
HIToolbar Programming Guide
Carbon > Human Interface Toolbox

2005-07-07

Apple Inc.
© 2003, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
and Panther are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 HIToolbar Concepts 7

What Is a Toolbar? 7
The Toolbar as HIObject 10

Model-View-Controller for HIToolbar 10
The Delegate 11
Toolbar Items 11

Built-In Functionality 12
System Requirements 12

Chapter 2 Toolbar Tasks 13

How the Toolbar Works 13
Creating Toolbars 13
Event Handling Using the Delegate 15
Creating Toolbar Items 18

System-Defined Identifiers 18
Toolbar Item Attributes 18
Creating Items from an Identifier 19
Creating Custom Toolbar Items 21

Document Revision History 31

3
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

4
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 HIToolbar Concepts 7

Figure 1-1 A toolbar 7
Figure 1-2 Dragging toolbar items 8
Figure 1-3 The toolbar configuration sheet 9
Figure 1-4 The toolbar overflow menu 9
Figure 1-5 The HIObject class hierarchy 10
Figure 1-6 Toolbar item parts 11

Chapter 2 Toolbar Tasks 13

Table 2-1 System-defined toolbar item identifiers 18
Table 2-2 Toolbar item attributes 19
Listing 2-1 Creating a toolbar 14
Listing 2-2 A toolbar event handler 15
Listing 2-3 Creating toolbar items from identifiers 19
Listing 2-4 Registering a toolbar item subclass 22
Listing 2-5 Event handler for a toolbar item with an embedded view 22
Listing 2-6 Creating a custom toolbar item instance. 25
Listing 2-7 Creating a toolbar item from a drag 27
Listing 2-8 Initialization function for the kEventHIObjectInifialize event 28

5
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

6
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Note: This document was previously titled Using HIToolbar.

This chapter explains the concepts behind the Carbon HIToolbar. It describes the basic look and feel of a
toolbar from a user’s perspective, as well as “under-the-hood” details of how toolbars fit into the HIObject
model.

Note: This document assumes you are familiar with the basics of Carbon event handling and manipulating
HIObjects. If you are not familiar with these topics, see the documents Carbon Event Manager Programming
Guide and HIView Programming Guide.

What Is a Toolbar?

A toolbar is a special container displayed directly underneath a window’s title bar as shown in Figure 1-1. A
toolbar can contain multiple toolbar items, which act as buttons or other controls. The user can show or hide
the toolbar by clicking on the clear oblong “toolbar button” in the upper right corner of the window. A typical
toolbar item displays an icon and is activated by a user click. While some items may simply mimic a simple
push button, others may contain controls such as pop-up menus and search fields.

Figure 1-1 A toolbar

A toolbar can display its items as a combination of graphical image and text, text only, or graphics only, with
two different sizes. The user can select view modes using a contextual menu displayed by control-clicking
in the toolbar or cycle through all available modes by command-clicking the toolbar button. The user can
also choose view modes while in the configuration sheet (as shown in Figure 1-3 (page 9).

The same toolbar can appear in multiple windows, providing a convenient way to access application features
from a document. An application can also have multiple toolbars. For example, the Mail application has
different toolbars for mail documents and viewer windows.

One advantage of a toolbar over a standard floating palette or other application-defined window is that the
contents are user-configurable. The user has three ways to customize a toolbar’s contents:

What Is a Toolbar? 7
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

HIToolbar Concepts

 ■ The user can rearrange items in the toolbar (in Mac OS X v. 10.2.4 and later) by command-dragging them
around, as shown in Figure 1-2. The user can also remove items entirely by command-dragging and
releasing them outside the toolbar.

Figure 1-2 Dragging toolbar items

 ■ If the toolbar supports drag-and-drop, the user may be able to create toolbar items by dragging specific
data to the toolbar. For example, in Finder windows, a user can create folder items by dragging a folder
into the toolbar. Another application could create a special URL item when the user drags text into the
toolbar from a browser.

 ■ If the toolbar is configurable, the user can bring up a sheet containing all the toolbar items supported
by the application (excluding drag-and-drop items). The user can view the configuration sheet by choosing
Customize Toolbar in the contextual menu brought up by control clicking in the toolbar or by
command-option-clicking in the toolbar button.

8 What Is a Toolbar?
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

HIToolbar Concepts

Figure 1-3 The toolbar configuration sheet

Changes made to the toolbar in one window automatically propagate to other windows sharing the same
toolbar. The toolbar configuration is automatically stored in the user’s Preferences folder when the application
quits.

The toolbar can support any number of toolbar items. If there are more items than can be displayed in the
window, the user can select the excess items using an overflow pop-up menu., as shown in Figure 1-4.

Figure 1-4 The toolbar overflow menu

What Is a Toolbar? 9
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

HIToolbar Concepts

The Toolbar as HIObject

In Carbon, the HIToolbar class is a subclass of HIObject (also introduced with Mac OS X v.10.2), which is the
base class for all user interface objects in Carbon. Figure 1-5 (page 10) shows how toolbars and toolbar items
fit into the HIObject class hierarchy.

Figure 1-5 The HIObject class hierarchy

HIObject

WindowToolbar Toolbar itemMenu HIView

Push
button

Scroll
view

Combo
box

The HIToolbar object is not associated with any window, and as such is not part of the standard event
containment hierarchy. However, for each window in which a toolbar is to appear, the toolbar object creates
toolbar views and toolbar item views and embeds them in that window’s root view. These views are
automatically updated when the toolbar contents change.

Model-View-Controller for HIToolbar

The Carbon toolbar follows the model-view controller convention as follows:

 ■ The model is the list of toolbar items in a toolbar as well as the data each toolbar item displays or alters.
In the HIToolbar API, these elements correspond to the HIToolbar and HIToolbarItem objects.

 ■ The view is the visual representation of the toolbar and its items. A toolbar often has multiple views (one
for each window that displays it), each of which shows a custom display of the HIToolbar model
(depending on the size of the window and toolbar items, visibility of individual items, and so on). In the
HIToolbar API, the view corresponds to the various HIViews created by the toolbar and its toolbar items.

