
Creating Carbon Menus
Carbon > User Experience

2004-02-23

Apple Inc.
© 2004 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Aqua, Carbon, Cocoa,
Mac, Mac OS, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 Carbon Menus Concepts 7

Components of a Carbon Menu 7

Chapter 2 Carbon Menu Tasks 9

Creating a Menu Using Nibs 9
The Nib File 9
The Menus Palette 14
Creating a Simple Menu 15
Standalone Menus 16
Dynamic Menu Items 16

Creating Menus From a Nib file 17
Simple Event Handling 19

Document Revision History 21

Glossary 23

3
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

4
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 2 Carbon Menu Tasks 9

Figure 2-1 Opening dialog for new nib files 10
Figure 2-2 The default menu bar 10
Figure 2-3 The Info panel for a menu 11
Figure 2-4 The Info panel for a menu item 12
Figure 2-5 The Menus palette 14
Figure 2-6 A Standalone Menu 16
Figure 2-7 Dynamic menu items 17
Figure 2-8 The nib file in an application bundle 18
Table 2-1 Menu features 11
Table 2-2 Menu Info panel attributes 11
Table 2-3 Menu item features 13
Table 2-4 Menu Item Attributes 13
Listing 2-1 Creating a menu bar from a nib file 18
Listing 2-2 Obtaining the command ID from the event reference 19
Listing 2-3 The HICommand structure 20

5
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

6
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

This chapter gives conceptual information about menus that is useful for developers of Carbon applications.

Note that this chapter does not describe general menu appearance, usage, or behavior. For that information,
see Apple Human Interface Guidelines.

Components of a Carbon Menu

All menus are displayed in the menu bar, which runs across the top of the main display screen. The menu
bar is also called the root menu.

A menu reference (type MenuRef) identifies an instance of a menu. This opaque structure contains information
about the menu such as its size, position, menu items, and so on.

Each menu can have an associated menu ID, which must be a positive integer that uniquely identifies the
menu within the application. Many Menu Manager functions require a menu ID to specify the menu to be
acted upon.

Each menu has one or more menu items associated with it.

Menu items have a menu item index associated with them that specifies its position within a given menu.
That is, a menu item with index 2 is the second item down in the menu. You can then specify any given menu
item in an application by its parent menu and its menu item index.

A menu item may also be a submenu. Sometimes called hierarchical menus, a submenu opens an additional
menu and displays another set of menu items. In most cases, you cannot select the submenu itself, but only
one of its menu items.

Each menu item can have a command key associated with it. Better known as the keyboard equivalent or
command key equivalent, the user can enter this key combination as an alternate way to select the menu
item.

Note that the command key equivalent can be either a character code or a virtual keycode. A character code
specifies a typeable character (for example, “k”, “K”, or “3”), while a virtual keycode identifies the physical key
on the keyboard, some of which may not have a corresponding character (such as F10 or the Delete key). To
display such “characterless” keys, the Menu Manager uses special keyboard glyphs.

Components of a Carbon Menu 7
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Menus Concepts

Note: Using the Keyboard and Mouse pane in System Preferences, users can specify their own keyboard
shortcuts for applications.

Each menu item (even those with submenus) can have a command ID associated with it. This ID uniquely
identifies the menu item within the application. When the user selects a menu item, the Carbon Event Manager
can send an event containing the command ID to your application, where you can take appropriate action.
You can also use the command ID internally to find a menu item even if you don’t know the item’s parent
menu.

In Mac OS X v10.3 and later, all standard menu content is drawn using the HIView drawing model. This
object-oriented view system for drawing user interface elements improves performance and reduces the
amount of code needed for custom objects. If you are using standard menus and menu items, you do not
need to worry about adopting HIView as that is done for you. However, if you want to use custom menus,
you should learn how to do so using the HIView model. For more details, see HIView Programming Guide.

8 Components of a Carbon Menu
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Carbon Menus Concepts

This chapter describes how to create Carbon menus in Interface Builder and load them into your application.

Creating a Menu Using Nibs

While you can create menus by calling various Carbon Menu Manager functions, it is much easier to create
them using the Interface Builder tool included with Xcode.

