
Carbon Event Manager Programming Guide
Carbon > Events & Other Input

2005-07-07

Apple Inc.
© 2001, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Aqua, Carbon, Mac, Mac
OS, Macintosh, and QuickDraw are trademarks
of Apple Inc., registered in the United States
and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Carbon Event Manager Programming Guide 7

System Requirements 8
Who Should Read This Document 8

Chapter 1 Carbon Event Manager Concepts 9

Carbon Event Handling Theory 9
The Event Loop 9
Event Types 9
Event Targets and Containment Hierarchies 10
The Handler Stack 10
Standard Handlers 11
An Event Propagation Example 12
Event Timers 13

The Event Model 14
Carbon Events Versus WaitNextEvent 15

Chapter 2 Carbon Event Manager Tasks 19

Event Classes and Kinds 19
Executing the Event Loop 20
Creating and Registering an Event Handler 21
Event Parameters 25
Other Event Attributes 26
Queue-Synchronized Events (Mac OS X v.10.2 and Later) 27

Obtaining Mouse and Keyboard Modifer States 27
Obtaining the Current User Event 28

Command Events 28
Text Events 29
Mouse Events 30

Mouse Button Events 31
Tracking Mouse Movements 33
Mouse Tracking Regions (Mac OS X v.10.2 and Later) 35

Installing Timers 38
Processing Events Manually 40
Creating Your Own Events 41
Carbon Events in Multiple Threads 43
Modal Event States 44

3
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

Document Revision History 47

Appendix A Control Events Versus Classic Control Messages 51

Glossary 55

Index 57

4
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Carbon Event Manager Concepts 9

Figure 1-1 Event target containment hierarchy 10
Figure 1-2 Event propagation with standard handlers 13
Figure 1-3 The Carbon event model 14
Figure 1-4 WaitNextEvent execution in the Carbon environment 16

Chapter 2 Carbon Event Manager Tasks 19

Table 2-1 Mask constants for modifier keys 31
Listing 2-1 Structure of a typical Carbon application 20
Listing 2-2 Installing a Carbon event handler 23
Listing 2-3 A window close event handler 24
Listing 2-4 Augmenting the standard window close handler 24
Listing 2-5 Obtaining text from a text input event 30
Listing 2-6 Obtaining the modifier key for a mouse event 31
Listing 2-7 Tracking the mouse with TrackMouseLocation 33
Listing 2-8 Tracking the mouse in a region 34
Listing 2-9 Installing a timer 38
Listing 2-10 Processing events manually 41

Appendix A Control Events Versus Classic Control Messages 51

Table A-1 Control Events versus Control defproc messages 51
Table A-2 Unsupported CDEF messages 52

5
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled Handling Carbon Events.

Events are the foundation of all Carbon programming. Each time the user clicks the mouse, types a character
from the keyboard, or chooses a command from a menu, you’re notified by means of an event. When one
of your windows needs to be redrawn, moved, or resized, your application receives an event telling you to
perform the operation. When your program becomes the active (foreground) application or moves to the
background in favor of another, or when another application starts up or quits, you receive an event informing
you of the fact. Just about everything a typical Carbon program does, whether interacting with the user or
communicating with the system, takes place in response to an event.

The Carbon Event Manager is the preferred interface for handling events in Carbon applications. You can
use this interface to handle events generated in response to user input as well as to create your own custom
events.

Some of the types of events that the Carbon Event Manager can handle include the following:

 ■ Window events: resizing, closing, activation, moving, window updates, and so on.

 ■ Menu events: menu tracking and selection, keyboard shortcuts, and so on.

 ■ Control events: activation, selection, dragging, changes in user focus, and so on.

 ■ Mouse events: mouse-up, mouse-down, mouse movement, multiple clicks, multiple buttons, dragging,
chording, rollover states, scroll wheel operation, and so on.

 ■ Text and keyboard events: Unicode or Macintosh-encoded text input and raw keyboard presses.

 ■ Application events: application activation, deactivation, requests to quit, and so on.

 ■ Apple events: see Dispatching Apple Events in Your Application in Apple Events Programming Guide for
details on how to process Apple events using the Carbon Event Manager.

 ■ Volume events: insertion or ejection of CDs and disks.

 ■ Tablet events: tablet proximity and movement.

The Carbon event model is simpler and more efficient than that used by the Classic Event Manager (sometimes
referred to as the WaitNextEvent event model). Many standard responses to events are handled
automatically, which means that you need to write code only when you want to override or augment the
default actions. In addition, the Carbon Event Manager also provides replacements for custom definition
procedure messages.

7
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Event Manager
Programming Guide

System Requirements

The Carbon Event Manager is available on Mac OS X (10.0) and later. It is also available on Mac OS 8.6 through
Mac OS 9.1 when CarbonLib 1.1.1 or later is installed. Note that some Carbon Event Manager features are
available only on later versions of Mac OS X.

Who Should Read This Document

Because event handling is so fundamental to applications, everyone writing Carbon applications should read
this document. You should have some familiarity with Macintosh terminology and understand the basics of
creating and manipulating the Mac OS user interface (windows, controls, menus, and so on).

8 System Requirements
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Event Manager Programming Guide

This chapter gives an overview of the Carbon event model and how the Carbon Event Manager interacts
with your application.

Carbon Event Handling Theory

Carbon event processing is based on a callback mechanism. You define your program’s response to various
types of event by writing event handler functions and installing them in the Carbon Event Manager. Then,
each time an event occurs, the Carbon Event Manager will call back the handler routine you’ve installed for
that type of event. By defining how your program responds to events, the event handlers determine everything
about the program’s appearance and behavior on the screen.

The Event Loop

The heart of an event-driven application is the main event loop. After any required initialization, the application
enters the main event loop and does not leave it until required to quit. The basic loop operation is as follows:

1. The application sits in a suspended state, waiting for an event. While in this state it uses no processor
time, which means that more time is available to other running applications.

2. When an event occurs that requires its attention, the application “wakes up” and processes the event.
Typically the Carbon Event Manager calls back the event handler, if any, that the application has installed
for that event.

3. After processing, the application returns to its suspended state, waiting for the next event.

The main event loop continues in this manner until it receives a quit event (usually in response to the user’s
choosing a Quit command from a menu). After leaving the event loop, the application calls any necessary
termination routines and then quits.

Event Types

Every Carbon event is characterized by an event type consisting of two items of information: an event class
and an event kind. The event class denotes a general category of events, such as mouse events or window
events; the event kind identifies the specific type of event within that category, such as a mouse-down event
(the user pressed the mouse button) or a window-activated event (a window has been brought to the front
of the screen).

Carbon Event Handling Theory 9
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

Event Targets and Containment Hierarchies

Every event handler you create must be associated with a particular object called an event target. For example,
your handler could be associated with a control, a menu, a window, or even the entire application. The event
class and kind do not have to be related to the event target. For example, a handler to process a control
event (such as button click) does not have to be attached to a control. You could attach it to the window
that contains the control, or even the application itself. How and when your handler gets called for an event
is determined by a containment hierarchy, as shown in Figure 1-1.

Figure 1-1 Event target containment hierarchy

Application

MenuWindow

Control

Control

When an event occurs, it is initially reported to the innermost relevant target in the hierarchy. For example,
if the user clicks a button, the event is initially sent to that button control. If the user resizes a window, the
event is sent to that window. If that target has no handler for the given event type, the event propagates
outward to the next containing target. This makes it possible for an event handler associated with an inner
target to override the behavior defined for a given event type by an outer, enclosing target.

For example, you can use this hierarchy to enable or disable your program’s menu items according to
circumstances. This behavior is controlled via events of type kEventCommandUpdateStatus, which ask
whether a particular item should be enabled or disabled on the menu. On receiving such an event for, say,
the Close command on your program’s File menu, you might have an event handler associated with the
application event target (the outermost target in the hierarchy) disable the menu, while a handler associated
with an individual window enables it. If your program has at least one window open on the screen, the event
will be handled by the window’s event handler; if not, it will propagate outward to the application event
handler. The Close command will thus be enabled if there are any windows present, but disabled if there
aren’t.

The Handler Stack

Within an event target, you can have multiple event handlers installed. These handlers are arranged in a
stack, placed in reverse order of installation (last in is first called). For example, when an event is passed to
an event target, it is sent to the top handler in the stack. If that handler doesn’t take the event, it is passed
to the next handler in the stack, and so on.

Note that this stack design means that you can install more than one handler for a particular event. Plugins,
for example, can use this feature to install additional event handlers for existing events. If the plug-in is
installed after the application-defined handler, it is first in line to take the event. If it chooses not to handle
it, the application-defined handler then has the opportunity to take the event.

10 Carbon Event Handling Theory
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

If a standard handler is installed, it is placed at the bottom of the stack and will be the last to be called.

Standard Handlers

Carbon provides a standard event handler for the window and application event targets. These handlers
define a standard response to each type of event that a window or application target may receive; the one
for windows, for instance, implements all the standard behavior for manipulating a window with the
mouse—dragging it by its title bar, closing it by clicking the close button, resizing it by dragging the resize
control, and so on.

Note: The standard window handler also includes standard responses for control events. The standard
application handler includes support for menu events.

By installing the standard handler when you create a window, you automatically inherit all of this standard
behavior with no additional effort on your part. You can then proceed to install additional handlers of your
own for those aspects of the window’s behavior that are specific to your individual application, such as
drawing its contents or responding to the user’s mouse actions inside it. Events of those specific types will
be reported to your own installed handlers for processing; all others will instead be passed through to the
standard handler to deal with in the standard way. This frees you from having to provide your own handler
for each of the hundred-odd kinds of event that Carbon may throw at you: with the standard event handlers
to back you up, you can just focus your attention on those events whose behavior you need to modify or
customize in some way and leave the rest to the standard handlers, knowing that they will do something
sensible with them.

Note: Some events have a default behavior rather than a standard handler associated with them. The default
behavior always occurs if you don’t handle the event, whether or not you have a standard event handler
installed.

Sometimes the standard event handler’s response to a single event can trigger an elaborate cascade of other
events. Consider, for example, what happens when the user presses the mouse button in a window’s resize
control. The mouse press generates an event of type kEventMouseDown, reporting such information as the
time and location at which the button was pressed, what modifier keys were being held down at the time,
and so forth. Responding to this event involves hit-testing the mouse location to determine that it lies in the
window’s resize control, tracking the mouse’s movements for as long as the button is held down, providing
appropriate visual feedback on the screen, and finally resizing the window when the button is released.
Theoretically, you could provide a handler routine for mouse-down events to do all this yourself, but it’s
generally more convenient to let the standard window event handler manage all these chores for you in the
standard way. It does this by generating a sequence of further events representing various stages in the
process of responding to the original mouse press:

1. A hit-test event (kEventWindowHitTest) to analyze the mouse location and determine what object
on the screen received the mouse press

2. A click-resize-region event (kEventWindowClickResizeRgn) indicating that the mouse button was
pressed in the resize control of one of your windows

3. A get-minimum-size (kEventWindowGetMinimumSize) and a get-maximum-size
(kEventWindowGetMaximumSize) event requesting the smallest and largest dimensions to which the
user should be allowed to resize the window

Carbon Event Handling Theory 11
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

a. A mouse-dragged event (kEventMouseDragged) reporting the mouse’s coordinates

b. A window bounds-changing event (kEventWindowBoundsChanging) indicating that the window’s
size is about to change

c. A get-grow-image-region event (kEventWindowGetGrowImageRegion) requesting the size and
shape of the window outline to be drawn for visual feedback on the screen

4. A mouse-up event (kEventMouseUp) when the mouse button is released

5. A draw-frame event (kEventWindowDrawFrame) to redraw the window’s structural elements (frame,
title bar, and so forth) in the new size

6. A window bounds-changed event (kEventWindowBoundsChanged) indicating that the window’s size
has changed

7. A window update event (kEventWindowUpdate) indicating that the portion of the window’s contents
visible on the screen has changed and must be redrawn

8. A draw-content event (kEventDrawContent) to redraw the window’s interior contents

This proliferation of events may seem daunting, but most of them are really intended to be processed by
the standard window event handler itself, with no active intervention on your part. The only reason for
sending all these events is to give you the flexibility to step in at various points in the process and take control
yourself if you choose to do so. Maybe you want to reimplement the draw-frame event to change the standard
rectangular window frame to an octagonal viewing port for your starship simulation, or intercept
mouse-dragged events to play a cool sound effect while the user is dragging the mouse around. Most of the
time, you’ll just leave these events for the standard handler to manage in its own way.

