
Handling Unicode Text Editing With MLTE
Text & Fonts > Carbon

2008-10-15

Apple Inc.
© 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Chicago, Mac,
Mac OS, Macintosh, Quartz, and QuickDraw are
trademarks of Apple Inc., registered in the
United States and other countries.

Skia is a trademark of Apple Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS

PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 MLTE Introduction 7

Chapter 2 MLTE Concepts 9

Introduction to International Text on the Mac OS 9
Characters, Character Encodings, and Unicode 9
Keyboards and Input Methods 9

Overview of Text Handling 10
How MLTE Handles Text 10
Text Objects (TXNObject) 11
Text Attributes 12
The MLTE User Interface 13

Menu Support 13
Font Menu 13
Fonts Window 15
Document-Wide Formatting 16
Typing and Inline Input 17
Caret Position and Movement 18
The Selection Range, the Insertion Point, and Highlighting in MLTE 20
Drag and Drop 21
Line Breaking 22
ATSUI Font Features and Variations 22

Keyboard and Font Synchronization 22
Keyboard to Font Synchronization 22
Font to Keyboard Synchronization 23
Overriding Font Synchronization 23

Font Substitution 23
MLTE and Carbon Events 23

Chapter 3 MLTE Tasks 25

Displaying Static Text 25
Initializing MLTE 26

Setting Up Font Descriptions 26
Assigning Initialization Options 27
Calling the MLTE Initialization Function 27
Setting Up the Menu Bar 28
Creating a Font Menu Object 28

Terminating MLTE 29
Working With Text Objects 30

Creating a Window 30

3
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

Setting Options for the Text Object’s Frame 32
Creating a Text Object 33
Disposing of a Text Object 34

Handling File and Edit Menu Commands 35
Calling the Appropriate MLTE Function 35
Updating the File and Edit Menus 38

Setting Font Size and Style 41
Handling Multiple Text Objects 42
Posting an Alert 44
Working With Document-Wide Settings 44

Implementing Word Wrap 45
Implementing Line Justification 46

Advanced Topics 47
Working With Embedded Objects 47
Displaying Chemical Equations 48
Accessing and Displaying Advanced Typographical Features 49

Supporting Monostyled Text 54
Customizing MLTE Support for Carbon Events 54

What’s Installed On a Text Object 55
Building a Dictionary 55
Instantiating the Carbon Events Structure 57
Calling the function TXNSetTXNObjectControls 58
Turning Off MLTE Support for Carbon Events 59

Writing an Action Key Mapping Callback Function 59
Migrating an Application from TextEdit to MLTE 61

Document Revision History 63

MLTE Glossary 65

4
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 2 MLTE Concepts 9

Figure 2-1 Frames and destination rectangles 12
Figure 2-2 Font menu on a system that uses ATSUI 14
Figure 2-3 A Font menu drawn in Mac OS X using QuickDraw 15
Figure 2-4 The Fonts window 16
Figure 2-5 Text entry and tab behavior 17
Figure 2-6 Caret movement across a direction boundary 19
Figure 2-7 Highlighted text selection in background window 21
Figure 2-8 Discontinuous highlighting 21

Chapter 3 MLTE Tasks 25

Figure 3-1 Edit menus with a variety of items enabled and disabled 38
Figure 3-2 An activated and a deactivated text object, with and without user focus 43
Figure 3-3 Using check marks to show enabled Layout settings 45
Figure 3-4 Chemical equation that uses a subscript 48
Figure 3-5 A Features dialog for the Skia font 50
Figure 3-6 The fields for which your application needs to supply data in order to set ATSUI

font features (shaded areas) 52
Listing 3-1 Displaying static text in a text box 25
Listing 3-2 Initializing MLTE 27
Listing 3-3 Creating a Font menu object 28
Listing 3-4 Terminating MLTE in your application’s termination function 29
Listing 3-5 A function that creates a window from a nib file 31
Listing 3-6 Creating a text object 33
Listing 3-7 Disposing of a text object 34
Listing 3-8 Handling menu commands from the File and Edit menus 35
Listing 3-9 A function that updates the File and Edit menu items 39
Listing 3-10 Changing size and style attributes for selected text 41
Listing 3-11 Handling an activation event 43
Listing 3-12 Toggling the word-wrap setting 45
Listing 3-13 A function that sets line justification 46
Listing 3-14 Setting attributes for a subscript 49
Listing 3-15 Assigning parameter values for diphthongs 52
Listing 3-16 Calling the MLTE function to set type attributes 53
Listing 3-17 Building a dictionary 56
Listing 3-18 Instantiating MLTE’s Carbon events data structure 57
Listing 3-19 Changing the state of a text object 58
Listing 3-20 Turning off MLTE support for Carbon event handling 59
Listing 3-21 A function that maps action keys to localized strings 60

5
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

6
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Multilingual Text Engine (MLTE) is an application programming interface (API) that allows your application
to provide Carbon-compliant Unicode text editing. MLTE is a replacement for TextEdit that offers more
features than those in TextEdit—features such as document-wide tabs, full justification of text, support for
more than 32 KB of text, built-in scroll bar handling, built-in printing support, support for inline input, support
for the advanced font features of Apple Type Services for Unicode Imaging (ATSUI), and support for multiple
levels of undo.

You can use MLTE to replace TextEdit functions in your existing applications. With it, you can significantly
reduce the number of lines in your code because MLTE handles most of the low-level tasks you had to code
in the past.

MLTE provides a quick and easy solution for static display of Unicode text and for creating Unicode-compliant
text-editing fields within an application. You can also use MLTE if your application needs to provide text
editing support within a full-size window.

For information about ATSUI (which MLTE supports), see ATSUI Programming Guide.

7
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

MLTE Introduction

8
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

MLTE Introduction

This chapter provides an overview of Macintosh text handling and how MLTE in particular handles Unicode
text editing. If you are new to text handling on the Macintosh, you should read the entire chapter. If you
have already worked with international text on the Mac OS and are familiar with text handling, you can skip
the first two sections and go to “How MLTE Handles Text” (page 10).

This chapter covers concepts rather than implementation or programming details. For information about
using MLTE functions in your application, and to see sample code, see “MLTE Tasks” (page 25).

Introduction to International Text on the Mac OS

This section defines the terms used to discuss international text handling on the Mac OS. If you would like a
more detailed introduction to typography on the Mac OS as well as more information on Unicode and related
topics, see ATSUI Programming Guide.

Characters, Character Encodings, and Unicode

A character is a symbolic representation of a letter, a number, a punctuation mark, or any other mark used
in text; it is the concept of, for example, “lowercase a” or “number 3.”

In computer memory, text is stored as character codes, where each code is a numeric value that defines a
particular character. A character encoding is the organization of the set of numeric codes that represent all
the meaningful characters of a script system in memory. There are two fundamental classes of Mac OS
character encodings: single-byte and double-byte.

A writing systemis a set of characters and the basic rules for using them to create a visual depiction of
language. Examples of writing systems are Roman, Japanese, Arabic, and Hebrew. Unicodeis an international
standard that combines the characters for all commonly used writing systems into a single, coded character
set, based upon a 16-bit character encoding standard. With a universal character encoding such as Unicode,
the character sets of separate writing systems do not overlap. Furthermore, Unicode resolves the issue of
conflicting character encodings within a single writing system.

Keyboards and Input Methods

The user typically enters text through a keyboard that your application then stores as character codes. The
system reports the user’s key-down, key-up, and auto-key events to your application. Key-down and key-up
events indicate the user pressed or released a key, respectively. Auto-key events indicate the user has held
a key down for a certain amount of time. For keyboard-related events, your application receives both the
virtual key code and the character code for the key that is pressed, as well as the state of any modifier keys(For
example, Shift, Caps Lock, Command, Option, and Control) at the time of the event.

Introduction to International Text on the Mac OS 9
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

For languages with large character sets, it is impractical to manufacture keyboards with keys for every possible
character. In such a case, it is usually the job of an input method, working in conjunction with a keyboard,
to handle text input. An input method is a software module, often independent of the application it serves,
that performs complex processing of text input, prior to the application’s processing of the text. A typical
example of an input method is a translation service that converts character codes that can be entered from
the keyboard into character codes that cannot; text input in Japanese, Chinese, and Korean usually requires
an input method.

Overview of Text Handling

An application with simple text editing capabilities has to do several tasks. First of all, the application must
get text input from the user. The application must be prepared to convert character sets in the event a user
pastes text from a document created on another platform, the Internet, or from any document that uses a
character set different from that of the application’s default script.

As the user enters text, the text must be manipulated and stored. Text manipulation refers to system-level
procedures used to sort and compare characters, determine line breaks, determine text directionality, and
keep track of character properties, such as case. Calculating line breaks is a difficult text manipulation task
for scripts that do not delineate words with spaces, such as the Thai script. Display order is complicated for
scripts that are bidirectional, such as Hebrew. For example, in Hebrew, words are displayed right-to-left
while Roman numerals are displayed left-to-right.

Characters are stored as codes to facilitate searching and other text manipulation tasks. Before text can be
displayed, characters must be rendered. Character rendering is the process of properly preparing the
characters for display, taking into account line direction, contextual rules, and character reordering. For
example, the formation of ligatures and diphthongs occurs during the display of text.

Once text is displayed, an application needs to provide ways for the user to edit the text. The user may want
to change the font, add or delete text, or change font attributes such as size, color, and style. Users may
also want to align text, set tabs, or change other attributes that affect text layout.

How MLTE Handles Text

When you use MLTE, your application does not need to contain all the code necessary to handle text. It can
rely on MLTE and other Mac OS text technologies to do most of the grunt work for you. This section describes
what tasks MLTE and other Mac OS text technologies handle for you, and what tasks your application needs
to handle. If all your application needs to do is to display static text in a text box, you can skip this section
and go to “Displaying Static Text” (page 25). You need only to use one of two MLTE functions to display
static text.

Note: If you have ever used TextEdit in an application, be prepared to write fewer lines of code when you
use MLTE. You’ll see that MLTE handles many tasks that TextEdit did not handle.

MLTE supports standard text input from a keyboard. Once your application creates an MLTE document and
associates the document with a window, anything your user types is displayed in the window. Your user may
type on any keyboard layout using any script currently supported on the Mac OS. MLTE automatically supports
inline input for Chinese, Japanese, Korean, other double-byte scripts, and Unicode text.

10 Overview of Text Handling
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

When your application calls the MLTE initialization function TXNInitTextension, MLTE enables the Text
Services Manager automatically. The Text Services Manager (TSM) is the part of the Mac OS that provides
an environment for applications to use input methods that support text entry for languages such as Chinese,
Japanese, and Korean.

In Mac OS X, once you initialize MLTE, you do not need to do anything else to assure support for text input.
Behind the scenes, MLTE calls TSM functions as needed, and TSM passes text input directly to an active MLTE
document.

By default, MLTE stores text as Unicode. If a user enters text in an encoding other than Unicode, MLTE calls
the appropriate Text Encoding Conversion (TEC) Manager functions to convert the text to Unicode. You
do not need to call the TEC Manager functions directly.

MLTE uses Apple Type Services for Unicode Imaging (ATSUI)and QuickDraw Text functions to render and
draw text. ATSUI handles complex scripts, supports bidirectional text, and implements a number of other
advanced typographical features.

Your application does not need to call any ATSUI functions directly; MLTE does it for you. However, if you
want to display and support editing text that uses advanced typographic features, such as ligatures or
diphthongs, your application must supply ATSUI information to MLTE functions. For example, if you want
MLTE to display text using a specific rare ligature, your application needs to pass an ATSUI constant to specify
the ligature. ATSUI constants are defined in the reference documentation for ATSUI. The section “Displaying
Static Text” (page 25) indicates the functions for which ATSUI constants may be used.

MLTE has a variety of functions your application can use to make changes that affect an entire MLTE document
or to change text attributes. For example, when a user changes the style of a selection, your application must
call the appropriate MLTE function to set the style attributes for the selection.

Your application must provide the appropriate user feedback when the user takes any actions that affect
what is displayed in any text-related menus, such as the Edit and Format menus. For example, if the user
changes the justification for a selection, you application must call the appropriate Menu Manager function
to display a check mark next to the appropriate item in the Format menu that applies to the selection.

Note: If you set up MLTE to handle edit-command events, you do not need to update the Edit menu.

There are a number of user actions that MLTE handles automatically for your application, such as highlighting
selected text, dragging selected text, and moving the caret in response to arrow key presses.

Text Objects (TXNObject)

MLTE supports onscreen text editing by maintaining information about where the text is stored, where to
display it, and the text attributes (style, font, and so forth). This information is contained in an opaque structure
called a TXNObject, or text object. From the user’s perspective, a text object could take many forms. For
example, if your application is a simple text editor, a user views the text object as a document that can be
saved, opened, and edited. If your application is a drawing program that uses MLTE for labeling support, the
user views a text object as a label or caption associated with a graphic object. If your application is a
natural-language query program that uses MLTE for query input, a user views the text object as an input
window.

Text Objects (TXNObject) 11
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

When your application calls the MLTE function TXNNewObject to create a text object, you specify the window
in which the text is to be drawn. The window defines the destination rectangle—the area in which the text
is drawn. You also have the option to specify the frame. The frame is that portion of the window within which
the text is actually displayed. It is sometimes referred to as the view rectangle.

Figure 2-1 shows two sets of frames and destination rectangles. The frames are shaded and defined by dotted
lines. The text is drawn in the destination rectangle; the part of it that is displayed is defined by the frame.

Figure 2-1 Frames and destination rectangles

Frames
(view rectangles)

Destination
rectangles

"What a piece of work is a man, how
noble in reason, how infinite in faculties,
in form and moving, how express and
admirable in action, how like an angel in
apprehension, how like a god!, the
beauty of the world; the paragon of
animals; and yet to me what is this
quintessence of dust?"

"What a piece of work
is a man, how noble in
reason, how infinite in
faculties, in form and
moving, how express
and admirable in action,
how like an angel in
apprehension, how like
a god!, the beauty of
the world; the paragon
of animals; and yet to
me what is this
quintessence of dust?"

A TXNObject is an opaque structure, so your application cannot access it directly and the MLTE reference
documentation does not define explicitly the fields in the TXNObject. A TXNObject contains references to
the window frame and

 ■ the text associated with the text object

 ■ the options you want the frame to support, such as scroll bars and a size box

 ■ the file type of the text object, such as plain text or RTF, and whether the text can contain graphics,
movie, and sound data

 ■ the text encoding to use; Unicode is the default

 ■ the attributes of the text associated with the text object

 ■ information about the layout of the text object

MLTE provides a number of functions that operate on the text object for you, allowing you to get and set
attributes of the entire text object or of runs of text associated with the object.

Text Attributes

When the MLTE function TXNNewObject creates a text object, MLTE creates other structures that maintain
information about the styles and attributes of the text associated with a text object.

12 Text Attributes
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

MLTE keeps track of character attributes as runs. A run is a sequence of characters that are contiguous in
memory and share a set of common attributes.

MLTE has two functions your application can use to get or set text attributes. Attributes are passed to and
from these functions in a type attributes structure. This structure supports your application’s use of ATSUI
font features and font variations, should you want to use them.

A font feature is the set of typographic and layout characteristics that creates a specific appearance for a
glyph. For example, displaying text as small caps is a font feature. A font variationis a range of typestyles
along a variation axis. For example, a “width” font variation allows your application to condense or expand
a line of displayed text. If you want to get or set such ASTUI font features or variations, your application can
pass ATSUI font features or variations information in the type attributes structure. See “Accessing and
Displaying Advanced Typographical Features” (page 49) for an example of how to get ATSUI font features.

The MLTE User Interface

MLTE functions follow Mac OS user interface guidelines, so using these functions ensures the presentation
of a consistent user interface in your application.