Interface Builder is Apple’s graphical user interface layout tool. In true WYSIWYG fashion, you simply drag
user interface elements onto windows, menus, and controls to create your interfaces. This information is
stored in a nib file, which your application can access using a few simple function calls.

Interface Builder has many advantages over other layout methods:

 ■ The WYSIWYG interface makes it easy to visualize your interface objects.

 ■ Its ease of use allows for experimenting and rapid prototyping.

 ■ Special guides makes it easy to conform to Aqua’s layout guidelines.

 ■ Simple APIs make it easy to create interface objects from nib files.

Important: While InterfaceBuilder is associated with Xcode, Apple’s development environment, you do not
need to use Xcode to take advantage of Interface Builder’s nib files.

You can use Interface Builder’s nib files even if you are working with legacy code. Applications can support
both nib-based and older resource-based windows and controls at the same time, so you can make the
transition as gradual as you like. Nib file support is available back to Mac OS 8.6 using CarbonLib.

Interface Builder is included on the Xcode CD available with Mac OS X.

The Nib File

Interface Builder stores all the information about your application’s windows, menus, and controls in a nib
file (typically named filename.nib). When creating a new file, Interface Builder gives you the option of selecting
what type of nib file you want to create. When creating interfaces for Carbon applications, you should always
select one of the Carbon options, as shown in Figure 2-1 (page 10).

Creating a Menu Using Nibs 9
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

Figure 2-1 Opening dialog for new nib files

When you select Menu Bar or Main Window With Menu Bar, Interface Builder brings up a default menu bar
as shown in Figure 2-2 (page 10), which you can then populate with your menus and menu items.

Figure 2-2 The default menu bar

Note that this menu bar already contains the standard menus required for applications (File, Edit, Window,
and so on). Clicking on any menu opens it, displaying the standard menu items for each menu.

If your application does not require certain menu items (if your application does not require printing, for
example), you can simply select the item and hit Delete to remove it. Similarly, if you do not need an entire
menu, you can select its title and delete it.

If you select a menu and then select the Show Info menu item in Interface Builder’s Tools menu, you bring
up the Info Palette for that menu, as shown in Figure 2-3 (page 11).

10 Creating a Menu Using Nibs
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

Figure 2-3 The Info panel for a menu

The Info panel allows you to set various menu attributes, such as the title, the menu ID, and so on.

Note: The popup menu in the Info window lets you select four other panes: Control, Size, Layout, and Help.
However, none of these other panes apply to menus.

The Menu title is self-explanatory. The Menu ID is used to identify the menu in certain Menu Manager calls.
You can also set these fields programmatically by calling the Menu Manager functions in Table 2-1 (page
11).

Table 2-1 Menu features

Menu Manager Function EquivalentPanel Item

SetMenuIDMenu ID

SetMenuTitleWithCFStringTitle

The checkboxes correspond to menu attributes that you can set or unset using the ChangeMenuAttributes
function, as shown in Table 2-2 (page 11).

Table 2-2 Menu Info panel attributes

Menu Attribute to Pass to
ChangeMenuAttributes

When CheckedPanel Checkbox

kMenuAttrExcludesMarkColumnSpecifies that the menu shouldn’t allocate
any column space for mark characters

Excludes Mark Column

Creating a Menu Using Nibs 11
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

Menu Attribute to Pass to
ChangeMenuAttributes

When CheckedPanel Checkbox

kMenuAttrAutoDisableDisables the menu if all its menu items are
disabled.

AutoDisable

kMenuAttrUsePencilGlyphUse the Pencil glyph (Japanese input
method menus only)

Use Pencil Glyph

kMenuAttrHiddenMenu is hiddenHidden

kMenuAttrUse-
CondensedSeparator

Hide extra separators to eliminate blank
spaces in the menu.

Use Condensed
Separators

If you select a menu item, the Show Info palette displays appropriate menu item attributes, as shown in
Figure 2-4 (page 12). As with the menu information, the pop up menu lets you select other panes: Control,
Size, Layout, and Help. However, except for Help, which lets you assign a help tag (sometimes called a tool
tip) to a menu item, none of the other panes apply to menu items.

Figure 2-4 The Info panel for a menu item

The Menu item title is, again, self-explanatory. The Menu Key is the letter or number in the menu item’s
keyboard equivalent (for example, the C in Command-C). You can then check the appropriate checkbox or
checkboxes to select the accompanying combination of Shift, Option, Control, or Command keys required
to activate the keyboard equivalent.

