
C H A P T E R 2

Drag Manager
Programmer’s Guide

Contents

About the Drag Manager 2-3
The Drag Process 2-3

Starting a Drag 2-4
Tracking a Drag 2-5
Finishing a Drag 2-5

Drag Items 2-6
Drag Item Flavors 2-7
Drag Handlers 2-8

Drag Tracking 2-9
Receiving Data 2-11

Drag Procedures 2-12
Sending Data 2-12
Overriding Standard Input 2-13
Overriding Standard Drawing 2-13

Using the Drag Manager 2-14
Installing and Removing Drag Handlers 2-14
Recognizing the Start of a Drag 2-17
Performing a Drag 2-18
Adding Drag Item Flavors 2-19
Creating the Drag Region 2-22
Tracking a Drag 2-24
Determining What is Being Dragged 2-27
Receiving a Drop 2-28
Providing Flavor Data on Demand 2-30

Drag Manager Reference 2-31
Constants 2-32

Gestalt Selector and Response Bits 2-32
Flavor Flags 2-32
Drag Attributes 2-34
Special Flavor Kinds 2-34
Zoom Acceleration 2-34

Data Structures 2-35

C H A P T E R 2

Drag Manager Programmer’s Guide

Drag Reference 2-35
Drag Item Reference 2-35
Flavor Type 2-36
HFS Drag Item Flavor Record 2-36

Drag Manager Routines 2-37
Installing and Removing Drag Handler Routines 2-37
Creating and Disposing of Drag References 2-41
Providing Drag Callback Procedures 2-44
Adding Drag Item Flavors 2-47
Performing a Drag 2-49
Getting Drag Item Information 2-56
Getting Drag Status Information 2-61
Window Highlighting Utilities 2-65
Drag Manager Utilities 2-68

Application-Defined Routines 2-69
Drag Handler Routines 2-69
Drag Callback Procedures 2-72

Summary of the Drag Manager 2-78
Pascal Summary 2-78

Constants 2-79
Data Types 2-79
Drag Manager Routines 2-79
Application-Defined Routines 2-82

C Summary 2-83
Constants 2-83
Data Types 2-84
Drag Manager Routines 2-85
Application-Defined Routines 2-86

Assembly-Language Summary 2-89
Constants 2-89
Data Structures 2-90
Trap Macros 2-90

Result Codes 2-92

2-2

C H A P T E R 2

Drag Manager Programmer’s Guide

This chapter describes how your application can use the Drag Manager to drag items that
reside within your application. By using the Drag Manager, you can allow items from
your application to be directly dragged to other applications and you can receive items
from other applications.

The Drag Manager is not available in all versions of system software. Use the Gestalt
function, described in the chapter “Gestalt Manager” of Inside Macintosh: Operating
System Utilities , to determine whether the Drag Manager is present.

Read this chapter if you want your application to be able to drag items either within
your own application’s windows or between your application and other applications. You
might want to allow the user of your application to drag selections of your documents to
the Finder to create “clippings” from your documents. You might also want to allow
selections from other applications to be dragged directly into your documents.

About the Drag Manager

Many Macintosh applications typically allow their users to drag objects within their
documents. The Finder, for example, allows users to move files and folders anywhere
within the file system using a simple drag-and-drop user interface.

The Drag Manager is the part of the Macintosh Toolbox that facilitates dragging objects
within the Macintosh user interface. The Drag Manager provides routines that handle
the user interface for dragging an object from, within, or to one of your application’s
windows. The Drag Manager can be used whenever an object is dragged within your
application.

This chapter describes how your application can use the Drag Manager to facilitate drag
and drop of objects within your documents. The Drag Manager also provides your
application with the ability to receive dragged items from other applications as well as
allowing other applications to receive items dragged from your application.

This document does not discuss the actual human interface guidelines for drag and drop.
Please see the separate document “Drag and Drop Human Interface Guidelines.”

IMPORTANT
The Drag Manager is not available in all versions of system software. Use the Gestalt
function to determine if the Drag Manager is available for use. ▲

The Drag Process
The Drag Manager divides the drag and drop user interface into three discrete steps. The
steps are starting a drag, tracking a drag, and finishing a drag. The Drag Manager
divides the action of dragging into these three steps to allow for the possibility that

2-3

C H A P T E R 2

Drag Manager Programmer’s Guide

different applications will be involved in each of the steps.

In the simplest case, the user may drag an item wholly within one of your document
windows. In this case, your application starts the drag, tracks the movement of the item
through the document window, and then accepts the item when the user releases the item
in the window.

In a more ambitious scenario where the user drags an item from one application to
another, the source application starts the drag; potentially several other applications
become involved as the user moves the mouse on the screen while searching for a place to
drop the item; and finally a different application may be involved when the user drops
the item at its final destination.

The remainder of this section describes each of the these three steps in greater detail.

Starting a Drag

The first step in a drag-and-drop action occurs when the user clicks on a selected object and
begins to move the mouse without first releasing the mouse button. The Drag Manager
includes a WaitMouseMoved function that allows you to easily determine if the mouse
has moved far enough to start a drag.

Figure 2-1 Starting a Drag

Your application must create a new drag reference which is used by your application to
refer to a specific drag process in subsequent calls to the Drag Manager. Use the NewDrag
function to create a new drag reference. After creating a new drag reference, your
application provides the Drag Manager with a description of the selected item or items
being dragged. You describe the selection being dragged by creating a list of drag item
flavors that represent the different data formats that each drag item may be produced
in. The Drag Manager includes the AddDragItemFlavor function for adding drag item
flavors to a drag reference.

2-4

C H A P T E R 2

Drag Manager Programmer’s Guide

After preparing the Drag Manager to drag your application’s selection, your application
begins the drag by the Drag Manager’s TrackDrag function.

Tracking a Drag

While the user drags a selection on the screen, the drag is “tracked” through each
window the the cursor moves over. Destination highlighting occurs while tracking a drag
after the cursor has left the source location. Also, destination feedback may occur if a
container under the cursor can accept the selection (such as folders in the Finder).

Figure 2-2 Tracking a Drag

While the drag is being tracked on the screen by the Drag Manager, the Drag Manager
calls routines provided by your application to track the drag through your windows.
These routines are called drag tracking handlers.

Your drag tracking handlers can inspect the description of the items that are being
dragged and highlight parts of the application’s windows accordingly. Routines are
provided that allow you to inspect the data within the selection being dragged, and
routines are provided to create and remove drag highlighting.

You can also provide the Drag Manager with routines that override the Drag Manager’s
standard behaviors, such as to provide a different appearance for the dotted outline or to
modify the keyboard or mouse inputs.

Finishing a Drag

When the user releases the mouse button, the Drag Manager calls another routine
provided by your application called a drag receive handler. Your application’s drag
receive handler is responsible for accepting the drop and performing the actual data

2-5

C H A P T E R 2

Drag Manager Programmer’s Guide

transaction that is required to place the selection at its final destination.

Your drag receive handler can inspect and request the data types contained within the
drag by using the GetFlavorData function provided by the Drag Manager.

Figure 2-3 Finishing a Drag

Drag Items
When dragging a selection from your application, each distinct object being dragged is a
drag item. The following list contains examples of single drag items:

■ any icon in the Finder

■ a selection in a bitmap drawing application

■ a selection of objects in an object-oriented graphics application

■ a continuous range of text in a word processor (even if the text selection
contains a picture)

There are many circumstances that result in multiple drag items being dragged
simultaneously:

■ any group of icons in the Finder

■ a discontinuous text selection (resulting from using the Command key)

When deciding how to break your application’s selections into drag items, keep in mind
that when dragging to the Finder, each drag item results in a separate “clipping” icon.
One of the best heuristics is to draw distinctions from your application’s richest data
format (which may be your own internal data format).

2-6

C H A P T E R 2

Drag Manager Programmer’s Guide

Drag Item Flavors
Many items that can be dragged (such as text, pictures or sounds) can be represented using
several different data formats. The Drag Manager introduces the concept of drag item
flavors to allow Drag Manager clients to send and receive objects in the most preferable
data format that both the sender and receiver can understand.

When you start a drag, you use drag item flavors to inform the Drag Manager of each of
the data formats that you could provide to the receiver of the drag. The Drag Manager
provides an AddDragItemFlavor function to add flavors to drag items before starting a
drag.

For example, a text selection of the string “Welcome to Macintosh.” is represented in
standard ‘TEXT’ format as:

Welcome to Macintosh.

The standard ‘TEXT’ format does not include any information such as the text’s font or
size. The standard Macintosh styled TextEdit data format ‘styl’ supplements the
‘TEXT’ data structure by providing font and style information. The ‘styl’ data for the
same selection (in hexadecimal) is:

0000: 0001 0000 0000 000E
0008: 000A 0015 0000 000C
0010: 0000 0000 0000

Another popular data format is rich text format. The RTF data format includes much
more information about the fonts and styles, and also includes information about the
source document’s margins, page size, columns, etc. The same text selection is represented
in RTF format as:

{\rtf1\mac\deff2 \windowctrl\ftnbj\fracwidth
 \sectd \linemod0\linex0\cols1\endnhere
 \pard\plain {\f21 Welcome to Macintosh.}
}

There are many other ways to represent this string. Most importantly, if the user drags a
selection entirely within one of your documents, you might want to transfer the data in
your application’s own internal data format.

There is no way to know where the user intends to drag a selection when starting a drag.
The user may want to drag within one of your windows, between two of your windows or to
a different application’s window. Different destinations may prefer different data
formats. In the text selection example, your own application might prefer its own
internal data format. Another sophisticated word processor may not understand your
internal data format, but may prefer RTF over styled text. A simple TextEdit field, such
as the Comments field of the Finder’s Get Info window may only be able to accept the
plain text.

2-7

C H A P T E R 2

Drag Manager Programmer’s Guide

Each flavor has its own set of flags associated with it. These flags are used by the Drag
Manager and its clients to provide additional information about each drag item flavor.
The following flags may be set for each flavor:

Flavor flag descriptions
flavorSenderOnly

This flag is set by the sender if the flavor should only be available to the
sender of the drag. Flavors that are marked with this flag do not appear
to any other application other than the sender.

flavorSenderTranslated
Set if the flavor data is translated by the sender. This attribute is useful
if the receiver needs to determine if the sender is performing its own
translation to generate this data type. The Finder does not save
translated types into clipping files.

flavorNotSaved
Set by the sender if the flavor data should not be stored by the receiver.
This flag is useful for marking flavor data that will become stale after
the drag is completed. Receivers that store data should not store flavors
that are marked with this flag. Flavor types marked with this flag are
not stored by the Finder in clipping files.

flavorSystemTranslated
Set if the flavor data is provided by the Translation Manager. If this
flavor is requested, the Drag Manager will obtain the required data type
from the sender and then it will use the Translation Manager to provide
the data that the receiver requested. Flavor types marked with this
flag are not stored by the Finder in clipping files.

Drag Handlers
You register with the Drag Manager callback routines that the Drag Manager calls to
allow your application to implement dragging. The Drag Manager uses two different
types of callback routines, called drag handlers and drag procedures. Drag handlers are
routines that are installed on windows that the Drag Manager uses when dragging over
that window. Drag procedures are routines that are used by the Drag Manager during a
drag regardless of which window the user may be dragging over. The Drag Manager
allows you to install the following drag handlers on your application’s windows:

■ a drag tracking handler that the Drag Manager calls when the user drags a
selection through one of your application’s windows. This allows you to track
the drag within the window

■ a drag receive handler that the Drag Manager calls when the user finishes a
drag in one of your application’s windows

2-8

C H A P T E R 2

Drag Manager Programmer’s Guide

The Drag Manager provides a pair of InstallHandler and RemoveHandler routines
that allow you to register handlers of each of these two types with windows in your
application. You can register a different set of handlers to be used for each window in
your application. You can also register with the Drag Manager a set of handlers to be
used when a window does not have its own handlers.

If you assign more than one handler of the same type on the same window, the Drag
Manager calls each of these handler routines in the order that they were installed.
Figure 2-4 shows an example of the tracking handler registry for an application that has
installed the same handler for its “Graphics” and “Documents” window, an additional
handler for its “Graphics” window, and a handler to be used for all windows in the
application including the “Graphics” and “Documents” windows. When the Drag
Manager tracks a drag through the “Documents” window, Handler 1 is called followed by
Handler 3 being called. When the Drag Manager tracks a drag through the “Graphics”
window, Handlers 1, 2 and 3 three are called, in order. Finally, if the Drag Manager
tracks a drag through any other window in the application, only Handler 3 is called.

Figure 2-4 Example “Tracking” Handler Registry

Handler 2

Handler 1Handler 1 Handler 3

All
windows

Window
“Documents”

Window
“Graphics”

Tracking Handlers

In the next three sections, the drag tracking and drag receive handler types are described
in more detail.

Drag Tracking

While the user drags a collection of items on the screen, as the mouse passes through one
of your application’s windows, the Drag Manager calls your DragTrackingHandler to
allow you to track the drag through your windows.

2-9

C H A P T E R 2

Drag Manager Programmer’s Guide

The Drag Manager sends your DragTrackingHandler tracking status messages as the
user moves the mouse. Your DragTrackingHandler receives the following messages
from the Drag Manager:

■ an enter handler message when the focus of a drag enters a window that is
handled by your DragTrackingHandler from any window that is not
handled by the same DragTrackingHandler

■ an enter window message when the focus of a drag enters any window that is
handled by your DragTrackingHandler

■ an in window message as the user drags within a window handled by your
DragTrackingHandler

■ a leave window message when the focus of a drag leaves any window that is
handled by your DragTrackingHandler

■ a leave handler message when the focus of a drag enters a window that is not
handled by your DragTrackingHandler

When you receive any of these messages from the Drag Manager, you can use several
routines provided by the Drag Manager that allow your application to determine what is
being dragged. This includes counting the number of drag items, counting the number of
flavors in a drag item and getting the type and flags for each flavor in a drag item. Using
the information returned by these functions, your application can determine if a portion of
a window should highlight when the user drags through the window.

The in window message is where most highlighting occurs. You can test the current
position of the mouse and highlight different areas of your window accordingly.

The enter window and leave window messages always occur in pairs. These messages are
useful for determining the point at which the mouse enters or leaves a window.

The enter handler and leave handler messages also occur in pairs. These messages only
occur when the drag moves between windows that are handled by different handler
routines. These messages are useful for allocating and releasing memory that you might
need when tracking within a set of windows.

Figure 2-5 shows an example of a user dragging a clipping from the Finder through two
windows of a word processing application. The following example demonstrates what
tracking messages are sent to the Finder and application during a drag:

2-10

C H A P T E R 2

Drag Manager Programmer’s Guide

Figure 2-5 Example Drag Tracking Path Through Multiple Applications and Windows

1

2
3

4

1. The user clicks and drags the clipping and the Finder starts a drag. The Finder
receives an enter handler message followed by an enter window message. As the
user drags within the Finder’s “Clippings” window, the Finder receives multiple
in window messages.

2. When the user drags into the word processor’s “untitled 1” window, the Finder
receives a leave window message followed by a leave handler message. The
word processing application then receives an enter handler message followed by
an enter window message. While the user drags within the application’s
“untitled 1” window, the application receives in window messages.

3. Assuming that both of the word processor’s windows are handled by the same
DragTrackingHandler, when the user drags into the “Sample Text” window,
the word processing application receives a leave window message followed by an
enter window message. It does not receive any enter/leave handler messages since
the same handler routine is used for both windows. As the user drags within the
application’s “Sample Text” window, the application receives in window
messages.

4. When the user releases the mouse button, the data transaction occurs by calling
the word processing application’s receive drop handler routine. Following the
data transaction, the application receives a leave window message followed by a
leave handler message. The drag is now complete and both the Finder’s and word
processor’s event loops continue as they did before the drag and drop action.

Receiving Data

When the user drops a collection of items in one of your application’s windows, the Drag
Manager calls any DragReceiveHandler routines that are installed on the destination
window. This call allows you to request the drag item flavors that your application
wishes to accept.

2-11

C H A P T E R 2

Drag Manager Programmer’s Guide

Your DragReceiveHandler can inspect the available flavors by using the
CountDragItems, GetDragItemReferenceNumber, CountDragItemFlavors,
GetFlavorType and GetFlavorFlags functions.

The DragReceiveHandler may receive data from the sender of the drag by calling the
GetFlavorData function.

Drag Procedures
In addition to installing drag handler routines on windows for a drag, you can supply the
Drag Manager with several different kinds of drag procedures. Drag procedures are used
by the Drag Manager during a drag regardless of which window the user may be dragging
over. You do not need to provide the Drag Manager with drag procedures unless you wish
to override the default behavior. Only the sender of a drag can specify drag procedures to
be used during a drag. The Drag Manager allows you to install the following drag
procedures in a given drag:

■ a send data procedure that the Drag Manager calls when the receiver
application requests a drag item flavor that the Drag Manager does not
currently have the data cached for

■ a drag input procedure that the Drag Manager calls when sampling the mouse
position and keyboard state to allow the application program to override the
current state of the input devices

■ a drag drawing procedure that the Drag Manager calls to allow your
application to assume responsibility for drawing the drag region on the screen

Sending Data

The Drag Manager caches the flavor data for any flavors that were added to a drag with
the AddDragItemFlavor function. If a receiver calls the GetFlavorData function to
get a flavor’s data, the Drag Manager simply returns the cached data to the caller.

If your application passes NIL as the pointer to the flavor data when adding a new
flavor with the AddDragItemFlavor function, the Drag Manager does not cache any
data in the new flavor. In this case, when a receiver requests the data by calling
GetFlavorData, the Drag Manager will call the drag’s send data procedure to get the
data from the sender.