 ■ The controller is the code that determines how the view displays the model. For HIToolbar, all of the
following correspond to the controller:

 ❏ application-defined code that creates and manages views in custom toolbar items

 ❏ code that modifies application data in response to clicks in toolbar items

 ❏ code contained in any of the HIToolbar standard event handlers.

10 The Toolbar as HIObject
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

HIToolbar Concepts

The Delegate

Associated with every HIToolbar object is a delegate, which is an event target containing a set of Carbon
event handlers that enable the creation of toolbar items. While the toolbar is, by default, its own delegate,
you can specify a different event target if you wish.

The delegate handles three basic requests, sent as Carbon events:

 ■ A query for a list of default items. These are the initial items that appear in the toolbar.

 ■ A query for a list of allowable items. This is the set of items that appear in the configuration sheet.

 ■ A request to create a particular toolbar item.

Toolbar Items

Toolbar items are HIToolbarItem objects subclassed from HIObject. These objects are associated with HIToolbar
objects, but are not embedded in the manner of HIViews.

You identify toolbar items using a unique identifier. The system defines a number of standard toolbar items
(such as Print, Customize, Separator, and so on) that you can create simply by specifying the proper identifier.

Most toolbar items act as buttons, performing a simple action when pressed. If you want a more sophisticated
toolbar item, you can subclass the toolbar item HIObject class and implement your own behavior.

Toolbar items typically have the following data associated with them:

 ■ An icon reference, which determines which icon to display for the item.

 ■ A label, which appears below the icon, (and represents the item when in text-only mode).

 ■ A help tag, which appears when the user hovers the cursor on the item for a few seconds.

 ■ A command ID, which is sent in a kEventCommandProcess event when the user clicks on the toolbar
item.

Figure 1-6 Toolbar item parts

Icon

Label Help tag

Toolbar items also have attributes that govern their behavior. See “Toolbar Item Attributes” (page 18) for
more information.

The Toolbar as HIObject 11
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

HIToolbar Concepts

The HIToolbar object creates toolbar items in a lazy fashion. That is, no request is sent until the toolbar item
needs to become visible.

Built-In Functionality

The toolbar is designed to be as easy to use as possible. To this end, much of the basic implementation is
done for you. For example, doing any of the following requires no additional work on your part:

 ■ Displaying the configuration sheet

 ■ Saving the current toolbar setting to the user’s preferences

 ■ Showing and hiding the toolbar

 ■ Drag tracking and drag rearranging of toolbar items

 ■ Displaying contextual menus

 ■ Moving items into the overflow menu when the toolbar runs out of space

In most cases all you need to worry about is creating the toolbar and any nonstandard toolbar items. The
rest is done for you.

Note: Much of the “free” functionality comes from the standard window handler, so you should specify the
standard handler for any window that contains a toolbar.

System Requirements

HIToolbar is available to Carbon applications in Mac OS X v.10.2 and later . Note that windows that contain
toolbars do not have to support HIView compositing.

12 Built-In Functionality
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

HIToolbar Concepts

This chapter describes how to create and manipulate toolbars.

How the Toolbar Works

Before creating a toolbar, you should understand what goes on during the life of the HIToolbar object.

1. When the HIToolbar object is first created, it takes no additional actions until it actually becomes time
to show a toolbar. For example, you can associate multiple windows with the toolbar, but it will not
create any views until a toolbar must be displayed in a visible window.

2. When it is time to show a toolbar, the HIToolbar object creates a toolbar view and embeds it in the root
view of the window that contains it.

3. The HIToolbar object then checks to see if any previously saved configuration information exists for this
toolbar. If not, the HIToolbar object queries its delegate (through Carbon events) for the default
configuration information.

4. For each item in the default configuration list, it sends a request to the delegate to create that toolbar
item. The delegate should return a toolbar item reference for each item it creates. If the delegate returns
EventNotHandledErr, the event passes to HIToolbar’s default handlers, which will create any standard
toolbar items.

5. For each toolbar item reference it receives, the HIToolbar object then creates a toolbar item view and
embeds it in the toolbar view. If the toolbar item creates a custom HIView, this view is embedded in the
toolbar item view.

6. HIToolbar repeats steps 2, 4, and 5 for each toolbar that appears in a visible window.

7. If the user changes the toolbar configuration in one window, the HIToolbar object is notified (using
Carbon events) and it can then update the views in all the other windows associated with it.

8. If the user requests the Configuration sheet, the HIToolbar object queries its delegate for a list of allowable
toolbar items. Using that list and the list of default items, it then requests toolbar items from the delegate
to populate the Configuration sheet before displaying it.

Creating Toolbars

To create the toolbar, you simply call the HIToolbarCreate function. This creates an HIToolbar object,
which controls the creation and display of the toolbar in associated windows. Listing 1-1 shows how you
might create a toolbar and attach it to a window.

How the Toolbar Works 13
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

Listing 2-1 Creating a toolbar

OSStatus err = noErr;
// 1HIToolbarRef toolbar;

// 2err = HIToolbarCreate(CFSTR("com.mycompany.carbontoolbar"),
 kHIToolbarAutoSavesConfig | kHIToolbarIsConfigurable,
 &toolbar);

// 3InstallEventHandler(HIObjectGetEventTarget((HIToolbarRef)toolbar),
 ToolbarDelegate, GetEventTypeCount(kToolbarEvents),
 kToolbarEvents, toolbar, NULL);

// 4SetWindowToolbar(window, toolbar);
// 5ShowHideWindowToolbar(window, true, false);

// 6CFRelease(toolbar);

// 7ChangeWindowAttributes(window, kWindowToolbarButtonAttribute, 0);

// 8SetAutomaticControlDragTrackingEnabledForWindow(window, true);

Here is how the code works:

1. The toolbar is defined by a toolbar reference, which is also an HIObject reference.

2. To create a toolbar, call the HIToolbarCreate function. You must pass a unique identifer (as a Core
Foundation string) for each toolbar your application creates. Doing so allows you to define multiple
toolbars. The identifier should be in the form: com.myCompany.myApp.myUniqueName.