Menu Support

Although MLTE does not handle any menu except for the Font menu, it provides applications with all the
necessary functionality and information to support the standard text editing menus as specified in Apple
Human Interface Guidelines. MLTE supports the Undo, Redo, Cut, Copy, Paste, Clear, and Select All items in
the Edit menu, but does not support Publish and Subscribe.

MLTE supports undo for the Cut, Copy, Paste, and Clear commands as well as applying a font, size, or style
to a non empty selection. However, applying a font, size, or style to an insertion point cannot be undone.
Undo cannot be applied to a Select All command because Select All is a selection operation.

An uninterrupted sequence of keystrokes, whether done as standard input on a keyboard or as inline input
using an input method, is treated as a single typing command for purposes of the Undo command. Events
that interrupt a typing sequence include selection operations (except for those handled by input methods),
deactivating a window, printing, or any undoable command other than typing.

Font Menu

Because MLTE supports both QuickDraw Text and ATSUI without requiring your application to know which
is being used, MLTE provides utility functions for creating and handling a standard Font menu (where standard
is defined as what is most appropriate for the imaging system in use).

MLTE provides an opaque structure called TXNFontMenuObject and the functions TXNNewFontMenuObject
and TXNDoFontMenuSelection that you can use to build a Font menu and handle user interaction with
the Font menu. If you prefer to have your application build its own Font menu, you can do so. But if you use
the MLTE Font menu functions you’ll have fewer lines of code to write.

The MLTE User Interface 13
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

When your application uses MLTE on a system that has ATSUI (which is the default), the Font menu
automatically includes hierarchical submenus for ATSUI fonts that share a family name but have different
style names. MLTE draws each Font menu item in a single system font. Figure 2-2 (page 14) shows an MLTE
Font menu drawn in Mac OS X using ATSUI.

Figure 2-2 Font menu on a system that uses ATSUI

An MLTE Font menu on a system that uses only QuickDraw Text looks similar to a menu created by calling
the Menu Manager function AppendResMenu, as shown in Figure 2-3.

14 The MLTE User Interface
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

Figure 2-3 A Font menu drawn in Mac OS X using QuickDraw

Fonts Window

Prior to Mac OS X version 10.1, the Font menu was the only Font interface available to Carbon applications.
With the release of Mac OS X version 10.2, Carbon applications can provide a Fonts window, as shown in
Figure 2-4. The Fonts window is the preferred user interface for applications that run only in Mac OS X. The
columns in the Fonts window improve the viewing and selection of large collections of fonts compared to
the hierarchical Font menu shown in Figure 2-2 (page 14). The columns provide easy access for users to
select font, style, and size.

The MLTE User Interface 15
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

Figure 2-4 The Fonts window

MLTE does not handle the Fonts window for you. If you choose to use a Fonts window in your application,
your application must perform the following tasks:

 ■ show and hide the Fonts window

 ■ handle a selection event in the Fonts window

 ■ programmatically set a selection in the Fonts window

 ■ handle a change of user focus from one document to another

For more information and programming examples on supporting a Fonts window in your application, see
Apple Type Services for Fonts Programming Guide.

Document-Wide Formatting

Tab settings and text alignment are characteristics that apply to an entire text object.

Tab Settings

MLTE interprets tab characters based on the one-tab-per-document standard found in many simple text
editors. Each tab character maps to an initial width. As MLTE flows text onto a line, each tab is replaced by
the width value necessary to place the start of the text following the tab at a given position on the line. As
the text placed before the tab grows, the white space appears to shrink until the preceding text becomes
long enough to envelop the entire tab. At that point, the tab assumes its full width and the text following
the tab jumps ahead. Figure 2-5 illustrates this point.

16 The MLTE User Interface
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

Figure 2-5 Text entry and tab behavior

Text block A Text block B

Text block A with Text block B

Text block A with more text Text block B

Initial state white space between text block A and text block B represents tab.

User enters text in text block A.

Text in block A reaches a length that displaces the beginning of block B. Tab and text block B
moves to accommodate this.

Tab space

Tab space

Tab space

MLTE flows tab widths in the line direction for the line being formatted. If text is wrapped automatically and
a tab width extends past the trailing margin (the right margin on a Roman system), MLTE wraps the line and
the next visual line begins with the tab width.

Text Alignment

MLTE allows you to specify the alignment of the lines of text, that is, their horizontal placement with respect
to the left and right edges of the text area or destination rectangle. The different types of alignment that
MLTE supports accommodate script systems that are read from right to left as well as those that are read
from left to right. MLTE supports the following types of alignment:

 ■ Default alignment—MLTE positions text according to the line direction of the system script. The alignment
can be either left or right. Line direction is the direction in which text in a particular language is written
and read. The English language has a left-to-right line direction. Arabic and Hebrew have a primarily
right-to-left line direction.

 ■ Center alignment—MLTE positions text so it is centered between the right and left edges of the destination
rectangle.

 ■ Right alignment—MLTE positions text so it is flush with the right edge of the destination rectangle.

 ■ Left alignment—MLTE positions text so it is flush with the left edge of the destination rectangle.

 ■ Full justification—MLTE positions text so it is flush against both right and left edges of the destination
rectangle.

Typing and Inline Input

MLTE assumes that your application filters out all characters it wants to handle. MLTE uses the following list
of rules to process the characters it handles. (Unicode encodings are designated as Uxxx and Mac OS encodings
are designated as $xxx, where xxx is replaced by a value.)

The MLTE User Interface 17
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

 ■ Inserting: All single-byte and double-byte characters starting at ($20, U0020) except Forward Delete ($7F,
U007F) are inserted into the text. Return ($0D, U000D) and the Tab character ($09, U0009) are inserted.
Characters entered through inline input are always inserted.

 ■ Selecting: All combinations involving the arrow keys ($1C–$1F, U001C–U001F) are interpreted as selection
operations (see “The Selection Range, the Insertion Point, and Highlighting in MLTE” (page 20)). Other
than as specified in Apple Human Interface Guidelines, they do interrupt typing commands in MLTE.

 ■ Scrolling: The Home ($01, U0001) and End ($04, U0004) characters are interpreted to scroll the text block
to its logical beginning or end as specified in Apple Human Interface Guidelines.

 ■ Paging: The Page Up ($0B, U000B) and Page Down ($0C, U000C) characters are interpreted to scroll the
text up or down once according to the height of the currently visible portion. They are not part of typing
commands, but they also don’t interrupt typing commands.

 ■ Deleting: The Backspace ($08,U0008) and Forward Delete ($7F, U007F) characters first delete the currently
selected text (if the selection is nonempty), then delete individual characters logically preceding
(Backspace) or following (Forward Delete) the insertion point . They are part of typing commands.

 ■ All other characters are ignored. This includes all key combinations involving the Command key but not
involving the arrow keys. They are not part of typing commands, but do not interrupt the typing
commands.

Caret Position and Movement

MLTE uses a caret to mark the position in the displayed text where the next editing operation is to occur.
When your application uses MLTE to paste text into a text object, MLTE positions a caret after the pasted
text. For unidirectional text, when the user presses an arrow key to move the caret left or right across the
text, MLTE moves the caret in the direction of the arrow key. If the document contains embedded
objects—graphics, movie, or sound data embedded in text—the caret treats the embedded object as a
single character.

For bidirectional text, the caret position at a direction run boundary depends on the direction of the keyboard
script; split carets are not supported. Figure 2-6 shows a sequence of two Right Arrow key presses and their
impact on caret display and movement in a line containing bidirectional text. In this example, the primary
line direction is right to left.

18 The MLTE User Interface
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

Figure 2-6 Caret movement across a direction boundary

New caret
position

New caret
position

rabic)(A

rabic)(A

rabic)(A

Original caret
position

In the first instance of the text segment, the caret is positioned within the Arabic text. When the user presses
the Right Arrow key once, the insertion point is positioned on a direction boundary and the caret jumps to
the left side of the Arabic text. When the user presses the Right Arrow key again, MLTE displays the caret at
the right side of the left parenthesis in the Roman text.

For read-only documents, you can choose among three behaviors for your application. The first behavior is
to display a blinking caret and allow selection and copying of text. The second behavior is not to display a
caret or allow text to be selected. This is the model used by SimpleText for read-only documents. The third
behavior is to display a non-blinking caret and allow selection and copying of text.

Horizontal arrow keys move in a direction dependent on the line direction of the text. The arrow key moving
in the line direction (right for Roman) starts at the trailing edge of the highlight region in the last line of the
selection and simulates successive clicks at each character boundary moving in the line direction until it hits
the trailing edge of the visual line. At that point, selection wraps to the leading edge of the next visual line.
The character boundaries are determined by the storage order and not the display order.

The arrow key moving against the line direction (left for Roman) starts at the leading edge of the highlight
region in the first line of the selection and simulates successive clicks at each character boundary moving
against the line direction until it hits the leading edge of the visual line, then wraps to the trailing edge of
the previous visual line.

For the horizontal arrow keys, a ligature that does not allow for an insertion point between its constituting
characters is treated as one character. Combining the Option key with a horizontal arrow key simulates clicks
at word boundaries instead of character boundaries. Combining the Command key with a horizontal arrow
key in or against the line direction simulates clicks at the trailing edge or leading edge of the last line or first
line intersecting with the selection, respectively.

The MLTE User Interface 19
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

When the user presses the Up Arrow key, the caret moves up one line, even in lines of text containing fonts
of different sizes. When the caret is positioned on the first line of a text object, and the user presses the Up
Arrow key, MLTE moves the caret to the beginning of the text on that line. This position corresponds to the
visible right end of a line when the primary line direction is right to left and to the left end of the line when
the primary line direction is left to right.

Similarly, when the user presses the Down Arrow key, the caret moves down one line. When the caret is
positioned on the last line of a text object, and the user presses the Down Arrow key, MLTE moves the caret
to the end of the text on that line. That is, the caret moves to the visible left end of a line when the primary
line direction is right to left and to the right end of a line when the primary line direction is left to right.

Combining the Option key with an Up Arrow or Down Arrow key simulates a click at the corresponding edge
of the portion of the view shown in the window, paging the view first if the active selection was already at
that edge. The starting point for a selection is determined at the beginning of an uninterrupted sequence
of Up Arrow and Down Arrow keys.

The Selection Range, the Insertion Point, and Highlighting in MLTE

A user can select a range of text to be edited or your application can set the selection range programmatically.
A user can define a selection by creating a new one or modifying the current one. A new selection is defined
by the Select All command, by mouse actions (single-, double-, or triple-clicking or dragging), or by using
the arrow keys along with the Shift key (which could be combined with the Command or Option keys). A
selection can be modified by pressing the Shift key and performing a mouse-based or arrow key–based
selection action. MLTE interprets user actions to modify a selection according to the fixed-point model
described in the Apple Human Interface Guidelines.

The anchor pointis the position in the text at which the user positions the pointer and presses the mouse
button. When visual feedback shows the desired range, the user releases the mouse button. The point at
which the button is released is called the active endof the range. The user can expand or shrink the active
selection by performing a modifying action such as pressing and holding the Shift key while pressing an
arrow key. If necessary, the text scrolls to make a selection visible in the view rectangle. See Apple Human
Interface Guidelines for more details, including illustrations, on selection behavior.

Single-clicking defines an insertion point. Double-clicking selects a word as defined by the Script Manager
or ATSUI. Triple-clicking selects a visual line from the beginning of the line to the beginning of the next line.
Quadruple-clicking selects the paragraph. If the user performs a double, triple, or quadruple click, then drags,
the selection grows by words, visual lines, or paragraphs respectively. A click in an empty space is mapped
to some location that has text.

Regardless of how text is selected, the selected text becomes the current selection range. MLTE uses a byte
offsetto identify the position of a character in the text object, and a text object includes fields that specify
the byte offsets of the characters that correspond to the beginning and the end of the current selection
range in the displayed text. A graphics, movie, or sound object embedded in a text object is treated as a
single character.

When the byte offset values for the beginning and the end of the selection range are the same, the selection
range is an insertion point. MLTE displays an insertion point as a blinking caret in the form of a vertical bar
(|). You can turn caret display on or off by setting the appropriate frame option when you create a new text
object in MLTE.

MLTE highlights a selection range. Highlight regions for nonempty selections are drawn in the system highlight
color, while carets are drawn in black. MLTE modifies the highlighting as shown in Figure 2-7 for selected
text in an inactive window, as required by the Drag Manager.

20 The MLTE User Interface
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

Figure 2-7 Highlighted text selection in background window

Because MLTE supports bidirectional text, the selection range can appear as discontinuously highlighted
as shown in Figure 2-8. Displayed text is highlighted according to the storage order of the characters. When
multiple script systems with different line directions are installed, a continuous sequence of characters in
memory may appear as a discontinuous selection when displayed.

Figure 2-8 Discontinuous highlighting

rabic)(A

Drag and Drop

MLTE provides the drag and drop user experience as specified in the Apple Human Interface Guidelines. MLTE
highlights selections in inactive views, so that users can drag between active and inactive views. If the cursor
is over the highlighted region in an active view, the cursor changes to an arrow. MLTE automatically
distinguishes between selection operations and drag-and-drop operations, and MLTE provides user feedback.
If the mouse-down event occurs within the highlighted region of the current selection and the Drag Manager
is available, then MLTE waits to see whether the mouse is dragged. If the mouse is dragged, MLTE initiates
a drag–and–drop operation. Otherwise, MLTE interprets the mouse event as a selection operation.

Because MLTE has no contextual information, it cannot provide your application feedback about the destination
of the dragged text. However, it highlights the insertion point where dropped text gets inserted, performs
the actual move, and selects the dragged text in its new location. By default, MLTE recognizes dragging as
a move operation. The user can drag a copy by pressing the Option key.

The MLTE User Interface 21
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

Line Breaking

MLTE renders text into a single rectangular frame. You can choose to have your application create arbitrarily
wide lines or break lines at a certain width. If you choose to break lines, MLTE uses ATSUI line-breaking
algorithms to control where a line breaks. Text is flowed into a visual line as long as it fits, then a new line is
started with the first unbreakable unit (such as a word) that did not fit completely in the line.

If your application turns off ATSUI (this is not recommended), MLTE uses QuickDraw Text line–breaking
algorithms. In this case, in scripts that use space characters to separate words, one (and only one) space
character at the logical end of the text flowed into a visual line is consumed by the line break—it is ignored
for measurements and not displayed.

ATSUI Font Features and Variations

Your application can pass ATSUI features and variations to MLTE functions and have them applied to a
selection. This, like building the Font menu, requires your application to be aware that it is running on a
system that has ATSUI, and further requires you to use some of the moderately complicated ATSUI functions.

MLTE does not provide a human interface that allows a user to view and select font variations and features
on a per font basis. However, your application can create a user interface that displays font variation and
font features. Then you can use MLTE functions to get and set font features and font variations in response
to items your user changes in the interface your application creates. See “Accessing and Displaying Advanced
Typographical Features” (page 49) for information on how your application could provide this capability.

Keyboard and Font Synchronization

Keyboard and font synchronization is a process by which the operating system compares the current
keyboard script to the script of the font at the current insertion point. If the two do not match, one or the
other is changed so the two scripts are the same.

Keyboard to Font Synchronization

In a multiscript environment, the operating system should display text in a font that supports the character
set in which the text is written. In the WorldScript environment, the operating system typically monitors the
current keyboard script and compares it to the script of the font at the current insertion point. If the two
scripts do not match and the user starts typing, the operating system automatically replaces the font with
one that belongs to the keyboard script.

This behavior is not always appropriate, as there is not a one-to-one correspondence between fonts and
keyboards. Typically, non-Roman keyboard layouts support only the characters that are specific to that script,
not the ASCII characters that are supported by all fonts designed for the WorldScript environment.

Despite these drawbacks, MLTE by default attempts to synchronize the font to the keyboard when the user
changes the keyboard. To find the appropriate font, MLTE first searches backwards in the document for an
appropriate font, then forward. If it does not find an appropriate font, the application font or the system
font for the keyboard script is used. Font synchronization does not interrupt typing commands.

