
Using Ink Services in Your Application
Carbon > Events & Other Input

2003-07-24

Apple Inc.
© 2003 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, Mac,
and Mac OS are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Using Ink Services in Your Application 7

Who Should Read This Document 7
Organization of This Document 8
See Also 8

Chapter 1 Ink Services Concepts 9

Ink User Interface 9
Ink Preferences Pane 10
Ink Window 15
Ink Writing Guides 17

How Ink Works in Mac OS X 18
The Ink Recognizer 20
Ink-Related Carbon Events 21
Mouse Event Coalescing 23

Chapter 2 Ink Services Tasks 25

Obtaining Parameters from Ink Text and Gesture Events 25
Handling Phrase Termination 26
Supporting Text Editing With Ink Gestures 28

Handling Targeted Gestures 30
Handling Untargeted Gestures 32

Implementing a Correction Model 33
Implementing Deferred Recognition 35

Document Revision History 39

Glossary 41

3
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

4
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Ink Services Concepts 9

Figure 1-1 Ink components 9
Figure 1-2 The Ink icon in System Preferences 10
Figure 1-3 Settings in the Ink preferences pane 11
Figure 1-4 Gestures in the Ink preferences pane 12
Figure 1-5 The Join gesture is indistinguishable from the letter “v” 13
Figure 1-6 A custom word list in the Ink preferences pane 14
Figure 1-7 The Ink toolbar 15
Figure 1-8 The Ink window with the Ink pad open 15
Figure 1-9 A menu with a list of alternate interpretations 16
Figure 1-10 The reordered list of alternate interpretations 17
Figure 1-11 Ink writing guides facilitate pen input into an application 18
Figure 1-12 The flow of Ink from stylus to application 19
Figure 1-13 Ink input that is difficult to recognize 21
Table 1-1 Gesture categories 13
Table 1-2 Carbon events generated by Ink input 21

Chapter 2 Ink Services Tasks 25

Figure 2-1 Gesture bounds and hot spots 31
Figure 2-2 The Clear gesture 32
Figure 2-3 The Horizontal Space gesture 32
Table 2-1 Gesture constants 29
Table 2-2 Targeted gestures, hot spots, and editing actions 30
Table 2-3 Actions specified by untargeted Ink gestures 33
Listing 2-1 Extracting parameters for the Ink text event 25
Listing 2-2 Extracting parameters for the Ink gesture event 26
Listing 2-3 Code that handles phrase termination 27

5
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

6
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Ink supports text input using a stylus and a graphics tablet. When a user prints text with the stylus, Ink
processes the text and flows the recognized text to the current insertion point, just as if the user had typed
it on a keyboard. When users work with a graphics tablet, there’s no need to put down the stylus and return
to the keyboard just to enter a title, caption, or filename. Users can also write keyboard equivalents with the
stylus that enable them to open and close windows, and otherwise control an application without lifting the
stylus from the tablet. Users can turn Ink handwriting recognition on or off, control where inking is permitted,
and enable or disable recognition of predefined editing gestures.

When Ink was introduced in Mac OS X version 10.2, it provided automatic support for Ink input into
applications. As long as the user enables Ink in System Preferences, an application receives Ink input as text
without needing any modifications. As English text is written on a tablet, it is automatically recognized and
entered as a stream of key down events into a document or text field.

Note: Ink is available in Carbon and Cocoa applications. It is not supported in Classic applications.

With the introduction of the Ink Services application programming interface (API) in Mac OS X version 10.3,
developers can further integrate Ink into their application and create novel solutions for Mac OS X. Some of
the key features the new API provides are:

 ■ The ability to programmatically enable or disable handwriting recognition

 ■ Access to a list of alternate interpretations for Ink input

 ■ Support for deferred recognition and recognition on demand

 ■ Support for direct manipulation of text using gestures

 ■ Access to Ink data at multiple levels (points and recognized text)

With the release of Mac OS X version 10.3, the Ink recognition engine supports English, French, and German.
The language that is recognized depends on the user’s language setting in the Ink pane of System Preferences.

Who Should Read This Document

Any developer whose application receives text input should read this document to find out how the Ink
Services API can benefit an application. The document is of most benefit to developers who have specific
needs related to Ink input. Some specialized needs include the following situations:

 ■ You want to implement a handwriting recognition solution for an input device. For example, you are a
hardware vendor who wants to supply end-user software for your tablet or other piece of hardware.

 ■ You need to provide a customized solution for recognizing the end of a phrase or word. For example,
you want all input in a given window to be treated as a single phrase.

 ■ You are writing a text editor and want to provide support for direct manipulation of text with Ink gestures.

Who Should Read This Document 7
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Using Ink Services in Your
Application

 ■ You want to implement a correction model. For example, you want to provide users with a list of alternate
interpretations for a word.

Organization of This Document

The remainder of this document is organized into the following chapters:

 ■ “Ink Services Concepts” (page 9), describes the Ink user interface, provides an overview of how Ink
works in Mac OS X, and introduces the key concepts you need to understand the Ink Services API.

 ■ “Ink Services Tasks” (page 25), provides information on how to accomplish the most common
programming tasks using the Ink Services API.

 ■ “Glossary” (page 41), defines Ink terminology.

The ideal way to proceed through the document depends on your programming experience and the tasks
you want Ink Services to perform. Because the Ink Services API is new to Mac OS X, all developers should first
read “Ink Services Concepts” (page 9). If you need more than the automatic support provided by Ink Services,
you should read the how-to sections in “Ink Services Tasks” (page 25) that seem most appropriate to your
application.

See Also

If you plan to use the Ink Services API in your application, you should read Ink Services Reference, as this
document provides a complete reference to the Ink Services API.

