
Carbon Porting Guide
(Legacy)

Carbon > Porting

2002-12-01

Apple Inc.
© 2002 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleTalk, Aqua,
Carbon, Cocoa, Keychain, Mac, Mac OS,
Macintosh, MPW, Quartz, QuickDraw, and
QuickTime are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder and Switcher are trademarks of Apple
Inc.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Carbon Porting Guide 9

What Is Carbon? 9
What Are the Benefits of Carbon? 10
What Is in Carbon Today? 10
What’s Not in Carbon? 11
How Does Carbon Work? 11
Carbon and the Mac OS Application Model 12

Preemptive Scheduling and Application Threading 12
Separate Application Address Spaces 12
Virtual Memory 13
Resources 13
Code Fragments and the Code Fragment Manager 13
Mixed Mode Manager 13
Printing 13
Control Panels 14
The Trap Table 14
Standard and Custom Definition Procedures 14
Application-Defined Functions 14
Data Structure Access 14

Additional Information and Feedback 15

Chapter 1 Preparing Your Code for Carbon 17

Using Carbon Dater 17
Analyzing Your Application 18
Reading the Report 18
Additional Reports 19
The Carbon Specification 19

Essential Steps for Porting Your Application 20
Make Sure All of Your Code Is PowerPC-Native 20
Update to the Current Universal Interfaces 20
Use the Carbon SDK 20
Target Mac OS 8 and 9 First 20
Begin With CarbonAccessors.o 21
Use Casting Functions to Convert DialogPtrs and WindowPtrs 21
Replace Macro Calls to the Mixed Mode Manager With UPP Accessor Functions 22
Move Custom Definition Procedures Out of Resources 22
Remove Direct Access to Low-Memory Globals 23
Use DebuggingCarbonLib 24
Modify or Conditionalize Your Headers 25
Update Modified or Obsolete Functions 25

3
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

Adopt Required Carbon Technologies 25
Add a 'plst' 0 Resource 26
Conditionalize Quit Menu Items 26

Additional Porting Issues 27
Determine the Appropriate CarbonLib Version 27
Draw Only Within Your Own Windows 28
Do Not Patch Traps 28
Don’t Pass Pointers Across Processes 28
Do Not Write to Your Application’s Resource Fork 28
Check Your OpenGL Code 29
Examine Your Plug-ins 29
Linking to Non-Carbon-Compliant Code 29
Window Manager Issues 30

Optimizing Your Code for Carbon 33
Manage Memory Efficiently 34
Avoid Polling and Busy Waiting 34
Use “Lazy” Initialization for Shared Libraries 35
Adopt HFS Plus APIs 35
Consider Mach-O Executables 35
Move Resources to Data Fork–Based Files 36
Consider Using Bundles 36
Begin Transitioning to the Aqua Interface 37
Adopt a Terse Name for the Application Menu 37
Provide Thumbnail Icons for Your Application 37

Chapter 2 Building Carbon Applications 41

Native Mac OS 9 Versus Mac OS X’s Classic Environment 41
Development Scenarios 41

Using CodeWarrior to Build a CFM Carbon Application 41
Using CodeWarrior to Build a Mach-O Carbon Application 42
Using Project Builder to Build a Mach-O Carbon Application 42

Building a CFM Carbon Application With CodeWarrior 42
Preparing Your Development Environment 42
Building Your Application 43
Running Your Application on Mac OS 9 43
Running Your Application on Mac OS X 43

Building a Mach-O Carbon Application With CodeWarrior 44
Preparing Your Development Environment 44
Building Your Application 44
Running Your Application on Mac OS X 44

Building a Mach-O Carbon Application With Project Builder 44
Building Applications Using MPW 44
Debugging Your Application 45

4
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 3 A Porting Example 47

The Sample Application 47
Obtaining the Carbon Dater Report 48
The Basic Port 50

Make Sure All of Your Code is PowerPC–Native 50
Update to the Current Universal Interfaces and Use the Carbon SDK 50
Target Mac OS 8 and 9 First 51
Begin With CarbonAccessors.o 51
Use Casting Functions to Convert DialogPtrs and WindowPtrs 53
Modify or Conditionalize Your Headers 53
Replace Macro Calls to the Mixed Mode Manager With UPP Accessor Functions 53
Move Custom Definition Procedures Out of Resources 53
Remove Direct Access to Low-Memory Globals 53
Use DebuggingCarbonLib 54
Update Modified or Obsolete Functions 54
Adopt Required Carbon Technologies 55
Add a ‘plst’ 0 Resource 55
Conditionalize Quit Menu Items 55
Cleanup 56

Additional Changes for Aqua 57
Adjust the Window Size 57
Modify the About Box 57

The Carbon Version of Sample 57

Chapter 4 New Carbon Technologies 69

Carbon Event Manager 69
Core Foundation 70
DataBrowser 70
Multilingual Text Engine (MLTE) 71
An Example: Adding Carbon Events to Sample 71

Standard Event Handlers 72
The Basic Conversion 72

Appendix A New Carbon Functions 81

Custom Definition Procedures 81
Changes to WDEFs 81
Changes to MDEFs 81

Functions for Accessing Opaque Data Structures 82
Casting Functions 82
Accessor Functions 83
Utility Functions 91

Functions in CarbonAccessors.o 91
Debugging Functions 95

5
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CONTENTS

CheckAllHeaps 95
IsHeapValid 95
IsHandleValid 95
IsPointerValid 95

Resource Chain Manipulation Functions 95
InsertResourceFile 95
DetachResourceFile 96
FSpResourceFileAlreadyOpen 96

Appendix B The Sample Application 97

Document Revision History 113

Index 119

6
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Introduction Introduction to Carbon Porting Guide 9

Figure I-1 Current and future composition of the Carbon API 10
Figure I-2 Calling Carbon functions on Mac OS X and Mac OS 8 and 9 12

Chapter 1 Preparing Your Code for Carbon 17

Figure 1-1 Outline feedback as a user resizes a window 32
Figure 1-2 Thumbnail icons in a .icns file, displayed in Icon Browser 38
Table 1-1 Summary of Carbon low memory accessor support 24

Chapter 3 A Porting Example 47

Figure 3-1 The Sample application 47
Figure 3-2 A Carbon Dater report 48
Figure 3-3 The About box for Sample 57
Figure 3-4 The Carbon version of Sample on Mac OS X 57
Table 3-1 Carbon Dater output for incompatible functions 48
Listing 3-1 Carbon version of Sample.c 57
Listing 3-2 Carbon version of SampleInit.c 66

Chapter 4 New Carbon Technologies 69

Listing 4-1 Application-level event handler for Sample 74
Listing 4-2 Window event handler for Sample 77

Appendix A New Carbon Functions 81

Table A-1 Summary of Carbon Human Interface Toolbox accessors 85
Table A-2 QuickDraw accessor functions 88
Table A-3 Functions in CarbonAccessors.o 91
Table A-4 Functions removed from CarbonAccessors.o 94
Listing A-1 Example of unsupported data structure access 83
Listing A-2 Example of using Carbon-compatible accessor functions 84

Appendix B The Sample Application 97

Listing B-1 Sample.c 97
Listing B-2 SampleInit.c 108

7
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

8
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Important: The information in this document is obsolete and should not be used for new development.

The Carbon Porting Guide is intended to help experienced Macintosh developers convert existing Mac OS
applications into Carbon applications that can run on Mac OS X as well as Mac OS 8 and 9. It contains detailed
information about how to adapt and build your application using the Carbon API as well as step-by-step
examples of the porting process.

To make the Carbon transition as smooth as possible, you should also be familiar with the following documents
before beginning your port:

 ■ InsideMacOS X: SystemOverview. This document contains in-depth discussions of Mac OS X features and
architecture. It also contains more detailed information about some topics discussed in this document.

 ■ InsideMacOSX: AquaHuman InterfaceGuidelines. This document provides the human interface guidelines
for the Mac OS X user interface.

This chapter introduces Carbon and provides an overview of the changes you’ll need to be aware of as you
convert your application.

What Is Carbon?

Carbon is the set of programming interfaces derived from earlier Mac OS APIs that can run on Mac OS X.
Some of these APIs have been modified or extended to take advantage of Mac OS X features such as
preemptive multitasking and protected memory.

In addition to being able to run on Mac OS X, Carbon applications built for Mac OS X can also run on Mac
OS 8 and 9 when the CarbonLib system extension is installed. (As always, you should test for the existence
of specific features before using them.)

Carbon includes about 70 percent of the existing Mac OS APIs, covering about 95 percent of the functions
used by applications. Because it includes most of the functions you rely on today, converting to Carbon is a
straightforward process. Apple provides tools and documentation to help you determine the changes you
will need to make in your source code, as well as the header files and libraries necessary to build a Carbon
application.

Mac OS X brings important new features and enhancements that developers have asked for, and Carbon
allows you to take advantage of them while preserving your investment in Mac OS source code. As Apple
moves the Mac OS forward, Carbon ensures you won’t be left behind.

What Is Carbon? 9
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Porting Guide

What Are the Benefits of Carbon?

Carbon applications gain these benefits when running under Mac OS X:

 ■ Greater stability. Protected address spaces help prevent errant applications from crashing the system or
other applications.

 ■ Improved responsiveness. Each application is guaranteed processing time through preemptive
multitasking, resulting in a more responsive user experience.

 ■ Dynamic resource allocation. More efficient use of system resources, including the elimination of fixed
size heaps, means your application can allocate memory and other shared resources based on actual
needs rather than predetermined values. Each application can access up to 4GB of potential addressable
memory.

 ■ Aqua look and feel. Apple’s newest user interface is available only to applications that run natively on
Mac OS X.

What Is in Carbon Today?

The Carbon programming interface consists of the following types of APIs:

 ■ Classic Mac OS APIs that can run unchanged on Mac OS X. These comprise the majority of the APIs in
your current application.

 ■ Classic Mac OS APIs that have been modified to work on Mac OS X. For example, to operate properly in
a preemptively-scheduled environment, a function may now require an additional parameter to specify
the context (or process) to which it belongs.

 ■ New APIs that can run on both Mac OS X and Mac OS 8 and 9. For example, Core Foundation and the
Carbon Event Manager provide additional benefits for Carbon applications but are not required for
porting.

 ■ New APIs that are available only on Mac OS X.

Currently, the Classic Mac OS APIs make up the largest proportion of Carbon APIs, as shown in Figure I-1 (page
10). However, as Carbon evolves to take advantage of new features in Mac OS X, new Mac OS X-specific APIs
will be added that enhance its capabilities.

Figure I-1 Current and future composition of the Carbon API

New APIs for Mac OS 8 and 9
and Mac OS X

Classic Mac OS APIs

New Mac OS X-specific APIs
New APIs for Mac OS 8 and 9

and Mac OS X

Classic Mac OS APIs

New Mac OS X-specific APIs

Now Future

10 What Are the Benefits of Carbon?
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Porting Guide

What’s Not in Carbon?

If Carbon does not support a Classic Mac OS function, it is generally for one of the following reasons:

 ■ The function performs actions that are illegal or make no sense in Mac OS X. For example, functions that
are 68K-specific, or functions that allocate memory in the system heap (Mac OS X has no concept of a
system heap).

 ■ The function directly accesses hardware. The Carbon environment was designed to be fully abstracted
from hardware, so such functions are not allowed.

 ■ The function was there for legacy purposes only, and has more modern replacements (for example, File
Manager functions that use working directories).

In addition, certain Classic Mac OS programming practices are no longer allowed:

 ■ No 68K code allowed. All Carbon code must be PowerPC-based.

 ■ No trap table access. The trap table and Patch Manager are 68K-specific.

 ■ Limited access to data structure fields. See “Data Structure Access” (page 14).

How Does Carbon Work?

Carbon lets you create one executable file that can run on both Mac OS X and Mac OS 8 and 9. You accomplish
this by linking your application with a single stub library, CarbonLibStub, at build time. At runtime your
application links with the appropriate Carbon implementation stored as shared libraries (sometimes referred
to as DLLs).

On Mac OS X, your application links dynamically to the Carbon framework, which is a hierarchy of libraries
and resources that contains the implementation of Carbon.

On Mac OS 8 and 9, the Carbon implementation is stored as a system extension named CarbonLib. This
library contains two types of elements:

 ■ Implementations of all functions specific to Carbon.

 ■ Exports of functions currently available in system software. For example, calls to a Menu Manager function
available in both Carbon and Mac OS 8 and 9 will merely call through to the implementation in
InterfaceLib.

Figure I-2 shows Carbon functions called on Mac OS X and Mac OS 8 and 9.

What’s Not in Carbon? 11
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Porting Guide

Figure I-2 Calling Carbon functions on Mac OS X and Mac OS 8 and 9

Runtime
Mac OS X

Carbon.framework

myCarbonApp

Runtime
Mac OS 8 and 9

InterfaceLib

CarbonLib

myCarbonApp

or

myCarbonApp

CarbonLibStub

Build Time

In general, for a pure Carbon application, the only library you should link against is CarbonLib. See “Linking
to Non-Carbon-Compliant Code” (page 29) for special cases where you may need to link to other libraries.

Carbon and the Mac OS Application Model

The Mac OS application model remains fundamentally unchanged in Carbon. Carbon applications employ
system services in essentially the same manner for both Mac OS 8 and 9 and Mac OS X. But because Mac OS
8 and 9 and Mac OS X are built on different architectures, there will be slight differences in the way your
application uses some system services. This section highlights the most important changes you need to be
aware of. “Preparing Your Code for Carbon” (page 17) provides more detailed information on each of these
subjects.

Preemptive Scheduling and Application Threading

In Mac OS X, each Carbon application is scheduled preemptively against other Carbon applications. For calls
to most low-level operating system services, Mac OS X also supports preemptive threading within an
application. Because most Human Interface Toolbox functions are not reentrant, however, a multithreaded
application will initially be able to call these functions only from cooperatively scheduled threads. Thread-based
preemptive access to all system services—including the Human Interface Toolbox—is an important future
direction for the Mac OS.

In both Mac OS 8 and 9 and Mac OS X, you can use the Multiprocessing Services API to create preemptively
scheduled tasks.

Separate Application Address Spaces

In Mac OS X, each Carbon application runs in its own protected address space. An application can’t reference
memory locations—or corrupt another application’s data—outside of its assigned address space. This
separation of address spaces increases the reliability of the user’s system, but it may require small programming
changes to applications that use zones, system memory, or temporary memory. For example, temporary

12 Carbon and the Mac OS Application Model
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Porting Guide

memory allocations in Mac OS X will be allocated in the application’s address space, and Apple will define
new functions for sharing memory between applications. “Manage Memory Efficiently” (page 34) provides
more detailed information about memory management for Carbon applications.

Virtual Memory

Mac OS X uses a dynamic and highly efficient virtual memory system that is always enabled. Your Carbon
application must therefore assume that virtual memory is turned on at all times. In addition, the Mac OS X
virtual memory system introduces a number of changes to the addressing model that are discussed in
“Manage Memory Efficiently” (page 34).

Resources

Mac OS X supports traditional Resource Manager resources, but you should consider moving resources to
the data fork of your application and accessing them using Core Foundation CFBundle APIs instead. Doing
so will ensure that this information will not be lost if your application is copied by a method that does not
recognize resource forks. See “Move Resources to Data Fork–Based Files” (page 36) and “Consider Using
Bundles” (page 36) for more information.

Note that you can no longer store executable code in resources. See “Move Custom Definition Procedures
Out of Resources” (page 22) for more information.

Code Fragments and the Code Fragment Manager

Carbon fully supports the Code Fragment Manager, and the Mac OS X runtime environment supports code
compiled into code fragments. For Mac OS X, however, all code fragments must contain only native PowerPC
code. In addition, resource-based fragments are no longer allowed.

Mixed Mode Manager

While the Mixed Mode Manager is no longer needed to handle calls between PowerPC and 68K code, there
may be instances where it must handle calls between CFM-based code and Mach-O code (the native executable
format on Mac OS X). In any case, you must replace the macros for creating and disposing routine descriptors
with new Carbon functions for creating, invoking, and disposing universal procedure pointers (UPPs). See
“Replace Macro Calls to the Mixed Mode Manager With UPP Accessor Functions” (page 22) for more
information.

Printing

Carbon introduces a new Printing Manager that allows applications to print on Mac OS 9 using current printer
drivers and on Mac OS X using new printer drivers. The functions and data types defined by the Carbon
Printing Manager are contained in the header files PMApplication.h, PMCore.h, and PMDefinitions.h.
Documentation for the Carbon Printing Manager is provided with the Mac OS X Developer Tools CD and at
the following website:

http://developer.apple.com/documentation/Carbon/Reference/CarbonPrintingManager_Ref/

Carbon and the Mac OS Application Model 13
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Porting Guide

http://developer.apple.com/documentation/Carbon/Reference/CarbonPrintingManager_Ref/

Control Panels

Carbon does not support control panels. If possible, you should package your control panel as an application.

The Trap Table

The trap table is a 68K-specific mechanism for dispatching calls to Mac OS Toolbox functions. Because Mac
OS X does not support 68K code, the Trap Manager is unavailable in Carbon, and your application should
not dispatch calls through the trap table. Likewise, the Patch Manager is unsupported in Carbon, and your
application should not attempt to patch the trap table or any operating system entry points. If your application
relies on patches, please tell us why, so that we can help you remove this dependency.

Standard and Custom Definition Procedures

Carbon supports the standard Mac OS definition procedures (also known as defprocs) for such human interface
elements as windows, menus, and controls. Custom definition procedures are also supported (as long as
they are compiled as PowerPC code), but there are new procedures for creating and packaging them. These
new functions are discussed in “Move Custom Definition Procedures Out of Resources” (page 22) and “Custom
Definition Procedures” (page 81).

Application-Defined Functions

Carbon supports most Mac OS application-defined (callback) functions. Mac OS X fully supports callback
functions within an application’s address space. In Carbon, callback functions use native PowerPC conventions
instead of 68K conventions, but Carbon doesn’t change these function definitions. As usual you should pass
universal procedure pointers when specifying your callback functions.

Data Structure Access

So that future versions of Mac OS can support access to all system services through preemptive threads,
Carbon limits direct application access to some Mac OS data structures. Carbon allows three levels of data
structure access, depending on which is appropriate for a given structure:

 ■ Direct access—your application can read from and write to the data structure without restriction.

 ■ Direct access with notification—your application can read from and write to the data structure, but after
modifying the structure your application must call a function to notify the operating system that the
structure has been changed.

 ■ Indirect access—your application has no direct access to the data structure. Instead, your application
can obtain and set values in the structure only by using accessor functions. Structures of this type are
said to be “opaque” because their contents are not visible to applications.

Opaque data structures and the functions for using them are discussed in “Functions for Accessing Opaque
Data Structures” (page 82).

14 Carbon and the Mac OS Application Model
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Porting Guide

Additional Information and Feedback

Apple is working hard to deliver the features and performance you expect from Carbon. You can keep abreast
of current developments by visiting the Carbon website at

http://developer.apple.com/carbon/index.html

where you’ll find the complete Carbon Specification, preliminary documentation, and links to other useful
information.

If you have comments or suggestions about Carbon, please send them to carbon@apple.com.

Additional Information and Feedback 15
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Porting Guide

http://developer.apple.com/carbon/index.html

16 Additional Information and Feedback
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Carbon Porting Guide

This chapter describes the modifications you need to make to your source code to create a Carbon application.
These changes are divided into three categories:

 ■ Essential changes. Applications that follow these steps should run on Mac OS X, but may suffer from
performance or responsiveness problems.

 ■ Other porting issues. These are topics that could affect the porting process depending on the capabilities
and needs of your application.

 ■ Optimization steps. This section describes steps and issues to consider so your application can take best
advantage of Mac OS X. Apple highly recommends that you address at least some of the topics described
in this section.

Note: Carbon also provides new technologies that give additional functionality to your application. While
entirely optional, these additions can improve performance, enhance the user experience, and even simplify
future code development. See “New Carbon Technologies” (page 69) for more information.

For more details about porting an application, see “A Porting Example” (page 47)

Technote TN2003, “Moving Your Code to Mac OS X,” contains additional porting information that you may
find useful:

http://developer.apple.com/technotes/tn/tn2003.html

To make your job easier, begin by using the Carbon Dater tool to analyze the current compatibility level of
your application.

Using Carbon Dater

Apple has developed a tool called Carbon Dater to analyze compiled applications and libraries for compatibility
with Carbon. You can use Carbon Dater to obtain information about the compatibility of your existing code
and the scope of your future conversion efforts.

Carbon Dater works by examining PEF containers in application binaries and CFM libraries. It compares the
list of Mac OS symbols your code imports against Apple’s database of Carbon-supported functions.

Using Carbon Dater 17
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

http://developer.apple.com/technotes/tn/tn2003.html

Note: Because Carbon Dater examines only PEF containers, it cannot examine 68K-based executable files.
If you are porting an older 68K application, you must convert it to PowerPC before running the Carbon Dater
tool.

Important: The Carbon Dater application is no longer available online and is no longer accepting reports.

Analyzing Your Application

Using Carbon Dater is a two-step process. You begin by dropping your compiled application or CFM library
file onto the Carbon Dater tool. The tool examines the first PEF container in your file and outputs a text file
named filename.CCT (Carbon Compatibility Test). You can drop more than one file onto the Carbon Dater
tool to get a combined report, but the tool examines only the first PEF container in each file.

The CCT file contains a list of all the Mac OS functions referenced by your code. If applicable, it may also
include information about your application’s use of direct access to low memory addresses or about resources
stored in the system heap.

The second step is to send your CCT file to Apple for analysis. The information gathered by the Carbon Dater
tool is used to create a compatibility report for your application. Attach the CCT file as an email enclosure
(preferably compressed) and send it to CarbonDating@apple.com.

Important: Carbon Dater does not expose any proprietary information about your product. The CCT file
only lists calls to Mac OS functions and certain other potential compatibility issues. You can examine the CCT
file to verify its contents.

Reading the Report

The CCT file you send to Apple will be processed by an automated analysis tool. The analyzer compares the
list of Mac OS functions your code calls against Apple’s Carbon API database, and returns a report to you by
email. This report is an HTML document that provides a snapshot of your application’s Carbon compatibility
level.

Analysis of Imports

For each Mac OS function your code calls that is not fully supported in Carbon, the compatibility report
specifies whether the function is

 ■ supported but modified in some way from how it is used in previous versions of the Mac OS

 ■ supported but not recommended—that is, you can use the function, but it may not be supported in the
future

 ■ unsupported

 ■ not found in the latest version of Universal Interfaces

18 Using Carbon Dater
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

The report includes a chart that shows the percentages of Mac OS functions in each category. For many
functions, the report also describes how to modify your application. For example, text accompanying an
unsupported function might describe a replacement function or recommended workaround.

Analysis of Access to Low Memory Addresses

This section of the compatibility report lists instances where your code makes a direct access to low memory.
For information on how to access low memory correctly, see “Remove Direct Access to Low-Memory
Globals” (page 23). If the tested code was built with symbolic debugging information enabled, the report
specifies the names of the routines that access low memory directly.

Many of the low-memory accessor functions currently defined in the Universal Interfaces are implemented
as inline macros that insert load or store instructions directly in your code. Carbon Dater can’t tell the difference
between one of these macros and the code you wrote yourself, so you’ll need to verify that you’re using an
approved accessor function.

Analysis of Resources Loaded Into the System Heap

This section of the compatibility report lists resources that have their system heap bit set, indicating they
should be stored in the system heap. For each flagged resource, the report lists the resource type and ID, as
well as the resource name if one is available. Applications do not have access to the system heap in Mac OS
X, so Carbon applications cannot store resources there.

Additional Reports

You can obtain additional compatibility reports as often as you wish. This is a good way to see how much
progress you’ve made in your porting effort. Also, as work on Mac OS X and Carbon continues, there may be
changes in the level of support for some functions, which Carbon Dater may bring to your attention.

Important: The Carbon dating process cannot guarantee that your application is entirely compatible with
Carbon and Mac OS X, even if your report lists no specific incompatibilities. For example, applications might
access low memory in a way that is not supported but that cannot be detected by the compatibility analyzer.

The Carbon Specification

To determine compatibility, Carbon Dater uses the Carbon Specification available at

http://developer.apple.com/documentation/carbon/

You can browse this document for general compatibility information. Apple updates the Carbon Specification
regularly to reflect the latest state of the Carbon APIs.

Using Carbon Dater 19
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

http://developer.apple.com/documentation/carbon/

Essential Steps for Porting Your Application

This section describes the bare minimum steps you must take to port your application to Carbon. Applications
ported by following these instructions will run on Mac OS 8 and 9 and Mac OS X, but may not function
optimally. To further improve performance and responsiveness, see the guidelines in “Optimizing Your Code
for Carbon” (page 33).

In addition to reading this section, you should also read the information provided in “Additional Porting
Issues” (page 27) before beginning to port your application.

Make Sure All of Your Code Is PowerPC-Native

Because Mac OS X requires 100% native PowerPC code, you will need to remove any dependencies on 68K
instructions. This applies to custom definition procedures (defprocs) and plug-ins as well as your main
application. See “Move Custom Definition Procedures Out of Resources” (page 22) and “Custom Definition
Procedures” (page 81) for information about new functions for creating native defprocs.

Update to the Current Universal Interfaces

Your transition to Carbon will be easier if your application already compiles using the latest version of Universal
Interfaces (as of this writing, the most recent version is 3.4). Although updating is not a requirement, doing
so will minimize the number of compatibility problems. Once your project compiles without errors, you
should switch to the Carbon headers provided with the Carbon SDK.

You’ll find the most recent Universal Interfaces on Apple’s website at

http://developer.apple.com/sdk/

Use the Carbon SDK

The Carbon SDK contains the headers, stub libraries, extensions and other material that you will need to
build your Carbon application. You can download it from the following website:

http://developer.apple.com/carbon/index.html

Target Mac OS 8 and 9 First

To ease the transition to Carbon, you should initially focus on getting your application running on Mac OS
8 and 9 with the CarbonLib extension. Then you can test your application on Mac OS X.

Note that just because your Carbon application runs on Mac OS 8 and 9, there is no guarantee that it will
correctly run on Mac OS X. For example, Mac OS X is stricter about direct casting of types, so what is allowable
on Mac OS 8 and 9 may not work on Mac OS X.

20 Essential Steps for Porting Your Application
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

http://developer.apple.com/sdk/
http://developer.apple.com/carbon/index.html

Begin With CarbonAccessors.o

CarbonAccessors.o is a static library that may help ease your transition to Carbon by allowing you to
begin using certain Carbon features while continuing to link against InterfaceLib and other non-Carbon
libraries.

