
Pasteboard Manager Programming Guide
Carbon > Interapplication Communication

2005-07-07

Apple Inc.
© 2004, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
Mac OS, and QuickDraw are trademarks of
Apple Inc., registered in the United States and
other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Pasteboard Manager Programming Guide 7

Who Should Read This Document 7
Organization of This Document 7
See Also 8

Chapter 1 Pasteboard Manager Concepts 9

What’s a Pasteboard? 9
Pasteboard Manager Versus the Scrap Manager 9

Pasteboard Items 10
Data Flavors 10
Promised Data 12

Chapter 2 Pasteboard Manager Tasks 13

A Day in the Life of a Pasteboard 13
Creating a Pasteboard 14
Adding Data to the Pasteboard 14
Handling Pasteboard Promises 16
Retrieving Data from the Pasteboard 17
Using the Pasteboard In Drag-And-Drop Operations 19

Initiating a Drag 20
Tracking a Drag 22
Receiving a Drag 24

Handling Translations Using Pasteboards 25
The Pasteboard Peeker 29

Appendix A Scrap Manager Versus the Pasteboard Manager 31

Document Revision History 33

3
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Pasteboard Manager Concepts 9

Figure 1-1 Pasteboard items and data flavors 11

Chapter 2 Pasteboard Manager Tasks 13

Listing 2-1 Adding data to a pasteboard 15
Listing 2-2 A simple pasteboard promise keeper callback function 16
Listing 2-3 Obtaining data from the pasteboard 17
Listing 2-4 A drag initiation handler that uses the Pasteboard Manager 20
Listing 2-5 Tracking a drag in a window 22
Listing 2-6 Receiving a drag using the pasteboard 25
Listing 2-7 A filter service handler 26

Appendix A Scrap Manager Versus the Pasteboard Manager 31

Table A-1 Scrap Manager functions and their Pasteboard Manager replacements 31

5
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Pasteboards are the standard data interchange mechanism for applications on Mac OS X, supported in both
Carbon and Cocoa. The Pasteboard Manager is the Carbon programming interface for creating and accessing
pasteboards.

Who Should Read This Document

This document is for Carbon developers who want to use pasteboards in their applications. The most common
uses for the pasteboard are:

 ■ to enable copy-and-paste actions using the Clipboard

 ■ to implement drag-and-drop behavior

 ■ to copy or retrieve text in the standard search field

 ■ to transfer data to and from Mac OS X services (using either the Services menu or Translation Services)

You can also use pasteboards for any other purpose, such as implementing a proprietary clipboard. Pasteboard
Manager pasteboards are fully-compatible with Cocoa NSPasteboard objects.

The Pasteboard Manager is available in Mac OS X v10.3 and later.

The Pasteboard Manager replaces both the older Scrap Manager and the Drag Manager’s drag flavor APIs.
While the Scrap Manager is still supported, the Pasteboard Manager provides greater flexibility and
functionality.

Organization of This Document

This document is organized into the following chapters:

 ■ “Pasteboard Manager Concepts” (page 9) describes pasteboard terminology and concepts.

 ■ “Pasteboard Manager Tasks” (page 13) describes how to use the Pasteboard Manager in common tasks,
such as cut-and-paste and drag-and-drop.

 ■ “Scrap Manager Versus the Pasteboard Manager” (page 31) specifies replacement APIs for Scrap Manager
functions.

Who Should Read This Document 7
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Pasteboard Manager
Programming Guide

See Also

In addition to this document, you may find the following documents useful:

 ■ If you are not familar with uniform type identifiers (UTIs), you should readUniformType IdentifiersOverview.

 ■ If you are not already familiar with Carbon events, you should read Carbon Event Manager Programming
Guide.

 ■ If you are not familiar with using HIViews, you should read HIView Programming Guide.

 ■ For more information about implementing services, see Setting Up Your Carbon Application to Use the
Services Menu.

8 See Also
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Pasteboard Manager Programming Guide

This section describes the terminology and concepts that underlie pasteboards.

What’s a Pasteboard?

A pasteboard is a standardized mechanism for exchanging data within applications or between applications.
The most familiar use for pasteboards is handling copy and paste operations. When a user selects data in an
application and chooses the Copy (or Cut) menu item, the selected data is placed into the Clipboard
pasteboard. When the user chooses the Paste menu item (either in the same or a different application), the
data in the Clipboard is copied to the current application.

A pasteboard is analogous to a message board or bulletin board, which allows various people to exchange
information asynchronously. Some bulletin boards, such as one in a household kitchen, may be accessible
only to immediate family members. Others may be available to the public. Similarly, pasteboards may be
public or private, and may be used for a variety of purposes.

Pasteboards exist in a special global memory area separate from application processes. Two special pasteboards
exist:

 ■ Clipboard. This is the pasteboard used to handle all copy-and-paste operations.

 ■ Find. This is the pasteboard used to hold the current search string in Find operations.

In addition, the Drag Manager and Services Manager use pasteboards:

 ■ When a user begins a drag, the drag data is added to a pasteboard. If the drag ends with a drop action,
the receiving application retrieves the drag data from the pasteboard.

 ■ If a translation service is requested, the requesting application places the data to be translated onto a
pasteboard. The service retrieves this data, performs the translation, and places the translated data back
onto the pasteboard.

Pasteboard Manager Versus the Scrap Manager

The Pasteboard Manager is a more modern and robust replacement for the original Scrap Manager. While
the Scrap Manager is currently still supported, you should update your applications to use the Pasteboard
Manager instead. Some of the advantages of the Pasteboard Manager include:

 ■ The ability to store multiple items at a time.

 ■ More advanced flavor typing using uniform type identifiers (UTIs).

 ■ Use of the more advanced Core Foundation memory model (rather than using malloc).

What’s a Pasteboard? 9
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Pasteboard Manager Concepts

See “Scrap Manager Versus the Pasteboard Manager” (page 31) for a listing of Scrap Manager functions and
their suggested Pasteboard Manager replacements.