You can specify attributes for your toolbar when you create it. kHIToolbarAutoSavesConfig indicates
that the toolbar will save its current configuration to the application’s user preferences file. The
kHIToolbarIsConfigurable attribute indicates that the user can configure the toolbar (that is, the
user can bring up the configuration sheet). If you do not want to specify any attributes, pass
kHIToolbarNoAttributes.

3. You install the toolbar event handler on your delegate just as you would for any other event target. The
delegate does all the event handling related to creating and managing toolbar items. When you first
create the toolbar, the toolbar is its own delegate.

To set a different delegate for the toolbar, call the HIToolbarSetDelegate function. Note that events
are sent to the delegate with the kEventTargetDontPropagate option, so they cannot propagate up
the event hierarchy.

4. To assign a toolbar to a window, call the SetWindowToolbar function. Note that you can assign the
toolbar to multiple windows. Any window that contains the toolbar should use the standard window
event handler.

5. The ShowHideWindowToolbar function shows or hides the toolbar (just as if the user pressed the
toolbar button). The toolbar is initially hidden, so call this function to make it visible in the window.

6. Now that the toolbar is retained by a window, you can release your reference to it by calling CFRelease.

14 Creating Toolbars
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

7. To add the oblong button to show and hide the toolbar, you must set the window attribute
kWindowToolbarButtonAttribute. You can set this attribute within a nib file or when you
programmatically create the window.

8. The toolbar requires automatic drag tracking, so you must set this by calling
SetAutomaticControlDragTrackingEnabledForWindow on windows containing toolbars.

Event Handling Using the Delegate

After creating your toolbar, you need to assign an event handler to create and manage its toolbar items.
These events are automatically sent to either the toolbar event target (the default) or an event target you
specify by calling the HIToolbarSetDelegate function. In most cases, the toolbar itself is the appropriate
delegate.

Listing 1-2 shows an example of a toolbar event handler.

Listing 2-2 A toolbar event handler

// 1static const EventTypeSpec kToolbarEvents[] =
{
 { kEventClassToolbar, kEventToolbarGetDefaultIdentifiers },
 { kEventClassToolbar, kEventToolbarGetAllowedIdentifiers },
 { kEventClassToolbar, kEventToolbarCreateItemWithIdentifier },
 { kEventClassToolbar, kEventToolbarCreateItemFromDrag }
};

static OSStatus ToolbarDelegate(EventHandlerCallRef inCallRef,
 EventRef inEvent, void* inUserData)
{
 OSStatus result = eventNotHandledErr;
 CFMutableArrayRef array;
 CFStringRef identifier;

 switch (GetEventKind(inEvent))
 {

// 2 case kEventToolbarGetDefaultIdentifiers:
 GetEventParameter(inEvent, kEventParamMutableArray,
 typeCFMutableArrayRef, NULL,
 sizeof(CFMutableArrayRef), NULL, &array);
 GetToolbarDefaultItems(array); // application-defined
 result = noErr;
 break;

// 3 case kEventToolbarGetAllowedIdentifiers:
 GetEventParameter(inEvent, kEventParamMutableArray,
 typeCFMutableArrayRef, NULL,
 sizeof(CFMutableArrayRef), NULL, &array);
 GetToolbarAllowedItems(array); // application-defined
 result = noErr;
 break;

// 4 case kEventToolbarCreateItemWithIdentifier:
 {

Event Handling Using the Delegate 15
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

 HIToolbarItemRef item;
 CFTypeRef data = NULL;

 GetEventParameter(inEvent,
 kEventParamToolbarItemIdentifier, typeCFStringRef,
 NULL, sizeof(CFStringRef), NULL, &identifier);

 GetEventParameter(inEvent,
 kEventParamToolbarItemConfigData, typeCFTypeRef,
 NULL, sizeof(CFTypeRef), NULL, &data);

 item = CreateToolbarItemForIdentifier(identifier, data);

// 5 if (item)
 {
 SetEventParameter(inEvent, kEventParamToolbarItem,
 typeHIToolbarItemRef,
 sizeof(HIToolbarItemRef), &item);
 result = noErr;
 }
 }
 break;

// 6 case kEventToolbarCreateItemFromDrag:
 {
 HIToolbarItemRef item;
 DragRef drag;

 GetEventParameter(inEvent, kEventParamDragRef, typeDragRef,
 NULL, sizeof(DragRef), NULL, &drag);

 item = CreateToolbarItemFromDrag(drag);

 if (item)
 {
 SetEventParameter(inEvent, kEventParamToolbarItem,
 typeHIToolbarItemRef,
 sizeof(HIToolbarItemRef), &item);
 result = noErr;
 }
 }
 break;
 }

 return result;
}

Here is how the code works:

1. This example handler covers the four possible toolbar events:

 ■ A query for the default toolbar items. Default items are those contained in the toolbar when it first
appears.

 ■ A query for allowable toolbar items. Allowable items are those that the user can place into the
toolbar when in configuration mode. Note that if your toolbar is not configurable, you do not need
to handle this event.

16 Event Handling Using the Delegate
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

 ■ A query to create a specific toolbar item. Each toolbar item has an unique identifier, which is passed
in this event when the system wants to create it.

 ■ A query to create a toolbar item based on a drag-and-drop action. For example, the Finder allows
you to drag folders into the toolbar. If you want to add similar functionality to create folders, URLs,
and so on from drags into your toolbar, you must handle this event.

2. When you receive the kEventToolbarGetDefaultIdentifiers event, you receive a pointer to a
Core Foundation mutable array (obtained using the kEventParamMutableArray parameter). You must
populate this array with the default toolbar item identifiers. The function to do so might look like this:

static void GetToolbarDefaultItems(CFMutableArrayRef array)
{
 CFArrayAppendValue(array, CFSTR("com.apple.carbontoolbar.anchored"));
 CFArrayAppendValue(array, kHIToolbarSeparatorIdentifier);
 CFArrayAppendValue(array, CFSTR("com.apple.carbontoolbar.permanent"));
 CFArrayAppendValue(array, kHIToolbarFlexibleSpaceIdentifier);
 CFArrayAppendValue(array, CFSTR("MyCustomIdentifier"));
 CFArrayAppendValue(array, CFSTR("com.apple.carbontoolbar.trash"));
}

The items appear in the toolbar in the order they are added to the array. In this default arrangement,
the “anchored” item will appear on the far left, followed by the separator, and so on.