Because many toolbox data structures are opaque in Carbon, one of the first steps you should take in porting
your application is to begin using the new accessor functions. It’s easier to do this if you can continue
compiling as a classic InterfaceLib-based application, because you can keep your application running
and qualify your changes incrementally. CarbonAccessors.o facilitates this by providing implementations
of the accessor functions for opaque toolbox data structures. For a list of the functions in CarbonAccessors.o,
see Table A-3 (page 91).

We recommend that as the first step in the porting process, you add CarbonAccessors.o to your link, and
then begin modifying your source code to use Carbon accessor functions, one file at a time. You can do this
by setting the following conditional macro at the top of each source file you plan to convert:

#define ACCESSOR_CALLS_ARE_FUNCTIONS 1

This conditional makes the prototypes for the accessor functions available to that source file.

When you have converted all of your source files to use accessor functions, you can add the following
conditional macro to your build options to ensure that you are no longer directly accessing any opaque
toolbox data structures:

#define OPAQUE_TOOLBOX_STRUCTS 1

At this point you have an application that uses the Carbon accessor functions but does not link against the
Carbon libraries. You can continue to run and test your application on any Mac OS release, because it does
not require the CarbonLib extension at runtime.

The next step in the conversion process is to allow only Carbon-compatible APIs in your code by adding the
following conditional macro to your build options:

#define TARGET_API_MAC_CARBON 1

You can now begin modifying your code so that it no longer calls functions that are obsolete in Carbon. At
this point you must stop linking against InterfaceLib (and CarbonAccessors.o) and begin linking
against CarbonLibStub (that is, the CarbonLib shared library).

Note: You can also use CarbonAccessors.o to maintain some backwards compatibility with non-Carbon
systems. For example, if you don’t require functions that are available only in CarbonLib, by linking against
the CarbonAccessors.o static library you can build an application from a Carbon-compliant code base
that runs on non-Carbon systems.

Use Casting Functions to Convert DialogPtrs and WindowPtrs

You cannot directly cast values of type DialogPtr or WindowPtr to a GrafPtr, but instead you must use
the new functions described in “Casting Functions” (page 82). Direct casting will not affect compilation, but
it will cause crashes on Mac OS X.

Essential Steps for Porting Your Application 21
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

Replace Macro Calls to the Mixed Mode Manager With UPP Accessor
Functions

Carbon introduces significant changes to the Mixed Mode Manager. Static routine descriptors are not
supported, and you must use the system-supplied functions for creating, invoking, and disposing of universal
procedure pointers. For example, Carbon provides the following functions to replace the macros previously
used to create, invoke, and dispose of universal procedure pointers:

ControlActionUPP NewControlActionUPP (ControlActionProcPtr userRoutine);
void InvokeControlActionUPP (ControlRef theControl,
 ControlPartCode partCode
 ControlActionUPP userUPP);
void DisposeControlActionUPP (ControlActionUPP userUPP);

Similar functions are provided for all supported UPPs. Note that Carbon does not support the generic functions
NewRoutineDescriptor, DisposeRoutineDescriptor, and CallUniversalProc.

On Mac OS 8 and 9, the UPP creation functions allocate routine descriptors in memory just as you would
expect. On Mac OS X, the implementation of UPPs depends on various factors, including the object file format
you choose. Universal procedure pointers will allocate memory if your application is compiled as a CFM
binary, but are likely to return a simple procedure pointer if your application is compiled as a Mach-O binary.

On Mac OS X, UPPs are opaque types that may or may not require memory allocation, depending on the
particular function and the runtime they are created in. By using the system-supplied UPP functions, your
application will operate correctly in either environment. You must dispose of your UPPs using the
system-supplied functions to ensure that any allocated memory is released. See “Consider Mach-O
Executables” (page 35) for more information about the differences between these formats.

Important: If you are using the Thread Manager, be aware that functions that did not require UPPs for
designating callbacks (such as SetThreadScheduler and SetThreadSwitcher) now require them in
Carbon. See the Thread Manager documentation or the header file Threads.h for a list of these functions
and for information on the required UPP creation and disposal functions.

Your own plug-ins must be compiled as PowerPC code, so there is no need to create universal procedure
pointers for them. Use normal procedure pointers instead.

Move Custom Definition Procedures Out of Resources

The resource-based format for custom definition functions (such as WDEFs, CDEFs, and so on) is defined to
start with 68K instructions. Because Mac OS X does not support 68K code, you must move your custom
definition functions out of resources and compile them directly in your application.

To access your custom code, you can do either of the following:

 ■ Use new Carbon functions (CreateCustomXXXX) to create your objects. For example, to create a custom
window, pass a universal procedure pointer (UPP) to your window definition function into the
CreateCustomWindow function:

OSStatus CreateCustomWindow (
 const WindowDefSpec *def,
 WindowClass windowClass,

22 Essential Steps for Porting Your Application
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

 WindowAttributes attributes,
 const Rect *contentBounds,
 WindowRef *outWindow
);

You can specify your function pointer in the WindowDefSpec structure by taking the following steps:

WindowDefSpec defSpec;
defSpec.defType = kWindowDefProcPtr;
defSpec.u.defProc = NewWindowDefUPP(MyWindowDefProc);

 ■ Map the old procID s to pointers to your custom code using the RegisterXXXDefinition functions.
For example, if you still want to use NewCWindow to create your window, you should call
RegisterWindowDefinition, passing it the resource ID referenced by your procIDs and a UPP to
your window definition function:

OSStatus RegisterWindowDefinition (
 SInt16 inResID,
 const WindowDefSpec *inDefSpec
);

When NewCWindow receives a procID that isn’t one of the standard system procIDs, it will look in the
mapping table to find the function that’s registered for the resource ID embedded in the procID.

For more details about changes to custom definition procedures, see “Custom Definition Procedures” (page
81).

Remove Direct Access to Low-Memory Globals

Low-memory globals are system and application global data located below the system heap in the Mac OS
8 and 9 runtime environment. They typically fall between the hexadecimal addresses $100 and $2800. Carbon
applications can continue to use many of the existing low-memory globals, although in some cases the scope
and impact of the global has changed. But in all cases, Carbon applications must use the supplied accessor
routines to examine or change global variables. Attempting to access them directly with an absolute address
will crash your application when running on Mac OS X.

The complete list of low-memory globals supported in Carbon is not yet finalized, but your transition to
Carbon will be easier if you follow these guidelines:

 ■ Use high-level calls instead of low-memory accessors whenever possible. For example, use
GetGlobalMouse instead of LMGetMouseLocation.

 ■ If a high-level call is not available, use an accessor function.

 ■ Rely on global data only from Mac OS managers supported in Carbon. For example, because the
driver-related calls in the Device Manager are not supported in Carbon, low-memory accessors like
LMGetUTableBase are not likely to be available. Similarly, direct access to hardware is not supported
in Carbon, so calls like LMGetVIA will no longer be useful.

Table 2-1 lists some frequently used low-memory accessors that are unsupported in Carbon. Refer to the
Carbon Specification for the most recent information.

Essential Steps for Porting Your Application 23
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

Table 1-1 Summary of Carbon low memory accessor support

ReplacementAccessor

not supportedLMGet/SetAuxCtlHead

not supportedLMGet/SetAuxWinHead

not supportedLMGet/SetCurActivate

not supportedLMGet/SetCurDeactive

not supportedLMGet/SetDABeeper

GetParamText, ParamTextLMGet/SetDAStrings

not supportedLMGet/SetDeskPort

not supportedLMGet/SetDlgFont

not supportedLMGet/SetGhostWindow

GetGrayRgnLMGetGrayRgn

GetMBarHeightLMGetMBarHeight

not supportedLMSetMBarHeight

not supportedLMGet/SetMBarHook

not supportedLMGet/SetMenuHook

GetGlobalMouseLMGetMouseLocation

not supportedLMSetMouseLocation

not supportedLMGet/SetPaintWhite

GetWindowListLMGetWindowList

not supportedLMSetWindowList

not supportedLMGet/SetWMgrPort

Use DebuggingCarbonLib

The debugging version of CarbonLib on Mac OS 8 and 9 checks for the validity of ports and windows, so
using it is a good way to quickly identify potential problem areas. However, you should be aware that it runs
considerably slower than the standard version of the library.

24 Essential Steps for Porting Your Application
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

Modify or Conditionalize Your Headers

If you plan to build your application on Mac OS X using Project Builder, be aware that the standard flat Mac
OS 8 and 9 headers (such as Dialogs.h and MacWindows.h) do not correspond directly with Mac OS X
frameworks. To address this issue, you can do either of the following:

 ■ Add -I /Developer/Headers/FlatCarbon to the cc compiler command line when building your
application. The files in the FlatCarbon folder act as a compatibility layer, mapping the standard flat
header includes to the proper frameworks.

 ■ Replace your flat headers with the single include statement #include <Carbon/Carbon.h>. This
statement lets you access the Carbon framework directly. You should choose this method if you plan to
build exclusively on Mac OS X, as it will improve compile times.

If you choose not to include the path to FlatCarbon at build time, you can also conditionalize your code to
use the proper headers :

#if <Some flag for building on X is set>
 #include <Carbon/Carbon.h>
#else
 <The usual Mac OS 8 and 9 includes>
#endif

Note: Carbon.h is treated as a flat Mac OS 8 and 9 header, so the suggested workarounds will still apply.

Update Modified or Obsolete Functions

From the list given to you by Carbon Dater, you should replace all functions listed as “out” or “modified” with
their suggested replacements. Depending on the function it may have been easier to remove them earlier
in the process (such as removing A5 functions when purging all 68K-related code).

Adopt Required Carbon Technologies

Carbon requires you to replace some older system services with newer ones as follows:

 ■ Navigation Services replaces the Standard File Package. For documentation, see the web site:

http://developer.apple.com/documentation/Carbon/Reference/Navigation_Services_Ref/

 ■ The Carbon Printing Manager replaces the Classic Printing Manager. For documentation, see the web
site:

http://developer.apple.com/documentation/carbon/Reference/CarbonPrintingManager_Ref/

Essential Steps for Porting Your Application 25
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

http://developer.apple.com/documentation/Carbon/Reference/Navigation_Services_Ref/
http://developer.apple.com/documentation/carbon/Reference/CarbonPrintingManager_Ref/

Add a 'plst' 0 Resource

On Mac OS X, Carbon applications that do not contain a 'plst' 0 resource will open in the Classic
compatibility environment and will not gain all the advantages of Mac OS X. To ensure that Mac OS X properly
recognizes your application, your application must include a resource of type 'plst' with ID 0 or a plist file
in a bundle. You can also store additional information about your application in a plist resource or file. See
“Consider Using Bundles” (page 36) for more information about plists and bundles.

Note: The 'plst' 0 resource supersedes the older 'carb' 0 resource. While you can continue to use the
'carb' 0 resource, the 'plst' 0 resource provides the exact same functionality while also allowing you
to store additional information useful to the Mac OS X Finder.

Even if you include a 'plst' 0 resource, you can still launch the application in the Classic environment:

 ■ If you include an empty 'plst' 0 resource, a “user choice” checkbox appears in the Finder’s Get Info
window, allowing the user to choose whether to launch the application in Mac OS X or the Classic
compatibility environment. The default is Mac OS X. (This checkbox feature does not appear if you include
only a 'carb' 0 resource).

 ■ By specifying options in the 'plst' 0 resource, you can force the application to launch into either Mac
OS X or the Classic environment.

If your application does not contain a resource fork, it launches in Mac OS X by default.

See Inside Mac OS X: System Overview for more information about specifying Launch Services keys in your
plist file or resource.

Conditionalize Quit Menu Items

Carbon applications running on Mac OS X automatically adopt the Aqua interface. Because Aqua provides
a Quit menu item under the Application menu, your application does not need to add one to the File menu.
As long as your application supports the Quit Apple event, it will quit normally. However, because the Mac
OS 8 and 9 user interfaces still require a Quit menu item, you must conditionalize your code to add one in
the File menu when running under Mac OS 8 or 9. The easiest way to identify the user interface is to check
the gestaltMenuMgrAquaLayoutBit bit of the gestaltMenuMgrAttr gestalt selector. If the bit is set,
the application is using the Aqua interface, and you should not add a Quit item to the File menu.

For example, you could use code such as the following to conditionalize your menus:

Gestalt(gestaltMenuMgrAttr, &result);
if (result & gestaltMenuMgrAquaLayoutMask)
 menuBar = GetNewMBar(rSysXMenuBar);
else
 menuBar = GetNewMBar(rMenuBar);

This method uses two different 'MBAR' resources, each with a different 'MENU' resource for the File menu.

If you must enable and disable the Quit menu item programmatically, you can use the new functions
DisableMenuCommand and EnableMenuCommand to do so. Pass NULL for the menu reference and 'quit'
for the command ID.

26 Essential Steps for Porting Your Application
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

Additional Porting Issues

In addition to the steps described in the “Essential Steps for Porting Your Application” (page 20), you should
be aware of these other issues that can affect the porting process.

Determine the Appropriate CarbonLib Version

Just like system software, CarbonLib also exists in various versions, each of which contains different levels
of functionality. Because some calls to CarbonLib merely call through to the underlying system software,
the functions available can depend on the system software version.

NotesCompatible back
to

Reflects
Universal
Interfaces
version

CarbonLib
version

Shipped with Mac OS 9. Do not develop with this version.Mac OS 8.13.3.11.0

Includes the following:Mac OS 8.13.3.11.0.4

All Carbon APIs available with Mac OS 8.1

Toolbox accessor functions

Control, Window, and Menu properties

Appearance Manager 1.1

Navigation Services

Core Foundation

Carbon Printing Manager

Adds the following:Mac OS 8.63.41.2

DataBrowser

Carbon Event Manager

XML

URL Access Manager

Apple Type Services for Unicode Imaging (ATSUI)

Interface Builder Services

Font Sync

Additional Porting Issues 27
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

NotesCompatible back
to

Reflects
Universal
Interfaces
version

CarbonLib
version

Apple Help Viewer

Font Management

Adds the following:Mac OS 9

Keychain Manager

Draw Only Within Your Own Windows

Because Mac OS X is a truly preemptive system, any number of applications may be drawing into their
windows at the same time. Carbon applications, therefore, cannot draw outside their own windows. In the
past you could call the GetWMgrPort function and use that port to draw anywhere on the screen. This port
does not exist in Mac OS X, so you will need to use alternate methods to implement window dragging and
resizing. For more detailed information about handling windows in Carbon, see “Window Manager
Issues” (page 30).

Do Not Patch Traps

Carbon applications should not patch traps because there is no trap table in Mac OS X. The Patch Manager
is unsupported, and functions like GetTrapAddress and SetTrapAddress are not available in Carbon. You
can, of course, conditionalize your code and continue to patch traps when running under Mac OS 9, but your
programs will be much easier to maintain if you avoid patching entirely.

Don’t Pass Pointers Across Processes

In Mac OS X, every process has its own address space, so attempting to pass a pointer to another process is
meaningless at best and may cause your application to misbehave. Threads or tasks created by an application
(for example, Multiprocessing Services tasks or Thread Manager threads) occupy the application’s address
space, so you can pass pointers between them.

Do Not Write to Your Application’s Resource Fork

While writing to your application’s resource fork is acceptable (if not encouraged) in Mac OS 8 and 9, you
should not do so in Mac OS X, as there are many common instances that will cause such write attempts to
fail. Some examples:

 ■ when file-system permissions don't allow itwhen the application resides on a network serverwhen the
application resides on read-only media

If you have application-specific data that you need to save, you should store them in a preferences file.

28 Additional Porting Issues
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

Ideally you should remove resource forks from your application altogether and place your resources in the
data fork (see “Move Resources to Data Fork–Based Files” (page 36). Note, however, that such resources are
also read-only.

Note that you can still write to other resource forks (such as in document files).

Check Your OpenGL Code

If you use OpenGL in your application, you should continue to link to the OpenGLLibrary, OpenGLMemory,
and OpenGLUtility stubs as you would for non-Carbon applications. On Mac OS X these functions will link
with the OpenGL framework.

Note that if you are building a Mach-O–based Carbon application that uses the OpenGL header aglMacro.h,
you must make the following call before creating any OpenGL contexts:

aglConfigure(AGL_TARGET_OS_MAC_OSX,GL_TRUE);

Do not make this call from CFM-based Carbon applications.

See “Consider Mach-O Executables” (page 35) for more information about the Mach-O format.

Examine Your Plug-ins

Carbon applications can load non-Carbon plug-ins. You must make sure, however, that your plug-ins do not
link to InterfaceLib. On Mac OS 8 and 9 this will not cause a problem, but it can cause a crash on Mac OS
X (because InterfaceLib is unavailable).

You can use the MPW tool DumpPEF with the -loader i library option to find unintentional links to
non-Carbon libraries.

Linking to Non-Carbon-Compliant Code

In some cases, your CFM application may need to call code that is not Carbon-compliant to maintain
cross-platform compatibility between Mac OS 8 and 9 and Mac OS X. For example, say your application makes
calls to the Device Manager. The Device Manager is not part of Carbon as it cannot run on Mac OS X. However,
its replacement, I/O Kit, is a Mac OS X technology that cannot run on Mac OS 8 and 9. The only way to maintain
your application’s functionality is to fork your code and make calls to either the Device Manager or I/O Kit,
depending on the platform.

Forking your code in this manner brings up some build issues. For example, if you had set preprocessor
directives to build with Carbon, the Universal Interfaces will conditionalize out any non-Carbon functions,
and attempting to call non-Carbon functions will generate a compiler error indicating missing prototypes.

The easiest way to work around this problem is to compile your noncompliant code separately, using
non-Carbon headers. You can package your non-Carbon code as a shared library, which you can then call
from your application.

Additional Porting Issues 29
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

The safest method for calling non-Carbon functions in shared libraries is to prepare the fragment and locate
the symbols manually. That is, call GetSharedLibrary to prepare the library and use FindSymbol to get
the symbol address. You can then call the function through the returned pointer. This method gives you
maximum flexibility in handling missing symbols or libraries. See the sample code included with the Mac OS
X Developer Tools CD for examples.

Window Manager Issues

This section addresses common issues encountered when porting code that draws or otherwise manipulates
windows.

Handling Buffered Windows

In Mac OS X, all windows are buffered. A window’s contents are written first to a buffer and then the Window
Manager periodically refreshes the screen with the contents of the buffers. As you don’t automatically have
control over when a window’s contents are written to the screen, you may need to make some minor changes
to your windowing code to account for buffering.

If you are writing periodically to the screen in a loop that doesn’t call WaitNextEvent, you must call
QDFlushPortBuffer to flush your drawing to the screen. Otherwise, you are only updating the contents
of the buffer.

If you draw directly into a window’s pixel map, QuickDraw cannot tell which parts of the pixel map are dirty.
To work around this, you must do one of the following:

 ■ Call QDFlushPortBuffer explicitly, passing a nonempty region parameter describing the modified
area.

 ■ Call, QDGetDirtyRegion to get the port’s dirty region, add in the area you modified by calling UnionRgn,
and then set the updated dirty region by calling QDSetDirtyRegion. The Window Manager will the
update the region during the next call to WaitNextEvent.

If you draw directly into the pixel map of your windows without using QuickDraw, you’ll need to wrap those
blits with two new calls that signal the Window Manager not to update the window until your drawing
operation completes. Here are the basic steps:

1. Use the GetWindowPort function to get the window’s port.

2. Use the LockPortBits function to lock the port’s pixel map. Note that this function is different from
LockPixels; they are not interchangeable.

3. Use the GetPortPixMap function to get a handle to the port’s pixel map. The baseAddr field of the
PixMap structure contains the base address of the actual port bits in memory.

Important: The port address is valid only after you’ve locked the port using the LockPortBits function,
and is invalid after you call the UnlockPortBits function.

4. Perform your drawing operation as quickly as possible. Because the LockPortBits function blocks all
other updates to the port, it’s important that your drawing code be small and fast to avoid impacting
system performance.

30 Additional Porting Issues
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

5. Call the UnlockPortBits function to release the port. The PixMapHandle is automatically disposed
when you call this function. Do not attempt to reuse the handle.

Note that the UnlockPortBits function does not initiate a window update, it merely allows any pending
or future updates to occur. An update is initiated either by the BeginUpdate/EndUpdate routines or when
the QDFlushPortBuffer function is called.

Bypassing the Window Manager Port

Prior to Carbon and Mac OS X, any Mac application could access the Window Manager port, which included
all available screens. Using that port, an application could write directly to the screen on top of all windows.
Developers used this capability to implement a number of features, such as custom window grow outlines
and custom window dragging.

Because recent releases of Mac OS 8 and 9 offer improved Window Manager functionality, as well as robust
drag-and-drop support through the Drag Manager, many applications no longer need to use the Window
Manager port. This is a good thing, because in Mac OS X, there is no Window Manager port, and Carbon
provides no access to the Window Manager port for applications running in Mac OS 8 and 9.

The Carbon Window Manager does supply alternate mechanisms to implement features that may have relied
on use of the Window Manager port. To learn more about when to use these mechanisms, see “Window
Dragging and Resizing Q&A” (page 31).

If your application is drawing in the Window Manager port and you don’t see an alternate mechanism
described, you should consider whether you can achieve the same results by modifying your user interface.
If that’s not appropriate, send an email to carbon@apple.com explaining what you need and some APIs
may be added to support additional features.

Window Dragging and Resizing Q&A

This section answers some frequently asked questions about dragging and resizing windows in Carbon and
Mac OS X. For related information, see “Bypassing the Window Manager Port” (page 31).

 ■ Q. What is the standard window dragging feedback supplied by DragWindow?

A. In Mac OS X, if you call DragWindow for a buffered window, the Carbon Window Manager provides
live dragging—that is, the contents of the window remain visible as a user moves the window around
the screen.

For a Carbon application running in Mac OS 8 or 9, DragWindow supplies the traditional outline feedback.

 ■ Q. Can I still use DragGrayRegion?

A. Although DragGrayRegion is fully supported in Carbon, it only applies to the current port. If you’re
currently using DragGrayRegion with the Window Manager port, you should instead use one of the
other mechanisms described here, such as calling DragWindow or using Carbon event handlers.

 ■ Q. How do I implement custom window dragging—for example, to modify the position and shape of a
tool palette as the user moves it to dock with another palette?

A. You can implement features of this type using a Carbon event handler that tracks move events. When
a user starts to drag a window, your handler receives a move window event
(kEventWindowOriginChange). If you so request, your event handler can also receive periodic move
window events as the user continues to drag the window. When the user completes the move, your
handler receives a window moved event that includes the final position of the window. Your handler

Additional Porting Issues 31
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

should get the kEventParamCurrentBounds parameter from the event, modify the Rect structure as
needed, update the parameter, and then return noErr. In the example of docking a palette to another
palette, you can either make changes to the palettes during the move as the current position warrants,
or you can modify them after the move is complete.

Keep in mind that using a move event handler that receives and processes events during the move may
have an impact on performance.

The Carbon Window Manager may also support custom dragging as part of an API to be added later.
However, in Mac OS X this approach would only provide outline feedback for the drag, rather than live
feedback.

 ■ Q. What is the standard window resizing feedback supplied by GrowWindow?

A. If you do not supply a resize event handler (described in another question), GrowWindow provides
the traditional outline feedback.

Figure 1-1 (page 32) shows the traditional outline feedback for resizing a window.

Figure 1-1 Outline feedback as a user resizes a window

 ■ Q. How do I take advantage of live resizing in Mac OS X?

A. If you want live resizing in Mac OS X—that is, the contents of a window remain visible and are adjusted
and redrawn as needed as a user resizes the window—you must set the kWindowLiveResizeAttribute
attribute on the window (either at creation time using CreateNewWindow or CreateCustomWindow,
or by called ChangeWindowAttributes on an existing window) and then provide a resize event handler.
The Carbon Window Manager sends an event (kEventWindowBoundsChanged) to your handler that
indicates when it should adjust its scrollbars, redraw its content, and so on, as the user resizes the window.

32 Additional Porting Issues
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

Carbon applications running in Mac OS 8 and 9 will only get outline resizing.

 ■ Q. How do I implement custom window resize feedback—for example, to make the window snap to a
grid as a user resizes the window?

A. You can implement custom resizing using the same Carbon event handler you use to support live
resizing. When a user starts to resize a window, your handler receives a resize window event
(kEventWindowBoundsChanged). Your handler also receives periodic events as the user continues the
resize. When the user completes the resize, your handler receives a window resized event that includes
the final size. You can modify the kEventParamCurrentBounds parameter to constrain resizing to the
desired grid as the user resizes, or do so after the resize is complete.

If you are already using a custom window definition (WDEF) and you do not need live resizing, the easiest
way to provide custom resize feedback is to support the new WDEF message
kWindowMsgGrowImageRegion. Your WDEF receives this message periodically as the user moves the
mouse during a resize operation. You can use this message to override the region that gets displayed
during resize. To get these messages, your WDEF must report the
kWindowSupportsSetGrowImageRegion feature bit.

 ■ Q. Do I need to make any other changes to my existing WDEF?

A. In most cases, you should not have to change your custom window definition. Prior to Carbon and
Mac OS X, custom window definitions expected to draw directly in the global port. Now the Carbon
Window Manager automatically sets up an appropriate port for drawing. When your window definition
gets a draw message, it can go ahead and draw—but it shouldn’t assume it’s drawing in a global port,
because it isn’t.

 ■ Q. I use the Window Manager port to implement custom dragging with translucent drag images. How
do I keep my translucent drag images without the Window Manager port?

A. The Drag Manager has supported translucent dragging since version 1.3 and System 7.5.3. This feature
is fully supported in Carbon, so you don’t need to write any custom code.

 ■ Q. How can I capture a region of the current global screen?

A. There is currently no way to do this in Carbon, although we are considering providing an interface
that will allow you to grab an arbitrary screen region.

You should not rely on calling CreateNewPort and determining the location of the screen bits from
the new port. This behavior is no longer supported and code that relies on it is likely to break in future
versions of Mac OS X.

 ■ Q. How can I write a screen saver or other application that needs to take over the whole screen?

A. Use the QuickTime functions BeginFullScreen and EndFullScreen. For more information, see
the QuickTime documentation at

http://developer.apple.com/documentation/QuickTime/index.html

 ■ Q. I don’t want to modify my user interface and I don’t see anything described here that will help me
do what I want to do.

A. Tell us what you need and why, so that we can help provide a solution.

Optimizing Your Code for Carbon

This section describes steps and issues you should consider for your application to take best advantage of
the Mac OS X environment.

Optimizing Your Code for Carbon 33
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

http://developer.apple.com/documentation/QuickTime/index.html

Manage Memory Efficiently

Memory management doesn’t change much for Carbon applications running on Mac OS 9. You’ll need all
the code you use today to handle heap fragmentation, low memory situations, and stack depth.

However, there are some techniques you can adopt now that will help your application perform well when
running on Mac OS X, which uses an entirely different heap structure and allocation behavior. The most
significant change is in determining the amounts of free memory and stack space available. For example,
you should avoid preallocating memory, as doing so will not make best use of the allocators available in Mac
OS X. Similarly, using suballocators (allocating a block of memory and then allocating from within the block)
is not suggested.

