
Supporting Printing in Your Carbon
Application
Carbon > Printing

2004-08-31

Apple Inc.
© 2001, 2004 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, ColorSync,
LaserWriter, Mac, Mac OS, Macintosh, OpenDoc,
Pages, and QuickDraw are trademarks of Apple
Inc., registered in the United States and other
countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica is a registered trademark of
Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Supporting Printing in Your Carbon Application 7

Chapter 1 Printing Concepts for Carbon Developers 9

Overview of Printing Terminology 9
High-Level Printing Tasks 11

When Printing Dialogs Are Required 12
When Printing Dialogs Are Not Required 12

Printing Objects 13
Page Format Object 13
Print Settings Object 13
Printing Session Object 14

Printing Functions 14
Functions Used With a Page Format Object 14
Functions Used With a Print Settings Object 15
Functions Used With a Printing Session Object 17

The Print Loop 18
Sequence, Scope, and Usage 18
Page and Paper Rectangles 20

Page Rectangle 20
Paper Rectangle 21
Adjusted Page and Paper Rectangles 21
Application Margins 22

If You’ve Used the Old Printing Manager 22

Chapter 2 Printing Tasks 25

Setting Up the Page Format 26
Responding to the Page Setup Command 26
Setting Up a Page Format Object 30
Handling Dismissal of the Page Setup Dialog 31
Saving and Retrieving Page Format Data 32

Setting Up the Print Settings 33
Responding to the Print Command 33
Handling Dismissal of the Print Dialog 37

Printing the Job 38
Writing the Print Loop 39
Calculating the Maximum Number of Pages to Print 42
Drawing a Page 42

Handling Errors 43
Saving a Document as a PDF File 44

3
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

Printing One Copy 46
Printing Multiple Copies 46

Chapter 3 Adopting the Carbon Printing Manager 49

New and Changed Printing Functions 49
New Data Types and Accessor Functions 51
Supported PrGeneral Opcodes 53
Supported Picture Comments 54

Document Revision History 57

Index 59

4
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Printing Concepts for Carbon Developers 9

Figure 1-1 The Page Setup Dialog 10
Figure 1-2 The Copies & Pages pane of the Print dialog 10
Figure 1-3 Print Center with the default printer set to Kangaroo 11
Figure 1-4 Page and paper rectangles 21
Figure 1-5 100% scaling compared to 50% scaling 22
Table 1-1 Functions for working with a page format object 14
Table 1-2 Functions for working with a print settings object 15
Table 1-3 Functions for working with a printing session object 17
Listing 1-1 Pseudocode for a print loop function 18
Listing 1-2 Typical calling sequence for code that adjusts print settings and then prints a

document 19

Chapter 2 Printing Tasks 25

Listing 2-1 A function that responds to the Page Setup command 27
Listing 2-2 A function that sets up a page format object 30
Listing 2-3 A function to handle dismissal of the Page Setup dialog 31
Listing 2-4 Saving page format data 32
Listing 2-5 Retrieving page format data 32
Listing 2-6 A function that responds to the Print command 34
Listing 2-7 A function to handle dismissal of the Print dialog 37
Listing 2-8 A function that implements a print loop 39
Listing 2-9 A function that draws one page of a document 42
Listing 2-10 A function to post a printing error alert 43
Listing 2-11 Setting the destination as a PDF file 45
Listing 2-12 Setting up a print loop to use the No Dialog functions 46

Chapter 3 Adopting the Carbon Printing Manager 49

Table 3-1 Carbon replacements for functions in the old Printing Manager 49
Table 3-2 Old Printing Manager functions that are not supported in Carbon 50
Table 3-3 Carbon accessor functions for the old Print Manager print record (TPrint) fields

51
Table 3-4 Carbon support for PrGeneral opcodes 53
Table 3-5 Picture comments supported by the Carbon Printing Manager 54

5
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

6
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

This document shows you how to set up a Carbon application to print in Mac OS X using the Carbon Printing
Manager. The Carbon Printing Manager defines a programming interface that Carbon applications use for
printing their documents. For Carbon applications, this programming interface replaces that of the original
Printing Manager. The original Printing Manager—referred to as the old Printing Manager in this
document—was introduced with the very first release of Macintosh system software. The Carbon Printing
Manager allows applications to print both in Mac OS 8 and 9 with existing printer drivers and in Mac OS X
with new printer drivers.

You should read this document if you are a developer who wants to support printing from your Carbon
application. This document:

 ■ describes the Carbon Printing Manager concepts you need to know to start coding your application

 ■ provides examples of how to set up printing in a new application

 ■ discusses how to revise an existing application

To get the most from this document, you should first read MacOSXPrinting SystemOverview, which describes
the various portions of the printing system, including the user interface and the printing architecture.

This document describes how to write only the application portion of generating a print job. It does not
describe how to write printer modules, converters, I/O modules, or printing dialog extensions. See the Printing
Carbon Documentation for information on these other topics.

The document is divided into the following chapters:

 ■ Chapter 2 (page 9) contains details on how the Carbon Printing Manager works and describes the
concepts you need to use the Carbon Printing Manager in your application.

 ■ Chapter 3 (page 25) shows you how to use the Carbon Printing Manager to support printing in a Carbon
application. The chapter contains sample code you can customize for your application.

 ■ Chapter 4 (page 49) explains what you need to do to revise an existing non-Carbon Mac OS 9 application
so that it can print in either Mac OS 9 or Mac OS X.

See also Carbon Printing Manager Reference.

7
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Supporting Printing in Your
Carbon Application

8
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Supporting Printing in Your Carbon Application

The Carbon Printing Manager is a collection of system software functions that your application can use to
print to any type of supported printer. When printing, your application calls the same Carbon Printing Manager
functions regardless of the type of printer selected by the user. An application that uses the Carbon Printing
Manager can print in Mac OS 8 and 9 with existing printer drivers and in Mac OS X with new printer drivers.

This chapter provides an overview of the key concepts you need to support printing with the Carbon Printing
Manager. It includes the following sections:

 ■ “Overview of Printing Terminology” (page 9) defines the more frequently used printing terms.

 ■ “High-Level Printing Tasks” (page 11) lists the high-level tasks that a Carbon application must to do
support printing.

 ■ “Printing Objects” (page 13) provides information about the data types you use to keep track of user
selections and other data related to a print job.

 ■ “Printing Functions” (page 14) gives an overview of the key functions needed by your application to
support printing.

 ■ “The Print Loop” (page 18) describes the code that sends a print job to a printer queue.

 ■ “Sequence, Scope, and Usage” (page 18) provides guidelines for using printing functions.

 ■ “Page and Paper Rectangles” (page 20) discusses the page and paper boundaries.

 ■ “If You’ve Used the Old Printing Manager” (page 22) summarizes the differences between the old Printing
Manager and the Carbon Printing Manager.

Overview of Printing Terminology

There are several terms that you’ll see repeatedly in the Carbon Printing Manager documentation: page
format, print settings, formatting printer, default printer, and print job.

Page format describes how pages of a document should be printed, and includes such information as paper
size and orientation. Although an application can programmatically set up the page format, most applications
allow users to set options that control the page format in the Page Setup dialog.

The default page format settings are determined by the formatting printer. The formatting printer is the
one that is displayed in the “Format for” pop-up menu in the Page Setup dialog. The default formatting
printer is the generic Any Printer, as shown in the Page Setup dialog in Figure 2-1.

Overview of Printing Terminology 9
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

Figure 1-1 The Page Setup Dialog

Print settings control the execution of a print job on a specific printer, and include such information as the
number of copies, which pages to print, and the number of pages per sheet. As with the page format, an
application can programmatically set print settings but usually allows users to open the Print dialog and
make print settings instead. Figure 2-2 shows the Copies & Pages pane of the Print dialog.

Figure 1-2 The Copies & Pages pane of the Print dialog

The default print settings, as well as any constraints on those values, are determined by the printer module
for the default printer. Before the Print dialog opens, the default printer in Mac OS X is the printer that is
currently selected in Print Center. In Mac OS 9, it is the printer that is currently selected in the Chooser. Figure
2-3 shows Print Center with the default printer set to a printer named Kangaroo.

10 Overview of Printing Terminology
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

Figure 1-3 Print Center with the default printer set to Kangaroo

A print job consists of two items:

 ■ the drawing commands that describe a document

 ■ the settings that control printing the document and keep track of it once the job has been added to a
printer’s queue

High-Level Printing Tasks

The high-level tasks needed to print in a Carbon application are

 ■ setting up the page format

 ■ setting up the print settings

 ■ printing the job

As you’ll see later in this chapter, Carbon Printing Manager data structures and functions are grouped to
support these tasks.

The way you implement the high-level printing tasks depends on whether the printing tasks are driven by
the Page Setup and Print dialogs. In most document-based applications, such as a text editing or drawing
application, high-level printing tasks are driven by user interaction with these dialogs. The user can choose
Page Setup and Print from the File menu and change settings. A document prints when the user clicks Print
in the Print dialog.

An application can also support printing without requiring a user to open either the Page Setup or Print
dialogs. This is common for applications that provide an option for the user to print one copy using default
settings. In this case, an application can programmatically set up the page format and print settings, eliminating
the need for the user to make settings in either of the printing dialogs. You’ll see how to do this in “Printing
One Copy” (page 46).

High-Level Printing Tasks 11
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

Another situation in which your application could bypass the printing dialogs is to provide support for the
user to save a document as a portable document format (PDF) file. The default spool file format in Mac OS
X is PDF. As a result, it is straightforward for those applications that support printing in Mac OS X (version
10.1 and later) to also support saving a document as a PDF file. You’ll see how to implement this in “Saving
a Document as a PDF File” (page 44).

Let’s take a look at what an application needs to do to implement high-level printing tasks in each situation:
printing driven by printing dialogs and printing that does not require a user to interact with the printing
dialogs.

When Printing Dialogs Are Required

If your application lets the user choose Page Setup and Print from the File menu, you need to perform the
following to implement each of the high-level printing tasks.

Setting up the page format. The user has the option to choose Page Setup from the File menu and make
settings in the Page Setup dialog, but the user is not required to do so. Regardless of whether the user opens
the Page Setup dialog, your application must make sure that a document has appropriate page format
settings by setting default values.

If the user opens the Page Setup dialog, your application sets the page format values to defaults and then
displays the Page Setup dialog. When the users closes the Page Setup dialog by clicking the OK button, your
application should save the page format settings so it can retrieve the settings when the user prints the
document. Your application should be able to retrieve the page format even if the document is not printed
until the next time the user launches the application.

If the user opens the Print dialog, your application needs to check for valid page format settings. If there
aren’t any, your application sets the page format default values before the Print dialog opens.

Setting up the print settings. Your application needs to set default print settings for the current printer
before it opens the Print dialog. When the user clicks Print in the Print dialog your application must invoke
the next high-level printing task, which is printing the job.

Printing the job. Your application must determine the number of pages to print, then draw the pages in the
range specified by the user.

Chapter 3, “Printing Tasks”, (page 25) provides detailed information and sample code that shows how to
implement each high-level printing task when your application uses the Page Setup and Print dialogs.

When Printing Dialogs Are Not Required

If your application does not require a user to open either the Page Setup or Print dialogs, it performs the
high-level printing tasks sequentially, without interruption. The tasks should be implemented as described
here.

Setting up the page format. Your application must make sure that a document has appropriate page format
settings.

Setting up print settings. Your application must make sure that a document has appropriate print settings,
and that the destination (typically the default printer, but it could be a PDF file or other destination) is set.

12 High-Level Printing Tasks
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

Printing the job. Your application must determine the number of pages to print and then draw each page
so they are sent to the printer queue or PDF file. Creating a PDF requires that your application set the print
destination as a PDF file. This feature is available only in Mac OS X, version 10.1 and later.

In some cases when an application doesn’t require printing dialogs, it also doesn’t need the printing system
to display a printing status dialog. If you want to suppress the printing status dialog, your application needs
to use the “No Status Dialog” versions of four of the Carbon Printing functions. You’ll see what those functions
are and how to call them in “Saving a Document as a PDF File” (page 44).

Printing Objects

The main Carbon Printing Manager objects used to implement the high-level printing tasks are the page
format (PMPageFormat), print settings (PMPrintSettings), and printing session (PMPrintSession)
objects. The Carbon Printing Manager hides the underlying implementation of these objects, so you can’t
access the contents directly. Instead, you must use Carbon Printing Manager functions to access the internal
data stored in these objects. See “Printing Functions” (page 14) for information on the functions most
commonly used with these objects. See the Carbon Printing Manager Reference for information on all the
printing objects available.

