
HIArchive Programming Guide
Carbon > Human Interface Toolbox

2005-08-11

Apple Inc.
© 2004, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

Numbers is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to HIArchive Programming Guide 7

Who Should Read This Document? 7
Organization of This Document 7
See Also 7

Chapter 1 Archiving and Unarchiving Objects 9

What Can Be Archived? 9
Using Default Values for Efficiency 9
Archiving Objects 10
Unarchiving Objects 12
Editing Archives 13

Chapter 2 Making HIObjects Archivable 15

How to Support HIArchive Encoding 15
How to Support HIArchive Decoding 16
Adding Additional Archivable Information 18

Document Revision History 21

3
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Listings

Chapter 1 Archiving and Unarchiving Objects 9

Listing 1-1 Encoding items and writing to a file 11
Listing 1-2 Decoding items from a CFData reference 12

Chapter 2 Making HIObjects Archivable 15

Listing 2-1 An kEventHIObjectEncode event handler 15
Listing 2-2 Decoding items in a kEventHIObjectInitialize event handler 17

5
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

LISTINGS

HIArchive provides a convenient and standardized mechanism for flattening data objects so they can be
stored in memory or on disk. Applications can use these archives whenever they need to package complex
data. For example, you can use archives to:

 ■ Store document data

 ■ Transfer data using pasteboards, drag and drop, streams, or Apple events

 ■ Store localization strings and user interface elements in the same package

HIArchive encodes archives in the binary property list format. You can convert archives to a text XML format
using the plutil property list tool accessible from Terminal. You can also examine archives using the Property
List Editor tool in /Developer/Applications/Utilities.

Who Should Read This Document?

This document is for Carbon developers who want to use, create, or manipulate HIArchives, whether to store
and access proprietary data, or to edit archived data obtained from other sources. You should also read this
document if you want to support the archiving of your custom HIObjects.

HIArchive is comparable to (and uses the same underlying mechanism as) the Cocoa
NSKeyedArchiver/Unarchiver classes.

HIArchive is available in Mac OS X version 10.4 and later.

Organization of This Document

This document is organized into the following chapters:

 ■ “Archiving and Unarchiving Objects” (page 9) describes the basics of using HIArchives.

 ■ “Making HIObjects Archivable” (page 15) describes how to make your custom HIObjects support archiving.

See Also

In addition to this document, you may find the following documents useful:

 ■ For a complete description of the HIArchive API, see HIArchive Reference.

 ■ If you are not familiar with using HIViews and HIObjects, you should read HIView Programming Guide.

Who Should Read This Document? 7
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to HIArchive Programming Guide

8 See Also
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to HIArchive Programming Guide

HIArchive provides a convenient way to store data objects in a portable format. This chapter describes the
basics of archiving and unarchiving objects using HIArchive APIs.

What Can Be Archived?

You can use HIArchive to archive any CFPropertyList data types. Some examples:

 ■ CFArray

 ■ CFData

 ■ CFString

 ■ CFDictionary

 ■ CFDate

 ■ CFBoolean

 ■ CFNumber

CFPropertyList collection types are archivable if they contain only archivable objects.

You can also archive any HIObject that supports the HIArchive protocol. All the standard HIViews (menus,
controls) and windows support archiving. If you use custom views, you need to add some additional code
to support archiving. See “Making HIObjects Archivable” (page 15) for details.

In addition, you can archive other CFTypes by manually serializing them to CFData objects (which are
archivable).

All data is stored in the HIArchive as key value pairs.

Using Default Values for Efficiency

Often when archiving data, you may find that certain item values are unchanged from their initial or default
values. For example, a custom view may have bounds that, while modifiable, are more often left in their
initial state. In cases where you would encode known default values into an archive, you can leave such items
out. Then during decoding, if an expected key does not exist, you should assign that item its default value.
Doing so minimizes archive space and encoding/decoding time.

However, keep the following thoughts in mind:

 ■ If you choose to not write a key value pair to the archive if the object data has the default value, make
sure you don’t change the default value in a future version of your software.

What Can Be Archived? 9
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Archiving and Unarchiving Objects

 ■ You should not change the meaning of a key, as this could cause problems for older software unarchiving
newer objects. If you feel you need to change a key, consider using a new one instead, and write both
keys to the archive. Older software can read the old key. Newer software can read the new key, if present,
or the old key if not.

The examples in this document check for default values and do not write them to the archive.

Archiving Objects

To write data to an archive, your application must first create a write-only archive (specified by an
HIArchiveRef object) by calling HIArchiveCreateForEncoding.