The functions FreeMem, PurgeMem, MaxMem, and StackSpace are all included in Carbon. You should, however,
think about how and why you are using them. You’ll probably want to consider additional code to better
tune your performance.

The FreeMem, PurgeMem, and MaxMem functions behave as expected when your Carbon application is running
on Mac OS 9, but they’re almost meaningless when it’s running on Mac OS X, where the system provides
essentially unlimited virtual memory. Although you can still use these calls to ensure that your memory
allocations won’t fail, you shouldn’t use them to allocate all available memory. Allocating too much virtual
memory will cause excessive page faults and reduce system performance. Instead, determine how much
memory you really need for your data, and allocate that amount.

Before Carbon, you would use the StackSpace function to determine how much space was left before the
stack collided with the heap. This routine could not be called at interrupt time, but was useful for preventing
heap corruption in code using recursion or deep call chains. But because a Carbon application may have
different stack sizes under Mac OS 9 and Mac OS X, the StackSpace function is no longer very useful. You
shouldn’t rely on it for your logic to terminate a recursive function. It might still be useful as a safety check
to prevent heap corruption, but for terminating runaway recursion, you should consider passing a counter
or the address of a stack local variable instead of calling StackSpace.

The Carbon API does not include any subzone creation or manipulation routines. If you use subzones today
to track system or plug-in memory allocations, you must use a different mechanism. For plug-ins, you might
switch to using your own allocator routines. To prevent memory leaks, make sure all your allocations are
matched with the appropriate dispose calls.

The Carbon API also removes the definition of zone headers. You can no longer modify the variables in a
zone header to change the behavior of routines like MoreMasters. Simply call MoreMastersmultiple times
instead, which will allocate 128 master pointers each time. (You can also use the new Carbon call
MoreMasterPointers, which allows you to specify the number of master pointers to allocate in one
relocatable block.)

Avoid Polling and Busy Waiting

Polling for events or using a timer loop is allowable (but not recommended) on Mac OS 9, but it can cause
severe performance problems on Mac OS X. In the Mac OS X multitasking environment, the OS gives time
to all active processes. A process that is busy waiting for an event is considered active, even though it is not
actually doing anything. Such waiting reduces the performance of other active processes. As an extreme
example, multiple instances of a shared library, all polling for an event, can easily bog down the system.
Instead of polling, your code should implement some sort of notification mechanism (such as an event queue
or semaphore).

34 Optimizing Your Code for Carbon
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

Note that triggering actions on null events (to blink the cursor, for example) does not work on Mac OS X, as
the system will notify your application only when real events occur. To work around this issue you should
use Carbon Event Manager timers.

Use “Lazy” Initialization for Shared Libraries

To allow Mac OS X to manage memory efficiently, you should not prepare shared libraries at application
launch time, but rather only when you need them. Also, try to avoid using initialization functions if possible.
See Mac OS Runtime Architectures for more information about initialization functions.

Adopt HFS Plus APIs

HFS Plus, the Mac OS Extended File Format, is the default file system for Mac OS X, so you should consider
using HFS Plus APIs if you need to programmatically access files on hard drives. Some of the advantages of
HFS Plus are as follows:

 ■ support for long Unicode filenames (255 characters)

 ■ support for files larger than 2 GB

 ■ support for extended file attributes

See the File Manager documentation at

http://developer.apple.com/documentation/carbon/Reference/File_Manager

for more information about HFS Plus.

Consider Mach-O Executables

You can build Carbon applications in two object file formats: PEF, which uses the Code Fragment Manager
introduced with PowerPC Macintosh computers, and Mach-O, which is the preferred format for Mac OS X.
Depending on your needs, you may want to consider creating Mach-O-based Carbon applications. There are
advantages and disadvantages.

Advantages:

 ■ Applications get access to all native Mac OS X APIs such as Quartz and POSIX. CFM-based Carbon
applications can access only Carbon APIs.

 ■ Symbolic debugging is easier on Mac OS X (using GDB).

 ■ You can take full advantage of the Interface Builder and Project Builder development tools on Mac OS
X.

Disadvantages:

 ■ Applications cannot run on Mac OS 8 and 9.

 ■ Mach-O doesn’t support the existing CFM plug-in architecture.

Optimizing Your Code for Carbon 35
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

http://developer.apple.com/documentation/carbon/Reference/File_Manager

 ■ Programmatic manipulation of the Code Fragment Manager (for example, calling GetSharedLibrary)
may not work as expected.

You can also package CFM-based code and Mach-O–based executables together in bundles (as described in
“Consider Using Bundles” (page 36)). Bundling creates file packages analogous to PowerPC/68K fat applications
built during the transition to PowerPC. Such CFM/Mach-O packages will execute the CFM version of the
application on Mac OS 8 and 9, and the Mach-O version on Mac OS X. See Inside Mac OS X: System Overview
for more information about the Mach-O format.

Eventually, as customer focus shifts to Mac OS X, you should concentrate on building Mach-O binaries.

Move Resources to Data Fork–Based Files

While Mac OS X can handle application resources stored in the resource fork of an executable file, in general
you should begin storing these resources in the data fork. The major reason for doing this is to maximize
compatibilty when moving files between different file systems. Many computing environments and file
copying tools recognize only single-fork files; copying uncompressed files usually results in the loss of any
information stored in the resource fork.

The only exceptions at this time are the 'cfrg' 0 and 'plst' 0 (or 'carb' 0) resources, which must
remain in the resource fork for CFM-based applications so the Mac OS X Finder can launch them properly.

In general you should use the Core Foundation CFBundle APIs to package and access resources in the data
fork. While you can simply move your existing resource files to the data fork, a better solution is to save each
resource as an individual data fork–based file. Doing so makes it much easier to access (and perhaps modify)
any individual resource.

See “Consider Using Bundles” (page 36) and Inside Mac OS X: System Overview for more information about
bundling resources.

Consider Using Bundles

A bundle is a Mac OS X concept that lets you store all the software resources and executable files that an
application requires in one package. Essentially a directory or folder hierarchy, a bundle could contain any
of the following:

 ■ images, sounds, or other files used by the application

 ■ localized character strings

 ■ multiple executable versions of an application.

A bundle can contain multiple sets of resources, grouped by language, locale, and platform. By combining
all these resources and executables in one package, you can create one version of your application that is
localized for multiple languages and can run on multiple platforms.

On Mac OS X, a bundle hierarchy normally appears as a single file, unless the bundle bit is unset, in which
case it appears as a folder hierarchy.

On Mac OS 8 and 9, a bundle appears as a folder hierarchy, because the system software does not have
knowledge of bundles. For this reason you should generally place an alias to your application prominently
in the top level folder where the user can find it.

36 Optimizing Your Code for Carbon
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

For maximum compatibility, you should use the Core Foundation CFBundle APIs to access bundled resources
and executable files. See the Core Foundation Bundle Services documentation at

http://developer.apple.com/documentation/MacOSX/Conceptual/BPBundles/index.html

Note that if you do not wish to adopt bundles at this time, you can include some of the information stored
in a bundle’s Info.plist file in a resource of type 'plst'with ID 0. Doing so allows you to specify attributes
that provide information to the Finder (for example, what icons to use, what document types the application
recognizes). You can also access data in the 'plst' resource using Resource Manager or CFBundle APIs.

See Inside Mac OS X: System Overview for more specific information about packaging files in bundles.

Begin Transitioning to the Aqua Interface

By linking with CarbonLib, your Carbon application will automatically register itself with the Appearance
Manager and adopt the basic Aqua look and feel. You should make sure that your interface elements are
Appearance Manager–compliant; generally this means using system-defined controls, menus, and windows
as much as possible.

To provide the best user experience, however, you should take the additional time to modify dialog boxes,
windows, icons, controls, and so on, to conform with the Aqua specification. Doing so ensures that your
application will look its best on Mac OS X. For details, see the document Aqua Human Interface Guidelines
available at

http://developer.apple.com/documentation/macosx/

For additional information on icons, see “Provide Thumbnail Icons for Your Application” (page 37).

You should also consider adding some new interface elements introduced with Aqua, such as the following:

 ■ Sheets: Sheets are the new window-centric modal dialogs that slide down from the title bar. Sheet
functions appear in MacWindows.h.

 ■ Help Tags: A help tag is a little yellow text field that appears over a control when you roll the cursor on
top of it. The tag typically describes or clarifies the control’s purpose. Help tags replace the Help balloons
available on older Mac OS systems. Help tag functions appear in MacHelp.h.

Adopt a Terse Name for the Application Menu

The leftmost pull-down menu in Mac OS X is the application menu. To maximize space for other menus, you
should adopt a short version of your application name (16 characters or less) for this menu. You should add
this information in your application’s InfoPlist.strings file.

Provide Thumbnail Icons for Your Application

The information in this section supplements the document “Obtaining and Using Icons With Icon Services,”
available at the Carbon documentation website at

http://developer.apple.com/documentation/carbon/

Optimizing Your Code for Carbon 37
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

http://developer.apple.com/documentation/MacOSX/Conceptual/BPBundles/index.html
http://developer.apple.com/documentation/macosx/
http://developer.apple.com/documentation/carbon/

In Mac OS X, a user may choose to display very large icons for the desktop, the application Dock, and so on.
The Finder uses a high-quality scaling algorithm, supplied by Icon Services, to generate the variable-sized
icons it needs. To help ensure a pleasing result for your application, you should provide a thumbnail icon
and a thumbnail mask as part of the 'icns' resource for your icon family. Figure 1-2 (page 38) shows the
icon family, including thumbnail icons, for Classic.app in Mac OS X.

Figure 1-2 Thumbnail icons in a .icns file, displayed in Icon Browser

A thumbnail icon is 128x128 pixels with 32-bit depth. A thumbnail mask is 128x128 pixels with 8-bit depth
(there is no one-bit mask for a thumbnail). Within an icon family resource, you specify thumbnail elements
with the following constants:

enum {
 kThumbnail32BitData = 'it32',
 kThumbnail8BitMask = 't8mk'
};

You can use these icon types only for an icon element within an 'icns' icon family, not for an individual
icon or icon mask resource.

Your application can continue to provide small (16x16) and large (32x32) icons as a complement to its
thumbnail icons, especially if you need to preserve certain fine details at smaller resolutions. Icon Services
will pick the best available icon for a particular size, so providing additional icons gives it more flexibility and
gives you more control.

As of this writing, some third-party resource editor applications support editing of thumbnail icons, so you
can investigate to determine which one best meets your needs.

If you want to add a thumbnail icon or mask to an icon family yourself, you can do so with the Icon Services
function SetIconFamilyData.

38 Optimizing Your Code for Carbon
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

pascal OSErr SetIconFamilyData (
 IconFamilyHandle iconFamily,
 OSType iconType,
 Handle h)

iconFamily
A handle to an iconFamily data structure to be used as the target.

iconType
A value of type OSType specifying the format of the icon data you provide. For a thumbnail icon, for
example, you specify kThumbnail32BitData in this parameter. For a thumbnail mask, you specify
kThumbnail8BitMask.

h
A handle to the icon data you provide. For a thumbnail icon, the handle contains raw image data in
the form of 128x128, four bytes per pixel, RGB data. For a thumbnail mask, the data is in the same
format except that it is one byte per pixel.

When you are finished constructing the icon family, you can write it to a file with the WriteIconFile
function. For more information on these functions, see the document “Obtaining and Using Icons With Icon
Services.”

Optimizing Your Code for Carbon 39
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

40 Optimizing Your Code for Carbon
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Preparing Your Code for Carbon

This chapter describes how to use the tools and libraries provided with the Mac OS X Developer Tools CD to
build Carbon applications for both Mac OS 9 and Mac OS X. You can also install the Carbon system extension,
CarbonLib, to run Carbon applications on Mac OS versions 8.1 and later.

Native Mac OS 9 Versus Mac OS X’s Classic Environment

If you plan to build, run, and debug Carbon applications for both Mac OS 9 and Mac OS X on a single system,
the Mac OS X application Classic.app provides a convenient environment for running your development
system. You can easily switch between the two environments, and launch applications in either.

If you prefer to develop on a native Mac OS 9 system (that is, on a computer running Mac OS 9 instead of
Mac OS X), you’ll need to reboot to run Mac OS X and test your Carbon application in that environment.

If you have two computers, you might want to run Mac OS 9 on one computer and Mac OS X on the other.
To transfer files between them, you can use one of the following methods:

 ■ Enable file sharing on one of the machines and copy the files directly.

 ■ Copy the files using FTP.

 ■ Activate the Metrowerks remote debugger and select “Debug”. (Doing so transfers the file to Mac OS X
and begins a debugging session. After transfer, you can quit the debugging session, leaving the file
ready for launch, or perhaps GDB debugging.)

Development Scenarios

There are a number of tools and processes you can use to build and debug Carbon applications. This section
describes three scenarios that Apple recommends, and the advantages of each.

Using CodeWarrior to Build a CFM Carbon Application

This is the most likely scenario if you’re porting an existing Mac OS 9 application to Carbon, especially if
you’re already using CodeWarrior. You’ll continue to use the Mac OS development tools and processes you’re
familiar with, and you’ll create CFM applications that can run on both Mac OS 9 and Mac OS X. The only
difference is that you’ll include the CarbonLib stub library in your CodeWarrior project.

Native Mac OS 9 Versus Mac OS X’s Classic Environment 41
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building Carbon Applications

Using CodeWarrior to Build a Mach-O Carbon Application

Metrowerks CodeWarrior Pro version 8.0 and later has support to build Mach-O applications on Mac OS 9,
as well as build and debug applications on Mac OS X. If you have a second computer, you may also want to
investigate whether Metrowerks’ two-machine debugger suits your needs, as it can debug CFM applications
on both platforms. Contact Metrowerks for information about these products.

Using Project Builder to Build a Mach-O Carbon Application

Project Builder is Apple’s integrated development environment (IDE) for Mac OS X. It offers a comprehensive
feature set that includes source-level debugging. Project Builder is a good choice if your application will run
only on Mac OS X, and you want to take advantage of features available only on that platform. However, you
can’t use Project Builder to build a CFM application, so if you want your program to run on both platforms
you’ll either need to use CodeWarrior or other tools to create a CFM version for Mac OS 9.

See the Project Builder online help documentation for more information about creating Mach-O Carbon
applications.

Building a CFM Carbon Application With CodeWarrior

If you plan to use Metrowerks CodeWarrior, CodeWarrior Pro version 8.0 or later is recommended. You can
run CodeWarrior natively on Mac OS 9 or Mac OS X.

Preparing Your Development Environment

Before you start Carbon development with CodeWarrior, you’ll need to install the tools and libraries provided
with the Mac OS X Developer Tools CD or the Carbon SDK.

1. Copy the Carbon Support folder to the Metrowerks CodeWarrior folder on your hard disk. The Carbon
Support folder should reside in the same folder as the CodeWarrior IDE application.

2. Copy the appropriate Carbon system extension (CarbonLib or DebuggingCarbonLib) from the Carbon
Support:CarbonLib folder to your Extensions folder. You should keep only one Carbon extension in your
Extensions folder at any time.

 ■ CarbonLib is the standard implementation of Carbon for Mac OS 8.1 or later.

 ■ DebuggingCarbonLib is a debugging version of CarbonLib.

3. CarbonLib is included in all versions of Mac OS 9 as well as the Classic environment on Mac OS X.
However, to make sure you are using the latest version, you should replace the default CarbonLib with
the latest one available (in this case version 1.6).

4. To avoid the potential for data loss in the event that you need to reinstall Mac OS X, ensure that your
CodeWarrior project files and source code reside on a separate hard disk.

42 Building a CFM Carbon Application With CodeWarrior
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building Carbon Applications

Building Your Application

To build a Carbon version of your application, you’ll need to make the following changes to your CodeWarrior
project.

1. Add the following statement to one of your source files before including any of the Carbon headers:

#define TARGET_API_MAC_CARBON 1

This conditional specifies that the included header files should allow only Carbon-compatible APIs and
data structures. You can include the conditional in a prefix file if you wish.

Note: Moving a project from CodeWarrior Pro 8.0 to an earlier CodeWarrior version may result in the
loss of prefix file information in the C/C++ Language Preferences panel. Many of the code samples on
the Mac OS X Developer Tools CD make use of a prefix file (usually CarbonPrefix.h) to define
TARGET_API_MAC_CARBON, so if you try to build a sample on an older CodeWarrior system, you may
need to reinstate the prefix file information.

2. Add the CarbonLibStub stub file to your project.

3. Ensure that your project is not linking to any libraries that are not Carbon compatible. For example, the
MPW ANSI C library is not Carbon compatible. Note that you should not directly link to InterfaceLib
when you are linking with CarbonLib. On Classic Mac OS, CarbonLib will return an error to the Code
Fragment Manager if your application attempts to link to both CarbonLib and InterfaceLib, causing
the application launch to fail.

4. Ensure that your CodeWarrior access paths and other target settings are correctly specified. See the
sample code included with the Carbon SDK for examples of how to do this.

Running Your Application on Mac OS 9

You can launch your application from the Finder on a Mac OS 9 system by double-clicking its icon. To run
Carbon applications on Mac OS 8 (version 8.1 or later), you must install the CarbonLib or DebugCarbonLib
extension in the Extensions folder.

Running Your Application on Mac OS X

As long as your application resides on an HFS Plus disk, you can launch it by double-clicking its icon.You
cannot launch applications from a standard HFS format disk on Mac OS X.

You can also use the command-line tool LaunchCFMApp to launch CFM applications from a terminal window
in Mac OS X. If the CFM application is in the current working directory, the command is:

/System/Library/Frameworks/Carbon.framework/Versions/A/Support/LaunchCFMAppfilename

If the application is in a different directory, you must specify the path.

Building a CFM Carbon Application With CodeWarrior 43
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building Carbon Applications

Note that if your application does not contain a 'plst' resource, a bundled Info.plist file, or a 'carb'
resource, Mac OS X opens the application in the Classic compatibility environment. To ensure that Mac OS
X properly recognizes your application, it must include a resource of type 'plst' with ID 0, a bundled
Info.plist file, or a resource of type 'carb' with ID 0.

Building a Mach-O Carbon Application With CodeWarrior

Before building a Mach-O version of your application with CodeWarrior, you should follow the instructions
in the previous section for building a CFM Carbon application. After you’ve successfully built and tested a
CFM version of your application on Mac OS 9, you can use CodeWarrior to build a Mach-O version for
debugging on Mac OS X.

Preparing Your Development Environment

Metrowerks CodeWarrior Pro 8.0 and later has support for Mach-O applications. See the Metrowerks
documentation for more information.

Building Your Application

Refer to your Metrowerks CodeWarrior documentation for instructions on building Mach-O versions of your
application.

Running Your Application on Mac OS X

CodeWarrior creates an executable Mach-O binary that includes a resource fork. As long as this file resides
on an HFS Plus disk, the resource fork remains intact and you can launch the application by double-clicking
its icon.

Building a Mach-O Carbon Application With Project Builder

Project Builder is included on the Mac OS X Developer Tools CD. Instructions for building Mach-O Carbon
applications are available in Project Builder’s online help documentation.

Building Applications Using MPW

An alternative to using CodeWarrior or ProjectBuilder for CFM applications is to use Apple’s MPW development
environment, which is now available as a free download from the following website:

http://developer.apple.com/tools/mpw-tools/

44 Building a Mach-O Carbon Application With CodeWarrior
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building Carbon Applications

http://developer.apple.com/tools/mpw-tools/

You should place the CarbonLibStub stub file in the folder Interfaces and
Libraries:Libraries:SharedLibraries, while the Carbon version of the Universal Headers should be
placed in Interfaces and Libraries:Interfaces:CIncludes.

You compile your application and link against CarbonLibStub just as you would when using CodeWarrior.
Note however that Carbon applications must contain a ‘SIZE’ resource, and the resource must have the
acceptSuspendResumeEvents flag set. While CodeWarrior adds a ‘SIZE’ resource automatically, you
must create your own when building with MPW.

In addition, you need to override your default entry point (by using the -m option in PPCLink) with one of
the following:

 ■ main if your application does not call exit() and does not expect any exit procedures to run.

 ■ __appstart if you want the functionality previously supplied by __start. __appstart is a
stripped-down version of __start that initializes the environment, but does not provide support for
MPW tools. To use __appstart, you need to link with StdCRuntime.o and StdCLib in addition to
CarbonLib.

The version ofStdCRuntime.o containing__appstart, as well as a Carbon-friendly version of the CreateMake
tool, will be available from the following web site:

http://developer.apple.com/tools/mpw-tools/updates.html

You should also examine the PackageTool sample application in the Sample Code folder of the CarbonLib
SDK and the MPW release notes for more specifics about the build process.

Debugging Your Application

You can debug Carbon applications on Mac OS 9 or Mac OS X using the Metrowerks debugger. You can use
also this debugger with two networked machines (for example, one running Mac OS 9 and the other running
Mac OS X). Contact Metrowerks for more information.

You can also debug Carbon applications on Mac OS X using GDB, which you can run from a terminal window.
Although GDB cannot directly debug a CFM application at this time, there is a workaround that lets you
perform low-level debugging on a CFM application. You’ll use GDB to debug LaunchCFMApp, a Mach-O
program that launches CFM applications.

This workaround has the following features and limitations:

 ■ You can set breakpoints at Mach-O functions. Since the Carbon library is Mach-O code, you can set
breakpoints at Carbon functions. However, you cannot set breakpoints at CFM functions, including those
in your application.

 ■ You can examine the memory contents at any address with the x command. However, you cannot view
variables or expressions, since GDB cannot use the symbol names in a CFM application.

 ■ You cannot step through your application’s code.

To debug your CFM application:

1. Launch the Terminal application: /Applications/Utilities/Terminal.app.

Debugging Your Application 45
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building Carbon Applications

http://developer.apple.com/tools/mpw-tools/updates.html

2. Enter gdb
/System/Library/Frameworks/Carbon.framework/Versions/A/Support/LaunchCFMApp.

GDB loads the LaunchCFMApp program.

3. If you want, set breakpoints at any Carbon function with the br command.

For example, you may want to set a breakpoint at the DebugStr function, because DebugStr prints its
argument without stopping the program’s execution. Enter br DebugStr at the GDB prompt.

4. At the GDB prompt, enter r <app-pathname>, where <app-pathname> is the full pathname for your
CFM application.

To enter the application’s pathname, drag the application’s icon to the Terminal window.

LaunchCFMApp launches your application.

To pause your application’s execution at any time, press Control-C in the Terminal application. To continue
your application, enter cont. For more information on GDB, enter help.

Here are some additional hints that you might find useful:

 ■ From the terminal window, entering setenv CFMDebugFull 1 directs LaunchCFMApp to display
debugging information at application launch time.

 ■ Entering setenv USERBREAK 1 enables GDB to catch C++ exceptions.

 ■ You can set the environment variable DYLD_IMAGE_SUFFIX to specify an optional suffix to add to
Mach-O libraries when they are loaded. For example, entering setenv DYLD_IMAGE_SUFFIX _debug
provides an easy way to link to the debug versions of the various frameworks. You can easily toggle
between the normal and debug versions of these libraries without having to rebuild your application
each time. The debug versions often perform more assertions, parameter checks, and so on, which may
simplify debugging.

 ■ You can call functions in Mach-O libraries directly from the GDB command line, as long as they were
explicitly or implicitly loaded. For example, you could call the CFShow function, which shows the contents
of various Core Foundation and Cocoa objects. Because the Carbon framework is built as Mach-O binaries,
you can call Carbon functions from GDB, even those not directly called by your application.

 ■ The remote debugger nub has some command line options which you can view by entering
/usr/libexec/gdb/DebugNub -help

 ■ If you want to examine parameter values for CFM applications in GDB, you can do so by examining
register values. For example, given a function

void loofah (int x, int y, int z);

then print $r3 from the GDB command line obtains the value of x (passed in GPR3). Remember that
the usual calling conventions apply in determining which parameters are passed in which registers. See
Mac OS Runtime Architectures for more information about PowerPC calling conventions.

46 Debugging Your Application
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Building Carbon Applications

This chapter details the process required to port a simple application to the Carbon interface. While this
application is likely much simpler than your code, many of the steps are similar and you can use this example
as a guideline for porting your own application.

The Sample Application

The application used for this porting example is Sample (also known as TrafficLight), which is an old Mac OS
demonstration program used to illustrate basic windowing and user interaction.

The original C code listing is also reproduced in “The Sample Application” (page 97).

Sample puts up a small window containing a rudimentary traffic light which toggles between red and green
when you click in the window or when you select a color from the Light menu. Figure 3-1 (page 47) shows
the Sample application.

Figure 3-1 The Sample application

The Sample Application 47
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

Obtaining the Carbon Dater Report

The first step in the porting process is to obtain a Carbon Dater report detailing what APIs will need to be
changed or modified. Figure 3-2 shows the opening page of a Carbon Dater report on Sample.

Figure 3-2 A Carbon Dater report

Note that while the percentage of unsupported APIs seems high (33.3 %), this fraction corresponds to only
23 functions. Larger applications typically contain many more supported functions, often resulting in
compatibility ratings of 90% or higher.

Table 3-1 summarizes Carbon Dater’s comments about the incompatible functions.

Table 3-1 Carbon Dater output for incompatible functions

CommentsFunction NameManager

Uses working directories. UseFindFolder andGestalt instead.SysEnvironsMemory
Management
Utilities

48 Obtaining the Carbon Dater Report
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

CommentsFunction NameManager

Carbon does not support zones because they do not work in a
preemptively multitasked environment.

ApplicationZoneMemory Manager

Mac OS X applications have no size limit on their application
partition.

GetApplLimit

This routine is not needed by PowerPC-based applications
because they can specify a stack size in the 'cfrg' 0 resource.

MaxApplZone

Patch Manager not supported in Carbon.NGetTrapAddressPatch Manager

Carbon does not support the Disk Initialization Manager. Disk
Initialization is supported by the system. Mac OS X applications
that need to initialize disks can do so using new APIs in the
I/OKit.

DIBadMountDisk Initialization
Manager

In Carbon, the Mac OS automatically initializes Quickdraw for
every application. When the Mac OS initializes QuickDraw, the
Mac OS also automatically calls InitGraf.

InitGrafQuickDraw
Manager

Desk accessories not supported in Carbon.CloseDeskAccDevice Manager

Desk accessories not supported in Carbon.OpenDeskAcc

InitDialogs is not supported in Carbon. There is no need to
initialize the Dialog Manager as the shared library is loaded as
needed.

InitDialogsDialog Manager

OSEventAvail is not supported in Carbon. Use theEventAvail
function instead.

OSEventAvailEvent Manager

Desk accessories are not supported in Carbon.SystemClick

In Carbon, the Event Manager automatically handles all task
scheduling.

