
Optimizing Display Modes and Window
Arrangement With the Display Manager
(Legacy)

Carbon > User Experience

2007-05-03

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Carbon, Mac, Mac OS,
Macintosh, Power Mac, PowerBook, Quartz, and
QuickDraw are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Optimizing Display Modes and Window Arrangement With the
Display Manager 7

Organization of This Document 7

Chapter 1 About the Display Manager 9

Overview 9
When the User Removes a Display 10
Display Manager Problems Moving Windows 12
When the User Moves the Menu Bar 15
Display Modes 16

Chapter 2 Using the Display Manager 19

Handling Events in Response to Display Manager Changes 19
Handling the Display Notice Event as a High-Level Event 22
Handling the Display Notice Event Outside of an Event Loop 24
Managing Windows In Response to the Display Notice Event 24
Determining the Characteristics of the Video Devices 25
Setting Configurations and Display Modes for Video Devices 26

Document Revision History 27

3
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

4
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 About the Display Manager 9

Figure 1-1 The Monitors control panel 10
Figure 1-2 Default window repositioning when the user removes the right display 11
Figure 1-3 Default window repositioning when the user removes the bottom display 12
Figure 1-4 A problem with repositioning a nonstandard window 13
Figure 1-5 Default repositioning of a fixed-size window 14
Figure 1-6 Default window positioning when the user adds a display 14
Figure 1-7 Default window positioning when the user moves the menu bar 15
Figure 1-8 Lower and higher screen resolutions on a multiple-scan monitor 16

Chapter 2 Using the Display Manager 19

Table 2-1 Keyword-specified descriptor structures. 20
Listing 2-1 Handling Apple events in the event loop 22
Listing 2-2 Responding to the Display Notice event 23
Listing 2-3 Ensuring that a nonstandard window appears onscreen 24

5
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

6
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Important: The Display Manager is deprecated as of Mac OS X v10.4. You should use Quartz Display Services
instead (as described in Quartz Display Services Programming Topics).

The Display Manager is a legacy technology that supported dynamic changes to the arrangement and display
modes of the displays attached to a user’s computer. The Display Manager was included in Carbon to facilitate
porting older applications to Mac OS X. While the Display Manager is still supported, it has been deprecated
and should not be used for new software development. If you have an existing application that still uses the
Display Manager, you should update your application to use Quartz Display Services, the replacement
technology in Mac OS X.

The target audience for this legacy document was developers writing applications for Mac OS 9 and earlier.
This document is not relevant in Mac OS X.

Organization of This Document

This document contains the following chapters:

“About the Display Manager” (page 9) describes the features of the Display Manager and helps you determine
whether your application needs to use its API.

“Using the Display Manager” (page 19) describes some of the tasks you can perform with the Display Manager.

Organization of This Document 7
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Optimizing Display Modes and
Window Arrangement With the Display
Manager

8 Organization of This Document
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to Optimizing Display Modes and Window Arrangement With the Display Manager

This chapter explains how the Display Manager allows users to dynamically change the arrangement and
display modes of the monitors attached to their computers. For example, users can move their displays, add
or remove displays, switch displays to higher or lower screen resolutions, and move the menu bar from one
display to another—all without restarting their computers. When the user changes the display environment
(as when disconnecting a display, for example), the Display Manager further assists the user by repositioning
standard windows so that the user can find them in the new display environment.

This chapter helps you determine whether your application must move its own windows instead of relying
on the Display Manager to move them. For example, if your application implements a tool palette that lacks
a title bar, and the user disconnects the monitor that displays the tool palette, your application must move
your tool palette to the main screen where the user can find it. Because the Display Manager never resizes
windows, this chapter helps you determine whether to resize your application’s windows after a display
configuration change.

The Display Manager is available on all Power Macintosh computers and on color-capable Macintosh computers
running system software version 7.5 and later. Applications that use only the standard window definition
functions provided by the Window Manager generally do not need to use the Display Manager.

Users indirectly inform the Display Manager of changes they wish to make to their display environment by
using the Monitors control panel or by adding and removing additional displays. The Monitors control panel
in turn calls the Display Manager to change the display environment. The Display Manager sends an Apple
event—the Display Notice event—to notify applications that it changed the display environment. In addition,
the Display Manager generates an update event to notify all current applications to update their windows.

