
Supporting Unicode Input
Carbon > Text & Fonts

2005-07-07

Apple Inc.
© 1998, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, and Mac
OS are trademarks of Apple Inc., registered in
the United States and other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Supporting Unicode Input 7

See Also 7

Chapter 1 International Text in Mac OS X 9

Languages, Writing Systems, Scripts, and Orthographies 9
Script Systems and Script Codes 9
Characters, Character Encodings, and Unicode 10
Keyboards and Input Methods 10
Unicode Script Codes 11
Unicode Keyboard-Layout Resource and the UCKeyTranslate Function 11
Unicode in the Keyboard Menu 12

Chapter 2 Supporting Unicode Input in Applications and Input Methods 15

Supporting Unicode Input in Applications 15
Identifying an Application as Supporting Unicode 16
Using Apple Events to Handle Unicode Text 16

Providing Unicode Support in Input Methods 20
Identifying an Input Method as Supporting Unicode 20
Responding to the UCTextServiceEvent Function 21
Supporting Unicode in Text Services Manager Apple Events 22
Handling Low-Level Keyboard Events for Input Methods 22
Handling Compatibility Issues 22

Using the UCKeyTranslate Function 23

Document Revision History 25

3
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Tables and Listings

Chapter 1 International Text in Mac OS X 9

Table 1-1 Text input types and keyboard layouts 12

Chapter 2 Supporting Unicode Input in Applications and Input Methods 15

Table 2-1 Text input types, keyboard layouts, and input method script systems 21
Listing 2-1 A code fragment that uses the function UCKeyTranslate in an event loop 23

5
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

TABLES AND LISTINGS

This document describes how applications and input methods can use the Text Services Manager and Unicode
Utilities programming interfaces to support Unicode input in Mac OS X.

The Text Services Manager is the part of the Mac OS that provides an environment for applications to use
text services such as input methods. The Text Services Manager handles communication between client
applications that request text services and the software modules, known as text service components, that
provide them. The Text Services Manager presents two separate programming interfaces to the features it
provides: one for applications and another for text service components.

Unicode Utilities allow applications and text service components (such as input methods) to perform various
operations on Unicode text. You can use Unicode Utilities to control Unicode-related text behavior, such as
the specification of Unicode keyboard layout.

In addition to Unicode input, most complete Unicode applications need various other services which are not
be covered in this document, such as imaging Unicode and processing text. You can use Apple Type Services
for Unicode Imaging (ATSUI) and Multilingual Text Engine (MLTE) for these services. In addition, Unicode
input using the methods described in this document is compatible with any other service for imaging and
processing Unicode text.

See Also

For information on ATSUI see ATSUI Programming Guide.

For information on MLTE see Handling Unicode Text Editing With MLTE.

See Also 7
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Supporting Unicode Input

8 See Also
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Supporting Unicode Input

This section contains an overview of international text handling on the Mac OS and a more specific introduction
to some of the Unicode facilities available with Mac OS X. If you would like more information on converting
between text encodings, see Programming With the Text Encoding Conversion Manager.

Languages, Writing Systems, Scripts, and Orthographies

Written representation of a spoken language relies on a writing system. A writing system is an artificial
construct used to record language in written form. It can be viewed as having three main
components—language, scripts, and orthography—with well-defined relations to one another.

A script comprises a set of symbols that represent the components of a language. A writing system uses one
or more scripts for the symbols required to represent linguistic elements, which include sound, meaning,
syntax and so forth. A script can be coupled with one language, or it can represent and be used by many
languages. Moreover, a language can have more than one script associated with it. For example, the Japanese
language uses the Japanese script, while the French, Italian, and Spanish languages all use parts of the Latin
script.

A script exists apart from both the languages it represents and the writing systems for which it is used. (A
small number of scripts, less than 100, are used by writing systems despite the large number of existing
modern and archaic languages.) A special category of scripts, called pseudoscripts, exists for use with other
scripts. These pseudoscripts include symbols, numbers, and punctuation.

Writing systems can use different scripts at the same time. A writing system uses at least one script and
typically one or more pseudoscripts. In this sense, it is best to refer to the characters a writing system includes
as a repertoire of characters, rather than a character set, because these characters can belong to different
scripts.

The writing system for a language entails an orthography which defines the relationship between the written
language and one or more scripts. Among the rules an orthography specifies are rules of directionality, level
of discreteness, and units of representation. For example, for mixed-directional text, the direction of a
paragraph is important. For writing systems based in European languages, a paragraph is considered a unit
of representation, as is a word. Word division and paragraph identification are easily determined for these
languages, but this is not necessarily the case for other writing systems, such as those based in Japanese or
Indic languages.

Script Systems and Script Codes

Traditionally, in the Mac OS, a script system has been understood to be a collection of software facilities that
provides for the representation of a specific writing system. This usage of the term “script” in the phrase
“script system” should not be confused with the more current, linguistics-derived notion of scripts that is
used in the Mac OS and described in “Languages, Writing Systems, Scripts, and Orthographies” (page 9).