Pasteboard Items

Each piece of data placed onto a pasteboard is considered a pasteboard item. Each item has a unique item
ID associated with it. This item ID is arbitrarily determined by the application adding to the pasteboard and
can be any value that lets the application keep track of the pasteboard data. For example, an item ID could
be the memory address of the data, a hash table key, or simply an index value (0, 1,2 and so on.).

The pasteboard can hold multiple items. Applications can place or retrieve as many items as they wish. For
example, say a user selection in a browser window contains both text and a GIF image. The Pasteboard
Manager lets you copy the text and the image to the pasteboard as separate items. An application pasting
multiple items can choose to take only those that is supports (the text, but not the image, for example).

Data Flavors

Each item on the pasteboard can have one or more flavors. A flavor is simply an identifier indicating what
type of data is available. For example, a flavor can identify a chunk of data as a JPEG file. Applications retrieving
data from the pasteboard use flavors to determine which items they want to support. For example, an image
editing program might support pasting of multiple image types (JPEG, TIFF, PICT, and so on) while a command
line editor might only allow pasting of text.

The Pasteboard Manager uses uniform type identifiers (UTIs) to specify item flavors. A UTI is simply a Core
Foundation string that uniquely identifies a particular data type. For more information, see Uniform Type
IdentifiersOverview in Carbon Interapplication Communication documentation and UTTypes.h in the Launch
Services framework.

Any item on a pasteboard may be represented by multiple flavors, to make it easier for whatever application
wants to retrieve it. For example, an application may want to place both plain text and Unicode versions of
a text selection on a pasteboard. Each flavor variant is stored with its own data, as shown in Figure 1-1 (page
11).

10 Pasteboard Items
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Pasteboard Manager Concepts

Figure 1-1 Pasteboard items and data flavors

Item count = 2My pasteboard

Item 1

Item 2

Flavor count = 2

Flavor count = 3

public.rtf

public.utf16-
plain-text

“ Happy happy
joy joy ”

“ Happy happy
joy joy ”

public.jpeg

public.gif

com.mycorp.
myapp.

fuzzyimage

Flavors also have flags associated with them that specify additional useful information or properties. Some
example flags are as follows:

 ■ Only the application or process that added the flavor can see it. This flag is useful for indicating proprietary
information that should only be handled wthin the owning application.

 ■ The flavor is hidden from the public, but may be retrieved if the paste recipient specifically asks for it. A
real-world analogy might be a special delicacy that isn’t listed on a restaurant menu. Customers “in the
know” can request the dish, but the restaurant does not advertise it.

 ■ The data associated with this flavor is promised. See “Promised Data” (page 12).

 ■ The flavor is available through a translation service. That is, the flavor data does not currently exist, but
an available flavor can be converted to this data type. See “Handling Translations Using Pasteboards” (page
25) for more information.

Data Flavors 11
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Pasteboard Manager Concepts

Promised Data

Promised data is handled just like any other data added to the pasteboard, except that you don’t actually
put the data there. You specify their flavors and flags as usual, but instead of adding the actual data, you add
a promise to deliver the data at a later time.

For a real-world analogy, say you wanted to use a public bulletin board to give away some furniture. Because
it is impractical to pin the individual tables, chairs, or sofas, to the board, you would instead post a note with
your phone number advertising free furniture. Interested parties could then contact you and arrange for
delivery or pickup of the items.

Similarly, you promise data to the pasteboard when placing the actual data is either impractical or
time-consuming. For example, say your application places a JPEG image on the pasteboard. For maximum
compatibility, it might be useful to add alternate flavors of the image as well (TIFF, GIF, and so on) to support
applications that don’t support JPEGs. However, because the alternate data forms do not currently exist, it
is more efficient to promise the alternate flavors rather than taking the overhead of generating them on the
off chance that some application will want one. If a paste recipient wants the GIF version, your application
can generate it after it is requested.

To honor a promise, an application must register a promise keeper callback function. When a paste recipient
requests a promised flavor, your callback must then supply the actual data. If you have multiple promised
items on the pasteboard, your promise keeper callback must be able to supply the data for any of the indicated
promises.

12 Promised Data
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Pasteboard Manager Concepts

This chapter describes how to implement pasteboards in your application

A Day in the Life of a Pasteboard

To get a better understanding of how the Pasteboard Manager works, it’s useful to understand the steps
inherent in its use. For example, here is the general sequence that underlies a copy and paste action.

The copying application is responsible for placing copied or cut data onto the pasteboard:

1. The user selects some data and invokes the Copy (or Cut) menu item.

2. If the application doesn’t already have a reference to the Clipboard pasteboard, it creates one.

3. The application then takes ownership of the pasteboard and clears the current contents.

4. The application assigns item IDs to the selected data.

5. If any data is to be promised, the application must register a promise keeper callback function to supply
the promised data.

6. The application adds one or more flavors of each item to the pasteboard, including either the actual
flavor data or a promise with each flavor.

The receiving application has a slightly different set of tasks to handle the Paste action:

1. When the application becomes active, it checks to see if the pasteboard has been modified. If so, it
obtains a listing of the flavors on the pasteboard. If there are any flavors the application supports, it can
enable its Paste menu item.

2. The user invokes the Paste menu item.

3. The application requests the item (or items) on the pasteboard in the flavors that it supports.

4. If the pasted data is to be stored as a file, the receiving application needs to set a paste location before
requesting any flavor data. In any other case, the receiving application doesn’t need to worry about
whether the paste data was promised or not.

If the copying application’s promise keeper is called, the callback must do the following:

 ■ If the data is to be stored as a file, determine the paste location specified by the receiving application.

 ■ Generate or otherwise prepare the promised data for transfer.

 ■ If the promised data is not be stored as a file, add the flavor and data to the pasteboard. Otherwise,
transfer the promised data to the specified file location.

A Day in the Life of a Pasteboard 13
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

Some time later, when the application quits, or when it no longer needs the pasteboard, the application can
release the pasteboard reference.