The Display Manager provides your application with functions that obtain GDevice structures for the video
devices controlling the displays connected to the user’s computer system. When repositioning a window,
for example, your application can use the GDevice structures stored in the device list to determine which
video device supports the largest display area or the greatest pixel depth.

This chapter explains the capabilities of the Display Manager and describes its default behavior when
repositioning windows. This chapter helps determine whether your application needs to perform its own
window positioning or sizing. If your application needs to perform its own window management in a changing
environment, the next chapter, “Using the Display Manager,” discusses how your application can determine
if the user changed the display environment and how to manage its windows accordingly.

Overview

The Display Manager is a set of system software functions that support dynamic changes to the arrangement
and display modes of the displays attached to a user’s computer. (This book uses the term displays to represent
output devices—such as video monitors and flat-panel displays—on which applications can show interactive
visual information to the user. A video device is the hardware, such as the plug-in video card or the built-in
video interface, that controls a display.)

Overview 9
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

The Monitors control panel mostly uses the Display Manager functions. After opening the Monitors control
panel, the user can choose to

 ■ move displays

 ■ switch multiple-resolution displays to use higher or lower screen resolutions

 ■ move the menu bar from one display to another

 ■ select different pixel depths for video devices that support multiple depths

For example, a user can use a PowerBook computer that comes with an external video port to attach a second
display. After the user opens the Monitors control panel, the user can move the menu bar from one display
to another and the menu bar immediately moves to the user’s desired location without the user restarting
the computer.

Figure 1-1 The Monitors control panel

The user can also add or remove displays without restarting the computer. For example, a user can attach
an external monitor to a sleeping PowerBook computer, wake the computer, and use both the external and
built-in displays. If the user puts the PowerBook computer to sleep, detaches the external monitor, then
wakes the computer, the Display Manager automatically moves windows that previously appeared on the
external monitor onto the PowerBook built-in display.

The next several sections illustrate the default window positioning behaviors of the Display Manager.

When the User Removes a Display

When a user removes a display, the Display Manager moves the windows that previously appeared on the
disconnected display to the next closest display.

10 When the User Removes a Display
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

The Display Manager attempts to center the window of an alert or modal dialog box on the next closest
display. If the alert or modal dialog box is larger than the screen, the Display Manager aligns its lower-left
corner with the lower-left corner of the next closest display, thereby providing access to the area of the alert
or modal dialog box with the OK and Cancel buttons.

The Display Manager assumes that any other type of window has a standard title bar. As illustrated in Figure
1-2 and Figure 1-3, the Display Manager then moves the window to the closest display by the shortest distance
necessary to show the entire title bar.

Figure 1-2 Default window repositioning when the user removes the right display

Help 9:56 AMColorFile Edit View

Help 9:56 AMColorFile Edit View

As shown in Figure 1-3, the content region of the window may still lie offscreen; but in a standard window,
the user has access to the drag region of the title bar and to the zoom box. The user can therefore easily
move the entire window onto the screen.

If the window is wider than the screen, the Display Manager fits the area in the title bar where the close box
should appear onscreen.

When the User Removes a Display 11
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

Figure 1-3 Default window repositioning when the user removes the bottom display

Help 9:56 AMColorFile Edit View
Help 9:56 AMColorFile Edit View

Display Manager Problems Moving Windows

When repositioning any window other than a window of type dBoxProc, the Display Manager assumes that
the window has a standard title bar and moves the window to the closest display so that the title bar appears
to the user. However, if the window does not have a title bar, the Display Manager may move the window
to a position where the user cannot see it.

For example, on the left side of Figure 1-4 a window containing a tool palette and a nonstandard drag region
appears in the lower display. When the user removes the lower display, as shown in the right side of the
figure, the Display Manager moves the tool palette onto the main screen by the shortest distance necessary
to display a standard title bar for the window. However, the window does not have a standard title bar, and
so no part of the window appears onscreen. Applications that use windows without standard title bars must
reposition their own windows as described in the chapter “Using the Display Manager.”

12 Display Manager Problems Moving Windows
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

Figure 1-4 A problem with repositioning a nonstandard window

Help 9:56 AMColorFile Edit View Help 9:56 AMColorFile Edit View

The Display Manager makes no attempt to stack or tile windows so that the user can see all of their titles
bars simultaneously. Multiple windows repositioned by the Display Manager may obscure each other’s title
bars.