This mechanism allows your application to add all of the various drag item flavor types
that could be provided to a receiver upon request, but doesn't require the sender to spend
the time and memory required to generate the data. This is usually a consideration when
the sender must perform expensive computations to produce the data or if the resulting
data requires a great deal of memory to store.

2-12

C H A P T E R 2

Drag Manager Programmer’s Guide

A drag send data procedure is only required when one or more flavors were added to a
drag without specifying a pointer to the flavor data when calling the
AddDragItemFlavor function.

Overriding Standard Input

The Drag Manager allows your application to provide a drag input procedure that is
called by the Drag Manager each time the Drag Manager samples the mouse and
keyboard.

The drag input procedure gets passed the current mouse location, mouse button state and
keyboard modifier status. A drag input procedure can either slightly modify these
parameters or completely change them.

For example, a drag input procedure can inhibit or force specific modifier keys, can control
the state of the mouse button, and can control the coordinates of the cursor.

Overriding Standard Drawing

The Drag Manager provides the sender application with a way to override the standard
drag region drawing behavior. This is done be specifying a drag drawing procedure for a
given drag operation.

When a drag drawing procedure is given for a drag, the Drag Manager sends your drag
drawing procedure a sequence of messages that allow you to assume responsibility for
drawing the drag region or similar feedback on the screen. Your DragDrawingProc
receives the following messages from the Drag Manager:

■ a drag region begin message when a drag is beginning and it is time for your
DragDrawingProc to allocate memory and initialize any data structures it
needs to function properly

■ a drag region draw message when the drag region has moved or needs to be
redrawn on the screen

■ a drag region hide message when all or part of the drag region needs to be
removed from the screen

■ a drag region idle message when the drag region has not moved and does not
need to be redrawn

■ a drag region end message when the drag has ended and it is time for your
DragDrawingProc to deallocate any memory it may have allocated

2-13

C H A P T E R 2

Drag Manager Programmer’s Guide

Using the Drag Manager

You use the Drag Manager to let the user drag items in your application. The Drag
Manager will allow items to be dragged between windows of your application and also
between other applications that the user is currently using. The Drag Manager is also
used to drag items both to and from the Macintosh Finder.

Before items can be dragged into or out of one of your application’s windows, you must
register a set of drag handlers for the Drag Manager to use when you application is
involved in dragging. A drag handler is a callback routine that the Drag Manager will
call when the Drag Manager needs to send your application a message about a drag
occurring within your application.

A drag and drop action by the user is broken down into three discrete steps. The steps are
first to pick up the item or items being dragged, then to track the selection being dragged
through application windows as the user searches for a place to drop the selection, and
finally to drop the item or items at the user’s chosen destination.

This section explains in detail how you use the Drag Manager to:

■ install and remove drag handlers to and from the Drag Manager’s handler
registry for your application’s windows

■ recognize the start of a drag operation

■ create new drag reference to be used in a drag operation

■ prepare the Drag Manager with drag items and drag item flavors

■ provide a drag send procedure to the Drag Manager

■ start a drag

■ track a drag through your application’s windows

■ receive a drop and accept the contents of a drag

■ send data to the receiver of a drag that originated from one of your
application’s windows

Installing and Removing Drag Handlers
You register a drag handler with the Drag Manager using the InstallHandler
functions. There is a separate InstallHandler function for each kind of handler. These
functions are InstallTrackingHandler and InstallReceiveHandler.

Each of the InstallHandler functions takes a pointer to the window that you want to
associate the handler with. If you supply NIL as the window pointer, the Drag Manager
will register the handler in the special area that is used when a drag occurs in any
window in your application. Handlers installed in this special area are called default

2-14

C H A P T E R 2

Drag Manager Programmer’s Guide

handlers.

A reference constant may be passed to each of the InstallHandler functions. This value
is stored by the Drag Manager and is forwarded to your handler routine when it is called.
You can use this reference constant to provide additional information to your handler
routine, such as a pointer to a data structure used by your handler.

Listing 2-1 shows how to use the InstallHandler functions to install a default receive
handler and a default tracking handler for your application.

Listing 2-1 Installing Default Drag Handlers

OSErr MyInitDragManager()

{ OSErr result;

 result = InstallTrackingHandler(MyDefaultTrackingHandler, 0L,
&myGlobals);

 if (result != noErr)
 return(result);

 result = InstallReceiveHandler(MyDefaultReceiveHandler, 0L, &myGlobals);

 return(result);
}

The function MyInitDragManager defined in Listing 2-1 calls
InstallTrackingHandler and InstallReceiveHandler to install default tracking
and receive handlers for your application. In the window parameter, 0L (NIL) is passed
to specify that these handlers should be installed as default handlers. A pointer to the
application’s global variables is passed in the reference constant parameter.

Listing 2-2 shows how to use the InstallHandler functions to install handlers for a
specific window.

Listing 2-2 Installing Drag Handlers for Individual Windows

OSErr MyDoNewWindow(WindowPtr *newWindow)

{ OSErr result;
 WindowPtr theWindow;

 if (!(theWindow = GetNewWindow(kMyWindowID, 0L, -1L))) {
 return(resNotFound);
 }

2-15

C H A P T E R 2

Drag Manager Programmer’s Guide

 if (result = InstallTrackingHandler(MyTrackingHandler,
 theWindow, &myGlobals)) {
 DisposeWindow(theWindow);
 return(result);
 }

 if (result = InstallReceiveHandler(MyReceiveHandler,
 theWindow, &myGlobals)) {
 DisposeWindow(theWindow);
 RemoveTrackingHandler(MyTrackingHandler, theWindow);
 return(result);
 }

 *newWindow = theWindow;
 return(noErr);
}

The function MyDoNewWindow defined in Listing 2-2 calls both of the InstallHandler
functions to install a pair of drag handlers for the window that it creates. In
MyDoNewWindow, the window pointer is passed to the InstallHandler functions.

In the scenario created in the last two example functions, the Drag Manager will use the
MyDefaultTrackingHandler and MyDefaultReceiveHandler functions for all
windows in your application. The Drag Manager will also use the MyTrackingHandler
and MyReceiveHandler functions for windows that were specifically created by
MyDoNewWindow.

To remove a drag handler from the Drag Manager’s handler registry, call the
corresponding RemoveHandler functions. Listing 2-3 shows how to remove drag
handlers.

Listing 2-3 Removing Drag Handlers from Individual Windows

OSErr MyDoCloseWindow(WindowPtr theWindow)

{
 RemoveTrackingHandler(MyTrackingHandler, theWindow);
 RemoveReceiveHandler(MyReceiveHandler, theWindow);

 DisposeWindow(theWindow);

 return(noErr);
}

The function MyDoCloseWindow defined in Listing 2-3 demonstrates the use of the
RemoveHandler functions. The same handler address and window pointer used to install

2-16

C H A P T E R 2

Drag Manager Programmer’s Guide

a handler is used to remove a handler. If 0L (NIL) is used as the window pointer, the
Drag Manager will attempt to remove the default handler with that address.

Recognizing the Start of a Drag
When the user clicks on an item or a selection of items in your application and begins to
move the mouse without first releasing the mouse button, the user is making a gesture to
begin dragging the selected items.

The Drag Manager provides a function WaitMouseMoved that you can use to determine if
the mouse has moved far enough after a mouseDown event to start a drag. Listing 2-4
show how to determine if a mouseDown event should result in a drag.

Listing 2-4 Handling a Mouse Down Event with Dragging

OSErr MyDoMouseDown(EventRecord *theEvent)

{ OSErr result = noErr;
 short thePart;
 WindowPtr theWindow;
 Boolean onItem;

 thePart = FindWindow(theEvent->where, &theWindow);

 switch(thePart) {
 case inContent:
 if (theWindow == FrontWindow()) {
 MyDoContentClick(theEvent, theWindow, &onItem);
 if (onItem && WaitMouseMoved(theEvent->where)) {
 result = MyDoStartDrag(theEvent, theWindow);
 }
 } else {
 SelectWindow(theWindow);
 }

 case ...

 }

 return(result);
}

The function MyDoMouseDown defined in Listing 2-4 shows a simplified mouse down event
service routine. Only the code for handling an inContent part code from FindWindow is
shown. The MyDoContentClick function either selects, extends the selection or
deselects an item in the application’s document window. The onItem parameter to
MyDoContentClick returns true if the mouse down event occurred on a draggable item.

2-17

C H A P T E R 2

Drag Manager Programmer’s Guide

If the mouseDown event occurred on a draggable object, the WaitMouseMoved function is
then called, which is a Drag Manager function that waits for the mouse button to be
released or the mouse to move from its mouse down location. WaitMouseMoved returns
true if the mouse moved and it returns false if the mouse button is released before the
mouse moved.

The MyDoStartDrag function, which is defined later in Listing 2-5, is called if the user
gestures to start a drag.

Performing a Drag
To perform a drag, you need to first create a new drag reference by calling the NewDrag
function. The NewDrag function returns a reference number that you use to refer to a
specific drag process in subsequent function calls to the Drag Manager.

After creating a new drag reference, the drag item flavors that describe the contents of
the drag are added to the drag by calling the Drag Manager’s AddDragItemFlavor
function.

Specific callback procedures can be added to the drag that the Drag Manager will call in
response to several Drag Manager events. These callback procedures allow your
application to defer the sending of data to the receiver of the drag, or to change the input
or drawing behaviors of the Drag Manager.

When all of the data describing the items contained in the drag has been given to the
Drag Manager, call TrackDrag to actually perform the drag. After a drag is performed,
the DisposeDrag function is used to release the memory associated with a drag process.

Listing 2-5 demonstrates each of these steps by showing the implementation of the
MyDoStartDrag function that is called by the MyDoMouseDown function defined in the
previous section.

Listing 2-5 Performing a Drag

OSErr MyDoStartDrag(EventRecord *theEvent, WindowPtr theWindow)

{ OSErr result;
 DragReference theDrag;
 RgnHandle dragRegion;

 if (result = NewDrag(&theDrag)) {
 return(result);
 }

 if (result = MyDoAddFlavors(theWindow, theDrag)) {

2-18

C H A P T E R 2

Drag Manager Programmer’s Guide

 DisposeDrag(theDrag);
 return(result);
 }

 dragRegion = NewRgn();

 if (result = MyGetDragRegion(theWindow, dragRegion, theDrag)) {
 DisposeDrag(theDrag);
 return(result);
 }

 if (result = SetDragSendProc(theDrag, MySendDataProc, 0L)) {
 DisposeDrag(theDrag);
 return(result);
 }

 result = TrackDrag(theDrag, theEvent, dragRegion);

 DisposeRgn(dragRegion);
 DisposeDrag(theDrag);

 return(result);
}

The MyDoStartDrag function that is defined in Listing 2-5 first creates a new drag by
calling the NewDrag function. It then calls the MyDoAddFlavors function, which is
defined in Listing 2-6, to add the application’s drag item flavors to the drag. The drag
region for the drag is created by calling the application’s MyGetDragRegion function,
which is defined in Listing 2-7. The SetDragSendProc function is then called to allow
the application to prepare and send data to a receiver at the end of the drag operation.
The TrackDrag function is called to perform the drag. Finally, the DisposeDrag
function is called to release all of the memory used to perform the drag.

Adding Drag Item Flavors
In the next program listing, the MyDoAddFlavors function is defined, which
demonstrates how a set of drag item flavors are added to a drag. The drag item flavors
describe the contents of a drag to the Drag Manager and to any potential receiver of the
drag.

To add drag item flavors to a drag, use the AddDragItemFlavor function. The
AddDragItemFlavor function requires a drag reference number to add the flavor to. You
also provide an item reference number when adding flavors. You may specify any item
numbers when adding items. Use the same item number for adding flavors to the same
item. Using different item numbers results in new items being created.

Listing 2-6 shows how to add drag item flavors to a drag.

2-19

C H A P T E R 2

Drag Manager Programmer’s Guide

Listing 2-6 Adding Drag Item Flavors

OSErr MyDoAddFlavors(WindowPtr theWindow, DragReference theDrag)

{ MyDocumentItem *theItem;

 theItem = MyGetFirstSelectedItem(theWindow);

 while (theItem) {

 AddDragItemFlavor(theDrag, (ItemReference) theItem, 'DATA',
 theItem->dataPtr, theItem->dataSize,
 flavorSenderOnly);

 AddDragItemFlavor(theDrag, (ItemReference) theItem, 'TEXT',
 0L, 0L, 0);

 if (theItem->hasStyles) {
 AddDragItemFlavor(theDrag, (ItemReference) theItem, 'styl',
 0L, 0L, 0);
 }

 theItem = theItem->nextSelectedItem;
 }
}

The MyDoAddFlavors function defined in Listing 2-6 uses the Drag Manager’s
AddDragItemFlavor function to add either two or three flavors to the drag for each
item that is selected in the window.

This function goes through a loop of all of the selected items in the given window. The
AddDragItemFlavor function is used to add the first flavor to the drag. This first
flavor is of the application’s own internal data type ‘DATA’. A pointer to the data and
the data’s size is given to the AddDragItemFlavor function. The data given to the
AddDragItemFlavor function is copied (or cached) into the given drag by the Drag
Manager. The flavorSenderOnly flag is set for this flavor to make the ‘DATA’ flavor
visible only to the sending application.

The item reference number used for the first ‘DATA’ flavor and the following flavors is
derived from theItem pointer used by the application. Since each MyDocumentItem
element will have a unique address, the pointer to these elements may be used as unique
item reference when adding new items to a drag.

The second call to AddDragItemFlavor uses the same document item pointer as the drag
item reference number. Since this is the same item number used in the last call, the second
flavor is added to the same drag item. This flavor is of type ‘TEXT’.

2-20

C H A P T E R 2

Drag Manager Programmer’s Guide

Suppose that you do not want to provide the plain text data to the Drag Manager unless
this flavor is specifically requested by the receiver of a drag. A NIL pointer and zero size
is passed to AddDragItemFlavor. By passing NIL, the Drag Manager will mark the
flavor as not being cached in the drag and will call the drag’s DragSendDataProc if the
data is requested.

In our example, an item in the selection may have text styles, and if it does, it also adds a
‘styl’ flavor. Again, the same item reference number is used to add the flavor to the
same drag item. The flavor data is not provided; it will only be created by the
DragSendDataProc if needed.

The MyDoAddFlavors function loops to the next selected item in its list. When it adds
the flavors for the next item, it will be using a different item number (since the address of
the next item is different), which will result in a new item being created.

To illustrate the effect of calling the MyDoAddFlavors function defined above, Figure 2-
6 shows an example list of selected items and the resulting drag items and drag item
flavors.

2-21

C H A P T E R 2

Drag Manager Programmer’s Guide

Figure 2-6 Drag Items and Drag Item Flavors from Application Example

10400:

Selected Item List

Drag Item List

Drag Item
10400

‘DATA'

‘TEXT’
No Data

Flavor Data

Drag Item
10580

‘DATA’

‘TEXT’
No Data

Flavor Data

Drag Item
10700

‘DATA’

‘TEXT’
No Data

Flavor Data

Item 1

nextItem

10580: 10700:

‘styl’
No Data

hasStyles = 0

Item 2

nextItem

hasStyles = 0

Item 3

nextItem

hasStyles = 1

Creating the Drag Region
In the next program listing, the MyGetDragRegion function is defined, which
demonstrates how to create the drag region for a drag. The drag region is the region
drawn by the Drag Manager in a dithered 50% gray pattern that follows the mouse on the
screen during the drag.

Listing 2-7 shows how to create a drag region for the drag.

2-22

C H A P T E R 2

Drag Manager Programmer’s Guide

Listing 2-7 Creating a drag region

OSErr MyGetDragRegion(WindowPtr theWindow, RgnHandle dragRegion,
 DragReference theDragRef)

{ MyDocumentItem *theItem;
 RgnHandle tempRgn;
 Point globalPoint;

 theItem = MyGetFirstSelectedItem(theWindow);
 tempRgn = NewRgn();

 globalPoint.v = globalPoint.h = 0;
 LocalToGlobal(&globalPoint);

 while (theItem) {

 CopyRgn(theItem->theRegion, tempRgn);
 InsetRgn(tempRgn, 1, 1);
 DiffRgn(theItem->theRegion, tempRgn, tempRgn);

 OffsetRgn(tempRgn, globalPoint.h, globalPoint.v);
 UnionRgn(tempRgn, dragRegion, dragRegion);

 SetDragItemBounds(theDrag, (ItemReference) theItem,
 &(**tempRgn).rgnBBox);

 theItem = theItem->nextSelectedItem;
 }

 DisposeRgn(tempRgn);
 return(noErr);
}

The MyGetDragRegion function defined in Listing 2-7 loops through all of the selected
items in the given window. For each selected item in the window, the region of the item
is added to the dragRegion and the item’s bounding rectangle is set by using the Drag
Manager’s SetDragItemBounds function.

The function uses CopyRgn to copy the item’s region into tempRgn. The tempRgn is inset
by one pixel and then subtracted from the original region with DiffRgn. Performing
these three steps creates a region that has the same outline as the original region but is
only one pixel thick. Figure 2-7 demonstrates the effect of this procedure on the region.

2-23

C H A P T E R 2

Drag Manager Programmer’s Guide

Figure 2-7 Creating a drag region

Object’s region Object’s region
inset by 1 pixel

Drag region is
difference of

previous two regions

Each of the individual drag regions that are created for each item being dragged is offset
from local coordinates to global screen coordinates by the OffsetRgn call. Each item’s
drag region is added to the final drag region with the UnionRgn call. It is this composite
region of each item’s individual drag region that is returned by this function and used in
the call to TrackDrag.

