopGetCurrent(),
 source,
 kCFRunLoopDefaultMode);

The function CFRunLoopGetCurrent returns the run loop for the current thread. The function
CFRunLoopAddSource adds an input source to the current run loop. The input source monitors the run
loop for a font query. When it detects a font query, it invokes your callback.

Note: If your application does not have a Core Foundation run loop (for example, a faceless server
application), you must explicitly set up a run loop before you can receive queries.

In the general case, a font query is packaged as a Core Foundation property list (CFPropertyListRef). A
missing-font query in particular uses a Core Foundation dictionary (CFDictionaryRef) that contains key-value
pairs to specify the needed font. You need to obtain information from the dictionary, such as the font’s name,
to determine whether you manage the font in question. You may also need to look up other values in the
dictionary to determine what you must do to satisfy the query.

Listing 2-6 shows a function (MyHandleFontRequest) that looks for the queried font by various names.
When the name is found, the function translates it to a a file specification, then calls the function
ATSFontActivateFromFileSpecification to activate the font. A detailed explanation for each numbered
line of code appears following the listing.

Note: You should use ATSFontActivateFromFileSpecification only in Mac OS X v10.4 and earlier. In
Mac OS X v10.5 and later, this function is deprecated, so you should instead use
ATSFontActivateFromFileReference.

Listing 2-6 A function that handles a font query in Mac OS X v10.4 and earlier

void MyHandleFontRequest (CFDictionaryRef theDict)
{
 OSStatus status;
 CFStringRef theName = NULL;
 const FSSpec* fontFileSpec = NULL;
 ATSFontContainerRef = myFontContainerRef;

// 1 if (CFDictionaryContainsKey (theDict, kATSQueryQDFamilyName))
 {
 theName = CFDictionaryGetValue (theDict, kATSQueryQDFamilyName);
 fontFileSpec = MyFindByQDFamilyName (theName);
 }

// 2 else if (CFDictionaryContainsKey (theDict, kATSQueryFontName))
 {
 theName = CFDictionaryGetValue(theDict, kATSQueryFontName);
 fontFileSpec = MyFindByFontName (theName);
 }
 else if (CFDictionaryContainsKey (theDict,

// 3 kATSQueryFontPostScriptName))
 {
 theName = CFDictionaryGetValue (theDict,
 kATSQueryFontPostScriptName);

Handling Font Queries 25
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

 fontFileSpec = MyFindByPostScriptName (theName);
 }
 // If needed, you can add code to handle other query types.

// 4 if (fontFileSpec != NULL)
 {
 status = ATSFontActivateFromFileSpecification (
 fontFileSpec,
 kATSFontContextGlobal,
 kATSFontFormatUnspecified,
 NULL, NULL,

// 5 myFontContainerRef);
 }

}

Here’s what the code does:

1. Checks to see if the CFDictionary contains the kATSQueryQDFamilyName key. If the key is in the
dictionary, then the code obtains the QuickDraw family name of the font and calls your function
(MyFindByQDFamilyName) to obtain the file specification associated with the name.

2. If the name hasn’t been found yet, checks to see if the CFDictionary contains the kATSQueryFontName
key. If the key is in the dictionary, then the code obtains the full name of the font and calls your function
(MyFindByFontName) to obtain the file specification associated with the full font name.

3. If the name hasn’t been found yet, checks to see if the CFDictionary contains the
kATSQueryFontPostScriptName key. If the key is in the dictionary, then the code obtains the PostScript
name derived from the font's FOND resource or from the font’s sfnt name table. Then calls your function
(MyFindByPostScriptName) to obtain the file specification associated with the PostScript font name.

4. Checks to see if a value is assigned to the font file specification.

5. Activates the file specification for the requested font. Because you are activating the font in response to
a query from another applications, you need to specify a global context (kATSFontContextGlobal)
so the font is available to all applications. You should always pass kATSFontFormatUnspecified, as
the system automatically detects the format of the font. If you want to deactivate the font later, you
must pass a font container reference (myFontContainerRef) and retain the container returned to you
by the function ATSFontActivateFromFileSpecification. To deactivate the font, you pass the
font container reference to the function ATSFontDeactivate.