The Display Manager never resizes windows. Because of this, fixed size windows can present a problem. If a
fixed size window appears on a large display, and the user removes that display, only part of the window
appears when the Display Manager repositions it on a smaller display. Figure 1-5 illustrates how the Display
Manager might reposition the window of a game that draws into a fixed size window.

Display Manager Problems Moving Windows 13
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

Figure 1-5 Default repositioning of a fixed-size window

Help 9:56 AMColorFile Edit View

Help 9:56 AMColorFile Edit View

When the user adds a display, the Display Manager does not move any windows to that display. For example,
in Figure 1-6 either the user or the application must move the window on the main screen to the display
added on the right. If your application works best on the largest available screen or on the one displaying
the greatest number of colors, you may want your application to move its windows to the added display.

Figure 1-6 Default window positioning when the user adds a display

Help 9:56 AMColor
File

Edit View

Help 9:56 AMColorFile Edit View

14 Display Manager Problems Moving Windows
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

When the User Moves the Menu Bar

On a computer with multiple screens, the user can use the Monitors control panel to change the main
screen—that is, the one that contains the menu bar. Color QuickDraw maps the (0,0) origin point of the
global coordinate system to the main screen’s upper-left corner, and other screens are positioned adjacent
to it. The Window Manager automatically maintains window positions according to this global coordinate
system.

When the user changes the main screen, the upper-left corner of the new main screen becomes the (0,0)
origin point of QuickDraw’s global coordinate system, and all windows initially maintain their position relative
to this new origin point. When a user moves the menu bar, the user sees the windows that previously appeared
beneath the menu bar on one display moved to the display that now contains the menu bar.

Figure 1-7 Default window positioning when the user moves the menu bar

Help 9:56 AMColorFile Edit View

Help 9:56 AMColorFile Edit View

(0,0)

(50,50)

(0,0)

(50,50)

For example, the top of Figure 1-7 shows a window on the left display. The left display is the main screen,
and the upper-left corner of the window is at coordinates (50,50) on the global coordinate system. At the
bottom of the figure, the user moves the menu bar to the right display. The window retains its upper-left
coordinates of (50,50), but because the (0,0) origin of the global coordinate system moved to the right screen,
the window now appears in the right display.

When the User Moves the Menu Bar 15
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

If the Display Manager finds that any windows move offscreen after the user moves the menu bar, the Display
Manager repositions the windows as previously described—that is, it tries to move the title bar onto the
closest screen or it tries to center the alert or modal dialog box on the closest screen.

Display Modes

The Display Manager allows users to choose from the various display modes available on their displays. A
display mode is a combination of several interrelated capabilities that you can alter using the Display Manager
to affect the display. You can characterize a display mode by

 ■ the screen resolution, which determines the number of pixels that appear on the display screen

 ■ the horizontal and vertical scan timings in use by the display

 ■ the display’s refresh rate

In addition to these capabilities, a display mode may also support multiple pixel depths, which determine
the number of colors available on the display. You refer to the pixel depths available for a display mode as
depth modes, and in various Display Manager data structures, depth modes are represented by constants
or by their values from an enumerated list. A depth mode is also called a video mode.

Single-resolution grayscale or color monitors support multiple pixel depths only. Some multiple-resolution
displays support display modes that change only the screen resolution and the pixel depth. For example, by
choosing a lower screen resolution, a user with limited RAM can set the display to show a greater number
of colors. Multiple-scan displays, however, are also capable of operating at multiple horizontal and vertical
scan timings and at different refresh rates.

For example, a multiple-scan display might support display modes with screen resolutions of 640 by 480
pixels and 1152 by 870 pixels. The left side of Figure 1-8 illustrates a multiple-scan display operating at a
screen resolution of 640 by 480 pixels. The right side of the figure illustrates the same display after it has
been switched to a screen resolution of 1152 by 870 pixels.

Figure 1-8 Lower and higher screen resolutions on a multiple-scan monitor

Help 9:56 AMColorFile Edit View Help 9:56 AMColorFile Edit View

When editing a bitmap image with a paint application, a user might wish to use the lower screen resolution,
which, compared to the higher resolution, displays fewer pixels on the screen but displays them at a larger
size. When using a spreadsheet application, however, the user might then want to switch to the higher
resolution to increase the number of onscreen pixels and thereby view a greater number of cells in a
spreadsheet.