22 Keyboard and Font Synchronization
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

Font to Keyboard Synchronization

Some text editors also support synchronization in the opposite direction: They automatically switch the
keyboard script to the script of the font being used at the current selection. For example, this could happen
when the user changes the selection. The assumption is that the user is most likely to type additional text
in the script already being used for the current selection. Also, the location of the caret in bidirectional text
may depend on the direction of the keyboard script. In this context, it is important that the direction of the
keyboard script matches the direction of text in which the user clicks.

In double-byte scripts, the issue of caret placement does not exist, so input methods often allow users to
enter ASCII characters in a pass-through mode. Switching the keyboard is not necessary. Users of single-byte
scripts can enter ASCII characters only by switching to a Roman keyboard script.

MLTE supports font to keyboard synchronization by default. You can turn off keyboard synchronization by
using the kTXNNoKeyboardSyncMaskconstant when you set the iFrameOptions parameter in the function
TXNNewObject.

Overriding Font Synchronization

A user can override the behavior by pressing and holding the Control key while changing the font. In this
case, the text changes to the selected font no matter what characters are selected. Each character that is not
supported by the new font will be represented by a missing character glyph(such as an empty rectangle).
To represent missing glyphs with a character that resembles the missing one more closely, you can turn on
“Font Substitution” (page 23).

Font Substitution

There may be situations in which MLTE cannot draw a character with the assigned font because the font is
not installed on the user's system. If you set font substitution options, MLTE will use the transient font
matching function supplied by ATSUI. The transient font matching function scans all valid fonts on the user's
system until it finds a suitable substitute font. If you do not set this bit, missing character glyphs are used to
represent unavailable characters.

You can use the font fallback mask kTXNUseFontFallBackMask to set fallback options for static text display.
If you want to use font substitution for a text object, you can use the font substitution tag
kTXNDoFontSubstitution. See Multilingual Text Engine Reference for more information on these constants.

MLTE and Carbon Events

Prior to the release of Mac OS X version 10.1, MLTE used the Apple Event Manager to handle text input.
Beginning with Mac OS X version 10.1, MLTE uses the Carbon Event Manager instead. Because MLTE uses
Carbon events, you have less code to write, as MLTE handles most Carbon events without your intervention.
If you prefer to handle some of the Carbon events MLTE now handles, you can. You can install Carbon event
handlers on top of MLTE’s handlers, as long as you are careful to call the Carbon Event Manager function
CallNextEventHandler or return eventNotHandledErr if the event should be passed to MLTE for
handling. For further details, see “Customizing MLTE Support for Carbon Events” (page 54).

Font Substitution 23
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

24 MLTE and Carbon Events
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

MLTE Concepts

This chapter provides instructions and code samples for the most common tasks you can accomplish with
Multilingual Text Engine (MLTE), such as displaying static text, working with document-wide settings, and
handling File, Edit, and Font menu commands.

The section on advanced topics includes working with embedded objects (graphics, sound, movies), displaying
chemical equations, and displaying advanced typographical features (such as ligatures).

You should read the section “Migrating an Application from TextEdit to MLTE” (page 61) if you have an
existing application that uses TextEdit, and you want to determine what you need to do to rewrite the code
so your application uses MLTE instead.

The code samples assume you are developing your application on Mac OS using CarbonLib. All code samples
in this chapter are in C.

Displaying Static Text

MLTE provides an easy way for your application to display static text whether or not it uses other MLTE
features to implement editing services. You do not need to initialize MLTE to display static text. You can use
a static text box for such purposes as displaying text information associated with a control.

Note: If you want to display a document that is read-only, do not use a static text box. Instead, call the
function TXNNewObject to create a text object with the frame options parameter (iFrameOptions) set to
read only (kTXNReadOnlyMask).

The TXNDrawUnicodeTextBox and TXNDrawCFStringTextBox functions display text that a user cannot
edit. You use the TXNDrawUnicodeTextBox function when you want to display a Unicode string and the
TXNDrawCFStringTextBox function when you want to display a CFStringobject. Each function draws
the text in a rectangle whose size you specify in the local coordinates of the current graphics port.

MLTE uses the ATSUI style you specify to display the text or creates an ATSUI style based on the style associated
with the current graphics port. You can specify a number of other options, such as text orientation (horizontal
or vertical) and text alignment (right, left, centered, or fully justified).

Listing 3-1 shows how to use the TXNDrawCFStringTextBox function to display a static string. The
TXNDrawCFStringTextBox function draws into the current graphics port. An explanation for each numbered
line of code appears following the listing.

Listing 3-1 Displaying static text in a text box

static void MyDrawStaticText (CFStringRef stringToDisplay,
 WindowRef theWindow)
{
 Rect bounds;

Displaying Static Text 25
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 GrafPtr myOldPort;

// 1 GetPort (&myOldPort);
// 2 SetPortWindowPort (theWindow);
// 3 EraseRect (GetWindowPortBounds (theWindow, &bounds));
// 4 TXNDrawCFStringTextBox (stringToDisplay, &bounds, NULL, NULL);
// 5 SetPort (myOldPort);

}

Here’s what the code does:

1. Call the QuickDraw function GetPort to save the current graphics port. You’ll need to restore this later.

Note: QuickDraw uses the default CGContext. It is also possible for you set up and use your own
CGContext. See Quartz 2D Programming Guide for more information.

2. Calls the QuickDraw function SetPortWindowPort to set the graphics port to the window port.

3. Calls the QuickDraw function EraseRect to make sure the rectangle in which you will draw is empty.

4. Calls the MLTE function TXNDrawCFStringTextBox to draw the CFString passed to the function.

5. Restores the graphics port by calling the function SetPort.

Initializing MLTE

You need to initialize MLTE before you can use any MLTE function except the two functions that display static
text—TXNDrawUnicodeTextBox and TXNDrawCFStringTextBox. You should initialize MLTE at the same
time you call other initialization functions for your application.

At the very least, to use MLTE your application must call the MLTE initialization function TXNInitTextension.
On a more practical level, most applications need to provide users with a Font menu or Fonts window. So
your application should also set up the menu bar and the Font user interface in addition to calling the MLTE
initialization function TXNInitTextension. To set up your application to use MLTE functions and provide
users with a Font menu you need to perform the tasks described in this section.

Setting Up Font Descriptions

When you call the MLTE initialization function TXNInitTextension, you pass an array of font descriptions,
which are structures of type TXNMacOSPreferredFontDescription. Each font description specifies the
font family ID, point size, style, and encoding. The array can be NULL or can have an entry for any encoding
for which you would like to designate a default font. You can use the MLTE constants kTXNDefaultFontName,
kTXNDefaultFontStyle, and kTXNDefaultFontSize as the font family ID, point size, and style values
for a font description. You can supply an encoding of type TextEncoding, created using the function
CreateTextEncoding. See Listing 3-2 (page 27) for an example of assigning font default values to a single
font description.

26 Initializing MLTE
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Assigning Initialization Options

You can specify whether MLTE should support data types other than text, such as graphics, movies, and
sound, in your application. You can specify other data types by using the initialization option masks described
in Inside Mac OS X: MLTE Reference. See Listing 3-2 (page 27) for an example of assigning initialization
options using the option masks supplied by MLTE.

Calling the MLTE Initialization Function

You initialize MLTE by calling the TXNInitTextensionfunction. You need to call this function only once.
Calling it more than once returns the result code kTXNAlreadyInitializedErr and has no effect. If for
some reason you want to initialize MLTE again while your application is running, you must first call the
TXNTerminateTextensionfunction.

Listing 3-2 shows how you can initialize MLTE using a MyInitializeMLTEfunction. You call the
MyInitializeMLTE function from your application’s one-time-only initialization function. An detailed
explanation for each numbered line of code appears following the listing.

Listing 3-2 Initializing MLTE

void MyInitializeMLTE (TextEncodingBase myTextEncodingBase)
{
 OSErr status;
 TXNInitOptions options;

// 1 TXNMacOSPreferredFontDescription defaults;

 status = ATSUFindFontFromName ("Times Roman",
 strlen("Times Roman"),
 kFontFullName, kFontNoPlatform,
 kFontNoScript, kFontNoLanguage,
 &theFontID);

// 2 defaults.fontID = theFontID;
// 3 defaults.pointSize = kTXNDefaultFontSize;
// 4 defaults.fontStyle = kTXNDefaultFontStyle;

 defaults.encoding = CreateTextEncoding (myTextEncodingBase,
 kTextEncodingDefaultVariant,

// 5 kTextEncodingDefaultFormat);

 options = kTXNWantMoviesMask | kTXNWantSoundMask |
// 6 kTXNWantGraphicsMask;

// 7 status = TXNInitTextension (&defaults, 1, options);
 if (status != noErr)

// 8 MyAlertUser (eNoInitialization);
}

Here’s what the code does:

1. Declares a data structure to hold the default font values.

2. Sets Times Roman as the default font by calling the ATSUI function ATSUFindFontFromName to obtain
the font ID associated with the font name. If you don’t need to assign a particular font you can assign
the default system font using the following line of code:

Initializing MLTE 27
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

defaults.fontID = kTXNDefaultFontName;

3. Assigns the default font size.

4. Assigns the default font style.

5. Assigns the default text encoding. The encoding must be a TextEncoding data type, created by calling
the Text Encoding Manger function CreateTextEncoding. The sample function MyInitializeMLTE
uses the TextEncodingBase passed to the function. You would either need to determine the current
text encoding base or provide one of the Base Text Encoding constants defined in the Text Encoding
Conversion Manager.

6. Assigns initialization options. The sample code sets up options to support movies, sound, and graphics
embedded in text data.

7. Initializes MLTE by calling the function TXNInitTextension. You need to pass an array of font
descriptions. In this case, there is only one description in the array. You also need to pass the initialization
options.

8. Checks for an error condition, and if there is one, calls your function to handle the error. You can’t use
MLTE unless it initializes without error. See “Posting an Alert” (page 44) for information on writing an
alert function.

Setting Up the Menu Bar

Your application needs to set up menus as part of its initialization function. Once you’ve set up the menu
bar, you can use MLTE functions to create a Font menu and handle user interaction with the Font menu.

Creating a Font Menu Object

The TXNFontMenuObjectstructure is an opaque structure that MLTE uses to handle user interaction with
the Font menu. You create a Font menu object by calling the TXNNewFontMenuObjectfunction. You should
create a font menu object at the same time you are preparing to display your menu bar.

When you call the TXNNewFontMenuObject function, you must provide the Font menu reference, the menu
ID, and the menu ID at which hierarchical menus begin. By default, MLTE creates hierarchical menus similar
to what is shown in Figure 2-2 (page 14).

Listing 3-3 shows how your application can create a Font menu object. If you want to display a check mark
next to the active font in the Font menu the first time a user opens the menu, you must call the function
TXNPrepareFontMenu. However, you call that function right after you create a text object, as shown in
Listing 3-6 (page 33).

Listing 3-3 Creating a Font menu object

 void MySetUpFontMenu (MenuRef myMenuRef, SInt16 myMenuID)
{

// 1 TXNFontMenuObject myFontMenuObject;
 OSStatus status;

 status = TXNNewFontMenuObject (myMenuRef,

28 Initializing MLTE
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 myMenuID,
 kStartHierMenuID,

// 2 &myFontMenuObject);
 if (status != noErr)

// 3 MyAlertUser (eNoFontMenuObject);
// 4 DrawMenuBar();

 }

Here’s what the code does:

1. Declares a TXNFontMenuObject data type.

2. Creates a Font menu object by calling the MLTE function TXNNewFontMenuObject. You must supply a
value greater than 160 that specifies the menu ID at which hierarchical menus begin. The sample code
uses a an application-defined constant kStartHierMenuID. Note that MLTE creates hierarchical menus
automatically on systems that use ATSUI. On output, &myFontMenuObject points to a new Font menu
object.

3. Checks for an error. If there is one, calls your function to notify the user. See “Posting an Alert” (page 44)
for information on writing an alert function.

4. Displays the menu bar by calling the Menu Manager function DrawMenuBar.

Note: If you want to provide a Fonts window in your application instead of a Font menu, see Apple Type
Services for Fonts Programming Guide.

Terminating MLTE

You need to call the TXNTerminateTextensionfunction when you terminate your application. Listing 3-4
shows how you can terminate MLTE when your application quits. You should first check to make sure all the
document windows are closed and the Font menu object is disposed of before you terminate MLTE so that
your application quits gracefully. A detailed explanation for each numbered line of code appears following
the listing.

Listing 3-4 Terminating MLTE in your application’s termination function

void MyTerminate (TXNFontMenuObject myFontMenuObject)
{
 WindowPtr theWindow;
 Boolean closed;

 closed = true;
 do {

// 1 theWindow = FrontWindow ();
// 2 if (theWindow != NULL)

 closed = MyDoCloseWindow (theWindow);
 }

// 3 while (closed && (theWindow != NULL));
 if (closed)
 {

// 4 if (myFontMenuObject != NULL)

Terminating MLTE 29
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 {
 OSStatus status;

// 5 status = TXNDisposeFontMenuObject (myFontMenuObject);
 // If there is an error
 if (status != noErr)

// 6 MyAlertUser (eNoDisposeFontMenuObject);
// 7 myFontMenuObject = NULL;

 }
 }

// 8 TXNTerminateTextension ();
}

Here’s what the code does:

1. Gets the front window by calling the Window Manager function FrontWindow.

2. Checks to see if there is a window. If so, calls your function to close the window.

3. Iterates through each open window, closing each one.

4. When all the windows are closed, check for a Font menu object. If your application uses a Fonts window
instead of a Font menu, you do not need to check for or dispose of a Font menu object.

5. Disposes of the Font menu object by calling the MLTE function TXNDisposeFontMenuObject.

6. Checks for an error. If there is one, calls your function to notify the user. See “Posting an Alert” (page 44)
for information on writing an alert function.

7. Sets the Font menu object to NULL. You need to do this even if there is an error.

8. Terminates MLTE by calling the function TXNTerminateTextension.

Working With Text Objects

Text objects (TXNObject) are the fundamental structures in MLTE; most MLTE functions operate on them.
A text object contains text along with character attribute information. Text objects also contain document-wide
formatting and privileges information and the private variables and functions necessary to handle text
formatting at the document level. (For an overview of text objects see “Text Objects (TXNObject)” (page
11).)

To work with text objects, your application must perform the tasks described in this section.

Creating a Window

Creating the text object is not of much use to your users unless you attach the text object to a window and
make sure the window is visible. Your application can either create a text object and attach it to a window
using the function TXNAttachObjectToWindow, or it can create a window and then create a text object
with a reference to the window. Listing 3-6 (page 33) shows how to attach a new text object to a window.

30 Working With Text Objects
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Because of how MLTE uses Carbon events internally, the window that the document will be displayed in
must have the standard event handlers installed. This can be easily done by doing one of the following:

 ■ If you create the window by calling the Window Manager functions CreateNewWindow or
CreateCustomWindow you should include the attribute kWindowStandardHandlerAttribute.

Note: If you have an existing window, you can call the function ChangeWindowAttributes to add
kWindowStandardHandlerAttribute to the window.

For more information see Handling Carbon Windows and Controls.

 ■ If you create the window from an Interface Builder nib file, you can call the Carbon Event Manager
function InstallStandardEventHandler to install the standard event handlers on the window's
target, as shown in Listing 3-5. For more information on the standard event handler see Carbon Event
Manager Programming Guide.

A detailed explanation for each numbered line of code appears following Listing 3-5.

