Programming With the Language Analysis
Manager

Internationalization > Carbon

¢

2003-05-01

.

[

Apple Inc.

© 2003 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Programming With the Language Analysis Manager 7

Chapter 1 Concepts 9

Morphological Analysis 9

Language Analysis Engine 9

How the Language Analysis Manager Operates 10
Analysis Environment 10
Environment Variables 11
Analysis Context 11
High-Level and Low-Level Analysis Functions 11
Analysis Results (High-Level Functions) 12
Analysis Results (Low-Level Functions) 12
Structure of the Analysis Results 13

Document Revision History 17

2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CONTENTS

2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Figures and Tables

Chapter 1 Concepts 9
Figure 1-1 The Language Analysis Manger can manage many analysis engines 10
Figure 1-2 An LAMorphemesArray data structure contains LAMorphemeRec data structures
12
Figure 1-3 A morpheme bundle 14
Figure 1-4 A morpheme path 15
Figure 1-5 A morpheme node 16
Figure 1-6 A homograph node 16
Table 1-1 Elements of a morpheme bundle 13
Table 1-2 Elements of a morpheme path 15
Table 1-3 Elements of a morpheme node 15

2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

FIGURES AND TABLES

2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Programming With the
Language Analysis Manager

The Language Analysis Manager provides the operating system with a common infrastructure which forms
the basis of language processing. The Language Analysis Manager analyzes text and into morphemes and
lexical information, such as parts of speech, which your application can use to perform such high-level tasks
as providing a natural user interface and performing advanced language processing.

The Language Analysis Manager is particularly useful for languages that are difficult to process on computers,
such as Japanese. For example, the Japanese language lacks delimiters between words, and reading and
notation are separate (kanji). As a result, text operations such as sorting strings, comparing strings, and
recognizing words are often not performed to the satisfaction of users. In any language, input by voice or
through the use of a stylus and tablet presents problems similar to that of analyzing Japanese.

2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Programming With the Language Analysis Manager

2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

This chapter discusses the concepts you need to understand the Language Analysis Manager and how it
operates on text. The Language Analysis Manager provides your application with morphological analysis
capability, and is designed to work with a language analysis engine. The Language Analysis Manager
application programming interface lets your application manage the analysis engine and create environments
and contexts in which morpheme analysis can occur.

Morphological Analysis

Morphological analysis is a process of dividing text into morphemes. Morphemes are the fundamental units
of meaning that make up a word. For example, running is made up of two morphemes—run and ing. Run
is the morpheme that carries the primary meaning of the word while ing is a suffix morpheme that moderates
the meaning of the primary morpheme.

Morphological analysis is often a prerequisite to performing operations on text of any language, such as
finding a word or sorting text. Software that does optical character recognition or handwriting recognition
can take advantage of morphological analysis to improve accuracy. For Japanese text, kana-kanji conversion
relies on morphological analysis.

Language Analysis Engine

The Language Analysis Manager uses an external module called an analysis engine to perform a morphological
analysis. The Language Analysis Manager can manage multiple analysis engines, as shown in Figure 1-1. The
appropriate engine is accessed by the application.

Morphological Analysis 9
2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Figure 1-1 The Language Analysis Manger can manage many analysis engines

L 3rd party applications,
Application Kotoeri,
Sherlock, etc.

U

Language Analysis Manager

v L

Apple Japanese 3rd party
analysis engine engine

U O v

Dictionary Manager

U U

Apple Dictionary 3rd party
AccessMethod AccessMethod

U 0T U

Apple Japanese
Dictionaries

3rd party Dictionaries

In Mac OS 9, analysis engines exist within the Extensions folder, and are implemented as CFM code fragments
which have a special prefix in the library name (LAE:). Analysis engines are automatically registered with the
Language Analysis Manager at system startup.

How the Language Analysis Manager Operates

10

This section provides an overview of how the Language Analysis Manger analyzes text. It also describes the
analysis results your application receives.