16 Display Modes
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

To change the screen resolution, the user opens the Monitors control panel and selects the display mode
for that resolution. The Display Manager then sends the video device driver a control request to switch the
display to the newly selected display mode.

All required display modes appear when the user opens the Monitors control panel. For a particular type of
display (for example, a 21-inch video monitor), a required display mode is one that Apple requires the display
to support. A multiple-scan display must support several required display modes, one of which is designated
to be the default display mode. The default display mode appears the first time a user turns on a display. For
example, the first time a user connects and starts a 21-inch video monitor, it should use a mode displaying
1152 by 870 pixels. However, a 21-inch multiple-scan display is also required to support display modes with
resolutions of 640 by 480 pixels, 832 by 624 pixels, and 1024 by 768 pixels, which the user can select with
the Monitors control panel.

Using Display Manager functions, your application can change the display mode and the pixel depth of any
display for the user, but your application should do so only with the consent of the user. The Monitors control
panel is the user interface for changing the pixel depth, color capabilities, and positions of video devices.
Because the user can control the capabilities of the video devices, your application should be flexible. Although
it may have a preferred pixel depth, your application should do its best to accommodate less than ideal
conditions.

However, if your application must have a specific pixel depth, or a particular screen resolution, it can display
a dialog box that offers the user a choice between changing to that depth or canceling display of the image.
This dialog box saves the user the trouble of going to the Monitors control panel before returning to your
application. Your application can then use Display Manager functions to change the display mode or pixel
depth of a display.

Display Modes 17
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

18 Display Modes
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

About the Display Manager

The previous chapter explains how the Display Manager automatically repositions windows if necessary to
ensure that windows are accessible when the user changes the display environment. If the Display Manager
moves windows in a manner inappropriate for your application, your application should reposition them
instead. Applications that use only the standard window definition functions provided by the Window
Manager generally do not need to use the Display Manager.

However, you may need or want your application to perform its own window positioning under various
circumstances, such as when

 ■ your application benefits by displaying windows and their contents on the display controlled by the
video device with the greatest pixel depth

 ■ your application benefits by displaying windows on the largest available display

 ■ your application uses nonstandard window definition functions that draw windows lacking title bars;
examples include fixed-sized windows without title bars (games often use such windows), tool palettes
with drag regions on the left sides of their windows, and floating windows

When necessary, the Display Manager automatically repositions windows of type dBoxProc (that is, alert
boxes and modal dialog boxes) so that the lower-left corners of the windows appear onscreen. This gives
users access to the area with the OK and Cancel buttons.

In addition, your application should respond to Display Manager changes if your application relies on display
information that it stores internally. For example, if your application caches display positions, GDevice
structures for displays other than the main screen, or the value in the screenBits.bounds field of the
screenBits global variable, this information may become invalid after the user changes the display
configuration. Therefore, your application should update its internal values accordingly after a display
configuration change.

To determine whether the Display Manager is available, use the Gestalt function with the
gestaltDisplayMgrAttr selector. Test the bit field indicated by the gestaltDisplayMgrPresent
constant in the response parameter. If the bit is set, then the Display Manager is present.

Presence of the Display Manager does not guarantee that a computer also supports video mirroring. To
determine whether QuickDraw supports video mirroring on the user’s computer system, use the
DMQDIsMirroringCapable function.

Handling Events in Response to Display Manager Changes

Users indirectly inform the Display Manager of changes they wish to make to their display environment by
using the Monitors control panel, or by attaching or removing additional displays. The Display Manager in
turn sends an Apple event—the Display Notice event—to notify applications that the display environment
has changed.

Handling Events in Response to Display Manager Changes 19
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Display Manager

After changing the display environment, the Display Manager also generates an update event to notify all
current applications to update their windows.

Your application should always handle update events for its windows. However, your application needs to
respond to the Display Notice event only if your application repositions its own windows, uses nonstandard
windows, or must update any display information that it stores internally.