SystemTask

Replaced by CheckMenuItem.CheckItemMenu Manager

Replaced by DisableMenuItem.DisableItem

Replaced by EnableMenuItem.EnableItem

InitMenus is not supported in Carbon. There is no need to
initialize the Menu Manager because the shared library is loaded
as needed.

InitMenus

Carbon does not support desk accessories.SystemEdit

TheCloseWindow function is not supported because developers
do not allocate their own memory for windows in Carbon. Use
the DisposeWindow function to remove a window instead.

CloseWindowWindow Manager

Obtaining the Carbon Dater Report 49
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

CommentsFunction NameManager

InitWindows is not supported in Carbon. There is no need to
initialize the Window Manager because the shared library is
loaded as needed.

InitWindows

Calls InvalWindowRect, which takes a window pointer as an
additional parameter. This change is necessary because
invalidation works only on windows, not ports, and windows
are not ports in Carbon.

InvalRect

There is no need to initialize the Font Manager because the
shared library is loaded as needed.

InitFontsFont Manager

There is no need to initialize TextEdit because the shared library
is loaded as needed.

TEInitTextEdit

The Carbon Dater report indicates that many of the incompatible functions are either no longer needed or
obsolete (such as those related to desk accessories), while others require just a replacement. There are only
a few cases which might require some thoughtful workarounds.

The Basic Port

This section describes the initial steps of the porting process. For clarity, the subsection names parallel the
porting steps described in “Preparing Your Code for Carbon” (page 17)

Make Sure All of Your Code is PowerPC–Native

To qualify for this step, the Sample application should compile as a PowerPC executable, which it does. You
can also make the following changes to clean up the code:

 ■ Remove the #pragma segment statements. These statements indicate which segments should contain
which parts of the code. PowerPC code does not use segments, so these are unnecessary.

 ■ Remove UnloadSeg calls in Main (2 instances). Again, these calls make sense only on 68K machines.

 ■ Remove the comment on segmentation strategy.

 ■ Remove the TrapAvailable function and all references to it. Because WaitNextEvent is always
available on current systems, TrapAvailable is superfluous. Also, it relies on the NGetTrapAddress
function, which is illegal in Carbon anyway, so you might as well get rid of it now.

Update to the Current Universal Interfaces and Use the Carbon SDK

You must make sure that Sample compiles and runs using the latest version of Universal Interfaces, which
should be included with the latest version of the Carbon SDK. The examples here assume you are building
your code using Metrowerks CodeWarrior. The following changes are necessary to update to the latest
headers:

50 The Basic Port
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 ■ Remove Desk.h include statement and add Devices.h in both Sample.c and SampleInit.c.

 ■ Change name of GetGlobalMouse function in Sample.c and Sample.h to MyGetGlobalMouse (or
something similar). The local function collides with the GetGlobalMouse function in Events.h.

 ■ Remove the reference to _DataInit in main and its external declaration. This function (part of the MPW
runtime library) initializes global data on 68K machines.

Target Mac OS 8 and 9 First

This guideline requires you to focus on building a CFM-based Carbon application (at least initially), rather
than a Mach-O–based one.

Begin With CarbonAccessors.o

This step is probably the most tedious as it requires you to inspect your code for data structure access that
will become illegal in Carbon.

First, add the object file CarbonAccessors.o to your CodeWarrior project.

Then add#define ACCESSOR_CALLS_ARE_FUNCTIONS 1 to the beginning ofSample.c andSampleInit.c.
With this setting in place, the compiler generates errors indicating places where you need to add accessor
functions.

If you don’t mind seeing additional compile errors initially, you can also add #define
OPAQUE_TOOLBOX_STRUCTS 1. The compiler will then generate errors if it detects attempts to directly access
fields of the now opaque structures. You can use this error list to identify places where you need to modify
the code to use accessor functions.

For example, after setting both conditionals, CodeWarrior generates errors such as the following when
attempting to compile Sample.c:

Error : cannot convert
'struct OpaqueWindowPtr *' to
'struct OpaqueGrafPtr *'
Sample.c line 224 SetPort(window); /* the window must be the current port... */

Error : illegal use of incomplete struct/union/class 'struct OpaqueWindowPtr'
Sample.c line 225 EraseRect(&window->portRect); /* because of a bug in ZoomWindow */

Error : illegal use of incomplete struct/union/class 'struct OpaqueWindowPtr'
Sample.c line 227 InvalRect(&window->portRect); /* to make things look better on-screen
 */

The code indicated by the errors (contained in the function DoEvent) is as follows:

…
 case inZoomIn:
 case inZoomOut:
 hit = TrackBox(window, event->where, part);
 if (hit) {
 SetPort(window);/* window must be the current port */
 EraseRect(&window->portRect); /* because of a bug in ZoomWindow */

The Basic Port 51
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 ZoomWindow(window, part, true); /* note that we invalidate and erase... */
 InvalRect(&window->portRect); /* to make things look better on-screen */
 }
 break;
…

You must use an accessor to obtain the contents of the window.portRect field, and then you must cast
the window pointer to a graphics pointer (GrafPtr) before setting the port. For more information about
available accessor functions and how to use them, see “Functions for Accessing Opaque Data Structures” (page
82).

After the required changes, the code might look something like this:

 …
 case inZoomIn:
 case inZoomOut:
 hit = TrackBox(window, event->where, part);
 if (hit) {
 Rect portRect; /*•• new variable to hold the value of */
 /*•• the portRect field of window. */
 GetPortBounds(GetWindowPort(window), &portRect); /*•• new accessor added */
 SetPort(GetWindowPort(window));/*•• The windowPtr is now cast to */
 /*•• a GrafPtr before setting */
 EraseRect(&portRect); /* because of a bug in ZoomWindow */
 ZoomWindow(window, part, true); /* note that we invalidate and erase... */
 InvalRect(&portRect); /* to make things look better on-screen */
 }
 break;
…

Note that the event record (referenced in a parameter for TrackBox) is not opaque. This is one of the few
Carbon structures that remains accessible without accessors.

You also need to add accessor functions to the following functions:

 ■ DoEvent: add an accessor to obtain the screenbits field of the QDGlobals structure.

 ■ AdjustCursor : add accessors to obtain the port bounds, the visible region, and the arrow field of the
QDGlobals structure. Instead of attempting to get the portBits field of the window port and setting
the global origin from that, you can obtain the local port bounds, translate them to global coordinates,
and set the origin to the upper left corner of those bounds. Also, you must allocate (and afterwards
dispose of) a region handle to hold the visible region obtained by the accessor.

 ■ DoUpdate: Add an accessor to obtain the visible region.

 ■ DrawWindow: Convert the Window pointer to type GrafPtr before setting the port.

 ■ SetLight: Add an accessor to obtain the port bounds.

 ■ DoCloseWindow: You would normally want to use an accessor to obtain the windowKind field, but the
function using it is CloseDeskAcc, which is not supported in Carbon anyway. So the simplest thing to
do is to eliminate the code that handles the desk accessory case altogether.

 ■ IsAppWindow: Add an accessor to obtain the window kind.

 ■ IsDAWindow: Normally you would use an accessor to obtain the window kind, but because the entire
function is useful only for desk accessories, it is simpler to remove it altogether.

 ■ AlertUser: Add an accessor to obtain the arrow field of the QDGlobals structure.

52 The Basic Port
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 ■ Initialize (in SampleInit.c): Instead of determining the size of a window record in order to allocate
space for a new window, you can leave these lines out entirely, because the need to preallocate memory
for windows has not been an issue for some time. Note that instead of calling GetNewWindow, you could
call CreateNewWindow, which is the suggested replacement for window creation on Mac OS 8.5 and
later.

Use Casting Functions to Convert DialogPtrs and WindowPtrs

Use the GetWindowPort function to convert window pointers to graphics pointers in the following functions,
if you have not already done so: DoEvent, AdjustCursor, DrawWindow, and SetLight.

Modify or Conditionalize Your Headers

To allow compilation on both Mac OS X and Mac OS 8 and 9, replace the usual header includes with the
following:

#define MAC_OS_X_BUILD 0
#if MAC_OS_X_BUILD
 #include <Carbon/Carbon.h>
#else
 #include <Carbon.h>
#endif

To build on Mac OS X, you would set the MAC_OS_X_BUILD flag to 1(true).

Note that Carbon.h is not required; you could have included the usual Mac OS 8 and 9 headers instead.
However, by including Carbon.h, you set the preprocessor directive

#define TARGET_API_MAC_CARBON 1

(if it wasn’t already defined) which sets the previous directives (ACCESSOR_CALLS_ARE_FUNCTIONS and
OPAQUE_TOOLBOX_STRUCTS) as well.

Replace Macro Calls to the Mixed Mode Manager With UPP Accessor
Functions

Sample does not use universal procedure pointers, so this step is unnecessary.

Move Custom Definition Procedures Out of Resources

Sample uses no custom definition functions, so you can skip this step.

Remove Direct Access to Low-Memory Globals

Sample does not access any low-memory globals, so you can skip this step as well.

The Basic Port 53
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

Use DebuggingCarbonLib

During development, it’s usually useful to keep the debugging version of CarbonLib in your Extensions
folder instead of the standard CarbonLib.

Update Modified or Obsolete Functions

Using the information obtained from Carbon Dater, you can now add the required replacements or
modifications for Carbon compatibility. First, remove CarbonAccessors.o and InterfaceLib from your
link path and begin linking exclusively against CarbonLibStub.

Any attempts to build Sample at this stage will generate linker errors for any functions that are not available
in Carbon. You can use the linker errors and the Carbon Dater report as guides for making the following
changes:

 ■ In main: Remove MaxApplZone as it’s not needed in PowerPC applications.

 ■ In DoEvent:

Remove SystemClick, which is specific to desk accessories.

Replace InvalRectwith InvalWindowRect. Note that InvalWindowRect takes an additional window
pointer as a parameter.

Remove DIBadMount. This function is hardware-specific. If you want to reproduce its functionality on
Mac OS X, you must use the I/O Kit API to do so. Actually, because Carbon does not support the diskEvt
event , you can remove this particular case altogether. The Carbon Event Manager will provide support
for disk and volume events.

 ■ In SetLight: Replace InvalRect with InvalWindowRect.

 ■ In DoMenuCommand:

Remove SystemEdit because it’s specific to desk accessories.

Remove OpenDeskAcc because, again, Carbon doesn’t support desk accessories.

 ■ In DoCloseWindow: Replace CloseWindow with DisposeWindow.

 ■ In AdjustMenus:

Replace EnableItem with EnableMenuItem.

Replace CheckItem with CheckMenuItem.

Normally you would replace DisableItem with DisableMenuItem. Here, DisableItem is used only
in the desk accessory case, which will never occur. Therefore, you can remove all instances of
DisableItem as well as the conditional to distinguish between the traffic light window and desk
accessories.

 ■ In EventLoop: Remove the SystemTask function as it is not needed in Carbon. Actually, because
WaitNextEvent is guaranteed to be present, you can remove the conditional altogether.

 ■ In MyGetGlobalMouse: Change OSEventAvail to EventAvail.

 ■ In Initialize:

Remove initialization functions InitGraf, InitFonts, InitWindows, InitMenus, TEInit, and
InitDialogs, as they are not needed in Carbon.

54 The Basic Port
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

Remove the SysEnvirons function, which is not supported in Carbon. This function is part of a check
to see if WaitNextEvent is available. Because WaitNextEvent is always available in Carbon, you can
remove all of the code associated with this check, which eliminates the unsupported functions.

Remove GetApplLimit and ApplicationZone as they are not supported in Carbon.

In addition, it turns out that the WaitNextEvent time LONG_MAX (referenced in the EventLoop function)
is not defined in Carbon. You can replace it with 0x7FFFFFFF because there are no periodic actions that need
to be taken..

After making these changes, your version of Sample should be able to run on Mac OS 8 and 9 using the
CarbonLib extension.

Adopt Required Carbon Technologies

Sample does not require interfaces for printing or saving files, so this step is unnecessary.

Add a ‘plst’ 0 Resource

To ensure that Sample will launch as a Carbon application on the Mac OS X and not in the Classic environment,
you must add a resource of type 'plst' with ID 0 to the resource file TCSample.rsrc. To add this resource,
you can either modify the resource file directly using an editor such as ResEdit or Resourcerer, or you can
DeRez the file, add text defining the resource, and then recompile the resource file. A minimal 'plst'
resource entry would be as follows:

data 'plst' (0) {
 $"00" /* . */
};

Conditionalize Quit Menu Items

To make sure that Sample can quit properly in Mac OS X, you must add a Quit Apple event handler to
SampleInit.c such as the following:

/* Here is our Quit Apple event handler */
static pascal OSErr QuitAppleEventHandler (const AppleEvent *appleEvt,
 AppleEvent* reply, UInt32 refcon)
{
 Terminate(); /* close window and terminate gracefully */
} /* QuitAppleEventHandler */

To install the handler, you must call AEInstallEventHandler in the Initialize function:

…
OSErr err;
err = AEInstallEventHandler(kCoreEventClass, kAEQuitApplication,
 NewAEEventHandlerUPP(QuitAppleEventHandler), 0, false);
 if (err != noErr) ExitToShell();
…

The Basic Port 55
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

Note that the Apple event installer function requires one of the new UPP accessor functions,
NewAEEventHandlerUPP. This accessor replaces the old macro NewAEEventHandlerProc.

In addition, you must add a case to the DoEvent function to process the event properly when it occurs.

void DoEvent (EventRecord *event)
 {
…
 /*•• Add a case to process the Quit Apple event */
 case kHighLevelEvent:
 AEProcessAppleEvent(event);
 break;
…
 }

After installing the handler, you must adjust the Quit menu item depending on whether Sample is running
on Mac OS X or on Mac OS 8 and 9. Because the Quit item appears automatically in the application menu on
Mac OS X, you should add code to the Initialize function to remove the Quit item from the File menu
(where it normally appears for Mac OS 8 and 9) if Sample is running on Mac OS X:

…
 SetMenuBar(menuBar); /* install menus */
 DisposeHandle(menuBar);

/*•• New code begins here */
long result;
MenuRef menu;

err = Gestalt(gestaltMenuMgrAttr, &result);
 if (!err && (result & gestaltMenuMgrAquaLayoutMask)) {
 menu = GetMenuHandle (mFile);
 DeleteMenuItem(menu, iQuit);
 DeleteMenuItem(menu, iQuit-1); /* the element above the Quit */
 /* item is a separator */
/*•• End of new code */

 DrawMenuBar();
…

This snippet uses Gestalt to get the Menu Manager attributes and checks to see if the Aqua interface is
present. If it is, then Sample running on Mac OS X. It then simply deletes the Quit item and its separator from
the menu bar before it gets drawn.

Cleanup

At this point the Sample application should run on both Mac OS X and Mac OS 8 and 9. However, you can
remove a few extraneous bits of code to clean up Sample:

 ■ Remove all references to the variable gMac, which was only used in the (now nonexistent) SysEnvirons
call.

 ■ Remove the gHasWaitNextEvent flag. Because WaitNextEvent is always available in Carbon, this flag
is unnecessary.

56 The Basic Port
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

If desired, you can now use the same code to build a Mach-O–based version of Sample which can run only
on Mac OS X.

Additional Changes for Aqua

While the Carbon version of Sample now executes on Mac OS X, it is also important that the application
adheres to the new Aqua interface. Here are a few additional changes you can make to adopt the Aqua look
and feel.

Adjust the Window Size

Due to the placement of the three Aqua buttons in each window (the close, minimize, and zoom buttons)
and the small default size of Sample’s window, the title, Traffic, is truncated. To work around this, you can
increase the dimensions of the window and avoid truncation.

Modify the About Box

About boxes in Mac OS X have a consistent appearance that is different from what you may be used to in
Mac OS 8 and 9. They should be modeless dialogs that contain the application icon as well as informative
text. Figure 3-3 shows an About box created for Sample.

Figure 3-3 The About box for Sample

See Inside Mac OS X: Aqua Human Interface Guidelines for the full specifications for the About box.

The Carbon Version of Sample

Listing 3-1 (page 57) and Listing 3-2 (page 66) show the Sample application now ported to Carbon. Changes
related to the porting process are indicated by “••” in comments /*•• just like this */. Some discussion
comments were removed for clarity.

Note: The section “An Example: Adding Carbon Events to Sample” (page 71) describes how to modify Sample
to use the Carbon Event Manager.

Figure 3-4 The Carbon version of Sample on Mac OS X

Listing 3-1 Carbon version of Sample.c

//#define ACCESSOR_CALLS_ARE_FUNCTIONS 1 /*•• leftovers from the porting process */
//#define OPAQUE_TOOLBOX_STRUCTS 1

#define TARGET_API_MAC_CARBON 1

Additional Changes for Aqua 57
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

#define MAC_OS_X_BUILD 0
/*•• use only one include for all Carbon headers */
#if MAC_OS_X_BUILD
 #include <Carbon/Carbon.h>
 #else
 #include <Carbon.h>
 #endif

#include "Sample.h "/* bring in all the #defines for Sample */

/* The "g" prefix is used to emphasize that a variable is global. */

/*•• removed gMac and gHasWaitNextEvent global variables, as they are never used */

/* GInBackground is maintained by our osEvent handling routines. Any part of
 the program can check it to find out if it is currently in the background. */
Boolean gInBackground; /* maintained by Initialize and DoEvent */

/* The following globals are the state of the window. If we supported more than
 one window, they would be attached to each document, rather than globals. */

/* GStopped tells whether the stop light is currently on stop or go. */
Boolean gStopped; /* maintained by Initialize and SetLight */

/* GStopRect and gGoRect are the rectangles of the two stop lights in the window. */
Rect gStopRect; /* set up by Initialize */
Rect gGoRect; /* set up by Initialize */

/* Define TopLeft and BotRight macros for convenience. Notice the implicit
 dependency on the ordering of fields within a Rect */
#define TopLeft(aRect) (* (Point *) &(aRect).top)
#define BotRight(aRect) (* (Point *) &(aRect).bottom)

/*•• Removed _DataInit, which is 68K-specific */

void main()
{
/*•• Removed UnloadSeg call, which is 68K-specific */

 /* 1.01 - call to ForceEnvirons removed */
 /*•• Removed MaxApplZone as it's not needed in PowerPC apps */

 Initialize(); /* initialize the program */
 /*•• Removed UnloadSeg call, which is 68K-specific */

 EventLoop(); /* call the main event loop */
} /*main*/

void EventLoop()
{
 RgnHandle cursorRgn;
 Boolean gotEvent;

58 The Carbon Version of Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 EventRecord event;
 Point mouse;

 cursorRgn = NewRgn(); /* we’ll pass WNE an empty region the 1st time thru */
 do {
 /*•• WNE is always available in Carbon, so the conditional was removed. */
 MyGetGlobalMouse(&mouse);
 AdjustCursor(mouse, cursorRgn);
 /*•• Note wait period LONG_MAX not defined in Carbon. Replaced with 0x7FFFFFFF
 */
 gotEvent = WaitNextEvent(everyEvent, &event, 0x7FFFFFFF, cursorRgn);

 if (gotEvent) {
 /* make sure we have the right cursor before handling the event */
 AdjustCursor(event.where, cursorRgn);
 DoEvent(&event);
 }
 /* If you are using modeless dialogs that have editText items,
 you will want to call IsDialogEvent to give the caret a chance
 to blink, even if WNE/GNE returned FALSE. However, check FrontWindow
 for a non-NIL value before calling IsDialogEvent. */
 } while (true); /* loop forever; we quit via ExitToShell */
} /*EventLoop*/

void DoEvent(EventRecord *event)
{
 short part, err;
 WindowPtr window;
 Boolean hit;
 char key;
 Point aPoint;
 BitMap screenBits; /*•• needed to hold contents of qd.screenBits */
 Rect bounds, portRect; /*•• needed to hold contents of screenbits.bounds and */
 /*•• the value of the portRect field of the window rec */

 switch (event->what) {
 case mouseDown:
 part = FindWindow(event->where, &window);
 switch (part) {
 case inMenuBar: /* process a mouse menu command (if any) */
 AdjustMenus();
 DoMenuCommand(MenuSelect(event->where));
 break;
 case inSysWindow: /*•• removed SystemClick (not part of Carbon) */
 break;
 case inContent:
 if (window != FrontWindow()) {
 SelectWindow(window);
 /*DoEvent(event);*/ /* use this line for "do first click" */
 } else
 DoContentClick(window);
 break;
 case inDrag: /* pass screenBits.bounds to get all gDevices */
 GetQDGlobalsScreenBits(&screenBits); /*•• use accessor to obtain */
 /*•• screenBits */
 bounds = screenBits.bounds; /*•• get bounds from screenBits.*/
 /*•• Note that bitmaps are not opaque */

The Carbon Version of Sample 59
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 DragWindow(window, event->where, &bounds);
 break;
 case inGrow:
 break;
 case inZoomIn:
 case inZoomOut:
 hit = TrackBox(window, event->where, part);
 if (hit) {
 /*•• new accessor in place */
 GetPortBounds(GetWindowPort(window), &portRect);

 /*•• The windowPtr is now cast to a GrafPtr before setting */
 SetPort(GetWindowPort(window));

 EraseRect(&portRect); /* because of a bug in ZoomWindow */
 ZoomWindow(window, part, true); /* note that we invalidate */
 /* and erase...to make things look */
 /* better on-screen */

 /*•• InvalRect replaced with InvalWindowRect */
 InvalWindowRect(window, &portRect);
 }
 break;
 }
 break;
 case keyDown:
 case autoKey: /* check for menukey equivalents */
 key = event->message & charCodeMask;
 if (event->modifiers & cmdKey) /* Command key down */
 if (event->what == keyDown) {
 AdjustMenus(); /* enable/disable/check menu items properly */
 DoMenuCommand(MenuKey(key));
 }
 break;
 case activateEvt:
 DoActivate((WindowPtr) event->message,
 (event->modifiers & activeFlag) != 0);
 break;
 case updateEvt:
 DoUpdate((WindowPtr) event->message);
 break;
 /*•• Add a case to process the Quit Apple event */
 case kHighLevelEvent:
 AEProcessAppleEvent(event);
 break;

 /*•• Removed diskEvt case (and DIBadMount)--not supported in Carbon

 case kOSEvent:
 /* 1.02 - must BitAND with 0x0FF to get only low byte */
 switch ((event->message >> 24) & 0x0FF) { /* high byte of message */
 case kSuspendResumeMessage: /* suspend/resume is also an activate/ */
 /* deactivate */
 gInBackground = (event->message & kResumeMask) == 0;
 DoActivate(FrontWindow(), !gInBackground);
 break;
 }
 break;

60 The Carbon Version of Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 }
} /*DoEvent*/

void AdjustCursor(Point mouse, RgnHandle region)
{
 WindowPtr window;
 RgnHandle arrowRgn;
 RgnHandle plusRgn;
 RgnHandle visRgn; /*•• needed to hold field value obtained by accessor function
*/
 Cursor arrow; /*•• used to hold the contents of the qd.arrow field */
 Rect globalPortRect, portRect;

 window = FrontWindow(); /* we only adjust the cursor when we are in front */

 if (! gInBackground) { /*•• removed desk accessory case from conditional */
 /* calculate regions for different cursor shapes */
 arrowRgn = NewRgn();
 plusRgn = NewRgn();

 /* start with a big, big rectangular region */
 SetRectRgn(arrowRgn, kExtremeNeg, kExtremeNeg, kExtremePos, kExtremePos);

 /* calculate plusRgn */
 if (IsAppWindow(window)) {

 Point tempPoint;

 SetPort(GetWindowPort(window)); /* make a global version of the viewRect */
 /*•• Added accessor to cast WindowPtr to GrafPtr */
 GetPortBounds (GetWindowPort(window), &portRect);
 SetPt(&tempPoint, portRect.left, portRect.top); /*•• obtain local origin */
 LocalToGlobal(&tempPoint); /*•• translate point to global coordinates */
 SetOrigin(tempPoint.h, tempPoint.v); /*•• Set the global origin */

 /*•• Added accessor to get value for globalPortRect */
 GetPortBounds(GetWindowPort(window), &globalPortRect);
 RectRgn(plusRgn, &globalPortRect);

 visRgn = NewRgn();/*•• allocate a new region */
 /*•• Added accessor to get value for visRgn */
 GetPortVisibleRegion(GetWindowPort(window), visRgn);
 SectRgn(plusRgn, visRgn, plusRgn);
 SetOrigin(0, 0);
 DisposeRgn(visRgn);/*•• dispose of the region */
 }

 /* subtract other regions from arrowRgn */
 DiffRgn(arrowRgn, plusRgn, arrowRgn);

 /* change the cursor and the region parameter */
 if (PtInRgn(mouse, plusRgn)) {
 SetCursor(*GetCursor(plusCursor));
 CopyRgn(plusRgn, region);
 } else {
 SetCursor(GetQDGlobalsArrow(&arrow)); /*•• new accessor in place */
 CopyRgn(arrowRgn, region);

The Carbon Version of Sample 61
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 }

 /* get rid of our local regions */
 DisposeRgn(arrowRgn);
 DisposeRgn(plusRgn);
 }
} /*AdjustCursor*/

/*•• "My" added to GetGlobalMouse to avoid name collision with the function in Events.h
 */

void MyGetGlobalMouse(Point *mouse)
{
 EventRecord event;

 /*•• Changed OSEventAvail to EventAvail */
 EventAvail(kNoEvents, &event); /* we aren't interested in any events */
 mouse = event.where; / just the mouse position */
} /*MyGetGlobalMouse*/

void DoUpdate(WindowPtr window)
{

 if (IsAppWindow(window)) {
 RgnHandle visRgn; /*•• needed to hold contents of window->visRgn */

 BeginUpdate(window); /* this sets up the visRgn */
 visRgn = NewRgn();
 /*•• Added accessor to obtain the visRgn */
 GetPortVisibleRegion (GetWindowPort(window), visRgn);
 if (! EmptyRgn(visRgn)) /* draw if updating needs to be done */
 DrawWindow(window);
 EndUpdate(window);
 }
} /*DoUpdate*/

void DoActivate(WindowPtr window, Boolean becomingActive)
{
 if (IsAppWindow(window)) {

 if (becomingActive)
 /* do whatever you need to at activation */ ;
 else
 /* do whatever you need to at deactivation */ ;
 }
} /*DoActivate*/

void DoContentClick(WindowPtr window)
{
 SetLight(window, ! gStopped);
} /*DoContentClick*/

void DrawWindow(WindowPtr window)

62 The Carbon Version of Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

{
 Rect portRect; /*•• Needed to hold the contents of window->portRect */

 SetPort(GetWindowPort(window));

 /*•• Use accessor to obtain port bounds */
 GetPortBounds(GetWindowPort(window), &portRect);