Creating a Pasteboard

To create a pasteboard, you call the function PasteboardCreate. The name is a bit misleading, as it may
not actually create a pasteboard. This function does one of two things:

 ■ If the pasteboard already exists, it creates a retained reference to that pasteboard, which your application
can subsequently use to access it.

 ■ If the pasteboard does not exist, PasteboardCreate creates it for you and then creates a reference to
it.

In most cases your application does not need to worry about which of these actions occurred, because it
obtains a pasteboard reference in either case.

OSStatus err = noErr;
PasteboardRef theClipboard;
 err = PasteboardCreate(kPasteboardClipboard, &theClipboard);

In this example, the constant kPasteboardClipboard indicates that you want to reference the Clipboard
pasteboard. Passing kPasteboardFind instead specifies the Find pasteboard. You can also specify custom
pasteboards in one of two ways:

 ■ You can pass a unique pasteboard name. This name should be a Core Foundation string presented in
reverse-DNS format to ensure uniqueness (that is, in the form com.myCorp.myApp.myPasteboard).

 ■ You can pass the constant kPasteboardUniqueName, which lets the Pasteboard Manager creates a
uniquely-named pasteboard on your behalf. This option is useful if the pasteboard will have a short
lifespan, or will not be widely shared.

As stated previously, pasteboards live in a special global memory space so that they can be shared between
applications. Unless you explicitly want a custom pasteboard to exist after your application quits, you should
release the pasteboard reference by calling CFRelease when you are done using it. The Clipboard and Find
pasteboards are always retained by the system and will never disappear.

Adding Data to the Pasteboard

After you have created a pasteboard, you can add data to it. For example, you would add data to the
pasteboard when the user selects some data and then chooses the Copy or Cut menu item. You can then
handle the copy operation in your kHICommandCopy event handler.

Listing 1-1 (page 15) shows how you might add some text to a pasteboard. This example assumes that the
selection to be added to the pasteboard is contained within an MLTE text object and that the selection is
considered to be a single pasteboard item.

14 Creating a Pasteboard
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

Listing 2-1 Adding data to a pasteboard

OSStatus AddDataToPasteboard(PasteboardRef inPasteboard,
 TXNObject inTXNObject){
OSStatus err = noErr;
PasteboardSyncFlags syncFlags;
TXNOffset start, end;
Handle dataHandle;
CFDataRef textData = NULL;

// 1err = PasteboardClear(inPasteboard);
require_noerr(err, CantClearPasteboard);

// 2syncFlags = PasteboardSynchronize(inPasteboard);
// 3require_action(!(syncFlags&kPasteboardModified),

 PasteboardNotSynchedAfterClear, err = badPasteboardSyncErr);
require_action((syncFlags&kPasteboardClientIsOwner),
 ClientNotPasteboardOwner, err = notPasteboardOwnerErr);

// 4 TXNGetSelection(inTXNObject, &start, &end);
// 5 err = TXNGetDataEncoded(inTXNObject, start, end, &dataHandle,

 kTXNUnicodeTextData);
 require_noerr(err, CantGetDataFromTextObject);

// 6 textData = CFDataCreate(kCFAllocatorDefault,
 (UInt8*)*dataHandle, (end-start)*2);
 DisposeHandle(dataHandle);
 require_action(textData != NULL, CantCreateTextData, err = memFullErr);

// 7 err = PasteboardPutItemFlavor(inPasteboard, (PasteboardItemID)1,
 CFSTR("public.utf16-plain-text"),
 textData, 0);
 require_noerr(err, CantPutTextData);

CantPutTextData:
CantCreateTextData:
CantGetDataFromTextObject:
CantSetPromiseKeeper:
ClientNotPasteboardOwner:
PasteboardNotSynchedAfterClear:
CantClearPasteboard:

 return err;
}

Here is how the code works:

1. PasteboardClear clears the current contents of the pasteboard and makes your application the
pasteboard owner. You must clear the pasteboard before you can add any data of your own.

2. You normally call PasteboardSynchronizewhen your application becomes active, in order to determine
if the pasteboard contents have changed. However, it can also be useful to call this function from a
plugin to determine if the host application has ownership of the pasteboard. If so, the plugin can go
ahead and add data.

3. This code example and others in this section use Apple-defined error-checking macros. For more
information about using these macros, see the header AssertMacros.h in /usr/include.

Adding Data to the Pasteboard 15
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

4. Call the MLTE function TXNGetSelection to obtain the start and end points of the selected text in the
text object.

5. Call the MLTE function TXNGetDataEncoded to extract the selection as non-Unicode text, which is then
placed in dataHandle.

6. Pasteboards require data to be store as CFData objects, so you need to call CFDataCreate to create a
CFData object containing the text data. After creating the object, you can release the original text data.
Note that Unicode encoding requires two bytes per character.

7. Call PasteboardPutItemFlavor to place a flavor-variant of the selected text on the pasteboard. Each
piece of data must have a flavor associated with it (plain text in this case), and an item ID. In this example,
the item ID is simply set as 1, but you can assign any value you wish. If you wanted to add another flavor
of the same selected text (say Unicode text), you would specify the same item ID, but a different flavor.

If you want to add multiple items, you should generate them here and then call
PasteboardPutItemFlavor to add each flavor of the item to the pasteboard.

Each item you put onto a pasteboard must have a unique item ID. However, an item may be available in
several different flavors. For example, you can call PasteboardItemPutFlavor several times specifying
the same item ID, each time with a different flavor.

Handling Pasteboard Promises

If you want to promise data when adding a flavor, you must pass kPasteboardPromisedData for the data
parameter when calling PasteboardPutItemFlavor, In addition, before calling
PasteboardPutItemFlavor, you must have set a promise keeper callback function by calling
PasteboardSetPromiseKeeper.

 PasteboardSetPromiseKeeper(inPasteboard, myPromiseKeeperCallback,
 inContextData);

The inContextData parameter can hold any data that you would like to have passed to your callback
function . When a receiving application attempts to obtain promised data from the pasteboard (by calling
PasteboardCopyItemFlavorData) the Pasteboard Manager calls your promise keeper callback function.