To receive the Display Notice event informing you of changes to the user’s display configuration, you must
either

 ■ handle the Display Notice event as a high-level event in your application’s normal event loop; or

 ■ use the DMRegisterExtendedNotifyProc function to register a function that handles the Display
Notice event as soon as the Display Manager issues it

If you write a utility—such as a control panel—that does not handle events through a normal event loop, or
if you want your application to handle the Display Notice event as soon as it is issued instead of waiting for
it to appear in the event queue, you should use the DMRegisterExtendedNotifyProc function.

Here is a summary of the Display Notice event (remember that you must use Apple Event Manager functions
to obtain the information contained in Apple events such as this):

Display Notice—respond to display configuration changes

Event class
kCoreEventClass

Event ID
kAESystemConfigNotice

Required parameter
Keyword:

kAEDisplayNotice

Descriptor type:
AEDesc

Data:
A list of descriptor structures, each specified by the keyword kDisplayID. Each kDisplayIDdescriptor
structure contains information about a video device attached to the user’s system. Within each
kDisplayID descriptor structure are a pair of additional keyword-specified descriptor structures:
keyDisplayOldConfig and keyDisplayNewConfig. A description of the video device’s previous
state is saved in the keyDisplayOldConfig descriptor structure, and a description of the video
device’s current state is saved in the keyDisplayNewConfig descriptor structure.

Descriptions of these keyword-specified descriptor structures are in Table 2-1.

Requested action
Ensure that all windows appear to the user, and update any necessary display information that your
application or utility stores internally.

Table 2-1 Keyword-specified descriptor structures.

DescriptionTypeValueKeyword

The depth mode for the video device; that
is, the value of the gdMode field in the
GDevice structure for the device

typeLongInteger'dddm'keyDeviceDepthMode

20 Handling Events in Response to Display Manager Changes
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Display Manager

DescriptionTypeValueKeyword

The attributes for the video device as
maintained in the gdFlags field of the
GDevice structure for the device

typeShortInteger'dddf'keyDeviceFlags

The boundary rectangle of the video device;
that is, the value of the gdRect field in the
GDevice structure for the device

typeQDRectangle'dddr'keyDeviceRect

A handle to the GDevice structure for the
video device

typeLongInteger'dmdd'keyDisplayDevice

The display ID for the video devicetypeLongInteger'dmid'keyDisplayID

The sResource number from the video
device for this display mode

typeLongInteger'dmdm'keyDisplayMode

The version number for this Display Notice
event

typeLongInteger'dmcv'keyDMConfigVersion

Reserved for future usetypeLongInteger'dppa'keyPixMapAlignment

The number of components used to
represent a color for a pixel; that is, the value
of the cmpCount field in the PixMap
structure for the GDevice structure for the
device

typeShortInteger'dpcc'keyPixMapCmpCount

The size in bits of each component for a pixel;
that is, the value of the cmpSize field in the
PixMap structure for the GDevice structure
for the device

typeShortInteger'dpcs'keyPixMapCmpSize

The value of the ctSeed field of the
ColorTable structure for the PixMap
structure for the GDevice structure for the
video device

typeLongInteger'dpct'keyPixMapColor-
TableSeed

he horizontal resolution of the pixel image
in the PixMap structure for the GDevice
structure for the video device

typeFixed'dphr'keyPixMapHResolution

Pixel depth for the device; that is, the value
of the pixelSize field in the PixMap
structure for the GDevice structure for the
video device

typeShortInteger'dpps'keyPixMapPixelSize

The storage format for the pixel image on
the device; that is, the value of the
pixelType field in the PixMap structure for
the GDevice structure for the video device

typeShortInteger'dppt'keyPixMapPixelType

Handling Events in Response to Display Manager Changes 21
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Display Manager

DescriptionTypeValueKeyword

The boundary rectangle into which
QuickDraw can draw; that is, the bounds field
in the PixMap structure for the GDevice
structure for the video device

typeQDRectangle'dpdr'keyPixMapRect

Reserved for future usetypeLongInteger'dppr'keyPixMapReserved

Reserved for future usetypeLongInteger'dprr'keyPixMapResReserved

The vertical resolution of the pixel image in
the PixMap structure for the GDevice
structure for the video device

typeFixed'dpvr'keyPixMapVResolution

Handling the Display Notice Event as a High-Level Event

To handle the Display Notice event as a high-level event like any other Apple event, you need to

 ■ set the isHighLevelEventAware bit in your application’s 'SIZE' resource to indicate that your
application supports high-level events (in which case your application must also support the four required
Apple events)

 ■ include code to handle high-level events in your main event loop (as illustrated in Listing 2-1 (page 22))

 ■ write a function that handles the Display Notice event (as illustrated in Listing 2-2 (page 23))

 ■ use the AEInstallEventHandler function to install the entry for handling the Display Notice event
in your application’s Apple event dispatch table

If you want your application to handle all window positioning itself (that is, if you do not want the Display
Manager to automatically move any of your windows), you should also set the isDisplayManagerAware
bit in the 'SIZE' resource.

