
Launch Services Programming Guide
Carbon > File Management

2007-08-23

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, QuickTime, and Safari are trademarks
of Apple Inc., registered in the United States
and other countries.

Finder is a trademark of Apple Inc.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Launch Services Programming Guide 7

Who Should Read This Document 8
Organization of This Document 8

Chapter 1 Launch Services Concepts 9

Item Identification 9
Item Information 9
Launch Services Database 10

Property List Keys for Launch Services 10
Application Roles 14

Application Registration 14
Open Operations 15

Opening Applications 15
Opening Documents 15
Opening URLs 16
Launch Options 16
Synchronous and Asynchronous Launch 17

User-Specified Binding Preferences 17
Choosing the Binding Preference for a File 17
Choosing the Binding Preference for a URL 21

Preferred Applications 21
Preferred Application for a Document 22
Preferred Application for a URL 22

Chapter 2 Launch Services Tasks 25

Opening Items 25
Opening Items by File-System Reference 25
Opening Items by URL 26

Finding an Item’s Preferred Application 27
Testing Whether an Application Can Open an Item 27
Registering an Application 28
Obtaining Information About an Item 28

Document Revision History 29

Glossary 31

3
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

4
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 1 Launch Services Concepts 9

Figure 1-1 Choosing Get Info 17
Figure 1-2 Get Info window 18
Figure 1-3 Selecting the preferred application for an item 19
Figure 1-4 Selecting the preferred application for an item type 20
Figure 1-5 Choose Other Application dialog 21
Table 1-1 Property-list keys related to Launch Services 11
Table 1-2 Keys in a type-definition dictionary 12
Table 1-3 Keys in a scheme-definition dictionary 13

5
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

6
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Note: This document was previously titled Launch Services Concepts and Tasks.

Launch Services is an API that enables a running application to open other applications or their document
files or URLs (uniform resource locators) in a way similar to the Finder or the Dock. Using Launch Services,
an application can perform such tasks as:

 ■ Open (launch or activate) another application

 ■ Open a document or a URL in another application

 ■ Identify the preferred application for opening a given document or URL

 ■ Register information about the kinds of document files and URLs an application is capable of opening

 ■ Obtain appropriate information for displaying a file or URL on the screen, such as its icon, display name,
and kind string

 ■ Maintain and update the contents of the Recent Items menu

Although most of these services are normally performed by the Finder, other applications may also find them
useful for purposes such as opening email attachments, following URLs embedded in a document, running
helper applications, or opening embedded document components that were created by another application
or require it for viewing or editing.

Many of Launch Services’ capabilities were formerly provided by the Desktop Manager. With the advent of
Mac OS X application bundles, however, the Desktop Manager has lost its usefulness, since it is not
knowledgeable about bundled applications and simply ignores them. Similarly, Launch Services’ facilities for
dealing with URLs were formerly implemented through the Internet Config API. Launch Services replaces
and supersedes the Desktop Manager and Internet Config with a new API providing similar functionality, but
designed to operate properly in the Mac OS X environment.

Launch Services was created specifically to avoid the common need for applications to ask the Finder to
open an application, document, or URL for them. In the past, opening such items in a way similar to the
Finder required knowledge of several APIs, including the Desktop Manager, File Manager, Translation Manager,
Internet Config, Process Manager, and Apple Event Manager. The Finder also had implicit knowledge of the
desktop database and other information not available elsewhere for determining the correct application
with which to open a given document.

Launch Services removes this specialized knowledge from the Finder and isolates it in a single, straightforward
API available to any application. The Mac OS X Finder uses Launch Services to open applications, documents,
and URLs at the user’s request. Since the Finder does no additional processing beyond calling Launch Services,
any client using Launch Services for these purposes is guaranteed to behave identically to the Finder itself.

7
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Launch Services Programming
Guide

Who Should Read This Document

This document is intended for all developers whose applications need to open other applications, open
document files or URLs belonging to them, or display files or URLs on the screen in a manner similar to the
Finder. For more detailed information on the Launch Services API, see the related document Launch Services
Reference, which provides a comprehensive description of Launch Services functions, data types, constants,
and result codes.

Organization of This Document

This document has the following chapters:

 ■ “Launch Services Concepts” (page 9) presents the conceptual ideas underlying the Launch Services
API, from the standpoint of both the developer and the user.

 ■ “Launch Services Tasks” (page 25) tells how to use Launch Services to perform common tasks in your
application.

 ■ “Glossary” (page 31) defines various terms relating to Launch Services and its operations.

8 Who Should Read This Document
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Launch Services Programming Guide

This chapter introduces both developers and users to basic information about Launch Services and its API.

Item Identification

In general, items to be operated on (such as applications, documents, or folders) can be identified to Launch
Services in either of two ways:

 ■ With a file-system reference (FSRef) designating a file residing on a local or remote file-system volume

 ■ With a Core Foundation URL reference (CFURL) specifying a URL (uniform resource locator), typically
(though not necessarily) denoting an item to be accessed via the Internet

Many Launch Services operations are implemented by pairs of related functions, one accepting a file-system
reference as a parameter and the other a URL reference: for instance, the preferred application for opening
an item can be found with either the LSGetApplicationForItem or the LSGetApplicationForURL
function.

In addition, some Launch Services functions apply not to specific individual items but to families of items
defined by certain identifying characteristics. These characteristics can include:

 ■ A four-character file type code

 ■ A four-character creator signature

 ■ A filename extension

 ■ A MIME (Multipurpose Internet Mail Extension) type

For instance, the Launch Services function LSGetApplicationForInfo finds the preferred application for
opening items with a given file type, creator signature, filename extension, or any combination of these
characteristics; the LSCopyApplicationForMIMEType function finds the preferred application for items
with a specified MIME type.