Listing 1-2 (page 16) shows you might implement a promise keeper callback.

Listing 2-2 A simple pasteboard promise keeper callback function

// 1OSStatus myPromiseKeeperCallback (PasteboardRef inPasteboard,
 PasteboardItemID inItem, CFStringRef inFlavorType,
 void *inContext)
{
 OSStatus err = noErr;
 CFDataRef promisedData = NULL;

// 2 // create the promised flavor data here, as a CFData object
…

// 3 err = PasteboardPutItemFlavor(inPasteboard, inItem, inFlavorType,
 promisedData, 0);

16 Handling Pasteboard Promises
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

 CFRelease(promisedData);

 require_noerr(err, CantFulfillPromise);

CantFulfillPromise:
CantCreatePromisedData:

 return err;
}

Here is how the code works:

1. When your promise keeper callback is called, it receives the item ID and the flavor type that you specified
when you called PasteboardPutItemFlavor. It also passes you any context data that you specified
when you called Pasteboard SetPromiseKeeper. This information should be enough to determine
what promised data you need to generate.

2. You need to convert your promised data to a CFData object before you can add it to a pasteboard.
Typically you do so by calling the Core Foundation function CFDataCreate.

3. Call PasteboardPutItemFlavor to put the promised data onto the pasteboard.

In most cases, you simply add the promised data to the pasteboard just as you would add any other flavor
data. However, in some cases the receiver may have specified a URL (by calling
PasteboardSetPasteLocation indicating where to place the data. In such cases, your callback needs to
call PasteboardCopyPasteLocation to determine the drop location. For example, the Finder lets you
copy and paste files in the file system. Rather than moving the contents of the files to the clipboard, it is
simpler for the receiver to set the desired paste location. The Finder can then copy the files directly rather
than going through the pasteboard.

Retrieving Data from the Pasteboard

Prior to doing any actual pasting, your application should call PasteboardSynchronize when handling
the kEventAppActivated event to determine if the pasteboard has been modified. If it has, your handler
should iterate through the available item flavors and provide visual feedback (activate the Paste menu item,
highlight the drag target, and so on) if any compatible data exists. To improve efficiency, your application
can exit the search loop immediately upon finding any compatible flavor; identifying all the pasteable flavors
can wait until the actual paste routine. Listing 1-5 (page 22) shows a possible implementation of the search
loop as used in a drag tracking handler.

Listing 1-3 (page 17) shows how an application might retrieve data from a pasteboard.

Listing 2-3 Obtaining data from the pasteboard

OSStatus GetDataFromPasteboard(PasteboardRef inPasteboard, TXNObject inTXNObject)
{
 OSStatus err = noErr;
 PasteboardSyncFlags syncFlags;
 ItemCount itemCount;

// 1 syncFlags = PasteboardSynchronize(inPasteboard);
 require_action(syncFlags&kPasteboardModified, PasteboardOutOfSync,

Retrieving Data from the Pasteboard 17
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

 err = badPasteboardSyncErr);

// 2 err = PasteboardGetItemCount(inPasteboard, &itemCount);
 require_noerr(err, CantGetPasteboardItemCount);

 for(UInt32 itemIndex = 1; itemIndex <= itemCount; itemIndex++)
 {
 PasteboardItemID itemID;
 CFArrayRef flavorTypeArray;
 CFIndex flavorCount;

// 3 err = PasteboardGetItemIdentifier(inPasteboard, itemIndex, &itemID);
 require_noerr(err, CantGetPasteboardItemIdentifier);

// 4 err = PasteboardCopyItemFlavors(inPasteboard, itemID, &flavorTypeArray);
 require_noerr(err, CantCopyPasteboardItemFlavors);

// 5 flavorCount = CFArrayGetCount(flavorTypeArray);

 for(CFIndex flavorIndex = 0; flavorIndex < flavorCount; flavorIndex++)
 {
 CFStringRef flavorType;
 CFDataRef flavorData;
 CFIndex flavorDataSize;
 char flavorText[256];

// 6 flavorType = (CFStringRef)CFArrayGetValueAtIndex(flavorTypeArray,
 flavorIndex);

// 7 if (UTTypeConformsTo(flavorType, CFSTR("public.utf16-plain-text")))
 {

// 8 err = PasteboardCopyItemFlavorData(inPasteboard, itemID,
 flavorType, &flavorData);
 require_noerr(err, CantCopyFlavorData);

 flavorDataSize = CFDataGetLength(flavorData);

 flavorDataSize = (flavorDataSize<254) ? flavorDataSize : 254;
// 9 for(short dataIndex = 0; dataIndex <= flavorDataSize; dataIndex++)

 {
 char byte = *(CFDataGetBytePtr(flavorData) + dataIndex);
 flavorText[dataIndex] = byte;
 }
 flavorText[flavorDataSize] = '\0';
 flavorText[flavorDataSize+1] = '\n';

// 10 TXNSetData(inTXNObject, kTXNTextData, flavorText,
 flavorDataSize+2, kTXNEndOffset, TXNEndOffset);

 CFRelease (flavorData);
 }

CantCopyFlavorData:
 ;
 }

18 Retrieving Data from the Pasteboard
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

 CFRelease (flavorTypeArray);

CantCopyPasteboardItemFlavors:
CantGetPasteboardItemIdentifier:
 ;
 }

CantGetPasteboardItemCount:
PasteboardOutOfSync:

 return err;
}

Here is how the code works:

1. In most cases, you would call PasteboardSynchronize from your kEventAppActivated handler to
synchronize your pasteboard reference with the actual global pasteboard. However, you can call it here
if your application does not do any flavor checking beforehand.

2. Call PasteboardGetItemCount to determine the number of items in the pasteboard.

3. For each item index, call PasteboardGetItemIdentifer to obtain the item ID.

4. Once you have the item ID, call PasteboardCopyItemFlavors to obtain the array of flavors
corresponding to that item.

5. The Core Foundation function CFArrayGetCount determines the number of flavors in the array.

6. Next, iterate through the array of flavors, calling the Core Foundation function CFArrayGetItemAtIndex
to obtain the flavor strings.

