
Transferring Data With URL Access Manager
(Legacy)

Carbon > Networking

2007-05-03

Apple Inc.
© 2001, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Carbon,
Mac, and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 Transferring Data With URL Access Manager 7

Overview 7
Setting and Determining URL Properties 8
Performing Simple Data Transfer 9
Naming Your Destination File 10
Controlling Data Transfer 11
Terminating Data Transfer Operations 12
Obtaining Data Transfer Information 12
Responding to Data Transfer Events 13
Responding to System Events During Data Transfer 13
Using URL Access Manager with AppleScript 14
Case Study: Downloading Data From a URL 14
Case Study: Downloading Data From Multiple URLs 17
See Also 20

Document Revision History 21

3
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

4
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Listings

Chapter 1 Transferring Data With URL Access Manager 7

Figure 1-1 Naming your destination file 11
Listing 1-1 Displaying the value of each URL property 8
Listing 1-2 SamplePost.h 14
Listing 1-3 SamplePost initialization 14
Listing 1-4 Verifying the availability of URL Access Manager 15
Listing 1-5 Allocating memory and creating a URL reference 15
Listing 1-6 Setting URL properties 16
Listing 1-7 Setting the URLDownload parameters 16
Listing 1-8 Calling the URLDownload function 16
Listing 1-9 Displaying the downloaded data 17
Listing 1-10 SamplePost’s system event callback function 17
Listing 1-11 The Downloader application’s main function 17
Listing 1-12 Downloader’s DoDownload function 18
Listing 1-13 Downloader’s system event callback function 19

5
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

6
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Important: URL Access Manager is deprecated as of Mac OS X v10.4. You should use CFNetwork instead (as
described in CFNetwork Programming Guide).

This document describes how to use URL Access Manager to transfer data to and from a network resource
specified with a uniform resource locator (URL).

Note: Apple does not recommend that you directly incorporate the sample code in this document into your
application. For example, only limited error handling is shown—you should develop your own techniques
for detecting and handling errors.

Overview

URL Access Manager includes support for:

 ■ Automatic decompression of compressed files

 ■ Automatic file extraction from Stuffit archives (with version 5.0 of Stuffit)

 ■ Firewalls, HTTP proxy servers, and SOCKS gateways

URL Access Manager allows you to use any of the following protocols during download operations: File
Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), secure Hypertext Transfer Protocol (HTTPS), or
the local file protocol (a URL beginning with file:/// that represents a local file). You could use the local
file protocol to test your application on a computer that does not have access to a HTTP or FTP server.

For upload operations, you must use an FTP URL. URL Access Manager allows you to upload data using either
anonymous or authenticated FTP sessions and supports both passive and active FTP connections. You can
use FTP to download and upload files and directories, as well as to set and obtain URL properties.

If you use HTTP or HTTPS when downloading data, you will be able to perform data transfer with 40-bit RSA
encryption, send HTML form information to a URL, and set and obtain URL properties.

URL Access Manager is designed to run in Mac OS 8.6 and later. URL Access Manager is part of Carbon 1.0.2,
and is part of the Carbon framework in Mac OS X.

In Mac OS 8 and 9, the implementation of URL Access Manager is stored in a shared library called URL Access.
You install it in the Extensions folder in the System Folder. The initial implementation of the data store is a
local file.

Overview 7
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

Setting and Determining URL Properties

To use URL Access Manager, you must first make sure that it is installed, and find out which version is installed.
Your application can call the functions URLAccessAvailable and URLGetURLAccessVersion to determine
this information.

In order to set and obtain URL properties, you must create a URL reference. To do this, call the function
URLNewReference. URL Access Manager uses a URL reference to uniquely identify a URL and its associated
data to be transferred. When you are finished with a URL, make sure you deallocate its memory by calling
the function URLDisposeReference.

You can call the functions URLGetProperty and URLSetProperty to obtain and set information associated
with a URL. You must pass the correct data type and size of the property value you wish to set in the
propertyBuffer parameter of URLSetProperty. Before calling these functions, you should call the function
URLGetPropertySize to determine the size of the buffer to allocate for the property value.