Item Information

Some Launch Services functions return requested information about an item or family of items. This can
include:

 ■ The item’s file type

 ■ The item’s creator signature

 ■ The item’s filename extension

Item Identification 9
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

 ■ The item’s display name: the string to be used for displaying its name to the user (such as in the Finder
or the Dock)

 ■ The item’s kind string: the string used (in the Finder’s Get Info window or the Kind column of the Finder’s
list view, for instance) to characterize its general nature, such as Application, Folder, Alias, JPEG
Picture, QuickTime Movie, or FrameMaker Document

 ■ Flags describing various attributes of the item, including the following:

 ❏ Is it a plain file (and not, for example, a directory, volume, or UNIX symbolic link)?

 ❏ Is it an executable application?

 ❏ If an application, can it run natively in Mac OS X?

 ❏ If an application, does it require the Classic emulation environment?

 ❏ If an application that can run either natively or in the Classic environment, does it prefer one
environment or the other?

 ❏ Is it a scriptable application?

 ❏ Is it a container (such as a directory, package, or volume)?

 ❏ Is it a packaged directory?

 ❏ Is it the root directory of a volume?

 ❏ Is it an alias?

 ❏ Is it a UNIX symbolic link?

 ❏ Is it invisible (that is, not displayed to the user in the Finder)?

 ❏ Does it have a hidden filename extension?

Launch Services Database

Launch Services maintains a central data structure, the Launch Services database, in which it records all of
the pertinent information about applications and the kinds of document files and URLs they are capable of
opening. Whenever a new application becomes known to the system (such as when the user drags it from
an installation disk into the Applications folder), the application is registered with Launch Services, which
copies the needed information about the application into its database. Launch Services can then use this
information to determine the preferred application for opening a given document file or URL.

Property List Keys for Launch Services

Launch Services obtains the information it needs about an application from the application’s bundle
information property list (Info.plist) or, in the case of a single-file application, from a 'plst' resource
in the application’s resource fork. Table 1-1 shows the relevant keys. (See Runtime Configuration Guidelines
for more detailed information on these and other property-list keys.)

10 Launch Services Database
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

Table 1-1 Property-list keys related to Launch Services

DescriptionTypeKey

The application’s display nameStringCFBundleDisplayName

The name of the file containing the application’s iconStringCFBundleIconFile

The application’s bundle identifierStringCFBundleIdentifier

The application’s creator signatureStringCFBundleSignature

An array of dictionaries describing the document types the
application can open; see “Document Types” (page 12)

ArrayCFBundleDocumentTypes

An array of dictionaries describing the URL types the application
can open; see “URL Types” (page 13)

ArrayCFBundleURLTypes

Must the application run natively in Mac OS X?StringLSRequiresCarbon

Does the application prefer to run natively in Mac OS X?StringLSPrefersCarbon

Must the application run in the Classic emulation environment?StringLSRequiresClassic

Does the application prefer to run in the Classic emulation
environment?

StringLSPrefersClassic

Does the application run only in the background?StringLSBackgroundOnly

Is the application a user interface element (that is, has no menu
bar and should not appear in the Dock or the Force Quit window)?

StringLSUIElement

The CFBundleDisplayName key specifies the application’s display name; this key can be localized by
including it in the InfoPlist.strings file of the appropriate .lproj subdirectory. CFBundleIconFile
identifies the file containing the icon image to be used for displaying the application on the screen.
CFBundleIdentifier defines the application’s bundle identifier, a unique identifying string used to locate
its bundle at runtime. CFBundleSignature is the application’s creator signature, a four-character code
that identifies document files belonging to this application.

The keys LSRequiresCarbon, LSPrefersCarbon, LSRequiresClassic, LSPrefersClassic,
LSBackgroundOnly, and LSUIElement specify various aspects of the environment in which the application
should be run. A string value of "1" for any of these keys declares the corresponding attribute to be true.
(In Mac OS X version 10.2 or later, these keys can also take values of type Boolean or Number rather than
String, but such values are not supported in earlier system versions.)

The LSRequiresCarbon, LSPrefersCarbon, LSRequiresClassic, and LSPrefersClassic keys are
mutually exclusive: at most one of them can be set to "1". You can obtain information about the values of
these four keys via the flags field of the item-information record returned by the Launch Services functions
LSCopyItemInfoForRef and LSCopyItemInfoForURL. LSRequiresCarbon specifies that the application
must be run natively in Mac OS X and cannot be run in the Classic emulation environment;
LSRequiresClassic means the reverse. LSPrefersCarbon and LSPrefersClassic indicate that the
application can run in either environment but has a preference for one or the other; the Finder offers the

Launch Services Database 11
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

user the choice of which environment to use by displaying a checkbox in the application’s Get Info window
labeled “Open in the Classic environment,” initially selected or deselected depending on which key the
application itself specifies.

Note: The use of the word Carbon in the names LSRequiresCarbon and LSPrefersCarbon is misleading,
since these keys actually signify that the application requires or prefers to run natively in MacOSX, irrespective
of whether it is specifically Carbon-based; in particular, LSRequiresCarbon can apply equally well to Cocoa
or Carbon applications. Note also the subtle difference in meaning between the LSRequiresCarbon flag
in the bundle information property list and the kLSItemInfoIsNativeApp flag in the item-information
record: the former indicates that the application must run natively and cannot run in the Classic environment,
while the latter means only that the application is capable of running natively. Applications with
kLSItemInfoIsNativeApp set may also be capable of running in the Classic environment, depending on
the setting of the kLSItemInfoPrefersNative and kLSItemInfoPrefersClassic flags.