Listing 3-5 A function that creates a window from a nib file

WindowRef MyMakeNewWindow (CFStringRef inName)
{
 IBNibRef windowNib;
 OSStatus status;
 WindowRef theWindow;

// 1 EventTypeSpec windowEventSpec[] = {
 {kEventClassWindow, kEventWindowFocusRelinquish},
 {kEventClassWindow, kEventWindowFocusAcquired},
 {kEventClassWindow, kEventWindowCursorChange},
 {kEventClassCommand, kEventCommandProcess}};

// 2 status = CreateNibReference (CFSTR ("window"), &windowNib);
// 3 require_noerr (status, CantGetNibRef);

// 4 status = CreateWindowFromNib(windowNib, CFSTR ("Window"), &theWindow);
// 5 require_noerr (status, CantCreateWindow);

// 6 DisposeNibReference (windowNib);
 status = InstallWindowEventHandler (theWindow,
 NewEventHandlerUPP (MyWindowEventHandler),
 4, windowEventSpec,

// 7 (void *) theWindow, NULL);
// 8 status = SetWindowTitleWithCFString (theWindow, inName);

 return theWindow;

 CantCreateWindow:
 CantGetNibRef:
 return NULL;
}

Here’s what the code does:

1. Declares an event specification. Your application would declare only those events it wants to handle. In
this example, the following four events are specified:

Working With Text Objects 31
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 ■ Window focus relinquished. You need to handle this event only if your application uses a Fonts
window, as you will need to update the Fonts window display accordingly. See Inside Mac OS X:
Managing Fonts for information on handling focus relinquished and focus acquired events.

 ■ Window focus acquired. You need to handle this event only if your application uses a Fonts window,
as you will need to update the Fonts window to display the current font selection in the window
acquiring focus.

 ■ Window cursor changed. When this event occurs, you can call your function to update the menus.
See “Updating the File and Edit Menus” (page 38) for more information on updating menus.

 ■ Command process. When this event occurs, you can call your function to process the command
chosen by the user. See “Calling the Appropriate MLTE Function” (page 16) for more information
on processing commands.

2. Creates a nib reference for the window by calling the Interface Builder Services function
CreateNibReference. You must supply two parameters:

 ■ a CFString that represents the name of the nib file that defines the window user interface but
without the .nib extension

 ■ a pointer to an IBNibRef data type. On return, this points to a reference to the nib file.

3. Checks for errors by calling the macro require_noerr. It the nib reference can’t be created, the function
terminates, as it should.

4. Creates a window from the nib reference by calling the Interface Builder Services function
CreateWindowFromNib. On return, theWindow is a window reference to the newly-created window.

5. Checks for errors by calling the macro require_noerr. It the window reference can’t be created, the
function terminates, as it should.

6. Disposes of the nib reference.

7. Installs a window event handler on the window. This example installs a window event handler
(MyWindowEventHandler) created by the application to handle the four events discussed previously.
Everything except these four events will be handled by the standard window event handler. If you want
to install only the standard event handler, you would use this code:

status = InstallStandardEventHander (theWindow);

8. Set the title of the newly created window to the name passed to the function MyMakeNewWindow.

Setting Options for the Text Object’s Frame

Before you create a text object your application must specify options for the text object’s frame (that is, the
view rectangle). Frame options determine whether the window in which the text object is displayed has
scroll bars, a size box, or a number of other options. Listing 3-6 (page 33) shows how an application uses
the MLTE frame option masks described in InsideMacOSX:MLTEReference to specify a frame that has horizontal
and vertical scroll bars and a size box.

32 Working With Text Objects
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Creating a Text Object

You create a text object using the TXNNewObject function. Listing 3-6 (page 33) shows a sample
function—MyCreateTextObject—that creates a text object and attaches it to a window. Error handling
code has been omitted in the sample function so that you can more easily read the sequence of functions
calls. A detailed explanation for each numbered line of code appears following the listing.

Once the text object is attached to the window, the MyCreateTextObject function sets the state of the
scroll bars using the TXNActivatefunction and then prepares the Font menu for display. The function
TXNPrepareFontMenu displays a check mark next to the active font in the Font menu the first time the user
opens the Font menu associated with the text object. If you don’t call the TXNPrepareFontMenu function,
the check mark is not displayed until the second time the user opens the Font menu associated with the text
object.

Listing 3-6 Creating a text object

OSStatus MyCreateTextObject (const FSSpec *fileSpecPtr,
 WindowRef theWindow)
{
 TXNObject textObject = NULL; // text object
 TXNFrameID frameID = 0; // ID for text frame
 TXNFrameOptions frameOptions;

 frameOptions = kTXNShowWindowMask | kTXNWantVScrollBarMask |
// 1 kTXNWantHScrollBarMask |kTXNDrawGrowIconMask;

 status = TXNNewObject (fileSpecPtr,
 theWindow,
 NULL,
 frameOptions,
 kTXNTextEditStyleFrameType,
 kTXNTextensionFile,
 kTXNSystemDefaultEncoding,
 &textObject,
 &frameID,

// 2 0);
 SetWindowProperty (theWindow, kPropertyTag, kObjectTag,

// 3 sizeof (TXNObject), &textObject);
 SetWindowProperty (theWindow, kPropertyTag, kFrameTag,

// 4 sizeof (TXNFrameID),&frameID);
// 5 status = TXNPrepareFontMenu (object, gTXNFontMenuObject);

 return status;
 }

Here’s what the code does:

1. Sets frame options for the text object’s frame. The frame options shown here specify to display a window
when the text object is created, and that the frame should have horizontal and vertical scroll bars and
a size box.

2. Creates a text object. If fileSpecPtr is NULL the object is empty. Otherwise the object has the contents
of the file to which fileSpecPtr points. The remaining parameters specify the following:

 ■ theWindow, is a reference to the window in which you want the document displayed

 ■ NULL specifies to use the window’s port rectangle as the frame

Working With Text Objects 33
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 ■ frameOptions are the options specified previously (See item 1.)

 ■ kTXNTextEditStyleFrameType specifies to use a Text Edit-style frame

 ■ kTXNTextensionFile specifies MLTE file format as the file type of the text object

 ■ kTXNSystemDefaultEncoding specifies to use the default text encoding

 ■ textObject is the newly created text object you obtain from the function. You need this later when
you call other MLTE functions to operate on the text object.

 ■ frameID is the text frame ID you obtain from the function. You need this later when you call other
MLTE functions to operate on the text object.

 ■ 0 specifies you have no private data. This is where you can specify a reference constant for your by
your application.

Note: When you want to allow text input to this text object, you must call the function TXNFocus.

3. Calls the Window Manager function SetWindowProperty to save the text object as a property of the
window. This allows your application to retrieve the text object later.

4. Calls the Window Manager function SetWindowProperty to save the frame ID as a property of the
window. This allows your application to retrieve the frame ID later.

5. Call the function TXNPrepareFontMenu to prepare the Font menu for display. When you call this
function, MLTE displays a check mark next to the active font. You can call this function only if you have
already created a valid Font menu object using the function TXNNewFontMenuObject.

Note: If you are using a Fonts window instead of a Font menu in your application, then you do not call
the MLTE function TXNPrepareFontMenu. See Inside Mac OS X: Managing Fonts for an example of what
you would need to do to support the Fonts window.

Disposing of a Text Object

When you close a window associated with a text object, you should call the TXNDeleteObjectfunction to
release the text object and all associated data structures from memory.

Listing 3-7 (page 34) shows a sample function—MyDisposeObject—that first checks the
TXNGetChangeCount function to see if the text object has been modified since it was created or saved last.
If it has been modified, you can give the user an opportunity to save the changes before the object is deleted
and the window is disposed of. A detailed explanation for each numbered line of code appears following
the listing.

Listing 3-7 Disposing of a text object

Boolean MyDisposeObject (WindowPtr theWindow)
{
 TXNObject textObject = NULL;
 Boolean okToClose = true;

// 1 MyGetTextObject (theWindow, &textObject);
// 2 if (TXNGetChangeCount (textObject))

34 Working With Text Objects
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 okToClose = MyDoSaveDialog (window, textObject);
// 3 if (okToClose)

 {
 TXNDeleteObject (textObject);
 DisposeWindow (theWindow);
 }
 return okToClose;
}

Here’s what the code does:

1. Calls your function to obtain the text object associated with the window. If you saved the text object as
a property of the window using SetWindowProperty, you can retrieve it by calling the Window Manager
function GetWindowProperty.

2. Checks to see if the text object has changed. If so, calls your function to open the Save dialog and gives
the user an opportunity to save the text object to a file.

3. If it is okay to close the window, calls the function TXNDeleteObject to dispose of the text object and
calls the Window Manager function DisposeWindow to dispose of the window.

Handling File and Edit Menu Commands

This section shows how your application can handle commands from the File and Edit menus. MLTE provides
a variety of functions to handle these menu commands, such as the functions TXNCut and TXNSelectAll.
Regardless of the command, your application must call the appropriate MLTE function to handle the command
and update the menu items.

Calling the Appropriate MLTE Function

If you’ve installed a window event handler to process menu commands, the Carbon event manager will call
your handler whenever the user chooses a command from the menu. Your handler can then call the
appropriate MLTE function to process the command.

Listing 3-8 shows how your application can handle window-related menu events from within a
MyWindowEventHandler function. A detailed explanation for each numbered line of code appears following
the listing.

Listing 3-8 Handling menu commands from the File and Edit menus

pascal OSStatus MyWindowEventHandler (EventHandlerCallRef myHandler,
 EventRef event,

// 1 void * userData)
{

 OSStatus result,
 status = eventNotHandledErr;

// 2 UInt32 eventClass = GetEventClass (event);
 HICommand command;

Handling File and Edit Menu Commands 35
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 TXNObject textObject;

 switch (eventClass)
 {

// 3 case kEventClassWindow:
 {
 // Your code to handle any window events
 // such as window-focus and window-relinquish events.
 }

// 4 case kEventClassCommand:
 {
 GetEventParameter (event, kEventParamDirectObject,
 typeHICommand, NULL,
 sizeof (HICommand),

// 5 NULL, &command);
// 6 MyGetTextObject (theWindow, &textObject);
// 7 switch (command.commandID)

 {
 case kHICommandUndo:

// 8 TXNUndo (textObject);
 break;
 case kHICommandRedo:

// 9 TXNRedo (textObject);
 break;
 case kHICommandCut:

// 10 status = TXNCut (textObject);
 break;
 case kHICommandCopy:

// 11 status = TXNCopy (textObject);
 break;
 case kHICommandPaste:

// 12 status = TXNPaste (textObject);
 break;
 case kHICommandClear:

// 13 status = TXNClear (textObject);
 break;
 case kHICommandSelectAll:

// 14 TXNSelectAll (textObject);
 break;
 case kHICommandPageSetup:

// 15 TXNPageSetup (textObject);
 break;
 case kHICommandPrint:

// 16 TXNPrint (textObject);
 break;
 case kHICommandSave:

// 17 MyDoSave (textObject);
 break;
 case kHICommandSaveAs:

// 18 MyDoSaveAs (textObject);
 break;
 case kHICommandClose:

// 19 MyDoCloseDoc (textObject);
 break;
 } // switch command.commandID
 break;
 }// case kEventClassCommand

36 Handling File and Edit Menu Commands
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 }// switch eventClass
// 20 MyUpdateMenus();

 return status;
}

Here’s what the code does:

1. Declares parameters for the window event handler. When the Carbon Event Manager invokes your
handler it passes an event reference from which you can determine the event. It also passes a reference
constant. In this case, userData is a reference to the window on which the handler is installed.

2. Gets the event class from the event reference by calling the Carbon Event Manager function
GetEventClass.

3. Checks for a window class event. You need this only if you want to handle any window events. If your
application implements a Fonts window instead of a Font menu, you need to handle window focus and
window relinquish events.

4. Checks for a command class event. This includes any command issued from any menu in the menu bar.

5. Obtains the parameters associated with a command event by calling the Carbon Event Manager function
GetEventParameter. In this case, gets the HI command that triggered the event.

6. Calls your function to obtain the text object associated with the window. If you saved the text object as
a property of the window using SetWindowProperty, you can retrieve it by calling the Window Manager
function GetWindowProperty.

7. Checks for one of the standard command ID constants defined in the Carbon Event Manager.

8. Calls the function TXNUndo to undo the last user action. The undo stack is 32 levels deep

9. Calls the function TXNRedo to redo the last user action.

10. Calls the function TXNCut to delete the current selection and copy it to the private MLTE scrap.

11. Calls the function TXNCopy to copy the current selection to the private MLTE scrap.

12. Calls the function TXNPaste to paste the contents of the Clipboard into the text object. Before you call
this function, you can call the function TXNIsScrapPastable to make sure the Clipboard contains data
supported by the MLTE.

13. Calls the function TXNClear to delete the current selection. This function does not add the deleted
selection to the private MLTE scrap.

14. Calls the function TXNSelectAll to select all text in the frame of a text object. You can check whether
your application should enable the Select All menu item by calling the function TXNDataSize to see if
the text object contains any data.

15. Calls the MLTE function TXNPageSetup to display the Page Setup dialog. This function handles all
changes in response to page layout settings your user makes.

16. Calls the MTLE function TXNPrint to display the Print dialog. This function handles all changes in
response to print settings your user makes, then prints the text associated with the text object.

17. Closes the window by calling your function to close the window and dispose of the text object.

Handling File and Edit Menu Commands 37
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

18. Calls your function to save the text object. Your MyDoSave function should call the MLTE function
TXNSave to save the text object and perform any clean-up tasks that are necessary.

19. Calls your function to save a copy of the text object. Your MyDoSaveAs function should call the MLTE
function TXNSave to save the text object and perform any clean-up tasks that are necessary.

20. Calls your function to update the menu items so the items are enabled or disabled appropriated. See
“Updating the File and Edit Menus” (page 38) for more information.

If your application uses a Font menu instead of a Fonts window, you also need to to check for the appropriate
case (hierarchical or non hierarchical) and then execute the following code:

if (gTXNFontMenuObject!= NULL)
 status = TXNDoFontMenuSelection (textObject,
 gTXNFontMenuObject,
 menuID, menuItem);

Updating the File and Edit Menus

MLTE provides functions that your application can use to determine whether File and Edit menu items should
be enabled or disabled. (When a menu item is enabled, a user can select it from the menu. When a menu
item is disabled, it appears dimmed to the user.) Figure 3-1 shows two Edit menus, the first with more items
enabled than the second.

Note: If your application uses an MLTE Font menu object, you do not need to update the Font menu. When
your application handles the Font command, MLTE updates the menu automatically.

Figure 3-1 Edit menus with a variety of items enabled and disabled

The Cut, Copy, and Clear items from the Edit menu operate on selected text. Before you enable these items
in the Edit menu, your application should check whether the user has selected text by calling the
TXNIsSelectionEmptyfunction. If TXNIsSelectionEmpty returns false (meaning text is selected) then
your application should enable the Cut, Copy, and Clear menu items.

The Paste item in the Edit menu should be enabled if the current scrap contains data supported by MLTE.
You can test the current scrap by calling the TXNIsScrapPastablefunction. If TXNIsScrapPastable
returns true, then your application should enable the Paste menu item.

38 Handling File and Edit Menu Commands
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

The Select All menu item should be enabled if a text object contains any data at all. The TXNDataSizefunction
returns the size of a text object. If the returned value is not zero, your application should enable the Select
All menu item.

The Save menu item should be enabled if any changes were made to the text object since the text object
was created or saved last. You can check for changes by calling the TXNGetChangeCountfunction. If the
function returns a value greater than 0, then changes have been made.

The Undo and Redo command should be enabled if the previous action by the user is undoable or redoable.
You can use the functions TXNCanUndo and TXNCanRedo to test whether these menu items should be
enabled. These functions also return a value that indicates the action than can be undone or redone. You
can use this information to customize the Edit menu. For example, Figure 3-1 (page 38) shows an Undo
Typing menu item instead of simple Undo menu item. See “Customizing MLTE Support for Carbon
Events” (page 54) for information on how to provide a callback that customizes the Undo menu item.

Listing 3-9 shows a function that updates the File and Edit menu items. A detailed explanation for each
numbered line of code appears following the listing.