An Event Propagation Example

Here’s a simple example of how an event would propagate through the containment hierarchy when you
have the standard handlers installed, as shown in Figure 1-2.

12 Carbon Event Handling Theory
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

Figure 1-2 Event propagation with standard handlers

Control

handler 1

handler 2

handler n

Window

handler 1

handler 2

handler n

Standard window
 handler

Application

handler 1

handler 2

handler n

Standard application
 handler

Control event

.

.

.

.

.

.

.

.

.

Say the user clicks on a button. Doing so generates an event which is sent to the associated event target (the
button control). If the event makes its way through the control’s handler stack without being processed, it
is propagated to the window that contains it. (Currently there are no standard handlers that can be installed
on controls.)

If the window event target contains no installed handlers that can take the control event, the standard
window handler takes the event. (The standard window handler includes responses for control events.)

Note that if you installed a handler for a control event on the application event target, it would never get
called, because the standard window handler will take the event before it can get propagated to the
application.

Event Timers

In addition to letting you install event handlers, the Carbon Event Manager also lets you create event timers,
which you use to perform some action repeatedly at regular intervals. For example, you may want to use a
timer to handle actions such as blinking a text-insertion caret, sounding a repeating beep, or updating a
clock display on the screen. The timer fires at specified intervals, calling a timer routine you specified when
installing the timer. You can also specify that a timer fire only once. For example, you can install a one-shot
timer that dismisses a dialog after two minutes.

Carbon Event Handling Theory 13
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

The Event Model

In most cases, you can simply write your event handlers and not worry about the details of how events are
propagated to your application. However, if you have more sophisticated needs, understanding the event
model will make it easier to write your code.

Figure 1-3 diagrams the basic Carbon event model in Mac OS X.

Figure 1-3 The Carbon event model

KernelEvents

Window Server

Event
queue

Pull
event and
dispatch

Application

Fire timers
as needed

Event
loop

Place event
on queue

Propagate event
up hierarchy
if necessary

Event
target

User events of all kinds are propagated through the kernel to the Window Server. From there, events are
sent to your application in a two-step process:

1. A low-level event loop extracts the events that are relevant to your application and places them into the
application’s event queue. This loop also fires timers as necessary. If neither of these tasks need attention,
the loop is blocked.

2. The Carbon Event Manager removes events from the event queue and dispatches them to the appropriate
event targets. If the target has registered for the event, the appropriate handler is called. If not, the event
propagates up the containment hierarchy until someone handles the event.

3. If no registered handler takes the event, and no standard handlers are installed, the event is discarded
(unless WaitNextEvent is also installed; see “Carbon Events Versus WaitNextEvent” (page 15) for more
details).

14 The Event Model
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

Note: While the lower level details differ slightly, the Carbon event loop and dispatching mechanism are
identical in older Mac OS systems using CarbonLib.

The standard Carbon Event Manager event loop function, RunApplicationEventLoop, automatically
handles all of the above operations for you. However, if you want more control over the event-handling
mechanism, you may choose to call lower-level functions to explicitly run the event loop and dispatch events.
For more information about processing events yourself, see “Processing Events Manually” (page 40).

If you create preemptive threads (using Multiprocessing Services), these will have their own low-level event
loops and event queues, but they do not receive user events. Cooperatively-scheduled threads (such as you
would create with the Thread Manager) share the main application event loop and queue. For more information
about processing events in other threads, see “Carbon Events in Multiple Threads” (page 43).

Carbon Events Versus WaitNextEvent

The Carbon Event Manager was designed as a replacement for the Classic Event Manager, which is based
around the WaitNextEvent loop. If you are writing a new Carbon application, you should use the Carbon
Event Manager. If you are porting an existing application to Carbon, here are some reasons why you should
adopt the Carbon Event Manager:

 ■ Standard event handlers mean that you don’t have to handle most common events.

 ■ No polling. A more efficient event model means that your application uses less processor time, improving
overall system performance.

 ■ The Carbon Event Manager can handle any number of event types (not just the 16 available in the Classic
Event Manager).

 ■ Defined event types include those that replace defproc messaging.

The Carbon event model is flexible enough that you can make gradual changes to adopt the Carbon Event
Manager. In fact, you can have Carbon event handlers installed and still call WaitNextEvent to run your
event loop. Figure 1-4 shows the modified event handling mechanism used by WaitNextEvent.

Carbon Events Versus WaitNextEvent 15
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

Figure 1-4 WaitNextEvent execution in the Carbon environment

Wait for event

Dispatch to
event target

Event
handled?

Event in
event
mask?

Remove event
from queue

Remove event
from queue

Remove event
and return

Yes

Yes

No

No

1. WaitNextEvent runs the event loop, placing events into the event queue as they appear. It also fires
timers as necessary.

2. When an event appears in the event queue, WaitNextEvent dispatches it to the appropriate event
target, but does not pull the event off the queue.

3. If a Carbon event handler processed the event, then the event is pulled off the queue and WaitNextEvent
waits for the next event.

4. If the event wasn’t handled, WaitNextEvent checks to see if the event is in the event mask specified
by the application. If not, it pulls the event off the queue and discards it.

5. It the event is in the event mask, WaitNextEvent pulls the event from the queue, packages it as an
event specification, and returns.

Note that if you specify that standard event handlers be used for your windows, these will override any
WaitNextEvent handlers you had written to process window events. Also, the standard handlers for menu
events and Apple events are installed only when you call RunApplicationEventLoop. Therefore, as long
as you use WaitNextEvent, you will still have to handle menu tracking, menu selection, and Apple event
dispatching yourself.

16 Carbon Events Versus WaitNextEvent
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

Here are some simple changes that can improve performance if you are not ready to fully adopt the Carbon
Event Manager:

 ■ Maximize the wait time in WaitNextEvent to 7FFFFFFF. Doing so effectively blocks your application
so it won’t use unnecessary processor time.

 ■ Don’t reduce your wait time in order to get null events for idle processing. If you need to perform periodic
actions (such as blinking the cursor), install Carbon event timers to do so.

The Carbon Event Manager also provides some utility functions which can be useful for applications using
both Carbon events and WaitNextEvent. To convert between event references and Classic Event Manager
event specifications, use ConvertEventRefToEventRecord:

EventRef theRef;
EventRecord theRecord;

ConvertEventRefToEventRecord (theRef, &theRecord);

To determine whether a Carbon event corresponds to a bit in a Classic Event Manager event mask, use
IsEventInMask:

EventRef theRef;
EventMask theMask;
Boolean result;

result = IsEventInMask (theRef, theMask);

A pair of convenience macros, EventTimeToTicks and TicksToEventTime, are available for converting
between event times and the older ticks intervals:

EventTime timeInSeconds;
UInt32 timeInTicks;

timeInTicks = EventTimeToTicks(timeInSeconds);
timeInSeconds = TicksToEventTime(timeInTicks);

Carbon Events Versus WaitNextEvent 17
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

18 Carbon Events Versus WaitNextEvent
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Event Manager Concepts

This chapter expands on the basic concepts introduced in “Carbon Event Manager Concepts” (page 9) and
shows you how to create and install event handlers using the Carbon Event Manager interface.

Event Classes and Kinds

As introduced in “Event Types” (page 9), each Carbon event is defined by an event class (for example, mouse
or window events) as well as an event kind (for example, a mouse-down event).

All of the available event classes and kinds are designated by constants defined in the Universal Interfaces
header file CarbonEvents.h. Nominally, these values are 32-bit integers; but in practice, the constants
denoting event classes are specified as four-character tags—for instance,

kEventClassMouse = FOUR_CHAR_CODE('mous');

—while those representing event kinds are defined as simple integers:

kEventMouseDown = 1;

The event class and kind form a unique signature called an event type, which is specified in the Carbon Event
Manager by the EventTypeSpec structure. When you register an event handler, you need to pass one or
more EventTypeSpec structures to specify which events you want to handle.

The inclusion of standard handlers for many common events means that you can intercept actions only at
the level you require. Some examples:

 ■ If the user clicks the zoom box in a window, your handler can intercept the overall action at any of the
following levels:

 ❏ When the mouse is pressed (kEventMouseDown).

 ❏ When the mouse is determined to be in the zoom region (kEventWindowClickZoomRgn).

 ❏ When the mouse is released in the zoom region and the zoom is to take place (kEventWindowZoom).

 ❏ When the zoom is completed (kEventWindowZoomed).

 ■ When a window needs to be updated (redrawn), you can begin to take action at either of the following
times:

 ❏ Immediately (kEventWindowUpdate). You must handle all the usual update actions (calling SetPort,
BeginUpdate/EndUpdate, drawing) yourself.

 ❏ Only when it is time to draw (kEventWindowDrawContent). The standard handler for
kEventWindowUpdate calls SetPort and BeginUpdate/EndUpdate for you. (It also sends the
kEventWindowDrawContent event.)

Event Classes and Kinds 19
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Note: On Mac OS X, you can view all the events that are sent to your application on-the-fly by setting the
environment variable EventDebug to 1 in the Terminal application (that is, by entering setenv EventDebug
1) and then launching your application from the command line using the LaunchCFMApp tool.

Executing the Event Loop

The Carbon Event Manager provides several ways to execute event loops. The most common method is to
simply call the function RunApplicationEventLoop, which does the following:

 ■ Installs the standard application event handler

 ■ Puts the application in a suspended state, waiting for events

 ■ Places events into the application event queue as they occur

 ■ Dispatches the events to your handlers or to standard event handlers

Using RunApplicationEventLoop, the basic structure of a Carbon application is as shown in Listing 2-1.

Listing 2-1 Structure of a typical Carbon application

void main (void)

 // Main function

 {
 Initialize (); // Do one-time-only initialization

 RunApplicationEventLoop (); // Process events until time to quit

 Finalize (); // Do one-time-only finalization

 } /* end main */

You would register your event handlers in the Initialize function. Once in the loop, the only actions the
application can take are in response to events.

To break out of the event loop, you must call the QuitApplicationEventLoop function from whichever
event handler handles the quit event.

Note: On Mac OS X, you typically install an Apple event handler to handle the quit event. The
RunApplicationEventLoop function installs a simple quit Apple event handler for you, but you may want
to install your own if you want to take additional actions (such as displaying a “Save changes before quitting?”
dialog).

The RunApplicationEventLoop function works only on the main event loop; if your application creates
preemptive threads, each of them will have its own event loop and queue, and you must retrieve and dispatch
these events manually. For more information, see “Processing events manually” (page 41).

20 Executing the Event Loop
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Each event loop is represented by an event loop reference, an opaque data object of type EventLoopRef.
A thread can obtain a reference to its own event loop or to the program’s main event loop by calling the
functions GetCurrentEventLoop or GetMainEventLoop, respectively.

The function RunCurrentEventLoop runs the event loop belonging to the currently executing thread for
a specified time (which can be infinite). This function can be useful if you want your thread to block for a
specified time. During execution, it will place events into the queue and fire timers, but will take no other
actions (for example, it won’t dispatch events to handlers). The function QuitEventLoop terminates a
designated event loop.

Creating and Registering an Event Handler

The function for installing an event handler is called InstallEventHandler:

OSStatus InstallEventHandler (EventTargetRef target,
 EventHandlerUPP handlerProc,
 UInt32 numTypes,
 const EventTypeSpec* typeList,
 void* userData,
 EventHandlerRef* handlerRef);

The second parameter, handlerProc, is a universal procedure pointer (UPP) to your handler routine. The
conversion function NewEventHandlerUPP returns a UPP of the required type; for instance,

EventHandlerUPP handlerUPP;

handlerUPP = NewEventHandlerUPP(ThisHandler);

(where ThisHandler is the name of your handler routine).