Listing 2-1 Handling Apple events in the event loop

void MyDoEvent(EventRecord *event)
{
 short part, err;
 WindowPtr window;
 char key;
 switch (event->what) {
 /* here, handle null, mouse down, key down, update, and
 other necessary events */
 case kHighLevelEvent:
DoHighLevelEvent(event);
break;
 }
}
void DoHighLevelEvent(EventRecord *event)
{
 OSErr myErr;
 /* handling only Apple-event types of high-level events */

22 Handling the Display Notice Event as a High-Level Event
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Display Manager

 myErr = AEProcessAppleEvent(event);
}

Your application must use the AEInstallEventHandler function to add an entry to your application’s
Apple event dispatch table. This entry is the function that responds to the Display Notice event. For example,
the following code fragment illustrates how to use AEInstallEventHandler to install an application-defined
function called DoAEDisplayUpdate.

err = AEInstallEventHandler (kCoreEventClass,
 kAESystemConfigNotice,
 (ProcPtr)DoAEDisplayUpdate, 0, false);

Listing 2-2 shows an application-defined function called DoAEDisplayUpdate that uses Apple Event Manager
functions to obtain information about the various video devices reported by the Display Notice event. The
function DoAEDisplayUpdate uses this information to update its internal data structures for its windows
and then calls another application-defined function that ensures that its windows are displayed optimally
in the new configuration environment.

Listing 2-2 Responding to the Display Notice event

pascal OSErr DoAEDisplayUpdate
(AppleEvent theAE,AppleEvent reply,long ref) {
 #pragma unused(theAE,reply,ref)
 AEDescList DisplayList;
 AEDescList DisplayID;
 AERecord OldConfig,NewConfig;
 AEKeyword tempWord;
 AEDesc returnType;
 OSErr myErr;
 long result;
 long count;
 Rect oldRect, newRect;
 Size actualSizeUnused;
/* get a list of the displays from the Display Notice event */

 myErr =
 AEGetParamDesc(&theAE,kAEDisplayNotice,typeWildCard,&DisplayList);

/* count the elements in the list */
 myErr = AECountItems(&DisplayList,&count);
 while (count >0) /* decode the Display Notice event */
{
 myErr = AEGetNthDesc(&DisplayList, count, typeWildCard,
 &tempWord, &DisplayID);
 myErr = AEGetNthDesc(&DisplayID, 1, typeWildCard, &tempWord,
 &OldConfig);
 myErr = AEGetKeyPtr(&OldConfig, keyDeviceRect, typeWildCard,
 &returnType, &oldRect, 8, actualSizeUnused);
 myErr = AEGetNthDesc(&DisplayID, 2, typeWildCard, &tempWord,
 &NewConfig);
 myErr = AEGetKeyPtr(&NewConfig, keyDeviceRect, typeWildCard,
 &returnType, &newRect, 8, actualSizeUnused);
/* update internal info about the gdRects for the devices */
 MyUpdateWindowStructures(oldRect, newRect);
 count--;
}
/* move and resize windows as necessary*/

Handling the Display Notice Event as a High-Level Event 23
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Display Manager

 MyDisplayWindows();
 return (noErr);
}

Handling the Display Notice Event Outside of an Event Loop

You may want your application to handle the Display Notice event as soon as it is issued instead of waiting
for it to appear in the event queue. You can use the DMRegisterExtendedNotifyProc function to register
a function to which the Display Manager directly sends the Display Notice event. By using
DMRegisterExtendedNotifyProc, and by not setting the isHighLevelEventAware bit in the 'SIZE'
resource, you cause the Display Manager to send a Display Notice event directly to your handling function;
your application or utility then receives no high-level Display Notice event.