 EraseRect(&portRect); /* clear out any garbage that may linger */

 if (gStopped) /* draw a red (or white) stop light */
 ForeColor(redColor);
 else
 ForeColor(whiteColor);

 PaintOval(&gStopRect);
 ForeColor(blackColor);
 FrameOval(&gStopRect);

 if (! gStopped) /* draw a green (or white) go light */
 ForeColor(greenColor);
 else
 ForeColor(whiteColor);

 PaintOval(&gGoRect);
 ForeColor(blackColor);
 FrameOval(&gGoRect);
} /*DrawWindow*/

void AdjustMenus()
{
 MenuHandle menu;

 /*•• Removed references to IsDAWindow, because desk accessories are not in Carbon*/
 /*•• removed DisableItems and all code dealing with the desk accessory case.*/

 menu = GetMenuHandle(mLight);
 EnableMenuItem(menu, iStop); /*•• replaced EnableItem with EnableMenuItem */
 EnableMenuItem(menu, iGo);

 /*•• replaced CheckItem with CheckMenuItem */
 CheckMenuItem(menu, iStop, gStopped); /* we can also determine check/uncheck */
 /* state, too */
 CheckMenuItem(menu, iGo, ! gStopped);
} /*AdjustMenus*/

void DoMenuCommand(long menuResult)
{
 short menuID; /* the resource ID of the selected menu */
 short menuItem; /* the item number of the selected menu */
 short itemHit;
 Str255 daName;
 short daRefNum;
 Boolean handledByDA;

 menuID = HiWord(menuResult); /* use macros for efficiency to... */

The Carbon Version of Sample 63
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 menuItem = LoWord(menuResult); /* get menu item number and menu number */
 switch (menuID) {
 case mApple:
 switch (menuItem) {
 case iAbout: /* bring up alert for About */
 itemHit = Alert(rAboutAlert, nil);
 break;
 default:/* all non-About items in this menu are DAs */
 /*•• removed desk accessory code (not supported in Carbon) */
 break;
 }
 break;
 case mFile:
 switch (menuItem) {
 case iClose:
 DoCloseWindow(FrontWindow());
 break;
 case iQuit:
 Terminate();
 break;
 }
 break;
 case mEdit: /* call SystemEdit for DA editing & MultiFinder */
 /*•• removed because Carbon doesn't support desk accessories */
 break;
 case mLight:
 switch (menuItem) {
 case iStop:
 SetLight(FrontWindow(), true);
 break;
 case iGo:
 SetLight(FrontWindow(), false);
 break;
 }
 break;
 }
 HiliteMenu(0); /* unhighlight what MenuSelect (or MenuKey) hilited */
} /*DoMenuCommand*/

void SetLight(WindowPtr window, Boolean newStopped)
{
 if (newStopped != gStopped) {

 Rect portRect; /*•• Needed to hold port bounds */

 gStopped = newStopped;

 /*•• Use accessor to obtain port bounds */
 GetPortBounds(GetWindowPort(window), &portRect);

 /*•• Use accessor to cast WindowPtr to GrafPtr */
 SetPort(GetWindowPort(window));

 InvalWindowRect(window,&portRect);
 }
} /*SetLight*/

64 The Carbon Version of Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

Boolean DoCloseWindow(WindowPtr window)
{
 /*•• Desk accessory–related code removed, because it's not supported in Carbon */

 DisposeWindow(window); /*•• replaced CloseWindow with DisposeWindow */
 return true;
} /*DoCloseWindow*/

void Terminate()
{
 WindowPtr aWindow;
 Boolean closed;

 closed = true;
 do {
 aWindow = FrontWindow(); /* get the current front window */
 if (aWindow != nil)
 closed = DoCloseWindow(aWindow); /* close this window */
 }
 while (closed && (aWindow != nil));
 if (closed)
 ExitToShell(); /* exit if no cancellation */
} /*Terminate*/

Boolean IsAppWindow(WindowPtr window)
{
 short windowKind;

 if (window == nil)
 return false;
 else { /* application windows have windowKinds = userKind (8) */
 windowKind = GetWindowKind(window);
 return (windowKind == userKind);
 }
} /*IsAppWindow*/

/* Boolean IsDAWindow(WindowPtr window) */
/*•• Carbon does not support desk accessories, so we removed this function */
/* */
/*IsDAWindow*/

void AlertUser()
{
 short itemHit;
 Cursor arrow; /*•• used to hold the contents of the qd.arrow field */

 SetCursor(GetQDGlobalsArrow(&arrow)); /*•• new accessor in place */
 itemHit = Alert(rUserAlert, nil);
 ExitToShell();
} /* AlertUser */

The Carbon Version of Sample 65
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

Listing 3-2 Carbon version of SampleInit.c

//#define ACCESSOR_CALLS_ARE_FUNCTIONS 1 /*•• leftovers from the porting process */
//#define OPAQUE_TOOLBOX_STRUCTS 1

#define TARGET_API_MAC_CARBON 1

#define MAC_OS_X_BUILD 0
/*•• use only one include for all Carbon headers */
#if MAC_OS_X_BUILD
 #include <Carbon/Carbon.h>
 #else
 #include <Carbon.h>
 #endif

#include "Sample.h "/* bring in all the #defines for Sample */

/* The "g" prefix is used to emphasize that a variable is global. */
/* All are extern since the variables are declared in the main segment. */

/*•• removed gMac and gHasWaitNextEvent global variables, as they are never used */

/* GInBackground is maintained by our osEvent handling routines. Any part of
 the program can check it to find out if it is currently in the background. */
extern Boolean gInBackground; /* maintained by Initialize and DoEvent */

/* The following globals are the state of the window. If we supported more than
 one window, they would be attached to each document, rather than globals. */

/* GStopped tells whether the stop light is currently on stop or go. */
extern Boolean gStopped; /* maintained by Initialize and SetLight */

/* GStopRect and gGoRect are the rectangles of the two stop lights in the window. */
extern Rect gStopRect; /* set up by Initialize */
extern Rect gGoRect; /* set up by Initialize */

/*•• Here is our Quit Apple event handler */
static pascal OSErr QuitAppleEventHandler(const AppleEvent *appleEvt,
 AppleEvent* reply, UInt32 refcon)
{
 Terminate(); /* close window and terminate gracefully */
} /*•• QuitAppleEventHandler */

void Initialize()
{
 Handle menuBar;
 WindowPtr window;
 long total, contig;
 EventRecord event;
 short count;
 MenuRef menu;
 long result; /*•• used to hold results of Gestalt call */
 OSErr err;

66 The Carbon Version of Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 gInBackground = false;

 /*•• Removed most of the init functions (InitGraf, etc) as they */
 /*•• are not needed in Carbon */
 InitCursor();

 /* Call MPPOpen and ATPLoad at this point to initialize AppleTalk,
 if you are using it. */

 /* This next bit of code is necessary to allow the default button of our
 alert be outlined.
 1.02 - Changed to call EventAvail so that we don't lose some important
 events. */

 for (count = 1; count <= 3; count++)
 EventAvail(everyEvent, &event);

 /*•• WaitNextEvent is always available in Carbon, so we eliminated the code that */
 /*•• calls SysEnvirons and checks a trap for its presence. */

 /*•• Removed calls to GetApplLimit and ApplicationZone. They are not supported */
 /*•• in Carbon, and the memory problem they protect against is no longer an issue
*/

 PurgeSpace(&total, &contig);
 if (total < kMinSpace) AlertUser();

 /*•• Removed code to preallocate space for our window, because memory */
 /*•• requirements are no longer strict enough to make it necessary */

 window = GetNewWindow(rWindow, nil, (WindowPtr) -1);

 menuBar = GetNewMBar(rMenuBar); /* read menus into menu bar */
 if (menuBar == nil) AlertUser();

 SetMenuBar(menuBar); /* install menus */
 DisposeHandle(menuBar);
 /*•• Removed code that added desk accessories to the Apple Menu */

 /*•• Determine if we're running on Mac OS X, and if we are, remove the Quit menu */
 /*•• item and the Quit separator from the File Menu */
 err = Gestalt(gestaltMenuMgrAttr, &result);
 if (!err && (result & gestaltMenuMgrAquaLayoutMask)) {
 menu = GetMenuHandle (mFile);
 DeleteMenuItem(menu, iQuit);
 DeleteMenuItem(menu, iQuit-1); /*•• the element above the Quit item */
 /* •• is a separator */
 }

 DrawMenuBar();

 /*•• Install a Quit Apple Event handler to make sure that the application can */
 /*•• quit properly on Mac OS X. It's also just good programming practice on 8/9 */
 err = AEInstallEventHandler(kCoreEventClass, kAEQuitApplication,
 NewAEEventHandlerUPP(QuitAppleEventHandler), 0, false);
 if (err != noErr) ExitToShell();

 gStopped = true;

The Carbon Version of Sample 67
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

 if (!GoGetRect(rStopRect, &gStopRect))
 AlertUser(); /* the stop light rectangle */
 if (!GoGetRect(rGoRect, &gGoRect))
 AlertUser(); /* the go light rectangle */
} /*Initialize*/

Boolean GoGetRect(short rectID, Rect *theRect)
{
 Handle resource;

 resource = GetResource('RECT', rectID);
 if (resource != nil) {
 *theRect = **((Rect**) resource);
 return true;
 }
 else
 return false;
} /* GoGetRect */

/* TrapAvailable */
/*•• Carbon does not support traps, so this function was removed. */

/*TrapAvailable*/

68 The Carbon Version of Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

A Porting Example

This chapter describes several Mac OS technologies that are new with Carbon. While these technologies are
not required in Carbon applications, adopting them can result in improved performance and user experience
as well as reduced development cycles.

Carbon Event Manager

The Carbon Event Manager is an event handling API that replaces the Classic Mac OS Event Manager. It
simplifies the event model and it is well-suited for the preemptive multitasking capabilities of Mac OS X. For
example, when using Carbon events, an application that is performing periodic actions while idle (blinking
the cursor, for example) does not have to endlessly cycle through a WaitNextEvent loop while doing so.
The advantages of the Carbon Event Manager include the following:

 ■ Handlers for common events (such as mouse events and keyboard events) are included. You don’t need
to write your own event handlers unless you want to override default behaviors.

 ■ The Carbon Event Manager can handle any number of event types (as opposed to the16 event types
available in the Classic event record).

 ■ The Carbon Event Manager handles notifications and defproc messaging in addition to the usual events.

 ■ The streamlining of the event handling system results in a more responsive system and a better user
experience.

When adapting an application to use Carbon events, you typically replace the WaitNextEvent loop and
event processing functions with one of more simple event handling calls. Your application must register the
types of events it wishes to be notified about, and then implement handlers to address the registered events.

The Carbon Event Manager is available for Carbon applications running on Mac OS 8.6 and later, so if you
do not need compatibility back to Mac OS 8.1, we highly encourage you to adopt it. The Carbon event model
is flexible enough to coexist with WaitNextEvent, so you can make the adoption as gradual as you like.
While the WaitNextEvent event model still works on Mac OS X, your programs and the overall system will
perform better if you use Carbon events.

For more information about the Carbon Event Manager, see the documentation available at

http://developer.apple.com/documentation/carbon/Reference/Carbon_Event_Manager_Ref/index.html

as well as “An Example: Adding Carbon Events to Sample” (page 71).

Carbon Event Manager 69
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

http://developer.apple.com/documentation/carbon/Reference/Carbon_Event_Manager_Ref/index.html

Core Foundation

Core Foundation is a new set of APIs that provides a simple interface for handling many common needs for
applications. For example, CFPreference APIs provide a standard interface for creating and manipulating an
application’s user preferences. As most Core Foundation functions are part of the Carbon API, they run on
both Mac OS X and Mac OS 8 and 9. In addition, Core Foundation functions are compatible with the Foundation
classes available in the Cocoa environment, which simplifies the sharing of data between Carbon and Cocoa
applications.

In addition to Preferences Services, other Core Foundation services that you may find useful for your Carbon
application include the following:

 ■ Bundle Services, which provides the APIs used to access files and other resources stored in a bundle
hierarchy. See “Consider Using Bundles” (page 36) for more information about bundles.

 ■ Plug-In Services, which provides a standard plug-in architecture for Mac OS X and Mac OS 8 and 9
applications. You can package plug-in binaries for multiple platforms together, and the Plug-In Services
APIs can transparently load the proper one (assuming, of course, that they share the same interface).

 ■ String Services, which provides a simple interface for storing, converting, and manipulating Unicode
strings. If your application uses (or is planning to support) Unicode, you should consider adopting String
Services.

 ■ The XML Parser, which provides an interface for writing and reading XML documents.

 ■ Property List Services, which provides an interface to organize data into property lists (“plists”). It also
allows you to convert hierarchically structured combinations of basic data types in these lists to and
from standard XML.

For more information about Core Foundation Services, see Inside Mac OS X: System Overview and Core
Foundation documentation at the Carbon documentation site:

http://developer.apple.com/documentation/Carbon/index.html

DataBrowser

DataBrowser is a new Control Manager control (defined in ControlDefinitions.h) that lets you display
data in sortable, navigatable lists in a manner similar to the list view and column view settings of the Finder.
If you need to organize data in manner that is easily accessible to the user, you should consider using the
DataBrowser. Here are some advantages of the various views:

 ■ The list view allows the user to sort by various column attributes related to the data you are displaying.
For example, the Finder allows you to display files by type, size, or date modified, among other
characteristics.

 ■ The column view is useful for navigating large hierarchies or trees of data. For example both the Mac
OS X Finder and the Navigation Services Save dialog box use DataBrowser to let the user quickly find a
particular location in a volume’s file hierarchy.

For more information about DataBrowser, see the sample code included with the Carbon SDK.

70 Core Foundation
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

http://developer.apple.com/documentation/Carbon/index.html

Multilingual Text Engine (MLTE)

The Multilingual Text Engine (MLTE) is the suggested replacement for TextEdit in Carbon applications. While
you can still use TextEdit in Carbon, MLTE provides many additional features and simplifies the programming
interface; you can accomplish more with fewer lines of code. Some of MLTE’s features include the following:

 ■ Full Unicode support, including transparent access to Apple Type Services for Unicode Imaging (ATSUI)
for rendering text, and the Text Encoding Converter (TEC) for converting between encodings.

 ■ Full support for alternate input methods using the Text Services Manager (TSM).

 ■ Support for greater than 32 KB of text.

 ■ Built-in scroll bar handling.

 ■ Full justification of text.

 ■ Built-in support for basic user actions, such as highlighting selected text, dragging selected text, and
moving the caret in response to arrow key presses.

 ■ Multiple levels of undo.

 ■ Built-in printing support.

MLTE is available in CarbonLib 1.2 and later. You can also use it in non-Carbon applications on Mac OS 8.6
and later.

For more information about MLTE, see the documentation available at

http://developer.apple.com/documentation/Carbon/Reference/Multilingual_Text_Engine/index.html

and the MLTE SDK at

http://developer.apple.com/sdk/

An Example: Adding Carbon Events to Sample

The Carbon Event Manager is the most important of the optional technologies available with Carbon; if you
plan to add only one new API to your application, it should be Carbon events. In addition to simplifying your
event handling code, Carbon events will make your application a good processor-sharing citizen on Mac OS
X, which will improve the performance of all running applications.

This section illustrates the adoption of the Carbon Event Manager by adding Carbon events to the Carbon
version of the Sample application shown in Listing 3-1 (page 57) and Listing 3-2 (page 66).

“Determine the Appropriate CarbonLib Version” (page 27) indicates that the Carbon Event Manager is
available only in CarbonLib 1.2 and later when Mac OS 8.6 or later is present. While this means that you
cannot run on Mac OS 8.1, it also means that you are free to incorporate any newer APIs up to Mac OS 8.6 if
that makes the work easier.

The basic model for Carbon events is that you register callback handlers for each event (or type of event)
you wish to handle. You attach these handlers to specific objects, such as a window or a button. Different
objects of the same type do not have to have the same handler. For example, two buttons can each have
their own distinct handler. With this level of flexibility in handling events, it is important to determine the

Multilingual Text Engine (MLTE) 71
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

http://developer.apple.com/documentation/Carbon/Reference/Multilingual_Text_Engine/index.html
http://developer.apple.com/sdk/

scope required for each event. For example, should an event affect a single window, all open windows, or
the entire application? In most cases it is easier to think in terms of what object is affected rather than what
event occurred.

After any initial setup, your application calls RunApplicationEventLoop, which essentially replaces the
WaitNextEvent loop. From that point on, your application is notified only when an event you specified
occurs.

Standard Event Handlers

The Carbon Event Manager provides default event handlers for many common types of events. For example,
the standard handler for a window automatically handles dragging, activation, deactivation, window zooming
and resizing. Of course, you will mostly likely still need to draw into or update the content region as a result
of some actions, but much of the basic work is taken care of for you. A good rule of thumb is to install the
standard handler first, see what actions it covers, and then write handlers for any additional actions you may
want to take.

The Basic Conversion

In the Carbon version of Sample, most of the event handling occurs in the functions EventLoop and DoEvent.
Here is a breakdown of the events to address:

 ■ Adjusting the cursor shape depending on the region it occupies: Previously the cursor was adjusted each
time through the event loop. Because there is no equivalent event loop that we can access in Carbon
events, an alternate triggering mechanism is required. One method would be to update the cursor
whenever the mouse moves. Another would be to set up a timer to adjust the cursor at regular intervals.

 ■ Menu selections: The Carbon Event Manager can associate special command events with menu items.
Many common menu items have command events defined for them in CarbonEvents.h, and you can
assign your own using the Window Manager function SetMenuItemCommandID. When a menu item is
selected (either through menu selection or a keyboard equivalent), the Carbon Event Manager sends
the appropriate command event to the handler. Some menu selections are related to the window only
(such as setting the traffic light color), while others are related to the application (such as the About
command). This division suggests a menu command handler at both the window level and the application
level.

Note that the standard application handler automatically handles basic menu tracking, highlighting,
and so on. All you need to do is process the menu selection.

 ■ Keyboard events: Because the only keyboard input Sample requires are keyboard equivalents for menu
items, you can handle these the same as menu selections.

 ■ Mouse clicks in the traffic light window: The light color toggles on each click in the content region of
the window. This event is entirely window-related, which suggests a window-level handler.

 ■ Window dragging, zooming, resizing, activation, and deactivation: The standard window event handler
addresses these events, so all you need to do is update the content region if necessary.

 ■ Update events: The Carbon Event Manager posts events indicating that you should change your window
contents, so you should redraw the contents at that time.

 ■ High level (Apple) events: The only case to worry about is the Quit Apple event, for which we have already
installed a handler.

72 An Example: Adding Carbon Events to Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

 ■ Disk Events: This case deals with bad floppy disks, and Carbon does not support the DIBadMount function
or the diskEvt event. This example ignores disk events.

 ■ Application suspend and resume events: The standard application event handler covers the basic
functionality required for suspend and resume events.

This information indicates that event handlers are needed at both the window-level and the application
level.

Installing the Standard Event Handlers

Before adding your application-specific event handlers, you should install the standard handlers for window
and application events.

One way to assign the standard window handler to the traffic light window is to call the function
InstallStandardWindowEventHandler after creating the window in the Initialize function.

window = GetNewWindow(rWindow, NULL, (WindowPtr)-1);
InstallStandardEventHandler(GetWindowEventTarget(window)); /* installs the default */
 /* handler for window events */
ShowWindow(window);

The GetWindowEventTarget function returns an event reference (type EventTargetRef) to associate
with the desired object (in this case, a window). Similar functions exist to create event references for controls,
menus, and other objects.

However, because the application must run in Mac OS 8.6 or later, you can call the Window Manager function
CreateNewWindow instead, which lets you specify an attribute to use the standard window handler. Doing
so also provides many of the standard window controls (resize button, and so on) for free.

Rect windowBounds; /* use Rect for bounds in CreateNewWindow */
WindowAttributes windowAttr; /* to hold window attribute flags in CreateNewWindow
 */
…
windowAttr = kWindowStandardDocumentAttributes| /* standard window */
 kWindowStandardHandlerAttribute| /* standard window event handler
 */
 kWindowInWindowMenuAttribute;

SetRect (&windowBounds, 40, 60, 280, 520); /* bounds for the new window */

CreateNewWindow(kDocumentWindowClass, windowAttr, &windowBounds, &window);
SetWindowTitleWithCFString(window, CFSTR("Traffic"));

ChangeWindowAttributes(window, NULL, /* remove close box and resize tab */
 kWindowCloseBoxAttribute|kWindowResizableAttribute);
ShowWindow(window);

The SetWindowTitleWithCFString function is a Core Foundation String Services function.

To more closely approximate the original Sample, you can call the Window Manager function
ChangeWindowAttributes to remove the close box and the resize tab.

The standard application event handler is installed automatically when you call RunApplicationEventLoop,
so you do not need to explicitly install it.

An Example: Adding Carbon Events to Sample 73
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

Registering Your Own Event Handlers

After installing the standard handlers, you must register your event handlers with the system. The Carbon
Event Manager defines events by the class of event (window, mouse, and so on) as well as the type (mouse
moved, content region clicked, and so on). You must specify these when registering your handlers, as in this
example:

EventTypeSpec appEventList[] = {{kEventClassCommand, kEventCommandProcess},
 { kEventClassMouse, kEventMouseMoved}};

EventTypeSpec windEventList[] = {{kEventClassWindow, kEventWindowDrawContent },
 { kEventClassWindow, kEventWindowClickContentRgn },
 { kEventClassWindow, kEventWindowBoundsChanged},
 { kEventClassCommand, kEventCommandProcess}};

…

 /* Installing the application event handler */
 InstallApplicationEventHandler(NewEventHandlerUPP(MyAppEventHandler),
 2, appEventList, 0, NULL);

 /* Installing the window event handler */
 InstallWindowEventHandler(window, NewEventHandlerUPP(MyWindowEventHandler),
 4, windEventList, 0, NULL);

The type EventTypeSpec arrays hold the pairs of event classes and types which are then passed into the
appropriate handler installation calls. The calls InstallApplicationEventHandler and
InstallWindowEventHandler are macros derived from the more general Carbon Event Manager function
InstallEventHandler. Remember to pass universal procedure pointers instead of normal pointers when
specifying your callback handlers. CarbonEvents.h defines the format for your callback handlers.

If desired, you can register individual event handlers for each event. However, for this example it is convenient
to group them by object.

Note: The handlers you install complement the standard event handlers described earlier. For example, the
standard window handler will resize a window in response to a resize event. However, if you indicated that
you wanted to handle window resize events in your own handler, you could specify additional actions to
take (such as refreshing the content window after the resize) while still allowing the standard handler to
perform the window resize.

The handlers in this example essentially take the place of the DoEvent function, which called other functions
to process the events.

The Application-Level Event Handler

Listing 4-1 shows an application-level event handler for the Sample application.

Listing 4-1 Application-level event handler for Sample

static pascal OSStatus MyAppEventHandler (EventHandlerCallRef myHandlerChain,
 EventRef event, void* userData)
{
 UInt32 whatHappened;
 HICommand commandStruct;

74 An Example: Adding Carbon Events to Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

 Point wheresMyMouse;
 RgnHandle CursorRgn;
 short itemHit;
 OSStatus result = eventNotHandledErr; /* report failure by default */

 whatHappened = GetEventKind(event);

 switch (whatHappened)
 {
 case kEventCommandProcess:

 GetEventParameter (event, kEventParamDirectObject,
 typeHICommand, NULL, sizeof(HICommand),
 NULL, &commandStruct);

 switch (commandStruct.commandID)
 {
 case kCommandAbout:
 itemHit = Alert (rAboutAlert, nil);
 result = noErr;
 break;
 default:
 break;
 }
 break;

 case kEventMouseMoved:

 CursorRgn = NewRgn();
 GetEventParameter (event, kEventParamMouseLocation, typeQDPoint,
 NULL, sizeof(Point), NULL, &wheresMyMouse);
 AdjustCursor(wheresMyMouse, CursorRgn);
 DisposeRgn(CursorRgn);
 result = noErr;
 break;

 default:
 break;
 }
 return result;
}

The event handler takes three parameters:

 ■ The myHandlerChain parameter is a reference to the handler calling chain; that is, the hierarchy of
event handlers that could handle this event. You would pass this reference if you wanted to call
CallNextEventHandler, for example, which you could use to add pre- or postprocessing to the actions
of a standard handler.

 ■ The event parameter contains specific information related to the event (much the way the fields of an
event record hold event-specific information).

 ■ The userData field holds any user data you specified when you registered your handler with the call
to InstallEventHandler (none in this case).

An Example: Adding Carbon Events to Sample 75
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

When an event occurs, MyAppEventHandler gets passed the event along with any user data you may have
requested (none in this case). It then calls the GetEventKind function to determine the type of event that
occurred and then handles the event appropriately.

ThekEventCommandProcess function indicates a menu-related command occurred. By calling the
GetEventParameter function, the handler determines which item was selected. At the application level
only one command is possible: the About selection. Note kCommandAbout is not defined in CarbonEvents.h
so, you need to define it yourself. You can do so and then call the Menu Manager function
SetMenuItemCommandID in the Initialize function to register it with the system.

const MenuCommand kCommandAbout = FOUR_CHAR_CODE ('abou');

void Initialize()
{
 …
 SetMenuItemCommandID (GetMenuRef(mApple), iAbout, kCommandAbout);
 …
}

Note that instead of calling SetMenuItemCommandID to assign the command ID, you could choose the
define it in an 'xmnu' resource.

You don’t need to handle the Quit event because the standard application event handler calls the default
Quit Apple event handler when this occurs. If you need to take additional actions before quitting, you can
install your own Quit Apple event handler. If you are not using RunApplicationEventLoop, (and therefore
not using the standard application handler), you can process the Quit event here. Typically you call the
function QuitApplicationEventLoop to break out of the Carbon event loop.

If you are running your application on Mac OS 8 and 9, you need to register the Quit command ID (defined
as kHICommandQuit in CarbonEvents.h) using the SetMenuItemCommandID function, much as you had
to for the About item. If you don’t, the Carbon Event Manager will not properly process the event when the
Quit item is selected. A convenient time to do this is when you use Gestalt to determine whether to place a
Quit item in the File menu.

 err = Gestalt(gestaltMenuMgrAttr, &result);
 if (!err && (result & gestaltMenuMgrAquaLayoutMask)) {
 menu = GetMenuHandle (mFile);
 DeleteMenuItem(menu, iQuit);
 DeleteMenuItem(menu, iQuit-1); /*•• the element above the Quit item */
 /*•• is a separator */
 }
 else
 { /* Assign a command ID to the Quit Item so that the Carbon Event Manager */
 /* can recognize it. */
 SetMenuItemCommandID(GetMenuRef(mFile), iQuit, kHICommandQuit);
 }

The other application-level event you need to handle is the mouse-moved event, which determines whether
or not to adjust the cursor shape. The handler for Sample calls GetEventParameter to obtain the mouse
position (the types of parameters you can obtain depends on the event that occurred) and then calls
AdjustCursor.