The target parameter to InstallEventHandler identifies the event target on which the handler is to be
installed. You can obtain a reference to the desired target by calling one of the following functions:
GetApplicationEventTarget, GetWindowEventTarget, GetMenuEventTarget, or
GetControlEventTarget.

For convenience, The Carbon Event Manager also defines a set of specialized macros,
InstallWindowEventHandler, InstallMenuEventHandler, and InstallControlEventHandler,
which accept the targeted object as a parameter, obtain the corresponding target reference for you, and
pass it to InstallEventHandler. The remaining parameters to these macros are the same as for the
InstallEventHandler routine itself. For example, the macro call

WindowRef theWindow;

InstallWindowEventHandler (theWindow, handlerUPP,
 numTypes, typeList,
 userData, &handlerRef);

is equivalent to

WindowRef theWindow;
EventTargetRef theTarget;

theTarget = GetWindowEventTarget(theWindow);
InstallEventHandler (theTarget, handlerUPP,

Creating and Registering an Event Handler 21
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

 numTypes, typeList,
 userData, &handlerRef);

A similar macro, InstallApplicationEventHandler, needs no parameter to identify the application itself
as the target; the call

InstallApplicationEventHandler (handlerUPP,
 numTypes, typeList,
 userData, &handlerRef);

is equivalent to

theTarget = GetApplicationEventTarget();
InstallEventHandler (theTarget, handlerUPP,
 numTypes, typeList,
 userData, &handlerRef);

In all of these cases, the typeList parameter specifies the event types for which the handler is to be installed.
This parameter is nominally declared as a pointer to an event type specifier giving the class and kind of a
single event type; but since the C language considers pointers and arrays to be equivalent, it may actually
designate an array of such specifiers for more than one type. The numTypes parameter tells how many event
types are being specified. For example, the following code installs a single handler for both key-down and
key-repeat events:

EventTypeSpec eventTypes[2];
EventHandlerUPP handlerUPP;

eventTypes[0].eventClass = kEventClassKeyboard;
eventTypes[0].eventKind = kEventRawKeyDown;

eventTypes[1].eventClass = kEventClassKeyboard;
eventTypes[1].eventKind = kEventRawKeyRepeat;

handlerUPP = NewEventHandlerUPP(KeyboardHandler);

InstallApplicationEventHandler (handlerUPP,
 2, eventTypes,
 NULL, NULL);

The userData parameter to InstallEventHandler is a pointer to an arbitrary data value. Any value you
supply for this parameter will later be passed back to your handler routine each time it’s called. You can use
this capability for any purpose that makes sense to your program; for example, you can use it to pass a
window reference to the handler for window events.

Finally, handlerRef is an output parameter that returns an event handler reference, an opaque object
representing the new event handler. The handler reference is needed as a parameter to Carbon routines
such as AddEventTypesToHandler and RemoveEventTypesFromHandler, for dynamically changing the
event types to which a handler applies, and RemoveEventHandler, for deinstalling it. If you’re not going
to be using any of these operations, you can simply pass NULL for the handlerRef parameter, indicating
that no handler reference should be returned. In particular, the handler will be disposed of automatically
when you dispose of the target object it’s associated with, so there’s no need to call RemoveEventHandler
explicitly unless for some reason you want to deinstall the handler while the underlying target object still
exists.

22 Creating and Registering an Event Handler
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Important: Note that if you install an event handler from a plugin, you must explicitly remove your handler
before the plugin unloads. Otherwise, the system may attempt to call event handling code that no longer
exists.

Listing 2-2 shows an initialization function that installs an event handler for window close events.

Listing 2-2 Installing a Carbon event handler

#define kWindowTop 100
#define kWindowLeft 50
#define kWindowRight 250
#define kWindowBottom 250

void Initialize (void)

 // Do one-time-only initialization

 {
 WindowRef theWindow; // Reference to window
 WindowAttributes windowAttrs; // Window attribute flags
 Rect contentRect; // Boundary of content region
 EventTypeSpec eventType; // Specifier for event type
 EventHandlerUPP handlerUPP; // Pointer to event handler routine

 windowAttrs = kWindowStandardDocumentAttributes // Standard document window
 | kWindowStandardHandlerAttribute; // Use standard event handler
 SetRect (&contentRect, kWindowLeft, kWindowTop, // Set content rectangle
 kWindowRight, kWindowBottom);
 CreateNewWindow (kDocumentWindowClass, windowAttrs, // Create the window
 &contentRect, &theWindow);

 SetWindowTitleWithCFString (theWindow, CFSTR("Happy Cows")); // Set title

 eventType.eventClass = kEventClassWindow; // Set event class
 eventType.eventKind = kEventWindowClose; // Set event kind
 handlerUPP = NewEventHandlerUPP(DoWindowClose); // Point to handler
 InstallWindowEventHandler (theWindow, handlerUPP, // Install handler
 1, &eventType,
 NULL, NULL);

 ShowWindow (theWindow); // Display window on the screen

 InitCursor (); // Set standard arrow cursor

 } /* end Initialize */

By specifying the kWindowStandardHandlerAttributewhen we call CreateNewWindow, we automatically
install the standard window handlers. Alternatively, you could call the InstallStandardEventHandler
function, specifying the window as the event target.

Important: The Carbon Event Manager does not automatically dispose of the event handler UPP, so you
should call DisposeEventHandlerUPP when you are done with it.

Listing 2-3 shows an event handler that can respond to the window close event registered in Listing 2-2.

Creating and Registering an Event Handler 23
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Listing 2-3 A window close event handler

pascal OSStatus DoWindowClose (EventHandlerCallRef nextHandler,
 EventRef theEvent,
 void* userData)

 // Handle window close event

 {
 DoCloseStuff(); // Do any interesting stuff

 return noErr; // Report success

 } /* end DoWindowClose */

You should be aware that the Carbon Event Manager provides a standard handler for the window close
event, so this example handler is useful only if you wanted to override the standard close behavior. However,
installing your own handler can also be useful if you want to augment the standard behavior. For example,
you may want to display a dialog asking if the user wants to save changes before letting the standard handler
close the window. To do so, you use the function CallNextEventHandler.

The CallNextEventHandler function uses theEventHandlerCallRef parameter (passed to your event
handler), which is a pointer to the next event handler in the calling hierarchy. The Carbon Event Manager
will relay the event to the next handler after this one in the hierarchy of handlers for the given type of event,
continuing up until it finds a handler willing to accept and process the event. A hander that chooses not to
handle the event returns eventNotHandledErr, while one that does should return noErr after it has finished
processing. Assuming that you have not installed any other window close handlers, Listing 2-4 shows how
you can use CallNextEventHandler to add pre- and post-processing to the standard window close handler.

Listing 2-4 Augmenting the standard window close handler

pascal OSStatus DoWindowClose (EventHandlerCallRef nextHandler,
 EventRef theEvent,
 void* userData)

 // Example event handler to illustrate explicit event propagation

 {
 OSStatus result; // Function result

 /* Your preprocessing here */ // Do preprocessing

// Now propagate the event to the next handler (in this case the standard)
 result = CallNextEventHandler (nextHandler, theEvent);

 if (result == noErr) // Did it succeed?
 {
 /* Your postprocessing here */ // Do postprocessing

 /* Note that at this point the */
 /* standard handler has removed */
 /* the window, so any attempts */
 /* to access it will cause an */
 /* error. */

 return noErr; // Report success

24 Creating and Registering an Event Handler
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

 } /* end if (result == noErr) */
 else
 return result; // Report failure

 } /* end ThisHandler */

Important: Your code should not make any assumptions about how the standard handler behavior for an
event is implemented, as this may change in the future.

Event Parameters

Many events require more information than just the basic event to be truly useful. For example, knowing
that the mouse was clicked is usually not very interesting unless you know where the click occurred. This
additional information is embedded in the event reference structure, and you need to call the function
GetEventParameter to obtain it. These additional parameters are identified by parameter name and type.
A mouse-down event, for example, has four event parameters:

 ■ kEventParamMouseLocation, a point (parameter type typeQDPoint) giving the screen coordinates
at which the mouse button was pressed

 ■ kEventParamMouseButton, an integer code (parameter type typeMouseButton) identifying which
button was pressed (allowing support for a one-, two-, or three-button mouse)

 ■ kEventParamKeyModifiers, a set of flag bits (parameter type typeUInt32) telling which modifier
keys, if any, were being held down at the time the button was pressed

 ■ kEventParamClickCount, an integer (parameter type typeUInt32) telling how many times the button
was clicked in the same location (1 for a single click, 2 for a double click, and so on)

To obtain the mouse location from the event reference mouseDownEvent, you would make the following
call:

EventRef mouseDownEvent;
Point wheresMyMouse;

GetEventParameter (mouseDownEvent, kEventParamMouseLocation, typeQDPoint,
 NULL, sizeof(Point), NULL, &wheresMyMouse);

The values kEventParamMouseLocation and typeQDPoint specify that you want to obtain the mouse
location parameter which is of type Point. (There are also a pair of arguments for returning the actual
parameter type and size of the value returned; you can specify NULL for these arguments if you don’t need
this information or don’t expect the actual type and size to differ from those requested.) Obviously, certain
parameter values only make sense for certain types of events (for example, you couldn’t obtain a mouse
location from the event reference for a window update).

Many events specify a kEventParamDirectObject parameter, which usually indicates the actual object
the event acted upon. For example, the direct object parameter for a window activation event
(kEventWindowActivated) would be the reference to the window being activated (that is, a WindowRef).

Event Parameters 25
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

In some cases, you can modify the behavior of an event by setting the value of one or more event parameters
with the related Carbon function SetEventParameter. For example, if you wanted to snap the window to
a particular position as it was being dragged, you could install a handler on the
kEventWindowBoundsChanging event (which indicates that the window bounds are changing because of
resizing or movement) and use SetEventParameter to set the origin when some condition is met.

The Carbon Event Manager Reference lists the permissible parameters (and the associated values to pass to
GetEventParameter) for many event kinds. Documentation for other event parameters is available in the
API reference for each technology (such as the HIObject Reference).

Note: In Mac OS X, all events support the kEventParamPostTarget parameter (typeEventTargetRef),
which lets you indicate to the standard event dispatcher where an event should be sent.

Other Event Attributes

In addition to the event parameters, you can obtain other attributes of an event by calling various accessor
functions. For example, the functions GetEventClass and GetEventKind each accept an event reference
as a parameter and return a 32-bit integer representing the event’s class and kind, respectively:

EventRef theEvent;
UInt32 eventClass;
UInt32 eventKind;

eventClass = GetEventClass(theEvent);
eventKind = GetEventKind(theEvent);

Similarly, the function GetEventTime returns the time an event occurred, expressed as a floating point value
of type EventTime measured in seconds since the system was started up:

EventRef theEvent;
EventTime timeInSeconds;

timeInSeconds = GetEventTime(theEvent);

Another Carbon routine, GetCurrentEventTime, returns the current time in seconds since system startup:

EventTime currentTime;

currentTime = GetCurrentEventTime();

The Carbon interface defines a set of convenience constants for expressing event times and intervals:

#define kEventDurationSecond 1.0
#define kEventDurationMillisecond ((EventTime)(kEventDurationSecond / 1000))
#define kEventDurationMicrosecond ((EventTime)(kEventDurationSecond
 / 1000000))
#define kEventDurationNanosecond ((EventTime)(kEventDurationSecond
 / 1000000000))
#define kEventDurationMinute kEventDurationSecond * 60
#define kEventDurationHour kEventDurationMinute * 60
#define kEventDurationDay kEventDurationHour * 24
#define kEventDurationNoWait 0.0
#define kEventDurationForever -1.0

26 Other Event Attributes
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

These constants are especially useful when creating event timers. See “Installing Timers” (page 38) for more
information.