3. Similarly, when you receive the kEventToolbarGetAllowableIdentifiers event, you must populate
a Core Foundation mutable array with the identifiers for the allowable toolbar items. These items appear
in the configuration sheet in the order they are placed into the array. Note that you do not have to
specify toolbar items that are created only from drag-and-drop actions.

4. When you receive a kEventToolbarCreateItemWithIdentifier event, you must create a toolbar
item based on the identifier that was passed with the event. For example, after sending the
kEventToolbarGetDefaultIdentifiers event, when the time comes to display the toolbar, the
system sends a kEventToolbarCreateItemWithIdentifer event for each default item.

The handler callsGetEventParameter to obtain the identifier (kEventParamToolbarItemIdentifier)
and any associated configuration data that may be associated with it
(kEventParamToolbarItemConfigData). For example, the configuration data could hold initial values
for your item, a URL, text, and so on.

You use the identifier to determine what kind of toolbar item to create. See “Creating Items from an
Identifier” (page 19) for information about how you could implement the
CreateToolbarItemForIdentifier function.

5. If your item creation function successfully created a toolbar item, call SetEventParameter to pass its
reference back in the kEventParamToolbarItem parameter. Note that you are sent the
kEventToolbarCreateItemWithIdentifier event even if the HIToolbar object wants to create a
system-defined toolbar item. Therefore, whenever you don’t create a toolbar item, you should return
eventNotHandledErr so the next handler in the calling chain has a chance to take the event.

6. When you receive a kEventToolbarCreateItemFromDrag event, you should create a toolbar item
based on the user’s drag-and-drop action.

Event Handling Using the Delegate 17
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

First, use GetEventParameter to obtain the drag reference (kEventParamDragRef) from the event.
This example then passes the drag reference to its own toolbar item creation function. See “Creating
Items from a Drag” (page 27) for information about how the CreateToolbarItemFromDrag function
is implemented.

As with the kEventToolbarItemCreateItemWithIdentifier function, you pass the reference of
the created toolbar item back into the event using SetEventParameter.

Creating Toolbar Items

In most cases, you create a toolbar item based on a unique identifier. The identifier is just that; a unique
string that identifies a particular toolbar item. Identifiers you create are used only within your application,
but they must be unique so that the system does not confuse them with identifiers from other applications.

System-Defined Identifiers

The HIToolbar API defines several standard identifiers that you can use in your application. Aside from
returning the proper identifiers for the default and allowable item requests, you do not need to do anything
else to implement these items.

Table 2-1 System-defined toolbar item identifiers

DescriptionIdentifier

A thin vertical line used to group toolbar items.kHIToolbarSeparatorIdentifier

A fixed-width space.kHIToolbarSpaceIdentifier

A variable-width space.kHIToolbarFlexible-
SpaceIdentifier

Clicking on this item brings up the toolbar configuration sheet.kHIToolbarCustomizeIdentifier

Clicking on this item sends a Print command event (just as if the
user had selected the Print menu item) to the toolbar item view.
You should install a command event handler at the window level
to take this event.

kHIToolbarPrintItemIdentifier

Clicking on this item brings up the standard Fonts floating
window. See the Apple Type Services (ATS) for Fonts
documentation for details about how to set and obtain
information from the Fonts window.

kHIToolbarFontsItemIdentifier

Toolbar Item Attributes

You can set attributes in your toolbar items that influence their behavior. Table 1-2 lists the available attributes.

18 Creating Toolbar Items
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

Table 2-2 Toolbar item attributes

DescriptionAttribute

No attributes.kHIToolbarItemNoAttributes

More than one item of this type can appear in the toolbar.kHIToolbarItemAllowDuplicates

The user cannot drag this item out of the toolbar.kHIToolbarItemCantBeRemoved

The item is fixed to the left side of the toolbar and cannot be
moved. You can have multiple items with this attribute in a toolbar.

kHIToolbarItemAnchoredLeft

The item is used is a separator, and should appear as such in the
overflow menu. Note that being a separator also implies that the
item can draw the full height of the toolbar (unlike normal items,
which typically have a label area below the graphic).

kHIToolbarItemIsSeparator

Any command events sent in response to clicks in this item are
sent to the current user focus rather than the item’s view.

kHIToolbarItemSend-
CmdToUserFocus

Creating Items from an Identifier

This section describes how to create your toolbar items from identifiers passed to your application in the
kEventToolbarCreateItemWithIdentifier event.

The toolbar sends this event to your application for every identifer, even those not defined by your application.
Therefore, you should make sure that your delegate event handler returns eventNotHandledErr if you
don’t create a toolbar item.

Listing 1-3 shows a function used to create toolbar items.

Listing 2-3 Creating toolbar items from identifiers

// 1static HIToolbarItemRef CreateToolbarItemForIdentifier(
 CFStringRef identifier, CFTypeRef configData)
{
 HIToolbarItemRef item = NULL;

// 2 if (CFStringCompare(CFSTR("com.apple.carbontoolbar.permanent"),
 identifier, kCFCompareBackwards) == kCFCompareEqualTo)
 {

 if (HIToolbarItemCreate(identifier, kHIToolbarItemCantBeRemoved,
// 3 &item) == noErr)

 {
 IconRef icon;
 MenuRef menu;

// 4 GetIconRef(kOnSystemDisk, kSystemIconsCreator, kFinderIcon,
 &icon);

// 5 HIToolbarItemSetLabel(item, CFSTR("Can't Remove Me"));
// 6 HIToolbarItemSetIconRef(item, icon);

Creating Toolbar Items 19
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

// 7 HIToolbarItemSetCommandID(item, 'shrt');
// 8 ReleaseIconRef(icon);

// 9 menu = NewMenu(0, "\p");
 AppendMenuItemTextWithCFString(menu, CFSTR("Item 1"), 0, 0,
 NULL);
 AppendMenuItemTextWithCFString(menu, CFSTR("Item 2"), 0, 0,
 NULL);
 AppendMenuItemTextWithCFString(menu, CFSTR("Item 3"), 0, 0,
 NULL);

// 10 HIToolbarItemSetMenu(item, menu);
 ReleaseMenu(menu);
 }
 }

// 11 if (CFStringCompare(CFSTR("MyCustomIdentifier"),
 identifier, kCFCompareBackwards) == kCFCompareEqualTo)
 {
 item = CreateMyButtonToolbarItem(CFSTR("MyCustomIdentifier"));
 }

 return item;
}

Here is how the code works:

1. This function, CreateToolbarItemForIdentifier, takes the two parameters passed to you in the
kEventToolbarCreateItemWithIdentifier event.