The MyGetDragRegion function also calls the Drag Manager’s SetDragItemBounds
function for each item in the drag. SetDragItemBounds is used to provide the bounding
rectangle of each of the individual items in the drag. This rectangle is also specified in
global screen coordinates. During a drag, Drag Manager clients may ask for the bounding
rectangle of any drag item by using the GetDragItemBounds function. The
GetDragItemBounds function returns the item’s bounds relative to the current mouse
location.

Tracking a Drag
During a drag, as the user moves the mouse on the screen, searching for a destination for
the drag items, the Drag Manager sends a sequence of tracking messages to the tracking
handlers that are registered for the window that the mouse is over.

Your tracking handler is responsible for providing all of the feedback to the user that the
group of items being dragged can be accepted into the current destination. Your tracking
handler can inspect the drag item flavors contained in a drag and highlight your
application’s windows or part of your application’s windows in response to data that your
application can accept.

Listing 2-8 shows an example of a very simple tracking handler. This tracking handler
highlights the destination window if each of the drag items contains either the

2-24

C H A P T E R 2

Drag Manager Programmer’s Guide

application’s own ‘DATA’ flavor or the ‘TEXT’ flavor. It also calls the application’s
MyTrackItemUnderMouse function that could be defined to highlight other parts of the
window as the mouse moves through the window.

Listing 2-8 Example Tracking Handler

OSErr MyTrackingHandler(DragTrackingMessage theMessage, WindowPtr theWindow,
 void *handlerRefCon, DragReference theDrag)

{ GlobalsPtr myGlobals = (GlobalsPtr) handlerRefCon;
 Point mouse, localMouse;
 DragAttributes attributes;
 RgnHandle hiliteRgn;

 GetDragAttributes(theDrag, &attributes);

 switch(theMessage) {

 case dragTrackingEnterHandler:
 break;

 case dragTrackingEnterWindow:
 myGlobals->canAcceptDrag = IsMyTypeAvailable(theDrag);
 myGlobals->inContent = false;
 break;

 case dragTrackingInWindow:
 if (!myGlobals->canAcceptDrag)
 break;

 GetDragMouse(theDrag, &mouse, 0L);
 localMouse = mouse;
 GlobalToLocal(&localMouse);

 if (attributes & dragHasLeftSenderWindow) {
 if (PtInRect(localMouse, &(**(myGlobals->theTE)).viewRect)) {

 if (!myGlobals->inContent) {
 RectRgn(hiliteRgn = NewRgn(),
 &(**(myGlobals->theTE)).viewRect);
 ShowDragHilite(theDrag, hiliteRgn, true);
 DisposeRgn(hiliteRgn);
 myGlobals->inContent = true;
 }

 } else {

 if (myGlobals->inContent) {
 HideDragHilite(theDrag);
 myGlobals->inContent = false;

2-25

C H A P T E R 2

Drag Manager Programmer’s Guide

 }

 }
 }

 MyTrackItemUnderMouse(localMouse, theWindow);
 break;

 case dragTrackingLeaveWindow:
 if (myGlobals->canAcceptDrag && myGlobals->inContent) {
 HideDragHilite(theDrag);
 }
 myGlobals->canAcceptDrag = false;
 break;

 case dragTrackingLeaveHandler:
 break;
 }

 return(noErr);
}

The MyTrackingHandler function defined in Listing 2-8 switches on the given message
from the Drag Manager. This example does not require any setup or memory allocation
when the handler is entered or left, so the dragTrackingEnterHandler and the
dragTrackingLeaveHandler messages are ignored.

When MyTrackingHandler receives the dragTrackingEnterWindow message, it calls
the application’s IsMyTypeAvailable function, which is defined in Listing 2-9. It
returns either true or false, depending on whether a type is available in each of the
drag items that the application window can accept. The result of this function is stored in
the application’s global variable canAcceptDrag. Another global variable
inContent is used to keep track of whether the mouse is inside the area of the window
that can be highlighted during a drag.

When the dragTrackingInWindow message is received, if the window can accept the
drag, GetDragMouse is called to get the mouse location. The code then checks to make
sure that the drag has left the source window. The Drag and Drop Human Interface
Guidelines specify that drag highlighting should only occur after the mouse has left the
source window. The local mouse coordinate is then checked against the region that will
highlight and either ShowDragHilite or HideDragHilite is then called to show or
hide the highlighting. Finally, the application’s MyTrackItemUnderMouse is called.
Presumably, MyTrackItemUnderMouse would use the given localMouse location to
determine if the mouse is over an object that must also be highlighted.

When the dragTrackingLeaveWindow message is received, if the window can accept
the drag and the highlighting is still visible, HideDragHilite is called to remove the
window highlighting.

2-26

C H A P T E R 2

Drag Manager Programmer’s Guide

Determining What is Being Dragged
To determine what drag items and drag item flavors are available in a drag, use the
CountDragItems, GetDragItemReferenceNumber, CountDragItemFlavors,
GetFlavorType and GetFlavorFlags functions.

Given a drag reference number, CountDragItems returns the number of drag items
contained in the drag. The GetDragItemReferenceNumber function returns an item
reference number given a drag item’s index. Given an item reference number,
CountDragItemFlavors returns the number of drag item flavors in a drag item. The
GetFlavorType function returns the type of a flavor given the flavor’s index. The
GetFlavorFlags function returns the flavor flags of a flavor.

Listing 2-9 shows the IsMyTypeAvailable function which demonstrates the use of these
functions to determine if at least one of the application’s flavor types is available in
each item being dragged.

Listing 2-9 Determining What Flavors Are Available

Boolean IsMyTypeAvailable(DragReference theDrag)

{ short items, index;
 FlavorFlags theFlags;
 ItemReference theItem;
 OSErr result;

 CountDragItems(theDrag, &items);

 for (index = 1; index <= items; index++) {
 GetDragItemReferenceNumber(theDrag, index, &theItem);

 result = GetFlavorFlags(theDrag, theItem, 'DATA', &theFlags);
 if ((result == noErr) && (theFlags & flavorSenderOnly)) {
 continue;
 }

 result = GetFlavorFlags(theDrag, theItem, 'TEXT', &theFlags);
 if (result == noErr) {
 continue;
 }

 return(false);
 }

 return(true);
}

2-27

C H A P T E R 2

Drag Manager Programmer’s Guide

The IsMyTypeAvailable function defined in Listing 2-9 counts the number of items in
the drag and begins a loop through each of the items. It continues with the next drag item
when it encounters either a flavor of type ‘DATA’ or a flavor of type ‘TEXT’. The
IsMyTypeAvailable function returns false if it encounters a drag item that does not
contain at least one of these two flavors. It returns true after it verifies that the last
drag item contains either a ‘DATA’ or ‘TEXT’ flavor.

Note that when IsMyTypeAvailable checks for the ‘DATA’ flavor, it also checks to
make sure that the flavorSenderOnly flag is set, which guarantees that the private
‘DATA’ flavor has come directly from this application, and not some other application.

The result that this function returns is used my the MyTrackingHandler function
defined in Listing 2-8 to determine if the window highlighting should be drawn.

Receiving a Drop
When the user has chosen a final destination for the items being dragged, the Drag
Manager calls the destination window’s receive drop handlers to allow your application
to request the drag item flavors that it wishes to accept.

Your receive drop handler gets a pointer to the destination window, the handler’s
reference constant, and the drag reference. Your receive drop handler can user the Drag
Manager’s CountDragItems, GetDragItemReferenceNumber,
CountDragItemFlavors, GetFlavorType, GetFlavorFlags and GetFlavorData
functions to determine what items, flavors, and data are contained in the drag.

Listing 2-10 shows an example receive handler that iterates through each of the items in
the received drag. If an item contains the application’s internal ‘DATA’ flavor, the data
is inserted directly into the document. If there is no ‘DATA’ flavor in the item, the
handler checks for a ‘TEXT’ flavor. If a ‘TEXT’ flavor exists, it attempts to get data for
both ‘styl’ and ‘TEXT’ types. The text data is inserted into the document regardless of
the existence of the optional styl type.

Listing 2-10 Example Receive Handler

OSErr MyReceiveHandler(WindowPtr theWindow, void *handlerRefCon,
 DragReference theDrag)

{ GlobalsPtr myGlobals = (GlobalsPtr) handlerRefCon;
 Point mouse;
 short items, index;
 ItemReference theItem;
 FlavorFlags theFlags;
 Size dataSize, stylSize;
 char *theData, *theStyl;

2-28

C H A P T E R 2

Drag Manager Programmer’s Guide

 OSErr result;

 GetDragMouse(theDrag, &mouse, 0L);

 CountDragItems(theDrag, &items);

 for (index = 1; index <= items; index++) {
 GetDragItemReferenceNumber(theDrag, index, &theItem);

 result = GetFlavorFlags(theDrag, theItem, 'DATA', &theFlags);
 if ((result == noErr) && (theFlags & flavorSenderOnly)) {

 GetFlavorDataSize(theDrag, theItem, 'DATA', &dataSize);
 theData = NewPtr(dataSize);
 GetFlavorData(theDrag, theItem, 'DATA', theData, dataSize, 0L);

 MyInsertDataAtPoint(theData, dataSize, mouse, theWindow);

 DisposePtr(theData);

 continue;
 }

 result = GetFlavorFlags(theDrag, theItem, 'TEXT', &theFlags);
 if (result == noErr) {

 theStyl = 0L;
 if (GetFlavorDataSize(theDrag, theItem,
 'styl', &stylSize) == noErr) {

 theStyl = NewPtr(stylSize);
 GetFlavorData(theDrag, theItem, 'styl',
 theStyl, stylSize, 0L);
 }

 GetFlavorDataSize(theDrag, theItem, 'TEXT', &dataSize);
 theData = NewPtr(dataSize);
 GetFlavorData(theDrag, theItem, 'TEXT', theData, dataSize, 0L);

 MyInsertStylTextAtPoint(theData, dataSize,
 theStyl, stylSize, mouse, theWindow);

 DisposePtr(theData);
 if (theStyl) {
 DisposePtr(theStyl);
 }
 }

 return(noErr);
}

2-29

C H A P T E R 2

Drag Manager Programmer’s Guide

The MyReceiveHandler function defined in Listing 2-10 counts the number of items in the
drag and begins a loop through each of the items. It checks for the existence of a ‘DATA’
flavor by using the GetFlavorFlags function. If this flavor exists in the item, the size
of the flavor’s data is obtained by calling GetFlavorDataSize, memory is allocated for
the data and GetFlavorData is used to get the flavor data from the Drag Manager. The
application’s MyInsertDataAtPoint function is called to insert the data into the
document at the given mouse point.

If the ‘DATA’ type is not available in the given item, GetFlavorFlags is called to check
for the existence of the ‘TEXT’ flavor type. If there is a ‘TEXT’ flavor in the item, the
handler then also checks for a ‘styl’ flavor. If this flavor exists, the styl data is
copied into the theStyl buffer. The ‘TEXT’ data is copied into the theData buffer. The
application’s MyInsertStylTextAtPoint function is used to insert the TEXT data with
the optional styl information into the document at the given mouse point.

The MyReceiveHandler continues with each item in the drag by inserting acceptable
data into the destination document window.

Providing Flavor Data on Demand
If the receiver of a drop requests a flavor whose data has not been cached by the Drag
Manager (as is the case for the ‘TEXT’ and ‘styl’ flavors in our example), the Drag
Manager calls the drag’s DragSendDataProc to obtain the data when needed.

The Drag Manager calls your DragSendDataProc with the requested flavor type, your
handler’s reference constant, and the item and drag reference numbers. In your
DragSendDataProc, call the SetDragItemFlavorData function to provide the
requested flavor data to the Drag Manager. Listing 2-11 shows an example send data
procedure.

Listing 2-11 Example Send Data Procedure

OSErr MySendDataProc(FlavorType theType, void *dragSendRefCon,
 ItemReference theItem, DragReference theDrag)

{ MyDocumentItem *myItem;
 Handle myData;
 OSErr result;

 myItem = (MyDocumentItem *) theItem;

 switch(theType) {
 case 'TEXT':
 myData = MyConvertItemToText(myItem);
 HLock(myData);

2-30

C H A P T E R 2

Drag Manager Programmer’s Guide

 result = SetDragItemFlavorData(theDrag, theItem, 'TEXT', *myData,
 GetHandleSize(myData), 0L);
 HUnlock(myData);
 DisposeHandle(myData);
 break;

 case 'styl':
 myData = MyConvertItemToStyl(myItem);
 HLock(myData);
 result = SetDragItemFlavorData(theDrag, theItem, 'styl', *myData,
 GetHandleSize(myData), 0L);
 HUnlock(myData);
 DisposeHandle(myData);
 break;

 default:
 result = badDragFlavorErr;
 break;
 }

 return(result);
}

The MySendDataProc function defined in Listing 2-11 provides both the ‘TEXT’ and
‘styl’ flavors to the Drag Manager. The routine uses the item reference number as a
pointer to the application’s MyDocumentItem data structure (this pointer was used when
adding the drag item flavors with AddDragItemFlavor). The routine calls its own
MyConvertItemToText and MyConvertItemToStyl functions to get the needed data.
The Drag Manager’s SetDragItemFlavorData function is then called to pass the
requested data to the Drag Manager.

Drag Manager Reference

This section describes the Drag Manager’s constants, data structures and routines.

The “Constants” section describes the constants received from the Drag Manager and used
when calling Drag Manager routines. The “Data Structures” section shows the data
structures used to refer to drags, drag items, drag item flavors, and special drag item
flavor data. The “Drag Manager Routines” section describes Drag Manager routines for
installing and removing drag handlers, creating and disposing of drag references, adding
drag item flavors to a drag, providing drag callback routines, tracking a drag, getting
drag item information, getting drag status information, window highlighting and Drag
Manager related utilities. The “Application-Defined Routines” section describes both
the drag handler and drag callback functions.

2-31

C H A P T E R 2

Drag Manager Programmer’s Guide

Constants
The constants described in this section are received from the Drag Manager and used when
calling Drag Manager routines.

Gestalt Selector and Response Bits

You can determine if the Drag Manager is available by calling the Gestalt function
with the selector gestaltDragMgrAttr.

#define gestaltDragMgrAttr 'drag' // Drag Manager attributes

The Gestalt function returns information by setting or clearing bits in the response
parameter. The following constant defines the bit currently used:

#define gestaltDragMgrPresent 0 // Drag Manager is present

Constant description
gestaltDragMgrPresent

Set if the Drag Manager is installed. When the Drag Manager is
installed, all of the features contained within this document are
available for use by your application.

You can determine if the new TextEdit function TEGetHiliteRgn is available by calling
the Gestalt function with the selector gestaltTEAttr.

#define gestaltTEAttr 'teat' // TextEdit attributes

The Gestalt function returns information by setting or clearing bits in the response
parameter. The following constant defines the bit currently used:

#define gestaltTEHasGetHiliteRgn 0 // TEGetHiliteRgn present

Constant description
gestaltTEHasGetHiliteRgn

Set if the TextEdit function TEGetHiliteRgn is available. This new
TextEdit function was introduced with the Drag Manager.

Flavor Flags

The following constants are used to provide additional attribute information about drag
item flavors. These constants are used when calling the AddFlavor functions and can be
obtained using the GetFlavorFlags function.

2-32

C H A P T E R 2

Drag Manager Programmer’s Guide

#define flavorSenderOnly 0x00000001
#define flavorSenderTranslated 0x00000002
#define flavorNotSaved 0x00000004
#define flavorSystemTranslated 0x00000100

Constant descriptions
flavorSenderOnly

Set by the sender if the flavor should only be available to the sender of a
drag. If this flag is set when adding the flavor to a drag, no Drag
Manager clients other than the sender can receive this flavor.

flavorSenderTranslated
Set by the sender if the flavor data is translated by the sender. This flag
is useful to a receiver if the receiver needs to determine if the sender is
performing its own translation to generate this data type. Typically,
receivers that store dragged data without interpreting each data type do
not store translated types. Flavor types marked with this flag are not
stored by the Finder in clipping files.

flavorNotSaved
Set by the sender if the flavor data should not be stored by the receiver.
This flag is useful for marking flavor data that will become stale after
the drag has completed. Receivers that store dragged data should not
store flavors that are marked with this flag. Flavor types marked with
this flag are not stored by the Finder in clipping files.

flavorSystemTranslated
Set if the flavor data is provided by the Translation Manager. If this
flavor is requested, the Drag Manager will obtain any required data
types from the sender and then it will use the Translation Manager to
provide the data that the receiver requested. Typically, receivers that
store dragged data without interpreting each data type do not store
translated types. Flavor types marked with this flag are not stored by
the Finder in clipping files.

Drag Attributes

The following constants are used to provide additional attribute information about a drag
that is in progress. The attribute flags provide information about the window and
application that the drag is currently occurring in. During a drag, the current drag
attributes can be obtained by calling the GetDragAttributes function.

#define dragHasLeftSenderWindow 0x00000001
#define dragInsideSenderApplication 0x00000002
#define dragInsideSenderWindow 0x00000004

2-33

C H A P T E R 2

Drag Manager Programmer’s Guide

Constant descriptions
dragHasLeftSenderWindow

Set if the drag has left the source window since the beginning of the drag.
This flag is useful for providing window highlighting after the user has
moved the mouse outside of the source window.

dragInsideSenderApplication
Set if the drag is currently in any window that belongs to the application
that started the drag.

dragInsideSenderWindow
Set if the drag is currently in the same window that the drag started
from.