Providing a Fonts Panel in a Carbon Application

In Mac OS X the Fonts panel is the preferred user interface for users to specify font family, typeface, size, and
color settings for text. See “Font User Interface” (page 13) for a detailed description and screenshot of a
Fonts panel. Cocoa applications already use the Fonts panel. With the introduction of the Fonts Panel
programming interface, Carbon applications can provide the Fonts panel instead of the Font menu that was
used in Mac OS 9. This section shows you how to set up and handle the Carbon events that associated with
a Fonts panel.

To support a Fonts panel in a Carbon application, your application must perform the following tasks:

26 Providing a Fonts Panel in a Carbon Application
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

 ■ show and hide the Fonts panel

 ■ handle a selection event in the Fonts panel

 ■ programmatically set a selection in the Fonts panel

 ■ handle a change of user focus from one document to another

Each of these tasks is described in the sections that follow.

Showing and Hiding the Fonts Panel

It is your application’s responsibility to provide an interface by which the user can activate and deactivate
the Fonts panel. Typically users can open the Fonts panel by choosing a Show Fonts menu item from a Format
menu. The keyboard equivalent for this item should be command-T. When the Fonts panel is open, your
application should change the menu item to Hide Fonts. Your may choose instead to provide a button or
other mechanism to activate and deactivate the Fonts panel. What you choose to do depends on the needs
of your application.

You can use Interface Builder to provide a Format menu with a Show Fonts menu item. In Interface Builder,
you must type the four-character code shfp in the Command text field, as shown in Figure 2-2. The constant
kHICommandShowHideFontPanel is defined by the Carbon Event Manager to be the shfp HI command,
which is why you must provide this four-character code as the command for the Show Fonts Panel menu
item. You can use Project Builder to write code that handles the kHICommandShowHideFontPanel command
issued by the Show Fonts Panel menu item.

Figure 2-2 Setting the command for the Show Fonts menu item

Providing a Fonts Panel in a Carbon Application 27
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

When the user closes the Fonts panel, either by clicking on its close button or using an application-supplied
human interface element (such as a Hide Fonts Panel menu item), the Fonts panel sends a Carbon event of
class kEventClassFont and of type kEventFontPanelClosed to the event target your application specified
in its most recent call to SetFontInfoForSelection. This allows your application to update any menu
items or other controls whose state may need to change because the Fonts panel has closed. Your application
must have a Carbon event handler installed to detect this event.

Listing 2-7 (page 28) shows an application event handler that handles the Carbon events
kHICommandShowHideFontPanel andkEventFontPanelClosed. A detailed explanation for each numbered
line of code appears following the listing.

Listing 2-7 An function that handles events related to the Fonts panel

pascal OSStatus MyApplicationEventHandler (EventHandlerCallRef myHandler,
 EventRef event, void *userData)
{
 OSStatus status = eventNotHandledErr;
 HICommand command;
 UInt32 eventClass;
 UInt32 eventKind;

// 1 eventClass = GetEventClass(event);

 switch (eventClass)
 {

// 2 case kEventClassCommand:
 {
 GetEventParameter (event, kEventParamDirectObject,
 typeHICommand, NULL,
 sizeof (HICommand),

// 3 NULL, &command);
 switch (command.commandID)
 {

// 4 case kHICommandShowHideFontPanel:
 status = FPShowHideFontPanel();

// 5 if (FPIsFontPanelVisible)
 {
 // Your code to set the menu item to Hide
Fonts

 }
 else
 {
 // Your code to set the menu item to Show
Fonts
 }
 break;
 }
 break;
 }

// 6 case kEventClassFont:
 {
 eventKind = GetEventKind (event);
 switch (eventKind)
 {

// 7 case kEventFontPanelClosed:

28 Providing a Fonts Panel in a Carbon Application
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

 // Your code to set the menu item to Show Fonts
 break;

// 8 case kEventFontSelection:
 status = MyGetFontSelection (event);
 break;
 }
 }
 break;
 }
 return status;
}

Here’s what the code does:

1. Calls the Carbon Event Manager function GetEventClass to obtain the event class.

2. Checks to see if the event class is a command event.

3. Calls the Carbon Event Manager function GetEventParameter to obtain the HI command from the
event.

4. If the HI command is kHICommandShowHideFontPanel, calls the Fonts Panel function
FPShowHideFontPanel. Calling the function FPShowHideFontPanel displays the Fonts panel if it is
not currently displayed, and hides it if it is currently displayed.