To remove your Display Notice event-handling function, use the DMRemoveExtendedNotifyProc function.

Managing Windows In Response to the Display Notice Event

Using the Monitors control panel, the user can switch displays to use a different display mode and to change
the display configurations. When your application receives the Display Notice event as described in the
previous section, your application must determine whether it needs to reposition and perhaps resize its
windows.

Listing 2-3 illustrates how an application can check whether its nonstandard window appears onscreen after
Display Manager configuration changes have occurred. In this example, the application has a window with
a title bar on its left side, as shown in the tool palette illustrated in Figure 1-4 (page 13). After receiving the
Display Notice event as shown in Listing 2-2 (page 23), the application calls its MyDisplayWindows function,
which in turn calls its MyMakeToolWindowVisible function. If MyMakeToolWindowVisible determines
that the nonstandard title bar does not appear on any displays (in which case the user cannot move the
window), MyMakeToolWindowVisible moves the entire window to the main screen where the user has
access to the window.

Listing 2-3 Ensuring that a nonstandard window appears onscreen

static pascal OSErr MyMakeToolWindowVisible (WindowPeek window) {
 if (window->windowKind == applicationFloatKind) {
 Rect checkRect;
 Rect mainRect;
 GDHandle maxAreaDevice;
 short theWVariant;
 Rect windowRect;
 theWVariant = GetWVariant(&window->port);
 MyGetWindowGlobalRect(window, &windowRect);
 /*get rectangle of window, in global coordinates, here */
 if (0 != (kVerBarFW & theWVariant))
 /* check if this is the window with a vertical title bar */
 {
 /* following line gets the rectangle of the title bar */
 SetRect(&checkRect, windowRect.left-kMyVertTitleWidth+kMyMinVisX,
 windowRect.top+kkMyMinVisV,
 windowRect.left-1-kMyMinVisX,

24 Handling the Display Notice Event Outside of an Event Loop
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Display Manager

 windowRect.bottom-kMyMinVisV);
 /* following line calls an application-defined function that
 determines which screen contains the largest amount of the title
 bar */
 maxAreaDevice = MyFindMaxCoverageDevice(&checkRect);
 if (nil == maxAreaDevice)
 /* if the title bar doesn't appear on any screen, move window to
 the main screen */
 { mainRect = (*GetMainDevice()) -> gdRect;
 MoveWindow(&Window->port, mainRect.left+10+kMyVertTitleWidth,
 mainRect.bottom-10-(windowRect.bottom-windowRec.top, FALSE);
 } }
 MyKeepWindowOnscreen(window, nil);
 /* handle other nonstandard window variants here */
 }
 return noErr;
}

Your application may find it useful to resize a window after moving it, or to optimize the color for its newly
configured video device. You can use Display Manager functions to determine the characteristics of video
devices, as explained in the next section.

Determining the Characteristics of the Video Devices

To determine the characteristics of available video devices, your application can use the
DMGetFirstScreenDevice function to obtain a handle to the GDevice structure for the first video device
in the device list. The DMGetFirstScreenDevice function is similar to the QuickDraw function
GetDeviceList, except that when returning GDevice structures, GetDeviceList does not distinguish
between the GDevice structures for video devices and the GDevice structures associated with no video
devices. (For example, if system software uses the function DMDisableDisplay to disable the last remaining
device in the device list, then DMDisableDisplay inserts into the device list a GDevice structure that is not
associated with any video device. The DMGetFirstScreenDevice function will not return this GDevice
structure, but GetDeviceList might.)

After using the DMGetFirstScreenDevice function to obtain a handle to the first GDevice structure for
a display in the device list, your application can use the DMGetNextScreenDevice function to loop through
all of the video devices in the device list. The DMGetNextScreenDevice function is similar to the QuickDraw
function GetNextDevice, except that when returning GDevice structures, GetNextDevice does not
distinguish between the GDevice structures for video devices and the GDevice structures associated with
no video devices.

Another important difference between these two Display Manager functions (DMGetFirstScreenDevice
and DMGetNextScreenDevice) and their related QuickDraw functions (GetDeviceList and
GetNextDevice) is that with both Display Manager functions, your application can specify that the Display
Manager return handles only to active video devices. (An active device is a video device whose display area
is included in the user’s desktop; the display area of an inactive device does not appear on the user’s desktop.)