Queue-Synchronized Events (Mac OS X v.10.2 and Later)

Beginning with Mac OS X version 10.2, your application can distinguish between two different user event
states. The hardware state is the actual state of an input device. The queue-synchronized state is the state of
the device according to the events dispatched from the event queue.

Depending on how long it takes to pop the event off the queue and dispatch it, this queue-synchronized
user event may be different from the actual state of the hardware. For example, when the user presses the
mouse, a mouse down event is placed into the event queue. If the user releases the mouse immediately
while the mouse down event is being handled, then the queue-synchronized mouse button state is still
down, but the hardware button state is up.

In most cases, you should determine the state of a user input device by checking the queue-synchronized
state rather than polling the hardware directly. Not only does this method use less processor time, but it also
provides a better user experience when using nonhardware input methods to place events in the queue (for
example, when taking input through Apple events or speech recognition).

Obtaining Mouse and Keyboard Modifer States

The queue-synchronized state of the mouse button and any keyboard modifiers is determined by state
variables set by the event dispatcher. For example, the "mouse button state" variable is set to "down" when
a mouse-down event is dispatched, and it remains in that state until a mouse-up event is dispatched. You
can use the following functions to obtain the values of these state variables:

 ■ GetCurrentEventButtonState determines the queue-synchronized state of the mouse button(s).
You should use this function instead of the Button or GetCurrentButtonState functions.

UInt32 GetCurrentEventButtonState(void);

Bit zero indicates the state of the primary button, bit one the state of the secondary button, and so on.

 ■ GetCurrentEventKeyModifiers determines the queue-synchronized keyboard modifier state. You
should use this function instead of EventAvail or GetCurrentKeyModifiers.

UInt32 GetCurrentEventKeyModifiers(void);

See Table 2-1 (page 31) for a listing of keyboard modifier bits.

Note that GetCurrentEventButtonState and GetCurrentEventKeyModifiers do not return useful
values if your application is not active. If your application wants to determine the current mouse or keyboard
modifier state while in the background, it must query the hardware using GetCurrentButtonState or
GetCurrentKeyModifiers.

Queue-Synchronized Events (Mac OS X v.10.2 and Later) 27
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Obtaining the Current User Event

When a user event is dispatched, the Carbon Event Manager caches it as the current event and disposes of
it after the event is handled. The GetCurrentEvent function retrieves the event currently being dispatched
(which could be NULL if the event is not a user event):

EventRef GetCurrentEvent(void);

You should call this function only from an event handler to determine what user event (if any) triggered the
call to your handler.

Command Events

The Carbon Event Manager has a special class of events that correspond with the command IDs introduced
with Mac OS 8.0. A command ID is a location-independent way to identify an action or command. For example,
if you associate a command ID with a menu item, a command event is generated whenever that item is
selected, whether by mouse selection or keyboard equivalent. If you associate the same ID with a button,
then a menu selection, keyboard equivalent command, or button press will all generate the same event.
Because standard handlers can take care of much of the busywork (such as toggling the button, flashing the
selected menu or menu item), you only need to handle one event for three different types of selection.

Command events are initially sent to the event target associated with the command. For example, a menu
command event is sent to the menu event target, while a command associated with a button is sent to that
control.

Command event handlers can be placed anywhere in the containment hierarchy, but it’s usually convenient
to place them at the application level. Doing so allows you to install one handler that can take the event
whether it propagates up the containment hierarchy from a control or from a menu.

Command IDs are 32-bit integers, but they are usually specified as a four-character code. Many common
menu items and controls have reserved codes. For example,

kHICommandOK = 'ok '; // the OK button (as in a dialog)
kHICommandCopy = 'copy';// the Copy menu item
kHICommandAbout = 'about';// the About item

If you want to create custom command IDs, you must define them in your application and register them by
calling the Menu Manager function SetMenuItemCommandID or the Control Manager function
SetControlCommandID, depending on the desired target.

Note: If you use the Interface Builder development tool to build your user interface, you can assign command
IDs directly to your controls and menus without having to write any code. All you need to do is define and
install the proper handlers to process the generated command events.

The event class for commands is kEventClassCommand, and to receive commands to process, the event
kind is kEventCommandProcess. The command ID itself is stored in the event reference and you need to
call the GetEventParameter function to retrieve it. For example, to handle a (fictitious) menu item Explode,
you would need to first define the command ID, register it with the Menu Manager, and then install the
handler in your initialization code:

28 Command Events
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

const MenuCommand kCommandExplode = FOUR_CHAR_CODE ('Boom');

void MyInitialize()
 {
 …
 SetMenuItemCommandID (GetMenuRef(mFile), iExplode, kCommandExplode);
 …
 EventTypeSpec myEvents = {kEventClassCommand, kEventCommandProcess};
 InstallApplicationEventHandler(NewEventHandlerUPP(MyEventHandler),
 1, &myEvents, 0, NULL);
 …
 }

The constant iExplode represents the index value of the Explode item in the File menu.

This example installs the handler MyEventHandler on the application target, but you can choose a different
target if that better suits your needs.

Your actual event handler needs to obtain the command ID of the Explode command using
GetEventParameter. The command ID is stored as the direct object parameter:

HICommand commandStruct;

GetEventParameter (event, kEventParamDirectObject,
 typeHICommand, NULL, sizeof(HICommand),
 NULL, &commandStruct);

if (commandStruct.commandID == kCommandExplode)
 {
 // process explode command
 }

Text Events

The Carbon Event Manager provides two ways of obtaining keyboard information: as raw keyboard events,
or as text input events. (Text input events are those that have been processed by the Text Services Manager).
To avoid conflict with other input methods, you should rely on text input events for handling text.

Note: If your text input needs are modest, you may be able to use the Multilingual Text Engine (MLTE), which
does most of the text event handling for you, instead of writing your own handlers.

Text input events are of class kEventClassTextInput, and the event kind used to signify text input is
kEventTextInputUnicodeForKeyEvent. Text returned by a text input event may be a character or a
string, depending on the circumstances, so you should not make assumptions about its length. For more
information about text input methods as well as about event kinds directly related to the Text Services
Manager, see the Text Services Manager documentation.

To obtain the actual text, you need to call the GetEventParameter function, specifying the
kEventParamTextInputSendText parameter, as shown in Listing 2-5

Text Events 29
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Listing 2-5 Obtaining text from a text input event

EventRef theTextEvent;
UniChar *text;
UInt32 actualSize;

GetEventParameter (theTextEvent, kEventParamTextInputSendText,
 typeUnicodeText, NULL, 0, &actualSize, NULL);

text = (UniChar*) NewPtr(actualSize);

GetEventParameter (theTextEvent, kEventParamTextInputSendText,
 typeUnicodeText, NULL, actualSize, NULL, text);

This example makes two calls to GetEventParameter, the first to obtain the size of the string, and the
second to actually obtain it. The rationale for doing so is that the string can be arbitrarily large as it may have
resulted from an inline input session intended for a nonRoman script.

If your application doesn’t support Unicode, you can examine the kEventParamTextSendKeyboardEvent
parameter to obtain the raw keyboard event that generated the text event and from that event extract the
equivalent Macintosh character codes.

In rare cases where your application might need to handle individual key presses (for example, for game
controls, or if it will perform its own keyboard translation), you may want to obtain the key presses before
the Text Services Manager processes them. In such cases, you should install handlers to obtain raw keyboard
events (class kEventClassKeyboard).

In any case, all keyboard and text input events are sent to whichever target currently has the user focus (for
example, the window, or the text field control). If desired, you can install an event handler on the user focus
event target, which you obtain by calling GetUserFocusEventTarget. All events directed to the current
user focus will then be sent to your handler. If you don’t handle the event (or if no handler was installed),
the event is then propagated to the actual target that has the user focus.

Mouse Events

In today’s graphical user interfaces, the mouse provides the user’s primary means of controlling and interacting
with the system. All of the user’s actions with the mouse are reported to your program in the form of mouse
events.

All mouse events have parameters named kEventParamMouseLocation and kEventParamKeyModifiers
giving, respectively, the location of the mouse cursor on the screen and the modifier keys that were being
held down at the time the event occurred. The value of kEventParamMouseLocation is a point giving the
horizontal and vertical position of the mouse in global coordinates.

30 Mouse Events
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Note: Beginning in Mac OS X, v. 10.1, mouse events also support the kEventParamWindowMouseLocation
parameter, which returns the mouse position in coordinates local to the window in which the event occurred.

The value of thekEventParamKeyModifiersparameter is an unsigned 32-bit integer (type UInt32) containing
flag bits corresponding to the various modifier keys. The mask constants shown in Table 2-1 can be used to
extract the bit representing any desired modifier key. A bit value of 1 means that the given key was down
when the event occurred; 0 means it was not. Thus, for example, you could use the code in Listing 2-6 to
determine whether the Caps Lock key was down at the time of a mouse event:

Listing 2-6 Obtaining the modifier key for a mouse event

EventRef theEvent;
UInt32 modifierKeys;

GetEventParameter (theEvent,
 kEventParamKeyModifiers,
 typeUInt32, NULL,
 sizeof(modifierKeys), NULL,
 &modifierKeys);

if (modifierKeys & alphaLock)
/* Caps Lock down */
else
 /* Caps Lock not down */

Table 2-1 Mask constants for modifier keys

ModifierMask constant

CommandcmdKey

ShiftshiftKey

Caps LockalphaLock

OptionoptionKey

ControlcontrolKey

Num lock (Mac OS X only)kEventKeyModifierNumLockMask

Fn (Function) (Mac OS X only)kEventKeyModifierFnMask

For a complete listing of modifier constants, see the EventModifers enumeration in Events.h.

Mouse Button Events

When the user presses or releases the mouse button, it’s reported to your program by a mouse-down or
mouse-up event (event kind kEventMouseDown or kEventMouseUp), respectively. Ordinarily, such events
are handled by the standard event handler, which analyzes them and converts them into higher-level events
representing the meaning of the mouse action, such as kEventWindowClose (when the user clicks a window’s
close button), kEventWindowClickContentRgn (when the click is in the window’s contents),

Mouse Events 31
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

kEventControlHit (when it’s in a control such as a push button or checkbox), or kEventCommandProcess
(when the user chooses a command from a menu). These higher-level events are usually all your program
needs to be concerned with. However, you’re free to intercept the “raw” mouse events and handle them
yourself if necessary.

In addition to the kEventParamMouseLocation and kEventParamKeyModifiers parameters shared by
all mouse events, mouse-up and mouse-down events have two additional parameters:
kEventParamMouseButton and kEventParamClickCount. The latter is used to identify multiple (for
instance, double or triple) mouse clicks, in case your program wishes to assign some special meaning to
them. Consecutive presses of the mouse button are considered to constitute a multiple click if they fall within
a certain time interval, which is under the user’s control via the Mouse pane of System Preferences (on Mac
OS X) or the Mouse control panel (on earlier versions). The Classic Event Manager function GetDblTime
returns the current value of this interval, expressed in ticks (sixtieths of a second, the time unit used by earlier
versions of Mac OS). When a mouse-down event is separated from the previous such event by more than
the multiple-click interval, its kEventParamClickCount parameter is set to 1; if it falls within the double-click
interval the parameter is incremented by 1 from that of the previous event. Thus the first event in a multiple
click has a click count of 1, the second has a click count of 2, the third 3, and so on. (Triple clicks are the most
your program should realistically process.)

Unlike earlier versions of Mac OS, which were limited to a one-button mouse, Carbon is designed to support
multiple mouse buttons. (Theoretically, it can handle as many as 65,535 buttons, though the most you’re
likely to encounter in practice is 3.) The kEventParamMouseButton parameter of a mouse-down or mouse-up
event identifies which button was pressed or released, using one of the following constants:

typedef UInt16 EventMouseButton;
enum
 {
 kEventMouseButtonPrimary = 1,
 kEventMouseButtonSecondary = 2,
 kEventMouseButtonTertiary = 3

 }; /* end enum */

On a two- or three-button mouse, the left button is normally considered primary and the right button
secondary, but left-handed users can reverse these settings as a matter of preference. The middle button on
a three-button mouse is always the tertiary button.