7. Use the uniform type identifier function UTTypeConformsTo to determine if the flavor is compatible
with the plain Unicode text flavor type. UTIs are arranged in a conformance hierarchy (similar to a class
hierarchy) which determines compatibility between flavors.

8. If the flavor is compatible, retrieve the flavor data from the pasteboard by calling
PasteboardCopyItemFlavorData.

9. Iterate through the bytes of the data and copy them into the flavorText string. Note that because the
data is Unicode, each character takes two bytes.

10. Call TXNSetData to add the pasted data to the end of the MLTE text object.

The way this example is written, it will add every flavor that conforms to the plain Unicode text UTI to the
MLTE object. In most cases, your application will choose to obtain only one flavor of each pasteboard item.

Using the Pasteboard In Drag-And-Drop Operations

In Mac OS X v10.3 and later, the Drag Manager can use the Pasteboard Manager to transfer data in
drag-and-drop operations. The mechanism is very similar to using a pasteboard to facilitate a cut-and-paste
operation. When a drag occurs, the client application creates a pasteboard and places the dragged data onto
it. To accept a drop, the receiving application obtains the data from the pasteboard.

Using the Pasteboard In Drag-And-Drop Operations 19
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

Before implementing drag-and-drop in your application, be sure you understand and follow the drag-and-drop
guidelines specified in the Apple Human Interface Guidelines.

Initiating a Drag

When the user begins a drag, your application receives a kEventControlTrack event. Your application’s
tracking handler should then place the dragged data onto a pasteboard.

The drag initiation handler in Listing 1-4 (page 20) uses the Pasteboard Manager to hold the MLTE text
selection being dragged.

Listing 2-4 A drag initiation handler that uses the Pasteboard Manager

OSStatus HandleDragInitiation(EventRef inEvent, TXNObject inTXNObject)
{
 OSStatus err = eventNotHandledErr;
 EventRecord convertedEvent;
 UInt32 keyModifiers;
 HIPoint eventPoint;
 TXNOffset start, end, offset;

// 1 require_noerr(GetEventParameter(inEvent, kEventParamMouseLocation,
 typeHIPoint, NULL, sizeof(eventPoint), NULL, &eventPoint), CantGetHIPoint);

// 2 require_noerr(TXNHIPointToOffset(inTXNObject, &eventPoint, &offset),
 CantGetTXNOffsetForPoint);

// 3 TXNGetSelection(inTXNObject, &start, &end);

// 4 convertedEvent.what = mouseDown;
 GetGlobalMouse (&(convertedEvent.where));
 GetEventParameter (inEvent, kEventParamKeyModifiers, typeUInt32, NULL,
 sizeof (keyModifiers), NULL, &keyModifiers);
 convertedEvent.modifiers = keyModifiers;

// 5 if(start <= offset && offset <= end && WaitMouseMoved(convertedEvent.where))
 {
 PasteboardRef pasteboard;
 DragRef drag;
 RgnHandle theRegion, insetRegion;

// 6 err = PasteboardCreate(kPasteboardUniqueName, &pasteboard);
 require_noerr(err, CantCreatePasteboardForDrag);

// 7 err = AddDataToPasteboard(pasteboard, inTXNObject);
 require_noerr(err, CantAddDataToTheDragPasteboard);

// 8 err = NewDragWithPasteboard(pasteboard, &drag);
 require_noerr(err, CantCreateDrag);

// 9 theRegion = NewRgn();
 insetRegion = NewRgn();
 SetRectRgn(theRegion, convertedEvent.where.h - 10, convertedEvent.where.v - 5,
 convertedEvent.where.h + 10, convertedEvent.where.v + 5);
 CopyRgn(theRegion, insetRegion);

20 Using the Pasteboard In Drag-And-Drop Operations
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

 InsetRgn(insetRegion, 1, 1);
 DiffRgn(theRegion, insetRegion, theRegion);
 DisposeRgn(insetRegion);

// 10 err = TrackDrag(drag, &convertedEvent, theRegion);
 require_noerr(err, CantTrackDrag);

CantTrackDrag:

 DisposeRgn(theRegion);
 check_noerr(DisposeDrag(drag));

CantCreateDrag:
CantAddDataToTheDragPasteboard:

// 11 CFRelease(pasteboard);
 }

CantCreatePasteboardForDrag:
CantGetTXNOffsetForPoint:
CantGetHIPoint:

 return err;
}

Here is how the code works:

1. Call GetEventParameter to obtain the mouse position from the kEventControlTrack event.

2. The MLTE function TXNGetOffsetFromPoint determines the position of the mouse as a character
offset within the text object.

3. Use the MLTE function TXNGetSelection to obtain the beginning and end offsets for the text selection
within the text object.

4. The Drag Manager TrackDrag function still assumes that event information is stored in old Event
Manager event records. A simple way around this is to manually populate an event record with the
relevant data. This example fills out the event record with the event type, mouseDown, the mouse position,
and the keyboard modifiers.

5. If the mouse offset is within the text selection, and the user has begun to drag the mouse
(WaitMouseMoved returns True), then you can initiate the actual drag.

6. Call PasteboardCreate to create a unique pasteboard. This pasteboard needs to exist only for the
length of the drag-and-drop operation.

7. To add the selection data to the pasteboard, call the AddDataToPasteboard function described in
Listing 1-1 (page 15), passing the pasteboard and the text object containing the text to be dragged.

8. To initiate the actual drag, create a drag object using the Drag Manager function
NewDragWithPasteboard.

9. Set up a region to be the visual feedback for the drag. This example sets up a small rectangular region
to be dragged. However, for most applications, the region should contain a translucent image or other
similar rendering of the data being dragged.