Listing 3-9 A function that updates the File and Edit menu items

OSStatus MyUpdateMenus ()
{
 TXNObject textObject = NULL;
 TXNActionKey actionKey;
 OSStatus status = noErr;
 WindowRef theWindow;

 if (theWindow = FrontWindow())
// 1 MyGetTextObject (theWindow, &textObject);
// 2 if (TXNGetChangeCount (textObject) > 0)

 {
 EnableMenuCommand (NULL, kHICommandSave);
 EnableMenuCommand (NULL, kHICommandSaveAs);
 }
 else
 {
 DisableMenuCommand (NULL, kHICommandSave);
 DisableMenuCommand (NULL, kHICommandSaveAs);
 }

// 3 if (theWindow != NULL)
 {
 EnableMenuCommand (NULL, kHICommandPageSetup);
 EnableMenuCommand (NULL, kHICommandPrint);
 EnableMenuCommand (NULL, kHICommandClose);
 }
 else
 {
 DisableMenuCommand (NULL, kHICommandPageSetup);
 DisableMenuCommand (NULL, kHICommandPrint);
 DisableMenuCommand (NULL, kHICommandClose);
 }

// 4 if (!TXNIsSelectionEmpty (textObject))
 {
 EnableMenuCommand (NULL, kHICommandCut);
 EnableMenuCommand (NULL, kHICommandCopy);
 EnableMenuCommand (NULL, kHICommandClear);

Handling File and Edit Menu Commands 39
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 }
 else
 {
 DisableMenuCommand (NULL, kHICommandCut);
 DisableMenuCommand (NULL, kHICommandCopy);
 DisableMenuCommand (NULL, kHICommandClear);
 }

// 5 if (TXNIsScrapPastable () && (textObject != NULL))
 EnableMenuCommand (NULL, kHICommandPaste);
 else
 DisableMenuCommand (NULL, kHICommandPaste);

// 6 if (TXNDataSize (textObject) > 0)
 EnableMenuCommand (NULL, kHICommandSelectAll);
 else
 DisableMenuCommand (NULL, kHICommandSelectAll);

// 7 if (TXNCanUndo (textObject, &actionKey))
 EnableMenuCommand (NULL, kHICommandUndo);
 else
 DisableMenuCommand (NULL, kHICommandUndo);

// 8 if (TXNCanRedo (textObject, &actionKey))
 EnableMenuCommand (NULL, kHICommandRedo);
 else
 DisableMenuCommand (NULL, kHICommandRedo);
 return status;
}

Here’s what the code does:

1. Calls the Window Manger function FrontWindow to obtain a reference to the window. If the window
is not NULL, calls your function to obtain the text object associated with the window. If you saved the
text object as a property of the window using SetWindowProperty, you can retrieve it by calling the
Window Manager function GetWindowProperty.

2. Calls the function TXNGetChangeCount to get the number of times the text object has changed since
the last time it was saved. If there have been changes, enables the Save and Save As items in the File
menu. If not, these menu items are disabled. The Menu Manager functions EnableMenuCommand and
DisableMenuCommand take two parameters, a menu reference and a command ID. If you pass NULL
instead of a menu reference, the Menu Manager starts the search for the command at the root menu.

3. Makes sure the window is not NULL. If it is not NULL, you can assume the window is open and you should
enable the Print, Page Setup, and Close items. Otherwise, disable these items.

4. Calls the function TXNIsSelectionEmpty to see whether the current selection is empty. If the selection
is not empty, enables the Cut, Copy, and Clear items in the Edit menu. If the selection is empty, disables
the menu items.

5. Calls the function TXNIsScrapPastable to see whether the Clipboard contains data supported by
MLTE. If there is data that can be pasted, enables the Paste item in the Edit menu. If the data is not
supported by MLTE, or there is no data available to paste, disables the menu item.

6. Calls the function TXNDataSize and checks to see if the size of the data in the text object is greater
than 0. Any value other than zero indicates that the text object is not empty, so the code enables the
Select All item in the Edit menu. If the text object is empty, disables the menu item.

40 Handling File and Edit Menu Commands
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

7. Calls the function TXNCanUndo to see if the last user action can be undone. If the action can be undone,
enables the Undo item in the Edit menu. Otherwise it disables the menu item. On output, this function
provides a TXNActionKey value that identifies the action that can be undone. You can use this
information to customize the Undo menu item with the name of the item than can be undone. See
“Writing an Action Key Mapping Callback Function” (page 59) for more information.

8. Calls the function TXNCanRedo to see if the last user action can be redone. If the action can be redone,
enables the Redo item in the Edit menu. Otherwise it disables the menu item.

Setting Font Size and Style

You can set font size and style for the current selection by calling the TXNSetTypeAttributesfunction.
The current selection can be a range of text selected by the user or specified by your application. You specify
the current selection with the iStartOffset and iEndOffset parameters of the TXNSetTypeAttributes
function.

MLTE specifies a type attribute using a triple. A triple is an attribute tag, the size of the attribute, and a value
for the attribute. Attribute tags are constants. The attributes you can specify are described in Inside Mac OS
X: MLTE Reference and include the following attribute tags for font size and style:

 ■ kTXNQDFontSizeAttribute

 ■ kTXNQDFontStyleAttribute

The following constants specify attribute sizes for font size and style:

 ■ kTXNFontSizeAttributeSize

 ■ kTXNQDFontStyleAttributeSize

MLTE stores the triple that specifies a type attribute in a TXNTypeAttributesstructure. This structure
contains the TXNAttributeDataunion, and it is that union you use to pass the triple that specifies a type
attribute. The tag field of the TXNTypeAttributes structure defines the type of data in the
TXNAttributeData union, and the size field of the TXNTypeAttributes structure defines the size of the
data in the TXNAttributeData union.

Typically your application would have a function that handles size and style selections whether these selections
occur in Size and Style menus or in the Size and Style columns of a Fonts window. If a user selects a new font
size or style, you change the appropriate values in the TXNTypeAttributes structure, then you call the
TXNSetTypeAttributes function to change the attributes for the current selection.

The code fragment in Listing 3-10 shows how your application can change size and style changes for the
current text selection. A detailed explanation for each numbered line of code appears following the listing.

Listing 3-10 Changing size and style attributes for selected text

OSStatus ChangeSizeAndStyleAttributes (TXNObject myTextObject,
 Fixed myNewSize, Style myNewStyle);
{
 OSStatus status = noErr;
 TXNTypeAttributes typeAttr[2];

Setting Font Size and Style 41
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

// 1 typeAttr[0].tag = kTXNQDFontSizeAttribute;
 typeAttr[0].size = kTXNFontSizeAttributeSize;
 typeAttr[0].data.dataValue = myNewSize;

// 2 typeAttr[1].tag = kTXNQDFontStyleAttribute;
 typeAttr[1].size = kTXNQDFontStyleAttributeSize;
 typeAttr[1].data.dataValue = myNewStyle;
 status = TXNSetTypeAttributes(myTextObject, 2, typeAttr,
 kTXNUseCurrentSelection,

// 3 kTXNUseCurrentSelection);
 return status;
}

Here’s what the code does:

1. Assigns a triple (attribute tag, size of the attribute, and attribute value) to specify the font size.

2. Assigns a triple (attribute tag, size of the attribute, and attribute value) to specify the font style.

3. Calls the function TXNSetTypeAttributes to set the size and style attribute for the current selection.

Handling Multiple Text Objects

When your application manages multiple text objects, it must make sure the appropriate text object has user
focus. The user focus is the part of your application's user interface toward which keyboard input is directed.
You can bring the appropriate text object into user focus by calling the TXNFocusfunction.

When you have multiple text objects you may need to handle the activation state of the text objects as well
as the user focus. The activation state is independent of the user focus and can be turned on or off by calling
the function TXNActivate.

Keep in mind that the TXNActivate function does not change the user focus. You typically call the
TXNActivate function when you have multiple text objects in a window and you want all of them to be
scrollable even though only one at a time can have user focus. This lets application users scroll the inactive
text without changing the focus from another text area.

Note that if your application sets the iActiveState parameter of the TXNActivate function to
kScrollBarsAlwaysActive, the scroll bars are active even when the text object does not have user focus.
Before you call TXNActivate, you should call the function TXNFocus to focus the scroll bars and insertion
point so they become active or inactive, depending on whether you want the text object to obtain user focus.

When your application brings a text object into user focus by calling the TXNFocusfunction, the function
removes any visual indication of its inactive state and then sets the state of the scroll bars so they are drawn
correctly in response to update events. Figure 3-2 (page 43) shows examples of text objects that are activated
(and have user focus) and deactivated (without user focus).

42 Handling Multiple Text Objects
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Figure 3-2 An activated and a deactivated text object, with and without user focus

Listing 3-11 shows a MyDoUserFocus function that handles user focus. A detailed explanation for each
numbered line of code appears following the listing.

Listing 3-11 Handling an activation event

void MyDoUserFocus (WindowPtr theWindow, Boolean becomingActive)
{
 TXNObject textObject;
 TXNFrameID frameID = 0;
 OSStatus status = noErr;

// 1 MyGetTextObject (theWindow, &textObject);
// 2 MyGetFrameID (theWindow, &frameID);
// 3 TXNFocus (textObject, becomingActive);

// 4 if (becomingActive)
 {
 TXNActivate (textObject, frameID, kScrollBarsAlwaysActive);
 MyUpdateMenus ();
 }

// 5 else
 TXNActivate (textObject, frameID, kScrollBarsSyncWithFocus);
 }

Here’s what the code does:

1. Calls your function to obtain the text object associated with the window. If you saved the text object as
a property of the window using SetWindowProperty, you can retrieve it by calling the Window Manager
function GetWindowProperty.

2. Calls your own function to get the frame ID of the text object associated with the window.

3. Calls the function TXNFocus to change the user focus of the scroll bars and insertion caret to the state
specified by the becomingActive parameter.

Handling Multiple Text Objects 43
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

4. If the text object obtains user focus, calls the function TXNActivate to set the state of the scroll bars
so they are drawn correctly. Then, calls your function to adjust the menus so menu items are enabled
and disabled appropriately.

5. If the text object loses user focus, calls the function TXNActivate to synchronize the activity state of
the scroll bars with the focus state of the frame. In this case, only when the frame has user focus does
the frame have active scroll bars.

Posting an Alert

When an alert is posted, the Dialog Manager starts a sub-event loop. Keyboard input is instead returned to
the Dialog Manager, which in most cases ignores the input. Keyboard input is not sent to your application
and does not appear in your application's document.

MLTE uses event handlers to receive input directly from the Unicode input method. Keyboard events don't
flow through the event loop and are not returned as event records. MLTE receives keyboard input and places
the input into the active MLTE text object (TXNObject).

When your application deactivates an MLTE text object, the keyboard input handlers are removed. Typically,
your application should deactivate an MLTE text object when it receives a deactivate event for the window
that contains the object. When the user switches between two document windows, the application receives
the deactivate event in its main event loop, deactivates the old MLTE text object, activates the new MLTE
text object, and keyboard input goes to the newly active document window.

When you post an alert, however, the Dialog Manager's sub-event loop receives the deactivate event for the
document window. Your application doesn't see the event so it doesn't deactivate the MLTE text object
associated with the document window. When a user presses keys, the input is sent to the MLTE text object
instead of the Dialog Manager's sub-event loop. Because the MLTE text object is active, it still has its event
handlers installed.

To avoid this situation, you must provide a modal event filter callback to the Dialog Manger Alert function.
The Dialog Manager passes the deactivate event for your application's window to the modal event filter
callback, and the callback deactivates the TXNObject. Once the MLTE text object is deactivated by the
callback, the document window no longer receives keystrokes while the Alert dialog is open.

Working With Document-Wide Settings

MLTE has a variety of settings that apply to an entire text object, such as line direction, tab values, read-only
privileges, keyboard synchronization, automatic indentation, word wrap, caret display, font substitution, and
type of input for input methods. You can get and set global settings with the TXNGetTXNObjectControls
and TXNSetTXNObjectControlsfunctions. This section shows you how to implement code for changing
two document-wide settings—word wrap and line justification. You can take the same approach shown here
to implement code that changes other document-wide settings.

44 Posting an Alert
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Implementing Word Wrap

Your application can provide a Layout menu that allows the user to enable and disable automatic word wrap.
Once you create a Layout menu that contains a word-wrap item, you can indicate to the user whether
automatic word wrap is enabled or disabled by displaying a check mark or other visual indicator next to the
item if it is enabled. Figure 3-3 (page 45) shows a Layout menu that has the Word Wrap item checked.

Figure 3-3 Using check marks to show enabled Layout settings

When a user changes the word-wrap setting, your application can use the TXNGetTXNObjectControls
and TXNSetTXNObjectControls functions to get the current setting and then to toggle the setting
appropriately. These functions are used to get and set a number of document-wide settings, so you need to
use the iControlTags parameter to specify that automatic word wrap is the setting you want to change.
MLTE provides a constant called kTXNWordWrapStateTag that you can use for the iControlTags parameter.

You use the iControlData parameter of the TXNSetTXNObjectControls function to specify the new
value of the word-wrap setting. MLTE provides two constants called kTXNAutoWrap and kTXNNoAutoWrap
that you can use to specify the word-wrap state.

Listing 3-12 shows a MyDoWordWrap function that your application can call from a menu-handling function
to enable or disable word wrap in response to what your user selects from a Layout menu you create. A
detailed explanation for each numbered line of code appears following the listing.

Listing 3-12 Toggling the word-wrap setting

OSStatus MyToggleWordWrap (WindowRef theWindow)
{
 TXNObject textObject = NULL;
 OSStatus status = noErr;
 TXNControlTag controlTag[1];
 TXNControlData controlData[1];

// 1 MyGetTextObject (theWindow, &textObject);
// 2 controlTag[0] = kTXNWordWrapStateTag;

 status = TXNGetTXNObjectControls (textObject, 1,
// 3 controlTag, controlData);
// 4 if (controlData[0].uValue == kTXNAutoWrap)

 controlData[0].uValue = kTXNNoAutoWrap;
// 5 else

Working With Document-Wide Settings 45
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

 controlData[0].uValue = kTXNAutoWrap;
 status = TXNSetTXNObjectControls (textObject, false, 1,

// 6 controlTag, controlData);
 return status;
}

Here’s what the code does:

1. Calls your function to obtain the text object associated with the window. If you saved the text object as
a property of the window using SetWindowProperty, you can retrieve it by calling the Window Manager
function GetWindowProperty.

2. Assigns the word-wrap state as the formatting data to obtain.

3. Calls the function TXNGetTXNObjectControls to obtain the current value of the word-wrap state for
the text object associated with the specified window.

4. If the current state is automatic word wrap, set the value to no automatic word wrap.

5. Otherwise, set the value to enable automatic word wrap.

6. Calls the function TXNSetTXNObjectControls to set the value of the word-wrap state for the text
object. The second value passed to this function (false) indicates that none of the other formatting
and privileges attributes should be reset to their default value.

Implementing Line Justification

Your application can provide a Layout menu that allows the user to select a line justification setting. Once
you create a menu that contains line justification items, you can indicate to the user which justification setting
is active by displaying a check mark or other visual indicator next to the item if it is enabled. Figure 3-3 (page
45) shows a Layout menu that has the Justify Full item checked.

When a user changes the line justification setting, your application can use the TXNGetTXNObjectControls
and TXNSetTXNObjectControls functions to get the current setting, then change the setting appropriately.
These functions are used to get and set a number of document-wide settings, so you need to use the
iControlTags parameter to specify that line justification is the setting you want to change. MLTE provides
a constant called kTXNJustificationTag that you can use for the value of the iControlTags parameter.

You use the iControlData parameter of the TXNSetTXNObjectControls function to specify the new
value of the line justification setting. MLTE provides six constants that you can use to specify the
value—kTXNFlushDefault, kTXNFlushLeft, kTXNFlushRight, kTXNCenter, kTXNFullJust, and
kTXNForceFullJust. The kTXNFlushDefault constant indicates text should be flush according to the
line direction. The constant kTXNForceFullJust indicates that every line of text, including the last line,
should be flush left and right.