32 Mouse Events
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Important: The Classic Event Manager includes a number of functions that let you poll the state of the
primary mouse button. You should avoid using these functions (Button, GetMouse, StillDown,
WaitMouseUp) (especially on Mac OS X), as they use excessive processor time and slow down the system.
Instead of usingStillDownorWaitMouseUp, you should useTrackMouseLocationorTrackMouseRegion,
which are discussed in “Tracking Mouse Movements” (page 33). On Mac OS X 10.2 and later, if you need the
current button state, you should use GetCurrentEventButtonState (described in “Queue-Synchronized
Events (Mac OS X v.10.2 and Later)” (page 27))instead of Button. In most cases you’re less interested in the
instantaneous state of the button than in its transitions from up to down or vice versa, so it’s better to keep
track of the button state with mouse-down and mouse-up events than to poll it directly. This is especially
true in the common situation where you want to track the mouse’s movements and take some repeated
action for as long as the button is held down.

Tracking Mouse Movements

The basic task of moving the cursor around on the screen to reflect the physical movements of the mouse
is handled for you automatically, with no need for any explicit action on your program’s part. In addition,
each time the cursor location changes by as much as one pixel horizontally or vertically, a mouse-moved
event (kEventMouseMoved) is generated. If the user is also holding down the mouse button (or any button
on a multiple-button mouse), the result is a mouse-dragged event (kEventMouseDragged) instead. Both
types of event have the usual kEventParamMouseLocation and kEventParamKeyModifiers parameters,
and the mouse-dragged event also has a kEventParamMouseButton parameter to identify the button being
held down, as described under “Mouse Button Events” (page 31).

As with the primary mouse button, it’s possible to poll the mouse’s location on the screen directly by calling
the Classic Event Manager function GetMouse. However, using this kind of direct polling to track the mouse’s
movements is usually not a good idea. For instance, as mentioned above, a common reason for tracking the
mouse is to provide visual feedback on the screen during a drag by performing some repeated action for as
long as the user holds down the button. Doing this with an active polling loop such as

while (WaitMouseUp())
 {
 GetMouse (&mouseLoc);
 /* Provide feedback based on mouse location */

 } /* end while (WaitMouseUp()) */

is horribly inefficient, needlessly tying up the processor while spinning the loop waiting for something to
happen. Using mouse-dragged events to do the tracking offers some improvement, since the event loop
suspends execution except while actively processing an event and hence consumes no extraneous processor
cycles. This allows the idle time to be put to better use running other programs or processes in the
background—including any periodic timers you may have installed yourself (see “Installing Timers” (page
38)). However, there is an even better way, using the Carbon Event Manager function TrackMouseLocation,
as shown in Listing 2-7.

Listing 2-7 Tracking the mouse with TrackMouseLocation

Point mouseLoc;
MouseTrackingResult trackingResult;

GetMouse (&mouseLoc);
trackingResult = kMouseTrackingMouseDown;

Mouse Events 33
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

while (trackingResult != kMouseTrackingMouseUp)
 {
 /* Provide feedback based on mouse location */
 TrackMouseLocation (NULL, &mouseLoc, &trackingResult);

 } /* end while (trackingResult != kMouseTrackingMouseUp) */

The call to TrackMouseLocation suspends execution until either the mouse’s location or button state
changes. It then returns, in its second and third parameters, the coordinates of the new mouse location and
a tracking result indicating the nature of the mouse occurrence. (The first parameter specifies a graphics port
in whose coordinate system to report the mouse location; passing NULL for this parameter designates the
current port, which is usually what you want.) The tracking result returned is one of the following values:

typedef UInt16 MouseTrackingResult;
enum
 {
 kMouseTrackingMouseDown = 1,
 kMouseTrackingMouseUp = 2,
 kMouseTrackingMouseExited = 3,
 kMouseTrackingMouseEntered = 4,
 kMouseTrackingMouseDragged = 5,
 kMouseTrackingKeyModifiersChanged = 6,
 kMouseTrackingUserCancelled = 7,
 kMouseTrackingTimedOut = 8,
 kMouseTrackingMouseMoved = 9

 }; /* end enum */

Important: The kMouseTrackingMouseMoved constant has been repurposed for Mac OS X v.10.2 and later.
In earlier system software versions, kMouseTrackingMouseMoved was equivalent to the
kMouseTrackingMouseDragged result, indicating that the mouse was moved while the mouse button was
down. In Mac OS X v.10.2. and later, you receive the kMouseTrackingMouseMoved tracking result if the user
moves the mouse while the mouse button is up. If you have code that interprets
kMouseTrackingMouseMoved in its older sense, you should update it before running it on Mac OS X v.10.2
or later.

The tracking results kMouseTrackingExited and kMouseTrackingEntered are used by another related
Carbon routine, TrackMouseRegion. This is typically called after a mouse press in a control (such as a
checkbox or a window’s close button), to track the mouse’s movements in and out of the control so you can
provide appropriate visual feedback by highlighting and unhighlighting the control accordingly. The standard
event handler ordinarily does all this for you and reports the result with a higher-level event such as
kEventWindowClose, kEventWindowZoom, or kEventControlHit; but you may occasionally encounter
a situation where you need to make the TrackMouseRegion call and process the results yourself.

Listing 2-8 shows a code fragment illustrating how to use TrackMouseRegion to respond to a mouse press
in a control.

Listing 2-8 Tracking the mouse in a region

RgnHandle controlRegion; // Region occupied by control
Boolean isInRegion; // Mouse released in region?
MouseTrackingResult trackingResult; // Tracking result

/* Set controlRegion to control's region */ // Indicate region

34 Mouse Events
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

trackingResult = kMouseTrackingMouseEntered; // Initialize for first
 // pass of loop

while (trackingResult != kMouseTrackingMouseUp) // Loop until released
 {
 switch (trackingResult) // Dispatch on tracking result
 {
 case kMouseTrackingMouseEntered: // Highlight on entry
 /* Highlight control */
 break;

 case kMouseTrackingMouseExited: // Unhighlight on exit
 /* Unhighlight control */
 break;

 } /* end switch (trackingResult) */

 TrackMouseRegion (NULL, controlRegion, // Track mouse in region
 &isInRegion,
 &trackingResult);

 } /* end while (trackingResult != kMouseTrackingMouseUp) */

if (isInRegion) // Released in region?
 /* Perform associated action */ // Take action in response

You call TrackMouseRegion repeatedly for as long as the mouse button remains down, passing as a
parameter a region representing the area the control occupies on the screen. Each time the mouse crosses
the boundary in or out of the specified region, TrackMouseRegion returns with a tracking result of
kMouseTrackingEntered or kMouseTrackingExited, indicating whether to highlight or unhighlight the
control. (Mere mouse movements that don’t cross the region boundary are not reported.) When the mouse
button is released, TrackMouseRegion returns the tracking result kMouseTrackingMouseReleased along
with a Boolean value indicating whether the button was released inside or outside the region; you can then
use this information to determine whether to perform the action associated with the control.

Mouse Tracking Regions (Mac OS X v.10.2 and Later)

In Mac OS X version 10.2 and later, you can designate special mouse tracking regions within windows. When
the mouse enters one of these regions, your application receives a kEventMouseEntered event
(kEventClassMouse). When the mouse leaves, the application receives a kEventMouseExited event. A
window can contain any number of regions; each mouse tracking region has a unique ID, which makes it
easy to determine which region was entered. If desired, you can also temporarily disable a region.

Mouse tracking regions make it simple to implement various rollover effects such as highlighting a clickable
area, or changing the cursor when it enters a region. If you must use processor-intensive polling for mouse
locations (for example, in a drawing program), you can use mouse tracking regions to allow pollling only
within particular regions of interest.

To create a mouse tracking region, you call the CreateMouseTrackingRegion function:

OSStatus CreateMouseTrackingRegion (WindowRef inWindow,
 RgnHandle inRegion,
 RgnHandle inClip,
 MouseTrackingOptions inOptions,
 MouseTrackingRegionID inID,

Mouse Events 35
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

 void* inRefCon,
 EventTargetRef inTargetToNotify,
 MouseTrackingRef* outTrackingRef);

 ■ The inWindow parameter indicates which window owns this region. Mouse tracking regions are always
bound to a particular window.

 ■ The inRegion parameter is a standard region handle defining the tracking region.

 ■ The inClip parameter specifies an optional clip region. If the clip region is valid (that is, you don’t pass
NULL), the active tracking region is the intersection of the tracking region and the clip region.

 ■ For mouse tracking options you can pass either kMouseTrackingOptionsLocalClip or
kMouseTrackingOptionsGlobalClip:

 ❏ kMouseTrackingOptionsLocalClip indicates that the region is defined in local coordinates and
that the region is clipped to the owning windows’s content region.

 ❏ kMouseTrackingOptionsGlobalClip indicates the region is defined in global coordinates and
that the region is clipped to the owning window’s structure region.

 ■ The inID parameter holds a unique mouse tracking ID, which is a combination of an OSType, which is
a four-character code that uniquely defines your application, and an integer:

struct MouseTrackingRegionID {
 OSType signature;
 SInt32 id;
 }

If you have not already done so, you can register an application signature with Apple Developer Technical
Support.

 ■ If you want to associate any application-specific data with this region, you can pass it in the inRefCon
parameter.

 ■ The inTargetToNotify parameter is currently unused; pass NULL.

On return, you receive a mouse tracking reference which you can pass to additional mouse tracking region
functions. This reference is also included in the event reference for the kEventMouseEntered and
kEventMouseExited events. Use the GetEventParameter function to obtain the direct object parameter.

Additional useful mouse tracking region functions include the following:

 ■ To dispose of a tracking region, use the ReleaseMouseTrackingRegion function:

OSStatus ReleaseMouseTrackingRegion (MouseTrackingRef inMouseRef);

Note that because mouse tracking regions are associated with a window, disposing the window will also
dispose of its tracking regions.

 ■ To increase the reference count of a tracking region, call the RetainMouseTrackingRegion function:

OSStatus RetainMouseTrackingRegion (MouseTrackingRef inMouseRef);

Calling ReleaseMouseTrackingRegion decrements the reference count; if the count reaches 0, the
tracking region is disposed.

 ■ To obtain the ID of a mouse tracking region, call the GetMouseTrackingRegionID function:

36 Mouse Events
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

OSStatus GetMouseTrackingRegionID (MouseTrackingRef inMouseRef,
 MouseTrackingRegionID* outID);

 ■ To enable or disable a mouse tracking region, call the SetMouseTrackingRegionEnabled function:

OSStatus SetMouseTrackingRegionEnabled (MouseTrackingRef inMouseRef,
 Boolean inEnabled);

You can use this function to adjust tracking regions that are dependent on the state of your application.

 ■ To obtain the application-specific data associated with the tracking region, call the
GetMouseTrackingRegionRefCon function:

OSStatus GetMouseTrackingRegionRefCon (MouseTrackingRef inMouseRef,
 void** outRefCon);

Mac OS X v10.4 introduced new HIView-based tracking region functions. These work much like the older
mouse tracking regions, with the following exceptions:

 ■ You create these tracking areas on a per-view, rather than per-window basis.

 ■ The tracking areas are described using HIShape objects rather than QuickDraw regions.

 ■ The tracking area is identified by a UInt64 integer rather than a data structure.

 ■ The area entered and exited events are kEventControlTrackingAreaEntered and
kEventControlTrackingAreaExited respectively. You obtain the tracking area reference in the
kEventParamHIViewTrackingArea parameter (typeHIViewTrackingAreaRef).