The result code fontPanelShowErr is returned if, for unknown reasons, the Fonts panel cannot be
made visible. Specific result codes, such as memFullErr can also be returned

The Fonts panel opens with the system’s default settings unless you first set the selection information
by calling the Fonts Panel function SetFontInfoForSelection. See “Setting a Selection in the Fonts
Panel” (page 31) for more information.

5. Calls the Fonts Panel function FPIsFontPanelVisible to determine if the Fonts panel is now visible.
Your application should provide code to the menu item (or other user interface element) appropriately.

6. Checks to see if the event class is a font event.

7. If the event kind is a close event, you must provide code to set the menu item (or other user interface
element) appropriately.

8. If the event kind is a font selection event, calls your function to handle font selection. Font selection
events are discussed in “Handling a Selection Event in the Fonts Panel” (page 29).

Handling a Selection Event in the Fonts Panel

As the user selects font settings from the Fonts panel, your application receives a font-selection Carbon event
(kEventFontSelection) from the Fonts panel. The settings selected by the user in the Fonts panel are
passed as event parameters in the kEventFontSelection event. Your application simply extracts as many
of the parameters as it can from the event and applies the font settings appropriately.

The event type kEventFontSelection contains parameters that reflect the current Fonts panel settings.
Provided your application has a Carbon event handler installed to detect this event, it can obtain the
parameters listed in Table 2-2 (page 30). Listing 2-7 (page 28) shows an application event handler that
detects the event type kEventFontSelection and calls the function show in Listing 2-8 (page 30).

Providing a Fonts Panel in a Carbon Application 29
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Table 2-2 Parameters for the event the kEventFontSelection

DescriptionTypeParameter

Specifies the font ID of the selected font.typeATSUFontIDkEventParamATSUFontID

Specifies the size of the font as a Fixed value.typeATSUSizekEventParamATSUFontSize

Specifies the font family reference of the font.typeFMFontFamilykEventParamFMFontFamily

Specifies the QuickDraw style of the font.typeFMFontStylekEventParamFMFontStyle

Specifies the size of the font as an integer.typeFMFontSizekEventParamFMFontSize

Specifies the color of the text as RGBColor.typeFontColorkEventParamFontColor

The function in Listing 2-8 (MyGetFontSelection) obtains the font family, font style, and font size from a
selection made by the user in the Fonts panel. You can just as easily extract the ATSUI font and size parameters
using the parameters and types shown in Table 2-2. A detailed explanation for each numbered line of code
appears following the listing.

Listing 2-8 A function that obtains the current selection in the Fonts panel

OSStatus MyGetFontSelection (EventRef event)

{
 OSStatus status = noErr;

// 1 FMFontFamilyInstance instance;
 FMFontSize fontSize;

 instance.fontFamily = kInvalidFontFamily;
 instance.fontStyle = normal;
 fontSize = 0;

 status = GetEventParameter (event, kEventParamFMFontFamily,
 typeFMFontFamily, NULL,
 sizeof (instance.fontFamily),

// 2 NULL, &(instance.fontFamily));
// 3 check_noerr (status);

 status = GetEventParameter (event, kEventParamFMFontStyle,
 typeFMFontStyle, NULL,
 sizeof (instance.fontStyle),

// 4 NULL, &(instance.fontStyle));
 check_noerr (status);

 status = GetEventParameter (event, kEventParamFMFontSize,
 typeFMFontSize, NULL,

// 5 sizeof(fontSize), NULL, &fontSize);
 check_noerr (status);

 return status;
}

Here’s what the code does:

30 Providing a Fonts Panel in a Carbon Application
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

1. Declares and initializes variables used to get font information.

2. Calls the Carbon Event Manager function GetEventParameter to extract the font family parameter,
passing these parameters:

 ■ the event

 ■ the event parameter name kEventParamFMFontFamily

 ■ the event parameter type

 ■ NULL, to indicate not to return the actual type of the parameter, which is not needed in this case

 ■ the size of the event parameter value

 ■ NULL, to indicate not to return the actual size of the parameter, which is not needed in this case

 ■ on output, points to the font size of the selection

3. Checks for errors before continuing. This is always something your application should do, even though,
for clarity, error-checking code is sometimes omitted from the sample code in this book.