Special Flavor Kinds

The following constants are used to identify special flavor kinds that are defined by the
Drag Manager.

#define flavorTypeHFS 'hfs '
#define flavorTypePromiseHFS 'phfs'
#define flavorTypeDirectory 'diry'

Constant descriptions
flavorTypeHFS

The flavor type for an HFS file system object. The Finder uses HFS
flavors when dragging existing file system objects. The HFS flavor data
is defined by the HFSFlavor structure defined below.

flavorTypePromiseHFS
The flavor type for promising an HFS file system object to the receiver of
the drag. This flavor type can be used when a file could be created if the
destination of the drag can accept file system objects. The
PromiseHFSFlavor structure defined below is used to access the data in
this flavor type.

flavorTypeDirectory
The flavor type for a AOCE directory specification. Refer to the AOCE
documentation for definition of the DSSpec data structure.

Zoom Acceleration

The following constants are used when specifying an acceleration constant to either
the ZoomRects or ZoomRegion functions.

#define zoomNoAcceleration 0
#define zoomAccelerate 1
#define zoomDecelerate 2

2-34

C H A P T E R 2

Drag Manager Programmer’s Guide

Constant descriptions
zoomNoAcceleration

Use linear interpolation for each frame of animation between the source
and destination.

zoomAccelerate
Increment the step size for each frame of animation between the source
and destination. This option produces the visual appearance of the
animation speeding up as it approaches the destination.

zoomDecelerate
Decrement the step size for each frame of animation between the source
and destination. This option produces the visual appearance of the
animation slowing down as it approaches the destination.

Data Structures
This section describes the data structures that you use to identify drags, drag items, drag
item flavors and special drag item flavor data.

Drag Reference

The Drag Reference is a reference to a drag object. Before calling any other Drag Manager
routine, you must first create a new Drag Reference by calling the NewDrag function. The
Drag Reference that is returned by NewDrag is used in all subsequent calls to the Drag
Manager. Use the DisposeDrag function to dispose of a Drag Reference after you are
finished using it.

IMPORTANT
The meaning of the bits in a drag reference is internal to the Drag Manager. You should
not attempt to interpret the value of the drag reference. ▲

typedef unsigned long DragReference;

Drag Item Reference

The Drag Item Reference is a reference number used to refer to a single item in a drag.
Drag Item Reference numbers are created by the sender application when adding drag
item flavor information to a drag. Drag Item Reference numbers are created by and should
only be interpreted by the sender application.

typedef unsigned long ItemReference;

2-35

C H A P T E R 2

Drag Manager Programmer’s Guide

Flavor Type

The Flavor Type is a four character type that describes the format of drag item flavor
data. The Flavor Type has the same function as a scrap type; it designates the format of
the associated data. Any scrap type or resource type may be used.

Four character types consisting of only lower-case letters are reserved by Apple. You can
be guaranteed a unique type by using your registered application signature.

typedef ResType FlavorType;

HFS Flavor

The Drag Manager defines a special flavor type for dragging file system objects. The HFS
drag item flavor is used when dragging document and folder icons in the Finder. The HFS
drag item flavor data structure is defined by the HFSFlavor data type.

typedef struct HFSFlavor {
 OSType fileType; // file type
 OSType fileCreator; // file creator
 unsigned short fdFlags; // Finder flags
 FSSpec fileSpec; // file system specification
} HFSFlavor;

Field descriptions
fileType The file type of the object.

fileCreator The file creator of the object.

fdFlags The Finder flags of the object (Finder flags are defined in the “Finder
Interface” chapter of Inside Macintosh).

fileSpec The FSSpec record for the object.

Promise HFS Flavor

The Drag Manager defines a special data flavor for promising file system objects. The
Promise HFS flavor is used when you wish to create a new file when dragging to the
Finder. The flavor consists of an array of the following PromiseHFSFlavor structures,
with the first entry being the preferred file type you would like to create, and subsequent
array entries being file types in descending preference. This structure allows you to create
the file in your DragSendDataProc, and provide the FSSpec for the new file at that
time.

typedef struct PromiseHFSFlavor {
 OSType fileType; // file type
 OSType fileCreator; // file creator
 unsigned short fdFlags; // Finder flags
 FlavorType promisedFlavor; // FSSpec flavor

2-36

C H A P T E R 2

Drag Manager Programmer’s Guide

} HFSFlavor;

Field descriptions
fileType The potential file type of the object.

fileCreator The potential file creator of the object.

fdFlags The expected Finder flags of the object (Finder flags are defined in the
“Finder Interface” chapter of Inside Macintosh).

promisedFlavor
The FlavorType of a separate promised flavor to contain the FSSpec for
the new file. Call AddDragItemFlavor and promise this separate
flavor if you wish to create the file in your DragSendDataProc. After
providing an FSSpec in this flavor, the Finder will move the new file to
the drop location. If you wish to create the file before the drag and
provide the FSSpec data up front, create the new file in the Temporary
Items folder so it does not prematurely appear in an open Finder window.

Drag Manager Routines
This section describes the Drag Manager routines you can use to start a drag from your
application, gain control when the user drags an object into one of your application’s
windows, support the drag and drop user interface, and send and receive data as part of a
drop transaction.

Installing and Removing Drag Handler Routines

You can use the Drag Manager to install or remove drag handler routines for your entire
application or for one of your application’s windows. The Drag Manager provides a pair
of install/remove functions for each of the two different handler types.

InstallTrackingHandler

Use the InstallTrackingHandler function to install a tracking handler routine for the
Drag Manager to use while the user drags through your application’s windows.

pascal OSErr InstallTrackingHandler
 (DragTrackingHandler trackingHandler,
 WindowPtr theWindow,
 void *handlerRefCon);

trackingHandler
Pointer to a DragTrackingHandler routine.

2-37

C H A P T E R 2

Drag Manager Programmer’s Guide

theWindow A pointer to the window to install the drag tracking handler for. When
the cursor moves into this window during a drag, the Drag Manager sends
tracking messages to the tracking handler routine. If this parameter is
NIL, the tracking handler receives messages for all open windows in your
application.

handlerRefCon
A reference constant that will be forwarded to your drag tracking handler
routine when it is called by the Drag Manager. Use this constant to pass
any data you wish to forward to your drag tracking handler.

DESCRIPTION
The InstallTrackingHandler function installs a tracking handler for one of your
application’s windows. Installing a tracking handler allows your application to track
the user’s movements through your application’s windows during a drag. You may install
more than one drag tracking handler on a single window.

The Drag Manager sequentially calls all of the drag tracking handlers installed on a
window when the user moves the cursor over that window during a drag.

By specifying a value of NIL in theWindow, the tracking handler is installed in the
default handler space for your application. Drag tracking handlers installed in this way
are called when the user moves the mouse over any window that belongs to your
application.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
duplicateHandlerErr -1855 Handler already exists

InstallReceiveHandler

Use the InstallReceiveHandler function to install a drag receive handler routine for
the Drag Manager to use when the user releases the mouse button while dragging over one
of your application’s windows.

pascal OSErr InstallReceiveHandler
 (DragReceiveHandler receiveHandler,
 WindowPtr theWindow,
 void *handlerRefCon);

receiveHandler
Pointer to a DragReceiveHandler routine.

2-38

C H A P T E R 2

Drag Manager Programmer’s Guide

theWindow A pointer to the window to install the receive drop handler for. When a
drop occurs over this window, the Drag Manager calls this routine to
allow your application to accept the drag. If this parameter is NIL, the
receive handler is called regardless of which window the drop occurred
in your application.

handlerRefCon
A reference constant that will be forwarded to your receive drop handler
routine when it is called by the Drag Manager. Use this constant to pass
any data you wish to forward to your drag receive handler.

DESCRIPTION
The InstallReceiveHandler function installs a drag receive handler for one of your
application’s windows. Installing a drag receive handler allows your application to
accept a drag by getting drag item flavor data from the Drag Manager when the user
releases the mouse button while dragging over one of your application’s windows. You
may install more than one drag receive handler on a single window.

The Drag Manager sequentially calls all of the drag receive handlers installed on a
window when a drop occurs in that window.

By specifying a value of NIL in theWindow, the drag receive handler is installed in the
default handler space for your application. Drag receive handlers installed in this way
are called when a drop occurs in any window that belongs to your application.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
duplicateHandlerErr -1855 Handler already exists

RemoveTrackingHandler

Use the RemoveTrackingHandler function to remove a tracking handler routine from
one of your application’s windows.

pascal OSErr RemoveTrackingHandler
 (DragTrackingHandler trackingHandler,
 WindowPtr theWindow);

trackingHandler
Pointer to a DragTrackingHandler routine.

2-39

C H A P T E R 2

Drag Manager Programmer’s Guide

theWindow A pointer to the window to remove the drag tracking handler from. If
this parameter is NIL, the given handler will be removed from the
default handler space for your application.

DESCRIPTION
The RemoveTrackingHandler function removes a drag tracking handler from one of
your application’s windows.

By specifying a value of NIL in theWindow, the tracking handler is removed from the
default handler space for your application.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
duplicateHandlerErr -1856 Handler not found

RemoveReceiveHandler

Use the RemoveReceiveHandler function to remove a drag receive handler routine from
one of your application’s windows.

pascal OSErr RemoveReceiveHandler
 (DragReceiveHandler receiveHandler,
 WindowPtr theWindow);

receiveHandler
Pointer to a DragReceiveHandler routine.

theWindow A pointer to the window to remove the drag receive handler from. If this
parameter is NIL, the given handler will be removed from the default
handler space for your application.

DESCRIPTION
The RemoveReceiveHandler function removes a drag receive handler from one of your
application’s windows.

By specifying a value of NIL in theWindow, the drag receive handler is removed from
the default handler space for your application.

2-40

C H A P T E R 2

Drag Manager Programmer’s Guide

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
duplicateHandlerErr -1856 Handler not found

Creating and Disposing of Drag References

You create a drag reference whenever your application wishes to start a drag. A drag
reference is a token that is used in all subsequent calls to Drag Manager routines to refer to
a particular drag.

NewDrag

Use the NewDrag function to create a new drag reference token.

pascal OSErr NewDrag (DragReference *theDragRef);

theDragRef The drag reference, which NewDrag fills in before returning.

DESCRIPTION
The NewDrag function allocates a new drag object for your application to use with the
Drag Manager and returns a token to it in theDrag parameter. Use this drag reference in
subsequent calls to the Drag Manager to identify the drag. This drag reference is required
when adding drag item flavors and calling TrackDrag. Your installed drag handlers
receive this drag reference so you can call other Drag Manager routines within your drag
handlers.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory

DisposeDrag

Use the DisposeDrag function to dispose of a drag reference token and its associated
data when a drag has been completed or if the drag reference is no longer needed.

pascal OSErr DisposeDrag (DragReference theDragRef);

theDragRef The drag reference of the drag object to dispose of.

2-41

C H A P T E R 2

Drag Manager Programmer’s Guide

DESCRIPTION
The DisposeDrag function disposes of the drag object that is identified by the given
drag reference token. If the drag reference contains any drag item flavors, the memory
associated with the drag item flavors is disposed of as well.

You should call DisposeDrag after a drag has been performed using TrackDrag or if a
drag reference was created but is no longer needed.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference

Adding Drag Item Flavors

You can use the set of AddFlavor routines to create drag items and to provide the data
types for each item. There is a special AddFlavor routine to add an HFS FSSpec flavor
to a drag item.

AddDragItemFlavor

Use the AddDragItemFlavor function to create drag items and to add a data flavor to a
drag item.

pascal OSErr AddDragItemFlavor (DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 void *dataPtr,
 Size dataSize,
 FlavorFlags theFlags);

theDragRef A drag reference.

theItemRef The drag item reference to add the flavor to. You create new drag items
by providing unique item reference numbers. By using the same item
reference number as in a previous call to AddDragItemFlavor, the
flavor is added to an existing item. You may use any item reference
number when adding flavors to items.

theType The data type of the flavor to add. This may be any four-character scrap
type. Use you application’s signature for a unique type for your own
internal use.

dataPtr A pointer to the flavor data to add.

2-42

C H A P T E R 2

Drag Manager Programmer’s Guide

dataSize The size, in bytes, of the flavor data to add.

theFlags A set of attributes to set for this flavor.

DESCRIPTION
The AddDragItemFlavor function adds a drag item flavor to a drag item. A new drag
item is created if the given item reference number is different than any other item
reference numbers. When adding multiple flavors to the same item, supply the same item
reference number.

In many cases it is easiest to use index numbers as item reference numbers (1, 2, 3...). Item
reference numbers are only used as unique “key” numbers for each item. Item reference
numbers do not need to be given in order, nor must they be sequential. Depending on your
application, it might be easier to use your own internal memory addresses as item
reference numbers (as long as each item being dragged has a unique item reference number).

Sometimes it is preferable to defer the creation of a particular data type until a receiver
has specifically requested it (possibly if a lengthy translation is required). This can be
done by passing NIL in the data parameter when adding a drag item flavor. Flavors
that are added in this way will cause the Drag Manager to call the drag’s send data
procedure if the flavor is requested to get the data from your application. See the section
“Application Defined Routines” for information on writing a send data procedure for a
drag.

You must add all of the drag item flavors to a drag before calling TrackDrag. Once
TrackDrag is called, receiving applications may not operate properly if new drag items
or drag item flavors are added.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
badDragRefErr -1850 Unknown drag reference
duplicateFlavorErr -1853 Flavor type already exists

SetDragItemFlavorData

Use the SetDragItemFlavorData function to set the data or part of the data contained
within an existing flavor.

pascal OSErr SetDragItemFlavorData (DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 void *dataPtr,

2-43

C H A P T E R 2

Drag Manager Programmer’s Guide

 Size dataSize,
 unsigned long dataOffset);

theDragRef A drag reference.

theItemRef A drag item reference of the item that contains the flavor you wish to set
all or part of the data for.

theType The data type of the existing flavor to set all or part of the data for.

dataPtr A pointer to the flavor data.

dataSize The size, in bytes, of the flavor data.

dataOffset The offset, in bytes, into the flavor record to place the data specified by
the dataPtr and dataSize parameters.

DESCRIPTION
The SetDragItemFlavorData function sets all or part of a given flavor’s data. The
data pointed to by dataPtr with the size given in dataSize is placed into the flavor
record at the offset specified by dataOffset.

This function is commonly used in a scenario where a flavor’s data is not added to the
flavor when the flavor is created using AddDragItemFlavor. When the sender's
DragSendDataProc is called, SetDragItemFlavorData can be used to provide the
requested data to the Drag Manager. This method is useful when the data needs to be
translated by the sender and would be to expensive to compute the data until required.

By using the dataOffset parameter, small pieces of the data may be placed into the
flavor with each call to SetDragItemFlavorData.

This function, unlike the AddFlavor functions, may be called both before and during a
drag.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference
badDragFlavorErr -1852 Unknown flavor type

Providing Drag Callback Procedures

You provide drag callback procedures to the Drag Manager when you want to override the
default behavior of the Drag Manager. You can override the mechanisms in the Drag
Manager that provide data to a drop receiver, that sample the mouse and keyboard, and
that draw the standard “dotted outline” drag feedback.

2-44

C H A P T E R 2

Drag Manager Programmer’s Guide

SetDragSendProc

Use the SetDragSendProc function to set the send data procedure for the Drag Manager
to use with a particular drag.

pascal OSErr SetDragSendProc (DragReference theDragRef,
 DragSendDataProc sendProc,
 void *dragSendRefCon);

theDragRef The drag reference that SetDragSendProc will set the drag send
procedure for.

sendProc The send data routine that will be called by the Drag Manager when the
receiver of a drop requests the flavor data of a flavor that has not been
cached by the Drag Manager.

dragSendRefCon
A reference constant that will be forwarded to your drag send procedure
when it is called by the Drag Manager. Use this constant to pass any
data you wish to forward to your drag send procedure.

DESCRIPTION
The SetDragSendProc function sets the drag send procedure for the given drag reference.
A drag’s drag send procedure is called by the Drag Manager when the receiver of a drop
requests the data of a flavor and the requested flavor data is not currently cached by the
Drag Manager.

The Drag Manager caches drag item flavor data when the flavor was added to a drag by
calling AddDragItemFlavor. If NIL is passed to AddDragItemFlavor as the data
pointer, the flavor data is not cached and the Drag Manager will attempt to cache the
data by calling the drag send procedure.

You do not need to provide a drag send procedure if your application never passes NIL to
AddDragItemFlavor when adding a drag item flavor to a drag.

Details for how to write a drag send procedure are covered in the “Application-Defined
Routines” section below.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference

2-45

C H A P T E R 2

Drag Manager Programmer’s Guide

SetDragInputProc

Use the SetDragInputProc function to set the drag input procedure for the Drag
Manager to use with a particular drag.

pascal OSErr SetDragInputProc (DragReference theDragRef,
 DragInputProc inputProc,
 void *dragInputRefCon);

theDragRef The drag reference that SetDragInputProc will set the drag input
procedure for.

inputProc The drag input routine that will be called by the Drag Manager
whenever the Drag Manager requires the location of the mouse, the state
of the mouse button, and the status of the modifier keys.

dragInputRefCon
A reference constant that will be forwarded to your drag input procedure
when it is called by the Drag Manager. Use this constant to pass any
data you wish to forward to your drag input procedure.