Languages, Writing Systems, Scripts, and Orthographies 9
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

International Text in Mac OS X

Types of Mac OS script systems include the following:

 ■ single-byte simple: small character set, non-contextual, not bidirectional (example: English)

 ■ single-byte complex: small character set, but with contextual or bidirectional text (example: Devanagari)

 ■ double-byte: large character set (examples: Japanese, Korean, Chinese, and Simplified Chinese)

At minimum, a script system consists of the following items:

 ■ keyboard resources, which provide for text input in any language from any keyboard; these allow for
convenient switching from one input language to another on a single keyboard

 ■ international resources, which contain information specific to a particular language, such as its date and
time formats, sorting order, and word-break rules

 ■ fonts, that is, sets of glyphs that are associated with specified characters

A script code is a numeric value indicating a particular Mac OS script system. Constants are defined for each
of the script codes recognized by the Mac OS.

Characters, Character Encodings, and Unicode

A writing system’s alphabet, numbers, punctuation, and other writing marks consist of characters. A character
is a symbolic representation of an element of a writing system; it is the concept of, for example, “lowercase
a” or “number 3”.

In memory, text is stored as character codes, where each code is a numeric value that defines a particular
character. A character encoding is the organization of the set of numeric codes that represent all the
meaningful characters of a script system in memory. There are two fundamental classes of Mac OS character
encodings: single-byte and double-byte.

Unicode is an international standard that combines the characters for all commonly used writing systems
into a single, coded character set, based upon a 16-bit character encoding standard. With a universal character
encoding such as Unicode, the character sets of separate writing systems do not overlap. Furthermore,
Unicode resolves the issue of conflicting character encodings within a single writing system; for example, in
Unicode, there is no overlap between Roman character codes and the Symbol font’s character codes.

Keyboards and Input Methods

By means of keyboard input, the user can create text that your application stores as character codes. The
system reports the user’s key-down, key-up, and auto-key events to your application through events. Key-down
and key-up events report that the user pressed or released a key, respectively. Auto-key events report that
the user has held a key down for a certain amount of time. For keyboard-related events, the application
receives both the virtual key code and the character code for the key that is pressed, as well as the state of
any modifier keys (Shift, Caps Lock, Command, Option, and Control) at the time of the event.

To obtain this information for your application, the Mac OS uses keyboard resources to convert key presses
into the correct character codes for the current writing system, taking into account the type of keyboard
being used.

10 Characters, Character Encodings, and Unicode
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

International Text in Mac OS X

Key translation is the process by which character codes are generated. Each keyboard has a particular physical
arrangement of keys, and each keypress generates a value called a raw key code, which indicates which key
was pressed. The keyboard driver that handles the keypress maps these raw key codes to
keyboard-independent virtual key codes.

Any given script system has one or more keyboard-layout resources. The keyboard-layout resources provide
script-specific maps for converting a virtual key code into the character code that is passed to your application.
As part of the key-translation process, the keyboard-layout resources must take into account the current
dead-key state. A dead key is a keypress or modifier-plus-keypress combination that produces no immediate
character output, but instead affects the character(s) that are ultimately produced by the following key
press(es).

A keyboard layout is what the Key Caps application shows. For the purposes of this document, a
keyboard-layout resource is the critical item in determining keyboard layout; changing the keyboard layout
means changing the keyboard-layout resource. Because keyboard layouts are independent of the physical
keyboard attached to the computer, your application has the flexibility of changing text input from one
writing system to another by simply using a different keyboard-layout resource.

For languages with large character sets, it is impractical to manufacture keyboards with keys for every possible
character. In such a case, it is usually the job of an input method, working in conjunction with a keyboard,
to handle text input. An input method is a software module, often independent of the application it serves,
that performs complex processing of text input, prior to the application’s processing of the text. A typical
example of an input method is a translation service that converts character codes that can be entered from
the keyboard into character codes that cannot; text input in Japanese, Chinese, and Korean usually requires
an input method.

Unicode Script Codes

The set of Mac OS script codes that identify particular script systems includes Unicode, which is handled as
a special Mac OS script code. The Text Encoding Converter and other Mac OS facilities use the constant
kTextEncodingUnicodeDefault (0x0100) to designate Unicode. However, because some components
have only 7 bits available for a script code, rather than the typical 16 bits, the value smUnicodeScript (0x7E)
can also be used to indicate Unicode. For example, the Text Encoding Converter handles the
smUnicodeScript value similar to kTextEncodingUnicodeDefault.

Unicode Keyboard-Layout Resource and the UCKeyTranslate
Function

Similar to the (pre-Unicode) keyboard-layout resource ('KCHR'), the Unicode keyboard-layout resource
('uchr') contains the data necessary to map virtual key codes to character codes for various keyboard
layouts. However, the 'uchr' resource specifies Unicode keyboard layouts—that is, keyboard layouts which
produce Unicode character codes, rather than characters in a Mac OS encoding.

Because some Unicode character codes can be mapped to Mac OS encoded character codes (while some
cannot), for the purposes of key translation there are considered to be two categories of Unicode
keyboard-layout resources. The first category of 'uchr' resources is one that produces Unicode character

Unicode Script Codes 11
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

International Text in Mac OS X

codes that are all within the range of a single Mac OS encoding. That is, these partial Unicode 'uchr'
resources contain only Unicode characters that can be mapped to characters belonging to the Mac OS
encoding associated with its ID range.