To create a view-based tracking area, call the HIViewNewTrackingArea function:

OSStatus HIViewNewTrackingArea(
 HIViewRef inView,
 HIShapeRef inShape, /* can be NULL */
 HIViewTrackingAreaID inID,
 HIViewTrackingAreaRef * outRef)

To modify a tracking area, call HIViewChangeTrackingArea:

OSStatus HIViewChangeTrackingArea(
 HIViewTrackingAreaRef inArea,
 HIShapeRef inShape)

To obtain an area’s ID, call HIViewGetTrackingAreaID:

 OSStatus HIViewGetTrackingAreaID(
 HIViewTrackingAreaRef inArea,
 HIViewTrackingAreaID * outID)

To dispose of a tracking area, call HIViewDisposeTrackingArea:

OSStatus HIViewDisposeTrackingArea (HIViewTrackingAreaRef inArea)

If possible, you should use view-based tracking areas in place of the older tracking regions.

Mouse Events 37
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Installing Timers

Installing a timer is similar to installing an event handler. Timers are associated with a particular event loop
(usually the program’s main loop), and they fire as the loop runs. Instead of a list of event types, you specify
an initial delay before the timer fires for the first time and a timer interval between subsequent firings, both
expressed in seconds. (Setting the timer interval to 0 produces a one-shot timer that will fire only once, at
the expiration of the initial delay.) As in installing an event handler, you can also supply an arbitrary item of
user data that will be passed back to your timer routine each time it’s called. The timer routine itself is
identified with a universal procedure pointer of type EventLoopTimerUPP, obtained using the conversion
function NewEventLoopTimerUPP. Listing 2-9 shows how to install a timer routine named TimerAction
in the program’s main event loop with an initial delay of 5 seconds, a timer interval of 1 second, and no user
data item

Listing 2-9 Installing a timer

EventLoopRef mainLoop;
EventLoopTimerUPP timerUPP;
EventLoopTimerRef theTimer;

mainLoop = GetMainEventLoop();
timerUPP = NewEventLoopTimerUPP(TimerAction);

InstallEventLoopTimer (mainLoop,
 5*kEventDurationSecond,
 kEventDurationSecond,
 timerUPP,
 NULL,
 &theTimer);

The last parameter of the InstallEventLoopTimer function is an output parameter that returns a timer
reference representing the timer just installed. This value is needed as a parameter to various Carbon Event
Manager functions that operate on timers, the most important of which is RemoveEventLoopTimer, for
uninstalling the timer. This same timer reference will also be passed automatically to your timer routine each
time it’s called.

Important: As with the InstallEventHandler function, if you are installing a timer from a plugin, you
must explicitly remove the timer before your plugin is unloaded. Otherwise, the still-existent timer may
attempt to call code that no longer exists.

The timer routine itself must have the following prototype:

pascal void TimerAction (EventLoopTimerRef theTimer,
 void* userData);

where theTimer is the timer reference identifying the timer and userData is the data value you supplied
at the time the timer was installed.

38 Installing Timers
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Note: A timer fires only when the low-level event loop (which fetches events and places them on the event
queue) is actually running. For example, if you start a timer that is set to fire in 1 second, then call a handler
that does some computation for 5 seconds, the timer will not fire until you complete the calculation and
return to the event loop. The following Carbon Event Manager and Classic Event Manager functions will run
an event loop:RunApplicationEventLoop,ReceiveNextEvent,RunCurrentEventLoop,WaitNextEvent,
GetNextEvent, and EventAvail.

One more useful function is SetEventLoopTimerNextFireTime, which resets the interval until the next
time the timer fires. For example, if theTimer is the timer installed in the example above, the call

SetEventLoopTimerNextFireTime (theTimer, kEventDurationMinute);

will cause the timer to “sleep” for one minute and then resume its one-second firing cycle. The effect is
equivalent to deinstalling the timer and then reinstalling it with a new initial delay and the same timer interval.

A variant of the basic timer is the idle timer, which is available in Mac OS X v.10.2 and later. The idle timer
functions just like a normal timer except that it does not fire until the user has been inactive for the initial
delay time. Such timers are useful for letting the application know that it is safe to do some processing
without interfering with the user. For example, if the user is entering text into a search field, you should wait
for a second or two after the user has stopped typing before beginning the search.

To install an idle timer, you call the InstallEventLoopIdleTimer function, which has the same format
as the basic InstallEventLoopTimer function:

OSStatus InstallEventLoopIdleTimer(
 EventLoopRef inEventLoop,
 EventTimerInterval inFireDelay,
 EventTimerInterval inInterval,
 EventLoopIdleTimerUPP inTimerProc,
 void * inTimerData,
 EventLoopTimerRef * outTimer);

The only difference is that the timer callback routine takes an additional EventIdleAction parameter
indicating the idle status:

pascal void IdleTimerAction (EventLoopTimerRef inTimer,
 void *inUserData,
 EventIdleAction inAction);

When your idle timer routine is called, it is passed one of three constants indicating the current idle status:

enum
{
 kEventLoopIdleTimerStarted,
 kEventLoopIdleTimerIdling,
 kEventLoopIdleTimerStopped
}
EventIdleAction;

 ■ kEventLoopIdleTimerStarted indicates that the idle period has just begun (and this is the first time
your callback is being called for this period).

 ■ kEventLoopIdleTimerIdling indicates that your callback is being called in the middle of an idle
period.

Installing Timers 39
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

 ■ kEventLoopIdleTimerStopped is sent to your callback function when the idle period ends (for example,
when the user hits a key).

For example, say your application wants to calculate the value of pi. When your callback function receives
the kEventLoopIdleTimerStarted constant, you create a special pi calculation object. Each time you
receive kEventLoopIdleTimerIdling, you call an object method to calculate the next digit. When you
receive kEventLoopIdleTimerStopped, you store the currently calculated value of pi and dispose of the
pi calculation object.

Processing Events Manually

In most cases, using the RunApplicationEventLoop function to collect and dispatch events is the simplest
and most practical way to handle events. However, sometimes you may want more control over the event
collection and dispatching mechanism, or you may need to process events that don’t occur in the main
application thread. In cases like these, you can call other Carbon Event Manager functions to manually collect
and dispatch your events.

The RunApplicationEventLoop function itself calls several Carbon Event Manager functions to accomplish
its task:

 ■ ReceiveNextEvent runs the low-level event loop, placing events as they occur into the event queue.
The function returns when an event you specified occurs, or when the specified timeout is exceeded.

OSStatus ReceiveNextEvent(
 UInt32 inNumTypes,
 const EventTypeSpec *inList,
 EventTimeout inTimeout,
 Boolean inPullEvent,
 EventRef *outEvent);

 ❏ The inNumTypes parameter specifies the number of events for which ReceiveNextEvent should
return. Passing 0 indicates you want to return on all events.

 ❏ The inList parameter points to the EventTypeSpec structure or array containing the class and
kind of events to return on. Passing NULL indicates that you want to return on all events.

 ❏ The inTimeout parameter is the duration to wait before timing out.

 ❏ The inPull parameter specifies if whether you want ReceiveNextEvent to pull the event off the
queue when it returns. Passing true causes the event to be pulled. If you pass false,
ReceiveNextEvent only peeks at the event to determine its type. You still can dispatch the event,
but it remains on the queue.

 ❏ On return, outEvent contains the event that caused ReceiveNextEvent to return.

 ■ GetEventDispatcherTarget gets the event target reference for the standard toolboxdispatcher, which
is the default target for all events. The toolbox dispatcher determines the proper target for each event
(window, control, and so on) and sends the event there. Note that because the toolbox dispatcher is
itself a valid event target, you can actually attach a handler to it. Such a handler can intercept an event
before it gets sent on to the actual event target.

 ■ SendEventToEventTarget dispatches the event to the appropriate event target.

 ■ ReleaseEvent releases the event (disposing of it if necessary).

40 Processing Events Manually
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Listing 2-10 shows how you can use these calls to implement the basic functionality of
RunApplicationEventLoop.

Listing 2-10 Processing events manually

EventRef theEvent;
EventTargetRef theTarget;

theTarget = GetEventDispatcherTarget();

 while (ReceiveNextEvent(0, NULL,kEventDurationForever,true,
 &theEvent)== noErr)
 {

 SendEventToEventTarget (theEvent, theTarget);
 ReleaseEvent(theEvent);
 }

The ReceiveNextEvent function is blocked forever (kEventDurationForever) until an event occurs.
Specifying zero and null for the first two parameters indicates that ReceiveNextEvent should return on all
events. (Alternatively, you could specify that the function wait only for particular events). Passing true in
the third parameter indicates that the application should take ownership of the event (which means it is
pulled off the event queue).

After an event occurs, we dispatch it to the event dispatcher target, which automatically sends it to the
proper event target. Because the application owns the event, the application is then responsible for releasing
it by calling ReleaseEvent. (There is also a complementary function RetainEvent, which you can use to
increment the reference count of the event, thus ensuring that it will not get disposed before you are finished
with it.)

The only drawback to making your own event loop dispatching calls in the main application thread is that
you won’t get the standard application event handler installed. Specifically, the RunApplicationEventLoop
function installs handlers to do the following:

 ■ Allow clicks in the menu bar to begin menu tracking

 ■ Dispatch Apple events by calling AEProcessAppleEvent

 ■ Respond to quit Apple events by quitting RunApplicationEventLoop.

One way to work around this limitation is by creating a dummy custom event handler. When you are ready
to process events, create the dummy event yourself, post it to the queue. and then call
RunApplicationEventLoop (to install the standard application event handler). The dummy event handler
can then process the events manually. For an example of using this method, see Technical Q&A 1061 in
Developer Documentation Technical Q&As.

Creating Your Own Events

In addition to processing and dispatching events, the Carbon Event Manager also lets you create your own
events. You may want to create your own custom events, or you might want to reproduce standard events.

You create an event using the CreateEvent function:

Creating Your Own Events 41
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

http://developer.apple.com/qa/qa2001/qa1061.html

OSStatus CreateEvent(CFAllocatorRef inAllocator<null>,
 UInt32 inClassID, UInt32 kind,EventTime when,
 EventAttributes flags, EventRef* outEvent);

 ■ The inAllocator parameter refers to the allocator you want to use to allocate memory for the event.
You can pass NULL to specify the default allocator.

 ■ The inClassID and kind parameters indicate the event class and kind. If you are creating custom
events, you need to define new values that don’t conflict with existing event classes and kinds. And, of
course, you must specify this class and kind when your register a handler to process this type of event.

 ■ The when parameter indicates when the event occurred. You can pass 0 to specify the current event
time (as returned by the GetCurrentEventTime function). This value may or may not be useful for
custom events.

 ■ The flags parameter indicates any event attributes you may want to set. The current choices are
kEventAttributeNone and kEventAttributeUserEvent.

 ■ On return, outEvent contains the newly-created event reference.

If your event requires additional information, you can add data by calling SetEventParameter. If you are
creating custom events, you need to define constants for your parameter names and types if they don’t
already exist. For example, if you define a parameter for a screen location, you may want to define a new
parameter name, but you can probably still use typeQDPoint for the parameter type.

Once you create an event, you need to send it to a handler. There are two basic methods for doing so:

 ■ You can post the event to a queue by calling the PostEventToQueue function. You need to obtain the
queue reference for the queue you want to post to by calling either GetCurrentEventQueue (which
returns the current thread’s queue) or GetMainEventQueue (which returns the queue for the main
application thread). The event you post will not be processed until it is pulled from the queue and
dispatched to the appropriate event target.

Note that in Mac OS X, you can indicate in the event reference where a posted event should be dispatched
by specifying a kEventParamPostTarget event parameter.

 ■ You can send it directly to the desired event target by calling SendEventToEventTarget. If this is a
custom event, the target you choose should be the one to which you attached your custom event
handler. Dispatching the event yourself will ensure that your handler is called immediately.

Note that if you send an event to the standard toolbox dispatcher and it does not recognize it (that is, it’s a
custom event), then it will dispatch the event to the application event target (unless you specified an event
target in your custom event using the kEventParamPostTarget parameter).

If you want to create and process command events, the Carbon Event Manager provides the function
ProcessHICommand:

OSStatus ProcessHICommand (const HICommand* inCommand);

When you pass an Command ID toProcessHICommand, it builds akEventCommandProcess event containing
the ID and then dispatches the event to either

 ■ a menu, if the command is defined in a menu, or

 ■ the current user focus

42 Creating Your Own Events
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

Carbon Events in Multiple Threads

The Carbon Event Manager scales to work with multiple execution threads. If you are creating cooperative
threads, each thread shares the main application event loop and queue, so your event handling mechanism
does not change. However, the RunApplicationEventLoop function never explicitly yields to other threads,
so you should create a timer that will call the Thread Manager function YieldToAnyThread as necessary.