Alternatively, you can adjust the cursor periodically by using a Carbon event timer. Doing so merely involves
creating the function to call and then registering it by calling InstallEventLoopTimer. However, this
method is similar to polling for an event, which is more processor-intensive, and therefore not suggested
for Mac OS X.

76 An Example: Adding Carbon Events to Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

The Window Event Handler

Listing 4-2 shows a window event handler for Sample.

Listing 4-2 Window event handler for Sample

static pascal OSStatus MyWindowEventHandler(EventHandlerCallRef myHandler,
 EventRef event, void* userData)
{
 WindowRef window;
 Rect bounds;
 UInt32 whatHappened;
 HICommand commandStruct;
 MenuRef theMenuRef;
 UInt16 theMenuItem;
 OSStatus result = eventNotHandledErr; /* report failure by default */

 GetEventParameter(event, kEventParamDirectObject, typeWindowRef, NULL,
 sizeof(window), NULL, &window);

 whatHappened = GetEventKind(event);

 switch (whatHappened)
 {
 case kEventWindowDrawContent:

 DoUpdate(window);
 result = noErr;
 break;

 case kEventWindowBoundsChanged:

 InvalWindowRect(window, GetWindowPortBounds(window, &bounds));
 DoUpdate(window);
 result = noErr;
 break;

 case kEventWindowClickContentRgn:

 DoContentClick(window);
 DoUpdate(window);
 AdjustMenus();
 result = noErr;
 break;

 case kEventCommandProcess:

 GetEventParameter (event, kEventParamDirectObject,
 typeHICommand, NULL, sizeof(HICommand),
 NULL, &commandStruct);

 theMenuRef = commandStruct.menu.menuRef;
 if (theMenuRef == GetMenuHandle(mLight))
 {
 /* Because the event didn't occur *in* the window, the */
 /* window reference isn't valid until we set it here */
 window = FrontWindow();

An Example: Adding Carbon Events to Sample 77
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

 theMenuItem = commandStruct.menu.menuItemIndex;
 switch (theMenuItem)
 {
 case iStop:
 SetLight(window, true);
 break;
 case iGo:
 SetLight(window, false);
 break;
 }
 DoUpdate(window);
 AdjustMenus();
 result = noErr;
 }
 break;

 default:
 /* If nobody handled the event, it gets propagated to the */
 /* application-level handler. */
 break;

 }

 return result;
}

As with the application-level handler, the window event handler first calls GetEventKind to determine the
type of event and then processes them appropriately:

 ■ kEventWindowDrawContent indicates that the window contents must be redrawn. This event is similar
to an update event in the Classic event model. However, if you have the standard window handler
installed, the Carbon Event Manager automatically calls BeginUpdate and EndUpdate for this event;
all you need to do is draw in the window. To avoid nesting update calls, you should remove the duplicate
BeginUpdate and EndUpdate calls in the DoUpdate function.

 ■ kEventWindowBoundsChanged indicates that the window size has changed (by clicking the zoom
button). The handler calls DoUpdate to redraw the content region to reflect the new size.

 ■ kEventWindowClickContentRgn indicates that the user has clicked in the Traffic window. To toggle
the light setting, the handler calls DoContentClick as before, but because Sample no longer receives
update events, the handler also calls DoUpdate to draw the new setting. Similarly, because Sample
cannot update the Traffic menu settings by calling AdjustMenus from the WaitNextEvent loop, the
handler calls it here.

 ■ kEventCommandProcess indicates that a menu-related command occurred. Because this is the window
handler, the handler processes only cases related to the Traffic window (that is, the Red Light/Green
Light items in the Traffic menu). Other commands will end up being handled by the application-level
handler. To change the traffic light setting, the handler first isolates the menu item selected from the
event parameter and then redraws the light (using the same calls as in the
kEventWindowClickContentRgn case).

If desired, instead of obtaining the menu item from the commandStruct structure, you can define and
register constants for these items as you did for the About menu item.

78 An Example: Adding Carbon Events to Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

Cleanup

After adapting Sample to use Carbon events, you no longer need the following functions:

 ■ EventLoop: Replaced by the call to RunApplicationEventLoop.

 ■ DoEvent: Replaced by the application and window event handlers.

 ■ MyGetGlobalMouse: The application event handler now retrieves the mouse location from the event
structure.

 ■ DoMenuCommand: The handling of these events is split between the application and window event
handlers.

An Example: Adding Carbon Events to Sample 79
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

80 An Example: Adding Carbon Events to Sample
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

New Carbon Technologies

This section provides an overview of some of the new functions introduced in Carbon. Until complete
documentation is available, you should refer to the header files and sample code included on the Mac OS X
Developer Tools CD for additional information.

Custom Definition Procedures

Custom defprocs (that is, WDEFs, MDEFs, CDEFs, and LDEFs) must be compiled as PowerPC code and can no
longer be stored in resources. Carbon introduces new variants of CreateWindow and similar functions (such
as NewControl and NewMenu) that take a universal procedure pointer (UPP) to your custom defproc. Instead
of creating a window definition as a WDEF resource, for example, you call the Carbon routine
CreateCustomWindow:

OSStatus CreateCustomWindow(const WindowDefSpec *def,
 WindowClass windowClass, WindowAttributes attributes,
 const Rect *bounds, WindowPtr *outWindow);

The WindowDefSpec parameter contains a UPP that points to your custom window definition procedure.

Changes to WDEFs

You need to be aware of the following changes for custom WDEFs:

 ■ Window defprocs no longer receive the wCalcRgns message. Instead they receive the
kWindowMsgGetRegion message twice, once for the structure region and once for the content region.
The structure passed in the message parameter indicates the desired region in each case. Your defproc
must handle these messages.

 ■ If you need to get the global bounds of a window’s portRect in order to determine the structure or
content regions, you should call GetWindowBounds and pass the kWindowGlobalPortRgn constant.
On return, the function will supply a pointer to a Rect indicating the bounds in global coordinates. The
pixel map (PixMap) bounds on Mac OS X will always start at (0,0), so you will obtain incorrect results if
you attempt to manually convert the port’s bounds from local to global coordinates by offsetting the
bounds by the port’s pixel map’s bounds.

Changes to MDEFs

You need to be aware of the following changes to custom MDEFs:

 ■ Menu defprocs no longer receive the mChooseMsg message. Instead they receive two new messages:
kMenuFindItemMsg and kMenuHiliteItemMsg .

Custom Definition Procedures 81
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

 ■ Code that sets or reads the low memory global variables TopMenuItem, AtMenuBottom, MenuDisable,
and MBSaveLoc should use the new MenuTrackingData structure instead. You can obtain the contents
of the structure at any time by calling the new function GetMenuTrackingData.

 ■ When a menu defproc receives a mDrawMsg message, it also receives a pointer to a MenuTrackingData
structure in the whichItem parameter. Your defproc should read the structure to obtain the menu virtual
top and bottom rather than using the low memory accessor functions LMTopMenuItem and
LMAtMenuBottom.

Functions for Accessing Opaque Data Structures

A major change introduced in Carbon is that some commonly used data structures are now opaque—meaning
their internal structure is hidden. Directly referencing fields within these structures is no longer allowed, and
will cause a compiler error. QuickDraw global variables, graphics ports, regions, window and dialog records,
controls, menus, and TSMTE dialogs are all opaque to Carbon applications. Anywhere you reference fields
in these structures directly, you must use new casting and accessor functions described in the following
sections.

Casting Functions

Many applications assume that window pointer (WindowPtr) and dialog pointer (DialogPtr) types have a
graphics port (GrafPort) embedded at the top of their structures. In fact, the standard Universal Interfaces
defines dialog pointers and window pointers as graphics pointers so that you don’t have to cast them to a
type GrafPtr before using them. For example:

void DrawIntoWindow(WindowPtr window)
{
 SetPort(window);
 MoveTo(x, y);
 LineTo(x + 50, y + 50);
}

If you compile the above code using the Carbon interfaces, you’ll get a number of compilation errors due to
the fact that window pointers are no longer defined as graphics pointers. But you can’t simply cast these
variables to type GrafPtr because doing so will cause your application to crash under Mac OS X.

Instead, Carbon provides a set of casting functions that allow you to obtain a pointer to a window’s GrafPort
structure or vice versa. Using these new functions, code like the previous example must be updated as follows
to be Carbon-compliant and compile without errors:

void DrawIntoWindow(WindowPtr window)
{
 SetPort(GetWindowPort(window));
 MoveTo(x, y);
 LineTo(x + 50, y + 50);
}

82 Functions for Accessing Opaque Data Structures
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

Casting functions are provided for obtaining graphics ports from windows, windows from dialogs, and various
other combinations. By convention, functions that cast up (that is, going from a lower-level data structure
like a graphics port to a window or going from a window to a dialog pointer) are named
GetHigherLevelTypeFromLowerLevelType. Functions that cast down are named
GetHigherLevelTypeLowerLevelType.

Examples of functions that cast up include:

pascal DialogPtr GetDialogFromWindow(WindowPtr window);
pascal WindowPtr GetWindowFromPort(CGrafPtr port);

Functions that cast down include:

pascal WindowPtr GetDialogWindow(DialogPtr dialog);
pascal CGrafPtr GetWindowPort(WindowPtr window);

Accessor Functions

Carbon includes a number of functions to allow applications to access fields within system data structures
that are now opaque. Listing A-1 (page 83) shows an example of some typical coding practices that must
be modified for Carbon.

Listing A-1 Example of unsupported data structure access

void WalkWindowsAndDoSomething(WindowPtr firstWindow)
{
 WindowPtr currentWindow = firstWindow;

 while (currentWindow != NULL)
 {
 if ((WindowPeek) currentWindow->visible)
 && RectIsFourByFour(¤tWindow->portRect))
 {
 DoSomethingSpecial(currentWindow);
 }
 currentWindow = (WindowPtr) ((WindowPeek) currentWindow->nextWindow);
 }
}

There are four problems in Listing A-1 (page 83) that will cause compiler errors when building a Carbon
application.

1. Checking the visible field directly is not allowed because the WindowPeek type is no longer defined
(it’s only useful when you can assume that type WindowPtr can be cast to a WindowRecord pointer,
which is not the case in Carbon).

2. The currentWindow variable is treated as a graphics port. You need to use the casting functions discussed
above to access a window’s GrafPort structure.

3. Graphics ports are now opaque data structures, so you must use an accessor to get the port’s bounding
rectangle.

4. Accessing the nextWindow field directly from the WindowRecord structure is not allowed.

Functions for Accessing Opaque Data Structures 83
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

To compile and run under Carbon, the code above would have to be changed as shown in Listing A-2.

Listing A-2 Example of using Carbon-compatible accessor functions

void WalkWindowsAndDoSomething(WindowPtr firstWindow)
{
 WindowPtr currentWindow = firstWindow;

 while (currentWindow != NULL)
 {
 Rect windowBounds;

 if (IsWindowVisible(currentWindow) &&
 RectIsFourByFour(GetPortBounds(GetWindowPort(currentWindow),
 &windowBounds))
 {
 DoSomethingSpecial(currentWindow);
 }
 currentWindow = GetNextWindow(currentWindow);
 }
}

One thing to note is that the GetPortBounds function returns a pointer to the input rectangle as a syntactic
convenience, to allow you to pass the result of GetPortBounds directly to another function. Many of the
accessor functions return a pointer to the input in the same way, as a convenience to the caller.

With a few exceptions as noted below, all accessor functions return copies to data, not the data itself. You
must make sure to allocate storage before you access non-scalar types such as regions and pixel patterns.
For example, if you use code like this to test the visible region of a graphics port:

if (EmptyRgn(somePort->visRgn))
 DoSomething();

you’ll have to change it as shown below in order to allow the accessor to copy the port’s visible region into
your reference:

RgnHandle visibleRegion;

visibleRegion = NewRgn();
if (EmptyRgn(GetPortVisibleRegion(somePort, visibleRegion)))
 DoSomething();
DisposeRgn(visibleRegion);

A few accessor functions continue to return actual data rather than copied data. GetPortPixMap, for example,
is provided specifically to allow calls to CopyBits, CopyMask, and similar functions, and should only be used
for these calls. The interface for the CopyBits-type calls will be changing to work around this exception,
but for now be aware that this exception exists. The QuickDraw bottleneck routines, which are stored in a
GrafProc record, continue to operate just like their classic Mac OS equivalents. That is, the actual pointer
to the structure is returned rather than creating a copy. Other instances where the actual handle is passed
back include cases where user-specified data is carried in a data structure, such as the UserHandle field in
ListHandle records.

Table A-1 lists common accessor functions for Human Interface Toolbox structures.

84 Functions for Accessing Opaque Data Structures
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

Table A-1 Summary of Carbon Human Interface Toolbox accessors

AccessorElementData structure

Controls

Use Control Manager embedding hierarchy functions. (See Mac
OS 8 Control Manager Reference.)

nextControlControlRecord

Get/SetControlOwner. May be replaced in favor of
Embed/DetachControl.

contrlOwner

Get/SetControlBoundscontrlRect

IsControlVisible, SetControlVisibilitycontrlVis

GetControlHilite, HiliteControlcontrlHilite

Get/SetControlValue, Get/SetControl32BitValuecontrlValue

Get/SetControlMinimum, Get/SetControl32BitMinimumcontrlMin

Get/SetControlMaximum, Get/SetControl32BitMaximumcontrlMax

not supportedcontrlDefProc

Get/SetControlDataHandlecontrlData

Get/SetControlActioncontrlAction

Get/SetControlReferencecontrlRfCon

Get/SetControlTitlecontrlTitle

not supportedacNextAuxCtlRec

not supportedacOwner

not supportedacCTable

not supportedacFlags

not supportedacReserved

Use Get/SetControlProperty if you need more refCons.acRefCon

Use Get/SetControlData with proper tags.mHandlePopupPrivateData

Use Get/SetControlData with proper tags.mID

Dialog Boxes

Use GetDialogWindow to obtain the value. There is no
equivalent function for setting the value.

windowDialogRecord

Functions for Accessing Opaque Data Structures 85
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

AccessorElementData structure

AppendDITL, ShortenDITL, AppendDialogItemList,
InsertDialogItem, RemoveDialogItems

items

GetDialogTextEditHandletextH

GetDialogKeyboardFocusItemeditField

Get/SetDialogCancelItemeditOpen

Get/SetDialogDefaultItemaDefItem

Menus

Get/SetMenuIDmenuIDMenuInfo

Get/SetMenuWidthmenuWidth

Get/SetMenuHeightmenuHeight

SetMenuDefinitionmenuProc

Enable/DisableMenuItem, IsMenuItemEnabledenableFlags

Get/SetMenuTitlemenuData

Windows

Use GetWindowPort to obtain the value. There is no equivalent
function for setting the value.

portWindowRecord
CWindowRecord

Get/SetWindowKindwindowKind

Hide/ShowWindow, ShowHide, IsWindowVisiblevisible

HiliteWindow, IsWindowHilitedhilited

ChangeWindowAttributesgoAwayFlag

ChangeWindowAttributesspareFlag

GetWindowRegionstrucRgn

GetWindowRegioncontRgn

GetWindowRegionupdateRgn

not supportedwindowDefProc

not supporteddataHandle

Get/SetWTitletitleHandle

GetWindowRegiontitleWidth

86 Functions for Accessing Opaque Data Structures
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

AccessorElementData structure

GetRootControlcontrolList

GetNextWindownextWindow

Get/SetWindowPicwindowPic

Get/SetWRefConrefCon

not supportedawNextAuxWinRec

not supportedawOwner

Get/SetWindowContentColorawCTable

not supportedreserved

not supportedawFlags

not supportedawReserved

Use Get/SetWindowProperty if you need more reference
constants.

awRefCon

Lists

Get/SetListViewBoundsrViewListRec

Get/SetListPortport

Get/SetListCellIndentindent

Get/SetListCellSizecellSize

Use GetListVisibileCells to obtain the value. No equivalent
function for setting the value.

visible

GetListVerticalScrollBar, use new API (TBD) to turn off
automatic scroll bar drawing.

vScroll

GetListHorizontalScrollBar, use new API (TBD) to turn off
automatic scroll bar drawing.

hScroll

Get/SetListSelectionFlagsselFlags

LActivate, GetListActivelActive

not supportedlReserved

Get/SetListFlagslistFlags

Get/SetListClickTimeclikTime

GetListClickLocationclikLoc

Functions for Accessing Opaque Data Structures 87
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

AccessorElementData structure

GetListMouseLocationmouseLoc

Get/SetListClickLooplClickLoop

SetListLastClicklastClick

Get/SetListRefConrefCon

not supportedlistDefProc

Get/SetListUserHandleuserHandle

GetListDataBoundsdataBounds

LGet/SetCellcells

LGet/SetCellmaxIndex

LGet/SetCellcellArray

Table A-2 provides a summary of accessor functions you can use to access common QuickDraw data structures.

Table A-2 QuickDraw accessor functions

AccessorElementData
structure

not supporteddeviceGrafPort

Use GetPortBitMapsForCopyBits or IsPortColor.portBits

Get/SetPortBoundsportRect

Get/SetPortVisibleRegionvisRgn

Get/SetPortClipRgnclipRgn

not supportedbkPat

not supportedfillPat

Get/SetPortPenLocationpnLoc

Get/SetPortPenSizepnSize

Get/SetPortPenModepnMode

not supportedpnPat

Use GetPortPenVisibility or Show/HidePen.pnVis

Use GetPortTextFont or TextFont.txFont

88 Functions for Accessing Opaque Data Structures
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

AccessorElementData
structure

Use GetPortTextFace or TextFace.txFace

Use GetPortTextMode or TextMode.txMode

Use GetPortTextSize or TextSize.txSize

Use GetPortSpExtra or SpaceExtra.spExtra

not supportedfgColor

not supportedbkColor

not supportedcolrBit

not supportedpatStretch

IsPortPictureBeingDefinedpicSave

not supportedrgnSave

not supportedpolySave

not supportedgrafProcs

not supporteddeviceCGrafPort

GetPortPixMapportPixMap

IsPortColorportVersion

not supportedgrafVars

GetPortChExtrachExtra

Get/SetPortFracHPenLocationpnLocHFrac

Get/SetPortBoundsportRect

Get/SetPortVisibleRegionvisRgn

Get/SetPortClipRegionclipRgn

Use GetPortBackPixPat or BackPixPat.bkPixPat

Use GetPortForeColor or RGBForeColor.rgbFgColor

Use GetPortBackColor or RGBBackColor.rgbBkColor

Get/SetPortPenLocationpnLoc

Get/SetPortPenSizepnSize

Get/SetPortPenModepnMode

Functions for Accessing Opaque Data Structures 89
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

AccessorElementData
structure

Get/SetPortPenPixPatpnPixPat

Get/SetPortFillPixPatfillPixPat

Use GetPortPenVisibility or Show/HidePen.pnVis

Use GetPortTextFont or TextFont.txFont

Use GetPortTextFace or TextFace.txFace

Use GetPortTextMode or TextMode.txMode

Use GetPortTextSize or TextSize.txSize

Use GetPortSpExtra or SpaceExtra.spExtra

not supportedfgColor

not supportedbkColor

not supportedcolrBit

not supportedpatStretch

IsPortPictureBeingDefinedpicSave

not supportedrgnSave

not supportedpolySave

Get/SetPortGrafProcsgrafProcs

GetQDGlobalsRandomSeedrandSeedQDGlobals

GetQDGlobalsScreenBitsscreenBits

GetQDGlobalsArrowarrow

GetQDGlobalsDarkGraydkGray

GetQDGlobalsLightGrayltGray

GetQDGlobalsGraygray

GetQDGlobalsBlackblack

GetQDGlobalsWhitewhite

GetQDGlobalsThePortthePortGrafPtr

90 Functions for Accessing Opaque Data Structures
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

Utility Functions

Carbon includes a number of utility functions to make it easier to port your application. Under the classic
Mac OS API, new graphics ports were created by allocating non-relocatable memory the size of a CGrafPort
record and calling OpenCPort. Because GrafPort records are now opaque, and their size is system-defined,
Carbon includes new routines to create and dispose of graphics ports:

pascal CGrafPtr CreateNewPort()
pascal void DisposePort(CGrafPtr port)

These functions provide access to commonly used bounding rectangles:

pascal OSStatus GetWindowBounds(WindowRef window,
 WindowRegionCode regionCode, Rect *bounds);
pascal OSStatus GetWindowRegion(WindowRef window,
 WindowRegionCode regionCode, RgnHandle windowRegion);

Often you’ll find the need to set the current port to the one that belongs to a window or dialog box.
SetPortWindowPort and SetPortDialogPort allow you to do this:

pascal void SetPortWindowPort(WindowPtr window)
pascal void SetPortDialogPort(DialogPtr dialog)

The new functionGetParamText replacesLMGetDAStrings as the method to retrieve the currentParamText
setting. Pass NULL for a parameter if you don’t want a particular string.

pascal void GetParamText(StringPtr param0, StringPtr param1,
 StringPtr param2, StringPtr param3)

Functions in CarbonAccessors.o

CarbonAccessors.o is a static library that contains implementations of the Carbon functions for accessing
opaque toolbox data structures. See “Begin With CarbonAccessors.o” (page 21) for information on how you
can use this library to assist in porting your code to Carbon.

Note: You can also use CarbonAccessors.o to maintain some backwards compatibility with non-Carbon
systems. For example, if you don’t require functions that are available only in CarbonLib, by linking against
the CarbonAccessors.o static library you can build an application from a Carbon-compliant code base
that runs on non-Carbon systems.

Table A-3 lists the Carbon functions implemented in CarbonAccessors.o. The “•” symbol indicates a
function added since the Developer Preview 3 version of this document. “••” indicates a function added since
Developer Preview 4.

Table A-3 Functions in CarbonAccessors.o

AEGetDescDataAEFlattenDesc••

AEReplaceDescData•AEGetDescDataSize

AEUnflattenDesc••AESizeOfFlattenedDesc••

Functions in CarbonAccessors.o 91
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

CopyCStringToPascal•c2pstrcpy•

CreateNewPortCopyPascalStringToC•

GetControlBoundsDisposePort

GetControlHiliteGetControlDataHandle

GetControlPopupMenuHandleGetControlOwner

GetDialogCancelItemGetControlPopupMenuID

GetDialogFromWindowGetDialogDefaultItem

GetDialogPortGetDialogKeyboardFocusItem

GetDialogWindowGetDialogTextEditHandle

GetListActiveGetGlobalMouse

GetListCellSizeGetListCellIndent

GetListClickLoopGetListClickLocation

GetListDataBoundsGetListClickTime

GetListDefinitionGetListDataHandle

GetListHorizontalScrollBarGetListFlags

GetListPortGetListMouseLocation

GetListSelectionFlagsGetListRefCon

GetListVerticalScrollBarGetListUserHandle

GetListVisibleCellsGetListViewBounds

GetMenuIDGetMenuHeight

GetMenuWidthGetMenuTitle

GetParamTextGetNextWindow•

GetPixDepthGetPixBounds

GetPortBackPixPatGetPortBackColor

GetPortBitMapForCopyBits•GetPortBackPixPatDirect

GetPortChExtraGetPortBounds

GetPortFillPixPatGetPortClipRegion

GetPortFracHPenLocationGetPortForeColor

92 Functions in CarbonAccessors.o
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

GetPortHiliteColorGetPortGrafProcs

GetPortPenLocationGetPortOpColor

GetPortPenPixPatGetPortPenMode

GetPortPenSizeGetPortPenPixPatDirect

GetPortPixMapGetPortPenVisibility

GetPortSpExtraGetPortPrintingReference

GetPortTextFontGetPortTextFace

GetPortTextSizeGetPortTextMode

GetQDGlobalsGetPortVisibleRegion

GetQDGlobalsBlackGetQDGlobalsArrow

GetQDGlobalsGrayGetQDGlobalsDarkGray

GetQDGlobalsRandomSeedGetQDGlobalsLightGray

GetQDGlobalsThePortGetQDGlobalsScreenBits

GetRegionBoundsGetQDGlobalsWhite

GetTSMTEDialogTSMTERecHandle•GetTSMDialogDocumentID

GetWindowKindGetWindowFromPort

GetWindowPortGetWindowList•

GetWindowSpareFlagGetWindowPortBounds

GetWindowUserStateGetWindowStandardState

InvalWindowRgnInvalWindowRect

IsPortColor•IsControlHilited

IsPortPictureBeingDefinedIsPortOffscreen

IsRegionRectangularIsPortRegionBeingDefined

IsWindowHilitedIsTSMTEDialog•

IsWindowVisibleIsWindowUpdatePending

SetControlBoundsp2cstrcpy•

SetControlOwnerSetControlDataHandle

SetControlPopupMenuIDSetControlPopupMenuHandle

Functions in CarbonAccessors.o 93
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

SetListClickLoopSetListCellIndent

SetListFlagsSetListClickTime

SetListPortSetListLastClick

SetListSelectionFlagsSetListRefCon

SetListViewBoundsSetListUserHandle

SetMenuIDSetMenuHeight

SetMenuWidthSetMenuTitle

SetPortBackPixPatDirectSetPortBackPixPat

SetPortClipRegionSetPortBounds

SetPortFracHPenLocationSetPortDialogPort

SetPortOpColorSetPortGrafProcs

SetPortPenPixPatSetPortPenMode

SetPortPenSizeSetPortPenPixPatDirect

SetPortVisibleRegionSetPortPrintingReference

SetQDError•SetPortWindowPort

SetQDGlobalsRandomSeedSetQDGlobalsArrow

SetTSMTEDialogTSMTERecHandle•SetTSMDialogDocumentID

SetWindowStandardStateSetWindowKind

ValidWindowRectSetWindowUserState

ValidWindowRgn

The following functions were removed from CarbonAccessors.o.

Table A-4 Functions removed from CarbonAccessors.o

EnableMenuItemDisableMenuItem

GetControlDefinitionGetControlColorTable

GetTSMDialogTextEditHandleGetTSMDialogPtr

SetControlColorTableGetWindowGoAwayFlag

94 Functions in CarbonAccessors.o
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

Debugging Functions

The following functions have been added to MacMemory.h to aid in debugging.

CheckAllHeaps

pascal Boolean CheckAllHeaps(void);

Checks all applicable heaps for validity. Returns false if there is any corruption.

IsHeapValid

pascal Boolean IsHeapValid(void);

Similar to CheckAllHeaps, but checks only the application heap for validity.

IsHandleValid

pascal Boolean IsHandleValid(Handle h);

Returns true if the specified handle is valid. You cannot pass NULL or an empty handle to IsHandleValid.

IsPointerValid

pascal Boolean IsPointerValid(Ptr p);

Returns true if the specified pointer is valid. You cannot pass NULL or an empty pointer to IsPointerValid.