4. Calls the Carbon Event Manager function GetEventParameter to extract the font style parameter.
Similar to the previous call to this function, passes NULL to indicate the actual type and size of the
parameter need not be returned.

5. Calls the Carbon Event Manager function GetEventParameter to extract the font size parameter. Similar
to the previous call to this function, passes NULL to indicate the actual type and size of the parameter
need not be returned.

Setting a Selection in the Fonts Panel

You can programmatically set a selection in the Fonts panel by calling the function
SetFontInfoForSelection. You can call this function even when the Fonts panel is not open or visible.
When the Fonts panel becomes visible later, the style information specified in the most recent call to
SetFontInfoForSelection is selected.

Listing 2-9 (page 31) shows a function (MySetFontSelection) that passes an ATSUI style object (ATSUStyle)
to the function SetFontInfoForSelection to set up a selection in the Fonts panel. A detailed explanation
for each numbered line of code appears following the listing.

Listing 2-9 A function that programmatically sets a selection in the Fonts panel

OSStatus MySetFontSelection (WindowRef thisWindow)
{
 OSStatus status = noErr;

// 1 ATSUStyle myStyle;
 ATSUAttributeTag myTags[2];
 ByteCount mySizes[2];
 ATSUAttributeValuePtr myValues[2];
 ATSUFontID theFontID;
 Fixed theFontSize;

// 2 HIObjectRef myHIObjectTarget;

// 3 status = ATSUCreateStyle (&myStyle);

Providing a Fonts Panel in a Carbon Application 31
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

 verify_noerr (ATSUFindFontFromName ("Times Roman",
 strlen ("Times Roman"),
 kFontFullName, kFontNoPlatform,
 kFontNoScript, kFontNoLanguage,

// 4 &theFontID));

// 5 myTags[0] = kATSUFontTag;
 mySizes[0] = sizeof (theFontID);
 myValues[0] = &theFontID;

// 6 theFontSize = Long2Fix (36);
 myTags[1] = kATSUSizeTag;
 mySizes[1] = sizeof(theFontSize);
 myValues[1] = &theFontSize;

 verify_noerr (ATSUSetAttributes (myStyle, 2,
// 7 myTags, mySizes, myValues));
// 8 myHIObjectTarget = (HIObjectRef) GetWindowEventTarget (thisWindow);

 SetFontInfoForSelection (kFontSelectionATSUIType,
 1,
 &myStyle,

// 9 myHIObjectTarget);
// 10 status = ATSUDisposeStyle (myStyle);

 return status;
}

Here’s what the code does:

1. Declares variables necessary to set up an ATSUI style for two style attributes. Each attribute in an ATSUI
style consists of three values (a triple)—an attribute tag, the value associated with the tag, and the size
of the value. See ATSUI Reference for a list of the style attribute tags you can supply.

2. Declares an HIObjectRef variable. You need to pass a value of this type to the function
SetFontInfoForSelection. An HI object (HIObject) is an HI Toolbox data type; it is the base class
for a variety of objects that appear in the user interface. An HI object can receive events and can have
event handlers installed on it. See the HIObject reference documentation for more information:

http://developer.apple.com/documentation/Carbon/Reference/HIObjectReference/index.html

3. Calls the ATSUI function ATSUCreateStyle to create and initialize an ATSUI style object. The
newly-created style object contains default values for style attributes, font features, and font variations.

4. Calls the ATSUI function ATSUFindFontFromName to obtain the font ID for the specified font.

5. Declares a triple (tag, size, value) for the font ID attribute.

Note: A triple is a set of three values that consist of an attribute tag, a value for that tag, and the size
of the value. In ATSUI, triples are used to specify style, line, and layout attributes.

6. Declares a triple for the font size attribute. Font size must be specified as a Fixed value, which is why
the code calls the macro Long2Fix prior to assigning the font size to the myValues array.

7. Calls the ATSUI function ATSUSetAttributes to associate the font ID and font size attributes with the
ATSUI style object.