Page Format Object

The page format object (PMPageFormat) stores information about how pages of a document should be
formatted, such as paper size and orientation. You use the function PMCreatePageFormat to allocate a
page format object and the function PMSessionDefaultPageFormat to assign default values. Optionally,
you can also use the functions PMSetPageFormatExtendedData and PMGetPageFormatExtendedData
to store into and retrieve application-specific data from the page format object.

When the user saves a document, your application should flatten the page format object associated with
that document and then save the flattened data with the document. When the user opens the document
later, your application can unflatten the page format data and restore it as a page format object. This allows
users to resume using their style preferences for printing their documents.

Print Settings Object

The print settings object (PMPrintSettings) stores information from the Print dialog, such as page range
and number of copies. You allocate a print settings object by calling the function PMCreatePrintSettings
and assign default values by calling the function PMSessionDefaultPrintSettings.

Apple recommends that you do not reuse this information if the user prints the document again. The
information supplied by the user in the Print dialog should pertain to the document only during a single
printing of the document, so there is no need to save the print settings object. The next time the user chooses
to print the document, your application should create a new print settings object whose values are set to
the defaults.

Printing Objects 13
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

Printing Session Object

A printing session object (PMPrintSession) stores information the printing system uses for a print job. You
create a printing session object using the function PMCreateSession. A printing session object contains
information that’s needed by the page format and print settings objects, such as default page format and
print settings values. For this reason, some Carbon Printing Manager functions can be called only after you
have created a printing session object. For example, setting defaults for or validating page format and print
settings objects can only be done after you have created a printing session object.

In Mac OS X, Carbon applications can create more than one printing session object. This means your application
can execute more than one print loop at a time. In Mac OS 8 and 9, you are limited to using one printing
session object at any given time.

Printing Functions

This section provides an overview of the functions you use to work with the three main printing objects—page
format, print settings, and printing session. The Inside Mac OS X: Carbon Printing Manager Reference provides
a complete reference for the functions available to support printing in your application.

Functions Used With a Page Format Object

Table 2-1 (page 14) shows some of the accessors and other functions available to work with a page format
object, which is used to store information displayed in the Page Setup dialog. Applications typically store
page format information with a document, and also maintain the information between calls to display the
Page Setup dialog, because users expect changes made in the Page Setup dialog to persist with a specific
document. The table describes the functions used to create a page format object, set it to default values,
validate it against information in the current printing session object, extract information from it, and so on.

Table 1-1 Functions for working with a page format object

DescriptionFunction

Allocates a new page format object. Increments the reference count to
1.

PMCreatePageFormat

Decrements the reference count for a printing object (such as an
instance of page format data type). When an object’s reference count
reaches 0, the object is deallocated.

PMRelease

Assigns default parameter values to an existing page format object.
The default values are obtained from the specified printing session
object, and specify the page format for the generic (“Any printer”)
printer.

PMSessionDefaultPageFormat

Validates a page format object against the specified printing session
object.

PMSessionValidate-
PageFormat

Flattens a page format object for storage in a user document or other
location.

PMFlattenPageFormat

14 Printing Functions
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

DescriptionFunction

Creates a page format object from a flattened representation produced
previously by PMFlattenPageFormat.

PMUnflattenPageFormat

Obtains extended page format data for the application.PMGetPageFormat-
ExtendedData

Sets extended page format data for the application.PMSetPageFormat-
ExtendedData

Obtains the page size, taking into account orientation, application
drawing resolution, and scaling settings. Outside of this page rectangle
all drawing operations are clipped.

PMGetAdjustedPageRect

Obtains the page size, but does not take into account adjustments for
orientation, application drawing resolution, and scaling settings.

PMGetUnadjustedPageRect

Obtains the paper size, taking into account orientation, application
drawing resolution, and scaling settings. This is the full sheet of paper,
including the margins beyond the page rectangle.

PMGetAdjustedPaperRect

Obtains the paper size, but does not take into account orientation,
application drawing resolution, and scaling settings.

PMGetUnadjustedPaperRect

Obtains the scaling factor currently applied to the page and paper
rectangles.

PMGetScale

Sets the scaling factor currently applied to the page and paper
rectangles.

PMSetScale

Obtains the current setting for page orientation.PMGetOrientation

Sets the current setting for page orientation.PMSetOrientation

Sets the application drawing resolution.PMSetResolution

Functions Used With a Print Settings Object

Table 2-2 (page 15) shows some of the accessor functions available to work with a print settings object,
which is used to store information displayed in the Print dialog. Applications typically don’t store print settings
information because users expect the Print dialog to show default values. The table describes functions used
to create a print settings object, set it to default values, validate it against information in the current printing
session object, extract information from it, and so on.

Table 1-2 Functions for working with a print settings object

DescriptionFunction

Allocates a new print settings object. Increments the reference count
to 1.

PMCreatePrintSettings

Printing Functions 15
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

DescriptionFunction

Decrements the reference count for a printing object (such as an instance
of print settings data type). When an object’s reference count reaches
0, the object is deallocated.

PMRelease

Assigns default parameter values to an existing print settings object.
The default values are obtained from the specified printing session
object.

PMSessionDefault-
PrintSettings

Validates a print settings object against the specified printing session
object.

PMSessionValidate-
PrintSettings

Flattens a print settings object for storage in a user document or other
location. (Apple recommends that you do not save print settings.)

PMFlattenPrintSettings

Creates a print settings object from a flattened representation produced
previously by PMFlattenPrintSettings.

PMUnflattenPrintSettings

Obtains extended print settings data for the application.PMGetPrintSettings-
ExtendedData

Sets extended print settings data for the application.PMSetPrintSettings-
ExtendedData

Obtains the number of copies that the user has requested to be printed.PMGetCopies

Sets the number of copies that the user has requested to be printed.PMSetCopies

Sets the default page number of the first page to be printed, as displayed
in the Print dialog.

PMSetFirstPage

Obtains the page number entered by the user in the From field of the
Print dialog

PMGetFirstPage

Sets the default page number of the last page to be printed, as displayed
in the Print dialog.

PMSetLastPage

Obtains the page number entered by the user in the To field of the Print
dialog

PMGetLastPage

Sets the valid range of pages that can be printed. In Mac OS X, these
values appear as the default values in the To and From fields of the Print
dialog. In Mac OS 8 and 9, this function has no effect on the values that
appear in the To and From fields.

PMSetPageRange

Obtains the valid range of pages than can be printed.PMGetPageRange

16 Printing Functions
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

Functions Used With a Printing Session Object

Table 2-3 (page 17) shows some of the accessors and other functions available to work with a printing session
object, which contains information the printing system uses for a specific print job. An application typically
creates a printing session object as needed (such as before displaying the Page Setup or Print dialog) and
releases it when it is no longer needed (such as when the Page Setup dialog is dismissed by the user or when
the print loop has completed).

Table 1-3 Functions for working with a printing session object

DescriptionFunction

Allocates a printing session object and initializes with values for the
current print job. Increments the reference count to 1.

PMCreateSession

Decrements the reference count for a printing object (such as an
instance of a printing session object). When an object’s reference
count reaches 0, the object is deallocated.

PMRelease

Begins a print job.PMSessionBeginDocument

Ends the print job that was started with PMSessionBeginDocument.PMSessionEndDocument

Informs the printing system that the drawing that follows is part of a
new page.

PMSessionBeginPage

Completes drawing the current page.PMSessionEndPage

Obtains a reference to the printer object (PMPrinter) for the current
printer (not the formatting printer).

PMSessionGetCurrentPrinter

Obtains the data the application previously stored in a printing session
object.

PMSessionGetDataFromSession

Sets the data the application previously stored in a printing session
object.

PMSessionSetDataInSession

Obtains the graphics context associated with the current page.PMSessionGetGraphicsContext

Displays the Page Setup dialog and records the user’s selections in a
page format object.

PMSessionPageSetupDialog

Displays the Print dialog and records the user’s selections in a print
settings object.

PMSessionPrintDialog

Specifies that a printing dialog be displayed as a sheet (that is,
attached to the window of the document being printed). Sheets are
displayed only in Mac OS X. This function returns the result
kPMNotImplemented in Mac OS 8 and 9.

PMSessionUseSheets

Printing Functions 17
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

The Print Loop

The print loop is your application’s code that calls all the necessary functions to print a selected page range
of a document. It is called a print loop because it loops to print each page in the range. The print loop and
the Print dialog must use the same printing session object.

The pseudocode in Listing 2-1 (page 18) shows the calls a typical print loop might make, with the calls
divided among Carbon Printing Manager functions, other Carbon functions, and application-defined functions.
Not all error handling is shown, but the print loop should check for errors after each call that may return one.

Listing 1-1 Pseudocode for a print loop function

AppPagesInDoc (application-defined function to verify a valid page range)
PMGetFirstPage (gets the number of the first page to be printed)
PMGetLastPage (gets the number of the last page to be printed)
(now know how many pages to print in the print loop)
PMSetLastPage (sets the last page in the print job; used for status dialog)
PMSessionBeginDocument (begin a new print job)
 (for each page to be printed)
 PMSessionError (check for an error before starting a new page;
 if error, break out of loop)
 PMSessionBeginPage (prepare to print the current page)
 PMSessionGetGraphicsContext (get the printing port)
 SetPort (set current drawing port to the printing port)
 AppDrawPage (application-defined function to draw one page)
 SetPort (restore saved port)
 PMSessionEndPage (finish printing the current page)
PMSessionEndDocument (end the print job)
AppPostPrintingErrors (application-defined function to display
 error message, if any, to the user)
PMRelease (release the print settings and printing session objects)

You’ll notice that very few of the functions called in the print loop are application-defined functions—most
are Carbon Printing Manager functions or other Carbon functions. Your application supplies functions only
to determine the maximum number of pages in its document, to draw the pages to be printed, and to display
error messages (if any). See “Writing the Print Loop” (page 39) for more information.

Sequence, Scope, and Usage

The Carbon Printing Manager enforces a sequence of steps in the print loop, and defines a valid scope for
each printing function. This means that your application must call certain functions before calling others.
Functions used out of sequence return the result code kPMOutOfScope.

Here are the basic rules for sequence, scope, and usage:

 ■ If you create an object, you must release it. You can pass any Carbon Printing Manager object to the
function PMRelease to release it.

 ■ A printing session object is created after a successful call to PMCreateSession and is released by calling
PMRelease. Some Carbon Printing Manager functions must only be called between these two calls.

18 The Print Loop
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

 ■ Any function whose name begins with PMSession can only be called between the creation and release
of a printing session object.

 ■ Any function whose name includes Begin (such as PMSessionBeginPage) must be called before the
corresponding End function (such as PMSessionEndPage).

 ■ An End function must be called if the corresponding Begin function returns noErr, even if errors occur
within the scope of the Begin and End functions.

 ■ You can call the functions PMSessionBeginPage and PMSessionEndPage only within the scope of
calls to PMSessionBeginDocument and PMSessionEndDocument.

 ■ The function PMSessionGetGraphicsContext can be called only with the scope of calls to
PMSessionBeginPage and PMSessionEndPage.

 ■ If you want to use sheets, you must call the function PMSessionUseSheets before you call the functions
PMSessionPageSetupDialog or PMSessionPrintDialog. (Sheets are available only in Mac OS X.)

Listing 2-2 (page 19) shows a typical calling sequence for code that sets print settings and sends a print job
to a printer. The call to PMRelease applies to the printing session object created by the function
PMCreateSession.

In general, functions may be called in any order with respect to other functions at the same or lower scope
level (represented in Listing 2-2 by indentation). For example, you can call PMSessionGetGraphicsContext
only within the scope of a call to PMSessionBeginPage, which in turn must be within the scope of a call
to PMSessionBeginDocument. But within the scope of a call to PMCreateSession, you can call
PMSessionDefaultPageFormat and PMSessionDefaultPrintSettings in any order.

Listing 1-2 Typical calling sequence for code that adjusts print settings and then prints a document

PMCreateSession
 PMSessionDefaultPrintSettings
 PMSessionValidatePrintSettings
 PMSessionDefaultPageFormat
 PMSessionValidatePageFormat
 PMSessionUseSheets
 PMSessionPrintDialog
 PMSessionBeginDocument
 PMSessionBeginPage
 PMSessionGetGraphicsContext
 PMSessionEndPage
 PMSessionEndDocument
PMRelease

The following list shows some of the printing functions that do not need to be called between the creation
and release of a printing session object. Many of these functions are used in the sample code in “Printing
Tasks” (page 25). Note however, that the functions with an asterisk (*) must be called before a call to the
function PMSessionBeginDocument or before you display the Print dialog.