Listing 3-13 shows a MyDoJustification function that your application can call from a menu-handling
function to implement the type of justification your user selects from a Layout menu you create. A detailed
explanation for each numbered line of code appears following the listing.

Listing 3-13 A function that sets line justification

OSStatus MyDoJustification (WindowRef theWindow,
 SInt32 myNewJustification)

46 Working With Document-Wide Settings
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

{
 TXNObject textObject = NULL;
 OSStatus status = noErr;
 TXNControlTag controlTag[1];
 TXNControlData controlData[1];

// 1 MyGetTextObject (theWindow, &textObject);
// 2 controlTag[0] = kTXNJustificationTag;

 status = TXNGetTXNObjectControls (textObject, 1,
// 3 controlTag, controlData);

 if (controlData[0].sValue != myNewJustification)
 {

// 4 controlData[0].sValue = myNewJustification;
 status = TXNSetTXNObjectControls (textObject, false, 1,

// 5 controlTag, controlData);
 }
 return status;
}

Here’s what the code does:

1. Calls your function to obtain the text object associated with the window. If you saved the text object as
a property of the window using SetWindowProperty, you can retrieve it by calling the Window Manager
function GetWindowProperty.

2. Assigns justification as the formatting data to get.

3. Calls the TXNGetTXNObjectControls to obtain the current justification value for the text object.

4. If the justification value is not equal to that passed to the function, assigns the new value.

5. Calls the function TXNSetTXNObjectControls to set the new justification value.

Advanced Topics

Working With Embedded Objects

Embedded objects are graphics, movie, or sound data embedded in text data. An embedded object is
represented by one character offset in a text object. The offset does not represent the size of the embedded
object, it is merely a placeholder for the object. This means you cannot use the number of offsets to calculate
the size of the text object if your text object contains embedded data. If you need to calculate the size, you
must write your own function to do so.

The TXNGetDatafunction does not copy data that cross a data type boundary. But it may be used to copy
data that cross a text-run boundary. For example, suppose your document consists of this:

If you call the TXNGetData function with a starting offset of 0 and an ending offset of 6, the returned data
would contain the characters “abc def” even though the offsets cross a style-run boundary.

Advanced Topics 47
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

However suppose your document consists of this:

If you call the TXNGetData function with a starting offset of 0 and an ending offset of 6, the function returns
the result code kTXNIllegalToCrossDataBoundariesErr.

If you are not sure whether a text object contains embedded data, you can use the
TXNCountRunsInRangefunction to determine how many runs are in the text object. If there is more than
one run in the range, you can then use the TXNGetIndexedRunInfoFromRangefunction to determine if
the runs contain different types of data. The oRunDataType parameter returns the data type of each run.
Once you know the run type, you can use the function TXNGetData to copy the run data.

Displaying Chemical Equations

Chemical equations, such as the one displayed in Figure 3-4, use subscripts. MLTE treats a subscript as a font
attribute, so you use the function TXNSetTypeAttributes to set the attribute that controls subscripts.

Figure 3-4 Chemical equation that uses a subscript

To subscript the 2 shown in Figure 3-4 you would do the following

 ■ assign values to the TXNTypeAttributes structure to specify the attribute tag, size, and data

 ■ call the MLTE function TXNSetTypeAttributes

You can use the ATSUI constant kATSUCrossStreamShiftTag as the attribute tag. This constant specifies
a cross-stream shift—a shift in a character’s position in the direction against the reading direction. In the
case of Figure 3-4, this is a vertical shift.

The data value associated with the cross-stream shift tag is the amount by which the position should be
changed with respect to the base line. Values can range from -1.0 to 1.0, with negative values indicating
that a character should be drawn lower than the base line. (See Inside Mac OS X: Rendering Unicode Text With
ATSUI for more information on stream shift attribute tags and values.)

Listing 3-14 shows how to set text attributes to display a character as a subscript. If you want to display the
equation subscript with a smaller font size than the size used for the chemical symbol to which the subscript
is associated, you need to change the size attribute for the subscript to an appropriate value. A detailed
explanation for each numbered line of code appears following the listing.

48 Advanced Topics
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Listing 3-14 Setting attributes for a subscript

#define myFloatToFixed (a) ((Fixed) ((float) (a) * fixed1))

OSErr status;
TXNTypeAttributes typeAttr[1];

// 1typeAttr[0].tag = kATSUCrossStreamShiftTag;
// 2typeAttr[0].size = sizeof(Fixed);
// 3typeAttr[0].data.dataValue = myFloatToFixed(-0.35);

status = TXNSetTypeAttributes (myTextObject, 1, typeAttr,
// 4 kTXNUseCurrentSelection, kTXNUseCurrentSelection);

Here’s what the code does:

1. Assigns cross-stream shift as the tag.

2. Assigns an attribute size. The size of the value associated with the cross-stream shift tag is 4-byte fixed.

3. The value of the cross-stream shift must be between -1. and 1.0. A subscript should be negative. You
may need to convert the value type to a fixed value, as shown here.

4. Calls the function TXNSetTypeAttributes to set the attribute. You can use the constant
kTXNUseCurrentSelection to specify the current selection if you are applying the attribute to
user-selected text. Otherwise, you should specify starting and ending offset values for the character you
want to subscript.

Accessing and Displaying Advanced Typographical Features

Your application can use MLTE to display advanced typographical features (such as ligatures, diacritical marks,
and diphthongs). However, you need to be familiar with font features described in InsideMacOS X: Rendering
Unicode Text With ATSUI.

To have your application provide your users with the ability to apply advanced typographical features to
text they select, your application needs to do the following:

 ■ provide an interface for users to select advanced features

 ■ respond to user-selected events for advanced features

 ■ translate user selections into the appropriate font feature type and font feature selector constants

 ■ assign the constants to the TXNTypeAttributes structure

 ■ call the MLTE function TXNSetTypeAttributes

 ■ update the display

Advanced Topics 49
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Note: Not all features are available for a font. The set of available features are determined by the font designer.
You can provide users access only to those features the font designer has included with the font.

Providing an Interface for Users to Select Advanced Features

Your application can provide an interface that lets users view and select advanced font styles, font features,
and font variations. One approach is to create a typography dialog that has three panes—Styles, Features,
and Variations. This would allow users control over all the advanced ATSUI typography that can be set using
the MLTE function TXNSetTypeAttributes. Figure 3-5 shows a sample features dialog. The dialog lets
users access a few of the ATSUI features for the Skia font that can be set using the MLTE function
TXNSetTypeAttributes. Depending on your users’ needs, your application could create a feature dialog
that lists all ATSUI features that can be set for the current font, or you could limit user-selectable font features
to those most important to your users.

Figure 3-5 A Features dialog for the Skia font

Responding to User Selected Events for Advanced Features

Your application then responds to user selections from the features dialog. Depending on how you set up
the user interface, your application can respond on an item-by-item basis, or can apply, at the same time, all
changes specified in the dialog.

Translating the User’s Selections to Constants

Translating the user’s selections into the appropriate font feature type and font feature selector constants
requires some research as you write your application. You need to be familiar with the font features and font
variations constants that are described in ATSUI Programming Guide.

50 Advanced Topics
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

For example, imagine your user has just made changes to the Ligatures section of the Features pane shown
in Figure 3-5 (page 50). Your application should represent the ligatures feature by using the kLigaturesType
constant.

Note: Although there are constants defined for most font features, this does not mean a font has that feature.
You must query a font to see whether or not a specific feature is available.

To represent the specific ligature selections made by the user, you need constants that indicate that rare,
common, and diphthong ligatures are enabled, while logo and rebus ligatures are disabled. So your application
would use the following font feature type constants: kRareLigaturesOnSelector,
kCommonLigaturesOnSelector, kDiphthongLigaturesOnSelector, kLogosOffSelector, and
kRebusPicturesOffSelector.

You would take a similar approach for any font feature or font variation. First, look up the constant that
represents the feature or variation category. Then look up the constants that represent the state of each
feature or variation in that category.

Assigning Constants to the Type Attributes Data Structure

You can use the MLTE function TXNSetTypeAttributes to set a variety of features from simple to the most
complex ATSUI features. The iAttributes parameter of the TXNSetTypeAttributes function is an array
of TXNTypeAttributes structures that you use to indicate what features you want to set and the values to
which the features should be set.

A TXNTypeAttributes structure has a TXNAttributeData union as one of its fields. The kind of attribute
your application needs to set determines the data contained in the union. For ATSUI features, your application
should supply atsuFeatures data, as defined by the TXNATSUIFeatures data structure. The
TXNATSUIFeatures structure contains information about the number of features in the structure, along
with pointers to the feature type and selector information (that is, whether a feature is enabled or not).

You can also use the MLTE TXNSetTypeAttributes function to set font variations data. In this case, your
application would supply atsuVariations data in the TXNAttributeData union.

Figure 3-6 shows the TXNTypeAttributes structure and its fields. The shaded areas show the fields for
which your application needs to provide data in order to change the ATSUI font features for a selection.

Advanced Topics 51
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Figure 3-6 The fields for which your application needs to supply data in order to set ATSUI font features
(shaded areas)

iAttributes
(TXNTypeAttributes)

data

ATSUIVariations

dataPtr

variationCount
(ItemCount)

variationAxis
(ATSUIFontVarationAxis)

(ATSUIFontVarationValue)
variationValue

(TXNAttributeData)

(void)

(TXNATSUIVaritions)

tag
(TXTNTag)

(ByteCount)
size

ATSUIFeatures
(TXNATSUIFeatures)

featureCount
(ItemCount)

FeatureType
(ATSUIFontFeatureType)

FeatureSelector
(ATSUIFontFeatureSelector)

dataValue
(UInt32)

Once your application identifies the kind of data (feature or variation) it needs to set, then it needs to assign
the appropriate values to the tag and size fields of the TXNTypeAttributes structure. The tag field
determines the kind of data in the TXNAttributeData structure and the size field indicates the size of the
attribute data. If your application needs to set ATSUI feature data, it would use the constant
kTXNATSUIFontFeaturesAttribute for the tag field. It would use sizeof(TXNATSUIFeatures) for
the size field. See Inside Mac OS X: MLTE Reference for a description of the font run attribute constants you
can use for the tag field and for a description of the font run attribute size constants you can use for the
size field.

Finally, your application needs to supply ATSUI feature data. You need only take the constants you identified
based on the user’s selections (see “Translating the User’s Selections to Constants” (page 50)) and assign
them to the appropriate fields of the TXNATSUIFeatures structure.

Listing 3-15 shows how to assign parameter values that set up diphthongs. A detailed explanation for each
numbered line of code appears following the listing.

Listing 3-15 Assigning parameter values for diphthongs

TXNTypeAttributes typeAttr[1];
TXNATSUIFeatures myFeatures;
TXNObject textObject;
ATSUFontFeatureType myFeatureType[1];
ATSUFontFeatureSelector myFeatureSelector[1];

// 1myFeatureType[0] = kLigaturesType;
// 2myFeatureSelector[0] = kDiphthongLigaturesOnSelector;

52 Advanced Topics
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

// 3myFeatures.featureCount = 1;
// 4myFeatures.featureTypes = myFeatureType;
// 5myFeatures.featureSelectors = myFeatureSelector;

// 6typeAttr[0].tag = kTXNATSUIFontFeaturesAttribute;
// 7typeAttr[0].size = sizeof (TXNATSUIFeatures);
// 8typeAttr[0].data.atsuFeatures = (TXNATSUIFeatures *)&myFeatures;

Here’s what the code does:

1. Assigns the ligatures feature type.

2. Assigns the diphthong ligatures on selector. Constants that represent font feature types and selectors
are declared in the header file SFNTLayoutTypes.h, and are fully described in ATSUI Programming Guide.

3. Assigns the number of features in myFeatures to be 1; myFeatures is a TXNATSUIFeatures data
structure.

4. Assigns the feature type.

5. Assigns the feature selector.

6. Assign the attribute tag value to be an ATSUI font feature attribute.

7. Assigns the attribute size to be the size of the TXNATSUIFeatures structure

8. Sets the value of the data field associated with the ligatures feature.

Calling the MLTE Set Type Attributes Function

Once you have determined which constants to use and to which fields of the TXNTypeAttributes structure
the constants should be assigned, the call to the MLTE function TXNSetTypeAttributes is straightforward.
In addition to the TXNTypeAttributes structure, you need to pass the current text object and the starting
and ending offsets of the current selection.

Listing 3-16 Calling the MLTE function to set type attributes

OSStatus status;
status = TXNSetTypeAttributes (textObject, 1, typeAttr,
 kTXNUseCurrentSelection, kTXNUseCurrentSelection);

Updating the Display

Your application needs to update the display to reflect your user’s selections. You need to check or uncheck
items in the features dialog to reflect whether the item is now enabled or disabled.

Advanced Topics 53
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Supporting Monostyled Text

This section describes how you can use MLTE to create custom, editable controls that use text in a single
style. Beginning with Mac OS X version 10.2, MLTE supports monostyled text when typing, copying and
pasting, and dragging and dropping styled text into a control. You can specify that MLTE uses monostyled
text by using the TXNFrameOptions flag kTXNMonostyledTextMask.

When you set this option for an object such as a control, the text in the object has a single style no matter
what changes the users makes to the text.

To set monostyled text, follow these steps:

1. Call the function TXNNewObject with the kTXNMonostyledTextMask option.

If you obtain data from a file at the same time you create the text object, the style information in the
file is ignored. It is preferable that you first create the text object, set its style, and then set data into the
text object by calling the function TXNSetDataFromFile.

Alternatively, you can create the text object without attaching it to a window, set the data, then set the
style, and finally attach the text object to a window.

Note: Font substitution is enabled by default when the kTXNMonostyledTextMask option is set.

2. Set the style of the monostyled text by calling the function TXNSetTypeAttributes. MLTE ignores any
starting and ending offsets you supply to this function as the style of the monostyled text is set for all
the text associated with the text object.

Customizing MLTE Support for Carbon Events

In Mac OS X version 10.1 or later, MLTE automatically sets up Carbon event handlers for text input and window
events. See “What’s Installed On a Text Object” (page 55) for details. However, there are a few situations in
which you might want to configure Carbon events in MLTE:

 ■ Your application runs on a release that’s earlier than Mac OS X version 10.1.

In this case, you need to specify that MLTE use Carbon events instead of Apple events to handle text
input and window events, because MTLE does not automatically set up such support in versions 10.1
and earlier. Read the sections “Building a Dictionary” (page 55), “Instantiating the Carbon Events
Structure” (page 57), and “Calling the function TXNSetTXNObjectControls” (page 58).

 ■ You need MLTE to support other Carbon events, namely command and Font menu events.

In this case, you use the data structure TXNCarbonEventInfo to specify that MLTE use Carbon events
to handle these simple event-driven tasks that you would otherwise need to route to MLTE through
function calls to the MLTE API. Read the sections “Building a Dictionary” (page 55), “Instantiating the
Carbon Events Structure” (page 57), and “Calling the function TXNSetTXNObjectControls” (page 58).

 ■ You want to use your own action key mapping callback function to customize the Undo and Redo menus.

54 Supporting Monostyled Text
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

In this case, you pass your callback function to MTLE through the TXNCarbonEventInfo data structure.
For information on writing the callback, see “Writing an Action Key Mapping Callback Function” (page
59). Then read the sections “Building a Dictionary” (page 55), “Instantiating the Carbon Events
Structure” (page 57), and “Calling the function TXNSetTXNObjectControls” (page 58).

 ■ You don’t want to use Carbon events or you want to handle all Carbon events in your application.

You should let MLTE support Carbon events, but in the rare case you don’t want MLTE to use its Carbon
event handlers, you can turn off MLTE automatic support for them. Read the section “Turning Off MLTE
Support for Carbon Events” (page 59).