Resource Chain Manipulation Functions

Three functions have been added to Resources.h to facilitate resource chain manipulation in Carbon
applications.

InsertResourceFile

OSErr InsertResourceFile(SInt16 refNum, RsrcChainLocation where);

If the file is already in the resource chain, it is removed and re-inserted at the location specified by the where
parameter. If the file has been detached, it is added to the resource chain at the specified location. Returns
resFNotFound if the file is not currently open. Valid constants for the where parameter are:

// RsrcChainLocation constants for InsertResourceFile
enum short

Debugging Functions 95
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

{
 kRsrcChainBelowAll = 0, /* Below all other app files in
 the resource chain */
 kRsrcChainBelowApplicationMap = 1, /* Below the application's
 resource map */
 kRsrcChainAboveApplicationMap = 2 /* Above the application's
 resource map */
};

DetachResourceFile

OSErr DetachResourceFile(SInt16 refNum);

If the file is not currently in the resource chain, this function returns resNotFound. Otherwise, the resource
file is removed from the resource chain.

FSpResourceFileAlreadyOpen

Boolean FSpResourceFileAlreadyOpen (
 const FSSpec *resourceFile,
 Boolean *inChain,
 SInt16 *refNum);

This function returns true if the resource file is already open and known by the Resource Manager (that is,
if the file is either in the current resource chain or if it’s a detached resource file). If the file is in the resource
chain, the inChain parameter is set to true on exit and the function returns true. If the file is open but
currently detached, inChain is set to false and the function returns true. If the file is open, the refNum
to the file is returned.

96 Resource Chain Manipulation Functions
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

New Carbon Functions

The main code for Sample is included in Sample.c and SampleInit.c as shown in Listing B-1 and Listing
B-2 (page 108). Sample also includes a definition file,Sample.h, and a compiled resource file,TCSample.rsrc.

The chapter “A Porting Example” (page 47) describes how to port the Sample application to Carbon. “An
Example: Adding Carbon Events to Sample” (page 71) describes how to add Carbon events to the Carbon
version of Sample.

Listing B-1 Sample.c

/*
 File: Sample.c

 Contains: Sample is an example application that demonstrates how to
 initialize the commonly used toolbox managers, operate
 successfully under MultiFinder, handle desk accessories,
 and create, grow, and zoom windows.

 It does not by any means demonstrate all the techniques
 you need for a large application. In particular, Sample
 does not cover exception handling, multiple windows/documents,
 sophisticated memory management, printing, or undo. All of
 these are vital parts of a normal full-sized application.

 This application is an example of the form of a Macintosh
 application; it is NOT a template. It is NOT intended to be
 used as a foundation for the next world-class, best-selling,
 600K application. A stick figure drawing of the human body may
 be a good example of the form for a painting, but that does not
 mean it should be used as the basis for the next Mona Lisa.

 We recommend that you review this program or TESample before
 beginning a new application.

 Written by:

 Copyright: Copyright © 1988-1999 by Apple Computer, Inc., All Rights Reserved.

 You may incorporate this Apple sample source code into your program(s) without
 restriction. This Apple sample source code has been provided "AS IS" and the
 responsibility for its operation is yours. You are not permitted to redistribute
 this Apple sample source code as "Apple sample source code" after having made
 changes. If you're going to re-distribute the source, we require that you make
 it clear in the source that the code was descended from Apple sample source
 code, but that you've made changes.

 Change History (most recent first):
 8/13/1999 Karl Groethe Updated for Metrowerks Codewarror Pro 2.1
*/

97
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

/* Segmentation strategy:

 This program consists of three segments.
 1. "Main" contains most of the code, including the MPW libraries, and the
 main program. This segment is in the file Sample.c
 2. "Initialize" contains code that is only used once, during startup, and
 can be unloaded after the program starts. This segment is in the file
 SampleInit.c.
 3. "%A5Init" is automatically created by the Linker to initialize globals
 for the MPW libraries and is unloaded right away. */

/* SetPort strategy:

 Toolbox routines do not change the current port. In spite of this, in this
 program we use a strategy of calling SetPort whenever we want to draw or
 make calls which depend on the current port. This makes us less vulnerable
 to bugs in other software which might alter the current port (such as the
 bug (feature?) in many desk accessories which change the port on OpenDeskAcc).
 Hopefully, this also makes the routines from this program more self-contained,
 since they don't depend on the current port setting. */

#pragma segment Main

#include <Limits.h>
#include <Types.h>
#include <Resources.h>
#include <QuickDraw.h>
#include <Fonts.h>
#include <Events.h>
#include <Windows.h>
#include <Menus.h>
#include <TextEdit.h>
#include <Dialogs.h>
#include <Desk.h>
#include <ToolUtils.h>
#include <Memory.h>
#include <SegLoad.h>
#include <Files.h>
#include <OSUtils.h>
#include <DiskInit.h>
#include <Packages.h>
#include <Traps.h>
#include "Sample.h "/* bring in all the #defines for Sample */

/* The "g" prefix is used to emphasize that a variable is global. */

/* GMac is used to hold the result of a SysEnvirons call. This makes
 it convenient for any routine to check the environment. */
SysEnvRec gMac; /* set up by Initialize */

/* GHasWaitNextEvent is set at startup, and tells whether the WaitNextEvent
 trap is available. If it is false, we know that we must call GetNextEvent. */
Boolean gHasWaitNextEvent; /* set up by Initialize */

/* GInBackground is maintained by our osEvent handling routines. Any part of
 the program can check it to find out if it is currently in the background. */

98
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

Boolean gInBackground; /* maintained by Initialize and DoEvent */

/* The following globals are the state of the window. If we supported more than
 one window, they would be attached to each document, rather than globals. */

/* GStopped tells whether the stop light is currently on stop or go. */
Boolean gStopped; /* maintained by Initialize and SetLight */

/* GStopRect and gGoRect are the rectangles of the two stop lights in the window. */
Rect gStopRect; /* set up by Initialize */
Rect gGoRect; /* set up by Initialize */

/* Define TopLeft and BotRight macros for convenience. Notice the implicit
 dependency on the ordering of fields within a Rect */
#define TopLeft(aRect) (* (Point *) &(aRect).top)
#define BotRight(aRect) (* (Point *) &(aRect).bottom)

/* This routine is part of the MPW runtime library. This external
 reference to it is done so that we can unload its segment, %A5Init. */

#ifndef THINK_C
 extern void _DataInit();
#endif

void main()
{
#ifndef THINK_C
 UnloadSeg((Ptr) _DataInit); /* note that _DataInit must not be in Main! */
#endif

 /* 1.01 - call to ForceEnvirons removed */

 /* If you have stack requirements that differ from the default,
 then you could use SetApplLimit to increase StackSpace at
 this point, before calling MaxApplZone. */
 MaxApplZone(); /* expand the heap so code segments load at the top */

 Initialize(); /* initialize the program */
 UnloadSeg((Ptr) Initialize); /* note that Initialize must not be in Main! */

 EventLoop(); /* call the main event loop */
} /*main*/

/* Get events forever, and handle them by calling DoEvent.
 Get the events by calling WaitNextEvent, if it's available, otherwise
 by calling GetNextEvent. Also call AdjustCursor each time through the loop. */

void EventLoop()
{
 RgnHandle cursorRgn;
 Boolean gotEvent;
 EventRecord event;
 Point mouse;

99
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

 cursorRgn = NewRgn(); /* we’ll pass WNE an empty region the 1st time thru */
 do {
 /* use WNE if it is available */
 if (gHasWaitNextEvent) {
 GetGlobalMouse(&mouse);
 AdjustCursor(mouse, cursorRgn);
 gotEvent = WaitNextEvent(everyEvent, &event, LONG_MAX, cursorRgn);
 }
 else {
 SystemTask();
 gotEvent = GetNextEvent(everyEvent, &event);
 }
 if (gotEvent) {
 /* make sure we have the right cursor before handling the event */
 AdjustCursor(event.where, cursorRgn);
 DoEvent(&event);
 }
 /* If you are using modeless dialogs that have editText items,
 you will want to call IsDialogEvent to give the caret a chance
 to blink, even if WNE/GNE returned FALSE. However, check FrontWindow
 for a non-NIL value before calling IsDialogEvent. */
 } while (true); /* loop forever; we quit via ExitToShell */
} /*EventLoop*/

/* Do the right thing for an event. Determine what kind of event it is, and call
 the appropriate routines. */

void DoEvent(EventRecord *event)
{
 short part, err;
 WindowPtr window;
 Boolean hit;
 char key;
 Point aPoint;

 switch (event->what) {
 case mouseDown:
 part = FindWindow(event->where, &window);
 switch (part) {
 case inMenuBar: /* process a mouse menu command (if any) */
 AdjustMenus();
 DoMenuCommand(MenuSelect(event->where));
 break;
 case inSysWindow: /* let the system handle the mouseDown */
 SystemClick(event, window);
 break;
 case inContent:
 if (window != FrontWindow()) {
 SelectWindow(window);
 /*DoEvent(event);*//* use this line for "do first click" */
 } else
 DoContentClick(window);
 break;
 case inDrag: /* pass screenBits.bounds to get all gDevices */
 DragWindow(window, event->where, &qd.screenBits.bounds);
 break;
 case inGrow:

100
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

 break;
 case inZoomIn:
 case inZoomOut:
 hit = TrackBox(window, event->where, part);
 if (hit) {
 SetPort(window); /* the window must be the current port... */
 EraseRect(&window->portRect); /* because of a bug in */
 /* ZoomWindow */
 ZoomWindow(window, part, true); /* note that we invalidate */
 /* and erase... */
 InvalRect(&window->portRect); /* to make things look */
 /* better on-screen */
 }
 break;
 }
 break;
 case keyDown:
 case autoKey: /* check for menukey equivalents */
 key = event->message & charCodeMask;
 if (event->modifiers & cmdKey) /* Command key down */
 if (event->what == keyDown) {
 AdjustMenus(); /* enable/disable/check menu items properly */
 DoMenuCommand(MenuKey(key));
 }
 break;
 case activateEvt:
 DoActivate((WindowPtr) event->message,
 (event->modifiers & activeFlag) != 0);
 break;
 case updateEvt:
 DoUpdate((WindowPtr) event->message);
 break;
 /* 1.01 - It is not a bad idea to at least call DIBadMount in response
 to a diskEvt, so that the user can format a floppy. */
 case diskEvt:
 if (HiWord(event->message) != noErr) {
 SetPt(&aPoint, kDILeft, kDITop);
 err = DIBadMount(aPoint, event->message);
 }
 break;
 case kOSEvent:
 /* 1.02 - must BitAND with 0x0FF to get only low byte */
 switch ((event->message >> 24) & 0x0FF) { /* high byte of message */
 case kSuspendResumeMessage: /* suspend/resume is also an */
 /* activate/deactivate */
 gInBackground = (event->message & kResumeMask) == 0;
 DoActivate(FrontWindow(), !gInBackground);
 break;
 }
 break;
 }
} /*DoEvent*/

/* Change the cursor's shape, depending on its position. This also calculates the region
 where the current cursor resides (for WaitNextEvent). If the mouse is ever outside
 of
 that region, an event would be generated, causing this routine to be called,

101
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

 allowing us to change the region to the region the mouse is currently in. If
 there is more to the event than just "the mouse moved", we get called before the
 event is processed to make sure the cursor is the right one. In any (ahem) event,
 this is called again before we fall back into WNE. */

void AdjustCursor(Point mouse, RgnHandle region)
{
 WindowPtr window;
 RgnHandle arrowRgn;
 RgnHandle plusRgn;
 Rect globalPortRect;

 window = FrontWindow(); /* we only adjust the cursor when we are in front */
 if ((! gInBackground) && (! IsDAWindow(window))) {
 /* calculate regions for different cursor shapes */
 arrowRgn = NewRgn();
 plusRgn = NewRgn();

 /* start with a big, big rectangular region */
 SetRectRgn(arrowRgn, kExtremeNeg, kExtremeNeg, kExtremePos, kExtremePos);

 /* calculate plusRgn */
 if (IsAppWindow(window)) {
 SetPort(window); /* make a global version of the viewRect */
 SetOrigin(-window->portBits.bounds.left, -window->portBits.bounds.top);
 globalPortRect = window->portRect;
 RectRgn(plusRgn, &globalPortRect);
 SectRgn(plusRgn, window->visRgn, plusRgn);
 SetOrigin(0, 0);
 }

 /* subtract other regions from arrowRgn */
 DiffRgn(arrowRgn, plusRgn, arrowRgn);

 /* change the cursor and the region parameter */
 if (PtInRgn(mouse, plusRgn)) {
 SetCursor(*GetCursor(plusCursor));
 CopyRgn(plusRgn, region);
 } else {
 SetCursor(&qd.arrow);
 CopyRgn(arrowRgn, region);
 }

 /* get rid of our local regions */
 DisposeRgn(arrowRgn);
 DisposeRgn(plusRgn);
 }
} /*AdjustCursor*/

/* Get the global coordinates of the mouse. When you call OSEventAvail
 it will return either a pending event or a null event. In either case,
 the where field of the event record will contain the current position
 of the mouse in global coordinates and the modifiers field will reflect
 the current state of the modifiers. Another way to get the global
 coordinates is to call GetMouse and LocalToGlobal, but that requires
 being sure that thePort is set to a valid port. */

102
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

void GetGlobalMouse(Point *mouse)
{
 EventRecord event;

 OSEventAvail(kNoEvents, &event); /* we aren't interested in any events */
 mouse = event.where; / just the mouse position */
} /*GetGlobalMouse*/

/* This is called when an update event is received for a window.
 It calls DrawWindow to draw the contents of an application window.
 As an efficiency measure that does not have to be followed, it
 calls the drawing routine only if the visRgn is non-empty. This
 will handle situations where calculations for drawing or drawing
 itself is very time-consuming. */

void DoUpdate(WindowPtr window)
{
 if (IsAppWindow(window)) {
 BeginUpdate(window); /* this sets up the visRgn */
 if (! EmptyRgn(window->visRgn)) /* draw if updating needs to be done */
 DrawWindow(window);
 EndUpdate(window);
 }
} /*DoUpdate*/

/* This is called when a window is activated or deactivated.
 In Sample, the Window Manager's handling of activate and
 deactivate events is sufficient. Other applications may have
 TextEdit records, controls, lists, etc., to activate/deactivate. */

void DoActivate(WindowPtr window, Boolean becomingActive)
{
 if (IsAppWindow(window)) {
 if (becomingActive)
 /* do whatever you need to at activation */ ;
 else
 /* do whatever you need to at deactivation */ ;
 }
} /*DoActivate*/

/* This is called when a mouse-down event occurs in the content of a window.
 Other applications might want to call FindControl, TEClick, etc., to
 further process the click. */

void DoContentClick(WindowPtr window)
{
 SetLight(window, ! gStopped);
} /*DoContentClick*/

/* Draw the contents of the application window. We do some drawing in color, using
 Classic QuickDraw's color capabilities. This will be black and white on old
 machines, but color on color machines. At this point, the window’s visRgn
 is set to allow drawing only where it needs to be done. */

103
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

void DrawWindow(WindowPtr window)
{
 SetPort(window);

 EraseRect(&window->portRect); /* clear out any garbage that may linger */
 if (gStopped) /* draw a red (or white) stop light */
 ForeColor(redColor);
 else
 ForeColor(whiteColor);

 PaintOval(&gStopRect);
 ForeColor(blackColor);
 FrameOval(&gStopRect);

 if (! gStopped) /* draw a green (or white) go light */
 ForeColor(greenColor);
 else
 ForeColor(whiteColor);

 PaintOval(&gGoRect);
 ForeColor(blackColor);
 FrameOval(&gGoRect);
} /*DrawWindow*/

/* Enable and disable menus based on the current state.
 The user can only select enabled menu items. We set up all the menu items
 before calling MenuSelect or MenuKey, since these are the only times that
 a menu item can be selected. Note that MenuSelect is also the only time
 the user will see menu items. This approach to deciding what enable/
 disable state a menu item has the advantage of concentrating all
 the decision-making in one routine, as opposed to being spread throughout
 the application. Other application designs may take a different approach
 that is just as valid. */

void AdjustMenus()
{
 WindowPtr window;
 MenuHandle menu;

 window = FrontWindow();

 menu = GetMenuHandle(mFile);
 if (IsDAWindow(window)) /* we can allow desk accessories to be */
 /* closed from the menu */
 EnableItem(menu, iClose);
 else
 DisableItem(menu, iClose); /* but not our traffic light window */

 menu = GetMenuHandle(mEdit);
 if (IsDAWindow(window)) { /* a desk accessory might need the edit menu… */
 EnableItem(menu, iUndo);
 EnableItem(menu, iCut);
 EnableItem(menu, iCopy);
 EnableItem(menu, iClear);
 EnableItem(menu, iPaste);
 } else { /* …but we don’t use it */
 DisableItem(menu, iUndo);

104
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

 DisableItem(menu, iCut);
 DisableItem(menu, iCopy);
 DisableItem(menu, iClear);
 DisableItem(menu, iPaste);
 }

 menu = GetMenuHandle(mLight);
 if (IsAppWindow(window)) { /* we know that it must be the traffic light */
 EnableItem(menu, iStop);
 EnableItem(menu, iGo);
 } else {
 DisableItem(menu, iStop);
 DisableItem(menu, iGo);
 }
 CheckItem(menu, iStop, gStopped); /* we can also determine the check/uncheck */
 /* state,too */
 CheckItem(menu, iGo, ! gStopped);
} /*AdjustMenus*/

/* This is called when an item is chosen from the menu bar (after calling
 MenuSelect or MenuKey). It performs the right operation for each command.
 It is good to have both the result of MenuSelect and MenuKey go to
 one routine like this to keep everything organized. */

void DoMenuCommand(long menuResult)
{
 short menuID; /* the resource ID of the selected menu */
 short menuItem; /* the item number of the selected menu */
 short itemHit;
 Str255 daName;
 short daRefNum;
 Boolean handledByDA;

 menuID = HiWord(menuResult); /* use macros for efficiency to... */
 menuItem = LoWord(menuResult); /* get menu item number and menu number */
 switch (menuID) {
 case mApple:
 switch (menuItem) {
 case iAbout: /* bring up alert for About */
 itemHit = Alert(rAboutAlert, nil);
 break;
 default: /* all non-About items in this menu are DAs */
 /* type Str255 is an array in MPW 3 */
 GetMenuItemText(GetMenuHandle(mApple), menuItem, daName);
 daRefNum = OpenDeskAcc(daName);
 break;
 }
 break;
 case mFile:
 switch (menuItem) {
 case iClose:
 DoCloseWindow(FrontWindow());
 break;
 case iQuit:
 Terminate();
 break;
 }

105
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

 break;
 case mEdit: /* call SystemEdit for DA editing & MultiFinder */
 handledByDA = SystemEdit(menuItem-1);/* since we don’t do any Editing */
 break;
 case mLight:
 switch (menuItem) {
 case iStop:
 SetLight(FrontWindow(), true);
 break;
 case iGo:
 SetLight(FrontWindow(), false);
 break;
 }
 break;
 }
 HiliteMenu(0); /* unhighlight what MenuSelect (or MenuKey) hilited */
} /*DoMenuCommand*/

/* Change the setting of the light. */

void SetLight(WindowPtr window, Boolean newStopped)
{
 if (newStopped != gStopped) {
 gStopped = newStopped;
 SetPort(window);
 InvalRect(&window->portRect);
 }
} /*SetLight*/

/* Close a window. This handles desk accessory and application windows. */

/* 1.01 - At this point, if there was a document associated with a
 window, you could do any document saving processing if it is 'dirty'.
 DoCloseWindow would return true if the window actually closed, i.e.,
 the user didn’t cancel from a save dialog. This result is handy when
 the user quits an application, but then cancels the save of a document
 associated with a window. */

Boolean DoCloseWindow(WindowPtr window)
{
 if (IsDAWindow(window))
 CloseDeskAcc(((WindowPeek) window)->windowKind);
 else if (IsAppWindow(window))
 CloseWindow(window);
 return true;
} /*DoCloseWindow*/

/**
*** 1.01 DoCloseBehind(window) was removed ***

 1.01 - DoCloseBehind was a good idea for closing windows when quitting
 and not having to worry about updating the windows, but it suffered
 from a fatal flaw. If a desk accessory owned two windows, it would
 close both those windows when CloseDeskAcc was called. When DoCloseBehind
 got around to calling DoCloseWindow for that other window that was already

106
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

 closed, things would go very poorly. Another option would be to have a
 procedure, GetRearWindow, that would go through the window list and return
 the last window. Instead, we decided to present the standard approach
 of getting and closing FrontWindow until FrontWindow returns NIL. This
 has a potential benefit in that the window whose document needs to be saved
 may be visible since it is the front window, therefore decreasing the
 chance of user confusion. For aesthetic reasons, the windows in the
 application should be checked for updates periodically and have the
 updates serviced.
**/

/* Clean up the application and exit. We close all of the windows so that
 they can update their documents, if any. */

/* 1.01 - If we find out that a cancel has occurred, we won't exit to the */
/* shell, but will return instead. */

void Terminate()
{
 WindowPtr aWindow;
 Boolean closed;

 closed = true;
 do {
 aWindow = FrontWindow(); /* get the current front window */
 if (aWindow != nil)
 closed = DoCloseWindow(aWindow); /* close this window */
 }
 while (closed && (aWindow != nil));
 if (closed)
 ExitToShell(); /* exit if no cancellation */
} /*Terminate*/

/* Check to see if a window belongs to the application. If the window pointer
 passed was NIL, then it could not be an application window. WindowKinds
 that are negative belong to the system and windowKinds less than userKind
 are reserved by Apple except for windowKinds equal to dialogKind, which
 mean it is a dialog.
 1.02 - In order to reduce the chance of accidentally treating some window
 as an AppWindow that shouldn't be, we'll only return true if the windowkind
 is userKind. If you add different kinds of windows to Sample you'll need
 to change how this all works. */

Boolean IsAppWindow(WindowPtr window)
{
 short windowKind;

 if (window == nil)
 return false;
 else { /* application windows have windowKinds = userKind (8) */
 windowKind = ((WindowPeek) window)->windowKind;
 return (windowKind == userKind);
 }
} /*IsAppWindow*/

107
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

/* Check to see if a window belongs to a desk accessory. */

Boolean IsDAWindow(WindowPtr window)
{
 if (window == nil)
 return false;
 else /* DA windows have negative windowKinds */
 return (((WindowPeek) window)->windowKind < 0);
} /*IsDAWindow*/

/* Display an alert that tells the user an error occurred, then exit the program.
 This routine is used as an ultimate bail-out for serious errors that prohibit
 the continuation of the application. Errors that do not require the termination
 of the application should be handled in a different manner. Error checking and
 reporting has a place even in the simplest application. The error number is used
 to index an 'STR#' resource so that a relevant message can be displayed. */

void AlertUser()
{
 short itemHit;

 SetCursor(&qd.arrow);
 itemHit = Alert(rUserAlert, nil);
 ExitToShell();
} /* AlertUser */

Listing B-2 SampleInit.c

/* File: SampleInit.c */

/* Repeated comments from Sample.c removed */

#pragma segment Initialize

#include <Limits.h>
#include <Types.h>
#include <Resources.h>
#include <QuickDraw.h>
#include <Fonts.h>
#include <Events.h>
#include <Windows.h>
#include <Menus.h>
#include <TextEdit.h>
#include <Dialogs.h>
#include <Desk.h>
#include <ToolUtils.h>
#include <Memory.h>
#include <SegLoad.h>
#include <Files.h>
#include <OSUtils.h>
#include <DiskInit.h>
#include <Packages.h>
#include <Traps.h>
#include <OSUtils.h>
#include "Sample.h "/* bring in all the #defines for Sample */

108
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

/* The "g" prefix is used to emphasize that a variable is global. */
/* All are extern since the variables are declared in the main segment. */

/* GMac is used to hold the result of a SysEnvirons call. This makes
 it convenient for any routine to check the environment. */
extern SysEnvRec gMac; /* set up by Initialize */

/* GHasWaitNextEvent is set at startup, and tells whether the WaitNextEvent
 trap is available. If it is false, we know that we must call GetNextEvent. */
extern Boolean gHasWaitNextEvent; /* set up by Initialize */

/* GInBackground is maintained by our osEvent handling routines. Any part of
 the program can check it to find out if it is currently in the background. */
extern Boolean gInBackground; /* maintained by Initialize and DoEvent */

/* The following globals are the state of the window. If we supported more than
 one window, they would be attached to each document, rather than globals. */

/* GStopped tells whether the stop light is currently on stop or go. */
extern Boolean gStopped; /* maintained by Initialize and SetLight */

/* GStopRect and gGoRect are the rectangles of the two stop lights in the window. */
extern Rect gStopRect; /* set up by Initialize */
extern Rect gGoRect; /* set up by Initialize */

/* Set up the whole world, including global variables, Toolbox managers,
 and menus. We also create our one application window at this time.
 Since window storage is non-relocateable, how and when to allocate space
 for windows is very important so that heap fragmentation does not occur.
 Because Sample has only one window and it is only disposed when the application
 quits, we will allocate its space here, before anything that might be a locked
 relocatable object gets into the heap. This way, we can force the storage to be
 in the lowest memory available in the heap. Window storage can differ widely
 amongst applications depending on how many windows are created and disposed. */

/* 1.01 - The code that used to be part of ForceEnvirons has been moved into
 this module. If an error is detected, instead of merely doing an ExitToShell,
 which leaves the user without much to go on, we call AlertUser, which puts
 up a simple alert that just says an error occurred and then calls ExitToShell.
 Since there is no other cleanup needed at this point if an error is detected,
 this form of error- handling is acceptable. If more sophisticated error recovery
 is needed, an exception mechanism, such as is provided by Signals, can be used. */

void Initialize()
{
 Handle menuBar;
 WindowPtr window;
 long total, contig;
 EventRecord event;
 short count;

 gInBackground = false;

 InitGraf((Ptr) &qd.thePort);
 InitFonts();

109
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(nil);
 InitCursor();

 /* Call MPPOpen and ATPLoad at this point to initialize AppleTalk,
 if you are using it. */
 /* NOTE -- It is no longer necessary, and actually unhealthy, to check
 PortBUse and SPConfig before opening AppleTalk. The drivers are capable
 of checking for port availability themselves. */

 /* This next bit of code is necessary to allow the default button of our
 alert be outlined.
 1.02 - Changed to call EventAvail so that we don't lose some important
 events. */

 for (count = 1; count <= 3; count++)
 EventAvail(everyEvent, &event);

 /* Ignore the error returned from SysEnvirons; even if an error occurred,
 the SysEnvirons glue will fill in the SysEnvRec. You can save a redundant
 call to SysEnvirons by calling it after initializing AppleTalk. */

 SysEnvirons(kSysEnvironsVersion, &gMac);