DESCRIPTION
The SetDragInputProc function sets the drag input procedure for the given drag
reference. A drag’s drag input procedure is called by the Drag Manager whenever the
Drag Manager requires the location of the mouse, the state of the mouse button, and the
status of the modifier keys on the keyboard. The Drag Manager typically calls this
routine once per cycle through the Drag Manager’s main drag tracking loop.

Your drag input procedure may either modify the current state of the mouse and keyboard
to slightly alter dragging behavior or entirely replace the input data to drive the drag
completely by itself.

Details for how to write a drag input procedure are covered in the “Application-Defined
Routines” section below.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference

SetDragDrawingProc

Use the SetDragDrawingProc function to set the drag drawing procedure for the Drag
Manager to use with a particular drag.

2-46

C H A P T E R 2

Drag Manager Programmer’s Guide

pascal OSErr SetDragDrawingProc (DragReference theDragRef,
 DragDrawingProc drawingProc,
 void *dragDrawingRefCon);

theDragRef The drag reference that SetDragDrawingProc will set the drag
drawing procedure for.

drawingProc The drag drawing routine that will be called by the Drag Manager to
draw, move and hide the “dotted outline” drag feedback on the screen
during a drag.

dragDrawingRefCon
A reference constant that will be forwarded to your drag drawing
procedure when it is called by the Drag Manager. Use this constant to
pass any data you wish to forward to your drag drawing procedure.

DESCRIPTION
The SetDragDrawingProc function sets the drag drawing procedure for the given drag
reference. A drag’s drag drawing procedure is called by the Drag Manager when the Drag
Manager needs to draw, move or hide the “dotted outline” drag feedback on the screen.

Your drag drawing procedure can implement any type of drag feedback, such as dragging a
bitmap of the object being dragged.

Details for how to write a drag drawing procedure are covered in the “Application-
Defined Routines” section below.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference

Performing a Drag

You can use the TrackDrag function to start a drag from within your application.

TrackDrag

Use the TrackDrag function to drag an item or collection of items from your application.

pascal OSErr TrackDrag (DragReference theDragRef,
 const EventRecord *theEvent,
 RgnHandle theRegion);

2-47

C H A P T E R 2

Drag Manager Programmer’s Guide

theDragRef A drag reference token to perform the drag operation with.

theEvent The mouseDown event record that your application received that
resulted in starting a drag.

theRegion A region that represents the item or items being dragged. Note that under
normal circumstances, the drag region should only include the pixels that
represent the outline of the items being dragged. The Drag Manager
draws the region on the screen by using calling PaintRgn (not
FrameRgn).

DESCRIPTION
The TrackDrag function performs a drag operation with a particular drag reference
given the mouseDown event and a drag region.

The Drag Manager follows the cursor on the screen with the “dotted outline” drag
feedback and sends tracking messages to applications that have registered drag tracking
handlers. The drag item flavor information that was added to the drag using the
AddDragItemFlavor functions is available to each application that becomes active
during a drag.

When the user releases the mouse button, the Drag Manager calls any receive drop
handlers that have been registered on the destination window. An application’s receive
drop handler(s) are responsible for accepting the drag and transferring the dragged data
into their application.

The TrackDrag function returns noErr in situations where the user selected a destination
for the drag and the destination received data from the Drag Manager. If the user drops
over a non-aware application or the receiver does not accept any data from the Drag
Manager, the Drag Manager automatically provides a “zoom back” animation and returns
userCanceledErr.

SPECIAL CONSIDERATIONS
During the call to TrackDrag, your application’s context is temporarily switched out
when the Drag Manager calls a different application’s tracking and receive handlers. Do
not depend on your application’s context to be active for the entire duration of a drag.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
userCanceledErr -128 Drag was canceled
badDragRefErr -1850 Unknown drag reference

2-48

C H A P T E R 2

Drag Manager Programmer’s Guide

Getting Drag Item Information

The Drag Manager provides a set of functions that allow you to get information about the
drag items and drag item flavors that have been added into a drag reference.

CountDragItems

Use the CountDragItems function to determine how many drag items are contained in a
drag reference.

pascal OSErr CountDragItems (DragReference theDragRef,
 unsigned short *numItems);

theDragRef A drag reference.

numItems The CountDragItems function returns the number of drag items in the
given drag reference in the numItems parameter.

DESCRIPTION
The CountDragItems function returns the number of drag items in a drag reference in the
numItems parameter.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference

GetDragItemReferenceNumber

Use the GetDragItemReferenceNumber function to determine the item reference
number of a specific item in a drag reference.

pascal OSErr GetDragItemReferenceNumber
 (DragReference theDragRef,
 unsigned short index,
 ItemReference *theItemRef);

theDragRef A drag reference.

index The index of an item in a drag to get the item reference number for.

theItemRef The GetDragItemReferenceNumber function returns the item reference

2-49

C H A P T E R 2

Drag Manager Programmer’s Guide

number of the item with the specified index in the theItemRef
parameter.

DESCRIPTION
The GetDragItemReferenceNumber function returns the item reference number of the
item with the specified index in the theItemRef parameter.

If index is zero or larger than the number of items in the drag, badDragItemErr is
returned by GetDragItemReferenceNumber.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference

CountDragItemFlavors

Use the CountDragItemFlavors function to determine how many drag item flavors are
contained within a drag item.

pascal OSErr CountDragItemFlavors (DragReference theDragRef,
 ItemReference theItemRef,
 unsigned short *numFlavors);

theDragRef A drag reference.

theItemRef An item reference number.

numFlavors The CountDragItemFlavors function returns the number of drag item
flavors in the specified drag item in the numFlavors parameter.

DESCRIPTION
The CountDragItemFlavors function returns the number of drag item flavors in the
specified drag item in the numFlavors parameter.

When CountDragItemFlavors is called by an application other than the sender, the
flavors that are marked with the flavorSenderOnly flavor flag are not included in
the count.

2-50

C H A P T E R 2

Drag Manager Programmer’s Guide

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference

GetFlavorType

Use the GetFlavorType function to determine the type of a specific flavor in a drag
item.

pascal OSErr GetFlavorType (DragReference theDragRef,
 ItemReference theItemRef,
 unsigned short index,
 FlavorType *theType);

theDragRef A drag reference.

theItemRef An item reference number.

index The index of a flavor in the specified item to get the flavor type of.

theType The GetFlavorType function returns the type of the specified flavor in
the theType parameter.

DESCRIPTION
The GetFlavorType function returns the type of the specified flavor in the theType
parameter.

If index is zero or larger than the number of flavors in the item, badDragFlavorErr is
returned by GetFlavorType.

If a flavor is marked with the flavorSenderOnly flavor flag, it is only visible to the
sender application. If GetFlavorType is called by any application other than the
sender, flavors that are visible only to the sender will not be returned.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference
badDragFlavorErr -1852 Bad flavor index

2-51

C H A P T E R 2

Drag Manager Programmer’s Guide

GetFlavorFlags

Use the GetFlavorFlags function to get the flags for a specific flavor in a drag item.

pascal OSErr GetFlavorFlags (DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 FlavorFlags *theFlags);

theDragRef A drag reference.

theItemRef An item reference number.

theType The flavor type of the flavor to get the attributes of.

theFlags The GetFlavorFlags function returns the attributes of the specified
flavor in the theFlags parameter.

DESCRIPTION
The GetFlavorFlags function returns the flags of the specified flavor in the theFlags
parameter.

If a flavor is marked with the flavorSenderOnly flavor flag, it is only visible to the
sender application. If GetFlavorFlags is called by any application other than the
sender, the flags for flavors that are visible only to the sender will not be returned.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference
badDragFlavorErr -1852 Unknown flavor type

GetFlavorDataSize

Use the GetFlavorDataSize function to get the size of the flavor data for a specific
flavor in a drag item.

pascal OSErr GetFlavorDataSize (DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 Size *dataSize);

theDragRef A drag reference.

2-52

C H A P T E R 2

Drag Manager Programmer’s Guide

theItemRef An item reference number.

theType The flavor type of the flavor to get the data size of.

dataSize The GetFlavorDataSize returns the size of the specified drag item
flavor data in the dataSize parameter.

DESCRIPTION
Before calling GetFlavorData (defined below), you may want to first determine the size
of the data contained within a flavor. The GetFlavorDataSize function returns the
specified flavor’s data size in the dataSize parameter.

Note that calling GetFlavorDataSize on a flavor that requires translation will force
that translation be performed in order to determine the data size. Since translation may
require a significant amount of time and memory during processing, call
GetFlavorDataSize only when absolutely necessary.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference
badDragFlavorErr -1852 Unknown flavor type
cantGetFlavorErr -1854 Error while trying to get flavor data

GetFlavorData

Use the GetFlavorData function to get all or part of the flavor data for a specific flavor
in a drag item.

pascal OSErr GetFlavorData (DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 void *dataPtr,
 Size *dataSize,
 unsigned long *dataOffset);

theDragRef A drag reference.

theItemRef An item reference number.

theType The flavor type of the flavor to get the flavor data from.

dataPtr Specifies where the GetFlavorData function should copy the requested
flavor data. Your application is responsible for allocating the memory

2-53

C H A P T E R 2

Drag Manager Programmer’s Guide

for the flavor data and for setting the dataSize parameter to the
number of bytes that you have allocated for the data.

dataSize Contains the size of the data (in bytes) that you have allocated memory
for and wish to receive from the flavor. When GetFlavorData returns,
dataSize will contain the actual number of bytes copied into the buffer
specified by dataPtr.

If you specify a dataSize that is smaller than the amount of data in the
flavor, the data is copied into your buffer and dataSize is unchanged
when GetFlavorData returns.

If you specify a dataSize that is larger than the amount of data in the
flavor, only the amount of data in the flavor is copied into your buffer
and the dataSize parameter will contain the actual number of bytes
copied when GetFlavorData returns.

dataOffset The offset (in bytes) into the flavor record to begin copying data from into
the supplied buffer pointed to by dataPtr.

DESCRIPTION
The GetFlavorData function returns all or part of a flavor’s data in a data buffer
supplied by the dataPtr parameter.

You can first determine the size of a flavor by calling the GetFlavorDataSize function.

If you wish to receive the flavor data in smaller pieces than the entire size of the data,
you can set the dataSize to be as large as your buffer and call GetFlavorData multiple
times while incrementing the dataOffset by the size of your buffer.

You can determine when you have reached the end of the flavor’s data when the
dataSize parameter returns a number of bytes lower than you provided.

If the dataOffset was larger than the amount of data contained within the flavor, 0
(zero) will be returned in the dataSize parameter denoting that no data was copied into
your buffer.

Note that calling GetFlavorData on a flavor that requires translation will force that
translation to occur in order to return the data.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference

2-54

C H A P T E R 2

Drag Manager Programmer’s Guide

badDragFlavorErr -1852 Unknown flavor type
cantGetFlavorErr -1854 Error while trying to get flavor data

GetDragItemBounds

Use the GetDragItemBounds function to determine the bounding rectangle of a drag
item.

pascal OSErr GetDragItemBounds (DragReference theDragRef,
 ItemReference theItemRef,
 Rect *itemBounds);

theDragRef A drag reference.

theItemRef An item reference number.

itemBounds The GetDragItemBounds function returns the bounding rectangle of the
specified item in global coordinates in the itemBounds parameter.

DESCRIPTION
The GetDragItemBounds returns the bounding rectangle of the specified item. The
rectangle is provided in global coordinates.

GetDragItemBounds always returns the rectangle relative to the current pinned mouse
position. You can use the GetDragItemBounds function in your tracking or receive
handlers to determine the current or dropped location of each item in the drag.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference

SetDragItemBounds

Use the SetDragItemBounds function to set the bounding rectangle of a drag item.

pascal OSErr SetDragItemBounds (DragReference theDragRef,
 ItemReference theItemRef,
 const Rect *itemBounds);

theDragRef A drag reference.

theItemRef An item reference number.

2-55

C H A P T E R 2

Drag Manager Programmer’s Guide

itemBounds The bounding rectangle to set for the given drag item. This rectangle is
specified in global coordinates relative to the mouse down position.

DESCRIPTION
The SetDragItemBounds function sets the bounding rectangle for a given drag item. The
rectangle is specified in global coordinates relative to the mouse down position that is
given to the TrackDrag function. Your application would normally want to call
SetDragItemBounds on each drag item before starting a drag with TrackDrag.

If you do not set the bounds of an item, the rectangle returned by GetDragItemBounds is
an empty rectangle centered under the pinned mouse location.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference

Getting Drag Status Information

The Drag Manager provides a set of functions that allow you to get information about a
drag that is currently in progress.

GetDragAttributes

Use the GetDragAttributes function to get the current set of drag attribute flags.

pascal OSErr GetDragAttributes
 (DragReference theDragRef,
 DragAttributes *attributes);

theDragRef A drag reference.

attributes The GetDragAttributes function returns the drag attribute flags for
the given drag reference in the attributes parameter.

DESCRIPTION
The GetDragAttributes function returns the drag attribute flags for the given drag
reference in the attributes parameter.

2-56

C H A P T E R 2

Drag Manager Programmer’s Guide

If GetDragAttributes is called during a drag, the current set of DragAttributes is
returned. If GetDragAttributes is called after a drag, the set of DragAttributes
that were set at drop time is returned.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
badDragRefErr -1850 Unknown drag reference

GetDragMouse

Use the GetDragMouse function to get the current mouse and pinned mouse locations.

pascal OSErr GetDragMouse (DragReference theDragRef,
 Point *mouse,
 Point *pinnedMouse);

theDragRef A drag reference.

mouse The GetDragMouse function returns the current mouse location in the
mouse parameter. The mouse location is given in global screen
coordinates.

pinnedMouse The GetDragMouse function returns the current pinned mouse location in
the pinnedMouse parameter. The pinned mouse location is the mouse
location that is used to draw the drag region on the screen. The
pinnedMouse location is different than the mouse location when the
cursor is being constrained in either dimension by a tracking handler. The
pinned mouse location is given in global screen coordinates.

DESCRIPTION
The GetDragMouse function returns the mouse location in the mouse parameter and the
pinned mouse location in the pinnedMouse parameter. All coordinates are given in
global screen coordinates.

The pinned mouse location is the mouse location used to draw the drag region on the
screen. Tracking handlers may constrain the mouse by setting the pinned mouse location to
be different than the current mouse location by using the SetDragMouse function.

You may pass NIL into the mouse or pinnedMouse parameters if you wish to disregard
either of these return values.

Calling GetDragMouse before using the drag in a TrackDrag call returns (0, 0) as both
the mouse and pinnedMouse locations.

2-57

C H A P T E R 2

Drag Manager Programmer’s Guide

If GetDragMouse is called during a drag, the current mouse and pinnedMouse are
returned. If GetDragMouse is called after a drag completes, the mouse and
pinnedMouse at the drop location are returned.

RESULT CODES
noErr 0 No error
badDragRefErr -1850 Unknown drag reference

SetDragMouse

Use the SetDragMouse function to set the current pinned mouse location.

pascal OSErr SetDragMouse (DragReference theDragRef,
 Point pinnedMouse);

theDragRef A drag reference.

pinnedMouse The coordinates to set the pinned mouse location. The pinned mouse
location is specified in global screen coordinates.

DESCRIPTION
The SetDragMouse function sets the current pinned mouse location. The pinned mouse
location is the location used to draw the drag region on the screen. You can use the
SetDragMouse function to “constrain” the mouse while dragging through one of your
application’s windows.

To constrain the mouse within one of your application’s windows, call SetDragMouse
from within your tracking handler when you receive dragTrackingInWindow messages.
The Drag Manager updates the position of the drag region on the screen after each time
your tracking handlers are called.

RESULT CODES
noErr 0 No error
badDragRefErr -1850 Unknown drag reference

GetDragOrigin

Use the GetDragOrigin function to get the mouseDown location that started the given
drag.

2-58

C H A P T E R 2

Drag Manager Programmer’s Guide

pascal OSErr GetDragOrigin (DragReference theDragRef,
 Point *initialMouse);

theDragRef A drag reference.

initialMouse
The GetDragOrigin function returns the mouseDown location that
started the given drag in the initialMouse parameter. The initial
mouse location is given in global screen coordinates.

DESCRIPTION
The GetDragOrigin function returns the mouseDown location that started the given
drag. The initial mouse location is returned in global screen coordinates.

GetDragOrigin may be called to return the initial mouse location both during and after
a drag.

RESULT CODES
noErr 0 No error
badDragRefErr -1850 Unknown drag reference

GetDragModifiers

Use the GetDragModifiers function to get the current set of keyboard modifiers.

pascal OSErr GetDragModifiers (DragReference theDragRef,
 short *modifiers,
 short *mouseDownModifiers,
 short *mouseUpModifiers);

theDragRef A drag reference.

modifiers The GetDragModifiers function returns the current keyboard modifiers
in the modifiers parameter.

mouseDownModifiers
The GetDragModifiers function returns the keyboard modifiers at
mouseDown time in the mouseDownModifiers parameter.

mouseUpModifiers
The GetDragModifiers function returns the keyboard modifiers at
mouseUp time in the mouseUpModifiers parameter.

2-59

C H A P T E R 2

Drag Manager Programmer’s Guide

DESCRIPTION
The GetDragModifiers function returns the set of modifier keys that are currently
pressed and that were pressed at mouseDown time and at mouseUp time.

You may pass NIL into the modifiers, mouseDownModifiers or mouseUpModifiers
parameters if you wish to disregard any of these return values.