PMCreatePageFormat*
PMCreatePrintSettings*
PMFlattenPageFormat*
PMUnflattenPageFormat*
PMGetPageFormatExtendedData*
PMSetPageFormatExtendedData*
PMGetUnadjustedPaperRect
PMGetUnadjustedPageRect
PMGetOrientation

Sequence, Scope, and Usage 19
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

PMSetOrientation*
PMFlattenPrintSettings
PMUnflattenPrintSettings*
PMGetPageRange
PMSetPageRange*
PMGetResolution
PMSetResolution*

The functions PMGetAdjustedPaperRect and PMGetAdjustedPageRect also do not need to be called
between the creation and release of a printing session object, but it is currently required that you call
PMSessionValidatePageFormat before you call either function. Validating a page format object causes
the printing system to calculate the adjusted page and paper rectangles.

Note: When a user makes any change that can affect the adjusted rectangles, such as changes to the
orientation, scaling, or resolution, the changes are recorded in the page format object but the adjusted
rectangles may not be immediately calculated. The adjusted rectangles may only be calculated when you
call the function PMSessionValidatePageFormat.

You can find out more about each function, including when to use it, in the Inside Mac OS X: Carbon Printing
Manager Reference.

Page and Paper Rectangles

The page and paper rectangles define the paper sheet size and imageable area for your application's printed
page. If you are new to Mac OS X, you should read this section. (Mac OS X uses the same definitions for these
rectangles as those used for the old Printing Manager in Mac OS 9.) This section provides the information
you need to write a function that draws a single page of a document for your application. It describes the
page and paper rectangles and the relationship between them, the adjusted page and paper rectangles, and
the margins for the imageable area of the sheet.

Page Rectangle

The page rectangle is the area of the page to which an application can draw. The coordinates for the upper-left
corner of the page rectangle are (0,0), as shown in Figure 2-4 (page 21). The coordinates of the lower-right
corner specify the maximum page height and width attainable on the given printer for this page format.
Anything drawn outside of the page rectangle is clipped.

Note: The printing system records all drawing commands, even if they draw to the area outside the page
rectangle. At print time items outside the page rectangle might be clipped by the printing system.

The width and height of the drawing area are determined by a number of factors—the user’s settings for
orientation and scaling as well as the resolution your application sets by calling the function
PMSetResolution. In all cases, the size of the drawing area is limited by the lower-right corner of the page
rectangle. Figure 2-4 shows the page rectangle for generic letter-size paper, at 72 dpi, 100% scaling, and
portrait orientation.

20 Page and Paper Rectangles
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

Figure 1-4 Page and paper rectangles

Paper rectangle(0,0)
(-18,-18)

(576,756)
(594,774)

Page rectangle

Your application should always use the page rectangle sizes provided by the printer and should not attempt
to change them or add new ones. If your application offers page sizes other than those provided by the
printer, you risk compatibility problems.

Paper Rectangle

The paper rectangle gives the paper sheet size, defined relative to the page rectangle, with the same coordinate
system. Thus, the upper-left coordinates of the paper rectangle are typically negative, and the lower-right
coordinates are greater than those of the page rectangle. Figure 2-4 (page 21) shows the relationship of
these two rectangles. The difference between the page and paper rectangles defines the area of the sheet
that can't be printed on, sometimes referred to as the hardware margin. Assuming a resolution of 72 dpi,
the hardware margin in Figure 2-4 is .25” (6.3 mm) in both dimensions.

Adjusted Page and Paper Rectangles

The adjusted page and paper rectangles are more important to your application than the unadjusted ones,
as they define the drawing area after orientation, scaling, and resolution are applied. The printing system
interprets your application’s drawing relative to these coordinates, but the unadjusted rectangles also provide
a reference for the application in case information (such as a print preview) needs to be displayed to the
user.

By default, all rectangles specify the page and paper sizes in dots-per-inch (dpi) with a default resolution of
72 dpi. If there are no orientation or scaling changes, and the application resolution is 72 dpi, the adjusted
and unadjusted page and paper rectangles are equal. When scaling, orientation, and resolution are taken
into account, the adjusted rectangles can define a drawing area quite different from the original unadjusted
rectangles.

Scaling increases the amount of content your application can draw to a page when the user specifies a
percentage less than 100% and decreases the amount of content your application can draw to a page when
the percentage is greater than 100%. For example, if the user specifies 50% scaling, the page and paper
rectangles increase in size by a factor of 2 in each dimension relative to the content, as shown in Figure 2-5.
While it may not be intuitive for the page and paper rectangles to increase in size when scaling is decreased,

Page and Paper Rectangles 21
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

increasing the size of the rectangles effectively shrinks the content. The converse is true. If the user specifies
200% scaling, the page and paper rectangles decrease in size by half in each dimension relative to the content,
effectively increasing the content size by 200% in each direction.

Figure 1-5 100% scaling compared to 50% scaling

100% 50%

If the user chooses landscape mode, the adjusted page and paper rectangles become, for most paper sizes,
wider than they are tall. Because some papers are naturally wider than they are tall (envelopes, for example),
it's best not to calculate page orientation based on the difference between the height and width of the page.
Instead, use the function PMGetOrientation. In most cases your application shouldn’t need the orientation,
just the dimensions of the adjusted page and paper rectangles.

When your application sets the drawing resolution to a value other than 72 dpi, the adjusted page and paper
rectangles change accordingly. For example, setting the resolution to 600 dpi enlarges both rectangles by
a factor of 8.3 in both dimensions—a previous page rectangle width of 576 units changes to 4800 units.

Application Margins

The default margins set by your application don’t need to coincide with the page rectangle. Applications
typically provide default margins within the page rectangle. For example, the margins for an application
might be as much as 1.5" (38mm) even though the margins for the page rectangle are much smaller, such
as .25" (6.3mm). An application may allow the user to specify application margins that allow content to fall
outside the printable area for a given printer.

If You’ve Used the Old Printing Manager

If you’ve previously used the old Printing Manager, you’ll find that the Mac OS X printing architecture and
most of the underlying concepts are slightly different from what you’ve used in Mac OS 9 and earlier. This
section outlines the main differences. If you have developed applications for Mac OS 9, you should read this
section to find out how the old concepts relate to the new ones. If you want to convert an existing Mac OS
9 application to use the Carbon Printing Manager, make sure you also read “Adopting the Carbon Printing
Manager” (page 49). If you are not modifying an existing application, you can skip this section.

22 If You’ve Used the Old Printing Manager
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

A key aspect of the Mac OS X printing system is its robust support for Carbon applications. Because the
Carbon Printing Manager is supported in Mac OS 8 and 9 as well as Mac OS X, a Carbon application is able
to print as expected in both environments. For example, when running in Mac OS 8 and 9, the application
utilizes the traditional user interface and drivers. In Mac OS X, the application automatically takes advantage
of the new printing system’s more consistent set of printing dialogs and its flexible printing architecture.

Prior to Mac OS X, printing was supported by the old Printing Manager interface. This interface is not used
by Carbon applications. The Carbon Printing Manager interface is defined in the header files
PMApplication.h, PMCore.h, and PMDefinitions.h.

If you need to convert existing printing code to use the Carbon Printing Manager, you should be aware of
the following changes. You can find more details about converting your code in “Adopting the Carbon
Printing Manager” (page 49).

 ■ The old Printing Manager print record (TPrint) is replaced by two opaque objects: a print settings object
(PMPrintSettings) and a page format object (PMPageFormat). You create these objects using the
PMCreatePrintSettings and PMCreatePageFormat functions, each of which returns a reference
that you can pass to other Carbon Printing Manager functions to obtain information stored in the objects.

 ■ Your application must not make assumptions about the size or content of the print settings and page
format objects. Your application can attach extended data to both objects using Carbon Printing Manager
functions, but applications must not assume a specific size when storing or retrieving flattened versions
of these objects with documents.

 ■ The Carbon Printing Manager provides functions for flattening and restoring the print settings and page
format objects. In most cases, your application should store only the flattened page format object. If
older versions of your application store a print record (created by the old Printing Manager) with a saved
document, you may continue to do so for backward compatibility. However, some information may be
lost when converting a page format object into a old print record (or vice versa), due to limitations of
the print record structure in the old Printing Manager.

 ■ In Mac OS X, Carbon applications can create multiple printing session objects and run more than one
print loop at a time. Each print loop is independent of other print loops. In Mac OS 8 and 9, applications
are limited to a single printing session object, and therefore one print loop at a time.

 ■ The Carbon Printing Manager enforces an order in which some functions should be called. Any function
used out of order returns the result code kPMOutOfScope.

 ■ The style dialog box is now called the Page Setup dialog, and the job dialog box is now called the Print
dialog.

 ■ If your application requires customizing the Page Setup or Print dialogs, you should consider creating a
printing dialog extension (PDE). If you want your application’s custom dialog to be displayed as a sheet
in Mac OS X, you must create a printing dialog extension. For more information, see Extending Printing
Dialogs.

 ■ Low-level driver functions such as PrLoadDriver are not supported.

If You’ve Used the Old Printing Manager 23
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

24 If You’ve Used the Old Printing Manager
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Printing Concepts for Carbon Developers

Chapter 2, “Printing Concepts for Carbon Developers”, (page 9) discussed the high-level tasks required to
support printing in a Carbon application: setting up the page format, setting up the print settings, and
printing the print job. This chapter shows you how to implement each of those tasks for a document-based
Carbon application, such as a text editor or drawing application. This chapter describes the following tasks:

 ■ “Setting Up the Page Format” (page 26). Your application must make sure valid page format settings
exist for a document.

 ■ “Setting Up the Print Settings” (page 33). Your application must make sure valid print settings exist for
a print job.

 ■ “Printing the Job” (page 38). Your application must determine how many pages are in the print job and
draw each page.

 ■ “Handling Errors” (page 43). Errors can occur at many points during the printing process. Your application
should provide a function to post error messages, should they occur.

 ■ “Saving a Document as a PDF File” (page 44). Saving a document as a portable document format (PDF)
file in Mac OS X uses code similar to the code you need to print a document to a printer. With very little
effort on your part, your application can provide users with the ability to save their documents to a file
that uses this popular format.

 ■ “Printing One Copy” (page 46). Your application can provide a shortcut command (Print One Copy) to
allow users to print a single copy of a document using default settings without requiring them to open
the Page Setup and Print dialogs.

 ■ “Printing Multiple Copies” (page 46). The printing system handles printing multiple copies for you.

This chapter contains sample code to illustrate each task you need to do to support printing. See Printing
Carbon Sample Code for the sample application on which the code is based.

If you’ve installed the Mac OS X Developer Tools CD you can find additional sample applications in the
following directory that show how to support printing in Mac OS X. You can compile and run the sample
applications in Project Builder.

/Developer/Examples/Printing/App/

As you go through the sample code in this chapter, note that any function, data type, or constant your
application must supply has the prefix My, except for global constants, which use the prefix gMy.
Application-defined constants have the prefix kMy. Carbon Printing Manager functions use the prefix PM. If
a line of code contains a commented number, an explanation for that line of code follows the listing.

25
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

Note: If your application has very simple printing needs and you are using Multilingual Text Engine (MLTE),
you should investigate using the MLTE functions TXNPageSetup and TXNPrint instead of using Carbon
Printing Manager functions. The MLTE functions call through to the Carbon Printing Manager, elminating
the need for you to write the code described in this chapter.

Setting Up the Page Format

Most Carbon applications that print allow the user to choose the Page Setup command from the File menu
to set options that control the page format for a document. This section shows you how to set up the page
format in response to the Page Setup command. It discusses the following tasks that your application needs
to perform to set up the page format for a document:

 ■ “Responding to the Page Setup Command” (page 26)

 ■ “Setting Up a Page Format Object” (page 30)

 ■ “Handling Dismissal of the Page Setup Dialog” (page 31)

This section also shows how to flatten page format data so you can save it with a document and unflatten
saved data to use it. See “Saving and Retrieving Page Format Data” (page 32) for information on how to
perform these optional tasks.

Responding to the Page Setup Command

When the user chooses Page Setup from the File menu your application needs to perform the following
operations:

1. Create a printing session object.

2. Make sure there is a valid page format object for the document by performing one of the following
actions:

If no page format object exists for the document, your application must create one and set it to default
values for this session. (The page format object is not usable until it has default values.)

If the page format object already exists, validate the object against the printing session object. Validation
updates any fields in the page format object that need to be calculated, such as the adjusted page and
paper rectangles.

If the page format object doesn’t exist, but the document has page format data saved with it, your
application needs to unflatten the saved data to create a page format object that contains the saved
settings.

3. Call the functionPMSessionUseSheets to indicate that the Page Setup dialog should use sheets.
Although sheets are not available in Mac OS 9 and earlier, you should call this function if your application
runs in Mac OS X as well as Mac OS 9. In Mac OS 9, the function returns a result code that indicates sheets
are not available.