Analysis Environment

The Language Analysis Manager uses an analysis environment. An analysis environment is an opaque data
structure which defines how analysis is carried out on a character string. Examples include an analysis
environment to read Japanese text, an analysis environment to carry out kanji conversion, and an analysis
environment used to process PinYin.

Analysis environments have dictionaries and environment variables associated with them. Each analysis
environment is also linked to an analysis engine that enable the analysis to be carried out. One analysis
engine can have multiple analysis environments. Applications specify the target language and the type of
analysis by specifying an analysis environment rather than an analysis engine.

Operations carried out on the analysis environment include creating and disposing of environments, obtaining
dictionaries available for use in the environment, and opening or closing a dictionary.

The contents of the analysis environment data structure varies for each analysis engine, and is private. It is
defined as follows:

How the Language Analysis Manager Operates
2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

typedef struct OpaquelLAEnvironmentRef* LAEnvironmentRef;

Environment Variables

Environment variables specify the properties of the analysis environment. By changing the environment
variables it is possible to change the operation of the analysis engine. It is also possible to read the current
status of the engine.

There are environment variables which are specified as standard, and some which are unique to a particular
engine. There are also some which can be changed, and some which are read-only. It is impossible to obtain
or change environment variables except those which have a dedicated function such as open dictionary.

Analysis Context

The actual analysis is carried out after specifying an analysis context. An analysis context keeps track of the
current analysis. An analysis context belongs to one analysis environment, and carries out the analysis defined
there. It is possible to generate multiple analysis contexts for one analysis environment.

The analysis context data structure varies for each analysis engine, and is private. It is defined as the following
reference:

typedef struct OpaquelLAContextRef* LAContextRef;

High-Level and Low-Level Analysis Functions

The Language Analysis Manager provide two types of functions: high-level and low-level. You can use
high-level analysis functions to analyze stream-format text, and obtain the results as an array of morpheme
information used with a high frequency (a character string of analysis results of a format defined by the
environment, delimiter information, and parts of speech). You can also convert text encodings.

You can use low-level analysis functions to perform a batch analysis that either

= obtains multiple results

= sequentially analyzes text as streams, obtaining one suitable one analysis result

Results returned by an analysis use the Apple Event data model. This means the results obtained from analyses
have a hierarchical structure.

In addition to the morpheme information obtained by the high-level functions, you can also specify to include
homonyms, pointers to dictionary entries that link homonyms with morphemes, and pronunciation information,
which is additional information unique to the environment.

The low-level analysis functions exclusively use Unicode text for both input and output. When you call these
functions from applications that use a text encoding other than Unicode, you must convert offset values and
encodings using the Text Encoding Converter. It is the application’s responsibility to perform the conversions.

How the Language Analysis Manager Operates n
2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

12

CHAPTER 1

Concepts

Analysis Results (High-Level Functions)

Analysis results obtained by the high-level analysis functions are returned to the specified buffer as an array
that has a structure defined by the LAMorphemesArray data type. The morpheme information in the array
is contained in the LAMorphemeRec data structure.

The source text and analysis results for each morpheme is stored within the same output buffer, after the
array of morpheme information. These relationships are shown in Figure 1-2.

Figure 1-2 An LAMorphemesArray data structure contains LAMorphemeRec data structures
Result of "fAlx "
morpheme[0]| morpheme[1] +]
result | source | result | srclen=2 srclen =2
count | length | length | srcptr src ptr
resultlen=6 | resultlen=2 .
2 4 8 result ptr result ptr Bl piel] @
e E]|
* A

Analysis Results (Low-Level Functions)

It is generally possible to regard the results of morpheme analysis as a structure in which particular data
contains separate data. Against this background, analysis results from low-level functions have a structure
in which four types of nodes include the lower-order node in a hierarchical form.

Morpheme bundles maintain multiple analysis results with different delimiters or parts of speech in an order
resembling a morpheme path. Functions capable of returning multiple analysis results return this morpheme
bundle.