Calling GetDragModifiers before using the drag in a TrackDrag call returns zero in all
of the modifier parameters. Calling GetDragModifiers during a drag, but while the
drag is still tracking returns zero in the mouseUpModifiers parameter. Calling
GetDragModifiers in a receive handler or after the drag has completed returns all of
the modifier parameters.

RESULT CODES
noErr 0 No error
badDragRefErr -1850 Unknown drag reference

GetDropLocation

Use the GetDropLocation function to get an AppleEvent descriptor of the drop location.

pascal OSErr GetDropLocation
 (DragReference theDragRef,
 AEDesc *dropLocation);

theDragRef A drag reference.

dropLocation
The GetDropLocation function returns an AppleEvent descriptor of the
drop location in the dropLocation parameter. The drop location is only
valid after the receiver has set the drop location by calling
SetDropLocation.

DESCRIPTION
The GetDropLocation function returns an AppleEvent descriptor describing the drop
location in the dropLocation parameter.

If the destination is in the Finder, the Finder sets the drop location to be an alias to the
location in the file system that received the drag. Refer to the Finder Interface chapter
of Inside Macintosh for more information about aliases to desktop objects.

If the receiver of the drag has not set a drop location by calling the SetDropLocation
function, typeNull will be returned in the descriptor.

2-60

C H A P T E R 2

Drag Manager Programmer’s Guide

GetDropLocation may be called both during a drag as well as after a drag has
completed.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory to duplicate descriptor
badDragRefErr -1850 Unknown drag reference

SetDropLocation

Use the SetDropLocation function to set the AppleEvent descriptor for the drop
location for a drag.

pascal OSErr SetDropLocation
 (DragReference theDragRef,
 const AEDesc *dropLocation);

theDragRef A drag reference.

dropLocation
The AppleEvent descriptor of the drop location to set.

DESCRIPTION
The SetDropLocation function is used to set the AppleEvent descriptor of the drop
location of a drag. Typically, this function is called by a receive handler before
attempting to get any flavor data by using the GetFlavorDataSize or GetFlavorData
functions. When a sender application's drag send data procedure is called to provide
flavor data to a receiver, GetDropLocation can then be called to determine the drop
location while providing data to the sender.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory to duplicate descriptor
badDragRefErr -1850 Unknown drag reference

Window Highlighting Utilities

You can use the ShowDragHilite, HideDragHilite, and UpdateDragHilite functions
to highlight parts of your application’s windows during a drag. You can also use the

2-61

C H A P T E R 2

Drag Manager Programmer’s Guide

DragPreScroll and DragPostScroll functions if you intend to scroll parts of your
window that contain drag highlighting.

ShowDragHilite

Use the ShowDragHilite function to highlight an area of your window during a drag.
Your tracking handler routine should call this if a drop is allowed at the current mouse
position.

pascal OSErr ShowDragHilite (DragReference theDragRef,
 RgnHandle hiliteFrame,
 Boolean inside);

theDragRef The drag reference of the drag currently in progress.

frame A QuickDraw region of the frame of the window, pane, or shape you wish
to highlight. This region should be in the window’s local coordinate
system.

inside If true, the highlighting will be drawn inside the frame shape.
Otherwise it will be drawn outside the frame shape. Note that in either
case, the highlight will not include the boundary edge of the frame.

DESCRIPTION
The ShowDragHilite procedure creates a standard drag and drop highlight in your
window. You can only have one highlight showing at a time, and if you call this routine
when a highlight is currently visible, the first one is removed before the newly requested
highlight is shown.

The highlight that is drawn is defined by the hiliteFrame and inside parameters.
The hiliteFrame defines the shape of the highlighting to draw, the inside
parameter determines whether the highlighting is drawn on the outside or inside of the
hiliteFrame region. This allows you to easily highlight inside a window frame or a
pane, or to highlight outside of a container or object in your window. ShowDragHilite
uses a two pixel thick line when drawing the highlight.

ShowDragHilite assumes that the highlighting should be drawn in the current port.
Your application should make sure that the correct port is set before calling
ShowDragHilite. Also, highlighting drawn by ShowDragHilite is clipped to the
current port. Make sure that the port’s clip region is appropriately sized to draw the
highlighting.

The Drag Manager maintains the currently highlighted portion of your window if you use
the HideDragHilite and UpdateDragHilite functions. If you intend to scroll the
window that contains the highlighting, you can use the DragPreScroll and
DragPostScroll functions to properly update the drag highlighting.

2-62

C H A P T E R 2

Drag Manager Programmer’s Guide

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
badDragRefErr -1850 Unknown drag reference

HideDragHilite

This routine removes highlighting created with the ShowDragHilite function.

pascal OSErr HideDragHilite (DragReference theDragRef);

theDragRef The drag reference that is currently showing a drag highlight.

DESCRIPTION
Use the HideDragHilite function to remove any highlighting from your window that
was shown using the ShowDragHilite function.

HideDragHilite assumes that the highlighting should be erased from the current port.
Your application should make sure that the correct port is set before calling
HideDragHilite. Also, highlighting erased by HideDragHilite is clipped to the
current port. Make sure that the port’s clip region is appropriately sized to remove the
highlighting.

RESULT CODES
noErr 0 No error
badDragRefErr -1850 Unknown drag reference

DragPreScroll

When scrolling part of your window when drag highlighting is showing, use the
DragPreScroll function to remove any drag highlighting that would be scrolled away
from the hiliteFrame given to ShowDragHilite.

pascal OSErr DragPreScroll (DragReference theDragRef,
 short dH,

 short dV);

theDragRef The drag reference.

2-63

C H A P T E R 2

Drag Manager Programmer’s Guide

dH The horizontal distance you intend to scroll.

dV The vertical distance you intend to scroll.

DESCRIPTION
The DragPreScroll function prepares your window or pane for scrolling. Use this
function if you plan to scroll part of your window using ScrollRect or CopyBits.

Scrolling part of your window may inadvertently move part of the drag highlighting
with it. DragPreScroll is optimized to remove from the screen only the parts of the
highlighting that will be scrolled away from the hiliteFrame region. After calling
DragPreScroll with the dH and dV that you are going to scroll, you can then scroll your
window followed by a call to DragPostScroll which redraws any necessary
highlighting after the scroll.

If you use an offscreen port to draw your window into while scrolling, it is recommended
that you simply use the HideDragHilite and ShowDragHilite functions to preserve
drag highlighting in your offscreen port. The DragScroll functions are optimized for
onscreen scrolling.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
badDragRefErr -1850 Unknown drag reference

DragPostScroll

Use the DragPostScroll function to restore the drag highlight after scrolling part of
your window using the DragPreScroll function.

pascal OSErr DragPostScroll (DragReference theDragRef);

theDragRef The drag reference.

DESCRIPTION
The DragPostScroll function restores the drag highlight after you scroll part of your
window. This routine must be called following a call to DragPreScroll.

2-64

C H A P T E R 2

Drag Manager Programmer’s Guide

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
badDragRefErr -1850 Unknown drag reference

UpdateDragHilite

Use the UpdateDragHilite function to update a portion of the drag highlight that was
drawn over by your application.

pascal OSErr UpdateDragHilite (DragReference theDragRef,
 RgnHandle updateRgn);

theDragRef The drag reference.

updateRgn A region that needs to be updated. Typically the port’s updateRgn.

DESCRIPTION
The UpdateDragHilite function redraws the portion of the drag highlight which
intersects the given updateRgn. Use this function if your application draws into the
highlighted portion of your window during a drag. For example, dragging over a folder
icon in the Finder causes the Finder to redraw the folder icon in its darkened (selected)
color. The Finder calls UpdateDragHilite to redraw any portion of the drag highlight
that may have intersected with the folder icon.

You must guarantee, however, that any current highlighting within the updateRgn has
been completely erased or is clipped out. If this routine is asked to highlight over an
area which is still highlighted, it will be redrawn incorrectly.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
badDragRefErr -1850 Unknown drag reference

Drag Manager Utilities

You can use the WaitMouseMoved function to determine after a mouseDown event if a
drag should be started, the ZoomRects and ZoomRegion functions to provide “zooming”
animation similar to the Finder’s in your application, and TEGetHiliteRgn to get the
QuickDraw highlight region from the current selection in a TextEdit record.

2-65

C H A P T E R 2

Drag Manager Programmer’s Guide

WaitMouseMoved

When your application receives a mouseDown event on a draggable object, call
WaitMouseMoved to determine if you should begin to drag the object.

pascal Boolean WaitMouseMoved (Point initialMouse);

initialMouse
The point where a mouseDown event occurred. The initialMouse
location is given in global screen coordinates.

DESCRIPTION
The WaitMouseMoved function waits for either the mouse to move from the given
initialMouse location or for the mouse button to be released. If the mouse moves away
from the initialMouse location before the mouse button is released, WaitMouseMoved
returns true. If the mouse button is released before the mouse moved from the
initialMouse location, WaitMouseMoved returns false.

ZoomRects

Use the ZoomRects function to animate a rectangle into a second rectangle. This routine
provides the same visual effect that the Finder uses to open windows and applications.

pascal OSErr ZoomRects (const Rect *fromRect,
const Rect *toRect,
short zoomSteps,
ZoomAcceleration acceleration);

fromRect Specifies the starting rectangle to animate from, in global coordinates.

toRect Specifies the ending rectangle to animate to, in global coordinates.

zoomSteps Specifies the number of animation steps that are shown between the
source and destination rectangles. The minimum number of zoomSteps is
4. If less than 4 are specified, 4 will be used. The maximum number of
zoomSteps is 25. If more than 25 are specified, 25 will be used.

acceleration
Specifies how the intermediate animation steps will be calculated. Can

accept the constants zoomNoAcceleration, zoomAccelerate, or
zoomDecelerate. Using zoomNoAcceleration makes the distance
between steps from the source to the destination equal. Using
zoomAccelerate makes each step from the source to the destination
increasingly larger, making the animation appear to speed up as it
approaches the destination. Using zoomDecelerate makes each step
from the source to the destination smaller, making the animation appear
to slow down as it approaches the destination.

2-66

C H A P T E R 2

Drag Manager Programmer’s Guide

DESCRIPTION

The ZoomRects function animates a movement between two rectangles on the screen. It
does this by drawing gray dithered rectangles incrementally toward the destination
rectangle.

ZoomRects draws on the entire screen, outside of the current port. It does not change any
pixels on the screen after it has completed its animation. It also preserves the current
port and the port’s settings.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error

ZoomRegion

Use the ZoomRegion function to animate a region’s outline from one screen location to
another. This routine provides the same visual feedback that the Finder uses to “zoom”
icons when performing a Clean Up operation.

pascal OSErr ZoomRegion (RgnHandle region,
 Point zoomDistance,
 short zoomSteps,
 ZoomAcceleration acceleration);

region A region to animate.

zoomDistance
The horizontal and vertical distance from the starting point that the

region will animate to.

zoomSteps Specifies the number of animation steps that are shown between the
source and destination regions. The minimum number of zoomSteps is 4.
If less than 4 are specified, 4 will be used. The maximum number of
zoomSteps is 25. If more than 25 are specified, 25 will be used.

acceleration
Specifies how the intermediate animation steps will be calculated. Can

accept the constants zoomNoAcceleration, zoomAccelerate, or
zoomDecelerate. Using zoomNoAcceleration makes the distance
between steps from the source to the destination equal. Using
zoomAccelerate makes each step from the source to the destination
increasingly larger, making the animation appear to speed up as it
approaches the destination. Using zoomDecelerate makes each step
from the source to the destination smaller, making the animation appear
to slow down as it approaches the destination.

2-67

C H A P T E R 2

Drag Manager Programmer’s Guide

DESCRIPTION
The ZoomRegion function animates a region from one location to another on the screen. It
does this by drawing gray dithered regions incrementally toward the destination region.

ZoomRegion draws on the entire screen, outside of the current port. It does not change any
pixels on the screen after it has completed its animation. It also preserves the current
port and the port’s settings.

RESULT CODES
noErr 0 No error
paramErr -50 Parameter error

TextEdit Utilities

The TEGetHiliteRgn can be used to get the QuickDraw highlight region from the
current selection in a TextEdit record. This TextEdit utility is useful for determining what
areas of a TextEdit field can be dragged by the user.

TEGetHiliteRgn

Use the TEGetHiliteRgn function to get the QuickDraw highlight region from the
current selection in a TextEdit record.

pascal OSErr TEGetHiliteRgn (RgnHandle region,
 TEHandle hTE);

region The TEGetHiliteRgn function computes the QuickDraw region of the
current selection in the given TextEdit handle. This region is placed into
the region parameter that you have already allocated. This region is
in your window’s local screen coordinates.

hTE A TextEdit handle.

DESCRIPTION
The TEGetHiliteRgn function returns in the region parameter the region of the current
selection in the given TextEdit handle.

TEGetHiliteRgn does not allocate a new region. You must create a new region with
NewRgn before calling TEGetHiliteRgn. Also, the previous contents of the region are
replaced by the TextEdit selection region.

2-68

C H A P T E R 2

Drag Manager Programmer’s Guide

If the given TextEdit handle does not currently have a selection, TEGetHiliteRgn
returns an empty region.

RESULT CODES
noErr 0 No error
memFullErr -108 Not enough memory

Application-Defined Routines
This section describes the application-defined routines whose addresses you pass to the
Drag Manager. You can define routines that the Drag Manager calls during a drag to
implement the different aspects of dragging both into and out of your application’s
windows.

Drag Handler Routines

Most of the application’s dragging functionality is implemented through the use of drag
handlers. The Drag Manager calls your application’s drag handlers while the user drags
a collection of items through one of your application’s windows, and when the user drops
the items into one of your application’s windows.

DragTrackingHandler

A drag tracking handler has the following syntax:

pascal OSErr DragTrackingHandler (DragTrackingMessage message,
 WindowPtr theWindow,
 void *handlerRefCon,
 DragReference theDragRef);

message A tracking message from the Drag Manager.

theWindow A pointer to the window that the mouse is currently over.

handlerRefCon
A reference constant that was provided to InstallTrackingHandler
when this handler was installed.

theDragRef The drag reference of the drag.

2-69

C H A P T E R 2

Drag Manager Programmer’s Guide

DESCRIPTION
When the user drags an item or collection of items through a window, the Drag Manager
calls any DragTrackingHandler functions that have been installed on that window.
Your DragTrackingHandler can determine the contents of the drag by calling the drag
item information functions, such as CountDragItems, CountDragItemFlavors,
GetFlavorType and GetFlavorFlags and highlight or modify the objects in your
window accordingly.

You use the message parameter to determine what action your DragTrackingHandler
should take. The message parameter may be one of the following values:

Message descriptions
dragTrackingEnterHandler

You will receive a call with this message when the focus of a drag enters
a window that is handled by your DragTrackingHandler. If the user
moves the drag directly to another window that is handled by the same
DragTrackingHandler, a second dragTrackingEnterHandler
message is not received. Your DragTrackingHandler only receives this
message when the drag enters the domain of your procedure after leaving
another.

dragTrackingEnterWindow
You will receive a call with this message when a drag enters any window
that is handled by your DragTrackingHandler. This message is sent to
your DragTrackingHandler for each window that the drag may enter.
You will always receive this message within a pair of
dragTrackingEnterHandler and dragTrackingLeaveHandler
calls.

dragTrackingInWindow
You will receive calls with this message as the user is dragging within a
window handled by your DragTrackingHandler. You can use this
message to track the dragging process through your window. You will
always receive this message within a pair of
dragTrackingEnterWindow and dragTrackingLeaveWindow calls.

You would typically draw the majority of your window highlighting and
track objects in your window when you receive this message from the Drag
Manager.

dragTrackingLeaveWindow
You will receive a call with this message when a drag leaves any
window that is handled by your DragTrackingHandler. You are
guaranteed to receive this message after receiving a corresponding
dragTrackingEnterWindow. You will always receive this message
within a pair of dragTrackingEnterHandler and
dragTrackingLeaveHandler calls.

dragTrackingLeaveHandler
You will receive a call with this message when the focus of a drag enters
a window that is not handled by your DragTrackingHandler. You are

2-70

C H A P T E R 2

Drag Manager Programmer’s Guide

guaranteed to receive this message after receiving a corresponding
dragTrackingEnterHandler.

When the Drag Manager calls your DragTrackingHandler, the port will always be set
to the window that the mouse is over.

SPECIAL CONSIDERATIONS
The Drag Manager guarantees that your application’s A5 world and low-memory
environment is properly set up for your application’s use. Therefore, you can allocate
memory, and use your application’s global variables. You can also rely on low-memory
globals being valid.

You can call WaitNextEvent or any other Event Manager routines from within your
DragTrackingHandler. This includes calling any routines that may call the Event
Manager, such as ModalDialog or Alert. Note that the Process Manager's process
switching mechanism is disabled during calls to your handler. If your application is not
frontmost when calling these routines, your application will not be able to switch
forward. This may result in a situation where a modal dialog appears behind the front
process but will not be able to come forward in order to interact with the user.

DragReceiveHandler

A drag receive handler has the following syntax:

pascal OSErr DragReceiveHandler (WindowPtr theWindow,
 void *handlerRefCon,
 DragReference theDragRef);

theWindow A pointer to the window that the drop occurred in.

handlerRefCon
A reference constant that was provided to InstallReceiveHandler
when this handler was installed.

theDragRef The drag reference of the drag.

DESCRIPTION
When the user releases a drag in a window, the Drag Manager calls any
DragReceiveHandler functions that have been installed on that window. You can get
the information about the data that is being dragged to determine if your window will
accept the drop by using the drag information functions provided by the Drag Manager.