26 Setting Up the Page Format
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

4. Call PMSessionPageSetupDialog to display the Page Setup dialog so the user can specify settings
such as paper size and orientation. In Mac OS X, the dialog is displayed as a sheet as long as you called
the function PMSessionUseSheets.

5. Preserve page setup information. Users expect page setup information to persist with the document.
Your application should save the page format data with the document.

6. Release the printing session object and handle errors, if any occur.

One of the major design decisions you must make for your application is how to handle the page format
object for the document. The page format should persist with the document after the user has dismissed
the Page Setup dialog. In other words, the next time the user opens the Page Setup dialog for the document,
the settings should be the same as they were when the user last closed the Page Setup dialog for that
document. The settings should persist when the user quits the application, launches it again, and then opens
the document.

There are a variety of ways you can handle page format data for a document. The sample code in this chapter
stores the page format object in a structure and attaches it to a document window as a property. The structure
is simple; it contains only two items. Most document-based applications use a larger structure to store all
information about the document, including printing-related information. You need to handle the page format
data in a way that’s best for your application.

The sample code assumes the following structure is defined:

typedef struct MyDocData
{
 PMPageFormat pageFormat;
 PMPrintSettings printSettings;
}MyDocData;

The structure MyDocData contains two fields, one of type PMPageFormat and another of type
PMPrintSettings. Although it is important for the page format data to persist with the document, it is not
recommended that print settings data persist. However, as you’ll see in “Setting Up the Print Settings” (page
33), using the structure MyDocData provides a convenient way to pass the print settings object from one
function to another; the print settings are not saved with the document after the print job is cancelled or
sent to a print queue.

The function MyDoPageSetup in Listing 3-1 (page 27) shows how your application can respond to the Page
Setup command. Following this listing is a detailed explanation for each line of code that has a numbered
comment.

Listing 2-1 A function that responds to the Page Setup command

OSStatus MyDoPageSetup (WindowRef documentWindow,
// 1 MyDocData *docDataP)

{
 OSStatus err = noErr;

// 2 if (docDataP)
 {
 PMPrintSession printSession;
 PMPageFormat pageFormat = NULL;

// 3 err = PMCreateSession (&printSession);
 if (!err)
 {

Setting Up the Page Format 27
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

 Boolean accepted;
 err = MySetupPageFormatForPrinting (printSession,

// 4 docDataP, &pageFormat);
 if (!err)
 {

// 5 Boolean sheetsAreAvailable = true;
 err = PMSessionUseSheets (printSession, documentWindow,

// 6 gMyPageSetupDoneProc);
// 7 if (err == kPMNotImplemented)

 {
 err = noErr;
 sheetsAreAvailable = false;
 }
 if (!err)
 {
 err = PMSessionPageSetupDialog (printSession,

// 8 pageFormat, &accepted);
 if (err == noErr && !sheetsAreAvailable)
 MyPageSetupDoneProc (printSession,

// 9 window, accepted);
 }
 }
 if (err)

// 10 (void) PMRelease (printSession);
 }
 }

// 11 MyPostPrintingError (err, kMyPrintErrorFormatStrKey);
 return err;
}

Here’s what the code in Listing 3-1 (page 27) does:

1. Passes a reference to the document window and a pointer to the data structure that contains the page
format object (PMPageFormat) for the document. Your application can get the pointer (docDataP) to
pass to your MyDoPageSetup function by calling the Window Manager function GetWindowProperty.
This assumes that you have already set up the data structure and set it as a property of the window
using the Window Manager function SetWindowProperty.

2. Makes sure the pointer is valid.

3. Calls the Carbon Printing Manager function PMCreateSession to create a printing session object that
is used for the page format code that follows.

4. Calls your application’s function to set up a page format object. See “Setting Up a Page Format
Object” (page 30). Pass the printing session, the pointer to the structure MyDocData, and a pointer to
the local page format object.

5. Sheets are not available in Mac OS 8 and 9. If you plan to run your application in Mac OS 8 and 9 as well
as in Mac OS X, you need to write your code so it acts properly in both situations. This code demonstrates
how you can support each operating system. First, create a variable sheetsAreAvailable and set it
to true.

6. Calls the Carbon Printing Manager function PMSessionUseSheets to specify that a printing dialog (in
this case the Page Setup dialog) should be displayed as a sheet.

28 Setting Up the Page Format
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

You need to pass the current printing session, the window that contains the document to be printed,
and a pointer to your page setup done function. When using sheets in Mac OS X, the Carbon Printing
Manager calls your function when the user dismisses the Page Setup dialog. This code assumes the
application already declared a global variable:

gMyPageSetupDoneProc = NewPMSheetDoneUPP (MyPageSetupDoneProc);

If your application runs in Mac OS 8 or 9, calling the function PMSessionUseSheets returns the error
kPMNotImplemented, and the function has no effect.

7. Checks for the error kPMNotImplemented. If it is returned, that means your application is running in
Mac OS 8 or 9, and that you are responsible for calling your procedure to handle dismissal of the Page
Setup dialog. Set the constant sheetsAreAvailable to false.

8. Calls the Carbon Printing Manager function PMSessionPageSetupDialog to display the Page Setup
dialog. Pass the current printing session, the page format object that was set up in a previous step, and
a pointer to a Boolean value. You call this function regardless of the version of the operating system. If
your application is running in Mac OS X, the dialog appears as a sheet.

The following is true if you are using sheets:

 ■ When the user dismisses the Page Setup dialog, the Carbon Printing Manager calls the function
specified by the constant gMyPageSetupDoneUPP in the previous call to PMSessionUseSheets.

 ■ When using sheets, thePMSessionPageSetupDialog function returns immediately and the Boolean
value returned in the accepted parameter is irrelevant because it is your Page Setup dialog done
function that is called when the dialog is dismissed. If your application needs to perform additional
tasks after the user dismisses the Page Setup dialog, it can do so in the MyPageSetupDoneProc
function, which is called when the user dismisses the Page Setup dialog.

 ■ If the user clicks the OK button in the Page Setup dialog, the page format object is updated with
the user’s changes (if any) and the value true is returned to the MyPageSetupDoneProc function.
If the user clicks the Cancel button, the page format object is unchanged and the value false is
returned to the MyPageSetupDoneProc function.

The following is true if you are not using sheets:

 ■ The PMSessionPageSetupDialog function does not return until the user dismisses the Page Setup
dialog.

 ■ The Boolean value returned in the accepted variable is true if the user clicks OK and false if the
user clicks Cancel.

9. If there is no error, and sheets are not available, then your application must call its Page Setup dialog
done function (MyPageSetupDoneProc) to process the results of the Page Setup dialog and do any
necessary clean up.

10. If an error is returned from the Page Setup dialog or prior to showing the dialog, then you must release
the printing session here. Otherwise you should release the printing session in your Page Setup dialog
done function (MyPageSetupDoneProc).

11. Calls your application’s function to display an error message. See “Handling Errors” (page 43) for more
information. If there is no error, the function does nothing.

Setting Up the Page Format 29
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

Setting Up a Page Format Object

The function MySetupPageFormatForPrinting, shown in Listing 3-2 (page 30), makes sure there is a valid
page format object for a document. The advantage to creating a separate function to take care of the page
format object is that your application can call the function when it handles the Page Setup command and
when it handles the Print command. “Responding to the Print Command” (page 33) describes how to handle
the Print command.

Listing 2-2 A function that sets up a page format object

static OSStatus MySetupPageFormatForPrinting (
 PMPrintSession printSession,
 MyDocData *docDataP,

// 1 PMPageFormat *pageFormatP)
{
 OSStatus status = noErr;

// 2 PMPageFormat pageFormat = docDataP->pageFormat;
// 3 if (pageFormat == NULL)

 {
 status = PMCreatePageFormat (&pageFormat);
 if (status == noErr)
 {
 status = PMSessionDefaultPageFormat (printSession,
 pageFormat);
 if (status == noErr)
 docDataP->pageFormat = pageFormat;
 else
 {
 (void) PMRelease (pageFormat);
 pageFormat = NULL;
 }
 }
 }

// 4 else
 {
 status = PMSessionValidatePageFormat (printSession, pageFormat,
 kPMDontWantBoolean);
 if (status)
 {
 docDataP->pageFormat = NULL;
 (void) PMRelease (pageFormat);
 pageFormat = NULL;
 }
 }

// 5 *pageFormatP = pageFormat;
 return status;
}

Here’s what the code does:

1. Passes the current printing session object (created either in MyDoPageSetup or MyDoPrint), a pointer
to the MyDocData structure, and a pointer to a page format object (created either in MyDoPageSetup
or MyDoPrint).

2. Declares a local variable to hold a page format object and set its value to the document’s page format.

30 Setting Up the Page Format
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

3. If the local page format is NULL, calls the Carbon Printing Manager function PMCreatePageFormat to
allocate the page format object, and then do the following:

 ■ Sets the newly allocated page format object to default values by calling the Carbon Printing Manager
function PMSessionDefaultPageFormat.

 ■ If setting up defaults for the local page format object is successful, then sets the document’s page
format object to the local page format object. If it isn’t successful, you need to release the local page
format object and set it to NULL.

4. If the local page format is not NULL, then validates the local page format object within the context of
the current printing session. Validating updates any values in the page format object that need to be
calculated, such as the adjusted page and paper rectangles.

If the validation does not succeed, you need to set the document’s page format object to NULL, release
the local page format object, and set the local page format object to NULL.

5. If the code is successful so far, you need to assign the local page format object to the storage
(pageFormatP) you passed to your MySetupPageFormatForPrinting function.

Handling Dismissal of the Page Setup Dialog

You need to provide a function to handle dismissal of the Page Setup dialog. If your application uses sheets,
the Carbon Printing Manager calls this function when the user dismisses the Page Setup dialog. Otherwise,
your application needs to call this function.

At a minimum this function should release the current printing session object, which shouldn’t be saved
after the user dismisses the Page Setup dialog. If your application has more complicated printing needs, it
may need to include code to perform other operations here. For example, your application may need to
reformat pages to reflect changes the user made to scaling or paper size options in the Page Setup dialog.

The function MyPageSetupDoneProc in Listing 3-3 (page 31) shows how you can handle dismissal of the
Page Setup dialog in your application. The function takes three parameters: the current printing session
object, a reference to the document window, and a Boolean to indicate whether the user accepted or cancelled
the Page Setup dialog. The function does two things: releases the printing session object and calls your
application’s function to post a printing error, should one occur. See “Handling Errors” (page 43) for information
on the error-posting function.

Listing 2-3 A function to handle dismissal of the Page Setup dialog

static pascal void MyPageSetupDoneProc (PMPrintSession printSession,
 WindowRef documentWindow,
 Boolean accepted)
{
 #pragma unused (documentWindow, accepted)

 OSStatus err = PMRelease (printSession);
 if (err)
 MyPostPrintingError (err, kMyPrintErrorFormatStrKey);
 return;
}

Setting Up the Page Format 31
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

Saving and Retrieving Page Format Data

When the user saves a document, most applications save the page format data with it, which consists of
choices made by the user in the Page Setup dialog. Because a page format object is an opaque data type,
you need to flatten the object before you can save it. When you want to use the data, you need to unflatten
it to restore the original page format object.

Listing 3-4 (page 32) shows an example of how you can flatten a page format object so it can be saved with
the document. The MyFlattenAndSavePageFormat function assumes the caller passes a validated page
format object. The function PMFlattenPageFormat flattens a page format object to a handle before the
application writes it to a document or other location.

Listing 2-4 Saving page format data

OSStatus MyFlattenAndSavePageFormat (PMPageFormat pageFormat)
{
 OSStatus status = noErr;
 Handle flatFormatHandle = NULL;

 if (pageFormat != kPMNoPageFormat)
 {
 status = PMFlattenPageFormat (pageFormat, &flatFormatHandle);
 if (status == noErr)
 // In this sample code we simply put it in a global variable.
 // Replace this line with your code to write the data to a file.
 gflatPageFormat = flatFormatHandle;
 }
 return status;
}

Listing 3-5 (page 32) shows a function—MyLoadAndUnflattenPageFormat—that gets flattened page
format data and returns a page format object. The function PMUnFlattenPageFormat converts the flattened
data to a page format object.