 /* Make sure that the machine has at least 128K ROMs. If it doesn't, exit. */

 if (gMac.machineType < 0) AlertUser();

 /* 1.02 - Move TrapAvailable call to after SysEnvirons so that we can tell
 in TrapAvailable if a tool trap value is out of range. */

 gHasWaitNextEvent = TrapAvailable(_WaitNextEvent, ToolTrap);

 /* 1.01 - We used to make a check for memory at this point by examining ApplLimit,
 ApplicationZone, and StackSpace and comparing that to the minimum size we told
 MultiFinder we needed. This did not work well because it assumed too much about
 the relationship between what we asked MultiFinder for and what we would actually
 get back, as well as how to measure it. Instead, we will use an alternate
 method comprised of two steps. */

 /* It is better to first check the size of the application heap against a value
 that you have determined is the smallest heap the application can reasonably
 work in. This number should be derived by examining the size of the heap that
 is actually provided by MultiFinder when the minimum size requested is used.
 The derivation of the minimum size requested from MultiFinder is described
 in Sample.h. The check should be made because the preferred size can end up
 being set smaller than the minimum size by the user. This extra check acts to
 insure that your application is starting from a solid memory foundation. */

 if ((long) GetApplLimit() - (long) ApplicationZone() < kMinHeap) AlertUser();

 /* Next, make sure that enough memory is free for your application to run. It
 is possible for a situation to arise where the heap may have been of required
 size, but a large scrap was loaded which left too little memory. To check for
 this, call PurgeSpace and compare the result with a value that you have
 determined is the minimum amount of free memory your application needs at

110
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

 initialization. This number can be derived several different ways. One way that
 is fairly straightforward is to run the application in the minimum size
 configuration as described previously. Call PurgeSpace at initialization and
 examine the value returned. However, you should make sure that this result is
not
 being modified by the scrap's presence. You can do that by calling ZeroScrap
 before calling PurgeSpace. Remove this call before shipping, though. */

 /* ZeroScrap(); */

 PurgeSpace(&total, &contig);
 if (total < kMinSpace) AlertUser();

 /* The extra benefit to waiting until after the Toolbox Managers have been
 initialized to check memory is that we can now give the user an alert to tell
 him/her what happened. Although it is possible that the memory situation could
 be worsened by displaying an alert, MultiFinder would gracefully exit the
 application with an informative alert if memory became critical. Here we are
 acting more in a preventative manner to avoid future disaster from low-memory
 problems. */

 /* We will allocate our own window storage instead of letting the Window
 Manager do it because GetNewWindow may load in temp. resources before
 making the NewPtr call, and this can lead to heap fragmentation. */

 window = (WindowPtr) NewPtr(sizeof(WindowRecord));
 if (window == nil) AlertUser();
 window = GetNewWindow(rWindow, (Ptr) window, (WindowPtr) -1);

 menuBar = GetNewMBar(rMenuBar); /* read menus into menu bar */
 if (menuBar == nil) AlertUser();
 SetMenuBar(menuBar); /* install menus */
 DisposeHandle(menuBar);
 AppendResMenu(GetMenuHandle(mApple), 'DRVR'); /* add DA names to Apple menu */
 DrawMenuBar();

 gStopped = true;
 if (!GoGetRect(rStopRect, &gStopRect))
 AlertUser(); /* the stop light rectangle */
 if (!GoGetRect(rGoRect, &gGoRect))
 AlertUser(); /* the go light rectangle */
} /*Initialize*/

/* This utility loads the global rectangles that are used by the window
 drawing routines. It shows how the resource manager can be used to hold
 values in a convenient manner. These values are then easily altered without
 having to re-compile the source code. In this particular case, we know
 that this routine is being called at initialization time. Therefore,
 if a failure occurs here, we will assume that the application is in such
 bad shape that we should just exit. Your error handling may differ, but
 the check should still be made. */

Boolean GoGetRect(short rectID, Rect *theRect)
{
 Handle resource;

 resource = GetResource('RECT', rectID);

111
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

 if (resource != nil) {
 *theRect = **((Rect**) resource);
 return true;
 }
 else
 return false;
} /* GoGetRect */

/* Check to see if a given trap is implemented. This is only used by the
 Initialize routine in this program, so we put it in the Initialize segment.
 The recommended approach to see if a trap is implemented is to see if
 the address of the trap routine is the same as the address of the
 Unimplemented trap. */
/* 1.02 - Needs to be called after call to SysEnvirons so that it can check
 if a ToolTrap is out of range of a pre-MacII ROM. */

Boolean TrapAvailable(short tNumber, TrapType tType)
{
 if ((tType == ToolTrap) &&
 (gMac.machineType > envMachUnknown) &&
 (gMac.machineType < envMacII)) { /* it's a 512KE, Plus, or SE */
 tNumber = tNumber & 0x03FF;
 if (tNumber > 0x01FF) /* which means the tool traps */
 tNumber = _Unimplemented; /* only go to 0x01FF */
 }
 return NGetTrapAddress(tNumber, tType) !=
 NGetTrapAddress(_Unimplemented, ToolTrap);
} /*TrapAvailable*/

112
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

The Sample Application

This table describes the changes to Carbon Porting Guide.

NotesDate

Updated path to LaunchCFMApp in “Debugging Your Application” (page 45)
to match that in “Running Your Application on Mac OS X” (page 43).

Updated CodeWarrior Mach-O information in “Building Carbon
Applications” (page 41) to remove mention of the older cross-compiler.

Spelling correction: “supercedes” should be “supersedes.”2001-06-23

Added Important note to “Replace Macro Calls to the Mixed Mode Manager
With UPP Accessor Functions” (page 22) indicating that Thread Manager
functions that did not previously require UPPs for function pointers now require
them in Carbon.

Added new section: “Move Custom Definition Procedures Out of
Resources” (page 22).

Added additional information to “Add a 'plst' 0 Resource” (page 26) about how
the Mac OS X Finder interprets the presence of resource forks and 'plst' 0
resources in determining what environment to launch an application.

IB Carbon Runtime in “Determine the Appropriate CarbonLib Version” (page
27) is now called Interface Builder Services.

Added new section “Do Not Write to Your Application’s Resource Fork” (page
28).

Changed text in “Running Your Application on Mac OS X” (page 43) to reflect
new path to LaunchCFMApp:
/System/Library/Frameworks/Carbon.framework/Versions/A/Support/LaunchCFMApp.

Correction in “Carbon Event Manager” (page 69): The Carbon Event Manager
does not replace the functionality of the Notification Manager.

The Aqua guidelines document, Adopting the Aqua Interface, is now called Inside
Mac OS X: Aqua Human Interface Guidelines.

2000-12-04

Changed “Add a 'carb' 0 Resource” to “Add a 'plst' 0 Resource” (page 26). The
'plst' 0 resource supersedes the 'carb' 0 resource.

Correction in “Consider Using Bundles” (page 36): A bundle appears as a folder
hierarchy on Mac OS X if the bundle bit is unset (not set as previously stated).

113
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Added information about __appstart to “Building Applications Using
MPW” (page 44).

Indicated in “Update Modified or Obsolete Functions” (page 54) and “The Basic
Conversion” (page 72) that Carbon does not support the diskEvt event.
Removed diskEvt case from Carbon version of Sample.

Further subdivided “The Basic Conversion” (page 72) by adding sections
“Installing the Standard Event Handlers” (page 73) and “Registering Your Own
Event Handlers” (page 74).

Added information about the event handler parameters in “The Application-Level
Event Handler” (page 74).

General correction: specific references to CarbonLib 1.1 updated to CarbonLib
1.2.

2000-11-15

General correction: CarbonStub now renamed CarbonLibStub.

In “Preparing Your Code for Carbon” (page 17), added a link to Technote TN2003,
“Moving Your Code to Mac OS X.”

Changed URL link in “Use the Carbon SDK” (page 20) to http://developer.ap-
ple.com/carbon/index.html, as this location is more Carbon-specific and allows
ADC members to download prerelease versions of the SDK.

Declaration that CarbonAccessors.o is only a porting tool softened in “Begin
With CarbonAccessors.o” (page 21) and “Functions in CarbonAccessors.o” (page
91). You can link against CarbonAccessors.o to simplify building non-Carbon
applications from a Carbon code base.

In “Conditionalize Quit Menu Items” (page 26), reworded the text to emphasize
that the position of the Quit item is a feature of the user interface (Aqua versus
Mac OS 8 and 9) rather than of the underlying system.

Added more information to “Begin Transitioning to the Aqua Interface” (page
37), including details about Appearance Manager compliance, sheets, and help
tags.

In “Adopt a Terse Name for the Application Menu” (page 37) changed the
recommended storage location for the name from Info.plist to
InfoPlist.strings, because the latter allows the name to be localized.

Simplified methods of transferring files between Mac OS X and Mac OS 8 and
9 in “Native Mac OS 9 Versus Mac OS X’s Classic Environment” (page 41), as file
sharing is now fully supported.

Added About box screen shot to “Modify the About Box” (page 57).

Mentioned in “The Application-Level Event Handler” (page 74) that you could
assign a command ID for a menu item in an 'xmnu' resource instead of calling
SetMenuItemCommandID.

114
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

http://developer.apple.com/carbon/index.html
http://developer.apple.com/carbon/index.html

NotesDate

Bug fix in Listing 4-1 (page 74): Added DisposeRgn call to the
kEventMouseMoved case of the application event handler to deallocate memory
from the NewRgn call.

Revised text in “Resources” (page 13) and “Move Resources to Data Fork–Based
Files” (page 36) to emphasize that the preferred method for accessing
application resources is by using CFBundle APIs. Also added that the 'cfrg'
0 and 'carb' 0 resources need to remain in the resource fork for CFM-based
Carbon applications so the Mac OS X Finder can launch them properly.

2000-10-24

The Carbon Event Manager constantkEventWindowSizeChangednow replaced
by kEventWindowBoundsChanged.

In section “Check Your OpenGL Code” (page 29), the OpenGLMemoryLibrary
library is now compatible with Carbon. Also, if you are building a Mach-O Carbon
applicatiojn that uses OpenGL, you must call the aglConfigure function before
creating any OpenGL contexts.

Added screen shot of the ported Sample application to “The Carbon Version of
Sample” (page 57).

Added information about new Carbon technology “Multilingual Text Engine
(MLTE)” (page 71).

Added Index.

Correction in “How Does Carbon Work?” (page 11): CarbonLibStub changed
to CarbonStub.

2000-10-12

Changed section “Adopt the Carbon.h Header” to “Modify or Conditionalize
Your Headers” (page 25). You no longer need to adopt Carbon.h. The path
required for the cc compiler is now -I /Developer/Headers/FlatCarbon.
You can also use this path with the conventional Mac OS 8 and 9 headers when
building on Mac OS X.

Changed text in “Begin Transitioning to the Aqua Interface” (page 37) to indicate
that your application automatically registers with the Appearance Manager
when you link with CarbonLib.

Added new chapters, “A Porting Example” (page 47) and “New Carbon
Technologies” (page 69).

Added new appendix, “The Sample Application” (page 97) which contains the
source code to be ported in “A Porting Example” (page 47).

Updated software and header versions to reflect the latest available.2000-09-07

Added new porting guideline “Modify or Conditionalize Your Headers” (page
25).

115
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Added info about using plists to signify Mac OS X Carbon applications in “Add
a 'plst' 0 Resource” (page 26) and “Running Your Application on Mac OS X” (page
43).

Correction in “Determine the Appropriate CarbonLib Version” (page 27)::
Appearance Manager 1.1 is available in all versions of CarbonLib, not just 1.1
and later. Also, DataBrowser is now available back to System 8.6.

“Handling Buffered Windows” (page 30) section added, which incorporates
information from the older section “Drawing into Windows Without QuickDraw”.

Added more specific event information (for example, which event to wait on)
in answers to questions in “Window Dragging and Resizing Q&A” (page 31).

The Aqua guidelines document referenced in “Begin Transitioning to the Aqua
Interface” (page 37) is now Adopting the Aqua Interface. Added URL pointer to
the document.

Added new porting guidelines: “Move Resources to Data Fork–Based Files” (page
36) and “Consider Using Bundles” (page 36).

Added new build section “Building Applications Using MPW” (page 44).

Added new sections “Changes to WDEFs” (page 81) and “Changes to
MDEFs” (page 81) under “Custom Definition Procedures” (page 81).

Removed private functions from CarbonAccessors.o list in Table A-3 (page
91).

In Table A-3 (page 91), QError should be QDError.

Removed functions accidentally identified as removed from
CarbonAccessors.o in Table A-3 (page 91): GetWindowKind,
SetWindowKind, GetKeys, GetWindowSpareFlag, InvalWindowRect, and
InvalWindowRgn,.

Major reorganization of material.2000-07-11

“Introduction to Carbon Porting Guide” (page 9) rewritten to reflect the current
state of Carbon.

Porting guidelines reorganized into sections: “Essential Steps for Porting Your
Application” (page 20), “Additional Porting Issues” (page 27), and “Optimizing
Your Code for Carbon” (page 33).

Some existing porting sections were renamed to better integrate wth the new
sections.

116
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

New porting guideline sections added: “Use the Carbon SDK” (page 20), “Target
Mac OS 8 and 9 First” (page 20), “Use DebuggingCarbonLib” (page 24), “Adopt
Required Carbon Technologies” (page 25), “Update Modified or Obsolete
Functions” (page 25), “Determine the Appropriate CarbonLib Version” (page
27), “Examine Your Plug-ins” (page 29), “Adopt HFS Plus APIs” (page 35),
“Consider Mach-O Executables” (page 35), “Adopt a Terse Name for the
Application Menu” (page 37).

Softened requirements for the contents of a carb'0' resource in “Add a 'plst'
0 Resource” (page 26). The resource can contain arbitrary data.

Comparision of CFM versus Mach-O object file formats moved to the porting
guidelines chapter under “Consider Mach-O Executables” (page 35).

“Linking to Non-Carbon-Compliant Code” (page 29) moved to porting guidelines
chapter.

Directory paths in Mac OS X have changed:

Path /System/Developer/Tools/LaunchCFMApp is now
/Developer/Tools/LaunchCFMApp.

Path System/Administration/Terminal.app is now
/Applications/Utilities/Terminal.app.

Function descriptions and other reference-like material moved to the Appendix:
“Custom Definition Procedures” (page 81), “Functions for Accessing Opaque
Data Structures” (page 82), “Functions in CarbonAccessors.o” (page 91),
“Debugging Functions” (page 95), and “Resource Chain Manipulation
Functions” (page 95).

Revised contents of CarbonAccessors.o in Table A-3 (page 91) and Table
A-4 (page 94).

Updated software and header versions to reflect the latest available (for example,
CarbonLib 1.1 and Universal Interfaces 3.4d2).

2000-05-01

Added new section, “The Carbon Specification” (page 19).

Added new sections describing preparations for Carbon conversion:“Don’t Pass
Pointers Across Processes” (page 28)“Avoid Polling and Busy Waiting” (page
34)“Use Casting Functions to Convert DialogPtrs and WindowPtrs” (page 21)“Use
“Lazy” Initialization for Shared Libraries” (page 35)“Check Your OpenGL
Code” (page 29)“Begin Transitioning to the Aqua Interface” (page 37)“Provide
Thumbnail Icons for Your Application” (page 37)

Added information about avoiding preallocation and suballocators in “Manage
Memory Efficiently” (page 34).

Created new section, “Window Manager Issues” (page 30), to cover Window
Manager porting issues in detail.

117
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

In Table A-1 (page 85), added SetMenuDefinition as the accessor function
for the MenuProc element in a MenuInfo structure.

Added Table A-2 (page 88) listing QuickDraw accessor functions.

Added information about transferring files between Mac OS 9 and Mac OS X
computers in “Native Mac OS 9 Versus Mac OS X’s Classic Environment” (page
41).

Revised contents of CarbonAccessors.o in Table A-3 (page 91)..

Added list of functions removed from CarbonAccessors.o in Table A-4 (page
94).

Emphasized that you cannot link with InterfaceLib if you link to CarbonLib
in “Using CodeWarrior to Build a CFM Carbon Application” (page 41)

Created new section, “Linking to Non-Carbon-Compliant Code” (page 29).

Revised “Debugging Your Application” (page 45) to include specific information
about debugging Carbon applications using GDB.

Added this document revision history.

118
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

76
__appstart entry point in MPW 45
__startentry point in MPW 45

A

About box 57, 76
accessor functions 83

for handling universal procedure pointers 22
for Human Interface Toolbox structures 84
for QuickDraw data structures 88

ACCESSOR_CALLS_ARE_FUNCTIONS 21, 51
aglConfigure, calling from Mach-O Carbon applications

29
Apple events 26, 55
application address spaces 12
application menu, naming convention for 37
application threading 12
application-defined functions 14
Aqua

adopting in Carbon applications 37
changes to Sample application for 57
Quit menu item in 26, 55

B

benefits of Carbon 10
buffered windows, handling 30
building Carbon applications using MPW 44
building Carbon applications with CodeWarrior. See

CodeWarrior
bundles 35
bundles 36

C

Carbon Dater tool 17, 48
Carbon Event Manager

adding to Sample application 71
handling menu selections using 72
installing event handlers 73
keyboard events 72
overview 69
quitting the application 76
resizing windows with 33
standard event handlers 72
timers, in place of null events 76
tracking window movement using 31

Carbon Event Manager
timers, in place of null events 34

Carbon events See Carbon Event Manager
Carbon Printing Manager 25
Carbon Specification 19
Carbon Support folder 42
Carbon.h header 25, 53
Carbon

events. See Carbon Event Manager
API composition of 10
benefits of 10
defined 9
feedback URL for 15
frameworks on Mac OS X 11
functions unavailable in 11
implementation on Mac OS X and Mac OS 8 and 9 11
memory management in 34
plug-ins 29
printing in 13
SDK, location of 20

CarbonAccessors.o 21
contents of 91
using with non-Carbon applications 21

CarbonAccessors.o
used to port Sample application 51

CarbonLib
versions of 27
versus Carbon frameworks 11

119
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

Index

CarbonLibStub stub library 11
’carb’0 resource 26, 43
casting functions 21, 82
CFBundle APIs 36
CheckAllHeaps function 95
Classic environment versus Mac OS 9 41
Code Fragment Manager 13, 35
CodeWarrior

building Sample application with 50
using to build Carbon applications 41, 42

command IDs 76
composition of Carbon 10
control panels 14
converting types WindowPtr and DialogPtr 21
Core Foundation, overview 70
custom definition procedures 14, 81
custom menu definitions 81
custom window definitions 33, 81

D

data fork, resources in 13, 36
data structures, opaque 14, 82
DataBrowser, overview 70
debugging Carbon applications 45
debugging functions, new 95
DebuggingCarbonLib 24
defprocs 14
DetachResourceFile function 96
dialog pointers 82
Drag Manager, translucent dragging with 33
dragging and resizing windows in Carbon 31
DumpPEF tool 29

E

event handlers, Carbon Event Manager 72
events. See Carbon Event Manager
exit() in MPW 45
Extended File Format 35

F

feedback URL 15
FlatCarbon headers 25
frameworks, Carbon 11
FSpResourceFileAlreadyOpen function 96
functions unavailable in Carbon 11

G

GDB debugger 45
gestaltMenuMgrAquaLayoutMask selector 26, 56
GetSharedLibrary for loading non-Carbon–compliant

code 29
graphics pointers 21

versus window pointers 82
graphics ports, creating and disposing in Carbon 91

H

headers
FlatCarbon 25

headers
Universal 20

HFS Plus 35

I

icons, creating and adding to applications 37
idle events 34
Info.plist file 37
infoPlist.strings file 37
initialization functions 35
InsertResourceFile function 95
InterfaceLib, linking with 21, 43
IsHandleValid function 95
IsHeapValid function 95
IsPointerValid function 95

K

keyboard events 72

L

LaunchCFMApp tool 43
launching applications on Mac OS X using LaunchCFMApp

43
lazy initialization 35
linking to non-Carbon–compliant code 29
low-memory globals 19, 23

120
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INDEX

M

Mac OS 8 and 9
API compatibility with CarbonLib 27

Mac OS 9 versus Classic environment 41
Mach-O file format, advantages and disadvantages of 35
main entry point in MPW 45
MDEFs 81
memory management in Mac OS X 34
menu item selection using Carbon events 72
Metrowerks CodeWarrior. See CodeWarrior
Mixed Mode Manager 13, 22
MLTE, overview 71
MPW, building Carbon applications using 44
Multilingual Text Engine, overview 71

N

Navigation Services 25
null events 34

O

opaque data structures 14, 82
OPAQUE_TOOLBOX_STRUCTS 21, 51
OpenGL in Carbon 29

P

passing pointers across processes 28
Patch Manager 28
PEF containers 35
PEF containers 17
pixel maps, drawing into 30
plist file 37
plist resource. See ’plst’0 resource
’plst’0 resource 26, 43, 55

versus Info.plist file 37
’plst’0 resource 26, 43, 55

versus Info.plist file 37
plug-ins 29
polling 34
preemptive scheduling of applications 12
prefix file information in CodeWarrior 43
printing in Carbon 13
Printing Manager 25
protected memory 12

Q

quit events 76
Quit menu item 26, 55
quitting Carbon applications 26, 76

R

resources
'SIZE' 45
in data fork 13, 36
’carb’0 26, 43
’plst’0 26, 37, 43

S

Sample application
adding accessors to 51
adding Carbon events to 71
Carbon Dater report on 48
described 47
listings of Carbon version 57
original code listings 97
porting to Carbon 50

screen savers in Carbon 33
SDK, Carbon 20
SetMenuItemCommandID function 76
shared libraries, lazy initialization of 35
'SIZE' resource 45
standard definition procedures 14
standard event handlers for Carbon events 72
Standard File Package 25

T

TARGET_API_MAC_CARBON 21, 43, 53
TrafficLight. See Sample application
transferring files between Mac OS 9 and Mac OS X 41
trap tables 14, 28

U

Universal Interfaces 20, 50
universal procedure pointers 13
universal procedure pointers 14, 22
update events 72, 78
utility functions for porting 91

121
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INDEX

V

versions of CarbonLib 27
virtual memory on Mac OS X 13

W

WDEFs 33, 81
Window Manager Port 31
window pointers 82

122
Legacy Document | 2002-12-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

INDEX

	Carbon Porting Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	Preparing Your Code for Carbon
	Using Carbon Dater
	Analyzing Your Application
	Reading the Report
	Analysis of Imports
	Analysis of Access to Low Memory Addresses
	Analysis of Resources Loaded Into the System Heap

	Additional Reports
	The Carbon Specification

	Essential Steps for Porting Your Application
	Make Sure All of Your Code Is PowerPC-Native
	Update to the Current Universal Interfaces
	Use the Carbon SDK
	Target Mac OS 8 and 9 First
	Begin With CarbonAccessors.o
	Use Casting Functions to Convert DialogPtrs and WindowPtrs
	Replace Macro Calls to the Mixed Mode Manager With UPP Accessor Functions
	Move Custom Definition Procedures Out of Resources
	Remove Direct Access to Low-Memory Globals
	Use DebuggingCarbonLib
	Modify or Conditionalize Your Headers
	Update Modified or Obsolete Functions
	Adopt Required Carbon Technologies
	Add a 'plst' 0 Resource
	Conditionalize Quit Menu Items

	Additional Porting Issues
	Determine the Appropriate CarbonLib Version
	Draw Only Within Your Own Windows
	Do Not Patch Traps
	Don’t Pass Pointers Across Processes
	Do Not Write to Your Application’s Resource Fork
	Check Your OpenGL Code
	Examine Your Plug-ins
	Linking to Non-Carbon-Compliant Code
	Window Manager Issues
	Handling Buffered Windows
	Bypassing the Window Manager Port
	Window Dragging and Resizing Q&A

	Optimizing Your Code for Carbon
	Manage Memory Efficiently
	Avoid Polling and Busy Waiting
	Use “Lazy” Initialization for Shared Libraries
	Adopt HFS Plus APIs
	Consider Mach-O Executables
	Move Resources to Data Fork–Based Files
	Consider Using Bundles
	Begin Transitioning to the Aqua Interface
	Adopt a Terse Name for the Application Menu
	Provide Thumbnail Icons for Your Application

	Building Carbon Applications
	Native Mac OS 9 Versus Mac OS X’s Classic Environment
	Development Scenarios
	Using CodeWarrior to Build a CFM Carbon Application
	Using CodeWarrior to Build a Mach-O Carbon Application
	Using Project Builder to Build a Mach-O Carbon Application

	Building a CFM Carbon Application With CodeWarrior
	Preparing Your Development Environment
	Building Your Application
	Running Your Application on Mac OS 9
	Running Your Application on Mac OS X

	Building a Mach-O Carbon Application With CodeWarrior
	Preparing Your Development Environment
	Building Your Application
	Running Your Application on Mac OS X

	Building a Mach-O Carbon Application With Project Builder
	Building Applications Using MPW
	Debugging Your Application

	A Porting Example
	The Sample Application
	Obtaining the Carbon Dater Report
	The Basic Port
	Make Sure All of Your Code is PowerPC–Native
	Update to the Current Universal Interfaces and Use the Carbon SDK
	Target Mac OS 8 and 9 First
	Begin With CarbonAccessors.o
	Use Casting Functions to Convert DialogPtrs and WindowPtrs
	Modify or Conditionalize Your Headers
	Replace Macro Calls to the Mixed Mode Manager With UPP Accessor Functions
	Move Custom Definition Procedures Out of Resources
	Remove Direct Access to Low-Memory Globals
	Use DebuggingCarbonLib
	Update Modified or Obsolete Functions
	Adopt Required Carbon Technologies
	Add a ‘plst’ 0 Resource
	Conditionalize Quit Menu Items
	Cleanup

	Additional Changes for Aqua
	Adjust the Window Size
	Modify the About Box

	The Carbon Version of Sample

	New Carbon Technologies
	Carbon Event Manager
	Core Foundation
	DataBrowser
	Multilingual Text Engine (MLTE)
	An Example: Adding Carbon Events to Sample
	Standard Event Handlers
	The Basic Conversion
	Installing the Standard Event Handlers
	Registering Your Own Event Handlers
	The Application-Level Event Handler
	The Window Event Handler
	Cleanup

	Appendix A: New Carbon Functions
	Custom Definition Procedures
	Changes to WDEFs
	Changes to MDEFs

	Functions for Accessing Opaque Data Structures
	Casting Functions
	Accessor Functions
	Utility Functions

	Functions in CarbonAccessors.o
	Debugging Functions
	CheckAllHeaps
	IsHeapValid
	IsHandleValid
	IsPointerValid

	Resource Chain Manipulation Functions
	InsertResourceFile
	DetachResourceFile
	FSpResourceFileAlreadyOpen

	Appendix B: The Sample Application
	Revision History
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