A morpheme path displays the analysis results for a particular character string as a sequence of morpheme
nodes. The morpheme node corresponds to (the delimiter of) one morpheme when a character string is
broken down into units called morphemes. It has the corresponding character string and part of speech, and
has the homograph nodes in a certain order.

Homograph nodes each have one homograph, and in most cases it is linked to an entry in a morpheme
dictionary. Each type of node has attributes defined for each type as well as lower-place nodes. They may
be text or parts of speech, for example. There are some attributes which are defined by the system, and have
the same meaning extending over different environments, and some which are defined according to the
environment (in many cases actually by the engine), and which only have meaning within the context
belonging to that environment.

All of these structures are based on the Apple event data types. See Inside Mac OS X: Apple Event Manager
Reference for details about Apple event data types.

How the Language Analysis Manager Operates
2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Structure of the Analysis Results

The analysis results use Apple event data types. Thus the descriptions in this section assume that you are
familiar with Apple event data types. The AERecord data type forms the basis of all nodes of analysis results.
For convenience, each type name and Apple event type name are defined corresponding to the morpheme
bundle, morpheme path, morpheme node, and homograph node.

Morpheme Bundle

Generally morpheme analysis carried out on a character string can give several possible results. In
LAMorphemeAnalysis, possible solutions are arranged in the “most likely” order, and the specified number
is output from a higher-place. In this way, morpheme bundles are a collection of different solutions to
morpheme analysis on one character string. The “different solutions” referred to here means that two solutions
have different morpheme delimiters, or the same morpheme delimiters, but the parts of speech are not the
same. Morpheme bundles have each of these different solutions in the from of a morpheme path which is
discussed later. Morpheme bundles normally have multiple paths in the “most likely” order.

Within morpheme bundles, morpheme paths do not directly include morpheme nodes. Morpheme bundles
have a list of morpheme nodes as one of their attributes distinct from the morpheme path, and morpheme
paths have an index to that list. In this way, it is possible to share a morpheme node from one or more paths
by indirectly indicating the morpheme node. In most cases, multiple paths within one bundle resemble one
another to some extent, and multiple paths may be deemed to have the same morpheme node. One
morpheme node may include many homograph nodes, making it bigger, so a mechanism such as this which
allows sharing is important in maintaining a small data size. Table 1-1 lists the elements of a morpheme
bundle.

Table 1-1 Elements of a morpheme bundle

Morpheme bundle element Key Type

Text character string keyAEText typeUnicodeText
List of morpheme paths keyAELAMorphemePath | typeAEList

List of morpheme nodes used by morpheme paths | keyAELAMorpheme typeAEList

Figure 1-3 shows a morpheme bundle that contains two morpheme paths for a Japanese string.

How the Language Analysis Manager Operates 13
2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

14

CHAPTER 1

Concepts
Figure 1-3 A morpheme bundle
LAMorphemeBundle

Type | typeAERecord

Key | keyAEText
Type | typeUnicodeText
Exildvl e

Key | keyAELAMorphemePath
Type | typeAEList

Type | typeAERecord

Key | keyAELAMorpheme

Type | typeAEList

Type | typelongInteger

1 (morpheme index)

Type | typelonglInteger

3 (morpheme index)

Type | typeAERecord

Key | keyAELAMorpheme

Type | typeAEList

Type | typelonglInteger

1 (morpheme index)

Type | typelongInteger

2 (morpheme index)

Type | typelongInteger

4 (morpheme index)

Key | keyAELAMorpheme

Type | typeAEList

LAMorpheme #1 (% x 9)
LAMorpheme #2 (i)

Ly

LAMorpheme #3 (ix\> L %)
LAMorpheme #4 (\» L %)

Note: In terms of the structure of the morpheme bundle, there is no need for the paths within the bundle
to be different. The morpheme bundle has multiple morpheme paths in sequence. The "different" referred
to above is the definition of output obtained from the function LAMorphemeAnalysis.