Listing 2-5 Retrieving page format data

OSStatus MyLoadAndUnflattenPageFormat (PMPageFormat* pageFormat)
{
 OSStatus status;
 Handle flatFormatHandle = NULL;

 // This sample code copies flattened data from a global.
 // Replace this line with your code to obtain the flattened data
 // from your document.
 flatFormatHandle = gflatPageFormat;
 status = PMUnflattenPageFormat (flatFormatHandle, pageFormat);

 return status;
}

32 Setting Up the Page Format
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

Setting Up the Print Settings

Most Carbon applications that support printing allow the user to choose Print from the File menu to set
options that control how a document is printed. This section shows you how to respond to the Print command
issued when the user chooses Print from the File menu. It discusses the following tasks that your application
needs to do to set up print settings for a document:

 ■ “Responding to the Print Command” (page 33)

 ■ “Handling Dismissal of the Print Dialog” (page 37)

The sample code assumes the following structure is defined:

typedef struct MyDocData
{
 PMPageFormat pageFormat;
 PMPrintSettings printSettings;
}MyDocData;

See “Setting Up the Page Format” (page 26) for more information about this structure.

Responding to the Print Command

When the user chooses Print from the File menu, your application needs to do the following:

1. Create a printing session object.

2. Check for a valid page format object; if there isn’t one, create it.

3. Create a print settings object and set it to default values for this session. A print settings object
(PMPrintSettings) is an opaque object that stores information such as the number of copies and
range of pages. An application creates an instance of this object by calling the function
PMCreatePrintSettings. Apple recommends that you do not save the print settings object with the
document, as it is intended to describe print settings for a specific printing session.

4. Call the function PMSessionUseSheets to indicate that the Print dialog should use sheets. Although
sheets are not available in Mac OS 9 and earlier, you should call this function if your application runs in
Mac OS X as well as Mac OS 9. In Mac OS 9, the function returns a result code that indicates sheets are
not available.

5. Call the Carbon Printing Manager function PMSessionPrintDialog to display the Print dialog so the
user can specify settings such as page range and number of copies before printing. In Mac OS X, the
dialog is displayed as a sheet as long as you called the function PMSessionUseSheets.

6. Release the printing session object, set the print settings object to NULL, and handle errors, if any occur.
Apple recommends that your application does not save print settings from one session to the next,
which is why you need to set the print settings object to NULL.

The function MyDoPrint in Listing 3-6 (page 34) shows how your application can respond to the Print
command. Following this listing is a detailed explanation for each line of code that has a numbered comment.

Setting Up the Print Settings 33
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

Listing 2-6 A function that responds to the Print command

OSStatus MyDoPrint (WindowRef documentWindow,
// 1 MyDocData *docDataP)

{
// 2 OSStatus status = noErr;

 PMPrintSettings printSettings = NULL;
 PMPageFormat pageFormat = NULL;
 UInt32 minPage = 1, maxPage;
 PMPrintSession printSession;

// 3 status = PMCreateSession (&printSession);
 if (status == noErr)
 {
 status = MySetupPageFormatForPrinting (printSession,

// 4 docDataP, &pageFormat);
 if (status == noErr)
 {

// 5 status = PMCreatePrintSettings (&printSettings);
 if (status == noErr)
 {
 status = PMSessionDefaultPrintSettings (printSession,

// 6 printSettings);
 if (status == noErr)
 {
 CFStringRef windowTitleRef;
 status = CopyWindowTitleAsCFString (documentWindow,

// 7 &windowTitleRef);
 if (status == noErr)
 {
 status = PMSetJobNameCFString (printSettings,

// 8 windowTitleRef);
// 9 CFRelease (windowTitleRef);

 }
 }
 }
 if (status == noErr)
 {

// 10 maxPage = MyGetDocumentNumPagesInDoc (docDataP);
// 11 status = PMSetPageRange (printSettings,

 minPage, maxPage);
 }
 if (status == noErr)
 {
 Boolean accepted;

// 12 Boolean sheetsAreAvailable = true;
// 13 docDataP->printSettings = printSettings;

 status = PMSessionUseSheets (printSession,
 documentWindow,

// 14 gMyPrintDialogDoneProc);

// 15 if (status == kPMNotImplemented)
 {
 status = noErr;
 sheetsAreAvailable = false;
 }
 if (status == noErr)

34 Setting Up the Print Settings
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

 {
 status = PMSessionPrintDialog (printSession,
 printSettings,
 pageFormat,

// 16 &accepted);
// 17 if (status == noErr && !sheetsAreAvailable)

 MyPrintDialogDoneProc (printSession,
 parentWindow, accepted);
 }
 }
 }

// 18 if (status != noErr)
 {
 if (printSettings)
 {

// 19 docDataP->printSettings = NULL;
 (void) PMRelease (printSettings);
 }

// 20 (void) PMRelease (printSession);
 }
 }

// 21 MyPostPrintingError (status, kMyPrintErrorFormatStrKey);
 return status;
}

Here’s what the code in Listing 3-6 (page 34) does:

1. Passes a reference to the document window and a pointer to the data structure that contains the page
format and print settings structures for the document. Your application can get the pointer (docDataP)
to pass to your MyDoPrint function by calling the Window Manager function GetWindowProperty.
This assumes that you have already set up the data structure and set it as a property of the window
using the Window Manager function SetWindowProperty.

2. Sets up the local variables you need for this function. You need to declare local variable to hold print
settings and page format objects and set them to NULL. You need two variables—minPage and
maxPage—for getting and setting the page range. You need to declare a variable to hold a printing
session object.

3. Calls the Carbon Printing Manager function PMCreateSession to create a printing session object.

4. Calls your application’s function to set up a page format object. See “Setting Up a Page Format
Object” (page 30). Pass the printing session, the pointer to the structure MyDocData, and a pointer to
storage for the local page format object.

5. Calls the Carbon Printing Manager function PMCreatePrintSettings to allocate a local print settings
object.

6. Sets default values for the print settings object for the current printing session.

7. Calls the Window Manager function CopyWindowTitleAsCFString. This example uses the document’s
window title as the name of the print job.

8. Calls the Carbon Printing Manager function PMSetJobNameCFString to set the name of the print job.

9. Makes sure you call the Core Foundation Base Services function CFRelease to release the CFStringRef
you created for the document’s window title.

Setting Up the Print Settings 35
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

10. Calls your application’s function to determine the number of pages in the document. See “Calculating
the Maximum Number of Pages to Print” (page 42).

11. Calls the Carbon Printing Manager function PMSetPageRange to specify the actual range of pages in
the document. In Mac OS X, the minimum allowable page (minPage) appears in the From field in the
Copies & Pages pane of the Print dialog and the maximum allowable page (maxPage) appears in the To
field. If the user enters a value outside of this range in the Print dialog the Carbon Printing Manager
displays an alert message. The page range cannot be enforced automatically in Mac OS 8 and 9.

12. Sheets are not available in Mac OS 8 and 9. If you plan to run your application in Mac OS 8 and 9 as well
as in Mac OS X, you need to write your code so it acts properly in both situations. This code demonstrates
how you can support each operating system. First, create a variable sheetsAreAvailable and set it
to true.

13. Writes the print settings object to the document’s data structure to allow the object to be accessed by
your application’s Print dialog done function.

14. Calls the Carbon Printing Manager function PMSessionUseSheets to specify that a printing dialog (in
this case the Print dialog) should be displayed as a sheet.

You need to pass the current printing session, the window that contains the document to be printed,
and a pointer to your Print dialog done function. The Carbon Printing Manager calls your Print dialog
done function when the user dismisses the Print dialog. This code assumes the application already
declared a global variable:

gMyPrintDoneProc = NewPMSheetDoneUPP (MyPrintDoneProc);

If your application runs in Mac OS 8 or 9, calling the function PMSessionUseSheets returns the error
kPMNotImplemented, and the function has no effect.

15. Checks for the error kPMNotImplemented. If it is returned, this means your application is running in
Mac OS 8 or 9, and that you are responsible for calling your procedure to handle dismissal of the Print
dialog. Set sheetsAreAvailable to false.

16. Calls the Carbon Printing Manager function PMSessionPrintDialog, to display the Print dialog. Pass
the current printing session, the print settings and page format objects that were set up in previous
steps, and a pointer to a Boolean value. You call this function regardless of the version of the operating
system. If your application is running in Mac OS X, the dialog appears as a sheet.

The following is true if you are using sheets:

 ■ When the user dismisses the Print dialog, the Carbon Printing Manager calls the function specified
by gMyPrintDialogDoneProc in the previous call to PMSessionUseSheets.

 ■ When using sheets, the PMSessionPrintDialog function returns immediately and the Boolean
value returned in the accepted variable is irrelevant since it is your Print dialog done function that
is called when the dialog is dismissed. If your application needs to perform additional tasks after
the user dismisses the Print dialog, it can do so in the MyPrintDoneProc function, which is called
when the user dismisses the Print dialog.

 ■ If the user clicks the OK button in the Print dialog, the print settings object is updated with the user’s
changes (if any) and the value true is returned to the MyPrintDoneProc function. If the user clicks
the Cancel button, the print settings object is unchanged and the value false is returned to the
MyPrintDoneProc function.

The following is true if you are not using sheets:

36 Setting Up the Print Settings
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

 ■ The PMSessionPrintDialog function does not return until the user dismisses the Print dialog.

 ■ The Boolean value returned in the accepted variable is true if the user clicks OK and false if the
user clicks Cancel.

17. If there is no error, and sheets are not available, then your application must call its Print dialog done
function to handle dismissal of the Print dialog. See “Handling Dismissal of the Print Dialog” (page 37).

18. If an error is returned from the Print dialog, then you must release the printing session and print settings
objects here. Otherwise you should release them in your Print dialog done function.

19. If there is an error, sets the print settings object stored in the document’s data structure to NULL.

20. If there is an error, releases the local printing session object.

21. Calls your application’s function to post a printing error. See “Handling Errors” (page 43) for more
information. If there is no error, the function does nothing.

Handling Dismissal of the Print Dialog

There are a number of operations your application needs to do when the user dismisses the Print dialog.
You should handle these in a Print dialog done function. This function is called by the Carbon Printing Manager
if your application uses sheets. Otherwise, your application must call this function after it calls the function
PMSessionPrintDialog.

The function MyPrintDialogDoneProc in Listing 3-7 (page 37) shows how you can handle dismissal of
the Print dialog in your application. It contains the minimum amount of code necessary to handle the dismissal,
including calling the application’s print loop if the user accepts the Print dialog. If your application has more
complicated printing needs, it may need to include code to perform other operations here. A detailed
explanation for each line of code that has a numbered comment appears following the listing.

Listing 2-7 A function to handle dismissal of the Print dialog

static pascal void MyPrintDialogDoneProc (PMPrintSession printSession,
 WindowRef documentWindow,

// 1 Boolean accepted)
{
 OSStatus status = noErr, tempErr;

// 2 MyDocData *docDataP = MyGetWindowProperty (documentWindow);
 if (docDataP)
 {

// 3 if (accepted)
 status = MyDoPrintLoop (printSession,
 docDataP->pageFormat,
 docDataP->printSettings,
 docDataP);

// 4 tempErr = PMRelease (ourDataP->printSettings);
 if (status == noErr)
 status = tempErr;

// 5 docDataP->printSettings = NULL;
 }

// 6 tempErr = PMRelease (printSession);
 if (status == noErr)

Setting Up the Print Settings 37
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

 status = tempErr;
// 7 MyPostPrintingError (status, kMyPrintErrorFormatStrKey);

}

Here’s what the code in Listing 3-7 does:

1. The function takes three parameters: the current printing session object, a reference to document window,
and a Boolean to indicate whether the user accepted or cancelled the Print dialog.

2. Calls your application’s function to retrieve a pointer to the structure MyDocData. If you set the pointer
as a property of the document window using the Window Manager function SetWindowProperty, you
can retrieve it using the Window Manager function GetWindowProperty. See the Window Manager
documentation for more information.

3. If the user accepts the Print dialog (accepted has the value true), calls your application’s MyDoPrintLoop
function to print the pages in the selected range. See “Writing the Print Loop” (page 39).

4. Calls the Carbon Printing Manager function PMRelease to release the print settings object. Releasing
an object decrements its reference count, causing it to be deallocated when the count reaches 0. By not
saving print settings between calls to the Print dialog, you ensure that the dialog displays with the
appropriate default settings, which is the recommended behavior.

5. Sets the value of the print settings object to NULL to indicate it is no longer valid.

6. Calls the Carbon Printing Manager function PMRelease to release the printing session object.

7. Calls your application’s function to post a printing error. See “Handling Errors” (page 43) for information
on the error-posting function.

Printing the Job

This section shows you how to write the code that actually creates a print job. Printing can occur only after
valid page format and print settings objects are set up. In a document-based application, the printing code
is typically called when the user clicks Print in the Print dialog. An application usually calls the printing code
from its print dialog done procedure. See the call to the application-defined function MyDoPrintLoop from
the function MyPrintDialogDoneProc (in “Handling Dismissal of the Print Dialog” (page 37)).