If none of the four keys is set to "1", Launch Services infers the application’s required or preferred environment
by other means:

 ■ If the application is bundled, it is assumed to be a native Mac OS X application and is run natively
(equivalent to LSRequiresCarbon).

 ■ If the application is not bundled and its resource fork contains a 'plst' or 'carb' resource, it is assumed
to be compatible with either environment but prefer to run natively (equivalent to LSPrefersCarbon).

 ■ If the application is not bundled and has no 'plst' or 'carb' resource, it is assumed to be a Classic
application incapable of running natively (equivalent to LSRequiresClassic).

The most important property-list keys, for Launch Services’ purposes, are CFBundleDocumentTypes and
CFBundleURLTypes. The value associated with each of these keys is an array of dictionaries (type-definition
and scheme-definition dictionaries, respectively), each of which declares (claims) a family of document files
or URLs that the application is prepared to handle. Launch Services uses this information in deciding what
application to use to open a given document file or URL.

Document Types

A type-definition dictionary defines a document type, a family of document files that the application can
handle. Table 1-2 shows the relevant keys in this dictionary. (See Runtime Configuration Guidelines for more
detailed information on these and other keys in the type-definition dictionary.)

Table 1-2 Keys in a type-definition dictionary

DescriptionTypeKey

The abstract name of the document type (also called its kind
string)

StringCFBundleTypeName

The name of the icon file for displaying documents of this typeStringCFBundleTypeIconFile

An array of four-character file types for documents belonging
to this document type

ArrayCFBundleTypeOSTypes

An array of filename extensions for documents belonging to this
document type

ArrayCFBundleTypeExtensions

12 Launch Services Database
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

DescriptionTypeKey

An array of MIME types for documents belonging to this
document type

ArrayCFBundleTypeMIMETypes

The role the application claims with respect to documents of
this type; see “Application Roles” (page 14)

StringCFBundleTypeRole

Specifies whether the document is distributed as a bundle.BooleanLSTypeIsPackage

The CFBundleTypeName key specifies the document type’s kind string, a user-visible description used to
characterize documents of this type on the screen (such as in the Finder’s Get Info window or in the Kind
column of the Finder’s list view). This key can be localized by including it in the InfoPlist.strings file
of the appropriate .lproj subdirectory. CFBundleTypeIconFile identifies the file containing the icon
image to be used for displaying documents of this type on the screen. LSTypeIsPackage specifies whether
the document is a packaged bundle (true) or a single file (false).

Files belonging to a given document type may be characterized by their file types, filename extensions, or
MIME types. The CFBundleTypeOSTypes key in the type-definition dictionary specifies an array of
four-character file type codes that characterize documents of this type; similarly, CFBundleTypeExtensions
specifies an array of filename extensions and CFBundleTypeMIMETypes an array of MIME types. Any of
these individual keys can be omitted if the corresponding file characteristic is not relevant, but at least one
of them must be present for the file type to be nonempty. To allow an application to accept files of unrestricted
file type or extension during drag-and-drop operations, you can use the special wild-card values '****' or
'*' for CFBundleOSTypes or CFBundleTypeExtensions, respectively. (These are honored only in
drag-and-drop operations and not when the user opens a document by double-clicking.) Finally, the
CFBundleTypeRole key specifies the role that the application claims with respect to documents of the given
type, as described under “Application Roles” (page 14).

URL Types

A scheme-definition dictionary is similar to a type-definition dictionary, but defines a URL type—a family of
URLs that the application can handle—rather than a document type. Table 1-3 shows the keys in this type
of dictionary. (See Runtime Configuration Guidelines for more detailed information on these keys.)

Table 1-3 Keys in a scheme-definition dictionary

DescriptionTypeKey

The abstract name of the URL type (also called its kind string)StringCFBundleURLName

The name of the icon file for displaying URLs of this typeStringCFBundleURLIconFile

An array of URL schemes for URLs belonging to this URL typeArrayCFBundleURLSchemes

The CFBundleURLName key specifies the URL type’s kind string, a user-visible description used to characterize
URLs of this type on the screen (such as in the Finder’s Get Info window or in the Kind column of the Finder’s
list view). This key can be localized by including it in the InfoPlist.strings file of the appropriate .lproj
subdirectory. CFBundleURLIconFile identifies the file containing the icon image to be used for displaying
URLs of this type on the screen.

Launch Services Database 13
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

URLs belonging to a given URL type are characterized by their scheme components, such as http, ftp,
mailto, or file. The CFBundleURLSchemes key in the scheme-definition dictionary specifies an array of
schemes that characterize URLs of this type.

Application Roles

In declaring a document type, an application can claim a particular role with respect to documents of that
type, defining the kinds of operations the application is capable of performing on such documents. The role
is declared via the CFBundleTypeRole key in the application’s type-definition dictionary for the given
document type. Launch Services recognizes three such roles:

 ■ Editor. The application can read, present, manipulate, and save documents of the given type.

 ■ Viewer. The application can read and present documents of the given type, but cannot manipulate or
save them.

 ■ None. The application cannot operate on documents of the given type. This role is useful for declaring
information about document types that the application is incapable of opening, such as their abstract
names and icon files.

Launch Services defines a set of bit-mask constants of type LSRolesMask denoting the various possible
roles. Launch Services functions that find the preferred application for a document or family of documents
(LSGetApplicationForItem, LSGetApplicationForURL, and LSGetApplicationForInfo), or that
determine whether a given application can open a designated document (LSCanRefAcceptItem and
LSCanURLAcceptURL), take a parameter of this type to specify the application’s desired role with respect
to the document.