10. Call the Drag Manager function TrackDrag to begin tracking the actual drag.

Using the Pasteboard In Drag-And-Drop Operations 21
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

11. After you have initiated the actual drag, you no longer need to hold onto the pasteboard reference (the
Drag Manager retains it), so you can release it by calling CFRelease.

Tracking a Drag

During drag tracking, if the drag enters a droppable region, the receiving application must determine whether
it can accept the drag and, if so, highlight the region. You do so using a drag tracking callback function.

You install your drag tracking callback on a window using the Drag Manager function
InstallTrackingHandler:

OSErr InstallTrackingHandler(
 DragTrackingHandlerUPP trackingHandler,
 WindowRef theWindow,
 void * handlerRefCon
);

In this example, you would pass the text view to receive the drag in the reference constant parameter.

Your drag tracking handler should visually indicate whether the data being dragged into the window is
something it can accept. Listing 1-5 (page 22) gives an example of how you might do this.

Listing 2-5 Tracking a drag in a window

OSErr DragTrackingHandler(DragTrackingMessage inMessage, WindowRef inWindow,
 void *inUserData, DragRef inDrag)
{
 OSStatus err = noErr;

// 1 Boolean tastyFlavor = false;

 switch(inMessage)
 {

// 2 case kDragTrackingEnterWindow:
 {
 ItemCount itemCount;
 DragAttributes attributes;
 PasteboardRef pasteboard;

// 3 GetDragAttributes(inDrag, &attributes);

// 4 err = GetDragPasteboard(inDrag, &pasteboard);
 require_noerr(err, CantGetDragPasteboard);

// 5 err = PasteboardGetItemCount (pasteboard, &itemCount);

 for (UInt32 itemIndex = 1;
 (itemIndex <= itemCount) && !tastyFlavor; itemIndex++)
 {
 PasteboardItemID itemID;
 CFArrayRef flavorTypeArray;
 CFIndex flavorCount;

 err = PasteboardGetItemIdentifier (pasteboard, itemIndex, &itemID);
 require_noerr (err, CantGetPBItemIdentifier);

22 Using the Pasteboard In Drag-And-Drop Operations
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

 err = PasteboardCopyItemFlavors (pasteboard, itemID, &flavorTypeArray);
 require_noerr (err, CantGetPBItemFlavors);

 flavorCount = CFArrayGetCount(flavorTypeArray);

 for (CFIndex FlavorIndex = 0;
 (FlavorIndex < flavorCount) && !tastyFlavor; FlavorIndex++)
 {
 CFStringRef flavorType;

 flavorType = (CFStringRef)
 CFArrayGetValueAtIndex (flavorTypeArray, FlavorIndex);

 if (UTTypeConformsTo (flavorType,
 CFSTR("public.plain-text")))
 tastyFlavor = true;
 }

 CFRelease (flavorTypeArray);

 CantGetPBItemIdentifier:
 CantGetPBItemFlavors:
 ;
 }

// 6 if((attributes & kDragHasLeftSenderWindow) && tastyFlavor)
 {
 HIViewRef textView = (HIViewRef)inUserData;
 HIRect textFrame;
 RgnHandle hiliteRgn = NewRgn();

// 7 HIViewGetFrame(textView, &textFrame);

// 8 HIShapeRef textShape = HIShapeCreateWithRect(&textFrame);
// 9 HIShapeGetAsQDRgn(textShape, hiliteRgn);

 CFRelease(textShape);

// 10 ShowDragHilite(inDrag, hiliteRgn, true);

 DisposeRgn(hiliteRgn);
 }

 CantGetDragPasteboard:
 ;
 }
 break;

 case kDragTrackingLeaveWindow:
 {

// 11 HideDragHilite(inDrag);
 }
 break;
 }

 return err;
}

Here is how the code works:

Using the Pasteboard In Drag-And-Drop Operations 23
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

1. Define the tastyFlavor flag. Initially set to false, the tracking handler sets this flag if it finds a data
flavor that the application can accept.

2. If the user drags data into the window, the tracking handler receives the kDragTrackingEnterWindow
message.

3. Obtain the drag attributes by calling the Drag Manager function GetDragAttributes These attributes
are needed later to determine whether or not to highight the accepting window.

4. Call the Drag Manager function GetDragPasteboard to obtain the pasteboard associated with the
drag (created in the drag initiation handler (Listing 1-4 (page 20))).

5. Determine if the drag contains a flavor the application can accept. This code is essentially a stripped-down
version of the flavor-checking code in Listing 1-3 (page 17). This example simply determines if a
compatible flavor exists, and if so, sets the tastyFlavor flag and drops out of the loops.

Note however, that to conform the to the Apple Human Interface Guidelines for receiving drags, your
application must be able to accept a flavor from each dragged item in order to highlight the receiving
view. See Destination Feedback in the Apple Human Interface Guidelines for more details.

6. Determine whether to highlight the receiving view or not. To be eligible for highlighting, the drag must
have cleared the sending application’s window (as dictated by the Apple Human Interface Guidelines)
and an acceptable flavor must exist (tastyFlavor== true).

7. Obtain the frame coordinates of the receiving view (a text view in this example) by calling the HIView
function HIViewGetFrame.

8. Call the HIShape function HIShapeCreateWithRect to create an HIShape with the same coordinates
as the text view.

9. Call the HIShape function HIShapeGetAsQDRgn to convert the HIShape into an classic QuickDraw region,
as that is what the drag highlighting function expects. After creating this region, release the no longer
needed HIShape by calling the Core Foundation function CFRelease.

10. Call the Drag Manager function ShowDragHilite to highlight the text view region. After passing the
region to ShowDragHilite, you are free to dispose it.

11. The other interesting drag message this callback handles is kDragTrackingLeaveWindow, sent when
the user moves the dragged data out of the receiving window. In this case, the callback simply hides
the drag highlight by calling the Drag Manager function HideDragHilite.

The overhead of obtaining pasteboard items and flavors is relatively low, so it is generally not a problem to
repeat the flavor search each time the drag enters the view as well as when you actually obtain the pasteboard
data.