2. Use the Core Foundation string compare function to determine which identifier is which. You specify
the kCFCompareBackwards option to minimize the compare time.

3. If the identifier indicates the permanent toolbar item, create an unremovable toolbar item by calling the
HIToolbarItemCreate function with the kHIToolbarItemCantBeRemoved attribute set. While a
permanent toolbar item can be moved within the toolbar, the user cannot remove it.

4. You usually want to assign an icon to the toolbar item. In this case, you call the Icon Services function
GetIconRef to obtain a system-defined icon (in this case, the Finder icon).

5. Call the HIToolbarItemSetLabel function to set the text that appears in the toolbar for this item.

6. Call the HIToolbarItemSetIconRef function to assign the icon reference you obtained for the toolbar
item.

7. Call the HIToolbarItemSetCommandID function to assign a command ID to the toolbar item. Clicks
on the item or its label will then generate a kEventCommandProcess event containing that command
ID. This event is sent to the item’s view unless you specified the kHIToolbarItemSendCmdToUserFocus
attribute for your toolbar item.

Note that if you do not assign a command ID to a toolbar item, the item is inherently not clickable, which
may be preferable for certain custom items. For example, if the toolbar item displays a pop-up menu or
similar control that has multiple states, you probably don’t want the item’s label to be clickable (except
perhaps in text-only mode). Similarly, if a toolbar item contains an search field HIView, you want to take
action based on what’s typed into the view, not on clicks in the view or the item label.

20 Creating Toolbar Items
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

Also, if you do not set a command ID for your toolbar item, that item will not be enabled when it appears
in the overflow menu.

8. After you assign the icon reference to the toolbar item, you can release your reference to it.

9. If desired, you can add a pop-up menu to your toolbar item. This menu is used only for multi-state toolbar
items when the toolbar is in text-only display mode. For example, the Finder’s View toolbar item is a
three-state button in icon view, corresponding to the three possible viewing modes (icon, list and column).
In text-only mode, there is no button for the user to click, so the possible selections are made available
using the pop-up menu.

This example uses the Menu Manager function NewMenu to create a new empty menu, then calls the
AppendMenuItemTextWithCFString to add menu items. You can then assign event handlers or
command IDs to the menu to initiate actions when selected.

10. To assign the newly-created menu to the toolbar item, call the HIToolbarItemSetMenu function.

11. If the identifier indicates a custom ID, then create a custom toolbar item. For example, such a toolbar
item could contain an HIView or other control, or it may be be created on the fly, from a drag-and-drop
action. See “Creating Items from a Drag” (page 27) and “Embedding Views in a Toolbar Item” (page 21)
for more information.

Creating Custom Toolbar Items

In some cases, you may want to create a special toolbar item that has nonstandard behavior. For example,
you may want a toolbar item that is a slider, or a text input field, or you may want to create items from a
drag-and-drop operation.

You create your custom toolbar item class by subclassing the toolbar item HIObject class and calling
HIObjectCreate on that subclass. You need to register your subclass and provide handlers for construct,
destruct, and initialize events, as well as some specific toolbar item–related events.

The sections that follow describe how to implement commonly-used custom toolbox items.

See Inside Mac OS X: Introducing HIView for more information about subclassing HIObjects and creating
instances of those classes.

Embedding Views in a Toolbar Item

You can associate an HIView with a toolbar item. For example, you can place buttons, sliders, editable text
fields, and other controls in the toolbar item. To do so, you must create a custom HIObject, specifically a
subclass of the toolbar item class.

Note that, although the toolbar item is an HIObject, your view is not embedded within that object. For each
window the toolbar is associated with, the toolbar item object creates a toolbar item view and then embeds
your view within that.

Also, you do not have to supply your own item labels and help tags when creating your custom toolbar item;
you can assign these as before using the HIToolbarItemSetLabel and HIToolbarItemSetHelpText
functions.

Creating Toolbar Items 21
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

To register your toolbar item subclass, you call the HIObjectRegisterSubclass function. The function in
Listing 1-4 shows how you could do this.

Listing 2-4 Registering a toolbar item subclass

#define kMyButtonToolbarItemClassID CFSTR("com.moof.buttontoolbaritem")

void RegisterMyButtonToolbarItemClass()
{
 static bool sRegistered;

 if (!sRegistered)
 {
 HIObjectRegisterSubclass(kMyButtonToolbarItemClassID,
 kHIToolbarItemClassID, 0, MyButtonToolbarItemHandler,
 GetEventTypeCount(buttonEvents), buttonEvents, 0, NULL);

 sRegistered = true;
 }
}

This example registers a new toolbar item subclass (kMyButtonToolbarItemClassID) and its associated
event handler MyButtonToolbarItemHandler. This toolbar item simply contains a standard push button.

For efficiency, this example also sets a static Boolean to avoid registering the custom item multiple times
(although there is no penalty for doing so).

The MyButtonToolbarItemHandler must handle the HIObject construct, initialize, and destruct events.
In addition, because you want to embed a view into the toolbar item view, you must also handle the
kEventToolbarItemCreateCustomView event.

Listing 1-5 shows how you might implement the event handler for your custom button toolbar item.