After your DragReceiveHandler decides that it can accept the drop, use the
GetFlavorData function to get the needed data from the sender of the drag.

2-71

C H A P T E R 2

Drag Manager Programmer’s Guide

When the Drag Manager calls your DragReceiveHandler, the port will be set to the
window that the drop occurred in.

If you want to provide an optional AppleEvent descriptor of the drop location for the
sender, use the SetDropLocation function to set the drop location descriptor before
calling the sender with the GetFlavorData or GetFlavorDataSize functions.

If you return any result code other than noErr from your DragReceiveHandler, the
Drag Manager will “zoomback” the drag region to the source location and return
userCanceledErr from TrackDrag.

If the drag is dropped into a location that cannot accept the drag (such as the window
title bar or window scroll bars) or no acceptable data types were available, your
DragReceiveHandler should return dragNotAcceptedErr, which will cause the
Drag Manager to provide the “zoomback” animation described above.

SPECIAL CONSIDERATIONS
The Drag Manager guarantees that your application’s A5 world and low-memory
environment is properly set up for your application’s use. Therefore, you can allocate
memory, and use your application’s global variables. You can also rely on low-memory
globals being valid.

You can call WaitNextEvent or any other Event Manager routines from within your
DragReceiveHandler. This includes calling any routines that may call the Event
Manager, such as ModalDialog or Alert. Note that the Process Manager's process
switching mechanism is disabled during calls to your handler. If your application is not
frontmost when calling these routines, your application will not be able to switch
forward. This may result in a situation where a modal dialog appears behind the front
process but will not be able to come forward in order to interact with the user.

Drag Callback Procedures

There are several Drag Manager functions that can be overridden by setting any of several
drag callback procedures for any given drag. The available drag callback procedures
override the standard flavor data sending, mouse and keyboard sampling, and drag
region drawing functions.

DragSendDataProc

A drag send data procedure has the following syntax:

2-72

C H A P T E R 2

Drag Manager Programmer’s Guide

pascal OSErr DragSendDataProc (FlavorType theType,
 void *dragSendRefCon,
 ItemReference theItemRef,
 DragReference theDragRef);

theType A flavor type being requested by a drop receiver.

dragSendRefCon
A reference constant that was provided when SetDragSendProc was
called to install this procedure.

theItemRef The item reference of the item that the flavor data is being requested
from.

theDragRef The drag reference of the drag.

DESCRIPTION
The Drag Manager calls your DragSendDataProc when drag item flavor data is
requested by a drop receiver if the drag item flavor data is not already cached by the
Drag Manager. Use the SetDragItemFlavorData function to give the Drag Manager
the requested data.

The Drag Manager caches all drag item flavor data that was given in the data pointer
when the flavor was added using the AddDragItemFlavor function. If the data pointer
is NIL when the flavor is added, the Drag Manager will call the DragSendDataProc to
get the data only if a receiver requests the data using the GetFlavorData or
GetFlavorDataSize functions.

A second scenario where the DragSendDataProc is called is when a drop receiver
requests a flavor that is translated by the Translation Manager and the source data
(which would be a different type than actually requested by the receiver) is not already
cached by the Drag Manager.

You can use the GetDropLocation function to get the AppleEvent descriptor of the drop
location from within your DragSendDataProc. It is optional for the receiver to provide
a drop location descriptor. If the receiver does not provide the drop location descriptor,
typeNull will be returned by the GetDropLocation function.

You do not need to provide a DragSendDataProc if you do not ever pass NIL as the data
pointer when calling AddDragItemFlavor.

SPECIAL CONSIDERATIONS
The Drag Manager guarantees that your application’s A5 world and low-memory
environment is properly set up for your application’s use. Therefore, you can allocate
memory, and use your application’s global variables. You can also rely on low-memory
globals being valid.

2-73

C H A P T E R 2

Drag Manager Programmer’s Guide

You can call WaitNextEvent or any other Event Manager routines from within your
DragTrackingHandler. This includes calling any routines that may call the Event
Manager, such as ModalDialog or Alert. Note that the Process Manager's process
switching mechanism is disabled during calls to your handler. If your application is not
frontmost when calling these routines, your application will not be able to switch
forward. This may result in a situation where a modal dialog appears behind the front
process but will not be able to come forward in order to interact with the user.

DragInputProc

A drag input procedure has the following syntax:

pascal OSErr DragInputProc (Point *mouse,
 short *modifiers,
 void *dragInputRefCon,
 DragReference theDragRef);

mouse On entry, the mouse parameter contains the physical location of the
mouse. On exit, your DragInputProc returns the desired current mouse
location in the mouse parameter. The mouse location is specified in
global screen coordinates.

modifiers On entry, the modifiers parameter contains the physical state of the
keyboard modifiers and mouse button. On exit, your DragInputProc
returns the desired state of the keyboard modifiers and mouse button. The
modifiers parameter is specified using the same format and constants as
the Event Manager’s EventRecord.modifiers field.

dragInputRefCon
A reference constant that was provided when SetDragInputProc was
called to install this procedure.

theDragRef The drag reference of the drag.

DESCRIPTION
Each time the Drag Manager samples the mouse and keyboard, it calls the
DragInputProc (if one has been set by calling SetDragInputProc) to provide a way to
modify or completely change the mouse and keyboard input to the Drag Manager.

When the DragInputProc is called, the mouse and modifiers parameters contain the
actual values from the physical input devices. Your DragInputProc may modify these
values in any way. For example, your DragInputProc may simply inhibit the control
key modifier bit from being set or it may completely replace the mouse coordinates with
those generated some other way to drive the drag itself.

2-74

C H A P T E R 2

Drag Manager Programmer’s Guide

Note that the Drag Manager uses the btnState flag in the modifiers parameter to
determine when the mouse button has been released to finish a drag.

SPECIAL CONSIDERATIONS
Your application’s context is not available when your DragInputProc is called by the
Drag Manager. If you need access to your application’s global variables, you will need to
setup and restore your application’s A5 world yourself.

You cannot call WaitNextEvent or any other Event Manager routines in your
DragInputProc. This restriction includes calling any routines that may call the Event
Manager, such as ModalDialog or Alert.

DragDrawingProc

A drag drawing procedure has the following syntax:

pascal OSErr DragDrawingProc (DragRegionMessage message,
 RgnHandle showRegion,
 Point showOrigin,
 RgnHandle hideRegion
 Point hideOrigin,
 void *dragDrawingRefCon,
 DragReference theDragRef);

message A drag region drawing message from the Drag Manager.

showRegion A region containing the drag region as it should be drawn or is currently
visible on the screen. The showRegion parameter has slightly different
meanings depending on the message passed to your DragDrawingProc.
The showRegion is always given in global screen coordinates.

showOrigin The point corresponding to the original mouseDown location in the drag
region within the given showRegion. The showOrigin is always given
in global screen coordinates.

hideRegion A region containing the drag region as it should be erased from the screen.
The hideRegion parameter has slightly different meanings depending
on the message passed to your DragDrawingProc. The hideRegion is
always given in global screen coordinates.

hideOrigin The point corresponding to the original mouseDown location in the drag
region within the given hideRegion. The hideOrigin is always given
in global screen coordinates.

dragDrawingRefCon
A reference constant that was provided when SetDragDrawingProc
was called to install this procedure.

2-75

C H A P T E R 2

Drag Manager Programmer’s Guide

theDragRef The drag reference of the drag.

DESCRIPTION
If your application set a custom drawing procedure for a drag using the
SetDragDrawingProc function, the Drag Manager calls your DragDrawingProc to
perform all drag region drawing operations.

The Drag Manager tracks the drag region as it appears on the screen and as it should
follow the mouse. All drag region operations are performed on the region given to the
TrackDrag function. Drag region drawing is managed by sending the DragDrawingProc
messages to show and hide pieces of the drag region.

The Drag Manager has its own drag region port that is used to do all drag region drawing
during a drag. This port is set to the current port before calling your DragDrawingProc.
The drag region port is for your DragDrawingProc’s exclusive use during a drag. You
may modify its fields and depend on its contents between calls to your
DragDrawingProc.

You use the message parameter to determine what action your DragDrawingProc
should take. The message parameter may be one of the following values:

Message descriptions
dragRegionBegin

You will receive a call with this message when a drag is being started
and it is time to initialize your drawing procedure. You should not draw
anything to the screen when you receive this message.

The showRegion contains the drag region that was passed to the
TrackDrag function and the showOrigin contains the mouseDown
location that was given to the TrackDrag function. This location is the
origin of the drag region.

The hideRegion is NIL when your DragDrawingProc receives this
message.

dragRegionDraw
You will receive a call with this message when you should move your
drag region from the area of the screen defined by the hideRegion to the
area of the screen defined by the showRegion.

The showRegion contains the drag region that was passed to the
TrackDrag function, offset to the current pinned mouse location. This
region represents the area of the screen that must be drawn into.

The hideRegion contains the drag region as it is currently visible on the
screen from the last call with a dragRegionDraw message. This region
represents the area of the screen that must be restored. Any part of the
drag region that was previously obscured by a call with the
dragRegionHide message is not included in this hideRegion.

2-76

C H A P T E R 2

Drag Manager Programmer’s Guide

dragRegionHide
You will receive calls with this message when you should remove part of
the drag region from the screen. You will receive this message when the
drag has ended or when part of the region must be obscured for drawing
operations to occur underneath the drag region.

The showRegion is NIL when your DragDrawingProc receives this
message.

The hideRegion contains the part of the currently visible drag region
that must be removed from the screen.

dragRegionIdle
You will receive calls with this message when the drag region has not
moved on the screen and no drawing is necessary. You can use this message
if animation of the drag region is necessary.

The showRegion contains the drag region as it is currently visible on the
screen.

The hideRegion is NIL when your DragDrawingProc receives this
message.

dragRegionEnd
You will receive a call with this message when the drag has completed
and it is time to deallocate any allocations made from within the
DragDrawingProc. Your DragDrawingProc will have already
received a dragRegionHide message to hide the entire drag region
before receiving this message. After you receive this message, your
DragDrawingProc will not be called again for the duration of the drag.

Both the showRegion and the hideRegion are NIL when your
DragDrawingProc receives this message.

SPECIAL CONSIDERATIONS
Your application’s context is not available when your DragDrawingProc is called by the
Drag Manager. If you need access to your application’s global variables, you will need to
setup and restore your application’s A5 world yourself.

You cannot call WaitNextEvent or any other Event Manager routines in your
DragDrawingProc . This restriction includes calling any routines that may call the
Event Manager, such as ModalDialog or Alert.

2-77

C H A P T E R 2

Drag Manager Programmer’s Guide

Summary of the Drag Manager

Pascal Summary

Constants

CONST
 { Gestalt Constants }
 gestaltDragMgrAttr = 'drag'; { Drag Manager attributes }
 gestaltDragMgrPresent = 0; { Drag Manager is present }

 gestaltTEAttr = 'teat'; { TextEdit attributes }
 gestaltTEHasGetHiliteRgn = 0; { TextEdit has TEGetHiliteRgn }

 { Flavor Flags }
 flavorSenderOnly = $00000001; { flavor available to sender only }
 flavorSenderTranslated = $00000002; { flavor translated by sender }
 flavorNotSaved = $00000004; { flavor should not be saved }
 flavorSystemTranslated = $00000100; { flavor translated by system }

 { Drag Attributes }
 dragHasLeftSenderWindow = $00000001; { drag has left source window }
 dragInsideSenderApplication = $00000002; { drag is in the source app }
 dragInsideSenderWindow = $00000004; { drag is in the source window }

 { Special Flavor Type }
 flavorTypeHFS = 'hfs '; { flavor type for HFS data }
 flavorTypePromiseHFS = 'phfs'; { flavor type for promised HFS }
 flavorTypeDirectory = 'diry'; { flavor type for AOCE directory }

 { Drag Tracking Handler Messages }
 dragTrackingEnterHandler = 1; { drag has entered handler }
 dragTrackingEnterWindow = 2; { drag has entered window }
 dragTrackingInWindow = 3; { drag is moving within window }
 dragTrackingLeaveWindow = 4; { drag has exited window }
 dragTrackingLeaveHandler = 5; { drag has exited handler }

 { Drag Drawing Handler Messages }
 dragRegionBegin = 1; { initialize drawing }
 dragRegionDraw = 2; { draw drag feedback }
 dragRegionHide = 3; { hide drag feedback }
 dragRegionIdle = 4; { drag feedback idle time }
 dragRegionEnd = 5; { end of drawing }

 { Zooming Constants }
 zoomNoAcceleration = 0; { use linear interpolation }
 zoomAccelerate = 1; { ramp up step size }
 zoomDecelerate = 2; { ramp down step size }

2-78

C H A P T E R 2

Drag Manager Programmer’s Guide

Data Types

Drag Manager Data Types
TYPE
 DragReference = LONGINT;
 ItemReference = LONGINT;

 FlavorType = ResType;
 FlavorFlags = LONGINT;
 DragAttributes = LONGINT;

 DragTrackingMessage = INTEGER;
 DragRegionMessage = INTEGER;

 ZoomAcceleration = INTEGER;

Special Flavor Data Types
 HFSFlavor = RECORD
 fileType: OSType; { file type }
 fileCreator: OSType; { file creator }
 fdFlags: INTEGER; { Finder flags }
 fileSpec: FSSpec; { file system specification }
 END;

 PromiseHFSFlavor = RECORD
 fileType: OSType; { file type }
 fileCreator: OSType; { file creator }
 fdFlags: INTEGER; { Finder flags }
 promisedFlavor: FlavorType; { promised flavor containing FSSpec }
 END;

Drag Manager Routines

Installing and Removing Drag Handlers
FUNCTION InstallTrackingHandler
 (trackingHandler : DragTrackingHandler;
 theWindow : WindowPtr;
 handlerRefCon : UNIV Ptr) : OSErr;

FUNCTION InstallReceiveHandler(receiveHandler : DragReceiveHandler;
 theWindow : WindowPtr;
 handlerRefCon : UNIV Ptr) : OSErr;

FUNCTION RemoveTrackingHandler(trackingHandler : DragTrackingHandler;
 theWindow : WindowPtr) : OSErr;

2-79

C H A P T E R 2

Drag Manager Programmer’s Guide

FUNCTION RemoveReceiveHandler (receiveHandler : DragReceiveHandler;
 theWindow : WindowPtr) : OSErr;

Creating and Disposing of Drag References
FUNCTION NewDrag (VAR theDragRef : DragReference) : OSErr;

FUNCTION DisposeDrag (theDragRef : DragReference) : OSErr;

Adding Drag Item Flavors
FUNCTION AddDragItemFlavor (theDragRef : DragReference;
 theItemRef : ItemReference;
 theType : FlavorType;
 dataPtr : UNIV Ptr;
 dataSize : Size;
 theFlags : FlavorFlags) : OSErr;

FUNCTION SetDragItemFlavorData(theDragRef : DragReference;
 theItemRef : ItemReference;
 theType : FlavorType;
 dataPtr : UNIV Ptr;
 dataSize : Size;
 dataOffset : LONGINT) : OSErr;

Providing Drag Callback Procedures
FUNCTION SetDragSendProc (theDragRef : DragReference;
 sendProc : DragSendDataProc;
 dragSendRefCon : UNIV Ptr) : OSErr;

FUNCTION SetDragInputProc (theDragRef : DragReference;
 inputProc : DragInputProc;
 dragInputRefCon : UNIV Ptr) : OSErr;

FUNCTION SetDragDrawingProc (theDragRef : DragReference;
 drawingProc : DragDrawingProc;
 dragDrawingRefCon : UNIV Ptr) : OSErr;

Performing a Drag
FUNCTION TrackDrag (theDragRef : DragReference;
 theEvent : EventRecord;
 theRegion : RgnHandle) : OSErr;

Getting Drag Item Information
FUNCTION CountDragItems (theDragRef : DragReference;
 VAR numItems : INTEGER) : OSErr;

FUNCTION GetDragItemReferenceNumber
 (theDragRef : DragReference;
 index : INTEGER;
 VAR theItemRef : ItemReference) : OSErr;

2-80

C H A P T E R 2

Drag Manager Programmer’s Guide

FUNCTION CountDragItemFlavors
 (theDragRef : DragReference;
 theItemRef : ItemReference;
 VAR numFlavors : INTEGER) : OSErr;

FUNCTION GetFlavorType (theDragRef : DragReference;
 theItemRef : ItemReference;
 index : INTEGER;
 VAR theType : FlavorType) : OSErr;

FUNCTION GetFlavorFlags (theDragRef : DragReference;
 theItemRef : ItemReference;
 theType : FlavorType;
 VAR theFlags : FlavorFlags) : OSErr;

FUNCTION GetFlavorDataSize (theDragRef : DragReference;
 theItemRef : ItemReference;
 theType : FlavorType;
 VAR dataSize : Size) : OSErr;

FUNCTION GetFlavorData (theDragRef : DragReference;
 theItemRef : ItemReference;
 theType : FlavorType;
 dataPtr : UNIV Ptr;
 VAR dataSize : Size;
 dataOffset : LONGINT) : OSErr;

FUNCTION GetDragItemBounds (theDragRef : DragReference;
 theItemRef : ItemReference;
 VAR itemBounds : Rect) : OSErr;

FUNCTION SetDragItemBounds (theDragRef : DragReference;
 theItemRef : ItemReference;
 itemBounds : Rect) : OSErr;

Getting and Setting Drag Status Information
FUNCTION GetDragAttributes (theDragRef : DragReference;
 VAR attributes : DragAttributes) : OSErr;