To add data to the archive, you call the appropriate encoding function:

 ■ HIArchiveEncodeBoolean for Boolean values

 ■ HIArchiveEncodeNumber for any numerical values

 ■ HIArchiveEncodeCFType for any CFPropertyList types. You also use this function to encode HIObjects
or their subclasses.

Note: The HIArchiveEncodeBoolean and HIArchiveEncodeNumber functions are wrappers that call
HIArchiveEncodeCFType with the appropriate CFBoolean or CFNumber value.

All data is encoded with a (CFStringRef) key, which uniquely identifies the data within the archive. The keys
must be unique only within the current object you are encoding. For example, keys used by object A do not
conflict with keys used by object B, even if A and B are instances of the same class. Within a single object,
however, keys used by a subclass can conflict with keys used by its superclass. If you overwrite a superclass
key, HIArchive warns you by sending a message to the console output; it is up to you to decide whether this
message indicates an error.

System-supplied HIObjects always have an HI prefix in the key name; your custom HIObject subclasses should
avoid using this prefix unless you are explicitly overriding a value written to the archive by the superclass.
With careful use of keys, your archives can support versioning; on older versions, newly keyed data written
on a more recent version of software or OS is ignored.

If you call HIArchiveEncodeCFType on your own custom HIObject, the system sends a
kEventHIObjectEncode Carbon event to the object. It is then your custom object’s responsibility to encode
the appropriate instance data into the archive specified in the kEventParamHIArchive parameter using
the HIArchiveEncodeXXX calls. To receive the kEventHIObjectEncode event, your HIObject must indicate
that it supports archiving by passing false to the HIObject function HIObjectSetArchivingIgnored.
For more details, see “Making HIObjects Archivable” (page 15).

After you have encoded all the data into the archive, call HIArchiveCopyEncodedData to compress the
data. After compression, you handle the archive using the returned Core Foundation data reference
(CFDataRef). You can use this reference to write the archive to disk, pass it to another application, copy it
to a pasteboard, and so on. After compression, you can no longer write to the archive, and you must release
the original archive reference (HIArchiveRef) by calling CFRelease.

10 Archiving Objects
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Archiving and Unarchiving Objects

Listing 1-1 (page 11) shows how you might encode data items into an archive and then write the archive to
a file specified by a URL.

Listing 1-1 Encoding items and writing to a file

#define kFirstItemKey CFSTR("myFirstItemKey");
#define kSecondItemKey CFSTR("mySecondItemKey");

OSStatus ArchiveObjectsInFile (CFTypeRef firstItem,
 CFTypeRef secondItem, CFURLRef inFileURL)
{
 OSStatus err = noErr;
 HIArchiveRef encoder;
 CFDataRef encodedData;

// 1 err = HIArchiveCreateForEncoding(&encoder);
 require_noerr (err, cantCreateEncoder);

// 2 if (!CFEqual(firstItem, kDefaultFirstItem))
 {

// 3 err = HIArchiveEncodeCFType(encoder, kFirstItemKey, firstItem);
 require_noerr (err, cantEncodeObject);
 }

// 4 if (!CFEqual(secondItem, kDefaultSecondItem))
 {
 err = HIArchiveEncodeCFType(encoder, kSecondItemKey, secondItem);
 require_noerr (err, cantEncodeObject);
 }

// 5 err = HIArchiveCopyEncodedData(encoder, &encodedData);
 require_noerr (err, cantCopyEncodedData);

 verify(
// 6 CFURLWriteDataAndPropertiesToResource(inFileURL, encodedData,

 NULL, NULL));

// 7 CFRelease (encodedData);

cantEncodeObject:
cantCopyEncodedData:

// 8 CFRelease (encoder);

cantCreateEncoder:

 return err;
}

Here is how the code works:

1. Creates an HIArchive to hold the encoded data.

Archiving Objects 11
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Archiving and Unarchiving Objects

2. Checks to see if the value to be archived is the same as the default value. The default value could be any
value you would commonly expect to see for this archivable item; an initial position or setting, standard
size, default attribute, and so on. If the value to be archived is the same as the default, you can skip the
archiving procedure, which saves space and processing time. Of course, you must make sure that your
unarchiving function automatically inserts default values for items that do not appear in the archive.

3. Calls the HIArchiveEncodeCFType function to add the item to the archive by key.

4. Repeats the archiving process for the second item.

5. After encoding all the items, calls HIArchiveCopyEncodedData to flatten the archived items into a
CFData object.

6. Writes the CFData object to a file URL.

7. Releases the CFData object.

8. Releases the archive.

Unarchiving Objects

To read data from an archive, your application must create a read-only archive from the specified CFDataRef
by calling HIArchiveCreateForDecoding. You retrieve data from the archive using the appropriate
decoding functions:

 ■ HIArchiveDecodeBoolean

 ■ HIArchiveDecodeNumber

 ■ HIArchiveCopyDecodedCFType

Note: Again, the HIArchiveDecodeBoolean and HIArchiveDecodeNumber functions are wrappers that
call HIArchiveCopyDecodedCFType with the appropriate CFBoolean or CFNumber value.