32 Providing a Fonts Panel in a Carbon Application
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

http://developer.apple.com/documentation/Carbon/Reference/HIObjectReference/index.html

8. Calls the Carbon Event Manager function GetWindowEventTarget to obtain the window that should
be associated with the selection event. You’d typically set a selection in the Fonts panel to reflect the
style selected in the active document window (or the default setting for a newly-opened document
window). You need the resulting value (EventTargetRef), cast as an HIObjectRef, to pass to the
function SetFontInfoForSelection in the next step.

9. Calls the Fonts Panel function SetFontInfoForSelection to set the selection in the Fonts panel with
these parameters:

 ■ kFontSelectionATSUIType specifies the style is an ATSUI style and not a QuickDraw style.

 ■ the size of the style array.

 ■ a pointer to the ATSUI style object that contains the attribute information you want to set in the
Fonts panel.

 ■ a reference to the Carbon Event Manager HI object to which subsequent Fonts panel events should
be sent. This should be the window or control holding the current user focus, or the application
itself. The value can change from one call to another, as the user focus shifts. If this value is NULL,
the Fonts panel sends events to the application target as returned by the function
GetApplicationEventTarget.

10. Calls the ATSUI function ATSUDisposeStyle to dispose of the ATSUStyle data structure. If you plan
to use the same style again in your application, you don’t need to dispose of the style now. It is more
efficient to reuse ATSUStyle data structure than to recreate them.

Handling Change of User Focus

The user focus is the part of your application's user interface toward which keyboard input is directed; it can
be a window, a control, or any other user interface element. For the Fonts panel, your application needs to
track user focus only for those user interface elements to which you want Fonts panel events sent.

In Figure 2-3 (page 34) the user focus is in the top window while in Figure 2-4 (page 34) the user focus is in
the window on the right side. Compare the Fonts panel in one figure with the Fonts panel in the other figure.
As the user focus changes, so do the selections in the Fonts panel. Your application should behave in a similar
manner when the user focus changes.

Providing a Fonts Panel in a Carbon Application 33
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Figure 2-3 User focus in the top window

To handle changes in the user focus, when a Carbon event target (typically a control or window) gains the
focus, your application calls the Fonts Panel function SetFontInfoForSelection, providing the Fonts
panel with style run information for the currently selected text. If the Fonts panel is visible when this function
is called, its contents are updated to reflect the style run information passed to the Fonts panel.

Figure 2-4 User focus in the window on the right side

If the Fonts panel is not visible, there is no user-visible effect. However, the information supplied by
SetFontInfoForSelection is saved so that when the Fonts panel becomes visible again, the correct
settings are displayed. The function SetFontInfoForSelection also lets your application specify the event
target to which Fonts panel-related Carbon events should be sent.

34 Providing a Fonts Panel in a Carbon Application
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

When the user focus shifts, the component receiving the focus calls SetFontInfoForSelection to register
itself as the new event target (even if iNumStyles is still 0). The component that relinquishes focus should
call the function SetFontInfoForSelection, specifying 0 for iNumStyles parameter and NULL for
iEventTarget parameter. This tells the Fonts panel that its settings are to be cleared. In the case that there
is not another window open to receive focus, you need to set the Fonts panel to its default settings.

For example, if your application supports multiple windows, you can install a Carbon event handler to check
for window class events (kEventClassWindow) that are event kinds kEventWindowFocusAcquired and
kEventWindowFocusRelinquish. In response to these two event kinds, you call the function
SetFontInfoForSelection.

Listing 2-10 (page 35) shows a function (MyWindowEventHandler) that is installed on every document
window to handle user-focus events in an application. A detailed explanation for each numbered line of code
appears following the listing.