The Command field is the four-character code that specifies the menu item’s command ID. This is the ID that
the Carbon Event Manager sends to your application in a kEventCommandProcess event when the user
selects this menu item. The popup menu lists a number of predefined command IDs for common menu tasks
(such as Cut, Copy, New, and so on).

You can set these fields programmatically by calling the appropriate function in Table 2-3 (page 13).

12 Creating a Menu Using Nibs
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

Table 2-3 Menu item features

Menu Manager Function EquivalentPanel Item

SetMenuItemTitleWithCFStringTitle

SetMenuItemCommandKeyMenu Key and Keyboard Modifier

SetMenuItemCommandIDCommand

The checkboxes correspond to various menu item attributes, most of which you can set or unset using the
ChangeMenuItemAttributes function, as shown in Table 2-4 (page 13).

Table 2-4 Menu Item Attributes

Menu Item Attribute to SetWhen CheckedPanel Checkbox

Unset kMenuItemAttr-
Disabled

The menu item is enabledEnabled

No attribute. Use the
SetItemMark function to set.

The menu item has a check markChecked

kMenuItemAttrSubmenu-
ParentChoosable

The user can select this parent of a submenuSubmenu Parent
Choosable

kMenuItemAttrDynamicIndicates that this menu item is part of a dynamic
group. See “Dynamic Menu Items” (page 16) for
more information.

Dynamic

kMenuItemAttrNot-
PreviousAlternate

Indicates that this menu item is not part of the
previous dynamic group. See “Dynamic Menu
Items” (page 16) for more information.

Not Previous
Alternate

kMenuItemAttrHiddenMenu item is hidden.Hidden

kMenuItemAttrIgnoreMetaIgnore the dash (-) meta character when drawing
this item. Only required if you want to display a dash
in your menu item. See Menu Manager Reference
for more details.

IgnoreMeta

kMenuItemAttrSection-
Header

Item is a section header. This item is disabled and
cannot be selected.

Section Header

kMenuItemAttrCustomDrawIndicates that this is a custom menu item. The Menu
Manager sends the appropriate menu drawing events
to your application. See Menu Manager Reference
for more details.

Custom Draw

kMenuItemAttrAutoRepeatIndicates that IsMenuKeyEvent recognizes this item
when an autorepeating keyboard event occurs.

Auto Repeat

Creating a Menu Using Nibs 13
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

Menu Item Attribute to SetWhen CheckedPanel Checkbox

kMenuItemAttrAutoDisableIndicates that this item is automatically disabled if
the item does not respond to the kEventCommand-
UpdateStatus event. See Menu Manager Reference
for more details.

Auto Disable

kMenuItemAttrUpdate-
SingleItem

Update only the menu item with the matching
command key when calling IsMenuKeyEvent. See
Menu Manager Reference for more details.

Update Single Item

kMenuItemAttrInclude-
InCmdKeyMatching

Consider this item when using IsMenuKeyEvent to
match a command key to a menu item.

Use in Cmd Key
Matching

Use SetMenuItemIconHandle to set an icon in a menu item.

The Menus Palette

For Carbon applications, Interface Builder provides five different layout palettes, which are displayed in the
Carbon palettes window. If the window is not already open, you can do so by choosing Palettes from Interface
Builder’s Tools menu. This document focuses on the Menu palette, which you can display by selecting the
leftmost item in the palette window toolbar. Figure 2-5 (page 14) shows the Menus palette

Note: The Carbon layout palettes differ from those used for Cocoa applications.. Make sure that you select
a Carbon-based nib when creating a new nib file.

Figure 2-5 The Menus palette

You add menus or menu items to the menu bar by simply dragging the appropriate blue box from the menu
palette.

 ■ The Application element corresponds to the menu containing the application name immediately to the
left of the Apple menu. You should rename the menu title to be your application’s name. By default, this
menu contains only the About AppName menu item, but often you will want to add more.

Note that the system automatically adds additional menu items to the end of the Application menu at
run time (Services, Hide, Hide Others, Show All, and Quit).