If you call HIArchiveCopyDecodedCFType to retrieve a custom HIObject from an archive, the system sends
a kEventHIObjectInitialize event to the object. Your HIObject’s initialization handler must then retrieve
data for its custom HIObject from the kEventParamHIArchive parameter using the HIArchiveDecodeXXX
calls. See see “Making HIObjects Archivable” (page 15) for details.

When you finish retrieving data from the archive, call CFRelease to release the archive reference.

Listing 1-2 (page 12) shows how you might unarchive data using a CFData reference. This data may be the
reference obtained from a HIArchiveCopyEncodedData call or a copy obtained from a file, URL, or other
source. For example, you could call CFURLCreateDataAndPropertiesFromResource, to load the XML
data from an arbitrary URL.

Listing 1-2 Decoding items from a CFData reference

OSStatus LoadObjectsFromCFData(CFTypeRef* firstItem,
 CFTypeRef* secondItem, CFDataRef inData)
{

12 Unarchiving Objects
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Archiving and Unarchiving Objects

 OSStatus err = noErr;
 HIArchiveRef decoder;

// 1 err = HIArchiveCreateForDecoding(inData, 0, &decoder);
 require_noerr(err, cantCreateDecoder);

// 2 err = HIArchiveCopyDecodedCFType(decoder, kFirstItemKey, firstItem);

// 3 if (err == hiArchiveKeyNotAvailableErr)
 *firstItem = CFRetain(kDefaultFirstItem);
 else
 require_noerr(err, cantDecodeObjectFromData);

// 4 err = HIArchiveCopyDecodedCFType(decoder, kSecondItemKey, secondItem);

 if (err == hiArchiveKeyNotAvailableErr)
 *secondItem = CFRetain(kDefaultSecondItem);
 else
 require_noerr(err, cantDecodeObjectFromData);

cantDecodeObjectFromData:

// 5 CFRelease(decoder);

cantCreateDecoder:

 return err;
}

Here is how the code works:

1. Creates an HIArchive for decoding items.

2. Attempts to decode the first archive object by key name.

3. Assigns a default value for this item if the error indicates that the specified key does not exist in the
archive . If you are opening an older archive that does not contain the latest items, you can also use
defaults to populate the missing values.

4. Repeats the unarchiving for the second item.

5. Releases the archive.

Editing Archives

If you want to create a generic HIArchive editor, you should keep the following in mind:

 ■ Because the editor does not have any prior knowledge of what keys and data exist, you may want to
obtain the archive as a CFPropertyList, which you can then parse to obtain key names. You can do so by
calling the Core Foundation function CFPropertyListCreateFromXMLData.

Editing Archives 13
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Archiving and Unarchiving Objects

 ■ A generic editor will probably encounter archives containing custom HIObject subclasses that have not
been registered with the system. In such cases, you should make sure to specify the
kHIArchiveDecodeSuperClassForUnregisteredObject option when calling
HIArchiveCreateForDecoding. When HIArchive encounters an unregistered subclass, it instantiates
its superclass instead and attaches any custom data to that object. The custom data is comparable to
the information available in the Attributes pane of the Inspector window for custom HIViews in Interface
Builder. You can obtain the custom (that is, subclass-specific) data by calling the HIObject function
HIObjectCopyCustomArchiveData.You receive the data as a CFDictionary with keys defined in
HIObject.h. See HIObject Reference for more details.

 ■ When writing an unregistered subclass object to an archive, your editor must call the HIObject function
HIObjectSetCustomArchiveData, passing a CFDictionary containing subclass-specific data. You
should write the dictionary data as key value pairs using the dictionary keys supplied in HIObject.h
(specifying, for example, initialization parameters, and class and superclass identifiers).

14 Editing Archives
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Archiving and Unarchiving Objects

If you want your custom HIObjects (such as custom HIViews) to support HIArchiving, you need to implement
some additional code to do so. This chapter describes the modifications you need to make.

How to Support HIArchive Encoding

To support HIArchive encoding, your HIObject must be able to respond to the kEventHIObjectEncode
event. Your custom HIObject receives this event during encoding, and it is the responsibility of the HIObject
to encode its instance data into the provided HIArchive.