Listing 2-10 A function that handles user-focus events

pascal OSStatus MyWindowEventHandler (EventHandlerCallRef myHandler,
 EventRef event, void * userData)
{
 OSStatus status = eventNotHandledErr;
 UInt32 eventClass = GetEventClass (event);
 WindowRef thisWindow = NULL;

 switch (eventClass)
 {
 case kEventClassWindow:
 {
 switch (GetEventKind (event))
 {

// 1 case kEventWindowFocusRelinquish:
 {
 SetFontInfoForSelection (kFontSelectionATSUIType,

// 2 0, NULL, NULL);
 }
 break;

// 3 case kEventWindowFocusAcquired:
 {
 status = GetEventParameter (event,
 kEventParamDirectObject,
 typeWindowRef, NULL,
 sizeof (WindowRef), NULL,

// 4 &thisWindow);
// 5 status = MySetFontSelection (thisWindow);

 }
 break;
 }
 break;
 }
 }

 return status;
}

Here’s what the code does:

Providing a Fonts Panel in a Carbon Application 35
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

1. Checks for a focus-relinquish event. In this example, the settings are cleared. If there is not another
window to receive focus, you should set the Fonts panel to its default settings.

2. Clears the Fonts panel settings. The constant kFontSelectionATSUIType specifies to use an ATSUStyle
collection instead of QuickDraw style. When you clear the Fonts panel settings, you need to set the
window target (the last parameter to the function SetFontInfoForSelection) to NULL.

3. Checks for a focus-acquired event.

4. Calls the Carbon Event Manager function GetEventParameter to obtain a window reference to the
window that acquired the focus.

5. In the case of a focus-acquired event, the code calls a the function MySetFontSelection to set the
font family, font style, and font size to values appropriate for the window. The MySetFontSelection
function calls SetFontInfoForSelection to set the selection in the Fonts panel and set the window
target to the window that acquired the focus.

Your application would need to supply a function that sets fonts selections appropriately. For example,
you may need to retrieve font settings from the document attached to the window that acquires user
focus.

Storing Font Information in a Document

You may need to store font information in a document to ensure that the next time the document opens
the correct fonts are used. Fonts have several names, any of which can be stored with a document and
retrieved each time the document is opened, even if the document is opened on another system. The
following are the different font names you can store in a document:

 ■ font family name and style. (used by QuickDraw)

 ■ PostScript font name. (used by Cocoa and Quartz)

 ■ unique name (full font name plus the font manufacturer name). (Used by Multilingual Text Engine)

 ■ full font name

Unlike font names which are part of a font’s data, data types, such as ATSFontRef and ATSFontFamilyRef
represent values that are arbitrarily assigned by ATS for Fonts at system startup. These values can change
when the system is restarted, so you shouldn’t use them to store font information. You can, however, use
an ATS font reference (ATSFontRef) to obtain a font name by passing the reference to the appropriate
function. You can use the following functions to obtain a font name from an ATS font reference:

 ■ ATSFontFamilyGetQuickDrawName obtains the QuickDraw font family name.

 ■ ATSFontGetPostScriptName obtains the PostScript name for a font.

 ■ ATSFontFamilyGetName obtains the full font family name.

 ■ ATSFontGetName obtains the full font name.

36 Storing Font Information in a Document
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Getting Font Metrics

You can use ATS for Fonts to obtain a variety of horizontal and vertical font metrics, including the ascent,
descent, and leading. You call the functions ATSFontGetHorizontalMetrics or
ATSFontGetVerticalMetrics to get the measurements you need. ATS for Fonts returns the measurements
in an ATSFontMetrics data structure. If one or more metrics are not available for a font, then the appropriate
fields in the ATSFontMetrics data structure are set to 0. See ATS for Fonts Reference for details on which
measurements are contained in this data structure.

Calling either of the functions to get metrics is straightforward, as shown in Listing 2-11. A detailed explanation
for each numbered line of code appears following the listing.

Listing 2-11 A function that obtains font metrics

OSStatus MyGetFontMetrics (ATSFontRef fontRef)
{
 OSStatus status = noErr;
 ATSFontMetrics horizontalMetrics,
 verticalMetrics;

 status = ATSFontGetHorizontalMetrics (fontRef,
 0,

// 1 &horizontalMetrics);
 // Your code to do something with the metrics
 status = ATSFontGetVerticalMetrics(fontRef,
 0,

// 2 &verticalMetrics);
 // Your code to do something with the metrics

 return status;
}

Here’s what the code does:

1. Calls ATSFontGetHorizontalMetrics to obtain the horizontal metrics for the font specified by
fontRef. The second parameter is an options flag reserved for future use, so you should pass 0. If one
or more of the horizontal metrics are not available for the font, then the appropriate fields in the
ATSFontMetrics data structure are set to 0.