Application Registration

All applications available on the user’s system must be registered to make them known to Launch Services
and copy their document binding and other information into its database. It isn’t ordinarily necessary to
perform this task explicitly, since a variety of utilities and services built into the Mac OS X system software
take care of it automatically:

 ■ A built-in background tool, run whenever the system is booted or a new user logs in, automatically
searches the Applications folders in the system, network, local, and user domains and registers any new
applications it finds there. (This operation is analogous to “rebuilding the desktop” in earlier versions of
Mac OS.)

 ■ The Finder automatically registers all applications as it becomes aware of them, such as when they are
dragged onto the user’s disk or when the user navigates to a folder containing them.

 ■ When the user attempts to open a document for which no preferred application can be found in the
Launch Services database, the Finder presents a dialog asking the user to select an application with
which to open the document. It then registers that application before launching it.

In spite of these automatic registration utilities, it may sometimes be necessary to register an application
explicitly with Launch Services. For example, although developers are encouraged to package their applications
so that they can be installed by simply dragging them onto the user’s disk, some applications may require
more elaborate custom installer software. In such cases, the installer should call one of the Launch Services
registration functions LSRegisterFSRef or LSRegisterURL to register the application explicitly.

14 Application Registration
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

The registration functions take a Boolean parameter, inUpdate, which controls the function’s behavior when
the application being registered already exists in the Launch Services database. If this parameter is true,
Launch Services unconditionally reregisters the application, replacing any previous information that may
already exist for it in the database; if the parameter is false, the application is reregistered only if its current
modification time is more recent than that recorded in the database.

After making any significant change in an application’s Launch Services–related information, you should
either reregister the application explicitly, by calling LSRegisterFSRef or LSRegisterURLwith inUpdate
set to true, or update the modification time of the application to ensure that it will be updated by the
automatic registration utilities described above.

Note: You can update an application’s modification time using the BSD touch command in a Terminal
window. For example, the command touch /Applications/TextEdit.app sets the modification time
of TextEdit to the current time.

Open Operations

The primary purpose of Launch Services is to open applications, documents, and URLs. Exactly how this is
done depends on the kind of item to be opened, as described in the following sections.

Opening Applications

When the item to be opened is an application (or a URL with scheme file designating an application),
Launch Services checks whether the application is already running and proceeds accordingly:

 ■ If the application is not already running, Launch Services starts it up (launches it) and sends it an 'oapp'
(“open application”) Apple event. The application should respond to this event by performing its normal
startup processing.

 ■ If the application is already running, Launch Services activates it (brings it to the front of the screen) and
sends it an 'rapp' (“reopen application”) Apple event. This instructs the application to take some
additional action, if necessary, to provide visual feedback to the user that it has become active: for
example, it might open an empty document window or a document creation dialog if it has no other
windows already open.

In either case, Launch Services adds the application to the Recent Items submenu in the Apple menu.

Opening Documents

If the item to be opened is a document (or a URL with scheme file designating a document file), Launch
Services must first determine what application to use to open the item. This is known as the item’s preferred
application. As described under “User-Specified Binding Preferences” (page 17), the Mac OS X user interface
allows the user to specify an explicit binding between a document and its preferred application. If such an
explicit binding has been specified, it takes precedence over any other considerations; if not, Launch Services
uses a set of implicit binding criteria to determine the preferred application, as described under “Preferred
Applications” (page 21).

Open Operations 15
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

Once the preferred application has been determined, Launch Services launches or activates it (depending
on whether it is already running) and sends it an 'odoc' (“open document”) Apple event instructing it to
open the specified document. (If the document is to be printed rather than merely opened, a 'pdoc' (“print
document”) Apple event is sent instead of 'odoc'; in the case of a file URL, if the application claims to
handle URLs with that scheme, it is sent a ‘GURL' (“get URL”) Apple event instead.)

Finally, Launch Services adds both the application and the document (or URL) to the Recent Items submenus
in the Apple menu.

Opening URLs

If the item to be opened is a URL with a scheme other than file, it is opened in essentially the same way
as a document, but with the following exceptions:

 ■ As described under “Preferred Applications” (page 21), the implicit binding criteria for selecting a
preferred application are based on the URL’s scheme component rather than on a creator signature, file
type, or filename extension.

 ■ The Apple event sent to the application after launching or activating it is 'GURL' (“get URL”) rather than
'odoc' (“open document”).

After the preferred application is launched or activated, Launch Services adds the application to the Recent
Items submenu in the Apple menu.

Launch Options

When opening an application (whether by itself or to open one or more documents or URLs), you can specify
various launch options to control the manner in which it is launched or activated. These can include:

 ■ Whether to open the documents or URLs (if any) in a specifically designated application or in their own
preferred applications

 ■ Whether to print the documents or URLs (if any) or merely open them

 ■ Whether to add the application and the documents (if any) to the Finder’s Recent Items menu or to
suppress this action

 ■ Whether to permit the application to open in the background or to fail if it is a background-only
application

 ■ Whether to open the application without bringing it to the foreground

 ■ Whether to permit the application to open in the Classic emulation environment or to fail if it is a
Classic-only application

 ■ Whether to launch a new instance of the application, even if another instance is already running

 ■ Whether to hide the application after launching it

 ■ Whether to hide all other applications after launching this one

 ■ Whether to launch the application synchronously or asynchronously (see next section)

16 Open Operations
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

Synchronous and Asynchronous Launch

One of the options you can specify when launching an application is whether to launch it synchronously or
asynchronously:

 ■ In a synchronous launch, control does not return from the Launch Services function launching the
application until the application has completed its launch sequence (indicated visually to the user when
the application’s icon stops “bouncing” in the Dock).