Listing 2-5 Event handler for a toolbar item with an embedded view

const EventTypeSpec buttonEvents[] =
{
 { kEventClassHIObject, kEventHIObjectConstruct },
 { kEventClassHIObject, kEventHIObjectInitialize },
 { kEventClassHIObject, kEventHIObjectDestruct },

 { kEventClassToolbarItem, kEventToolbarItemCreateCustomView }
};
const EventTypeSpec pushButtonEvents[] =
{
 { kEventClassControl, kEventControlGetSizeConstraints}
};

// 1struct MyButtonToolbarItem
{
 HIToolbarItemRef toolbarItem;
};
typedef struct MyButtonToolbarItem MyButtonToolbarItem;

static OSStatus MyButtonToolbarItemHandler(EventHandlerCallRef inCallRef,
 EventRef inEvent, void* inUserData)
{
 OSStatus result = eventNotHandledErr;

22 Creating Toolbar Items
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

// 2 MyButtonToolbarItem* object = (MyButtonToolbarItem*)inUserData;

 switch (GetEventClass(inEvent))
 {
 case kEventClassHIObject:
 switch (GetEventKind(inEvent))
 {

// 3 case kEventHIObjectConstruct:
 {
 HIObjectRef toolbarItem;
 MyButtonToolbarItem* item;

 GetEventParameter(inEvent,
 kEventParamHIObjectInstance, typeHIObjectRef,
 NULL, sizeof(HIObjectRef), NULL,
 &toolbarItem);

 result = ConstructMyButtonToolbarItem(toolbarItem,
 &item);

 if (result == noErr)
 SetEventParameter(inEvent,
 kEventParamHIObjectInstance, typeVoidPtr,
 sizeof(void *), &item);
 }
 break;

// 4 case kEventHIObjectInitialize:
 if (CallNextEventHandler(inCallRef, inEvent) == noErr)
 {
 HIToolbarItemSetLabel(object->toolbarItem,
 CFSTR("Press Me"));
 HIToolbarItemSetHelpText(object->toolbarItem,
 CFSTR("Moof!"), NULL);
 result = noErr;
 }
 break;

// 5 case kEventHIObjectDestruct:
 free (object);
 result = noErr;
 break;
 }
 break;

 case kEventClassToolbarItem:
 switch (GetEventKind(inEvent))
 {

// 6 case kEventToolbarItemCreateCustomView:
 {
 EventTargetRef myButtonEventTarget;
 HIViewRef myButton;
 Rect myButtonRect = {0,0,20,80};

// 7 CreatePushButtonControl(NULL, &myButtonRect,
 CFSTR("Push!"), &myButton);

 SetEventParameter (inEvent, kEventParamControlRef,

Creating Toolbar Items 23
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

 typeControlRef, sizeof(myButton), &myButton);

 myButtonEventTarget =
 GetControlEventTarget(myButton);

// 8 InstallEventHandler (myButtonEventTarget,
 MyButtonEventHandler,
 GetEventTypeCount(pushButtonEvents),
 pushButtonEvents, NULL, NULL);
 result = noErr;
 }
 break;
 }
 break;
 }

 return result;
}

Here is what the code does:

1. Your subclass must have a structure associated with it that can hold any necessary instance data. This
example requires only only one data item: the toolbar item reference. Note that even though this toolbar
item provides an HIView, you do not store the HIView reference in this structure.

2. If your application defines any user data for this toolbar item, you can store it in the instance data.

3. When you receive the kEventHIObjectConstruct event, you receive a pointer to store the reference
to your toolbar item in the kEventParamHIObjectInstance parameter. You must allocate memory
for the item reference and any associated instance data. Here is a possible implementation for the
ConstructMyToolbarButtonItem function:

static OSStatus ConstructMyButtonToolbarItem(HIToolbarItemRef inItem,
 MyButtonToolbarItem** outItem)
{
 MyButtonToolbarItem* item;
 OSStatus err = noErr;

 item = (MyButtonToolbarItem*)malloc(sizeof(MyButtonToolbarItem));
 require_action(item != NULL, CantAllocItem, err = memFullErr);

 item->toolbarItem = inItem;

 *outItem = item;

 CantAllocItem:
 return err;
}

After allocating the memory, use SetEventParameter to return a pointer to the space created for the
toolbar item reference.

4. When you receive the kEventHIObjectInitialize event, you must perform any initialization that
your toolbar item requires, such as setting initial values for some instance data. This example calls the
HIToolbarSetItemLabel function to set the text portion of the toolbar item, and
HIToolbarItemSetHelpText function to set the help tag text.

24 Creating Toolbar Items
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

5. When you receive the kEventHIObjectDestruct event, you must release the memory that was
allocated for your toolbar item. This example simply calls the Memory Manager function free to release
the instance data. Note that you must not dispose your HIView reference here.

6. When you receive the kEventToolbarItemCreateCustomView, you must create an HIView to embed
in the toolbar item view. Any sort of view is valid; you can embed a picture view, a text field, a button,
or even your own custom HIView.

7. This example simply creates a standard push button control and then uses SetEventParameter to
store its HIView reference in the kEventParamControlRef parameter of the event. Note that when
creating standard views, you must pass NULL for the owning window parameter, as the view is not
associated with any window.

8. All views that are associated with toolbar items must respond to the
kEventControlGetSizeConstraints event, which asks for the maximum and minimum allowable
sizes for the view. The system uses this information to determine how to best size the toolbar item view
given its embedded content. In most cases you should simply return the bounds of the view, as in the
following code:

static OSStatus MyButtonEventHandler(EventHandlerCallRef inCallRef,
 EventRef inEvent, void* inUserData)
{

switch (GetEventKind(inEvent))
 {
 case kEventControlGetSizeConstraints:
 {
 HISize minBounds = {80,20};
 HISize maxBounds = {80,20};

 SetEventParameter (inEvent,
 kEventParamMinimumSize, typeHISize,
 sizeof(HISize), &minBounds);
 SetEventParameter (inEvent,
 kEventParamMaximumSize, typeHISize,
 sizeof(HISize), &maxBounds);

 return noErr;
 }
 break;

 default:
 break;
 }
return eventNotHandledErr;
}

Note that the HISize type is position-independent, indicating only the width and height of the object.