Receiving a Drag

When the user completes a drag-and-drop operation, the receiving application retrieves the data from the
pasteboard in the standard drag receive callback function. You install your callback on a window using the
Drag Manager function InstallReceiveHandler:

OSErr InstallReceiveHandler (
 DragReceiveHandlerUPP receiveHandler,

24 Using the Pasteboard In Drag-And-Drop Operations
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

 WindowRef theWindow,
 void * handlerRefCon
);

In this example, you would pass the text object associated with the view receiving the drag as the
handlerRefCon parameter, which is then passed to the drag receive handler in Listing 1-6 (page 25).

Listing 2-6 Receiving a drag using the pasteboard

OSErr DragReceiveHandler(WindowRef inWindow, void *inUserData,
 DragRef inDrag)
{
 OSStatus err = noErr;
 PasteboardRef pasteboard;
 TXNObject txnObject = (TXNObject)inUserData;

// 1 err = GetDragPasteboard(inDrag, &pasteboard);
 require_noerr(err, CantGetDragPasteboard);

// 2 err = GetDataFromPasteboard(pasteboard, txnObject);

 CantGetDragPasteboard:

// 3 HideDragHilite(inDrag);
 return err;
}

Here is how the code works:

1. Call the Drag Manager function GetDragPasteboard to obtain the pasteboard associated with the
drag.

2. Get the data from the pasteboard, just as if you were obtaining it for a paste operation. This example
simply calls the GetDataFromPasteboard function in Listing 1-3 (page 17) to put the pasteboard data
into a text object.

3. After the drop operation is over, call the Drag Manager function HideDragHilite to remove the window
highlighting added by the drag tracking callback.

Handling Translations Using Pasteboards

The Pasteboard Manager supports data translators that present additional flavors available on a pasteboard.
For example, a text-editing application may make two data flavors available when it places selected text
onto the Clipboard pasteboard, plain and rich (RTF). A registered filter service can also make available another
flavor, say com.apple.mytranslatorapp.uppercasetext that is translated from the plain text flavor.
That is, when the receiving application obtains the array of data flavors to determine if it can handle them,
the upper-case option is included as a promised flavor. These services are automatically available on any
pasteboard you create or reference using the Pasteboard Manager.

Handling Translations Using Pasteboards 25
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

If the receiving application chooses to obtain the upper-case text, the plain text is placed onto a new
pasteboard and the filter service is invoked. The service obtains the raw data from the pasteboard, translates
it accordingly, and then puts the translated data back on the pasteboard. The translated text is then placed
back onto the Clipboard pasteboard where the the receiving application can obtain it.

If your application simply uses pasteboards for data sharing, any translation of pasteboard data occurs
transparently. However, if you want to make a translation filter available, you need to write and register a
filter service.

For example, say you want to implement a service that handles data translation (also called filtering) from
standard text to all upper-case lettering. You must register this translation service by defining an NSFilter
service in your application’s Info.plist file, such as follows:

<key>NSServices</key>
 <array>
 <dict>
 <key>NSFilter</key>
 <string>UpperCaseTranslation</string>
 <key>NSReturnTypes</key>
 <array>
 <string>com.apple.mytranslatorapp.uppercasetext</string>
 </array>
 <key>NSSendTypes</key>
 <array>
 <string>public.plain-text</string>
 </array>
 <key>NSSupportsDataTranslation</key>
 <string></string>
 </dict>
 </array>

This defines an NSFilter that can take data of type public.plain-text and translate it to data of type
com.apple.mytranslatorapp.uppercasetext. Of course, the returned data can be any standard type
as well.

Whenever data is placed onto a pasteboard, the Services Manager scans the flavors and checks them against
its list of registered translators. If a translator exists for a given flavor, it can promise the translated flavor on
the pasteboard. However, translators are not transitive; if translators exist to convert type A to B and type B
to C, this does not mean that a translator from A to C exists. If the receiving application requests a translated
flavor, the service that offers that translation receives a kEventServicePerform event.

The scope of the translation is entirely up to the filter creator. For example, you could create a filter to change
plain text to Unicode text, turn encapsulated PostScript(EPS) images into GIFs, or even translate English into
French. The only restriction is that you must be able to present the translation option as a unique UTI.

Listing 1-7 (page 26) shows how you might implement a filter service that offers text translation to either
all upper-case or all lower-case lettering.

Listing 2-7 A filter service handler

// 1OSStatus HandlePerformService(EventRef inEvent)
{
 OSStatus err = noErr;
 CFStringRef serviceName, returnType;
 PasteboardRef pasteboard;
 PasteboardItemID item;

26 Handling Translations Using Pasteboards
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

 CFDataRef sourceData;
 CFIndex sourceSize;
 CFMutableDataRef returnData = NULL;
 const UInt8* sourceBytes;
 UInt8* returnBytes;

// 2 err = GetEventParameter(inEvent, kEventParamServiceMessageName,
 typeCFStringRef, NULL, sizeof(CFStringRef), NULL, &serviceName);
 require_noerr(err, CantGetServiceName);

// 3 err = GetEventParameter(inEvent, kEventParamPasteboardRef,
 typePasteboardRef, NULL, sizeof(PasteboardRef), NULL,
 &pasteboard);
 require_noerr(err, CantGetPasteboardRef);

// 4 err = PasteboardGetItemIdentifier(pasteboard, 1, &item);
 require_noerr(err, CantGetItemIdentifier);

// 5 err = PasteboardCopyItemFlavorData(pasteboard, item,
 CFSTR("public.plain-text"), &sourceData);
 require_noerr(err, CantGetSourceData);

// 6 sourceSize = CFDataGetLength(sourceData);

// 7 returnData = CFDataCreateMutable(kCFAllocatorDefault, sourceSize);
 require_action(returnData != NULL, CantCreateReturnData,
 err = memFullErr);

 sourceBytes = CFDataGetBytePtr(sourceData);
 returnBytes = CFDataGetMutableBytePtr(returnData);
 CFDataSetLength(returnData, sourceSize);

 if(CFStringCompare(serviceName, CFSTR("UpperCaseTranslation"), 0)
 == kCFCompareEqualTo)
 {