14 Creating a Menu Using Nibs
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

The system also adds a Preferences menu item at runtime (with the standard Command-, keyboard
shortcut), but this is hidden by default. To access the menu item, you need to call
GetIndMenuItemWithCommandID, searching for the kHICommandPreferences command ID. After
obtaining the menu item, you can make it visible and otherwise manipulate it.

 ■ The File, Edit, and Window elements correspond to those particular menu types, and they contain the
default items for those menu types. For example, the Edit menu contains the Copy, Cut, and Paste items,
among others.

 ■ The Submenu element can be used for any nonstandard menus you want to add to the menu bar. If you
drag the Submenu item to the menu bar, it becomes a new menu, which you can then rename and
populate as necessary. If you drag the Submenu item into an existing menu, it becomes a submenu. You
an position the menu as desired by simply dragging it to the desired location.

 ■ The Item element corresponds to a menu item. You can drag an item into any menu or submenu, and
position it as desired.

 ■ The empty element corresponds to a separator item. This special menu item appears as a gray line, and
is used to group menu items into logical categories.

At run time, the system automatically adds an Apple menu to the left of the Application menu. You should
not add any application-specific menu items to the Apple menu.

Important: Interface Builder does not provide many built-in guides for how to arrange menus and menu
items, which means that it is your responsibility to make sure your menus correspond to the Aqua specification.
Be sure to follow the guidelines in Apple Human Interface Guidelines for naming and arranging menus and
menu items.

Creating a Simple Menu

This section gives a step-by step example of adding a simple menu to the menu bar. The ideas and methods
used apply to any menu you may want to create.

 ■ First, begin with a menu bar. The default menu bar is already populated with the standard Application,
File, Edit, and Window menus. If your application uses multiple menu bars, you should assign each a
unique name by selecting the title in the main nib window, as shown in figure. You specify this name
in your application when it comes time to create a menu bar from the nib.

 ■ To add a new menu to the menu bar, drag a Submenu item from the Menu palette. While dragging, a
faint red line appears in the menu bar to indicate where the menu will appear. If you don’t like where it
ended up, you can simply drag it to a new location, or simply remove it by selecting it and hitting Delete.

 ■ You can rename the menu by double-clicking on it or by changing the title from the Info palette. You
can also assign a menu ID if you like.

 ■ Clicking on the menu in the menu bar opens it, displaying a single menu item. If you want to add
additional menu items, you can drag them from the Menu palette.

 ■ For each item, you assign a name by double-clicking the item or by changing the title from the Info
panel. If desired you can also assign a keyboard equivalent and check any desired attributes. You should
also assign a command ID to each item, which will be used in event handling. See “Simple Event
Handling” (page 19) for more details.

Creating a Menu Using Nibs 15
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

Standalone Menus

Interface Builder also allows you to create standalone menus that are not part of the menu bar. You may
want to create such menus if you want to insert them into the menu bar at some later time. For example,
you can use these menus in popup or contextual menus.

To create a standalone menu, drag the menu icon in the lower right of the Menus palette to the Instances
pane of the main nib window. A menu then appears in the Instances pane, and a small menu window appears
containing two items. By selecting the menu in the instance pane, you can change its title and other attributes
in the Info window. You can modify the menu items in a similar fashion, just as if they were in a menu installed
in the menu bar.

Figure 2-6 A Standalone Menu

Dynamic Menu Items

In some cases, you may want to create menu items that change depending on the state of the modifier keys
held down by the user. For example, in the default Window menu, a menu item named “Minimize Window”
changes to “Minimize All Windows” when the user depresses the Option key while the menu is open. Similarly,
if the keyboard equivalent Command-M activates “Minimize Window,” Command-Option-M activates “Minimize
All Windows.” Such items are called dynamic menu items.

Creating a dynamic menu item requires you to create two or more menu items in Interface Builder, one for
each possible state.

Figure 2-7 (page 17) shows two menu items that make up the Minimize dynamic item. To indicate that they
are dynamic and should work together, you must check the Dynamic attribute for each item. In addition,
each item must have the same letter or number for its keyboard equivalent. The modifier keys for the keyboard
equivalent do not have to “stack.” For example, you can specify that Command-K activate “Remove Mark”
while Option-K activates “Remove All Marks.” You can specify several different modifier keys for a single
dynamic menu.