This section discusses the following tasks that your application needs to do to print a document:

 ■ “Writing the Print Loop” (page 39)

 ■ “Calculating the Maximum Number of Pages to Print” (page 42)

 ■ “Drawing a Page” (page 42)

38 Printing the Job
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

Writing the Print Loop

An application’s print loop code does most of its work by calling Carbon Printing Manager functions. The
code loops over the page range specified by the user. Each pass through the loop, your application needs
to call its page drawing function to draw one page. At each step through the print loop, your code should
check for errors and take appropriate action if an error occurs.

The function MyDoPrintLoop in Listing 3-8 (page 39) shows how your application can implement the print
loop. You should be able to adapt this print loop code for applications with more sophisticated printing
requirements. Following this listing is a detailed explanation for each line of code that has a numbered
comment.

Listing 2-8 A function that implements a print loop

static OSStatus MyDoPrintLoop (PMPrintSession printSession,
 PMPageFormat pageFormat,
 PMPrintSettings printSettings,

// 1 const MyDocData *docDataP)
{

// 2 OSStatus err = noErr;
 OSStatus tempErr = noErr;
 UInt32 firstPage, lastPage,

// 3 totalDocPages = MyGetDocumentNumPagesInDoc (docDataP);
 if (!err)

// 4 err = PMGetFirstPage (printSettings, &firstPage);
 if (!err)

// 5 err = PMGetLastPage (printSettings, &lastPage);
// 6 if (!err && lastPage > totalDocPages)

 lastPage = totalDocPages;
 if (!err)

// 7 err = PMSetLastPage (printSettings, lastPage, false);
 if (!err)
 {
 err = PMSessionBeginDocument (printSession, printSettings,

// 8 pageFormat);
 if (!err)
 {
 UInt32 pageNumber = firstPage;
 while (pageNumber <= lastPage && err == noErr &&

// 9 PMSessionError (printSession) == noErr)
 {
 err = PMSessionBeginPage (printSession,

// 10 pageFormat, NULL);
 if (!err)
 {
 GrafPtr oldPort = NULL;
 void *printingContext = NULL;

// 11 GetPort (&oldPort);

 err = PMSessionGetGraphicsContext (printSession,
 kPMGraphicsContextQuickdraw,

// 12 (void **) &printingContext);
 if (!err)
 {
 Rect pageRect;

Printing the Job 39
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

// 13 SetPort ((CGrafPtr) printingContext);
// 14 GetPortBounds (printingContext, &pageRect);

 err = MyPageDrawProc (docDataP, &pageRect,
// 15 pageNumber)
// 16 SetPort (oldPort);

 }
// 17 tempErr = PMSessionEndPage (printSession);

 if(!err)err = tempErr;
 }

// 18 pageNumber++;
 } // end while loop

// 19 tempErr = PMSessionEndDocument (printSession);
 if (!err)
 err = tempErr;
 if (!err)

// 20 err = PMSessionError (printSession);
 }
 }
 return err;
}

Here’s what the code in Listing 3-8 (page 39) does:

1. The function takes four parameters: the current printing session object, a page format object, a print
settings object, and pointer to the structure MyDocData (described in “Setting Up the Page Format” (page
26).

2. Declares two variable to keep track of error codes. This ensures an error that could occur in one part of
the print loop won’t overwrite an error that occurs in another part.

3. Declares variables for the page numbers of the first and last pages to be printed and the number of
pages that it is possible to print. Call your application’s function (MyDetermineNumberOfPagesInDoc)
to figure out the maximum number of pages that can be printed. See “Calculating the Maximum Number
of Pages to Print” (page 42) for more information.

4. Calls the Carbon Printing Manager function PMGetFirstPage to obtain the page number entered by
the user in the From field in the Copies & Pages pane of the Print dialog. If the user does not enter a
value, the function returns the value of the previous call to PMSetFirstPage, if any, or the default value.

Note: You must use 32-bit unsigned containers to obtain the first page and last page values because
in some cases the PMGetFirstPage and PMGetLastPage functions may return very large values from
the print settings data structure.

You should not use the constant kPrintAllPages in your print loop. That constant is used only with
the PMSetLastPage and PMSetPageRange functions to specify a last page. It is not returned by the
PMGetLastPage function and your code should not look for it here.

5. Calls the Carbon Printing Manager function PMGetLastPage to obtain the page number entered by the
user in the To field in the Copies & Pages pane of the Print dialog. If the user did not enter a value, the
function returns the value of the previous call to PMSetLastPage, if any, or the default value.

6. If the user specified a last page number greater than the number of pages in the document, assigns the
actual last page in the document to the variable lastPage.

40 Printing the Job
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

7. Calls the Carbon Printing Manager function PMSetLastPage to set the last page of the page range in
the print settings object for this print job. Setting the last page provides information used by the progress
dialog that is shown during printing.

8. Calls the Carbon Printing Manager function PMSessionBeginDocument to establish a new print job.

Note: If no error results from this call, the ensuing code always calls PMSessionEndDocument to end
the print job regardless of any intervening errors.

9. Sets up a while loop over the range of pages selected for printing. Note that the loop terminates if any
function returns an error (that is, if the variable status has a value other than noErr) or if the Carbon
Printing Manager function PMSessionError returns an error.

10. Calls the Carbon Printing Manager function PMSessionBeginPage to inform the printing system that
the drawing code which follows is part of a new page.

Note: If no error results from this call, the ensuing code always calls PMSessionEndPage to finish the
current page regardless of any intervening errors.

11. Calls the QuickDraw function GetPort to preserve the current graphics port.

12. Calls the Carbon Printing Manager function PMSessionGetGraphicsContext to obtain the QuickDraw
graphics printing port for the page being printed.

13. Calls the QuickDraw function SetPort to set the graphics port to the port obtained in the previous step.
You must do this before calling the document’s function to draw one page.

14. Calls the QuickDraw function GetPortBounds to get the page rectangle for the current printing context.
Your application may prefer to use the functions PMGetAdjustedPageRect and
PMGetAdjustedPaperRect for its drawing.

15. Calls your application’s function to draw the current page. See “Drawing a Page” (page 42) for more
information.

16. Calls the SetPort function again to restore the port to the one you preserved previously.

17. Calls the Carbon Printing Manager function PMSessionEndPage to end the current page. You should
use a temporary variable (tempErr) to get the status for this function so it doesn’t overwrite an existing,
prior error. This approach ensures that the current page is always finished and that if any error occurs
the loop terminates.

18. Increments the page count within the page-printing loop.

19. On completion of the page-printing loop, call the Carbon Printing Manager function
PMSessionEndDocument to signal the completion of the print job.

20. Calls the Carbon Printing Manager function PMSessionError to determine if any printing error has
occurred. If the user cancels the print job, the result code is kPMCancel.

Printing the Job 41
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

Calculating the Maximum Number of Pages to Print

The number of pages in a document is likely to depend on a number of factors, including document-specific
changes by the user (such as adding text or changing font size), as well as Page Setup and Print dialog
settings. Some applications might require a separate version of this function for each kind of document they
print. Typically, you’d call the page calculation function from your print function (MyDoPrint). See Listing
3-6 (page 34).

When you write your page calculation function, you should consider including code to do the following:

1. Call the Carbon Printing Manager function PMGetAdjustedPaperRect to obtain the paper size, taking
into account orientation, application drawing resolution, and scaling settings. Applications can use this
information to determine the number of pages in the document based on the current page format.

If your application formats pages based on the page rectangle, you should instead call the Carbon
Printing Manager function PMGetAdjustedPageRect.

2. Call the Carbon Printing Manager function PMGetAdjustedPageRect to obtain the page size (the
imageable area), in points, taking into account orientation, application drawing resolution, and scaling
settings.

3. Return the computed number of pages to print in the document.

Drawing a Page

The code you write to draw a page of a document needs to be tailored to support the specific needs of your
application. You can call the Carbon Printing Manager function PMGetAdjustedPageRect to obtain the
page size (the imageable area), in points, taking into account orientation, application drawing resolution,
and scaling settings.

Regardless of how you implement page drawing, your application should check for errors after attempting
to draw each page, and take the appropriate action should an error occur. Typically, you’d call your page
drawing function from your print loop function. See Listing 3-8 (page 39).

Listing 3-9 (page 42) shows a function that does some very simple text drawing.

Listing 2-9 A function that draws one page of a document

OSStatus MyPageDrawProc (const MyDocData *docDataP,
 const Rect *drawingRectP,
 UInt32 pageNumber)
{
 #pragma unused (docDataP, drawingRectP)
 OSStatus err = noErr;
 Str255 pageNumberString;

 MoveTo (72,72);
 TextFont (kFontIDHelvetica);
 TextSize (24);
 DrawString ("\pDrawing Page Number ");
 NumToString (pageNumber, pageNumberString);
 DrawString (pageNumberString);

42 Printing the Job
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

 return err;
}

Handling Errors

Handling errors is critical to providing printing support in any application. An application should handle any
errors it gets, making sure it displays localized error strings to the user. Providing localized strings in Mac OS
X is fairly easy if you define them in a separate file named Localizable.strings and follow the Mac OS
X convention to put localized versions of the file into the appropriate language-specific folder.

You can create a Localizable.strings file in Project Builder by choosing New File from the File menu.
Then, create an empty file named Localizable.strings and add it to the Resources group of your project.
See InsideMacOSX: SystemOverview for detailed information on localizing strings, string file syntax, functions
for retrieving strings, and information on generating a string file automatically.

Listing 3-10 (page 43) shows a function that displays an alert to notify the user that a printing error has
occurred. The alert message includes a localized string and the error number. A detailed explanation for each
line of code that has a numbered comment appears following the listing.

The function assumes a Localizable.strings file exists and contains a formatting string. A typical localized
formatting string for a printing application would be:

"Print error format" = "There is an error in the printing code. Error number:
%d.";

The string "Print error format" is the key. It is the string you pass to the function in Listing 3-10 as the
errorFormatStringKeyparameter. The string "There is an error in the printing code. Error
number: %d." is the localized formatting string; it uses printf-style formatting.

Listing 2-10 A function to post a printing error alert

void MyPostPrintingError (OSStatus status,
// 1 CFStringRef errorFormatStringKey)

{
 CFStringRef formatStr = NULL,
 printErrorMsg = NULL;
 SInt16 alertItemHit = 0;
 Str255 stringBuf;

// 2 if ((status != noErr) && (status != kPMCancel))
 {

// 3 formatStr = CFCopyLocalizedString (errorFormatStringKey, NULL);
 if (formatStr != NULL)
 {
 printErrorMsg = CFStringCreateWithFormat(
 NULL, NULL,

// 4 formatStr, status);
 if (printErrorMsg != NULL)
 {
 if (CFStringGetPascalString (printErrorMsg,
 stringBuf, sizeof (stringBuf),

// 5 GetApplicationTextEncoding()))
 {

Handling Errors 43
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

 StandardAlert(kAlertStopAlert, stringBuf,
// 6 NULL, NULL, &alertItemHit);

 }
// 7 CFRelease (printErrorMsg);

 }
// 8 CFRelease (formatStr);

 }
 }
}

Here’s what the code in Listing 3-10 (page 43) does:

1. The function takes two parameters: a result code (status) and a string (CFStringRef) that specifies a
key associated with the localized format string.

2. Checks whether the passed error should be displayed. Any error except kPMCancel, indicating the user
cancelled printing, should be displayed.

3. Calls the Core Foundation Bundle Services macro CFCopyLocalizedString to search the default strings
file (Localizable.strings) for a localized format string that indicates how the error should be
formatted for display. You need to pass the key (errorFormatStringKey) for the localized string you
wish to retrieve. The second parameter is optional—it is a comment (CFStringRef) to help translators
by giving them context or other hints about how the string is used or how to translate it. If you don’t
provide a comment, you should pass NULL.

4. If no error occurs, calls the Core Foundation String Services function CFStringCreateWithFormat to
create a copy of the error string that includes the error number. The first parameter is a reference to an
allocator to be used to create the CFString object. You can pass NULL to request the default allocator.
The second parameter refers to an undocumented feature, so pass NULL. The third parameter is a
reference to a CFString object that contains a string with printf-style specifiers. The remaining parameters
are arguments for the printf-style string. In this case there is only one, a status code.

5. Calls the Core Foundation String Services function CFStringGetPascalString to get a copy of the
string in a format that can display in a standard alert dialog.

6. Calls the Dialog Manager function StandardAlert to display the error message.

7. Calls the Core Foundation Base Services function CFRelease to release the string (printErrorMsg)
created by the call to CFCopyLocalizedString.