You may wish to call these functions before calling the functions URLDownload and URLUpload to get and
set information associated with the specified URL in the urlRef parameter.

Once you have created a URL reference, you can create a function to display the properties of that reference.
In Listing 1-1 (page 8), the function displayProperties first creates a propertyList array of
Apple-defined URL properties, obtains the corresponding sizes and values of these properties by calling
URLGetPropertySize and URLGetProperty, respectively, and then displays each property value.

Listing 1-1 Displaying the value of each URL property

void displayProperties (URLReference urlRef)
{
 OSErr err = noErr;
 int propCount = 0;
 const char* propertyList[21];
 Size propertySize = 0;
 Handle theProperty = NULL;
 propertyList[0] = kURLURL;
 propertyList[1] = kURLResourceSize;
 propertyList[2] = kURLLastModifiedTime;
 propertyList[3] = kURLMIMEType;
 propertyList[4] = kURLFileType;
 propertyList[5] = kURLFileCreator;
 propertyList[6] = kURLCharacterSet;
 propertyList[7] = kURLResourceName;
 propertyList[8] = kURLHost;
 propertyList[9] = kURLAuthType;
 propertyList[10] = kURLUserName;
 propertyList[11] = kURLPassword;
 propertyList[12] = kURLStatusString;
 propertyList[13] = kURLIsSecure;
 propertyList[14] = kURLCertificate;
 propertyList[15] = kURLTotalItems;
 propertyList[16] = kURLHTTPRequestMethod;
 propertyList[17] = kURLHTTPRequestHeader;
 propertyList[18] = kURLHTTPRequestBody;
 propertyList[19] = kURLHTTPRespHeader;
 propertyList[20] = kURLHTTPUserAgent;

8 Setting and Determining URL Properties
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

 // Get the size of each property, allocate a handle to store the
 // property’s value, get the property value, and display it.

 for(propCount = 0; propCount < 21; propCount++)
 {
 // Get the size of the property’s value.
 err = URLGetPropertySize (urlRef, propertyList[propCount], &propertySize);
 if(err != noErr)
 printf("Error %d getting property size %s. Size returned was: %d\n",
 err, propertyList[propCount], propertySize);
 else
 printf("Property size is %d: %s\n", propertySize,
propertyList[propCount]);

 // Now get a handle for the property value.
 theProperty = NewHandleClear (propertySize + 1);
 err = MemError();
 if(err != noErr)
 printf("Error %d getting property handle %s\n", err,
propertyList[propCount]);
 else
 printf("Got handle for %s\n", propertyList[propCount]);

 // Now get the property’s value.
 err = URLGetProperty (urlRef, propertyList[propCount], *theProperty,
propertySize);
 if(err != noErr)
 printf("Error %d getting property %s\n", err,
propertyList[propCount]);
 else
 printf("Property %s: %s\n", propertyList[propCount], *theProperty);

 // Clean up.
 DisposeHandle (theProperty);
 printf("\n");
 }
 return;
}

Performing Simple Data Transfer

URL Access Manager provides four high-level functions for performing simple upload and download operations.
These functions are synchronous, meaning that they return control to your application upon completion. If
you want more control over the data transfer than these functions afford, see the description of the function
URLOpen in “Controlling Data Transfer” (page 11).

To perform simple download operations, you can call the function URLSimpleDownload or URLDownload.
The difference between these functions is that URLSimpleDownload takes a character string as the URL,
while URLDownload takes a URL reference. If you call URLDownload and pass a URL reference, you can
perform a number of additional operations on the reference, including manipulating and obtaining its
properties.

Performing Simple Data Transfer 9
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

To perform simple upload operations, you can call the function URLSimpleUpload or URLUpload. Like
URLSimpleDownload, URLSimpleUpload takes a character string as the URL. URLUpload takes a URL
reference, and like URLDownload, allows you to perform additional operations.