The second category of 'uchr' resources may produce any Unicode characters. That is, these full Unicode
'uchr' resources contain Unicode characters that are either not all within the range of a single Mac OS
encoding or are not within the range of any Mac OS encoding. Table 2-1 shows the relationships of
keyboard-layout resources to differing types of text input.

Table 1-1 Text input types and keyboard layouts

Keyboard Layout (resource type, ID)Input Type

KCHR, >= 0Produces Mac OS encoded characters

uchr, >= 0Produces partial Unicode characters

uchr < 0Produces full Unicode characters

The function UCKeyTranslate uses the 'uchr' resource to produce Unicode character codes. However,
unlike its non-Unicode counterpart (the KeyTranslate function), UCKeyTranslate also does the following:

1. Outputs multiple character codes. A single keycode (or a dead-key sequence) can produce a string of
up to 255 Unicode characters. This facility is useful both for some international script systems and for
the production of macros. As an example of the former, the Devanagari keyboard in the Indian Language
Kit must be able to produce up to three characters from a single keypress to support the keyboard
standards of India.

2. Allows multiple dead keys. The keyboard standards for some countries require double dead keys. For
example, Greek keyboards use two dead keys for adding diacritical marks.

3. Handles virtual key codes with a range greater than 0-127. While this requirement is currently uncommon
in the Mac OS, some types of keyboards—for example, older Kanji keyboards and keyboards for some
other operating systems—may use a larger key code range.

4. Allows virtual key code mapping to depend on keyboard type. While the use of virtual key codes should
theoretically remove all dependencies on particular physical keyboards, in some cases key translation
does depend on the keyboard type (due to certain scripts, languages, and regions needing subtle
differences in layout for specific keyboards). The UCKeyTranslate function accommodates this need
by requesting keyboard type information and using the 'uchr' resource to access the proper keyboard’s
mapping tables in cases where there is a keyboard-specific dependency, thus eliminating the need to
use the 'itlk' resource.

Unicode in the Keyboard Menu

The Keyboard menu in Mac OS X appears on the menu bar when more than one script system is enabled. It
permits the user to choose among keyboard layouts, input methods, and script systems, for text input.

12 Unicode in the Keyboard Menu
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

International Text in Mac OS X

If there are input methods for any of the Mac OS double-byte script systems that are enabled, the Keyboard
menu shows only the input methods; otherwise, in the absence of input methods, it shows the keyboard
layouts. For all other enabled script systems, including Unicode, the keyboard menu shows keyboard layouts
and input methods.

Note: The Keyboard menu shows each keyboard layout as a single entry, regardless of whether it is specified
by a 'KCHR', a 'uchr', or both.

To display a full Unicode script system in the Keyboard menu, the System must include an international
bundle resource ('itlb') with a resource ID of smUnicodeScript (0x7E) and one or more full Unicode
keyboard layouts or input methods.

Full Unicode keyboard layouts and input methods (that is, for input sources that produce Unicode characters
that are not within the range of a single Mac encoding), if enabled, are shown in their own section of the
menu, after all of those for Mac OS script systems.

Unicode in the Keyboard Menu 13
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

International Text in Mac OS X

14 Unicode in the Keyboard Menu
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

International Text in Mac OS X

This chapter describes how applications and input methods can support Unicode input by using Text Services
Manager and Unicode Utilities.

 ■ Application developers should read “Supporting Unicode Input in Applications” (page 15) to learn about
the steps required for an application to support Unicode input.

 ■ Input method developers should read “Providing Unicode Support in Input Methods” (page 20) to learn
about the steps required for an input method to support Unicode input.

 ■ Typically the Text Services Manager calls the UCKeyTranslate function when needed. However, there
are occasions when your application or input method may need to call this function directly. See “Using
the UCKeyTranslate Function” (page 23) for more details.

Supporting Unicode Input in Applications

To support Unicode input, an application must both support the Text Services Manager and request Unicode
input. Applications that do not support Unicode input fall in two categories: those that do not support the
Text Services Manager, and those that do, but which do not request Unicode input. In both cases, these
applications do receive some of the benefit of text input from Unicode input sources which can take the
form of either Unicode keyboard layouts (specified by 'uchr' resources) or Unicode input methods and text
services.

However, the kinds of Unicode input available to applications that do not support Unicode input are restricted.
These applications receive only input from partial Unicode input sources, that is sources that generate only
Unicode characters that are all within the repertoire of a single Mac encoding, usually the Mac encoding
determined by the current keyboard script. This is because text from partial Unicode input sources is
automatically converted by the Text Services Manager to a Mac OS encoding for delivery to these applications.
Full Unicode input sources—that is, those which either generate characters within the repertoire of several
Mac encodings or outside the repertoire of any Mac encoding—are not available to these applications and
appear disabled in the Keyboard menu.