 ■ In an asynchronous launch, control returns immediately, while the icon in the Dock is still “bouncing.”
When the launch sequence has been completed, your application is notified with a Carbon event of type
kEventAppLaunchNotification. You can install an event handler callback routine to respond to this
event in whatever way is appropriate. In your call to the Launch Services function that launches the
application, you can supply an arbitrary 4-byte reference constant that will be passed back to your
handler routine as part of the notification event.

User-Specified Binding Preferences

Launch Services’ first priority in determining the preferred application for a file or a non-file URL is whether
the user has specified an explicit binding preference for that item.

Choosing the Binding Preference for a File

The user can specify a preferred application for a file by selecting the item in the Finder and choosing the
Get Info command (see Figure 1-1).

Figure 1-1 Choosing Get Info

User-Specified Binding Preferences 17
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

The Open With pane of the Get Info window contains a pop-up menu listing all known applications in the
Launch Services database that claim to accept the selected item (see Figure 1-2). The user can then choose
an application from the menu to become the item’s preferred application (Figure 1-3).

Note: Explicit binding preferences for individual items are not user-specific but systemwide—that is, they
continue to apply to the given item on that same computer, even if a different user logs in.

Figure 1-2 Get Info window

18 User-Specified Binding Preferences
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

Figure 1-3 Selecting the preferred application for an item

Clicking the Change All button (Figure 1-4) makes the chosen application the preferred application for all
items of the same document or URL type, rather than just for the single item selected.

User-Specified Binding Preferences 19
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

Figure 1-4 Selecting the preferred application for an item type

Occasionally, a user may wish to designate a preferred application that doesn’t claim to accept a given
document or URL. (This might be useful, for instance, for opening documents in a text-encoded format, such
as HTML, as unencoded text in a text editor.) The Other item in the Open With pane’s pop-up menu opens
the dialog shown in Figure 1-5, in which the user can navigate to the desired application. The All Applications
item in the pop-up menu labeled Show at the top of the dialog allows any desired application to be selected;
Recommended Applications causes those not claiming to accept the item to be dimmed.

20 User-Specified Binding Preferences
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

Figure 1-5 Choose Other Application dialog

Choosing the Binding Preference for a URL

There is no system-level user interface for setting non-file URL scheme handlers. However, individual
applications can allow users to choose a preferred application for a specific URL scheme. For example:

 ■ The Safari application allows users to set the http: handler by choosing a default web browser.

 ■ The Mail application allows users to set the mailto: handler by choosing a default email reader.

Preferred Applications

Launch Services uses a series of prioritized binding criteria to determine the preferred application for opening
a given document or URL. These are used by the Launch Services functions that open a document file
(LSOpenFSRef, LSOpenFromRefSpec) or a URL (LSOpenCFURLRef, LSOpenFromURLSpec), as well as by
those that merely locate the preferred application for such an item without actually opening it
(LSGetApplicationForItem, LSGetApplicationForURL). They are also used by the
LSGetApplicationForInfo function, which locates the preferred application for opening a family of items
defined by specified identifying characteristics.

Preferred Applications 21
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

Preferred Application for a Document

For individual document files (whether specified by a file-system reference or a URL with scheme file), the
criteria are as follows:

1. If the user has specified an explicit binding for the document (or for the entire document type to which
it belongs), the preferred application is the one the user has specified.

2. If the document has a filename extension (or if one has been specified as a parameter to
LSGetApplicationForInfo), find all applications in the Launch Services database that claim to accept
documents with that extension.

3. If the document carries a four-character file type (or if one has been specified as a parameter), find all
applications that claim to accept files of that type.

4. If more than one application has been found as a result of steps 2–3, apply the following criteria in the
order shown:

a. If the document carries a four-character creator signature (or if one has been specified as a parameter),
give preference to any application that claims to accept documents with that signature (typically
the application to which the signature belongs).

b. Give preference to native OS X applications over those that run in the Classic emulation environment.

c. Give preference to applications residing on the boot volume over those residing on other file-system
volumes.

d. Give preference to applications residing on a local volume over those residing on a remote volume.

e. If two or more versions of the same application have been found, give preference to the one with
the latest version number.

If two or more candidate applications remain after all of the foregoing criteria have been applied, Launch
Services chooses one of the remaining applications in an unspecified manner.

Note: Criteria 4c and 4d do not apply in Mac OS X version 10.2 and earlier. Apple reserves the right to change
the selection criteria in future system releases.

Note: When the item to be opened is a file-system folder, it is treated as a document file whose preferred
application is the Finder. This provides a convenient way of asking the Finder to open a window displaying
the contents of a designated folder.

Preferred Application for a URL

The criteria for URLs with schemes other than file are similar to those for document files, except that the
search is based on the URL’s scheme rather than on file characteristics such as the creator signature, filename
extension, and file type:

22 Preferred Applications
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

1. If the user has specified an explicit binding for the URL (or for the entire URL type to which it belongs),
the preferred application is the one the user has specified.

2. If no explicit binding has been specified, find all applications in the Launch Services database that claim
to accept URLs with the given scheme.

3. If more than one application has been found in step 2, apply the following criteria in the order shown:

a. Give preference to native OS X applications over those that run in the Classic emulation environment.

b. Give preference to applications residing on the boot volume over those residing on other file-system
volumes.

c. Give preference to applications residing on a local volume over those residing on a remote volume.

d. If two or more versions of the same application have been found, give preference to the one with
the latest version number.