You can specify the data transfer options that these functions should use by passing the appropriate bitmask
in the openFlags parameter. For upload operations, the options you can specify include whether to replace
an existing file, display a progress indicator bar during data transfer operations, display an authentication
dialog box if URL Access Manager requires authentication, decode an encoded file and expand it if the Stuffit
Engine is installed, specify that URL is a directory, or download a directory listing instead of the contents of
a file or directory. For download operations, you can set any of the following masks:
kURLReplaceExistingFlag, kURLExpandFileFlag, kURLExpandAndVerifyFlag,
kURLDisplayProgressFlag, kURLDisplayAuthFlag, kURLIsDirectoryHintFlag,
kURLDoNotTryAnonymousFlag, or kURLDirectoryListingFlag.

Prior to Mac OS X, if you want update events to be passed to your application while dialog boxes are displayed
by any of these functions, you should write your own system event callback function. Pass a pointer to it in
the eventProc parameter of the appropriate function.

Naming Your Destination File

Figure 1-1 (page 11) shows a flowchart illustrating the factors that influence the name of your destination
file when performing upload and download operations using the functions URLSimpleDownload,
URLDownload, URLSimpleUpload, URLUpload, and URLOpen. These factors include the specification of the
name of the destination file or directory, the existence of the destination, and the setting of the
kURLReplaceExistingFlag mask in the openFlags parameter.

For upload operations performed by the functions URLSimpleUpload, URLUpload, and URLOpen, if you
want to replace the destination file with the one you passed in the fileSpec parameter, set the mask
constant kURLReplaceExistingFlag in the openFlags parameter and do not terminate the destination
URL with a “/” character. If you specify a URL that doesn’t end with a “/” character, URL Access Manager
assumes that the destination is a file, not a directory.

For downloading, the name of the destination file or directory is considered specified if the name field passed
in the FSSpec is not empty. For uploading, the name of the destination is considered specified if the path
portion of the URL is not terminated by a '/'. If you specify a name that already exists on the server and do
not set the mask constant kURLReplaceExistingFlag, the function returns the result code
kURLDestinationExistsError. If you do not specify the name of the destination file, do not set the mask
constant kURLReplaceExistingFlag, and the destination file already exists on the server, URL Access
Manager creates a unique name by appending a number to the original name before the extension, if any.
For example, if the URL specifies a file named file.txt, URLOpen changes the filename to file1.txt. If
the file exists and the kURLReplaceExistingFlag mask is set, then the file being uploaded will replace
the contents of the destination file and retain the name of the destination file. For example, if you wanted
to upload the file “sari.mov” and replace the contents of the file specified by the URL “ftp://host/path/lisa.mov”,
the file “lisa.mov” existed, and that the kURLReplaceExistingFlagmask was set, the file “sari.mov” would
replace “lisa.mov” and the resulting URL would be “ftp://host/path/lisa.mov”.

10 Naming Your Destination File
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

Figure 1-1 Naming your destination file

No No No

Yes

Yes

Yes

Yes

No No

Yes

kURLReplaceExistingFlag
Is

on?

Does destination
exist?

kURLReplaceExistingFlag
Is

on?

Does destination
exist?

Is name (file or
directory) specified?

Destination deleted,
data transfer successful

Returns destination
exists error

Destination deleted,
data is transferred

New file or directory
name is created, data

transfer successful

Data transfer
successful

Data transfer
successful

Controlling Data Transfer

URL Access Manager provides the low-level function URLOpen for more control over data transfer operations
than can be achieved using the high-level functions described in “Performing Simple Data Transfer” (page
9). URLOpen is an asynchronous function, meaning that it returns control to your application immediately,
not upon completion.

When you call URLOpen to perform an upload operation, you must specify a valid destination file. For download
operations, you do not have to specify a valid destination file.