You application can support the Text Services Manager in one of the two following ways:

 ■ Implement Carbon events for text handlers. This is the preferred way because the performance advantages
of using Carbon events over Apple events are significant. In additoin, you can target Carbon events at
either the application or control and window level, whereas Apple events are targeted only at the
application level. For information on implementing Carbon events for text handlers, see Understanding
Text Input and the Text Services Manager in Carbon.

 ■ Provide Apple event handlers for he full suite of Text Services Manager Apple events in order to support
inline input of text. While input can be handled using the bottomline method, this mode of input does
not support full Unicode input sources, but only those input sources whose output can be converted to
a given Mac encoding (that is, partial Unicode input sources).

Supporting Unicode Input in Applications 15
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and
Input Methods

Implementing a set of Apple event handlers for the Text Services Manager suite, for the purpose of
supporting inline input in general and Unicode input in particular, greatly enhances the text input
experience for users of your applications in a variety of existing input sources as well as new Unicode
input sources. Even if the majority of existing input methods are associated with a particular Mac script
system (and therefore a particular Mac encoding), your application will automatically support these input
sources because the Text Services Manager converts all text from Mac OS encoding input sources to
Unicode for delivery to applications that have requested Unicode input.

See “Using Apple Events to Handle Unicode Text” (page 16) for more information.

Note: TSMTE does not currently support Unicode input. If an application does rely on TSMTE for input, its
input sources will be limited to those which generate input within the repertoire of individual Mac OS
encodings.

Identifying an Application as Supporting Unicode

Text Services Manager client applications must create an internal record called a TSM document (defined by
the TSMDocument data type) before they can use any services provided through the Text Services Manager.
A TSM document is a private data structure that your application associates with each of its documents that
use a text service.

You use the TSM document type kUnicodeDocument ('udoc') to request Unicode input. When a
Unicode-input TSM document is active, the associated application receives input in Unicode. The application
can receive input from all input types: full Unicode, partial Unicode, and Mac OS encodings.

Non-Unicode (Mac OS encoded) input is converted to Unicode before being delivered to a Unicode-input
TSM document.

When non-Unicode TSM documents are active or when the current application is not a Text Services Manager
client, the application receives Mac OS encoded input. In these cases, full Unicode input sources are disabled
in the Keyboard menu and cannot be used, and input from partial Unicode sources is automatically converted
to the current keyboard script (a Mac OS encoding) by the Text Services Manager.

Your application creates a Unicode TSM document by specifying the kUnicodeDocument ('udoc') type in
the supportedInterfaceTypes parameter of the function NewTSMDocument.

Using Apple Events to Handle Unicode Text

Text Services Manager uses a Unicode Apple event that allows applications with Unicode TSM documents
to streamline their event handling.

In this Apple event model of text event handling, your application calls WaitNextEvent and passes low-level
keyboard events to the Text Services Manager through the function TSMEvent. The function TSMEvent
always returns true, to indicate that the key event was processed, either by an input method (and delivered
through the standard Text Services Manager Apple events) or by means of direct delivery to the application
(through the kUnicodeNotFromInputMethodApple event). Because the kUnicodeNotFromInputMethod
Apple event contains both the Unicode character code(s) and a copy of the original low-level key event
record, your application can now consolidate all of its keyboard input processing in a single logical unit in
its Apple event handlers, rather than in an event loop.

16 Supporting Unicode Input in Applications
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and Input Methods

This section provides details on how to modify existing Text Services Manager Apple event handlers and
discusses the Text Services Manager Apple event required to support Unicode input. If your application
already supports the Text Services Manager, these changes are minimal. If your application does not currently
support the Text Services Manager, you should first implement support for the Text Services Manager.

Modifying Existing Apple Event Handlers for Unicode

When the active TSM document is of type kUnicodeDocument, the Text Services Manager delivers all text
content in Text Services Manager Apple events as Unicode text, in a descriptor whose keyword continues to
be keyAETheData, but whose descriptor type is typeUnicodeText.

When known data structures accompanying the Unicode text contain offsets to text, these offsets are also
converted, if needed, to Unicode (byte) offsets to match the encoding of the text delivered to the application’s
Apple event handler. This delivery of text (and accompanying byte offsets) in Unicode occurs regardless of
the type of input source. If the input source is a Unicode input method, text and offsets are passed through
by the Text Services Manager to the application’s handler unchanged, but if the input source generates text
in a Mac encoding, the generated text is converted to Unicode automatically by the Text Services Manager.

Text is converted between Unicode and Mac OS encodings as necessary. Text from Unicode input sources
is automatically converted to Mac encodings for delivery to applications that don’t use Unicode TSM
documents. Text from Mac OS encoding input sources is converted to Unicode for delivery to applications
using Unicode TSM documents. Similarly, application text requested by an input method (with the Apple
event ID kGetSelectedText) is converted as necessary.

The Update Active Input Area Event

Your application’s Apple event handler for the kUpdateActiveInputArea Apple event must obtain the
keyAETheData parameter using the descriptor type typeUnicodeText to obtain the Unicode content of
the active input area. The keyAEFixLength, keyAEHiliteRange, keyAEUpdateRange, and
keyAEClauseOffsets parameters all contain byte offsets into the Unicode text.