What’s Installed On a Text Object

MLTE installs Carbon event handlers each time you create an MLTE text object (TXNObject). The handlers
that are set up for a text object (TXNObject) depend on the parameters you pass to the function
TXNNewObject.

If you call the function TXNNewObject with the parameter iFrame set to NULL, handlers are set up for all
text input events and the following window events:

 ■ kEventWindowActivated

 ■ kEventWindowDeactivated

 ■ kEventWindowDrawContent

 ■ kEventWindowClickContentRgn

 ■ kEventWindowResizeCompleted

If you call the function TXNNewObject with the parameter iWindow set to NULL, the Carbon event handlers
aren’t installed until you call the function TXNAttachObjectToWindow with a valid window pointer. The
Carbon event handlers are automatically removed if you call the function TXNAttachObjectToWindowwith
a NULL window pointer.

If you call the function TXNNewObject with the parameter iFrame set to a valid Rect, or if you call the
functions TXNSetViewRect, TXNSetFrameBounds, or TXNSetRectBounds, then the default Carbon event
handlers for window events are only the following:

 ■ kEventWindowDrawContent

 ■ kEventWindowClickContentRgn

The reason for this is that the text object is now association with a frame, not the entire window.

Building a Dictionary

If you want MLTE to support client-specified Carbon events, you need to build a dictionary whose keys are
strings that represent events (such as “CommandUpdate” or “WindowResize”) and whose values are event
target references associated with the events. A dictionary is a set of key-value pairs. (An event target is the
interface object (window, menu, and so forth) in which an event occurs.) See Inside Mac OS X: MLE Reference
for a list of the predefined keys you can use to build the dictionary.

Customizing MLTE Support for Carbon Events 55
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

There are two additional items that dictionary can contain:

 ■ a font menu object (TXNFontMenuObject)

 ■ a universal procedure pointer (TXNActionKeyMapperUPP) to a callback function you provide to handle
action key mapping events

You use an action key mapping callback to dynamically change the edit menu to reflect what actions can be
undone and redone (for example, Undo Paste instead of Undo). You’ll see how to create an action key mapping
callback in the section “Writing an Action Key Mapping Callback Function” (page 59).

If dictionary values are event target references or a font menu object, how is it possible to provide a universal
procedure pointer (UPP) or a TXNFontMenuObject as a dictionary value? These data types use the same
amount of space as an event target reference uses. So as long as you cast either of them to be of type
EventTargetRef, the compiler won’t complain. Although casting is generally not recommended, in this
case you can be confident that once MLTE processes the dictionary, the UPP or TXNFontMenuObject is cast
back to the appropriate type.

Listing 3-17 shows a MyBuildTargetsDictionary function that builds a dictionary for of Carbon events
that MLTE should handle. When you create your own function to build a dictionary, you can add as many of
the Carbon events supported by MLTE as you’d like. A detailed explanation for each numbered line of code
appears following the listing.

Listing 3-17 Building a dictionary

static CFDictionaryRef MyBuildTargetsDictionary(
 WindowRef targetWindow
 MenuRef editMenu,
 TXNFontMenuObject fontMenuObj)
{

// 1 CFStringRef keys[] = { kTXNCommandTargetKey,
 kTXNCommandUpdateKey,
 kTXNActionKeyMapperKey,
 kTXNFontMenuObjectKey };

 EventTargetRef values[4];
 OSStatus status;
 MenuRef theFontMenuRef;

// 2 values[0] = GetWindowEventTarget (targetWindow);
// 3 values[1] = GetMenuEventTarget (editMenu);

// 4 if (gTXNActionKeyMapperUPP == NULL)
 gTXNActionKeyMapperUPP = NewTXNActionKeyMapperUPP
 (ActionKeyMappingProc);

// 5 values[2] = (EventTargetRef) gTXNActionKeyMapperUPP;
// 6 values[3] = theFontMenuObj;

 return CFDictionaryCreate (kCFAllocatorDefault,
 (const void **)&keys,
 (const void **)&values,
 4,
 &kCFCopyStringDictionaryKeyCallBacks,

// 7 NULL);
}

56 Customizing MLTE Support for Carbon Events
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Here’s what the code does:

1. Defines the keys that will be used in the dictionary. The keys you can use are defined in Inside Mac OS X:
MLTE Reference. Each key must be a CFStringRef, which these predefined keys are.

2. Defines the value associated with the first key (kTXNCommandTargetKey). Each entry in the values
array must specify the event target associated with the key of the same index. The target for an edit
command event is the WindowRef to which the text object is attached.

3. Defines the value associated with the second key (kTXNCommandUpdateKey). The target for an edit
command update event is the Edit menu.

4. Defines a universal procedure pointer (TXNActionKeyMapperUPP) to your callback function. This is a
global UPP which is created the first time the function NewTXNActionKeyMapperUPP is called. See
“Writing an Action Key Mapping Callback Function” (page 59) for more information on this callback.

5. Defines the value associated with the third key (kTXNActionKeyMapperKey). This is the UPP, but you
must cast it to an EventTargetRef.

6. Defines the value (TXNNewFontMenuObject) associated with the fourth key (kTXNFontMenuObjectKey).

7. Calls the Core Foundation Collection Services function CFDictionaryCreate to create the dictionary
and return a reference to it. The caller of the MyBuildTargetsDictionary function must release the
dictionary after it has been passed to MLTE.

Instantiating the Carbon Events Structure

So far you’ve built a dictionary that contains information about the specific Carbon events and event targets
you want MLTE to handle. You need to pass this dictionary to a TXNObject you’ve created, along with
additional information needed to set the state of the TXNObject to use Carbon events. You use the MLTE
function TXNSetTXNObjectControls to change the state of the TXNObject. Before you call this function,
you need to instantiate the data structure TXNCarbonEventInfo with the information needed to set up
Carbon events.

The code fragment shown in Listing 3-18 shows you how to do this. The next section will show you how to
pass this structure to MLTE. A detailed explanation for each numbered line of code appears following the
listing.

Listing 3-18 Instantiating MLTE’s Carbon events data structure

TXNCarbonEventInfo carbonEventInfo;

// 1carbonEventInfo.useCarbonEvents = true;
// 2carbonEventInfo.filler = 0;
// 3carbonEventInfo.flags = 0;

carbonEventInfo.fDictionary = MyBuildTargetsDictionary (aWindow,
 theEditMenu,

// 4 aTXNFontObject);

Here’s what the code does:

1. Turns on support for Carbon events by setting useCarbonEvents to true in the TXNCarbonEventInfo
data structure.

Customizing MLTE Support for Carbon Events 57
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

2. Sets the filler value to 0. The filler is just that, a value that’s not used for anything.

3. Sets the flags value to 0, as there is currently no other value you should supply here.

4. Calls the dictionary-building function MyBuildTargetsDictionary created in “Building a
Dictionary” (page 55).

Calling the function TXNSetTXNObjectControls

The function TXNSetTXNObjectControls is what you call to request a change to the state of a TXNObject.
You must supply tags that identify the data you are passing to the function. To set up Carbon events, you
must provide a tag to specify you are passing Carbon events data.

Listing 3-19 shows the code you need to call the function TXNSetTXNObjectControls. A detailed explanation
for each numbered line of code appears following the listing.

Listing 3-19 Changing the state of a text object

// 1TXNControlTag iControlTags[] = { kTXNUseCarbonEvents };
// 2TXNControlData iControlData[1];
// 3iControlData[0].uValue = (UInt32) &carbonEventInfo;

status = TXNSetTXNObjectControls(
// 4 MyTextObject,
// 5 false,
// 6 1,

 iControlTags,
 iControlData);

// 7CFRelease (carbonEventInfo.fDictionary);

Here what the code does:

1. Sets the control tag to the constant kTXNUseCarbonEvents. This constant specifies that the data in
the iControlData parameter is a TXNCarbonEventInfo structure.

2. Declares a control data array. TXNControlData is a union that contains a field that you set to point to
the TXNCarbonEventInfo structure.

3. Assigns a pointer to the TXNCarbonEventInfo structure to the iControlData variable. You filled this
structure in the section “Instantiating the Carbon Events Structure” (page 57).

4. Passes MyTextObject which is a TXNObject created by your application. You call the function
TXNNewObject to create a TXNObject.

5. Sets this parameter to false to indicate whether or not MLTE should clear all tags associated with the
TXNObject. Make sure you pass false. If you set this to true, all formatting and privileges attributes
are reset to their default value.

6. Specifies the count of the number of items in the iControlTags array.

7. Calls the Core Foundation Base Services function CFRelease to release the memory associated with the
dictionary you built.

58 Customizing MLTE Support for Carbon Events
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

As mentioned in “Customizing MLTE Support for Carbon Events” (page 54), MLTE supports Carbon events
on a per object basis rather than on a per application basis. In other words, every time you allocate a new
TXNObject with a call to the function TXNNewObject, you also need to call the function
TXNSetTXNObjectControls to have MLTE support client-specified Carbon events for that text object.

Turning Off MLTE Support for Carbon Events

There is no need to turn off MLTE’s support for Carbon events unless you don’t want to use Carbon events
or you want to handle all Carbon events in your application. Listing 3-20 shows the code you can use should
you encounter such a rare situation. A detailed explanation for each numbered line of code appears following
the listing.

Listing 3-20 Turning off MLTE support for Carbon event handling

// 1carbonEventInfo.useCarbonEvents = false;
carbonEventInfo.filler = 0;

// 2carbonEventInfo.flags = 0;
carbonEventInfo.fDictionary = NULL;

iControlData[0].uValue = (UInt32) &carbonEventInfo;
status = TXNSetTXNObjectControls(
 MyTextObject,
 false,
 1,
 iControlTags,
 iControlData

// 3);

Here’s what the code does:

1. Sets useCarbonEvents to false to indicate to MLTE that Carbon events should be turned off for the
TXNObject you specify.

2. Sets the flags value to 0, which is only value you should currently provide.

3. Calls the function TXNSetTXNObjectControls to apply the control values to the specified text object.

Writing an Action Key Mapping Callback Function

You need to write an action key mapping callback function if you want to customize the Redo and Undo
menu items with the specific action that can be redone or undone. For example, if the user just typed some
text, you can change the Redo menu item to Redo Typing.

You provide your callback function to MLTE by passing a universal procedure pointer to the callback as an
entry in the TXNCarbonEventInfo data structure. See “Customizing MLTE Support for Carbon Events” (page
54) for details.

The function shown in Listing 3-21 (page 60) mapsTXNActionKey to the localized strings you want displayed
to the user. The function takes two parameters: a TXNActionKey and a command ID. A detailed explanation
for each numbered line of code appears following the listing.

Writing an Action Key Mapping Callback Function 59
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

Listing 3-21 A function that maps action keys to localized strings

static CFStringRef MyActionKeyMappingProc (TXNActionKey theActionKey,
 UInt32 theCommandID)
{

// 1 CFStringRef theActionString = CFSTR("");

// 2 switch (theActionKey)
 {

// 3 case kTXNTypingAction
 if (theCommandID == kHICommandUndo)
 theActionString = CFCopyLocalizedString(
 CFSTR("Undo Typing"), "Localized undo typing string.");
 else
 theActionString = CFCopyLocalizedString(
 CFSTR("Redo Typing"), "Localized redo typing string.");
 break;

// 4 case kTXNCutAction:
 if (theCommandID == kHICommandUndo)
 theActionString = CFCopyLocalizedString(
 CFSTR("Undo Cut"), "Localized undo cut string.");
 else
 theActionString = CFCopyLocalizedString(
 CFSTR("Redo Cut"), "Localized redo cut string.");
 break;

// 5 case kTXNPasteAction:
 theActionString = CFCopyLocalizedString(
 CFSTR("Undo Paste"), "Localized undo paste string.");
 else
 theActionString = CFCopyLocalizedString(
 CFSTR("Redo Paste"), "Localized redo paste string.");
 break;

// 6 default:
 if (theCommandID == kHICommandUndo)
 theActionString = CFCopyLocalizedString(
 CFSTR("Undo"), "Localized plain undo string.");
 else
 theActionString = CFCopyLocalizedString(
 CFSTR("Redo"), "Localized plain redo string.");
 break;
 }

// 7 return theActionString;
}

Here’s what the code does:

1. Declares a CFStringRef and set its value to an empty string. A Core Foundation string (CFString)
represents an array of Unicode characters (UniChar) along with a count of the number of characters.
You’ll use CFString objects a lot in Carbon because Unicode-based strings in Core Foundation provide
a solid foundation for internationalizing software and they are stored more efficiently than arrays of
Unicode characters.

2. Checks for an action key. The switch statement in this sample function has three cases, plus a default
case. When you write your own function, you can have as many cases as there are TXNActionKey values,
plus a default case. See Inside Mac OS X: MLTE Reference for a complete list of action types.

60 Writing an Action Key Mapping Callback Function
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

3. Checks for a typing action, then checks the command ID to see if the action is an undoable one. If the
action is undoable, the code sets the action string to “Undo Typing.” If the action is redoable, the code
sets the action string to “Redo Typing.” You must call the Core Foundation String Services macro
CFCopyLocalizedString to get the string (such as “Undo Typing”) you want displayed in the Edit
menu. CFCopyLocalizedString takes two parameters, a CFString that is the key for the string you
want to retrieve, and a comment to provide localizers with contextual information necessary for translation.
The key is usually in the development language. CFCopyLocalizedString searches the default strings
file (Localizable.strings) for the localized string associated with the specified key. For information on
creating Localizable.strings files, see Inside Mac OS X: System Overview.

4. Checks for a cut action, then checks the command ID to see if the action is an undoable one. If the action
is undoable, the code sets the action string to “Undo Cut.” If the action is redoable, the code sets the
action string to “Redo Cut.”

5. Checks for a paste action, then checks the command ID to see if the action is an undoable one. If the
action is undoable, the code sets the action string to “Undo Paste.” If the action is redoable, the code
sets the action string to “Redo Paste.”

6. Returns the localized version of the plain Undo or Redo string.

7. Returns the string associated with the action. The caller of the function MyActionKeyMappingProc
must release the string by calling the Core Foundation Base Services function CFRelease.

Migrating an Application from TextEdit to MLTE

If you have an application that uses TextEdit, and you want to modify the application so it uses MLTE instead
of TextEdit, you should get the Multilingual Text Engine Software Developer’s Kit (SDK). The MLTE SDK is
available from the Apple Developer Connection website.

The TEtoMLTESample folder in the MLTE SDK contains a project file named TEtoMLTE.proj. When you open
that project, you will find the folders TESources and MLTE Sources. You should compare the C++ code in one
folder with the comparable code in the other folder. For example, compare TESample.cp with MLTESample.cp.
The comments in the file that uses MLTE describe the changes necessary to use MLTE instead of TextEdit.

Migrating an Application from TextEdit to MLTE 61
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

62 Migrating an Application from TextEdit to MLTE
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

MLTE Tasks

This table describes the changes to Handling Unicode Text Editing With MLTE.

NotesDate

Removed statement "When word wrap is turned off, MLTE uses left alignment
for all text."

2008-10-15

Made minor content correction.2006-09-05

Corrected typographical errors. Revised the fifth bullet point in “Typing and
Inline Input.”

Fixed typographical errors.2005-07-07

Updated code to use Carbon events; removed references to unsupported
functions.

2003-04-01

Added information, where appropriate, on the Fonts window interface.

Includes minor bug fixes, updated formatting, and information on features
added for Mac OS X version 10.2

This revision incorporates the information formerly published in Inside Carbon:
Setting Up MLTE to Use Carbon Events.

Released for Mac OS X version 10.1. This document supplements the MLTE
documentation on the Carbon Developer Documentation website.

2002-07-02

63
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

64
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

active end The point at which the user releases the
mouse button when selecting a range of text or other
items. Compareanchor point (page 65).

alignment The horizontal placement of lines of text
with respect to the left and right edges of the text
area. Alignment can be left, right, centered, or justified
(flush on both left and right edges.)

anchor point The point at which the user presses
the mouse button to begin selecting a range of text
or other items by dragging through them. The anchor
point is at one corner of the range of objects.
Compare active end (page 65).

application font The default font for use by
applications. The application font is defined by each
script system.