If you do not specify a valid destination file, there are several functions that you may wish to call to get
information about the download operation being performed by URLOpen. To retrieve data as it is downloaded,
call the function URLGetBuffer (page 48). Note that you cannot retain or modify the retrieved data. You
should call URLGetBuffer repeatedly until the download is complete. This is marked by a
kURLCompletedEvent or kURLErrorOccurredEvent event, or the state constants kURLCompletedState
or kURLErrorOccurredState returned by the function URLGetCurrentState. Between calls to
URLGetBuffer, you should call the function URLIdle to allow time for URL Access Manager to refill its
buffers during download operations. After each call to URLGetBuffer, you call the function
URLReleaseBuffer) to prevent URL Access Manager from running out of buffers.

You may wish to call the function URLGetDataAvailable to determine the number of bytes remaining to
be handed off from URL Access Manager to your application. Calling this function tells you how much data
you will obtain by a call to URLGetBuffer (that is, how much data is remaining in the buffer of URL Access
Manager). This does not include the number of bytes in transit to your buffer, nor does it include the amount

Controlling Data Transfer 11
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

of data not yet transferred from URL Access Manager. To calculate the amount of data remaining to be
downloaded, pass the name constant kURLResourceSize in the property parameter of the function
URLGetProperty and subtract the amount of data copied.

Note that URLGetBuffer, URLReleaseBuffer, and URLGetDataAvailable only provide useful information
if you specified an invalid destination file for a download operation performed by URLOpen.

You can specify the data transfer options that URLOpen should use by passing the appropriate bitmask in
the openFlags parameter. For upload operations, the options you can specify to URLOpen include whether
to replace an existing file, decode an encoded file, specify that URL is a directory, or download a directory
listing instead of the contents of a file or directory. For download operations, you can set any of the following
masks: kURLReplaceExistingFlag, kURLExpandFileFlag, kURLExpandAndVerifyFlag,
kURLIsDirectoryHintFlag, kURLDoNotTryAnonymousFlag, or kURLDirectoryListingFlag.

If you wish to be notified of certain data transfer events, you can write your own data transfer event callback
function and pass a pointer to it in the URLEventMask parameter of URLOpen. The data transfer events that
you can receive depend on whether the destination file you specify is valid. In addition, you should pass a
bitmask representing the events you wish to be notified of in the eventRegister parameter. You can then
manipulate the data or write it to the destination of your choice.

Terminating Data Transfer Operations

The function URLAbort terminates a data transfer operation that was started by any function transferring
data to or from a URL reference, including URLDownload, URLUpload, and URLOpen. When your application
calls URLAbort, URL Access Manager changes the state returned by the function URLGetCurrentState to
kURLAbortingState and passes the constant kURLAbortInitiatedEvent to your notification callback
function. When data transfer is terminated, URL Access Manager changes the state returned by
URLGetCurrentState to kURLCompletedState and passes the constant kURLCompletedEvent in the
event parameter of your notification callback function.

Obtaining Data Transfer Information

You can use these functions to determine the error code returned when a data transfer operation fails,
determine the status of a data transfer operation, yield time so that URL Access Manager can refill its buffers,
or get information about a file.

You may want to call the function URLGetError when a data transfer operation fails. URLGetError passes
back the error code associated with the failed transfer, which may be a system error code, a protocol-specific
error code, or one of the error codes listed in “URL Access Result Codes”.

If you wish to determine the status of a data transfer operation, you should call the function
URLGetCurrentState. You may wish to call URLGetCurrentState periodically to monitor the status of
a download or upload operation.

The function URLGetFileInfo obtains the file type and creator codes for a specified filename. The type and
creator codes are determined by the Internet configuration mapping table and are based on the filename
extension. For example, if you pass the filename "jane.txt", URLGetFileInfo will return 'TEXT' in the
type parameter and 'ttxt' in the creator parameter.

12 Terminating Data Transfer Operations
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

Responding to Data Transfer Events

During a call to URLOpen, data transfer events are generated after:

 ■ URLOpen has been called but the location specified by the URL reference has not yet been accessed.

 ■ The location specified by the URL reference has been accessed and is valid.

 ■ A download operation is in progress.

 ■ A data transfer operation has been aborted.

 ■ All operations associated with a call to URLOpen have been completed.

 ■ An error occurred during data transfer.