The Position To Offset Event

Your application’s Apple event handler for the kPos2Offset Apple event must reply with the keyAEOffset
parameter containing a Unicode text (byte) offset. If the text service requesting the offset is associated with
a Mac OS encoding, the Text Service Manager converts the text offset from Unicode to that of the Mac OS
encoding.

The Offset To Position Event

Your application’s Apple event handler for the kOffset2Pos Apple event must treat the keyAEOffset
parameter as a Unicode text (byte) offset. If the text service specifying the text offset is associated with a Mac
OS encoding, the Text Services Manager converts the text offset from the Mac OS encoding to Unicode before
forwarding the Apple event to the application.

The Get Selected Text Event

Your application’s Apple event handler for the kGetSelectedText Apple event must return the current
text selection as Unicode text. If the text service specifying the text offset is associated with a Mac OS encoding,
the Text Services Manager will convert the Unicode text to the Mac OS encoding before forwarding the Apple
event to the text service. Supporting this event is optional, but recommended.

Supporting Unicode Input in Applications 17
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and Input Methods

Supporting the Unicode (Not From Input Method) Apple Event

To support Unicode input through the Text Services Manager, your application must provide a handler for
the Text Services Manager Unicode Apple event whose event ID is kUnicodeNotFromInputMethod. When
the user generates Unicode input that does not originate from an input method (that is, the Unicode text
may be generated by a keyboard layout or is simply not handled by an input method) the Text Services
Manager forwards the generated input to your application as Unicode text in the
kUnicodeNotFromInputMethod Apple event.

Note: Unicode text resulting from input method interactions is delivered using the UpdateActiveInputArea
Apple event, as is the case for non-Unicode text.

The kUnicodeNotFromInputMethodApple event contains the Unicode text, a copy of the original low-level
key event, and a ScriptLanguageRecord structure that identifies the current keyboard script. Your
application’s event handler for the kUnicodeNotFromInputMethod Apple event must obtain the
keyAETheData parameter using the descriptor type typeUnicodeText to obtain the input as Unicode text.

Your application’s Apple event handler can also obtain the original low-level key event from a parameter
whose keyword is keyAETSMEventRecord and whose descriptor type is typeLowLevelEventRecord. If
the current keyboard layout is determined by a 'KCHR' resource, you can pass the virtual key code and
modifiers to the function KeyTranslate to produce a Mac OS encoding character code. Otherwise, if a
Unicode keyboard layout is being used (that is, if the keyboard layout is determined by a 'uchr' resource),
you can use the UCKeyTranslate function. Typically, you do not need to perform either action.

The application’s Apple event handler for the kUnicodeNotFromInputMethod event should always fully
process the input and return noErr. Returning any error or not providing a handler causse the TSMEvent
function to indicate that the low-level key event was not handled, in which case your application may not
be able to generate the correct text, depending on whether the input source is a Unicode keyboard layout
and whether a dead-key sequence is in progress.

Note: In most cases, the Text Services Manager Apple event contains two required parameters, one of which
is the keyAEServerInstance parameter, which identifies the component that is sending the Apple event.
However, in the case of the kUnicodeNotFromInputMethod Apple event, this parameter is not included
because the event only pertains to cases where a component (such as, an input method) is not handling the
data.

Class kTextServiceClass

ID kUnicodeNotFromInputMethod

Requested action Accept Unicode text.

The required parameters are as follows:

Keyword keyAETheData

Descriptor type typeUnicodeText

Data Unicode text. Note that this text data has not been processed in any way by a text servcie
component.

Keyword keyAETSMEventRecord

18 Supporting Unicode Input in Applications
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and Input Methods

Descriptor type typeLowLevelEventRecord

Data A copy of the original low-level key event record.

Keyword keyAETSMDocumentRefcon

Descriptor type typeLongInteger

Data A TSMdocument specfier (reference constant0 supplied by the appcliation in a prior call
to the function NewTSMDocument. This value is associated with the TSM document that
receives the Unicode text input.

Keyword keyAETSMScriptTag

Descriptor type typeIntlWritingCode

Data A ScriptLangagueRecord structure that identifies the script code and language code
associated with the text returned in the keyAETheData parameter. If the current input
source is partial Unicode, this contains a Mac OS script code. If the current input source
is full Unicode, it is 0x7E (smUnicodeScript).

There are no optional parameters.

The return parameter is the following:

Keyword keyErrorNumber

Descriptor type typeShortInteger

Data Any errors that the application needs to return to the Text Services Manager to terminate
processing of the key event that the application passed to TSMEvent. The function
TSMEvent returns false to indicate to the applicatoin that the key even was not handled.
The application can then attempt to process the event. Note that the character code data
in the returned key event is not valid in general, but the virtual key code and modifier-key
data can still be processed.

Handling Low-Level Keyboard Events for Applications

While low-level keyboard events appear essentially unchanged with Unicode text input, there are certain
differences which can affect how text is converted.