2. Calls ATSFontGetVerticalMetrics to obtain the vertical metrics for the font specified by fontRef.
The second parameter is an options flag reserved for future use, so you should pass 0. If one or more of
the vertical metrics are not available for the font, then the appropriate fields in the ATSFontMetrics
data structure are set to 0.

Getting Font Metrics 37
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

Migrating Data Types from the Font Manager

There are two sets of programming interfaces you can use in Mac OS X that you can use to manage fonts—ATS
for Fonts and the Font Manager. This document focuses on using ATS for Fonts, the programming interface
designed for font management in Mac OS X. The Font Manager is designed for Mac OS 9 but can be used as
a compatibility path from Mac OS 9 to Mac OS X. The Font Manager is discussed in detail in Managing Fonts:
QuickDraw and Font Manager Reference.

When you migrate code from the Font Manager to ATS for Fonts, keep in mind the difference between the
data types used in each API. Although there are parallels between the data types used to reference fonts
and font families in the two programming interfaces, the base types are different. The ATSFontFamilyRef
data type is an opaque 32-bit value while the FMFontFamily data type is a signed 16-bit integer, so you
should avoid type casting or implicit type promotion when working with these data types. Instead, use the
conversion functions defined for the font family references by the QuickDraw framework to protect your
software from any changes or differences in the way these two data types are generated.

The FMFont and ATSUFontID data types are equivalent so you can use them interchangeably with the
functions provided by the Font Manager and ATSUI in the QuickDraw framework. However, you must use
the functions listed in Table 2-3 to convert between Font Manager and ATS for Fonts data types. See Font
Manager Reference for more information on these functions.

Table 2-3 Functions that convert between Font Manager and ATS for Fonts data types

Data type providedData type obtainedFunction

FMFontATSFontRefFMGetATSFontRefFromFont

FMFontFamilyATSFontFamilyRefFMGetATSFontFamilyRefFromFontFamily

ATSFontRefFMFontFMGetFontFromATSFontRef

ATSFontFamilyRefFMFontFamilyFMGetFontFamilyFromATSFontFamilyRef

38 Migrating Data Types from the Font Manager
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Managing Fonts: ATS Tasks

This table describes the changes to Apple Type Services for Fonts Programming Guide.

NotesDate

Changed the title and added information about deprecated functions.2007-12-11

Changed the title from Managing Fonts: ATS.

Added information about using ATSFontActivationFromFileReference
instead of ATSFontActivateFromFileSpecification. See “Activating and
Deactivating Fonts” (page 20), “Notifying ATS for Fonts of Actions” (page 23),
and “Handling Font Queries” (page 23).

Corrected a typographical error.2007-08-07

Updated terminology.2007-03-06

Changed Fonts window to Fonts panel.

Corrected typographical errors.2006-09-05

Changed the parameter type for kEventParamFontColor to typeFontColor.2005-07-07

Changed title from Managing Fonts to Managing Fonts: ATS.2003-12-10

Reorganized the introduction.

First release of this document. Includes conceptual and task information.2003-01-24

Supersedes these technical notes:

Technical Note TN 2024, “The Mac OS X Font Manager”

Technical Note TN 2058, “The Font Panel for Carbon API”

39
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2007-12-11 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Apple Type Services for Fonts Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Managing Fonts: ATS Concepts
	Font Services in Mac OS X
	Font Formats and File Types
	Font Locations and Installation
	The ATS Server, Notifications, and Queries
	Font User Interface

	Managing Fonts: ATS Tasks
	Guidelines for Using ATS for Fonts
	Enumerating Font Families and Fonts
	Enumerating Font Families From Within a Loop
	Enumerating Fonts From Within a Loop
	Enumerating Using an Applier Function

	Activating and Deactivating Fonts
	Setting Up Notifications
	Notifying ATS for Fonts of Actions
	Handling Font Queries
	Providing a Fonts Panel in a Carbon Application
	Showing and Hiding the Fonts Panel
	Handling a Selection Event in the Fonts Panel
	Setting a Selection in the Fonts Panel
	Handling Change of User Focus

	Storing Font Information in a Document
	Getting Font Metrics
	Migrating Data Types from the Font Manager

	Revision History