 ■ Data is available in buffers.

 ■ A download operation is complete because there is no more data to retrieve from buffers.

 ■ An upload operation is in progress.

 ■ A system event has occurred.

 ■ The size of the data being downloaded is known.

 ■ A time interval of approximately one quarter of a second has passed.

 ■ A property such as a filename has become known or changed.

If you want to be notified of data transfer events, pass a Universal Procedure Pointer (UPP) to your notification
callback function in the notifyProc parameter of URLOpen. To create a UPP to your notification callback,
you must call the function NewURLNotifyUPP. You must also specify which data transfer events you want
to receive as a bitmask in the eventRegister parameter of URLOpen. You can then manipulate the data or
write it to the destination of your choice.

Your application’s notification callback function should process the event record passed by URL Access
Manager in the event parameter and return 0. The only restriction that URL Access Manager imposes on the
functionality of your notification callback function is that it should not call the function
URLDisposeReference. For information on how to write a notification callback, see URLNotifyProcPtr.

Responding to System Events During Data Transfer

Prior to Mac OS X, if you want update events to be passed to your application while a dialog box is displayed
by the functions URLSimpleDownload, URLDownload, URLSimpleUpload, and URLUpload, you should
write your own system event callback function. (In Mac OS X, this is not necessary, since all dialog boxes are
moveable). In order for these functions to display a dialog box, you must set the mask constant
kURLDisplayProgressFlag or kURLDisplayAuthFlag in the bitmask passed in the openFlags
parameter. If you write your own callback to handle update events in these dialog boxes, you should pass a
Universal Procedure Pointer (UPP) to your callback in the eventProc parameter of these functions. Call the
function NewURLSystemEventUPP to create a UPP to your callback function.

If you do not create a callback function to handle update events when a dialog box is displayed, these
functions will display a nonmovable modal dialog box when warranted.

Responding to Data Transfer Events 13
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

Using URL Access Manager with AppleScript

You can use AppleScript to call URL Access Manager functions. If your AppleScript application uses URL
Access Manager for operations that may take a substantial amount of time, such as transferring large amounts
of data over a low-speed connection, be sure to set the timeout to a large value. Setting the timeout to a
large value, such as 60,000 seconds, will avoid unnecessary AppleEvent errors.

For information about the standard scripting addition commands distributed with AppleScript, see the
AppleScript section of the Mac OS Help Center, or visit the AppleScript website.

Case Study: Downloading Data From a URL

This section describes how the sample application SamplePost posts information to an HTTP URL and
download the URL’s response using URL Access Manager function URLDownload.

Listing 1-2 (page 14) shows the header file for the application, SamplePost.h, which contains definitions
of the URL from which data is to be downloaded (kSampleURL) and the structure urlDownInfo, as well as
declarations of the function DoSamplePost, which calls URLDownload, and a system event callback function,
MyURLCallbackProc, which is a place holder for code that handles system events that occur during the
download.

Listing 1-2 SamplePost.h

#define kSampleURL"http://www.internic.net/cgi-bin/itts/whois"

typedef struct urlDownInfo {
 URLReference urlRef;
 FSSpec * destination;
 Handle destinationHandle;
 URLOpenFlags openFlags;
 URLSystemEventProcPtr eventProc;
 void * userContext;
 Boolean done;
 OSStatus errorCode;
} URLDownloadInfo;

typedef struct urlDownInfo *URLDownInfoPtr;

static void DoSamplePost();
pascal OSStatus MyURLCallbackProc (void*, EventRecord *);

SamplePost is a multi-threaded application. As a result, in Listing 1-3 (page 14), SamplePost’s main function
calls the Memory Manager functions MaxApplZone and MoreMasters in its main function. Note that all URL
Access Manager functions are threaded with Thread Manager cooperative threads. These threads are
nonreentrant on PowerPC.