If two or more candidate applications remain after all of the foregoing criteria have been applied, Launch
Services chooses one of the remaining applications in an unspecified manner.

Note: Criteria 3b and 3c do not apply in Mac OS X version 10.2 and earlier. Apple reserves the right to change
the selection criteria in future system releases.

Preferred Applications 23
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

24 Preferred Applications
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Launch Services Concepts

This chapter summarizes how to use Launch Services to perform common tasks in your application.

Opening Items

The most common operation you’ll want to perform with Launch Services is opening applications, document
files, and URLs. Depending on the circumstances, you can use any of four Launch Services functions for this
purpose: LSOpenFSRef, LSOpenFromRefSpec, LSOpenCFURLRef, or LSOpenFromURLSpec.

Opening Items by File-System Reference

When an item you wish to open is identified by a file-system reference (FSRef), the simplest way to open it
is with LSOpenFSRef. You simply supply the file-system reference and Launch Services opens the item in a
straightforward, no-frills, default way:

 ■ If the designated item is an application:

 ❏ If the application is not already running, it is launched and sent an 'oapp' (“open application”)
Apple event.

 ❏ If the application is already running, it is activated (brought to the front of the screen) and sent an
'rapp' (“reopen application”) Apple event.

 ■ If the designated item is a document, its preferred application is launched (or activated if it was already
running) and sent an 'odoc' (“open document”) Apple event instructing it to open the document.

LSOpenFSRef in turn calls the more general function LSOpenFromRefSpec, a “Swiss Army knife” function
that provides access to the full range of options for opening applications and documents. You can call this
function directly yourself if you need to request something other than the default behavior. For instance,
you can use it to:

 ■ Open more than one document at a time, in either the same or different applications

 ■ Force a document to open in an application other than its own preferred application

 ■ Open documents for printing rather than for simple viewing or editing

 ■ Force an application to open in the Classic emulation environment

 ■ Open a specified application and hide all others

 ■ Prevent an application or document from being added to the Finder’s Recent Items menu

Opening Items 25
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Launch Services Tasks

Instead of a direct file-system reference to an item to be opened, you supply a pointer to a launch
specification, a data structure of type LSLaunchFSRefSpec that identifies one or more items along with
additional information about how to open them:

 ■ To open one or more documents, pass an array of file-system references in the launch specification’s
itemRefs field; the numDocs field tells how many there are. If the appRef field is also non-null, it specifies
the application in which to open the documents; otherwise, each document will be opened in its own
preferred application.

 ■ To open an application without specifying any documents, pass a file-system reference to the application
in the launch specification’s appRef field and set the itemRefs field to NULL and numDocs to 0.

The additional information in the launch specification includes:

 ■ A flag word (launchFlags) containing various launch options to control the manner in which the
application is opened; see “Launch Options” (page 16)

 ■ A pointer to an optional Apple event descriptor record (passThruParams) containing parameter
information to be passed with the Apple event the application receives on opening

 ■ An optional reference constant (asyncRefCon) to be passed to your Carbon event handler routine for
asynchronous launch notifications, as described under “Synchronous and Asynchronous Launch” (page
17)

For both LSOpenFSRef and LSOpenFromRefSpec, the output parameter outLaunchedRef holds a pointer
to a file-system reference that the function will set to indicate the application that was opened (or the first
such application, in the case of multiple documents opened in different applications). If this information is
not of interest, you can set this parameter to NULL.

Opening Items by URL

To open a URL, you use the Launch Services function LSOpenCFURLRef or LSOpenFromURLSpec. These are
analogous to LSOpenFSRef and LSOpenFromRefSpec, but accept Core Foundation URL references
(CFURLRef) instead of file-system references. These functions also are often useful when you have a file-system
pathname to an application or document to be opened: you can construct a URL with scheme file containing
the path and then use this URL in place of a file-system reference to open the item. The LSOpenCFURLRef
and LSOpenFromURLSpec functions are the only way to open URLs with other schemes, such as http, ftp,
or mailto.

Like LSOpenFSRef for file-system references, LSOpenCFURLRef opens a designated URL in its preferred
application in the default way. The more general function LSOpenFromURLSpec accepts a launch specification
(analogous to the one for LSOpenFromRefSpec but of type LSLaunchURLSpec rather than
LSLaunchFSRefSpec) specifying in greater detail the manner in which the URL is to be opened. As with
LSOpenFromRefSpec, you can call this function directly yourself if you need to request something other
than the default behavior provided by LSOpenCFURLRef.

Both LSOpenCFURLRef and LSOpenFromURLSpec determine what application to use to open a specified
URL, launch the application (or activate it if it is already running), and send it an Apple event instructing it
to open the URL. (With LSOpenFromURLSpec, you can override the URL’s preferred application by explicitly
designating another application in the launch specification’s appURL field.) Ordinarily, the application receives
a 'GURL' (“get URL”) Apple event; but if the URL’s scheme is file and the application doesn’t claim to accept
URLs with this scheme, it is sent an 'odoc' (“open document”) Apple event instead.

26 Opening Items
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Launch Services Tasks

Like their counterparts for file-system references, both of the URL-based functions can optionally return
information about which application was actually opened (or the first, in the case of multiple URLs opened
in different applications). This information is passed back via a Core Foundation URL reference to which you
supply a pointer in the output parameter outLaunchedURL. You can set this parameter to NULL if the identity
of the application is not of interest.