8. Calls the function CFRelease to release the string (formatStr) created by the call to
CFStringCreateWithFormat.

Saving a Document as a PDF File

This section provides information on what you need to do in your code to implement a command to save a
document as a PDF file. In Mac OS X saving a document as a PDF file is simple. Your application needs to set
the printing destination to a file location instead of to a printer. You set the destination by calling the function
PMSessionSetDestination.

44 Saving a Document as a PDF File
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

Note: The function PMSessionSetDestination is available in Mac OS X version 10.1 and later.

Listing 3-11 shows a code fragment that sets the destination to a PDF file. You need to supply the Carbon
Printing Manager constants kPMDestinationFile to specify that the destination is a file and
kPMDocumentFormatPDF that the document format is PDF. The parameter saveURL specifies the location
to save the PDF file.

When you call the function PMSessionSetDestination you must

 ■ call the function PMSessionSetDestination after a call to PMCreateSession and before you release
the printing session object.

 ■ use the same printing session object for the function PMSessionSetDestination as you use when
you set defaults for the print settings object (printSettings).

 ■ set the destination before you call your print loop code.

Listing 2-11 Setting the destination as a PDF file

if (status == noErr){
 status = PMSessionSetDestination (printSession,
 printSettings,
 kPMDestinationFile,
 kPMDocumentFormatPDF,
 saveURL);
 }

Note: If you want the user to specify the location, you need to write functions that call the Navigation Services
API. You call your printing code after the user has specified the location in the Navigation Services dialog.

In addition to setting the destination as a PDF file, you need to decide how your application handles printing
dialogs (Page Setup and Print) and whether you want the printing system to display the printing status dialog.

When users save a document, they expect to see a dialog in which they can specify a filename and file location.
They do not expect to see Page Setup or Print dialogs. In most cases, your application should not display
either of the printing dialogs to the user in response to the Save As PDF command. You need to write your
printing code so that the print settings object is set up programmatically rather than by the user. Your
application should use the current page format that is associated with the document.

The printing status dialog is automatically shown by the printing system when an application calls these
functions: PMSessionBeginDocument, PMSessionEndDocument, PMSessionBeginPage, and
PMSessionEndPage. The printing status message informs the user of the page being printed (Printing Page
1, Printing Page 2, and so forth). A printing status message is probably not appropriate to show for file saving
so you should suppress the printing status dialog.

To suppress the printing status dialog, your application needs to use the “No Status Dialog” versions of these
functions. Specifically, you call

 ■ PMSessionBeginDocumentNoDialog instead of PMSessionBeginDocument

 ■ PMSessionEndDocumentNoDialog instead of PMSessionEndDocument

 ■ PMSessionBeginPageNoDialog instead of PMSessionBeginPage

Saving a Document as a PDF File 45
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

 ■ PMSessionEndPageNoDialog instead of PMSessionEndPage

Otherwise, the code you use to implement the print loop is the same as what you’d use to print a print job
triggered by a user clicking Print in the Print dialog.

Listing 3-12 (page 46) shows a code fragment that assigns function names to an application-defined structure
based on whether the status dialog should be shown. Then, the application passes a pointer to the structure
to its print loop function (MyDoPrintLoop). You would need to modify your application’s print loop function
to require a parameter that specifies a pointer to the application-defined structure containing the function
names and call the appropriate function from the structure.

Listing 2-12 Setting up a print loop to use the No Dialog functions

 if (status == noErr)
 {
#if NO_STATUS_DIALOG
 PrintingProcs myPrintingProcs = {PMSessionBeginDocumentNoDialog,
 PMSessionEndDocumentNoDialog,
 PMSessionBeginPageNoDialog,
 PMSessionEndPageNoDialog};
#else
 PrintingProcs myPrintingProcs = {PMSessionBeginDocument,
 PMSessionEndDocument,
 PMSessionBeginPage,
 PMSessionEndPage};
#endif

 status = MyDoPrintLoop(printSession,
 pageFormat,
 printSettings,
 documentDataP,
 &myPrintingProcs);
 }

Printing One Copy

The Print One Copy command is often provided by applications as a shortcut to allow a user to print a single
copy of a document using default settings. Because default print setting values are used, there is no need
for your application to display the Print dialog. Instead your application should set up the print settings
objects programmatically and should use the current page format that is associated with the document.
Otherwise, the code you use to implement the print loop is the same as what you’d use to print a print job
triggered by a user clicking Print in the Print dialog.

Printing Multiple Copies

The Mac OS X printing system automatically handles printing multiple copies. Your application does not
need to perform any tasks other than specifying the number of copies in the printing session object.

46 Printing One Copy
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

Note: In non-Carbon printing in Mac OS 9 and earlier your application had to iterate through the print loop
for each copy you wanted to print. This is no longer true. If you use this approach in Mac OS X, you will get
unsatisfactory results.

Printing Multiple Copies 47
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

48 Printing Multiple Copies
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Printing Tasks

This chapter provides information that will help you convert printing code that uses the old Printing Manager
so that your code uses the Carbon Printing Manager. The Carbon Printing Manager was designed to let
Carbon applications take advantage of new features in Mac OS X, while still working correctly in previous
versions of the Mac OS.

If you want to port an application that runs in Mac OS 9 and earlier versions of the Mac OS to one that runs
in Mac OS X, you should read Inside Carbon: Carbon Porting Guide. The guide covers all porting topics, except
for porting printing code, which is covered in this chapter.

Updating your application to use the Carbon Printing Manager is a straightforward process. These are the
basic steps:

1. Remove all references to the Printing.h header file from your project.

2. If you are building your application so that is runs only in Mac OS X, make sure you link against the
Application Services and Carbon frameworks. If you are building your application so that it can run in
Mac OS 9 as well as in Mac OS X, you also need to add the CarbonLib library to your project.

3. Convert your code to use the new printing functions and opaque data types, as described in the following
sections.

New and Changed Printing Functions

Because the Carbon Printing Manager replaces all of the functions in the old Printing Manager, the first step
in converting your code is to locate and replace your old Printing Manager function calls with their equivalents
from the Carbon Printing Manager. In most cases there is a one-to-one mapping between the new functions
and the original functions they replace. Table 4-1 (page 49) lists the Carbon equivalents for old Printing
Manager functions.

Table 3-1 Carbon replacements for functions in the old Printing Manager

Carbon Printing Manager functionClassic function

PMCreateSessionPrOpen

PMReleasePrClose

PMSessionBeginDocumentPrOpenDoc

PMSessionEndDocumentPrCloseDoc

PMSessionBeginPagePrOpenPage

New and Changed Printing Functions 49
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Adopting the Carbon Printing Manager

Carbon Printing Manager functionClassic function

PMSessionEndPagePrClosePage

PMSessionDefaultPrintSettingsPrintDefault

PMSessionDefaultPageFormat

PMSessionValidatePrintSettingsPrValidate

PMSessionValidatePageFormat

PMSessionPrintDialogInitPrJobInit

PMSessionPrintDialogPrJobDialog

PMSessionPageSetupDialogInitPrStlInit

PMSessionPageSetupDialogPrStlDialog

PMSessionPrintDialogMainPrDlgMain

PMSessionPageSetupDialogMain

PMSessionGeneral Specific accessors replace common calls, see the Carbon
Manager Reference documentation.

PrGeneral

PMSessionSetErrorPrSetError

PMSessionErrorPrError

PMIdleProcPtrMyDoPrintIdle

PMPageSetupDialogInitProcPtrMyPrDialogAppend

PMPrintDialogInitProcPtr

Some of the functionality provided by the old Printing Manager is no longer supported. Table 4-2 (page 50)
lists the old functions that are not supported by the Carbon Printing Manager.

Table 3-2 Old Printing Manager functions that are not supported in Carbon

PrPicFile

PrPurge

PrNoPurge

PrLoadDriver

PrDrvrDCE

PrDrvrOpen

PrDrvrClose

50 New and Changed Printing Functions
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Adopting the Carbon Printing Manager

PrDrvrVers

PrCtlCall

PrJobMerge

The PrPicFile function was removed because the “deferred” printing style is no longer supported. All print
records must use “draft” style, and printer drivers must perform their own despooling or, in Mac OS 8 and 9,
use the Desktop Printer Spooler. Refer to the old Printing Manager documentation for information about
draft and deferred printing styles. The Desktop Printer Spooler is described in Tech Note 1097.

A direct replacement for the PrJobMerge function is unnecessary because the PMPageFormat and
PMPrintSettings objects can be used independently. You can print multiple documents, each with their
own saved page format, using a single PMPrintSettings object.

New Data Types and Accessor Functions

The Carbon Printing Manager replaces the old Print Manager print record (TPrint) with two opaque data
types, the PMPrintSettings object and the PMPageFormat object. All references to elements of the TPrint
record in your code must be updated to refer to one of these objects, using the new accessor functions
provided.

Because the PMPrintSettings and PMPageFormat objects are opaque, your application must not make
assumptions about their size or internal structure. You will need to update any code that loads, stores, or
directly manipulates the TPrint record.

Table 4-3 (page 51) lists the accessor functions you can use to examine elements of the PMPrintSettings
and PMPageFormat objects.

Table 3-3 Carbon accessor functions for the old Print Manager print record (TPrint) fields

Accessor functionElementData structure

Not supported (Use PMPrinterGetDriverReleaseInfo to obtain a
driver’s version strings. The version strings are not normally needed.)

iPrVersionTPrint

See TPrInfoprInfo

PMGetAdjustedPaperRectrPaper

See TPrStlprStl

Not supportedprInfoPT

not supportedprXInfo

See TPrJobprJob

Not supportedprintX[19]

New Data Types and Accessor Functions 51
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Adopting the Carbon Printing Manager

Accessor functionElementData structure

Not supportediDevTPrInfo

PMGetResolutioniVRes

PMGetResolutioniHRes

PMGetAdjustedPageRectrPage

PMGetOrientationwDevTPrStl

PMGetUnadjustedPaperRectiPageV

PMGetUnadjustedPaperRectiPageH

Not supportedbPort

Not supportedfeed

PMGetFirstPageiFstPageTPrJob

PMGetLastPageiLstPage

PMGetCopiesiCopies

Not supportedbJDocLoop

Not supportedfFromUsr

PMSessionSetIdleProc This does nothing in Mac OS X; only used for
Mac OS 8 and 9.

pIdleProc

Not supportedpFileName

Not supportediFileVol

Not supportedbFileVers

Not supportedbJobX

When you use these accessor functions, be sure to pass the appropriate constant for any parameters you do
not want to pass to the function or receive from it. For example, pass the kPMDontWantData constant in
place of a parameter that returns data you’re not interested in.

Your application must dispose of any structures, references, or other data returned by Carbon Printing
Manager functions. Your application should also release the PMPrintSettings and PMPageFormat objects
it creates when they are no longer needed.

52 New Data Types and Accessor Functions
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Adopting the Carbon Printing Manager

Supported PrGeneral Opcodes

The Carbon Printing Manager provides the PMSessionGeneral function as a replacement for the old Printing
Manager function PrGeneral. However, Apple suggests that you reduce your reliance on these functions
because they are not currently supported by all printer drivers, and because they are not likely to be supported
in future versions of the Mac OS.

Table 4-4 (page 53) lists PrGeneral opcodes that are supported in Carbon in Mac OS 8 and 9, but not in
Mac OS X. For opcodes that have an associated accessor function, you use that function instead of passing
the opcode to PMSessionGeneral. For example, use PMGetOrientation instead of passing the getRotnOp
constant to PMSessionGeneral. The PMSessionGeneral function returns the result code
kPMNotImplemented for any unsupported opcodes, and for opcodes that have Carbon accessor functions.