Whether or not a Unicode script system is present, the keyboard driver always uses a 'KCHR' resource to
generate the character codes that are posted in the low-level event. Even if the current keyboard layout is
specified solely by a 'uchr' resource, the Script Manager supplies the keyboard driver with the best
approximation of an appropriate 'KCHR' resource to use. However, the resulting character in the low-level
event may have no relation to the actual Unicode character, as specified by the 'uchr' resource. Also, in
this case, when the current keyboard layout is specified by a 'uchr' resource alone, the Text Services Manager
disables driver dead-key processing for 'KCHR' resources and performs all dead-key processing itself.

If the current keyboard layout is specified only by a partial Unicode 'uchr' resource, and the current
application is not using a Unicode TSM document, the Text Services Manager intercepts the key event posted
by the driver before it is delivered to the application. The Text Services Manager uses the 'uchr' resource
with the function UCKeyTranslate to map the virtual key code and modifiers in the event to a string of
Unicode character codes. It then converts these to character codes in the appropriate Mac OS encoding and
post these for delivery to the application in a series of keyboard events. While these appear to your application

Supporting Unicode Input in Applications 19
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and Input Methods

as normal keyboard events, you cannot automatically reproduce the characters in the events by using the
(pre-Unicode) KeyTranslate function to convert the key code and modifiers in the event. Instead, you must
check to see if a 'uchr' resource is present to know whether to use KeyTranslate or UCKeyTranslate.

If the current application is using a Unicode TSM document, the keyboard event posted by the driver is not
modified before delivery to the application. Instead, the application is expected to pass the event to the Text
Services Manager through the function TSMEvent, which handles all necessary UCKeyTranslate calls or
conversion to Unicode.

For keyboard layouts that have 'uchr' resources, TSMEvent uses UCKeyTranslate to convert the keycode
and modifiers in the key event to a sequence of Unicode characters. For keyboard layouts that only have
'KCHR' resources, TSMEvent converts the Mac OS encoding character in the event to Unicode.

Providing Unicode Support in Input Methods

While existing applications process inline input text in Mac OS encodings, as applications adopt Unicode
they will also support input from Unicode input methods, greatly increasing the characters available to the
user in individual scripts and offering a convenient and comprehensive environment for multi-script or
multilingual text entry. Also, because text contained in Apple events from Unicode input methods does not
need to be converted by the Text Services Manager to Unicode for application delivery, the efficiency of
inline input processing is greatly improved.

This section identifies the requirements for development of Unicode input methods. While the main
requirement imposed by the Text Services Manager is that these input methods communicate externally
using Unicode text, the Text Services Manager does not require that an input method perform its internal
processing in Unicode nor that the input method images Unicode text in its user interface (input method
palettes), although these features are assumed to be desirable or necessary for other reasons.

Text Services Manager defines two types of Unicode input methods: full Unicode input methods and partial
Unicode input methods. A full Unicode input method is defined to be an input method which may generate
Unicode characters outside of the repertoire of any given Mac OS encoding, in multiple Mac OS encoding
repertoires, or both. A partial Unicode input method always adheres (externally) to the repertoire of the
Mac OS encoding defined by the Mac OS script system to which it belongs.

Partial Unicode input methods appear in the Keyboard menu section for the script to which they belong.
Full Unicode input methods and keyboard layouts appear in a new section near the bottom of the Keyboard
menu, after the section for Mac OS encodings.

Identifying an Input Method as Supporting Unicode

Both partial and full Unicode input methods continue to be Component Manager components, described
by the ComponentDescription flags in the component 'thng' resource. A partial Unicode input method
specifies the Mac OS script code with which it is associated, while a full Unicode input method specifies the
constant 0x7E (smUnicodeScript). Note that while a partial Unicode input method, like a non-Unicode
(Mac OS encoding) input method, advertises itself as being associated with a Mac OS script code, it is
distinguished by the contents of the ScriptLanguageRecord structure that it returns when it responds to
a GetScriptLanguageSupport call.

20 Providing Unicode Support in Input Methods
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and Input Methods

The GetScriptLanguageSupport function is the mechanism used by the Text Services Manager to
distinguish a Mac OS encoding input method from a partial Unicode input method. Since both of these input
methods specify a Mac OS script code in the component description flags of the 'thng' resource, a partial
Unicode input method implements its GetScriptLanguageSupport function to return an array that includes
a ScriptLanguageRecord structure with the proper Mac OS language code and a script code of
kTextEncodingUnicodeDefault (0x0100).

Full Unicode input methods, similar to non-Unicode input methods, do not need to implement this function,
although a full Unicode input method may wish to return an array of ScriptLanguageRecord structures,
each specifying the kTextEncodingUnicodeDefault constant for the script code and the appropriate
language code to identify those languages for which it is most suited.

Table 3-1 shows the relationships of keyboard-layout resources and input methods to differing types of text
input, including whether the input method must identify the script systems it supports in a
ScriptLanguageRecord structure to respond to the Text Services Manager function
GetScriptLanguageSupport.