Finding an Item’s Preferred Application

To find the preferred application for a document file, URL, or MIME type without opening it, use the Launch
Services function LSGetApplicationForItem, LSGetApplicationForURL, or
LSCopyApplicationForMIMEType, respectively. You identify the item of interest with a file-system reference
(FSRef) to the document, a Core Foundation URL reference (CFURLRef) to the URL, or a Core Foundation
string reference (CFStringRef) to a string specifying the MIME type. Another Launch Services function,
LSGetApplicationForInfo, finds the preferred application for a family of documents defined by their file
type, creator signature, filename extension, or any combination of these characteristics.

In each case, you must supply a role mask (LSRolesMask) specifying one or more roles (Editor, Viewer,
or None) that the application should claim with respect to the given item or family of items. (Note that None
does not mean “no role at all,” but rather refers to a specific role that the application can claim with respect
to the item: that of providing identifying information such as a display name and icon file without actually
being able to open the item itself.) If you don’t care what role the application claims, use the mask value
kLSRolesAll.

To receive the result, you pass a pointer to a file-system reference (in the outAppRef parameter), a Core
Foundation URL reference (in the outAppURL parameter), or both; Launch Services will set the designated
data structure to refer to the item’s preferred application. You can pass a null pointer for either of these
parameters if you don’t care to receive the result in that form, but at least one of the two pointers must be
non-null. (In the case of LSCopyApplicationForMIMEType, only the URL option is available; there is no
outAppRef parameter.)

To find all known applications that can open a given item with a specified role, use the Launch Services
function LSCopyApplicationURLsForURL. Although this function can only accept a URL reference and
not a file-system reference, you can use it for document files as well, by passing a URL with scheme file
referring to the desired document.

The Launch Services function LSFindApplicationForInfo locates an application based on its name,
creator signature, bundle ID, or any combination of these characteristics. (Note that this differs from
LSGetApplicationForInfo in that the specified characteristics apply to the application itself, rather than
to the document files it can open.) As with other Launch Services functions discussed earlier, you can receive
the result as either a file-system reference, a URL, or both, by passing pointers to the appropriate data
structures to be filled with the information.

Testing Whether an Application Can Open an Item

Often it is useful to find out whether a given application claims the ability to open a particular document or
URL. The Launch Services functionsLSCanRefAcceptItem andLSCanURLAcceptURLprovide this information.
You supply either file-system references or URL references to the item and the target application, along with

Finding an Item’s Preferred Application 27
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Launch Services Tasks

a role mask and a flag word controlling certain technical aspects of the function’s behavior; the function
responds by setting a Boolean variable, to which you provide a pointer, to indicate whether the application
can accept the designated item.

Registering an Application

It isn’t ordinarily necessary to register an application explicitly with Launch Services, since this is done for
you automatically whenever the application becomes known to the Finder, the system is booted, or a new
user logs in (see “Application Registration” (page 14)). On those rare occasions when you do need to register
an application explicitly (such as in a custom installer program), you can use the Launch Services function
LSRegisterFSRef or LSRegisterURL, depending on whether the application is identified with a file-system
reference or a Core Foundation URL reference. In either case, the application and its document binding
information are copied into the Launch Services database, making the application available for opening
documents and URLs.

Obtaining Information About an Item

You can use the Launch Services functions LSCopyItemInfoForRef and LSCopyItemInfoForURL to
obtain a variety of information about file-system objects such as applications, documents, folders, or volumes.
You supply a file-system reference or a Core Foundation URL reference (with scheme file) to identify the
item of interest, along with a flag word (LSRequestedInfo) specifying the information you want and a
pointer to an item information record (LSItemInfoRecord) in which to receive back the information. The
information in this record can include the item’s file type, creator signature, filename extension, and various
flags describing attributes of the item (see “Item Information” (page 9)).

Two other pieces of information about an item that you may find useful are its display name (used for
displaying its name to the user on the screen) and its kind string (used, for instance in the Finder’s Get Info
window or the Kind column of the Finder’s list view, to characterize the item’s general nature, such as
Application, Folder, Alias, JPEG Picture, QuickTime Movie, or FrameMaker Document). You can
obtain the display name with the Launch Services function LSCopyDisplayNameForRef or
LSCopyDisplayNameForURL and the kind string with LSCopyKindStringForRef,
LSCopyKindStringForURL, LSCopyKindStringForTypeInfo, or LSCopyKindStringForMIMEType.

28 Registering an Application
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Launch Services Tasks

This table describes the changes to Launch Services Programming Guide.

NotesDate

Made minor corrections. Changed title from "Launch Services Concepts and
Tasks."

2007-08-23

New document that explains how to use Launch Services to open applications,
documents, and URLs.

2003-12-01

29
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

30
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

activate To bring a running application to the front
of the screen, allowing the user to interact with it.
Compare launch.

active extension A filename extensionclaimed by
at least one application registered with Launch
Services. Compare valid extension.

application An independently executable software
program.

application bundle A bundle containing the
executable code of an application and its associated
resources.

application file A file containing the executable
code of an application.

application package An application bundle
presented to the user in the form of a package whose
contents are ordinarily inaccessible for browsing.

asynchronous launch A launch operation in which
control returns immediately to the calling program,
without waiting for the launched application to
complete its launch sequence. Compare synchronous
launch.

binding information The information maintained in
the Launch Services database about the kinds of
documents and URLs an application is capable of
opening.

binding preference A preference set by the user
specifying the application in which to open a given
document or URL.

binding rules The rules used by Launch Services to
determine an item’s default application according to
the binding information in the Launch Services
database.

bundle A directory containing executable code and
related resources, structured according to conventions
defined by Core Foundation Bundle Services.

bundle identifier A unique identifying string used
to locate an application’s bundle at runtime.

bundle information property list A collection of
key-value pairs giving information about an
application, stored in a file named Info.plist in its
application bundle.

claim Said of an application, to declare to Launch
Services that it is capable of opening documents or
URLs of a given type.