ATSUI (Apple Type Services for Unicode Imaging) A
technology that enables the rendering of
Unicode-encoded text with advanced typographic
features. ATSUI automatically handles many of the
complexities inherent in text layout, including how
to correctly render text in bidirectional and vertical
script systems.

ATSUI style mask A byte-length mask with one bit
set for each ATSUI-supported style to be applied.

auto-key event An event indicating the user has held
a key down for a certain amount of time.

background The part of a glyph bitmap that
surrounds the pixels that constitute the glyph itself.

base line An imaginary horizontal line that coincides
with the bottom of each character in a font, excluding
descenders (tails on letters such as p).

bidirectional script system A script system in which
text is generally right-aligned with most characters
written from right to left, but with some left-to-right
text as well. Arabic and Hebrew are bidirectional script
systems.

bidirectional text The combination of text with both
left-to-right and right-to-left directions within a single
line of text.

bottomline input A type of input method in which
the user enters text in a small window, called a
floating input window, that appears near the bottom
of the screen. Compare inline input (page 67).

byte offset The indexed position of a 2-byte Unicode
character in a text buffer, starting at zero for the first
character. Sequential values for character offset
correspond to the storage order of the characters.

caret A vertical or slanted blinking bar, appearing at
the caret position in the display text, that marks the
point at which text is to be insert or deleted. See also
split caret (page 68).

caret position A location onscreen, typically between
glyphs, that relates directly to the offset (in memory)
of the current text insertion point in the source text.
At the boundary between a right-to-left and
left-to-right direction run on a line, one character
offset may correspond to two caret positions, and
one caret position may correspond to two offsets.

character An atomic unit of content for text data. A
character is an abstract entity without any particular
appearance; characters include letters, digits,
punctuation, and symbols. See alsocharacter
code (page 65) ; glyph (page 67).

character code In MLTE and ATSUI, a 16-bit value
representing a Unicode text character. Text is stored
in memory as character codes. Each script system’s

65
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

MLTE Glossary

keyboard-layout ('KCHR') resource converts the virtual
key codes generated by the keyboard or numeric
keypad into character codes; each script system’s fonts
convert the character codes into glyphs for display
or printing.

character encoding A conversion table for
interpreting a specific character set. See also text
encoding (page 69).

character rendering The process of preparing
characters for display, taking into account line
direction, contextual rules, and character reordering.
For example, the formation of ligatures and
diphthongs occurs during the display of text.

CFString An object that represents an array of
Unicode characters (UniChar) along with a count of
the number of characters. Unicode-based strings in
Core Foundation provide a solid basis for
internationalizing the software you develop. Unicode
makes it possible to develop and localize a single
version of an application for users who speak most
of the world’s written languages, including Russian
(Cyrillic), Arabic, Chinese, and Japanese. Although
conceptually CFString objects store strings as arrays
of Unicode characters, in practice they often store
them more efficiently. The memory a CFString object
requires is typically about the same or even less than
that required by a simple UniChar array.

continuous style In MLTE, a style value that is
constant over an entire selection range.

cross-stream shift Refers to a shift in a character’s
position in the direction against the reading direction
(that is, vertical for horizontal text and horizontal for
vertical text).

data run See run (page 68); style run (page 68); text
run (page 69).

destination rectangle The rectangle defining the
area in which text is drawn.

diphthong A complex vowel sound that can be
phonetically represented by 2 characters. The
characters represent the initial and final sounds of
the diphthong.

direction boundary A point between offsets in
memory or glyphs on a display, at which the direction
of the stored or displayed text changes.

direction run A contiguous (in memory) sequence
of characters having the same right-to-left or
left-to-right line direction.

discontinuous highlighting A highlighting effect
that can occur when a selection range crosses one or
more direction boundaries.

display order The order in which glyphs are drawn
on a screen. Glyphs are always drawn in left-to-right
order. Because not all text is read left-to-right, the
display order of glyphs may be different from the
storage order of their corresponding character codes
in memory.

embedded objects Graphics, sound, or movie data
that is in a text object along with text data.

encoding See text encoding (page 69).

floating input window A window used for text entry
by an input method. See also floating window (page
66).

floating window A window that is similar to a
standard Window Manager window except that is
occupies a special layer so that it always remains in
front of any application windows.

font A collection of glyphs that usually have some
element of design consistency such as the shapes of
the counters, the design of the stem, the stroke
thickness, or the use of serifs.

font attributes A group of flags that modify the
behavior or identity of a font.

font description A table that contains data that fully
describes a font.

font family A group of fonts that share certain
characteristics and a common family name.

font feature The set of typographic and layout
characteristics that create a specific appearance for a
glyph.

font run A contiguous (in memory) sequence of
characters having the same font.

font variation An algorithmic way to produce a range
of typestyles along a particular variation axis.

66
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

frame The viewable area of a text object; the view
rectangle. Compare destination rectangle (page 66).

glyph The distinct visual representation of a character
in a form that a screen or printer can display. A glyph
may represent one character (the lowercase a), more
than one character (the fi ligature), part of a character
(the dot over an i), or a nonprinting character (the
space character). See also character (page 65).

imaging system The system used to render text or
graphics.

inline input An input method that allows the user
to enter text directly into a document. In inline input,
entry and conversion of characters take place at the
current line position—where the converted text is
intended to appear—rather than in a separate
window. Inline input is the principal example of the
kind of text service supported by the Text Services
Manager. Compare bottomline input (page 65).

input method A software module for 2-byte script
systems that converts phonetic or syllabic characters,
entered from a keyboard, into ideographic or other
complex representation of text. Because 2-byte script
systems have too many characters to be entered
directly from a keyboard, the input method uses a
conversion technique, such as translating sequences
of phonetic characters that are typed into a special
input window. For example, the Japanese script
system provides software for transcribing Kana
(phonetic Japanese) into ideographic Kanji.

insertion point The point in the source text at which
text is to be inserted or deleted. An insertion point is
specified by a single caret position. Compare
caret (page 65).

justification A type of alignment that involves the
spreading or compressing of printed text to fit into a
given line width so that it is flush on both left and
right edges of the text area.

keyboard and font synchronization A process by
which the current keyboard script is compared to the
script of the font at the current insertion point. If the
two don’t match, one or the other is changed so the
two scripts are the same. In most cases, when the user
starts typing, the font is automatically replaced with
one belonging to the keyboard script, although it is
possible to synchronize in the other direction.

key-down event An event indicating the user
pressed a key.

key-up event An event indicating the user released
a key.

keyboard script The script system for keyboard input.
It determines the character input method and the
mapping of keystrokes to character codes. The
keyboard script may be different from the script used
to display text.

ligature A glyph that is created when two or more
characters are combined to create a new character.

line direction The direction in which text in a
particular language is written and read. The English
language has a left-to-right line direction; Arabic and
Hebrew have a (primarily) right-to-left line direction.

localize See localization (page 67).

localization The adaptation of system software or
applications to a particular language or region.
Localization involves translating strings and providing
proper conventions for sorting, date and time formats,
currency and measurement units, calendars, numbers,
and other culturally specific items such as icons.

missing character glyph The glyph in a font that is
drawn when no glyph is defined for a character code
in a font.

modifier key A key that when pressed at the same
time as another key, modifies the behavior of the
other key.

pass-through mode A mode that does not modify
data. With respect to keyboard-entry, pass-through
mode allows users to enter ASCII characters in the
context of a 2-byte script, without changing the
keyboard script.

primary line direction The dominant line direction
(right-to-left or left-to-right) of the current text. The
primary line direction is typically specified by the
value of the global system direction variable. See also
line direction (page 67).

private MLTE scrap Scrap used exclusively by MLTE.

67
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

Roman character set A set of characters used for the
Roman writing system. Roman character sets include
the Standard Roman character set and the ASCII
character set.

Roman keyboard script A keyboard script that uses
the Roman character set.

run A sequence of glyphs that are contiguous in
memory and share a set of common attributes. See
also font run (page 66); style run (page 68).

script A method for depicting words visually. Some
examples of scripts are Latin, Greek, Hiragana,
Katakana, and Han.

script system A collection of software utilities that
provides for the representation of a specific writing
system. It consists of a set of keyboard resources, a
set of international resources, and one or more fonts.
Script systems include Roman, Japanese, Arabic,
traditional Chinese, Simplified Chinese, Hebrew, Greek,
Thai, and Korean.

selection range The contiguous sequence of
characters in the source text that mark where the next
editing operation is to occur. The glyphs
corresponding to those characters are commonly
highlighted onscreen.

Shift JIS (Japanese Industrial Standard) A character
encoding based on two JIS standards: JIS X 0201 and
JIS X 0208. Shift JIS consists of codes from the JIS X
0208 standard that are shifted to make room for older
Hankakukana codes from the JIS X 0201 standard.

single caret In unidirectional text, the standard
text-insertion caret. In mixed-directional text, one
caret that appears at the place where the user will
insert the next character, given the current keyboard
script. At a boundary between two direction runs, the
single caret can correspond to either the primary line
direction or the secondary line direction. Because
changing the keyboard script in that situation changes
the caret location, the single caret is also called a
moving caret or jumping caret.

split caret A type of caret that, at the boundary
between text of opposite directions, divides into two
parts: a high caret and a low caret, each measuring
half the line’s height. The two separate half-carets
merge into one in unidirectional text. Compare single
caret (page 68).

Standard Roman character set The 256 characters
and character codes that are supplied with the
Macintosh Roman script system. The Standard Roman
character set consists of the Macintosh character set
plus additional defined characters with character
codes between $D9 and $FF.

storage order The order in which character codes
are stored in memory. Storage order may be different
from display order.

style A visual attribute, other than size, applied as a
systematic variation to the plain (unstyled)
characteristics of a font glyph. For example bold, italic,
underline, outline, shadow, condense, and extend.

style run A sequence of text that is contiguous in
memory and in which all the characters are in the
same style. Compare text run (page 69).

synchronization See keyboard and font
synchronization (page 67).

system direction The horizontal placement of
interface elements, including the default line direction
(left-to-right or right-to-left) for text in the system
script. System direction is specified by the global
system direction variable.

system font The font used to display text in menus,
dialog boxes, alert boxes, and so forth in a given script
system. For example, in the Roman script system, the
system font is Chicago on Mac OS 9 and earlier
versions.

system script The primary script system used by the
operating system, such as in dialogs and menu bars.
The system script affects system defaults, such as the
system font, line direction, and text-formatting rules.
All other scripts are secondary to the system script.

text A set of specific symbols that, when displayed
in a meaningful order, conveys information.

text area The space on the display device within
which the text should fit.

text direction The direction in which reading
proceeds. Roman text has a left-to-right direction;
Hebrew and Arabic have a (predominantly)
right-to-left direction; Chinese and Japanese can have
a vertical direction.

68
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

text encoding The coded character set or character
encoding scheme used to represent a particular piece
of text.

Text Encoding Conversion (TEC) Manager A pair
of shared library extensions—namely, the Text
Encoding Converter and the Unicode Utilities—that
facilitate text encoding conversion on Mac OS–based
computers.

Text Encoding Converter A shared library extension
that provides the services for general and algorithmic
encoding conversions or multi-encoding streams. The
Text Encoding Converter sometimes uses Unicode
Utilities.

text manipulation System-level procedures used to
order and compare characters, determine line breaks,
determine text directionality, and keep track of
character properties, such as case.

text object An opaque structure that the Multilingual
Text Engine uses to handle text formatting at a
document level.

text run A sequence of text that is contiguous in
memory and in which all characters are in the same
font. Compare style run (page 68).

text segment For text layout, the portion of a style
run that falls on a single text line. (It may be the entire
style run.) Most text measuring and drawing routines
work on a single text segment at a time.

Text Services Manager (TSM) The Mac OS
technology that provides text services such as input
methods. TSM handles communication between client
applications that request text services and the
software modules, known as text service components,
that provide them.

tick 1/60 second.

Unicode Unicode is an ISO standard for 16-bit
universal worldwide character encoding developed
by a consortium that includes Apple. Unicode has
enough capacity to handle unique encodings for all
characters available in all scripts, including the 2-byte
script systems such as Chinese, Japanese, and Korean.

Unicode Utilities A shared library extension that
provides table-based conversion between Unicode
and other encodings.

unidirectional text A sequence of text that has a
single line direction. Compare bidirectional text.

UTF-16 (Unicode Transformation Format) A form
of Unicode in which 16-bits are used to encode a
character.

variation axis A range of values used to produce
different type styles for a font. For example, a font
that has a weighting axis could be displayed with
weights that range from 0.7 point (light) to 1.3 points
(bold). It is possible to combine variations. For
example, font width variations can be combined with
weighting variations to produce font variations
ranging from light, narrow to bold, wide.

view rectangle In MLTE, the rectangle defining the
portion of the window within which text is actually
displayed. Text drawn in the destination rectangle is
made visible to the application user in the view
rectangle.

WorldScript A group of Mac OS managers,
extensions, and resources that facilitate multilingual
text processing.

writing system A set of characters and the basic rules
for their use in creating a visual depiction of language.
Writing systems may differ in the direction in which
their characters and lines run, the size of the character
set used, and the context sensitivity of character
selection. Writing systems include Roman, Japanese,
Arabic, and Hebrew. Compare script system (page
68).

69
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

70
2008-10-15 | © 2008 Apple Inc. All Rights Reserved.

GLOSSARY

	Handling Unicode Text Editing With MLTE
	Contents
	Figures and Listings
	MLTE Introduction
	MLTE Concepts
	Introduction to International Text on the Mac OS
	Characters, Character Encodings, and Unicode
	Keyboards and Input Methods

	Overview of Text Handling
	How MLTE Handles Text
	Text Objects (TXNObject)
	Text Attributes
	The MLTE User Interface
	Menu Support
	Font Menu
	Fonts Window
	Document-Wide Formatting
	Tab Settings
	Text Alignment

	Typing and Inline Input
	Caret Position and Movement
	The Selection Range, the Insertion Point, and Highlighting in MLTE
	Drag and Drop
	Line Breaking
	ATSUI Font Features and Variations

	Keyboard and Font Synchronization
	Keyboard to Font Synchronization
	Font to Keyboard Synchronization
	Overriding Font Synchronization

	Font Substitution
	MLTE and Carbon Events

	MLTE Tasks
	Displaying Static Text
	Initializing MLTE
	Setting Up Font Descriptions
	Assigning Initialization Options
	Calling the MLTE Initialization Function
	Setting Up the Menu Bar
	Creating a Font Menu Object

	Terminating MLTE
	Working With Text Objects
	Creating a Window
	Setting Options for the Text Object’s Frame
	Creating a Text Object
	Disposing of a Text Object

	Handling File and Edit Menu Commands
	Calling the Appropriate MLTE Function
	Updating the File and Edit Menus

	Setting Font Size and Style
	Handling Multiple Text Objects
	Posting an Alert
	Working With Document-Wide Settings
	Implementing Word Wrap
	Implementing Line Justification

	Advanced Topics
	Working With Embedded Objects
	Displaying Chemical Equations
	Accessing and Displaying Advanced Typographical Features
	Providing an Interface for Users to Select Advanced Features
	Responding to User Selected Events for Advanced Features
	Translating the User’s Selections to Constants
	Assigning Constants to the Type Attributes Data Structure
	Calling the MLTE Set Type Attributes Function
	Updating the Display

	Supporting Monostyled Text
	Customizing MLTE Support for Carbon Events
	What’s Installed On a Text Object
	Building a Dictionary
	Instantiating the Carbon Events Structure
	Calling the function TXNSetTXNObjectControls
	Turning Off MLTE Support for Carbon Events

	Writing an Action Key Mapping Callback Function
	Migrating an Application from TextEdit to MLTE

	Revision History
	MLTE Glossary