Listing 1-3 SamplePost initialization

#include <stdio.h>
#include <Events.h>
#include <Threads.h>

14 Using URL Access Manager with AppleScript
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

http://www.apple.com/applescript

#include <Processes.h>
#include <Files.h>
#include "URLAccess.h"
#include "SamplePost.h"

int main (void)
{
 OSStatus err = noErr;
 // Call MaxAppleZone() when using the Thread Manager.
 MaxApplZone();
 for (i = 0; i < 20; i++) {
 MoreMasters();
 }

Listing 1-4 (page 15) shows SamplePost calling the functionURLAccessAvailable to verify that URL
Access Manager is available. If URL Access Manager is available, DoSamplePost is called.

Listing 1-4 Verifying the availability of URL Access Manager

 // Make sure URL Access Manager is available.
 if (URLAccessAvailable()) {
 DoSamplePost();
 }
 else {
 // Call error handling function.
 }

In Listing 1-5 (page 15), DoSamplePost defines a URLDownloadInfo structure named myRef that is uses
to store information for calling URLDownload. The DoSamplePost function then calls NewHandle to allocate
the memory in which the downloaded information will be stored, creates a URL reference, and stores it in
myRef.urlRef.

Listing 1-5 Allocating memory and creating a URL reference

OSStatus err = noErr;
static void DoSamplePost (void) {
 ThreadID threadID = 0;
 URLDownloadInfo myRef;
 Handle downloadHandle = NULL;
 long downloadSize = 0;

 downloadHandle = NewHandle(0);
 if (downloadHandle == NULL) {
 // Call error handling function.
 }
 // Create a URLReference
 err = URLNewReference(kSampleURL, &myRef.urlRef);
 if (err != noErr) {
 // Call error handling function.
}

As shown in Listing 1-6 (page 16), DoSamplePost calls the function URLSetProperty to set the HTTP
request method property value to the 4-byte string "POST" and the value of the HTTP request body property
value to the 19-byte string "whois_nic=apple.com". When you set the property identified by
kURLHTTPRequestBody, URL Access Manager automatically adds the length of the value identified by
kURLHTTPRequestHeader to the request, so you do not need to set the request header explicitly.

Case Study: Downloading Data From a URL 15
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

Listing 1-6 Setting URL properties

URLSetProperty (myRef.urlRef, kURLHTTPRequestMethod, "POST", 4);
URLSetProperty (myRef.urlRef, kURLHTTPRequestBody, "whois_nic=apple.com", 19);

Next, DoSamplePost uses the remaining fields of the myRef structure to store values that will be used as
parameters for calling URLDownload.

 ■ DoSamplePost sets myRef.destination to NULL. When NULL is provided as the destination parameter
to the URLDownload, the calling application indicates that the downloaded data is not going to be
written to a file on disk.

 ■ DoSamplePost sets myRef.destinationHandle to the value of downloadHandle, which is the
location in memory at which the downloaded data is to be stored.

 ■ DoSamplePost sets myRef.OpenFlags to kURLDisplayProgressFlag. When the value of the
openFlags parameter to URLDownload is kURLDisplayProgressFlag, URLDownload displays a
progress indicator during the download process. You may wish to provide a system event callback
function to handle system events that occur.

 ■ DoSamplePost sets myRef.eventProc to the address of the SamplePost application’s system event
callback function. When DoSamplePost calls URLDownload, it will specify myRef.eventProc as the
eventProc parameter. If a system event occurs while the progress indicator is displayed, URL Access
Manager will call the function specified by the eventProc parameter and will pass to it the value of the
userContext parameter, which is described next.

 ■ DoSamplePost sets myRef.userContext to point to myref. When DoSamplePost calls URLDownload,
it will specify myRef.userContext as the userContext parameter. Your application can use the user
context to set up its context when the system event callback function is called.

Listing 1-7 (page 16) illustrates setting these values.

Listing 1-7 Setting the URLDownload parameters

myRef.destination = NULL;
myRef.destinationHandle = downloadHandle;
myRef.openFlags = kURLDisplayProgressFlag;
myRef.eventProc = &MyURLCallbackProc;
myRef.userContext = &myRef;
myRef.errorCode = 0;

Once the URL reference has been created, its properties set, and the parameters for URLDownload prepared,
DoSamplePost is ready to call URLDownload, as shown in Listing 1-8 (page 16). If the download is successful,
DoSamplePost calls the function URLGetProperty to obtain the size of the downloaded data using the
downloadSize parameter.