Finally, you need to call HIObjectCreate to create an instance of your custom toolbar item. Listing 1-6
shows a function you could use to do this.

Listing 2-6 Creating a custom toolbar item instance.

HIToolbarItemRef CreateMyButtonToolbarItem(CFStringRef inIdentifier)
{

Creating Toolbar Items 25
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

 OSStatus err;
 EventRef event;
 UInt32 options = kHIToolbarItemAllowDuplicates;
 HIToolbarItemRef result = NULL;

// 1 RegisterMyButtonToolbarItemClass();

// 2 err = CreateEvent(NULL, kEventClassHIObject,
 kEventHIObjectInitialize, GetCurrentEventTime(), 0,
 &event);
 require_noerr(err, CantCreateEvent);

// 3 SetEventParameter(event, kEventParamToolbarItemIdentifier,
 typeCFStringRef, sizeof(CFStringRef), &inIdentifier);

// 4 SetEventParameter(event, kEventParamAttributes, typeUInt32,
 sizeof(UInt32), &options);

// 5 err = HIObjectCreate(kMyButtonToolbarItemClassID, event,
 (HIObjectRef*)&result);
 check_noerr(err);

// 6 ReleaseEvent(event);

CantCreateEvent:
 return result;
}

Here is how the code works:

1. First, register your custom toolbar item by calling the RegisterMyButtonToolbarItemClass function
in Listing 1-4 (page 22).

2. Create an initialization event to send to your item once it is created. Note that this event is sent directly
to the toolbar item (that is, it is not placed in the event queue).

3. Set the toolbar item’s identifier in the initialization event using the kEventParamToolbarIdentifier
parameter.

4. Set any desired toolbar attributes in the initialization event using the kEventParamAttributes
parameter.

Note that the identifier and the toolbar attributes are the same parameters you would pass into the
standard HIToolbarItemCreate function. If you do not set these parameters, the HIObjectCreate
call fails.

5. Call HIObjectCreate to create an instance of your custom toolbar item class
(kMyButtonToolbarClassID). On return, you receive a ToolbarItemRef (which is also an
HIObjectRef) that points to the newly-created toolbar item.

6. After sending the initialization event to your toolbar item, you no longer need to retain it, so call
ReleaseEvent.

26 Creating Toolbar Items
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

Creating Items from a Drag

If the user drags something onto the toolbar, and your toolbar accepts drags, your application will have to
create a toolbar item from the drag.

Listing 1-7 shows how you could process the drag to create a toolbar item. This example creates URLs from
one or more text drag items.

Listing 2-7 Creating a toolbar item from a drag

static HIToolbarItemRef CreateToolbarItemFromDrag(DragRef drag)
{
 UInt16 i, itemCount;
 HIToolbarItemRef result = NULL;

// 1 CountDragItems(drag, &itemCount);

 for (i = 1; i <= itemCount; i++)
 {
 DragItemRef itemRef;
 FlavorFlags flags;

// 2 GetDragItemReferenceNumber(drag, i, &itemRef);

// 3 if (GetFlavorFlags(drag, itemRef, 'TEXT', &flags) == noErr)
 {
 Size dataSize;
 char string[256];
 CFURLRef url;

 dataSize = sizeof(string);
// 4 GetFlavorData(drag, itemRef, 'TEXT', &string, &dataSize, 0);

// 5 url = CFURLCreateWithBytes(NULL, string, dataSize,
 kCFStringEncodingMacRoman, NULL);

// 6 result = CreateMyURLToolbarItem(CFSTR("MyURLIdentifier"), url);

// 7 CFRelease(url);

 break;
 }
 }

 return result;
}

Here is how the code works:

1. This example uses a number of Drag Manager calls to process the drag item. First, you call the
CountDragItems function on the drag reference to determine how many items are in the drag. (For
example, the user might have selected and dragged several items into the toolbar.)

2. Now iterate over the number of drag items. For each item index number, obtain the item reference by
calling GetDragItemReferenceNumber.

Creating Toolbar Items 27
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

3. Use the Drag Manager function GetFlavorFlags to determine if the drag item content is of type TEXT.
If so, the item contents can be turned into a URL toolbar item. If not, the drag item is rejected and the
contents ignored.

4. If the drag flavor is compatible, call the Drag Manager function GetFlavorData to obtain the actual
text associated with the drag item.

5. The Core Foundation function CFURLCreateWithBytes converts the string into a CFURL with the
specifed encoding (in this case, MacRoman).

6. Now pass the CFURL to a toolbar item creation function. This function, which is analogous to the
CreateMyButtonToolbarItem function in Listing 1-6 (page 25), should register the toolbar item
subclass, create a kEventHIObjectInitialize event, and call HIObjectCreate.

You should set several parameters in the initialize event before calling HIObjectCreate:

 ■ kEventParamToolbarIdentifier, the identifier for this toolbar item.

 ■ kEventParamAttributes, any toolbar attributes you want to set.

 ■ kEventParamToolbarItemConfigData, a pointer to any specific configuration data. In this case,
the configuration data would be a pointer to the URL obtained from the drag.

7. After passing the CFURL to the toolbar item creation function, you can release your reference to it.

The event handler for your custom URL toolbar item class must handle the usual creation, destruction, and
initialization events. The construction event allocates memory for the instance data, and the destruction
event releases it. Note that the data structure for the instance data has two fields in this case: one to hold
the toolbar item reference, and the other to hold the URL.

struct CustomToolbarItem
{
 HIToolbarItemRef toolbarItem;
 CFURLRef url;
};
typedef struct CustomToolbarItem CustomToolbarItem;

The initialization event handler must obtain the configuration data passed with the event and store that in
the instance data as a URL. Listing 1-8 shows an example of how you could do this.