FUNCTION GetDragMouse (theDragRef : DragReference;
 VAR mouse : Point;
 VAR pinnedMouse : Point) : OSErr;

FUNCTION SetDragMouse (theDragRef : DragReference;
 pinnedMouse : Point) : OSErr;

FUNCTION GetDragOrigin (theDragRef : DragReference;
 VAR initialMouse : Point) : OSErr;

FUNCTION GetDragModifiers (theDragRef : DragReference;
 VAR modifiers : INTEGER;
 VAR mouseDownModifiers : INTEGER;
 VAR mouseUpModifiers : INTEGER) : OSErr;

FUNCTION GetDropLocation (theDragRef : DragReference;

2-81

C H A P T E R 2

Drag Manager Programmer’s Guide

 VAR dropLocation : AEDesc) : OSErr;

FUNCTION SetDropLocation (theDragRef : DragReference;
 dropLocation : AEDesc) : OSErr;

Window Highlighting Utilities
FUNCTION ShowDragHilite (theDragRef : DragReference;
 hiliteFrame : RgnHandle;
 inside : BOOLEAN) : OSErr;

FUNCTION HideDragHilite (theDragRef : DragReference) : OSErr;

FUNCTION DragPreScroll (theDragRef : DragReference;
 dH : INTEGER;
 dV : INTEGER) : OSErr;

FUNCTION DragPostScroll (theDragRef : DragReference) : OSErr;

FUNCTION UpdateDragHilite (theDragRef : DragReference;
 updateRgn : RgnHandle) : OSErr;

Drag Manager Utilities
FUNCTION WaitMouseMoved (initialMouse : Point) : BOOLEAN;

FUNCTION ZoomRects (fromRect : Rect;
 toRect : Rect;
 zoomSteps : INTEGER;
 acceleration : ZoomAcceleration) : OSErr;

FUNCTION ZoomRegion (region : RgnHandle;
 zoomDistance Point;
 zoomSteps : INTEGER;
 acceleration : ZoomAcceleration) : OSErr;

TextEdit Utilities
FUNCTION TEGetHiliteRgn (region : RgnHandle;
 hTE : TEHandle) : OSErr;

Application Defined Routines

Drag Handler Routines
FUNCTION DragTrackingHandler (message : DragTrackingMessage;
 theWindow : WindowPtr;
 handlerRefCon : Ptr;
 theDragRef : DragReference) : OSErr;

FUNCTION DragReceiveHandler (theWindow : WindowPtr;
 handlerRefCon : Ptr;
 theDragRef : DragReference) : OSErr;

2-82

C H A P T E R 2

Drag Manager Programmer’s Guide

Drag Callback Procedures
FUNCTION DragSendDataProc (theType : FlavorType;
 dragSendRefCon : Ptr;
 theItemRef : ItemReference;
 theDragRef : DragReference) : OSErr;

FUNCTION DragInputProc (VAR mouse : Point;
 VAR modifiers : INTEGER;
 dragInputRefCon : Ptr;
 theDragRef : DragReference) : OSErr;

FUNCTION DragDrawingProc (message : DragRegionMessage;
 showRegion : RgnHandle;
 showOrigin : Point;
 hideRegion : RgnHandle;
 hideOrigin : Point;
 dragDrawingRefCon : Ptr;
 theDragRef : DragReference) : OSErr;

C Summary

Constants

/* Gestalt Constants */
#define gestaltDragMgrAttr 'drag' // Drag Manager attributes
#define gestaltDragMgrPresent 0 // Drag Manager is present

#define gestaltTEAttr 'teat' // TextEdit attributes
#define gestaltTEHasGetHiliteRgn 0 // TextEdit has TEGetHiliteRgn

/* Flavor Flags */
#define flavorSenderOnly 0x00000001 // flavor available to sender only
#define flavorSenderTranslated 0x00000002 // flavor translated by sender
#define flavorNotSaved 0x00000004 // flavor should not be saved
#define flavorSystemTranslated 0x00000100 // flavor translated by system

/* Drag Attributes */
#define dragHasLeftSenderWindow 0x00000001 // drag has left source window
#define dragInsideSenderApplication 0x00000002 // drag is in the source app
#define dragInsideSenderWindow 0x00000004 // drag is in the source window

/* Special Flavor Type */
#define flavorTypeHFS 'hfs ' // flavor type for HFS data
#define flavorTypePromiseHFS 'phfs' // flavor type for promised HFS
#define flavorTypeDirectory 'diry' // flavor type for AOCE directory

2-83

/* Drag Tracking Handler Messages */
enum {
 dragTrackingEnterHandler = 1, // drag has entered handler
 dragTrackingEnterWindow = 2, // drag has entered window
 dragTrackingInWindow = 3, // drag is moving within window
 dragTrackingLeaveWindow = 4, // drag has exited window
 dragTrackingLeaveHandler = 5 // drag has exited handler
};

/* Drag Drawing Handler Messages */
enum {
 dragRegionBegin = 1, // initialize drawing
 dragRegionDraw = 2, // draw drag feedback
 dragRegionHide = 3, // hide drag feedback
 dragRegionIdle = 4, // drag feedback idle time
 dragRegionEnd = 5 // end of drawing
};

/* Zooming Constants */
enum {
 zoomNoAcceleration = 0, // use linear interpolation
 zoomAccelerate = 1, // ramp up step size
 zoomDecelerate = 2 // ramp down step size
};

Data Types

Drag Manager Data Types
typedef unsigned long DragReference;
typedef unsigned long ItemReference;

typedef ResType FlavorType;
typedef unsigned long FlavorFlags;
typedef unsigned long DragAttributes;

typedef short DragTrackingMessage;
typedef short DragRegionMessage;

typedef short ZoomAcceleration;

Special Flavor Data Types
typedef struct HFSFlavor {
 OSType fileType; // file type
 OSType fileCreator; // file creator
 unsigned short fdFlags; // Finder flags
 FSSpec fileSpec; // file system specification
} HFSFlavor;

C H A P T E R 2

Drag Manager Programmer’s Guide

typedef struct PromiseHFSFlavor {
 OSType fileType; // file type
 OSType fileCreator; // file creator
 unsigned short fdFlags; // Finder flags
 FlavorType promisedFlavor; // promised flavor containing FSSpec
} HFSFlavor;

Drag Manager Routines

Installing and Removing Drag Handlers
pascal OSErr InstallTrackingHandler
 (DragTrackingHandler trackingHandler,
 WindowPtr theWindow,
 void *handlerRefCon);

pascal OSErr InstallReceiveHandler
 (DragReceiveHandler receiveHandler,
 WindowPtr theWindow,
 void *handlerRefCon);

pascal OSErr RemoveTrackingHandler
 (DragTrackingHandler trackingHandler,
 WindowPtr theWindow);

pascal OSErr RemoveReceiveHandler
 (DragReceiveHandler receiveHandler,
 WindowPtr theWindow);

Creating and Disposing of Drag References

pascal OSErr NewDrag (DragReference *theDragRef);

pascal OSErr DisposeDrag (DragReference theDragRef);

Adding Drag Item Flavors
pascal OSErr AddDragItemFlavor(DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 void *dataPtr,
 Size dataSize,
 FlavorFlags theFlags);

pascal OSErr SetDragItemFlavorData
 (DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 void *dataPtr,
 Size dataSize,
 unsigned long dataOffset);

2-85

C H A P T E R 2

Drag Manager Programmer’s Guide

Providing Drag Callback Procedures
pascal OSErr SetDragSendProc (DragReference theDragRef,
 DragSendDataProc sendProc,
 void *dragSendRefCon);

pascal OSErr SetDragInputProc (DragReference theDragRef,
 DragInputProc inputProc,
 void *dragInputRefCon);

pascal OSErr SetDragDrawingProc
 (DragReference theDragRef,
 DragDrawingProc drawingProc,
 void *dragDrawingRefCon);

Performing a Drag
pascal OSErr TrackDrag (DragReference theDragRef,
 const EventRecord *theEvent,
 RgnHandle theRegion);

Getting Drag Item Information
pascal OSErr CountDragItems (DragReference theDragRef,
 unsigned short *numItems);

pascal OSErr GetDragItemReferenceNumber
 (DragReference theDragRef,
 unsigned short index,
 ItemReference *theItemRef);

pascal OSErr CountDragItemFlavors
 (DragReference theDragRef,
 ItemReference theItemRef,
 unsigned short *numFlavors);

pascal OSErr GetFlavorType (DragReference theDragRef,
 ItemReference theItemRef,
 unsigned short index,
 FlavorType *theType);

pascal OSErr GetFlavorFlags (DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 FlavorFlags *theFlags);

pascal OSErr GetFlavorDataSize(DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 Size *dataSize);

pascal OSErr GetFlavorData (DragReference theDragRef,
 ItemReference theItemRef,
 FlavorType theType,
 void *dataPtr,
 Size *dataSize,

2-86

C H A P T E R 2

Drag Manager Programmer’s Guide

 unsigned long dataOffset);

pascal OSErr GetDragItemBounds(DragReference theDragRef,
 ItemReference theItemRef,
 Rect *itemBounds);

pascal OSErr SetDragItemBounds(DragReference theDragRef,
 ItemReference theItemRef,
 const Rect *itemBounds);

Getting and Setting Drag Status Information
pascal OSErr GetDragAttributes(DragReference theDragRef,
 DragAttributes *attributes);

pascal OSErr GetDragMouse (DragReference theDragRef,
 Point *mouse,
 Point *pinnedMouse);

pascal OSErr SetDragMouse (DragReference theDragRef,
 Point pinnedMouse);

pascal OSErr GetDragOrigin (DragReference theDragRef,
 Point *initialMouse);

pascal OSErr GetDragModifiers (DragReference theDragRef,
 short *modifiers,
 short *mouseDownModifiers,
 short *mouseUpModifiers);

pascal OSErr GetDropLocation (DragReference theDragRef,
 AEDesc *dropLocation);

pascal OSErr SetDropLocation (DragReference theDragRef,
 const AEDesc *dropLocation);

Window Highlighting Utilities
pascal OSErr ShowDragHilite (DragReference theDragRef,
 RgnHandle hiliteFrame,
 Boolean inside);

pascal OSErr HideDragHilite (DragReference theDragRef);

pascal OSErr DragPreScroll (DragReference theDragRef,
 short dH,
 short dV);

pascal OSErr DragPostScroll (DragReference theDragRef);

pascal OSErr UpdateDragHilite (DragReference theDragRef,
 RgnHandle updateRgn);

Drag Manager Utilities
pascal Boolean WaitMouseMoved (Point initialMouse);

2-87

C H A P T E R 2

Drag Manager Programmer’s Guide

pascal OSErr ZoomRects (const Rect *fromRect,
 const Rect *toRect,
 short zoomSteps,
 ZoomAcceleration acceleration);

pascal OSErr ZoomRegion (RgnHandle region,
 Point zoomDistance,
 short zoomSteps,
 ZoomAcceleration acceleration);

TextEdit Utilities
pascal OSErr TEGetHiliteRgn (RgnHandle region,
 TEHandle hTE);

Application Defined Routines

Drag Handler Routines
pascal OSErr DragTrackingHandler
 (DragTrackingMessage message,
 WindowPtr theWindow,
 void *handlerRefCon,
 DragReference theDragRef);

pascal OSErr DragReceiveHandler
 (WindowPtr theWindow,
 void *handlerRefCon,
 DragReference theDragRef);

Drag Callback Procedures
pascal OSErr DragSendDataProc (FlavorType theType,
 void *dragSendRefCon,
 ItemReference theItemRef,
 DragReference theDragRef);

pascal OSErr DragInputProc (Point *mouse,
 short *modifiers,
 void *dragInputRefCon,
 DragReference theDragRef);

pascal OSErr DragDrawingProc (DragRegionMessage message,
 RgnHandle showRegion,
 Point showOrigin,
 RgnHandle hideRegion,
 Point hideOrigin,
 void *dragDrawingRefCon,
 DragReference theDragRef);

2-88

C H A P T E R 2

Drag Manager Programmer’s Guide

Assembly-Language Summary

Constants

; Gestalt Selector and Response Constants

gestaltDragMgrAttr EQU 'drag' ; Drag Manager attributes
gestaltDragMgrPresent EQU 0 ; Drag Manager is present

gestaltTEAttr EQU 'teat' ; TextEdit attributes
gestaltTEHasGetHiliteRgn EQU 0 ; TextEdit has TEGetHiliteRgn

; Flavor Flags

flavorSenderOnly EQU $00000001 ; flavor available to sender only
flavorSenderTranslated EQU $00000002 ; flavor is translated by sender
flavorNotSaved EQU $00000004 ; flavor should not be saved
flavorSystemTranslated EQU $00000100 ; flavor is translated by system

; Drag Attributes

dragHasLeftSenderWindow EQU $00000001 ; drag has left source window
dragInsideSenderApplication EQU $00000002 ; drag is in the source app
dragInsideSenderWindow EQU $00000004 ; drag is in the source window

; Special Flavor Types

flavorTypeHFS EQU 'hfs ' ; flavor type for HFS data
flavorTypePromiseHFS EQU 'phfs' ; flavor type for promised HFS
flavorTypeDirectory EQU 'diry' ; flavor type for AOCE directory

; Drag Tracking Handler Messages

dragTrackingEnterHandler EQU 1 ; drag has entered handler
dragTrackingEnterWindow EQU 2 ; drag has entered window
dragTrackingInWindow EQU 3 ; drag is moving within window
dragTrackingLeaveWindow EQU 4 ; drag has exited window
dragTrackingLeaveHandler EQU 5 ; drag has exited handler

; Drag Drawing Procedure Messages

dragRegionBegin EQU 1 ; initialize drawing
dragRegionDraw EQU 2 ; draw drag feedback
dragRegionHide EQU 3 ; hide drag feedback
dragRegionIdle EQU 4 ; drag feedback idle time

2-89

C H A P T E R 2

Drag Manager Programmer’s Guide

dragRegionEnd EQU 5 ; end of drawing

; Zoom Acceleration

zoomNoAcceleration EQU 0 ; use linear interpolation
zoomAccelerate EQU 1 ; ramp up step size
zoomDecelerate EQU 2 ; ramp down step size

Data Structures

HFS Flavor Record
0 fileType long file type
4 fileCreator long file creator
8 fdFlags word Finder flags
10 fileSpec 70 bytes file system specification

Promised HFS Flavor Record
0 fileType long file type
4 fileCreator long file creator
8 fdFlags word Finder flags
10 promisedFlavor long promised flavor containing FSSpec

Trap Macros

Trap Macros Requiring Routine Selector
_DragDispatch

Selector Routine

$0001 InstallTrackingHandler

$0002 InstallReceiveHandler

$0003 RemoveTrackingHandler

$0004 RemoveReceiveHandler

$0005 NewDrag

$0006 DisposeDrag

$0007 AddDragItemFlavor

$0009 SetDragItemFlavorData

$000A SetDragSendProc

2-90

C H A P T E R 2

Drag Manager Programmer’s Guide

$000B SetDragInputProc

$000C SetDragDrawingProc

$000D TrackDrag

$000E CountDragItems

$000F GetDragItemReferenceNumber

$0010 CountDragItemFlavors

$0011 GetFlavorType

$0012 GetFlavorFlags

$0013 GetFlavorDataSize

$0014 GetFlavorData

$0015 GetDragItemBounds

$0016 SetDragItemBounds

$0017 GetDropLocation

$0018 SetDropLocation

$0019 GetDragAttributes

$001A GetDragMouse

$001B SetDragMouse

$001C GetDragOrigin

$001D GetDragModifiers

$001E ShowDragHilite

$001F HideDragHilite

$0020 DragPreScroll

$0021 DragPostScroll

$0022 UpdateDragHilite

$0023 WaitMouseMoved

$0024 ZoomRects

$0025 ZoomRegion

_TEDispatch

Selector Routine

$000F TEGetHiliteRgn

2-91

C H A P T E R 2

Drag Manager Programmer’s Guide

Result Codes

noErr 0 No error
paramErr -50 Parameter error
memFullErr -108 Not enough memory
badDragRefErr -1850 Unknown drag reference
badDragItemErr -1851 Unknown drag item reference
badDragFlavorErr -1852 Unknown flavor type
duplicateFlavorErr -1853 Flavor type already exists
cantGetFlavorErr -1854 Error while trying to get flavor data
duplicateHandlerErr -1855 Handler already exists
duplicateHandlerErr -1856 Handler not found
dragNotAcceptedErr -1857 Drag was not accepted by receiver

2-92

	Drag Manager Programmer’s Guide
	About the Drag Manager
	The Drag Process
	Starting a Drag
	Tracking a Drag
	Finishing a Drag

	Drag Items
	Drag Item Flavors
	Drag Handlers
	Drag Tracking
	Receiving Data

	Drag Procedures
	Sending Data
	Overriding Standard Input
	Overriding Standard Drawing

	Using the Drag Manager
	Installing and Removing Drag Handlers
	Recognizing the Start of a Drag
	Performing a Drag
	Adding Drag Item Flavors
	Creating the Drag Region
	Tracking a Drag
	Determining What is Being Dragged
	Receiving a Drop
	Providing Flavor Data on Demand

	Drag Manager Reference
	Constants
	Data Structures
	Drag Manager Routines
	Application- Defined Routines

	Summary of the Drag Manager
	Pascal Summary
	Constants
	Data Types
	Drag Manager Routines
	Application Defined Routines

	C Summary
	Constants
	Data Types
	Drag Manager Routines
	Application Defined Routines

	Assembly- Language Summary
	Constants
	Data Structures
	Trap Macros

	Result Codes