Listing 1-8 Calling the URLDownload function

err = URLDownload (
 myRef.urlRef,
 myRef.destination,
 myRef.destinationHandle,
 myRef.openFlags,
 myRef.eventProc,
 myRef.userContext);

myRef.errorCode = err;

16 Case Study: Downloading Data From a URL
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

if (myRef.errorCode != noErr) {
 // Call error handling function.
}
else {
 // Successful download. Get the size of the downloaded data.
 err = URLGetProperty(myRef.urlRef, kURLResourceSize, &downloadSize, 4);
if (err != noErr) {
 // Call error handling function.
}

In Listing 1-9 (page 17)DoSamplePost calls SetHandleSize to set the size of downloadHandle to
downloadSize + 1 and sets the value of the last byte of downloaded data to NULL. DoSamplePost calls
printf to display the data, and concludes by disposing of the URL reference.

Listing 1-9 Displaying the downloaded data

downloadSize = GetHandleSize(downloadHandle);
SetHandleSize(downloadHandle, (downloadSize+1));
(*myRef.destinationHandle)[downloadSize] = NULL;
printf("<•>==================== Downloaded Data ==================\n");
printf("%s", *myRef.destinationHandle);
DisposeHandle(downloadHandle);
URLDisposeReference(myref.urlRef);

Listing 1-10 (page 17) shows a placeholder for SamplePost’s system event callback function. The userContext
parameter can be used to associate any particular call of URLDownload with any particular call of the system
event callback function.

Listing 1-10 SamplePost’s system event callback function

pascal OSStatus MyURLCallbackProc (void *userContext, EventRecord *event)
{
 printf("<•>System callback thread fired! Thread: %u\n", userContext);
 return 0;
}

Case Study: Downloading Data From Multiple URLs

This section describes how the sample application Downloader downloads data from multiple URLs and
stores it in multiple files using URL Access Manager function URLDownload. Downloader obtains the URLs
to be downloaded by reading a text file in which they have been stored.

Listing 1-11 (page 17) illustrates how Downloader’s main function sets up the main event loop and calls the
function getURL to obtain a URL from a file of URLs.

Listing 1-11 The Downloader application’s main function

#include <Events.h>
#include <stdio.h>
#include "URLAccess.h"
#include "string.h"
#include "Memory.h"

void main (void) {

Case Study: Downloading Data From Multiple URLs 17
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

 OSStatus err = noErr;
 char url[255];
 int count, fileCount = 0;
 EventRecord ev;

 // Call MaxApplZone, MoreMasters.
 // Initialize graphics port, fonts, menus, cursor, and dialogs.
 // Clear the screen.

 while (url != NULL)
 {
 // Handle Events through each loop
 WaitNextEvent(everyEvent, &ev, 0, NULL);
 eventHandler(NULL, &ev);

 // Obtain a URL from the file of URLs
 result = getURL (url); // getURL function not shown
 if (result == eofErr) { // Handle error condition. }

 // Call Download function.
 result = DoDownload (url);
 if (result != noErr) { // Handle error condition. }
 }
 printf("\n All of the URLs have been downloaded.\n");
}

The DoDownload function shown in Listing 1-12 (page 18) does the actual work of downloading data from
the URL. It creates a file specification for the data that is to be downloaded and a URL reference. It specifies
the mask kURLReplaceExistingFlag in the openFlags parameter to replace an existing file (if any) with
the downloaded data and to display a progress indicator during the download. Finally, it calls the function
URLDownload to download the data.