16 Creating a Menu Using Nibs
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

Note: You do not have to specify a keyboard equivalent to get dynamic behavior. If you leave the Menu Key
blank, depressing only the appropriate modifer key causes the menu item to change.

Figure 2-7 Dynamic menu items

The Menu Manager assumes that if multiple sequential menu items have the same menu key, the are part
of the same dynamic group. However, if there is a case where a menu item with the same command key (or
no command key at all) should not be considered part of the dynamic group, you can flag it by checking the
NotPreviousAlternate attribute for that item. Any menu items that follow are also not considered to be part
of the dynamic group.

Creating Menus From a Nib file

After you have created a nib file containing your menus, you can access them from your application.

Note that while a nib file can contain multiple windows, menus, and so on, to make the best use of resources,
you may want to break up your user interface elements among several nib files. For example, you can put
your main menu bar and menus in one nib file, windows in another, and so on.

To make sure your application can find the nib file, you should place it in the Resources folder of your
application’s bundle hierarchy, as shown in Figure 2-8 (page 18). For information about creating application
bundles, see Mac OS X Technology Overview .

Creating Menus From a Nib file 17
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

Note: If your nib files contain localizable text, you should create separate nib files for each language you
want to support. Each nib should be placed in the appropriate .lproj folder within the Resources folder.

Figure 2-8 The nib file in an application bundle

Application bundle

Contents

Resources

MyGuitar.nib

Mac OS

MyGuitar.app

MyGuitar alias

When retrieving menus from a nib, you can either load the entire menu bar with its associated windows, or
load a particular menu.

Listing 2-1 (page 18) shows how you to load a menu bar from a nib.

Listing 2-1 Creating a menu bar from a nib file

OSStatus err;
IBNibRef theNib;

// 1err = CreateNibReference (CFSTR("MyGuitar"), &theNib);
if (!err)

// 2 SetMenuBarFromNib (theNib, CFSTR("GuitarMenu"));

Here is what the code does:

1. The Interface Builder Services function CreateNibReference simply creates a nib reference that points
to the specified file. In this case, the file is MyGuitar.nib (you don’t need to specify the .nib extension
when calling this function). The CFSTR function converts the string into a Core Foundation string, which
is the format that CreateNibReference expects.

2. The Interface Builder Services function SetMenuBarFromNib uses the nib reference to access a menu
bar within the nib file. The name of the menu bar (GuitarMenus in this example) is the name you
assigned to it in the Instances pane of the nib file window. As with the CreateNibReference function,
SetMenuBarFromNib expects a Core Foundation string for the window name, so it must first be converted
using CFSTR. The created window is stored as a window reference in theWindow.

Note that SetMenuBarFromNib automatically sets the menu bar you specified to be visible. If for some
reason you want to create a menu bar but don’t want it to be immediately visible, you can call
CreateMenuBarFromNib.

18 Creating Menus From a Nib file
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

The complete menu bar can now appear in your application. However, while the facade is there (and the
menus and menu items are functional), this menu bar does not do anything useful. To make the menu items
do useful work, you must attach Carbon event handlers, which are described in detail in “Simple Event
Handling” (page 19).

Simple Event Handling

After you have populated the menu bar with your menus and menu items, you need to make them functional,
which means they must be able to respond to events. To do so, you must install Carbon event handlers. To
get the most out of this section, you should be familiar the Carbon Event Manager, as described in Handling
Carbon Events in Carbon Events and Other Input documentation.

For most applications, you should assign a command ID to each menu item. The command ID is a four-character
code that uniquely identifies a particular action. When the user selects a menu item, the Carbon Event
Manager sends a kEventCommandProcess event containing the menu item’s command ID to your application.
You application can then filter the event to determine the command ID and take the appropriate action.

Note: Command IDs are also used in simple controls, such as push buttons, which initiate a single action
when activated. If you have a menu item that performs the same action as a control, you can assign the same
command ID to both; doing so means you only need one event handler to handle both cases.

If you assigned a command ID to your menu item, your application is sent command events whenever the
menu item is activated. Command events are of the class kEventClassCommand.

The Carbon Event Manager defines command ID’s for many common commands, such as OK, Cancel, Cut,
Paste, and so on. You can also define your own for application-specific commands. Your event handler for
the kEventCommandProcess event can then determine which command ID was sent and take appropriate
action.