Listing 2-8 Initialization function for the kEventHIObjectInifialize event

/* Assume that the event handler called CallNextEventHandler before
/* calling this function */

// 1static OSStatus InitializeCustomToolbarItem(CustomToolbarItem* inItem,
 EventRef inEvent)
{
 CFTypeRef data;
 IconRef iconRef;

// 2 if (GetEventParameter(inEvent, kEventParamToolbarItemConfigData,
 typeCFTypeRef, NULL,
 sizeof(CFTypeRef), NULL, &data) == noErr)
 {

// 3 if (CFGetTypeID(data) == CFStringGetTypeID())

28 Creating Toolbar Items
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

 inItem->url = CFURLCreateWithString(NULL, (CFStringRef)data,
 NULL);
 else
 inItem->url = (CFURLRef)CFRetain(data);
 }
 else
 {

// 4 inItem->url = CFURLCreateWithString(NULL,
 CFSTR("http://www.apple.com"), NULL);
 }

// 5 HIToolbarItemSetLabel(inItem->toolbarItem, CFSTR("URL Item"));

// 6 if (GetIconRef(kOnSystemDisk, kSystemIconsCreator, kGenericURLIcon,
 &iconRef) == noErr)
 {
 HIToolbarItemSetIconRef(inItem->toolbarItem, iconRef);

// 7 ReleaseIconRef(iconRef);
 }

// 8 HIToolbarItemSetHelpText(inItem->toolbarItem,
 CFURLGetString(inItem->url), NULL);

 return noErr;
}

Here is how the code works:

1. This function takes two parameters: the toolbar item to initialize, and the initialization event that was
sent to it.

2. Use GetEventParameter to obtain the configuration data stored in the initalization event. This is the
URL obtained from the drag (the one stored in the kEventHIObjectInitialize event passed to
HIObjectCreate.

3. If the configuration data passed is of type CFString, then you must call CFURLCreateWithString to
convert it to a CFURL type before storing it in the instance data structure.

If the data is already of type CFURL, we can simply retain its reference and store it in the instance data.

4. If for some reason no configuration data was passed in the initialization event, set the instance data URL
to some default value.

5. Call HIToolbarItemSetLabel to set the displayed text for the toolbar item.

6. If your custom toolbar item does not create an HIView to display, in most cases you should assign it an
icon. This example simply uses the Icon Services function GetIconRef to obtain a generic URL icon,
and assigns it to the toolbar item by calling HIToolbarItemSetIconRef.

7. After assigning the icon reference to the toolbar item, you can release your reference to it.

8. Call HIToolbarItemSetHelpText to assign the help tag text for your toolbar item.

In addition to the kEventClassHIObject events, your custom URL toolbar item should also handle two
additional events:

Creating Toolbar Items 29
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

 ■ kEventToolbarItemGetPersistentData: You receive this event when the toolbar wants to store
configuration information in the user’s preferences. You should return a pointer (which must be of type
CFTypeRef) to any data you want to store in the kEventParamConfigData parameter.

Note that this data is saved in XML format; any data you store in this event must be
CFPropertyList-compatible. Currently this means the data must be one of the following types: CFString,
CFData, CFNumber, CFBoolean, CFDate, CFArray, and CFDictionary.

Note that for CFType references, you should pass a copy of the data, as the system will dispose of the
reference it receives to the configuration data.

 ■ kEventToolbarItemPerformAction: You receive this event when the user clicks on your toolbar
item. Your handler can then take any appropriate action. For example, if the user clicks on your custom
URL toolbar item, you can call the Launch Services function LSOpenCFURLRef to open the URL using
the user’s default browser.

Note that if your toolbar item handles the kEventToolbarItemPerformAction event, you should set
the command ID for the toolbar item to kHIToolbarCommandPressAction (value: 'tbpr'). Doing so
ensures that HIToolbar can send the perform action event when your toolbar item is selected from the
overflow menu. This command ID is available in Mac OS X v.10.2.3 and later.

30 Creating Toolbar Items
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Toolbar Tasks

This table describes the changes to HIToolbar Programming Guide.

NotesDate

Changed title from "Using HIToolbar." Made minor bug fix.2005-07-07

In “What Is a Toolbar?” (page 7), indicated that the user can cycle between
display modes by command-clicking the toolbar button.

2003-04-30

Added info in “What Is a Toolbar?” (page 7) describing how the user can bring
up the configuration sheet.

Added overflow menu screen shot, Figure 1-4 (page 9).

Added new section “Model-View-Controller for HIToolbar” (page 10) showing
how HIToolbar fits into the model-view-controller design convention.

Added command ID as one of the data types associated with toolbar items in
“Toolbar Items” (page 11).

RemovedkHIToolbarItemValidAttrs andkHIToolbarItemMutableAttrs
from “Toolbar Item Attributes” (page 18), as these constants may change over
time.

In “Creating Items from an Identifier” (page 19), indicated that toolbar items
that do not have a command ID associated with them will not be enabled when
they appear in the overflow menu.

Added info to “Creating Items from an Identifier” (page 19) describing cases
where you might not want to assign a command ID to a toolbar item.

Replaced 'void' with typeVoidPtr in Listing 1-5 (page 22) in the
SetEventParameter call for the construct event.

Added specific information in “Creating Items from a Drag” (page 27) about
what kind of data you can store in response to the
kEventToolbarItemGetPersistentData event.

Indicated in “Creating Items from a Drag” (page 27) that if you handle the
kEventToolbarItemPerformAction event, you must also set the command
ID of the toolbar item to kHIToolbarCommandPressAction.

Removed Panther-specific information.

Preliminary review draft.2003-03-01

31
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

32
2005-07-07 | © 2003, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	HIToolbar Programming Guide
	Contents
	Figures, Tables, and Listings
	HIToolbar Concepts
	What Is a Toolbar?
	The Toolbar as HIObject
	Model-View-Controller for HIToolbar
	The Delegate
	Toolbar Items

	Built-In Functionality
	System Requirements

	Toolbar Tasks
	How the Toolbar Works
	Creating Toolbars
	Event Handling Using the Delegate
	Creating Toolbar Items
	System-Defined Identifiers
	Toolbar Item Attributes
	Creating Items from an Identifier
	Creating Custom Toolbar Items
	Embedding Views in a Toolbar Item
	Creating Items from a Drag

	Revision History