If you create preemptively-scheduled threads, each such thread contains its own event queue and needs to
be processed independently.

Because RunApplicationEventLoop works only for the main execution thread, any preemptive threads
you create should use ReceiveNextEvent to process events, as described in “Processing Events
Manually” (page 40). Depending on the thread, you can wait for particular events to occur or process every
event (much the way RunApplicationEventLoop does).

Important: Event loops in preemptive threads you create do not receive user events. The only events your
threads receive are those created by your application.

You use the event queues primarily to communicate between threads. For example, if you wanted your
preemptive thread to tell the main application it was finished processing data, it could post a custom event
on the main application event queue. One advantage of this method is that your application does not have
to use extra processing time polling a Multiprocessing Services queue or semaphore.

Depending on the circumstances, either Carbon event queues or Multiprocessing Services notification
methods may be suitable for signaling between threads. If you want to use Carbon event queues, here is
breakdown of how you might do it:

 ■ After first creating the thread, it should call GetCurrentEventQueue to obtain its queue reference. It
can then create a custom event signifying that it is ready for use, call SetEventParameter to store the
queue reference in the event, then post the event to the main thread. It can then call ReceiveNextEvent,
blocking until someone sends it an event.

 ■ When the main thread receives the ready event, the appropriate handler can call GetEventParameter
to extract the queue reference. Then, whenever it needs to signal the other thread, it can create a “start
processing” event and post it to the proper queue.

 ■ Whenever the preemptive thread receives the process event, it can carry out its particular task. Afterwards,
it posts a “processing completed” event to the main event queue and returns to a blocked state in
ReceiveNextEvent.

 ■ When it comes time to terminate the thread, the main application thread sends a termination event and
waits for confirmation from the thread.

For more information about creating cooperatively-scheduled threads, see the Thread Manager documentation
and Technical Q&A 1061, “RunApplicationEventLoop and the Thread Manager.” For information about creating
preemptively-scheduled threads, see the Multiprocessing Services documentation.

Carbon Events in Multiple Threads 43
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

http://developer.apple.com/qa/qa2001/qa1061.html

Modal Event States

If you need to create application-modal dialogs, you can use several Carbon Event Manager functions to
enter and exit the modal state. A modal dialog is a window that allows no other application actions until the
window is dismissed. For example, an alert that warns the user about the consequences of some action is
typically a modal dialog.

For more information about the proper design and usage of modal dialogs, see InsideMacOS X: Aqua Human
Interface Guidelines.

The simplest way to enter the modal state is to call the function RunAppModalLoopForWindow, passing the
window reference of the window you want to make modal. This function is analogous to the
RunApplicationEventLoop functions for applications. It runs a sub-event loop, disables the menu bar and
dispatches events.

When in a modal state, the standard toolbox dispatcher only processes events for the modal window and
any window above it (that is, closer to the front). Typically a modal window is frontmost, but if another
window is in front of it, that window will also receive events. This feature was designed to allow stacked
modal dialogs. See “Processing Events Manually” (page 40) for more information about the toolbox dispatcher.

Note: You should use RunAppModalLoopForWindow instead of the older Dialog Manager function
ModalDialog.

To leave the modal state, you call the function QuitAppModalLoopForWindow.

To make construction of modal dialogs simpler, the Carbon Event Manager also includes some utility functions
for setting the default and cancel buttons.

OSStatus SetWindowDefaultButton(
 WindowRef inWindow,
 ControlRef inControl); /* can be NULL */

OSStatus SetWindowCancelButton(
 WindowRef inWindow,
 ControlRef inControl); /* can be NULL */

OSStatus GetWindowDefaultButton(
 WindowRef inWindow,
 ControlRef * outControl);

OSStatus GetWindowCancelButton(
 WindowRef inWindow,
 ControlRef * outControl);

Calling the “set” versions of these functions causes the standard event handlers to map keyboard input to
the respective controls: pressing the Return or Enter keys will activate the default button, and pressing escape
or Command-period will activate the cancel button.

As with the standard event loops, you can also choose to run the modal event loop manually and dispatch
events yourself. To do so, you call the low-level function BeginAppModalStateForWindow for the desired
window. Once in this state you can call the usual low-level event processing functions. (ReceiveNextEvent,

44 Modal Event States
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

RunCurrentEventLoop). Note that because the event filtering occurs in the toolbox dispatcher (not the
event queue), it is possible to receive and process events that are not related to the window. To leave the
modal state, you call EndAppModalStateForWindow.

Modal Event States 45
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

46 Modal Event States
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Event Manager Tasks

This table describes the changes to Carbon Event Manager Programming Guide.

NotesDate

Changed title from "Handling Carbon Events." Made minor content updates and
bug fixes.

2005-07-07

Added some information about HIView-based mouse tracking areas to “Mouse
Tracking Regions (Mac OS X v.10.2 and Later)” (page 35).

Described workaround trick for getting standard application event handlers
when processing events manually.

Removed event parameters appendix (now documented with the event kinds
in the API references).

Added link to Apple Events Programming Guide.

Added note to “Standard Handlers” (page 11) describing the difference between
default behavior and standard event handling for an event.

2003-06-04

Updated art files.

Specified in the parameter appendix that
kEventWindowContextualMenuSelect also contains the parameters available
to kEventMouseDown.

2003-04-30

Also removed superfluous section head.

Updated for Mac OS X 10.2.2002-10-04

Added text to “Carbon Events Versus WaitNextEvent” (page 15) indicating that
standard menu event and Apple event handlers are installed only when you
call RunApplicationEventLoop.

Added warning to “Creating and Registering an Event Handler” (page 21) that
plugins must explictly remove any event handlers they install before being
unloaded. Otherwise, the system may attempt to call event handler code that
no longer exists. Added similar warning to “Installing Timers” (page 38).

Corrected error in Listing 3-4 (page 24), adding an EventRef parameter to the
CallNextEventHandler call.

Added new section, “Queue-Synchronized Events (Mac OS X v.10.2 and
Later)” (page 27).

47
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Added note about the new kEventParamWindowMouseLocation parameter
to “Mouse Events” (page 30).

Removed all suggestions to use Classic Event Manager functions such as Button
and WaitMouseUp in “Mouse Button Events” (page 31), and replaced them
with a warning that these functions use excessive processor time (especially on
Mac OS X).

Replaced deprecated mouse tracking result constants
(kMouseTrackingMousePressed/Released/Moved) in “Tracking Mouse
Movements” (page 33) with newer equivalents:
kMouseTrackingMouseDown/Up/Dragged. Added new tracking result
constants as well.

Added warning about the kMouseTrackingMouseMoved constant: The
kMouseTrackingMouseMoved constant has been repurposed for Mac OS X
version 10.2 and later. In earlier system software versions,
kMouseTrackingMouseMoved was equivalent to the
kMouseTrackingMouseDragged result, indicating that the mouse was moved
while the mouse button was down. In Mac OS X 10.2. and later, you receive the
kMouseTrackingMouseMoved tracking result if the user moves the mouse
while the mouse button is up. If you have code that interprets
kMouseTrackingMouseMoved in its older sense, you should update it before
running it on Mac OS X version 10.2 or later.

Removed unnecessary GetMouse call in Listing 3-8 (page 34).

Added new section “Mouse Tracking Regions (Mac OS X v.10.2 and Later)” (page
35).

Added material about idle timers to “Installing Timers” (page 38), which are
available in Mac OS X 10.2 and later.

Added information about the kEventParamPostTarget event parameter in
“Creating Your Own Events” (page 41). Also updated information about how
the standard event dispatcher handles unrecognized events (it sends them to
the application event target).

Updated available event parameters in “Event Parameters and Types for Common
Event Kinds.” Added event parameters for application events.

Added additional sections “The Handler Stack” (page 10) and “An Event
Propagation Example” (page 12) to clarify how events are propagated through
the containment hierarchy.

2001-06-22

Removed note from “Standard Handlers” (page 11) indicating that the standard
handler acts like the outermost object in a containment hierarchy. The actual
mechanism is a bit more subtle than that.

Added third item to the event handling list in “The Event Model” (page 14)
indicating that events that are not processed will be discarded.

48
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Defined window dimension constants in Listing 3-2 (page 23) to make the code
compilable.

Clarified in “Command Events” (page 28) that command events are first sent
to the event target they are associated with (that is, the menu or control).

WWDC draft.2001-05-11

Document title changed to Handling Carbon Events from the Carbon Event
Manager Handbook.

Correction: The Carbon Event Manager does not replace the functionality of the
Notification Manager.

Terminology change: References to the “default event handler” changed to
“standard event handler” to better match the API and internal usage.

System Requirements section moved to the introductory chapter. Also, the
Carbon Event Manager is available in CarbonLib 1.1.1 and later, not 1.2 as
previously stated.

Added Note to “Standard Handlers” (page 11) (formerly Default Handlers)
indicating that the standard window handler includes support for control events,
and the standard application handler includes support for menu events.

In “Carbon Events Versus WaitNextEvent” (page 15), maximum timeout for
WaitNextEvent should be 7FFFFFFF. Idle processing information changed to
use null events instead of idle events.

In “Event Classes and Kinds” (page 19), clarified which handler actually calls
SetPort and Begin/EndUpdate. It’s kEventWindowUpdate, not
kEventDrawContent.

Indicated that RunApplicationEventLoop installs ths standard application
event handler, which includes a simple quit Apple event handler in “Executing
the Event Loop” (page 20).

Clarified in “Creating and Registering an Event Handler” (page 21) that the event
handler UPP is not automatically released; you must dispose of it yourself.

Added warning comment in Listing 3-4 (page 24) to indicate that the standard
handler for the window close event removes the window, you can’t attempt to
access it as part of your post-processing.

Correction in “Other Event Attributes” (page 26): EventTime is a floating point
number, not an integer.

49
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

In “Command Events” (page 28), command IDs were introduced with Mac OS
8.0, not 8.5 as stated. Also the myEvents parameter in the
InstallApplicationEventHandler call needs an “&”. The commandID field
of the commandStruct variable starts with a lower-case c, not upper case. Added
note indicating that Interface Builder makes it easy to assign command IDs to
controls and menu items.

In “Text Events” (page 29), the user focus event target is a valid event target
that does not change. If you install a handler on this target, then any events
targeted at the current user focus will automatically be sent to your handler
before being sent to the actual event target that has the user focus.

Correction in “Mouse Events” (page 30): The coordinates of the mouse position
in kEventParamMouseLocation are given in global coordinates, not local as
previously stated.

Added Mac OS X only mask constants kEventKeyModifierNumLockMask and
kEventKeyModifierFnMask to Table 3-1 (page 31).

Correction in “Installing Timers” (page 38): Event handlers are not associated
with a particular event loop. Also added clarification in the Note as to which
functons will run the event loop.

In “Processing Events Manually” (page 40), clarified what handlers
RunApplicationEventLoop installs: handlers to begin menu tracking, dispatch
Apple events, and process the quit Apple event.

In “Creating Your Own Events” (page 41), indicated that you can pass 0 for the
when parameter in CreateEvent, which specifies the current event time.

In “Event Parameters and Types for Common Event Kinds” updated text input
event constant names to reflect latest header.

Preliminary review draft. Includes material from the older Carbon Events
document.

2001-04-30

50
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

The control event constants defined by the Carbon Event Manager generally map to control messages sent
to control defprocs (CDEFs) as shown in Table A-1 (page 51).