// 8 returnType = CFSTR("com.apple.pasteboardpeeker.uppercasetext");

// 9 for(CFIndex i=0; i<sourceSize; i++)
 returnBytes[i] = (UInt8)toupper(sourceBytes[i]);
 }
 else
 {

// 10 returnType = CFSTR("com.apple.pasteboardpeeker.lowercasetext");

 for(CFIndex i=0; i<sourceSize; i++)
 returnBytes[i] = (UInt8)tolower(sourceBytes[i]);
 }

// 11 err = PasteboardClear(pasteboard);
 require_noerr(err, CantClearPasteboard);

 // add the translated data
// 12 err = PasteboardPutItemFlavor(pasteboard, item, returnType,

 returnData, 0);
 require_noerr(err, CantAddTranslatedData);

CantAddTranslatedData:

Handling Translations Using Pasteboards 27
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

CantClearPasteboard:

 CFRelease(returnData);

CantCreateReturnData:

 CFRelease(sourceData);

CantGetSourceData:
CantGetItemIdentifier:
CantGetPasteboardRef:
CantGetServiceName:

 return err;
}

Here is how the code works:

1. The HandlePerformService function receives an event reference from the kEventServicePerform
event handler that calls it.

2. Call GetEventParameter to obtain the service message that generated the perform event.

3. For service events, a pasteboard storing the data to be filtered is stored in the event. Call
GetEventParameter specifying the kEventParamPasteboardRef parameter to obtain it. This
pasteboard was allocated for you, so you do not need to release it when you are done with it.

4. This example assumes that the data to be filtered is the first item in the pasteboard.

5. This example also assumes that the data in the item is of type public.plain-text.

6. Call the Core Foundation function CFGetDataLength to determine the size of the data. As the text
contains single-byte characters, this is also the length of the text string.

7. Call the Core Foundation function CFDataCreateMutable to allocate memory to hold the translated
string data.

8. If the service request is to translate to upper-case, set the return type of the translated text to a unique
UTI reflecting this. You must do this, because Translation Services looks for the translated type on the
pasteboard (not the original) when retrieving the data.

9. Use the toupper operator to convert the source text to all upper-case lettering.

10. Handle the lower-case option in a similar manner as the upper-case option.

11. Clear the pasteboard in preparation for adding the translated text.

12. Call PasteboardPutItemFlavor to add the translated text to the pasteboard. After your service handler
completes, the Services Manager puts the translated text back onto the original pasteboard so that the
receiving application can retrieve it.

For more information about building and installing services, see Setting Up Your Carbon Application to Use
the Services Menu.

28 Handling Translations Using Pasteboards
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

The Pasteboard Peeker

For additional examples of using pasteboards, you can examine the PasteboardPeeker sample code available
in the ADC Reference Library.

The Pasteboard Peeker application is also useful for determining what data and types are currently on the
Clipboard pasteboard.

The Pasteboard Peeker 29
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

30 The Pasteboard Peeker
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Pasteboard Manager Tasks

If your application still uses the Scrap Manager written for classic Mac OS, Apple encourages you to update
your code to use the Pasteboard Manager instead.

The Pasteboard Manager is available in Mac OS X v10.3 and later.

Table A-1 (page 31) lists the Carbon Scrap Manager functions and their Pasteboard Manager equivalents.

Table A-1 Scrap Manager functions and their Pasteboard Manager replacements

CommentsPasteboard Manager equivalentScrap Manager function

PasteboardCreateGetScrapByName

Specify the kPasteboardClipboard
constant in PasteboardCreate to
indicate you want the Clipboard.

PasteboardCreateGetCurrentScrap

PasteboardGetItem-
FlavorFlags

GetScrapFlavorFlags

Data is now handed to you as a
CFData object, so you no longer need
to allocate memory when receiving
pasteboard data.

No equivalentGetScrapFlavorSize

PasteboardCopyItem-
FlavorData

GetScrapFlavorData

Specifically, clear the Clipboard
pasteboard.

PasteboardClearClearCurrentScrap

PasteboardClearClearScrap

PasteboardPutItemFlavorPutScrapFlavor

You obtain the flavors as a CFArray,
and you can call CFArrayGetCount
to obtain the number of flavors.

PasteboardCopyItemFlavorsGetScrapFlavorCount

PasteboardCopyItemFlavorsGetScrapFlavorInfoList

PasteboardResolvePromisesCallInScrapPromises

PasteboardSetPromiseKeeperSetScrapPromiseKeeper

UPPs not required for Mac OS X.No equivalentPromise keeper UPP functions

31
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Scrap Manager Versus the Pasteboard
Manager

CommentsPasteboard Manager equivalentScrap Manager function

The parameter list is different for
Pasteboard Manager callbacks.

Promise keeper callback functionPromise keeper callback
function

32
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Scrap Manager Versus the Pasteboard Manager

This table describes the changes to Pasteboard Manager Programming Guide.

NotesDate

Fixed typos. Added links to "Uniform Type Identifiers Overview."2005-07-07

New document that describes how to create and manage pasteboards in Carbon
applications.

2004-12-02

33
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

34
2005-07-07 | © 2004, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Pasteboard Manager Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Pasteboard Manager Concepts
	What’s a Pasteboard?
	Pasteboard Manager Versus the Scrap Manager

	Pasteboard Items
	Data Flavors
	Promised Data

	Pasteboard Manager Tasks
	A Day in the Life of a Pasteboard
	Creating a Pasteboard
	Adding Data to the Pasteboard
	Handling Pasteboard Promises
	Retrieving Data from the Pasteboard
	Using the Pasteboard In Drag-And-Drop Operations
	Initiating a Drag
	Tracking a Drag
	Receiving a Drag

	Handling Translations Using Pasteboards
	The Pasteboard Peeker

	Appendix A: Scrap Manager Versus the Pasteboard Manager
	Revision History