Core Foundation URL reference A data object of
type CFURLRef specifying a URL.

creator signature A four-character code associated
with a file that identifies the application that created
it or that should be used to open it.

default application The application selected by
Launch Services, according to its own implicit binding
rules, in which to open a given document or URL in
the absence of an explicit binding preference set by
the user.

directory A file-system object containing zero or
more other named objects (files or other directories).

display name A string used for displaying an item’s
name to the user, such as in the Finder or the Dock.

document A unit or collection of data, contained in
a file or package, that can be operated on by an
application.

document file A file containing a document.

31
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

Glossary

document package A package containing a
document along with related resources.

document type A family of document files
characterized by a given file type, creator signature,
or filename extension. Compare URL type.

filename extension A string of characters at the end
of a filename, preceded by a period (.), that
characterizes the nature of the file or the structure of
its contents.

file-system reference A data object of type FSRef
designating a file residing on a local or remote
file-system volume.

file type A four-character code associated with a file
that characterizes its nature or the structure of its
contents.

folder A directory presented to the user in such a
way that its contents are accessible (subject to the
appropriate permissions) for browsing. Compare
package.

item Generically, an application, document, or URL
to be operated on by Launch Services.

item information record A data structure of type
LSItemInfoRecord, used by Launch Services to
return information about an item.

kind string A string used (in the Finder’s Get Info
window, for example) to characterize the general
nature of an item, such as Application, Folder,
Alias, JPEG Picture, QuickTime Movie, or
FrameMaker Document.

launch To start up an application that was not
previously running. Compare activate.

launch options A set of flags specifying the manner
in which an application is to be opened.

launch sequence The sequence of operations
performed by an application immediately on being
launched, indicated visually to the user by the
application’s icon “bouncing” in the Dock.

Launch Services A Mac OS X application
programming interface that enables a running
program to open other applications, documents, or
URLs in a way similar to the Finder or the Dock.

Launch Services database The data structure in
which Launch Services records information about
available applications and the kinds of documents or
URLs they are capable of opening.

launch specification A data structure of type
LSLaunchFSRefSpec or LSLaunchURLSpec, used
to specify to Launch Services the manner in which an
item or items are to be opened.

MIME (Multipurpose Internet Mail Extension) A
protocol used for adding attachments to email
messages.

MIME type A string designating the type of data in
an attachment transmitted via MIME, such as
text/plain, image/jpeg, audio/mp3, or
video/quicktime.

open Generically, to launch or activate an application
or to present a document or URL for viewing or
editing within an application.

package A directory presented to the user so that
it appears to be a single file, and whose contents are
ordinarily inaccessible for browsing by the user.
Compare folder.

preferred application The application selected by
Launch Services in which to open a given document
or URL, either through an explicit binding preference
set by the user or, in the absence of such a user
preference, by applying Launch Services’ own implicit
binding rules for determining the item’s default
application.

reference constant An arbitrary data item available
for use by a program to convey information for its
own purposes in an operation or data structure.

register To make an application known to Launch
Services, copying its binding information into the
Launch Services database and making it available for
opening documents and URLs.

role A characterization (such as Editor or Viewer)
of the kinds of operations an application is capable
of performing on documents or URLs of a given type.

role mask A parameter specifying the role or roles
that an application should claim with respect to a
given item in order to be considered a candidate for
opening that item.

32
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

GLOSSARY

scheme The component of a uniform resource
locator (URL) that identifies the type of resource it
represents or the protocol to be used for accessing
it, such as http, ftp, mailto, or file.

scheme-definition dictionary A dictionary, specified
in an application’s bundle information property list,
that declares a particular URL type that the application
claims to handle. Compare type-definition dictionary.

synchronous launch A launch operation in which
control does not return to the calling program until
the launched application has completed its launch
sequence. Compare asynchronous launch.

type-definition dictionary A dictionary, specified in
an application’s bundle information property list, that
declares a particular document type that the
application claims to handle. Compare
scheme-definition dictionary.

uniform resource locator A string, in a standard
format, designating a file, Web page, or other
resource, typically (but not necessarily) to be accessed
via the Internet. Often used loosely in the context of
Launch Services to refer to the resource so designated.

URL See uniform resource locator.

URL type A family of URLs characterized by a given
scheme component. Compare document type.

valid extension A filename extension that does not
contain spaces, periods, or characters that are not
supported by the underlying file system. Compare
active extension.

33
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

GLOSSARY

34
2007-08-23 | © 2007 Apple Inc. All Rights Reserved.

GLOSSARY

	Launch Services Programming Guide
	Contents
	Figures and Tables
	Introduction
	Launch Services Concepts
	Item Identification
	Item Information
	Launch Services Database
	Property List Keys for Launch Services
	Document Types
	URL Types

	Application Roles

	Application Registration
	Open Operations
	Opening Applications
	Opening Documents
	Opening URLs
	Launch Options
	Synchronous and Asynchronous Launch

	User-Specified Binding Preferences
	Choosing the Binding Preference for a File
	Choosing the Binding Preference for a URL

	Preferred Applications
	Preferred Application for a Document
	Preferred Application for a URL

	Launch Services Tasks
	Opening Items
	Opening Items by File-System Reference
	Opening Items by URL

	Finding an Item’s Preferred Application
	Testing Whether an Application Can Open an Item
	Registering an Application
	Obtaining Information About an Item

	Revision History
	Glossary