You encode your HIObject instance data just as you would any other data, using the
HIArchiveEncodeBoolean, HIArchiveEncodeNumber, or HIArchiveEncodeCFType functions, giving
each value a unique key.

In addition to supporting the kEventHIObjectEncode event, your HIObject must also indicate that it
supports archiving by passing false to the HIObject function HIObjectSetArchivingIgnored. Typically
you do so in your HIObject’s kEventHIObjectInitialize event handler. If you don’t call this function,
your HIObject will never receive the encoding event.

Listing 1-1 (page 15) shows how you can implement the handler for the kEventHIObjectEncode event.

Listing 2-1 An kEventHIObjectEncode event handler

OSStatus MyHIObjectEncode(
 EventHandlerCallRef inCallRef,
 EventRef inEvent,
 void* inRefCon)
{
 OSStatus err;
 HIArchiveRef encoder;
 MyHIViewData* myData = (MyHIViewData*)inRefCon;

// 1 err = CallNextEventHandler(inCallRef, inEvent);
 require_noerr(err, cantEncodeSuperclass);

// 2 err = GetEventParameter(inEvent, kEventParamHIArchive, typeCFTypeRef,
 NULL, sizeof(HIArchiveRef), NULL, &encoder);
 require_noerr (err, cantGetArchive);

// 3 if (!CFEqual (myData->myFirstDataItem, kDefaultFirstItemValue))
 {

// 4 err = HIArchiveEncodeCFType(encoder, kMyFirstDataItemArchiveKey,
 myData-> myFirstDataItem);
 require_noerr(err, cantEncodeItem);
 }

How to Support HIArchive Encoding 15
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making HIObjects Archivable

// 5 if (!CFEqual(myData->mySecondDataItem, kDefaultSecondItemValue))
 {
 err = HIArchiveEncodeNumber (encoder, kMySecondDataItemArchiveKey,
 kCFNumberCFIndexType, &(myData->mySecondDataItem));
 require_noerr(err, cantEncodeItem);
 }

cantEncodeItem:
cantEncodeSuperclass:
cantGetArchive:

 return err;
}

Here is how the code works:

1. As usual, your event handler must call the Carbon Event Manager function CallNextEventHandler
to allow the superclass a chance to encode its data into the archive. If you are subclassing from HIView,
the HIView base class will archive basic HIView data such as the view’s size, bounds, and so on.

2. Obtains the HIArchive reference to encode into. This reference is packaged in the
kEventHIObjectEncode event.

3. Checks to see if the value of the first instance data item is the same as some default value. If so, you
don’t need to encode this item (as long as your decoder knows to assign the default value for any
nonexistent keys) Doing so saves space in the archive (and minimizes processing time).

4. Encodes the first instance data item. HIView. You must call HIArchiveEncodeCFType or one of its
wrapper variants (for CFBooleans or CFNumbers) for each field in your instance data structure. In this
example, the instance data structure would look something like this:

typedef struct
{
 HIViewRef view;
 CFStringRef myFirstDataItem;
 CFIndex mySecondDataItem;
} MyHIViewData;

Notice that you don’t have to encode the HIView reference (HIViewRef), because HIArchive does this
for you automatically.

The archive keys (for example, kMyFirstDataItemArchiveKey), are application-defined CFString
constants that uniquely identify each data item you want to archive (and later retrieve).

5. Repeat for the second instance data item.

How to Support HIArchive Decoding

To support HIArchive decoding, your HIObject must be able to instantiate itself from archive data. Doing so
requires that your kEventHIObjectInitialize event handler be able to extract instance data for your
object from an HIArchive.

16 How to Support HIArchive Decoding
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making HIObjects Archivable

When your custom HIObject receives the kEventHIObjectInitialize event, you could check to see if an
HIArchive parameter was passed to you. If so, you should unarchive the instance data before proceeding
with any standard initalization.

Listing 1-2 (page 17) shows how to decode archive information within your kEventHIObjectInitialize
event handler.