Table 2-1 Text input types, keyboard layouts, and input method script systems

Input methd script systems
(ScriptLanguageRecord structure)

Input method script
systems
(ComponentDescription
flags)

Keyboard
layout
(resourcetype,
ID)

Input type

Not necessary, but can supply any
Mac OS script code (0x00-0x20)

Supply any Mac OS script
code (0x00-0x20)

KCHR, >= 0Produces Mac OS
encoded characters

Necessary; must supply the 16-bit
Unicode script code (0x100 =
kTextEncodingUnicodeDefault)

Supply any Mac OS script
code (0x00-0x20)

uchr, >=0Produces partial
Unicode characters

Not necessary, but can supply the
16-bit Unicode script code (0x100 =
kTextEncodingUnicodeDefault)

Supply the 7-bit Unicode
script code
(0x7E-smUnicodeScript)

uchr, < 0Produces full
Unicode characters

Responding to the UCTextServiceEvent Function

For any Unicode input method, the Text Services Manager always uses the UCTextServiceEvent function.
This function specifies the low-level event record, but it also contains the Unicode text stream resulting from
the keypress. This is important because the keyboard layout being used may be a Unicode keyboard-layout
('uchr') resource, which may generate more than one character as the result of a single keypress or no
characters in the case of a dead-key sequence.

Note that the Text Services Manager forwards the key event to the input method in all cases, even when no
output is produced by the 'uchr' resource. Therefore, the input method should be prepared to be called
by the UCTextServiceEvent function with just the key event and no Unicode text (unicodeString=NULL,
unicodeStrLength=0). This allows input methods to process Option-Shift equivalents without the need
to override the keyboard layout data used by the keyboard driver, as sometimes has been necessary in the
past.

Providing Unicode Support in Input Methods 21
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and Input Methods

Supporting Unicode in Text Services Manager Apple Events

A Unicode input method must transmit all text that is sent through Text Services Manager Apple events as
Unicode text, in a descriptor whose keyword is keyAETheData and whose descriptor type is
typeUnicodeText. All text offsets specified in these Apple events must specify byte offsets into the
corresponding Unicode text. This applies to all currently defined Text Services Manager Apple events: Update
Active Input Area, Offset To Position, Position To Offset, and Get Selected Text.

Handling Low-Level Keyboard Events for Input Methods

While low-level keyboard events appear essentially unchanged with Unicode text input, there are certain
differences which can affect how text is converted. Whether or not a Unicode script system is present, the
keyboard driver always uses a 'KCHR' resource to generate the character codes that are posted in the
low-level event. Even if the current keyboard layout is specified solely by a 'uchr' resource, the Script
Manager will supply the keyboard driver with the best approximation of an appropriate 'KCHR' resource to
use. However, in the latter case, the resulting character in the low-level event may have no relation to the
actual Unicode character as specified by the 'uchr' resource.

Because keyboard drivers are not equipped to handle a Unicode keyboard-layout ('uchr') resource, which
may generate more than one character as the result of a single keypress or no characters in the case of a
dead-key sequence, there are three cases where the Text Services Manager disables keyboard driver dead-key
processing and performs all dead-key processing itself:

 ■ if an input method of any type is in use

 ■ if the current keyboard layout is specified solely by a 'uchr' resource (that is, if no 'KCHR' resource is
available)

 ■ if the current document identifies itself as a Unicode TSM document and a 'uchr' resource is available

In any of these cases, when the Text Services Manager disables dead-key processing in the keyboard driver,
it passes each key event to the UCKeyTranslate function, whose output is then forwarded to the input
method. When a 'uchr' is not available for input into a Unicode input method, the Text Services Manager
relies on the Text Encoding Converter to generate the Unicode characters.

Handling Compatibility Issues

There are two main compatibility issues for Unicode input methods:

 ■ running on systems with Text Services Manager 1.0

 ■ providing support for applications that do not themselves support Unicode

Unicode input methods of any kind cannot be selected, and are not loaded, on a system with Text Services
Manager 1.0. While this is true of both full Unicode input methods and partial Unicode input methods, a
partial Unicode input method could be implemented such that it behaves as a Mac OS encoding input method
with Text Services Manager 1.0, and a partial Unicode input method with Text Services Manager 1.5. In the
presence of Text Services Manager 1.0, the input method could continue to perform its internal processing
in Unicode and convert text to Mac encoding using the Text Encoding Converter either for display in its own
palettes (if ATSUI is not available) or for Apple event content. The input method’s component description
flags specify the Mac script in either world, and, in the presence of Text Services Manager 1.5, the input

22 Providing Unicode Support in Input Methods
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and Input Methods

method may respond to a GetScriptLanguageSupport call by returning an array that includes a
ScriptLanguageRecord structure with the proper Mac OS script code and a language code of
kTextEncodingUnicodeDefault.

Full Unicode input methods cannot be selected by the user unless the current application’s active TSM
Document is created with the kUnicodeDocument interface type. Until Unicode is adopted to a greater
extent, input methods may benefit from restricting Unicode output to the repertoire of a single Mac OS script
system, and possibly generate Unicode outside of a Mac encoding’s repertoire only when it is certain that
the current document is a Unicode TSM document.