Table A-1 Control Events versus Control defproc messages

Control defproc message(s)Control event constant

initCntlkControlMsgTest-
NewMsgSupportkControlMsgGetFeatures (in
that order)

kEventControlInitialize

dispCntlkEventControlDispose

kControlMsgCalcBestRectkEventControlGetOptimalBounds

Same as for kEventControlInitialize.kEventControlDefInitialize

Same as for kEventControlDisposekEventControlDefDispose

No equivalent messagekEventControlHit

No equivalent messagekEventControlSimulateHit

testCntlkEventControlHitTest

drawCntlkEventControlDraw

kControlMsgSetUpBackgroundkEventControlApplyBackground

kControlMsgApplyTextColorkEventControlApplyTextColor

kControlMsgFocuskEventControlSetFocusPart

No equivalent message.kEventControlGetFocusPart

kControlMsgActivate (with param = 1)kEventControlActivate

kControlMsgActivate (with param = 0)kEventControlDeactivate

kControlMsgSetCursorkEventControlSetCursor

kControlMsgContextualMenuClickkEventControlContextualMenuClick

kControlMsgHandleTrackingkEventControlTrack

No equivalent message.kEventControlGetScrollToHereStartPoint

thumbCntlkEventControlGetIndicatorDragConstraint

51
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Control Events Versus Classic Control
Messages

Control defproc message(s)Control event constant

kControlMsgDrawGhost (for nonlive tracking) or
kControlMsgCalcValueFromPos (for live tracking).

kEventControlIndicatorMoved

posCntlkEventControlGhostingFinished

No equivalent message.kEventControlGetActionProcPart

kControlMsgGetRegion for controls that support
GetRegion, calcCntlRgn or calcThumbRgn
otherwise.

kEventControlGetPartRegion

No equivalent message.kEventControlGetPartBounds

kControlMsgSetDatakEventControlSetData

kControlMsgGetDatakEventControlGetData

drawCntlwith param = kControlIndicatorPartkEventControlValueFieldChanged

kControlMsgSubControlAddedkEventControlAddedSubControl

kControlMsgSubControlRemovedkEventControlRemovingSubControl

Anything sent using SendControlMessagekEventControlArbitraryMessage

kControlMsgGetClickActivationkEventWindowGetClickActivation (of event
class kEventClassWindow)

Some messages are no longer supported, as shown in Table A-2

Table A-2 Unsupported CDEF messages

Why No Carbon Event EquivalentMessage

Obsolete. Use kControlMsgGetRegion instead.calcCRgns

Use kControlMsgHandleTracking instead.autoTrack

Obsolete. No one needs to use this anymore.dragCntl

Obsolete. Use kControlDrawMsgGhost, kControlMsgCalc-
ValueFromPos, and posCntl instead.

drawThumbOutline

Only marginal support available on Mac OS X using kEventControl-
ArbitraryMessage. Use kEventTextInput class of Carbon events
instead.

kControlMsgKeyDown

Only marginal support available on Mac OS X using kEventControl-
ArbitraryMessage. The CDEF should install a timer instead.

kControlMsgIdle

52
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Control Events Versus Classic Control Messages

Why No Carbon Event EquivalentMessage

Only marginal support available on Mac OS X using kEventControl-
ArbitraryMessage. CDEF should install kEventControlValue-
FieldChanged on its children instead.

kControlMsgSub-
ValueChanged

Obsolete. Never implemented.kControlMsgFlatten

53
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Control Events Versus Classic Control Messages

54
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Control Events Versus Classic Control Messages

blocked The state where an application or thread is
waiting for some event or action to occur. While
blocked, that particular code path uses no processor
time.

Classic Event Manager The event handling interface
used in Mac OS applications before the Carbon Event
Manager. The Classic Event Manager often required
a certain amount of polling of the event queue.

containment hierarchy A hierarchy of event targets
that determines which handler is to be called to
process an event. Events are initially sent to the
innermost (or lowest) relevant target in the hierarchy.
If the handler associated with that event target does
not handle the event (or if no handler exists), then
the event is propagated to the next target in the
hierarchy. If no handler in the hierarchy processes the
event, the default handler is called.

event A constant that notifies an application that
some action is occurring, or has occurred.

event class The general category an event belongs
to, typically associated with an particular action or
user-interface element. Example classes are window
events and volume events. Compare event kind (page
55).

event handler A callback procedure that processes
one or more events.

event kind A specific type of event within an event
class (for example, a mouse-down event). Compare
event class (page 55).

event loop In the Carbon Event Manager, an
execution loop that obtains events from the Window
Server and places them in an event queue. The event
loop also fires timers.

event queue A first-in-first-out stack where events
pertaining to a thread are stored. Each
preemptively-scheduled thread has its own event
queue.

event target An object to which an event is sent. An
event target is typically a user-interface element, such
as a control or a window.

event timer A timer mechanism that fires once, or
at periodic intervals, calling a callback procedure when
doing so.

event type The combination of event class and event
kind that uniquely identifies an event to the Carbon
Event Manager. See alsoevent class (page 55), event
kind (page 55).

main event loop The code loop where the
application spends most of its time. The application
is blocked while waiting for events. When an event
occurs, the application processes it and then returns
to the blocked state.

one-shot timer A Carbon event timer that fires only
once. See alsoevent timer (page 55).

peek To examine an event in an event queue
(obtaining its class, kind, parameters and so on)
without removing it from the queue. Compare
pull (page 55).

pull To remove an event from an event queue.
Compare peek (page 55).

queue-synchronized state The state of an input
device accordiing to the events that have been
dispatched from the event queue. This state may differ
from the actual physical state of the input device.

55
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

Glossary

standard event handler The event handler that
processes an event if the application did not install
one for it.

standard toolbox dispatcher In the Carbon Event
Manager, the default event target for events when
running under RunApplicationEventLoop. Events
sent to the standard toolbox dispatcher are
automatically routed to the appropriate event targets.

timer Seeevent timer (page 55).

toolbox dispatcher Seestandard toolbox
dispatcher (page 56).

universal procedure pointer (UPP) A generalized
procedure pointer that allows code with different
calling conventions to call each other. Some Carbon
functions require you to pass UPPs for callbacks
because the calling routine doesn't know in advance
if your code is Mach-O based or CFM-based.

user focus The window or text field control to which
keyboard input is directed. The user can change the
user focus by using the mouse or (sometimes) the
Tab key.

user focus event target Events sent to this target
are automatically sent to the event target that has
the current user focus. You can also install a handler
on this target to intercept events before they get sent
to the current user focus.

WaitNextEvent The function that drove the event
loop in older versions of the Mac OS. See alsoClassic
Event Manager (page 55).

56
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

A

Apple events
dispatched by RunApplicationEventLoop 41
handling Quit event using 20

B

BeginAppModalStateForWindow function 44
Button function 33

C

CallNextEventHandler function 24
Carbon event timers. See event timers
Carbon events, advantages of 15
Classic Event Manager 33
Classic Event Manager

tracking mouse movements using 33
migrating from 15, 17

command IDs 28
control defproc events 51–52
ConvertEventRefToEventRecord function 17
CreateEvent function 41
CreateMouseTrackingRegion function 35

D

disposing of event handlers 23
DoWindowClose sample function 24

E

EndAppModalStateForWindow function 45
event class

constants defining 19
introduced 9

event containment hierarchy 10
event handlers

disposing 23
event handlers

installing 21–23
installing from plugins 23
mouse tracking 33, 37
standard 11, 12

event kind
constants defining 19
introduced 9

event loop
described 9
executing the 20–21
running manually 40

event parameters 25
mouse 25

event processing sequence 14
event queue 14
event targets 10

user focus 30
using kEventParamPostTarget parameter to specify

42
event timers 38–40

idle 39
installing from plugins 38
introduced 13
one-shot 38
useful constants for 26

event type
introduced 9
structure of an 19

EventDebug variable in Terminal 20
EventLoopRef data type 21
events

manual processing of 40
propagation of 12

EventTimeToTicks function 17
example event sequence responding to mouse press 11

57
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

Index

G

GetCurrentButtonState function 27
GetCurrentEvent function 28
GetCurrentEventButtonState function 27
GetCurrentEventKeyModifiers function 27
GetCurrentEventLoop function 21
GetCurrentEventTime function 26
GetCurrentKeyModifiers function 27
GetCurrentQueue function 43
GetEventClass function 26
GetEventDispatcherTarget function 40
GetEventKind function 26
GetEventParameter function 25
GetEventTime function 26
GetMainEventLoop function 21
GetMouse function 33
GetMouseTrackingRegionID function 36
GetMouseTrackingRegionRefCon function 37
GetUserFocusEventTarget function 30

H

handler installation macros 21
handler stack 10

I

idle timers 39
InstallEventHandler function 21
InstallEventLoopIdleTimer function 39
InstallEventLoopTimer function 38
installing event handlers 21, 23
IsEventInMask function 17

K

kEventLoopIdleTimerIdling constant 39
kEventLoopIdleTimerStarted constant 39
kEventLoopIdleTimerStopped constant 40
kEventParamPostTarget parameter 42
keyboard modifiers 27, 31
kWindowStandardHandlerAttribute constant 23

M

manual event processing 40

modal windows using Carbon events 44
mouse button state, obtaining 27
mouse event parameters 25
mouse tracking 33–37
Multilingual Text Engine (MLTE) 29
multiple handlers for an event 10
Multiprocessing Services, event processing using 15
Multiprocessing Services, event processing using 43

O

one-shot timers 38

P

parameters, event. See event parameters
plugins 23, 38
PostEventToQueue function 42
ProcessHICommand function 42
propagation of events through containment hierarchy 12

Q

queue, event 14
queue-synchronized state versus hardware state 27
QuitApplicationEventLoop function 20
QuitAppModalLoopForWindow function 44
QuitEventLoop function 21

R

ReceiveNextEvent function 40, 44
ReleaseEvent function 41
ReleaseMouseTrackingRegion function 36
RetainEvent function 41
RetainMouseTrackingRegion function 36
RunApplicationEventLoop function 15, 20
RunAppModalLoopForWindow function 44
RunCurrentEventLoop function 21, 45

S

SendEventToEventTarget function 40, 42
SetEventLoopTimerNextFireTime function 39
SetEventParameter function 26

58
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

INDEX

SetMouseTrackingRegionEnabled function 37
stack, handler 10
standard event handler 11–12

augmenting using CallNextEventHandler 24
example response to a mouse press 11
for controls 11
for menus 11
implementation of 25
in event propagation hierarchy 13
restrictions when using WaitNextEvent 16

standard toolbox dispatcher 40
StillDown function 33
system requirements 8

T

Thread Manager, event processing using the 43
TicksToEventTime function 17
timers. See event timers
tracking the mouse 33, 37
TrackMouseLocation function 33
TrackMouseRegion function 34

U

user events, obtaining 28
user focus event target 30

W

WaitMouseUp function 33
WaitNextEvent function 15–17
Window Server 14

Y

YieldToAnyThread function 43

59
2005-07-07 | © 2001, 2005 Apple Computer, Inc. All Rights Reserved.

INDEX

	Carbon Event Manager Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Carbon Event Manager Concepts
	Carbon Event Handling Theory
	The Event Loop
	Event Types
	Event Targets and Containment Hierarchies
	The Handler Stack
	Standard Handlers
	An Event Propagation Example
	Event Timers

	The Event Model
	Carbon Events Versus WaitNextEvent

	Carbon Event Manager Tasks
	Event Classes and Kinds
	Executing the Event Loop
	Creating and Registering an Event Handler
	Event Parameters
	Other Event Attributes
	Queue-Synchronized Events (Mac OS X v.10.2 and Later)
	Obtaining Mouse and Keyboard Modifer States
	Obtaining the Current User Event

	Command Events
	Text Events
	Mouse Events
	Mouse Button Events
	Tracking Mouse Movements
	Mouse Tracking Regions (Mac OS X v.10.2 and Later)

	Installing Timers
	Processing Events Manually
	Creating Your Own Events
	Carbon Events in Multiple Threads
	Modal Event States

	Revision History
	Appendix A: Control Events Versus Classic Control Messages
	Glossary
	Index
	A
	B
	C
	D
	E
	G
	H
	I
	K
	M
	O
	P
	Q
	R
	S
	T
	U
	W
	Y