Morpheme Paths

A solution to morpheme analysis is called a path. Each solution is a result of morpheme analysis which has
an individual morpheme delimiter and part of speech, and comprises an arrangement of morpheme nodes
which is discussed later.

How the Language Analysis Manager Operates
2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

There are two types of morpheme paths which have a different way of holding the lower-place morpheme

nodes, and in some cases they are used for different purposes. One is the morpheme path within the

morpheme bundle mentioned earlier, where the path does not directly include morpheme nodes.

The other form is the morpheme path which can be used alone, and in this case, it is more convenient for it
to be closed in that unit. If an application changes the operation of a morpheme node, the morpheme node

must not be shared. Therefore, for single morpheme paths, morpheme nodes are directly included in the

morpheme path. Table 1-2 lists the elements of a morpheme path.

Table 1-2 Elements of a morpheme path
Morpheme path element | Key Type
Text character string keyAEText typeUnicodeText

List of morpheme nodes | keyAELAMorpheme | typeAEList

Figure 1-4 shows a morpheme path that contains a list of morpheme nodes for a Japanese string.

Figure 1-4 A morpheme path

LAMorphemePath (stand alone)

Type | typeAERecord

Key keyAEText

Type | typeUnicodeText

ErHlFwvle

Key keyAELAMorpheme

Type | typeAEList

LAMorpheme #1 (Z & 9)
LAMorpheme #2 (12 \> L %)

Morpheme Node

Morpheme nodes display the language of a specific part of speech for a particular character string, and have
a corresponding character string range, part of speech, and homograph nodes within text character strings
as attributes. Table 1-3 lists the elements in a morpheme node.

Table 1-3 Elements of a morpheme node

Morpheme set element

Key

Type

Character string range within source
string

keyAEMorphemeTextRange

typeUnicodeText

Part of speech keyAEMorphemePart - typeAEMorphemePart -
0fSpeechCode 0fSpeechCode
Homograph node keyAELAHomograph typeAEList

How the Language Analysis Manager Operates
2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

15

16

CHAPTER 1

Concepts

Figure 1-5 shows a morpheme node for a morpheme set.

Figure 1-5 A morpheme node

LAMorpheme

Type | typeAERecord

Key keyAEMorphemeTextRange

Type | typeAEMorphemeTextRange

offset = 0, length = 3

Key keyAEMorphemePartO0fSpeechCode

Type | typeAEMorphemePart0fSpeechCode

noun

Key keyAELAHomograph

Type | typeAEList

LAHomograph #1 (4 H)
LAHomograph #2 (57)

o

Homograph Node

The homograph node is the minimum unit of analysis, and actually represents individual "languages.” Normally
this corresponds to one word obtained from the dictionary.

Homograph nodes include the character string which represents this "language,” but the content varies
according to the type of analysis stipulated in the analysis environment. Depending on the type of
environment, a variety of additional information may be included as part of the analysis for a specific language.

A homograph node contains a string which represents this language, and uses a keyAEText key and a
typeUnicodeText data type. Figure 1-6 shows the structure of a homograph node.

Figure 1-6 A homograph node

LAHomograph

Type | typeAERecord

Key keyAEText

Type | typeUnicodeText

41

How the Language Analysis Manager Operates
2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to Programming With the Language Analysis Manager.

Date

Notes

2003-05-01

Updated formatting and art; incorporated minor editorial changes.

Moved reference to a separate document, Inside Mac OS X: Language Analysis
Manager Reference.

2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

17

18

REVISION HISTORY

Document Revision History

2003-05-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

	Programming With the Language Analysis Manager
	Contents
	Figures and Tables
	Introduction
	Concepts
	Morphological Analysis
	Language Analysis Engine
	How the Language Analysis Manager Operates
	Analysis Environment
	Environment Variables
	Analysis Context
	High-Level and Low-Level Analysis Functions
	Analysis Results (High-Level Functions)
	Analysis Results (Low-Level Functions)
	Structure of the Analysis Results
	Morpheme Bundle
	Morpheme Paths
	Morpheme Node
	Homograph Node

	Revision History