Using the UCKeyTranslate Function

In most cases, application and input methods do not need to use the UCKeyTranslate function because
the Text Services Manager automatically calls it when handling input from a Unicode keyboard layout.
However, there may be some circumstances when you want to call the function UCKeyTranslate directly.

For example, your application may need to determine what character code(s) would have been generated
for the virtual key code in the current key-down event if a different modifier-key combination had been used.
Listing 3-1 shows how your application can use the function UCKeyTranslate to perform its own virtual
key code to Unicode character code conversion. Note that this code is a fragment; the ellipses indicates code
that you would need to add for your application. The code is intended for use in an application that has an
event loop.

Listing 2-1 A code fragment that uses the function UCKeyTranslate in an event loop

enum {
 kMaxUnicodeInputStringLength = 16
};

 // Code fragment
 EventRecord *eventPtr;
 UCKeyboardLayout myKeyLayout;
 UInt32 deadKeyState;
 SInt16 currentKeyScript;
 SInt16 lastKeyLayoutID;
 UniChar unicodeInputString[kMaxUnicodeInputStringLength];
 OSStatus status;

 // initialization
 currentKeyScript = GetScriptManagerVariable(smKeyScript);
 lastKeyLayoutID = GetScriptVariable(currentKeyScript, smScriptKeys);
 deadKeyState = 0;
 myKeyLayout = GetResource('uchr', lastKeyLayoutID);
 // …
 // event loop
 while(true)
 {
 // get next event from WaitNextEvent, then
 switch (eventPtr->what)
 {
 //add other relevant cases here
 case keyDown:
 case keyUp:

Using the UCKeyTranslate Function 23
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and Input Methods

 case autoKey:
 {
 SInt16 currentKeyLayoutID;
 currentKeyScript = GetScriptManagerVariable(smKeyScript);
 currentKeyLayoutID = GetScriptVariable(currentKeyScript,
 smScriptKeys);
 if (currentKeyLayoutID != lastKeyLayoutID){
 // reset the dead key state
 // if the keyboard layout has changed
 deadKeyState = 0;
 // attempt to get the handle for
 // the new keyboard layout’s 'uchr'
 myKeyLayout = GetResource('uchr', currentKeyLayoutID);
 lastKeyLayoutID = currentKeyLayoutID;
 }
 // if there is a 'uchr' for the current keyboard layout,
 // use it
 if (myKeyLayout != NULL){
 UInt32 keyboardType;
 UInt32 modifierKeyState;
 UInt16 virtualKeyCode;
 UInt16 keyAction;
 UniCharCount actualStringLength;

 virtualKeyCode = ((eventPtr->message) >> 8) & 0xFF;
 keyAction = eventPtr->what - keyDown;
 modifierKeyState = ((eventPtr->modifiers) >> 8) & 0xFF;
 keyboardType = LMGetKbdType();
 status = UCKeyTranslate(*myKeyLayout,
 virtualKeyCode, keyAction,
 modifierKeyState, keyboardType, 0,
 &deadKeyState,
 kMaxUnicodeInputStringLength,
 &actualStringLength, unicodeInputString);
 // now do something with status and unicodeInputString
 // add your code here
 }
 else{
 // no 'uchr' resource, do something with 'KCHR'?
 // add your code here
 }
 }
 break;
 } // end switch on eventPtr->what
 } // end of while statement for event loop

24 Using the UCKeyTranslate Function
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Supporting Unicode Input in Applications and Input Methods

This table describes the changes to Supporting Unicode Input.

NotesDate

Fixed indenting for sample code.2005-07-07

Removed the Unicode Utilities reference documentation. You can find it in the
most recent version of Unicode Utilities Reference.

2003-02-17

Removed the 'uchr' specification. It is now in Unicode Utilities Reference.

Removed or edited out-of-date information, such as references to nonCarbon
features.

Fixed typographical errors; updated formatting.

First version of this document.1998-10-01

25
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

26
2005-07-07 | © 1998, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Supporting Unicode Input
	Contents
	Tables and Listings
	Introduction
	International Text in Mac OS X
	Languages, Writing Systems, Scripts, and Orthographies
	Script Systems and Script Codes
	Characters, Character Encodings, and Unicode
	Keyboards and Input Methods
	Unicode Script Codes
	Unicode Keyboard-Layout Resource and the UCKeyTranslate Function
	Unicode in the Keyboard Menu

	Supporting Unicode Input in Applications and Input Methods
	Supporting Unicode Input in Applications
	Identifying an Application as Supporting Unicode
	Using Apple Events to Handle Unicode Text
	Modifying Existing Apple Event Handlers for Unicode
	The Update Active Input Area Event
	The Position To Offset Event
	The Offset To Position Event
	The Get Selected Text Event

	Supporting the Unicode (Not From Input Method) Apple Event
	Handling Low-Level Keyboard Events for Applications

	Providing Unicode Support in Input Methods
	Identifying an Input Method as Supporting Unicode
	Responding to the UCTextServiceEvent Function
	Supporting Unicode in Text Services Manager Apple Events
	Handling Low-Level Keyboard Events for Input Methods
	Handling Compatibility Issues

	Using the UCKeyTranslate Function

	Revision History