Listing 2-2 Decoding items in a kEventHIObjectInitialize event handler

OSStatus MyHIObjectInitialize(
 EventHandlerCallRef inCallRef,
 EventRef inEvent,
 void* inRefCon)
{
 OSStatus err = noErr;
 HIArchiveRef decoder = NULL;
 MyHIViewData* myData = (MyHIViewData*)inRefCon;

 err = CallNextEventHandler(inCallRef, inEvent);
 require_noerr(err, cantInitializeSuperclass);

// 1 GetEventParameter(inEvent, kEventParamHIArchive, typeCFTypeRef, NULL,
 sizeof(HIArchiveRef), NULL, &decoder);

// 2 if (decoder != NULL)
 err = HIArchiveCopyDecodedCFType(decoder,
 kMyFirstDataItemArchiveKey, (CFTypeRef*)&myData->myFirstDataItem);

// 3 if (decoder == NULL || err == hiArchiveKeyNotAvailableErr)
 myData->myFirstDataItem = CFRetain (kDefaultFirstItem);

// 4 err = HIArchiveDecodeNumber(decoder, kMySecondDataItemArchiveKey,
 kCFNumberCFIndexType, &(myData->mySecondDataItem));

 if (decoder == NULL || err == hiArchiveKeyNotAvailableErr)
 myData->mySecondDataItem = CFRetain(kDefaultSecondItem);

 //perform any common initialization here

// 5 HIObjectSetArchivingIgnored (myData->view, false);

cantInitializeSuperclass:

 return err;
}

Here is how the code works:

1. Attempts to obtain the HIArchive parameter. If the initialization is occurring in response to an unarchiving
attempt, HIArchive automatically supplies the appropriate HIArchive reference in the initialization event.

2. Attempts to decode the first archive object by key name.

3. If the decoder did not exist (that is, this is a standard initialization) or if the key did not exist, sets the
first item to its default value.

4. Repeat for the second item.

How to Support HIArchive Decoding 17
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making HIObjects Archivable

5. Sets the archiving ignored attribute to false to indicate that this HIObject supports the HIArchive
protocol. Doing so ensures that the HIObject receives kEventHIObjectEncode events.

Adding Additional Archivable Information

Sometimes you want to associate additional information with an HIObject before you archive it. For example,
you may want to store initialization parameters with the HIObject, or metadata that is useful to your application.
In most cases, this archive data is useful only if you are writing an HIArchive editor.

Use the HIObject function HIObjectSetCustomArchiveData to associate a CFDictionary with an HIObject:

OSStatus HIObjectSetCustomArchiveData (
 HIObjectRef inObject,
 CFDictionaryRef inCustomData
);

When you set this archive information, the dictionary is automatically archived by the HIObject base class
when it receives the kEventHIObjectEncode event. (Remember to call CallNextEventHandler if you
handle the encoding event.)

To retrieve archived data, you use the HIObjectCopyCustomArchiveData function:

OSStatus HIObjectCopyCustomArchiveData (
 HIObjectRef inObject,
 CFDictionaryRef* outCustomData
);

HIObject defines several keys to use when adding standard data (such as initialization parameters or class
IDs) to an archive dictionary. You can also define your own keys if necessary. For example, you use the
following keys to store initialization parameters:

const CFStringRef kHIObjectCustomDataParameterNamesKey;
const CFStringRef kHIObjectCustomDataParameterTypesKey;
const CFStringRef kHIObjectCustomDataParameterValuesKey;

Each key represents a CFArray of initialization parameter names, types, or values. These keys correspond to
the initialization parameters you can set for a custom HIView in Interface Builder (in the Attributes pane of
the Inspector window).

Internally, when unarchiving your custom HIObject, HIArchive automatically extracts any initialization
parameter information from the archive data, packages that in a kEventHIObjectInitialize event, and
sends the event to your object. If for some reason HIArchive chooses to instantiate your HIObject superclass
instead (your HIObject class was not registered), you can still access the initialization parameters through
this archive dictionary. An HIArchive editor can obtain the data in this manner so that the user can view or
change it.

You can also store the HIObject class and superclass IDs:

const CFStringRef kHIObjectCustomDataClassIDKey;
const CFStringRef kHIObjectCustomDataSuperClassIDKey;

Note that HIArchive automatically stores the class ID of a custom HIObject during the archiving process. As
a result, you need to use the class and superclass keys only if you are editing an existing archive.

18 Adding Additional Archivable Information
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making HIObjects Archivable

For more information about custom archiving keys, see HIObject Reference.

Adding Additional Archivable Information 19
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making HIObjects Archivable

20 Adding Additional Archivable Information
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Making HIObjects Archivable

This table describes the changes to HIArchive Programming Guide.

NotesDate

New document describing how to store data objects using HIArchive. Also
includes information to make custom HIObjects archivable.

2005-08-11

21
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

22
2005-08-11 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	HIArchive Programming Guide
	Contents
	Listings
	Introduction
	Archiving and Unarchiving Objects
	What Can Be Archived?
	Using Default Values for Efficiency
	Archiving Objects
	Unarchiving Objects
	Editing Archives

	Making HIObjects Archivable
	How to Support HIArchive Encoding
	How to Support HIArchive Decoding
	Adding Additional Archivable Information

	Revision History