Important: Command IDs containing all lower-case letters are defined by Apple; if you create nonstandard
command IDs, they must contain at least one upper-case letter.

You assign the command ID to a menu item in the Attributes pane of Interface Builder’s Info window, as
shown previously in Figure 2-4 (page 12). You can also call the Menu Manager function
SetMenuItemCommandID.

Note: You can also assign command IDs to controls by using Interface Builder or by calling the Control
Manager function SetControlCommandID.

The kEventCommandProcess event indicates that your menu item was selected. The actual command ID
is stored within an HICommand structure in the event reference, so you must call the Carbon Event Manager
function GetEventParameter to retrieve it, as shown in Listing 2-2 (page 19).

Listing 2-2 Obtaining the command ID from the event reference

HICommand commandStruct;
UInt32 theCommandID;

Simple Event Handling 19
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

// 1GetEventParameter (event, kEventParamDirectObject,
 typeHICommand, NULL, sizeof(HICommand),
 NULL, &commandStruct);

// 2theCommandID = commandStruct.commandID;

Here is what the code does:

1. When calling GetEventParameter, you must specify which parameter you want to obtain. For command
events, the direct object (kEventParamDirectObject) is the HICommand structure, which describes
the command that occurred.

2. The command ID of the control (or menu) that generated the event is stored in the commandID field of
the HICommand structure.

To respond to events from menus, you should install your command event handler at the window or
application level. Doing so also allows you to use the same handler to catch command events coming from
controls, if so desired. Also, attaching your handler at the window level makes sense if you have menu items
that apply to one type of document window but not to another.

After handling a command, your application may need to change the state of a menu item. For example,
after saving a document, the Save menu item should be disabled until the document changes. Whenever
the status of a command item might be in question, the system makes a note of it. When the user takes an
action that may require updating the status (such as pulling down a menu), your application receives a
kEventCommandUpdate event. To make sure that the states of your menus are properly synchronized, you
should install a handler for the kEventCommandUpdate event. This handler should check the attributes bit
of the command event to determine which items may need updating. Some examples of possible updates
include

 ■ enabling or disabling menu items

 ■ changing the text of a menu item (for example, from Show xxxx to Hide xxxx).

If the kHICommandFromMenu bit in the attributes field of the HICommand structure (shown in Listing
2-3 (page 20)) is set, then you should check the menu item in question to see if you need to update it.

Listing 2-3 The HICommand structure

struct HIComamnd
{
 UInt32 attributes;
 UInt32 commandID;
 struct
 {
 MenuRef menuRef;
 MenuItemIndex menuItemIndex;
 } menu;
};

20 Simple Event Handling
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Carbon Menu Tasks

This table describes the changes to Creating Carbon Menus.

NotesDate

Preliminary draft.2004-02-23

21
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

22
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

character code A code that identifies a typeable
character, as opposed to a particular physical key.

command ID A four character code that uniquely
identifies a menu item or control. Note that a menu
item and a control can share the same command ID.

keyboard glyph A graphical representation of a
physical key that doesn’t have a character equivlent
(such as a function key or the Shift key).

menu A user interface element that displays a list
of possible selections to the user.

menu bar The bar at the top of the main display
that holds the list of available menus.

menu ID A unique ID that identifies a menu.

menu item One of the choosable options displayed
in a menu.

menu item index A one-based index that identifies
a particular menu item in the menu. A menu item
index of 3 indicates the third item in the menu.

submenu A menu that is attached to a menu item
of another menu. Also called a hierarchical menu.

virtual keycode A code that identifies a physical key
on a keyboard. Note that virtual keycodes do not have
to have a corresponding character code. A key with
a virtual keycode is represented in a menu by a
keyboard glyph.

23
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

Glossary

24
2004-02-23 | © 2004 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

	Creating Carbon Menus
	Contents
	Figures, Tables, and Listings
	Carbon Menus Concepts
	Components of a Carbon Menu

	Carbon Menu Tasks
	Creating a Menu Using Nibs
	The Nib File
	The Menus Palette
	Creating a Simple Menu
	Standalone Menus
	Dynamic Menu Items

	Creating Menus From a Nib file
	Simple Event Handling

	Revision History
	Glossary