Listing 1-12 Downloader’s DoDownload function

void DoDownload (void) {
 URLReference urlRef;
 FSSpec dest, *destPtr = NULL;
 destPtr = &dest;
 Handle destHandle = NULL;
 int openFlags = kURLReplaceExistingFlag + kURLDisplayProgressFlag;
 Str255 newFile;

 // Create the file specification for the download.
 sprintf((char*)newFile, "File %d", fileCount);
 c2pstr((char*)newFile);
 fileCount++;
 err = FSMakeFSSpec(0, 0, newFile, &dest);

 // Create the URLReference.
 err = URLNewReference(theURL, &urlRef);
 if (err != noErr) printf("URLNewReference failed\n");

 // Download the data.
 err = URLDownload(urlRef, destPtr, destHandle, openFlags, &eventHandler,
 (void*)&fileCount);
 if (err != noErr) printf("URLDownload failed\n");

 // Clean up.

18 Case Study: Downloading Data From Multiple URLs
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

 err = URLDisposeReference(urlRef);
 if (err != noErr) printf("URLDisposeReference failed\n");
 return err;
}

Listing 1-13 illustrates Downloader’s general event handling function eventHandler. This function handles
system events that might occur during calls to the functions URLSimpleDownload, URLDownload,
URLSimpleUpload, and URLUpload. The userContext parameter can be used to associate any particular
call of URLDownload with any particular call of the system event callback function. In this context, it is an
integer.

Listing 1-13 Downloader’s system event callback function

pascal long eventHandler (void * userContext, EventRecord* eventPtr)
{
 EventRecord* ev;
 int what = 0;
 int context = 0;
 int* intPtr = NULL;

 // Convert the event pointer into an event record.
 ev = (EventRecord*)eventPtr;
 what = ev->what;

 // Convert the void* to an integer.
 intPtr = (int*)userContext;
 context = *intPtr;
 if (context < 0 || context > 99) {
 context = -1; // Unknown context
 }

 switch (what) {
 case 0 : // Null Event
 break;
 case mouseDown:
 printf("Handler: mouseDown User Context: %d\n", context);
 // Call function to handle event.
 break;
 case updateEvt:
 printf("Handler: updateEvt User Context: %d\n", context);
 // Call function to handle event.
 break;
 case activateEvt:
 printf("Handler: activateEvt User Context: %d\n", context);
 // Call function to handle event.
 break;
 case keyDown:
 printf("Handler: keyDown User Context: %d\n", context);
 // Call function to handle event.
 break;
 default:
 printf("Handler: Default User Context: %d\n", context);
 break;
 }

 return NULL;
}

Case Study: Downloading Data From Multiple URLs 19
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

See Also

These documents in the ADC Reference Library contain additional information about URL Access Manager:

 ■ URL Access Manager Reference describes the URL Access Manager API through version 2.0.3, including
functions, data types, constants, and result codes.

 ■ The example application URLAccessSample incorporates most of the URL Access Manager API. It
demonstrates simple calls like URLDownload and URLUpload, as well as asynchronous calls using
URLOpen. It also shows how to POST to a HTTP server.

20 See Also
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Transferring Data With URL Access Manager

This table describes the changes to Transferring Data With URL Access Manager.

NotesDate

URLAccess Manager is deprecated as of Mac OS X v10.4. Use CFNetwork instead.2005-07-07

Editorial revisions.2004-07-27

Technical revisions.2000-06-30

First public release of document. Expanded and updated for URL Access Manager
2.0.3.

2000-05-15

First draft of URL Access Manager 1.0 API documentation. This document was
distributed in limited release as a seed draft.

1999-05-07

21
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

22
Legacy Document | 2007-05-03 | © 2001, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	Transferring Data With URL Access Manager
	Contents
	Figures and Listings
	Transferring Data With URL Access Manager
	Overview
	Setting and Determining URL Properties
	Performing Simple Data Transfer
	Naming Your Destination File
	Controlling Data Transfer
	Terminating Data Transfer Operations
	Obtaining Data Transfer Information
	Responding to Data Transfer Events
	Responding to System Events During Data Transfer
	Using URL Access Manager with AppleScript
	Case Study: Downloading Data From a URL
	Case Study: Downloading Data From Multiple URLs
	See Also

	Revision History