To get a handle to the GDevice structure for a video device that mirrors another, your application can use
the DMGetNextMirroredDevice function.

Determining the Characteristics of the Video Devices 25
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Display Manager

Your application can pass the GDevice handle returned for any of these video devices to a QuickDraw
function like TestDeviceAttribute or HasDepth to determine various characteristics of the video device,
or your application can examine the gdRect field of the GDevice structure to determine the dimensions of
the screen it represents.

Macintosh system software uses the DMCheckDisplayMode function to determine whether a video device
supports a particular display mode and pixel depth. Typically, your application does not need to know whether
a display mode is supported, but only whether a specific pixel depth is supported, in which case your
application can use the Color QuickDraw function HasDepth.

To determine whether QuickDraw supports video mirroring on the user’s computer system, your application
can use the DMQDIsMirroringCapable function. Your application can use the DMCanMirrorNow function
to determine whether video mirroring can activate. And to determine whether the user’s computer system
currently uses video mirroring, your application can use the DMIsMirroringOn function.

Finally, your application can use the DMGetDisplayIDByGDevice function to determine the display ID for
a video device. A display ID is a long integer used by the Display Manager to uniquely identify a video device.
Associating a display by its display ID is helpful when using functions such as DMRemoveDisplay that could
change the GDevice structure associated with a video device. You can first determine the display ID for a
device by using the DMGetDisplayIDByGDevice function. To later retrieve that device’s GDevice structure
after calling various Display Manager functions, your application can use the DMGetGDeviceByDisplayID
function. Display IDs are not guaranteed to be persistent across reboots or sleep.

Setting Configurations and Display Modes for Video Devices

The Monitors control panel is the user interface for changing the pixel depth, color capabilities, and positions
of video devices. Because the user can control the capabilities of the video devices, your application should
be flexible. For instance, although your application may have a preferred pixel depth, it should do its best
to accommodate less than ideal conditions.

Your application can use Display Manager functions to change the display mode and display configuration
of the user’s video devices, but your application should do so only with the consent of the user.

If your application must have a specific pixel depth, for example, it can display a dialog box that offers the
user a choice between changing to that depth or canceling display of the image. This dialog box saves the
user the trouble of going to the control panel before returning to your application. If it is absolutely necessary
for your application to draw on a video device of a specific pixel depth, your application can then use either
the SetDepth function or the DMSetDisplayMode function.

With the possible exception of the DMSetDisplayMode function and the DMMirrorDevices and
DMUnmirrorDevice functions, applications should not need to use any of the Display Manager functions
that change the user’s display configuration. However, they are described for completeness, in case you find
a compelling need for your application to change the user’s display configuration. If your application must
use multiple Display Manager calls that configure the user’s displays, your application should first use the
DMBeginConfigureDisplays function to postpone Display Manager configuration checking, the rebuilding
of desktop regions, and Apple event notification of Display Manager changes. When finished configuring
the user’s displays, use the DMEndConfigureDisplays function. Using DMBeginConfigureDisplays and
DMEndConfigureDisplays allows your application to wait until it has made all display changes before
managing its windows in response to a single Display Notice event. It is important to pass the displayState
variable obtained in DMBeginConfigureDisplays to the DMEndConfigureDisplays function.

26 Setting Configurations and Display Modes for Video Devices
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Using the Display Manager

This table describes the changes to Optimizing Display Modes and Window Arrangement With the Display
Manager.

NotesDate

Moved to Legacy Documents area; no content update.2007-05-03

Fixed a broken link to Figure 2-4.2003-05-01

Structured document.2003-02-01

Last update of this document.2000-04-01

27
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

28
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Optimizing Display Modes and Window Arrangement With the Display Manager
	Contents
	Figures, Tables, and Listings
	Introduction
	About the Display Manager
	Overview
	When the User Removes a Display
	Display Manager Problems Moving Windows
	When the User Moves the Menu Bar
	Display Modes

	Using the Display Manager
	Handling Events in Response to Display Manager Changes
	Handling the Display Notice Event as a High-Level Event
	Handling the Display Notice Event Outside of an Event Loop
	Managing Windows In Response to the Display Notice Event
	Determining the Characteristics of the Video Devices
	Setting Configurations and Display Modes for Video Devices

	Revision History