Table 3-4 Carbon support for PrGeneral opcodes

Accessor functionValueOpcode

PMPrinterGetIndexedPrinterResolution4GetRslDataOp

PMSetResolution5SetRslOp

PMSessionGeneral supports this opcode in Mac OS 8/96DraftBitsOp

PMSessionGeneral supports this opcode in Mac OS 8/97NoDraftBitsOp

PMGetOrientation8getRotnOp

PMSessionGeneral supports this opcode in Mac OS 8/99NoGrayScl

PMSessionGeneral supports this opcode in Mac OS 8/9;
PMPrinterGetLanguageInfo supported in Mac OS 8/9 and Mac
OS X

10GetPSInfoOp

PMSessionGeneral supports this opcode in Mac OS 8/911PSIntentionsOp

PMSessionGeneral supports this opcode in Mac OS 8/912EnableColorMatchingOp

PMSessionGeneral supports this opcode in Mac OS 8/914PSAdobeOp

PMPrinterGetDescriptionURL15PSPrimaryPPDOp

PMSessionGeneral supports this opcode in Mac OS 8/916kLoadCommProcsOp

PMSessionGeneral supports this opcode in Mac OS 8/917kUnloadCommProcsOp

PMSessionGeneral supports this opcode in Mac OS 8/920kPrinterDirectOpCode

PMPrinterGetDriverCreator22kPrVersionOp

PMSessionGeneral supports this opcode in Mac OS 8/923kGetPrinterInfo

PMSessionGeneral supports this opcode in Mac OS 8/924kIsSamePrinterInfo

PMSessionGeneral supports this opcode in Mac OS 8/925kSetDefaultPrinterInfo

Supported PrGeneral Opcodes 53
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Adopting the Carbon Printing Manager

Accessor functionValueOpcode

PMSessionGeneral supports this opcode in Mac OS 8/926kPrEnablePartialFonts

Supported Picture Comments

Table 4-5 (page 54) lists picture comments supported by the Carbon Printing Manager. Except where noted,
these have the same behavior in Mac OS X as they do with LaserWriter 8 in Mac OS 8 and 9. Note that by
default PostScript picture comments are ignored in Mac OS X; they are supported only when printing with
LaserWriter 8 compatibility mode.

Table 3-5 Picture comments supported by the Carbon Printing Manager

DescriptionData handleData sizeValueName

Text picture comments

Begin text functionTTxtPicRec6150TextBegin

End text functionNULL0151TextEnd

Begin string delimitationNULL0152StringBegin

End string delimitationNULL0153StringEnd

Offset to center of rotation for
text

TCenterRec8154TextCenter

Turn printer driver’s line layout
off

NULL0155LineLayoutOff

Turn printer driver’s line layout
on

NULL0156LineLayoutOn

Customize line layout error
distribution; not supported in
Mac OS X

TClientLLRec16157ClientLineLayout

Graphics picture
comments

Begin special polygonNULL0160PolyBegin

End special polygonNULL0161PolyEnd

Ignore following polygon dataNULL0163PolyIgnore

Mark that the polygon should
be smoothed and indicate
whether to frame, fill, and/or
close

TPolyVerbRec1164PolySmooth

54 Supported Picture Comments
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Adopting the Carbon Printing Manager

DescriptionData handleData sizeValueName

Mark the polygon as closedNULL0165PolyClose

Begin rotated portTRotationRec8200RotateBegin

End rotationNULL0201RotateEnd

Offset to center of rotationTCenterRec8202RotateCenter

Line-drawing picture
comments

Draw following line as dashedTDashedLineRecSize of a
TDashedLineRec
record

180DashedLine

End dashed linesNULL0181DashedStop

Set fractional line widthsTLineWidthHdl4182SetLineWidth

PostScript picture
comments are provided
only for LaserWriter 8
compatibility.

Set driver state to PostScriptNULL0190PostScriptBegin

Restore QuickDraw stateNULL0191PostScriptEnd

PostScript data referenced by
handle

a handleSize of the
PostScript data in
handle

192PostScriptHandle

Filename referenced by handlea handleSize of the
PostScript data in
handle

193PostScriptFile

If compatible with LaserWriter8,
QuickDraw text is sent as
PostScript

NULL0194TextIsPostScript

Set driver state to PostScriptNULL0196PSBeginNoSave

ColorSync picture
comments

Begin ColorSync profile; not
supported in Mac OS X

version 1 profile
data

variable220cmBeginProfile

End ColorSync profile; not
supported in Mac OS X

NULL0221cmEndProfile

Supported Picture Comments 55
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Adopting the Carbon Printing Manager

DescriptionData handleData sizeValueName

Begin ColorSync color matchingNULL0222cmEnableMatching

End ColorSync color matchingNULL0223cmDisableMatching

Contents are a selector with
data following

a handlevariable224cmComment

56 Supported Picture Comments
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Adopting the Carbon Printing Manager

This table describes the changes to Supporting Printing in Your Carbon Application.

NotesDate

Fixed formatting for Listing 3-8 (page 39).2004-08-31

Added information on printing multiple copies.2002-12-03

Updated formatting.

Added an index. Corrected several minor typographical errors.2002-03-01

First version of this document. Chapter 4, “Adopting the Carbon Printing
Manager”, (page 49) is a revision of the standalone document of the same name,
with content updated to reflect the latest Carbon Printing Manager API.

2001-01-01

57
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

58
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

application margins 22

C

Carbon Printing Manager
compared to old Printing Manager 22
converting old code to use 49
defined 9

CFCopyLocalizedString function 43
CFRelease function 34, 44
CFStringCreateWithFormat function 43
CFStringGetPascalString function 43
CopyWindowTitleAsCFString function 34

D

default printers 10
deferred printing style 51
draft printing style 51
DraftBitsOp opcode 53
drawing area 20

E

EnableColorMatchingOp opcode 53
errors, handling 43

F

formatting printers 9
functions for printing objects 14–17

calling sequence 18, 19
Carbon compared to Classic 49

scope of use 18
used with page format objects 14
used with print settings objects 15
used with printing session objects 17

functions, unsupported 50

G

GetApplicationTextEncoding function 43
GetPortBounds function 39
GetPSInfoOp opcode 53
getRotnOp opcode 53
GetRslDataOp opcode 53

H

hardware margins 21

I

imageable area 20

J

job dialog boxes 23

K

kGetPrinterInfo opcode 53
kIsSamePrinterInfo opcode 53
kLoadCommProcsOp opcode 53
kPMDestinationFile constant 45
kPMDocumentFormatPDF constant 45
kPMDontWantBoolean constant 30

59
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

Index

kPMNotImplemented constant 27, 35
kPMOutOfScope constant 18
kPrEnablePartialFonts opcode 54
kPrinterDirectOpCode opcode 53
kPrVersionOp opcode 53
kSetDefaultPrinterInfo opcode 53
kUnloadCommProcsOp opcode 53

N

NoDraftBitsOp opcode 53
NoGrayScl opcode 53

O

opcodes for PrGeneral 53
orientation of pages 20

P

page format objects 13
page format

defined 9
flattening 32
saving and retrieving 32
unflattening 32

page rectangles
adjusted 21
defined 20

Page Setup command, responding to 26–29
Page Setup dialogs

displaying 26, 28
handling dismissal of 31
illustrated 10

pages
calculating maximum 42
drawing 42

paper rectangles
adjusted 21
defined 21

paper sheet size 20, 21
PDF files

saving a document as 44–46
setting as the destination 45

picture comments 54
PMCreatePageFormat function 14, 23
PMCreatePrintSettings function 15, 23
PMCreateSession function 17, 18
PMFlattenPageFormat function 14, 32

PMFlattenPrintSettings function 16
PMGetAdjustedPageRect function 15
PMGetAdjustedPaperRec function 15
PMGetCopies function 16
PMGetFirstPage function 16, 39
PMGetLastPage function 16, 39
PMGetOrientation function 15
PMGetPageFormatExtendedData function 13, 15
PMGetPageRange function 16
PMGetPrintSettingsExtendedData function 16
PMGetScale function 15
PMGetUnadjustedPageRect function 15
PMGetUnadjustedPaperRect function 15
PMPageFormat data type 13, 23
PMPrintSession data type 13, 14
PMPrintSettings data type 13, 23
PMRelease function

and page format objects 14
and print settings objects 16
and printing session objects 17
when to use 18

PMSessionBeginDocument function 17, 39
PMSessionBeginDocumentNoDialog function 45
PMSessionBeginPage function 17
PMSessionBeginPageNoDialog function 45
PMSessionDefaultPageFormat function 14, 30
PMSessionDefaultPrintSettings function 13, 16, 34
PMSessionEndDocument function 17, 40
PMSessionEndDocumentNoDialog function 45
PMSessionEndPage function 17, 39
PMSessionEndPageNoDialog function 46
PMSessionError function 39
PMSessionGetCurrentPrinter function 17
PMSessionGetDataFromSession function 17
PMSessionGetGraphicsContext function 17, 40
PMSessionPageSetupDialog function 17, 27
PMSessionPrintDialog function 17, 35
PMSessionSetDataInSession function 17
PMSessionSetDestination function 44, 45
PMSessionUseSheets function

for Page Setup dialogs 26, 27, 28
for Print dialogs 33, 35, 36
in sequence of functions 19
introduced 17

PMSessionValidatePageFormat function 14, 30
PMSessionValidatePrintSettings function 16
PMSetCopies function 16
PMSetFirstPage function 16
PMSetJobNameCFString function 34
PMSetLastPage function 16, 39
PMSetOrientation function 15
PMSetPageFormatExtendedData function 13, 15
PMSetPageRange function 16, 34

60
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

INDEX

PMSetPrintSettingsExtendedData function 16
PMSetResolution function 15, 20
PMSetScale function 15
PMUnflattenPageFormat function 15, 32
PMUnflattenPrintSettings function 16
portable document format files. See PDF files 44
PrClose function 49
PrCloseDoc function 49
PrClosePage function 50
PrCtlCall function 51
PrDlgMain function 50
PrDrvrClose function 50
PrDrvrDCE function 50
PrDrvrOpen function 50
PrDrvrVers function 51
PrError function 50
PrGeneral function 50, 53
Print command, responding to 33–37
Print dialogs

displaying 33, 36
handling dismissal of 37–38
illustrated 10

print jobs
defined 11
setting the destination 44

print loops 18
independence of 23
pseudocode 18
with No Dialog functions 46
writing 39–41

Print One Copy command 46
print records 23, 51
print settings 10
print settings objects 13
PrintDefault function 50
printing dialog extensions 23
printing dialogs. See Page Setup dialogs, Print dialogs,

printing status dialogs
Printing Manager

compared to Carbon Printing Manager 22
converting old printing code 23, 49

printing objects 13–14
printing session objects

and scope 19
defined 14

printing status dialogs 45
printing styles 51
printing tasks

high-level 11–13
printing the print job 12, 13, 38–42
printing without dialogs 12–13
setting up print settings 12, 33–38
setting up the page format 12, 26–32

PrJobDialog function 50
PrJobInit structure 50
PrJobMerge function 51
PrLoadDriver function 23, 50
PrNoPurge function 50
PrOpen function 49
PrOpenDoc function 49
PrOpenPage function 49
PrPicFile function 50
PrPurge function 50
PrSetError function 50
PrStlDialog function 50
PrStlInit function 50
PrValidate function 50
PSAdobeOp opcode 53
PSIntentionsOp opcode 53
PSPrimaryPPDOp opcode 53

S

sample functions
MyDoPageSetup 27
MyDoPrint 34
MyDoPrintLoop 39
MyFlattenAndSavePageFormat 32
MyLoadAndUnflattenPageFormat 32
MyPageDrawProc 42
MyPageSetupDoneProc 31
MyPostPrintingError 43
MyPrintDialogDoneProc 37
MySetupPageFormatForPrinting 30

scaling of drawing area 20
SetPort function 40
SetRslOp opcode 53
StandardAlert function 44
style dialog boxes 23

T

TPrInfo structure 52
TPrint structure 23, 51
TPrJob structure 52
TPrStl structure 52

61
2004-08-31 | © 2001, 2004 Apple Computer, Inc. All Rights Reserved.

INDEX

	Supporting Printing in Your Carbon Application
	Contents
	Figures, Tables, and Listings
	Introduction
	Printing Concepts for Carbon Developers
	Overview of Printing Terminology
	High-Level Printing Tasks
	When Printing Dialogs Are Required
	When Printing Dialogs Are Not Required

	Printing Objects
	Page Format Object
	Print Settings Object
	Printing Session Object

	Printing Functions
	Functions Used With a Page Format Object
	Functions Used With a Print Settings Object
	Functions Used With a Printing Session Object

	The Print Loop
	Sequence, Scope, and Usage
	Page and Paper Rectangles
	Page Rectangle
	Paper Rectangle
	Adjusted Page and Paper Rectangles
	Application Margins

	If You’ve Used the Old Printing Manager

	Printing Tasks
	Setting Up the Page Format
	Responding to the Page Setup Command
	Setting Up a Page Format Object
	Handling Dismissal of the Page Setup Dialog
	Saving and Retrieving Page Format Data

	Setting Up the Print Settings
	Responding to the Print Command
	Handling Dismissal of the Print Dialog

	Printing the Job
	Writing the Print Loop
	Calculating the Maximum Number of Pages to Print
	Drawing a Page

	Handling Errors
	Saving a Document as a PDF File
	Printing One Copy
	Printing Multiple Copies

	Adopting the Carbon Printing Manager
	New and Changed Printing Functions
	New Data Types and Accessor Functions
	Supported PrGeneral Opcodes
	Supported Picture Comments

	Revision History
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	N
	O
	P
	S
	T