8 Organization of This Document
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Using Ink Services in Your Application

Ink input is available for any application that accepts text input, as long as an Ink input device is connected
to the computer and the user turns on handwriting recognition in the Ink pane of System Preferences. An
application doesn’t need to perform any tasks to support Ink input. However, there may be special situations
for which an application needs to use the Ink Services application programming interface (API) to provide a
customized Ink-input solution. After reading this chapter, you should be able to determine whether your
application needs to use the Ink Services API.

Ink has four components (shown in Figure 1-1)—Ink input method, framework, server, and user preferences.
The Ink input method is the component responsible for collecting Ink, drawing Ink, managing phrase
termination, and posting Ink events. The Ink framework provides the application programming interface and
services for the other Ink components. The Ink server manages the recognizer (including character and word
segmentation), the language model used for recognition, and the Ink window that can be used for Ink input.
The user preferences component manages the user settings that control the Ink recognition mode as well
as a variety of options that can be set by the user.

Figure 1-1 Ink components

• Data collection
• Ink rendering

Ink input method

• Ink API

Ink framework

• Ink segmentation
• Recognition
• Language model
• Ink window

Ink server

• Recognition mode
• User settings

User preferences

The remainder of this chapter provides an overview of the Ink user interface, describes how Ink technology
works in Mac OS X, and discusses the concepts you need to understand the Ink Services API.

Ink User Interface

Three items make up the Ink user interface: the Ink preferences pane, the Ink window, and Ink writing guides.
The Ink preferences pane allows the user to turn handwriting recognition on and off. This preferences pane
is only available if the computer detects an Ink input device, such as a tablet. The Ink window provides a
writing area as well as controls that allow users to quickly toggle handwriting on or off and to control a
number of other aspects of Ink. The Ink window is not available unless handwriting recognition is turned on.
The Ink writing guides are visual aids that can help users to enter text horizontally. Each of these user interface
items are described in the sections that follow. The user interface described here is available in Mac OS X
version 10.3.

Ink User Interface 9
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

Ink Preferences Pane

Users access the Ink preferences pane by opening System Preferences and clicking the Ink icon shown in
Figure 1-2. The Ink icon is visible in System Preferences in Mac OS X version 10.2 and later if there is an Ink
input device attached to the computer and an appropriate device driver has been installed.

Figure 1-2 The Ink icon in System Preferences

Settings

A user can turn handwriting recognition on or off by clicking the appropriate radio button in the Ink
preferences pane, as shown in Figure 1-3. The figure also shows that Ink preferences has three panes within
it—Settings, Gestures, and Word List. A user can navigate between the panes by clicking the appropriate
tab.

10 Ink User Interface
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

Figure 1-3 Settings in the Ink preferences pane

The options available in the Settings pane allow a user to:

 ■ Identify handwriting style as closely or widely spaced

 ■ Specify whether to allow Ink input anywhere or to limit Ink input only to Ink-aware applications. In Mac
OS version 10.2, the only Ink-aware application is the Ink window.

 ■ Choose a language (English, French, or German) for the recognizer to use

 ■ Specify whether to recognize Western European characters. Users should turn on this option if they plan
to enter ligatures or characters that use diacritical marks.

 ■ Choose a font to use in the Ink window

 ■ Specify whether to show the Ink window

 ■ Specify whether to show the Ink icon in the menu bar

A user who wants to customize Ink further can click the Options button shown in Figure 1-3 to:

 ■ Set how quickly recognition begins after lifting the stylus. A stylus is the hand held instrument used to
enter data on a graphics tablet. It is also called a pen.

 ■ Specify how far the stylus must move before Ink input begins

 ■ Set how long the stylus must be held still before it can be used as a mouse instead of as a pen

 ■ Specify that a phrase is terminated when the stylus moves away from the tablet

 ■ Hide the pointer that normally appears when writing

 ■ Specify to play a sound while writing

Ink User Interface 11
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

Gestures

Gestures are pen strokes that specify editing actions. The list of available editing actions appear when the
user clicks the Gestures tabs, shown in Figure 1-4. Recognition for all gestures associated with editing actions
is on by default; the user can disable an action by clicking the checkbox next to the action. When a user
chooses an action, the gesture associated with the action is drawn in the box to the right of the action list.
A user can learn how to draw the more complex gestures (such as Select All) by watching the animated
drawing of the gesture in the box. The description of the action appears below the gesture.

Figure 1-4 Gestures in the Ink preferences pane

Animation of
gesture
appears here

Explanation of
gesture
appears here

All gestures, except Join (which is described later), can be used in an untargeted manner. Untargeted gestures
apply to the current selection, if there is one, or to the insertion point, if there is no selection. Most gestures
can also be used in a targeted manner. Targeted gestures apply either to the item under a predefined hot
spot or the entire gesture bounds. Not all gestures that can be targeted have a hot spot. An application can
use the hot spot location (if available) and gesture bounds to determine the area to which a targeted gesture
should apply.

The Gestures pane doesn’t indicate whether a gesture is targeted or not; this information is not available to
users and depends, in general, on whether targeted gestures are supported or not in each application. If an
application is not specifically set up to handle Ink events (that is, the application is not Ink-aware) the gesture
is always treated by the system as an untargeted gesture (except for the Join gesture). An application that
is Ink-aware can use the Ink Services API to obtain information about the hot spot. The application can then
use that information to apply the editing action specified by the gesture to the appropriate area. See
“Supporting Text Editing With Ink Gestures” (page 28) for more information.

A targeted gesture can also be tentative. A tentative gesture is Ink that the system treats tentatively as a
gesture until your application either confirms the Ink is indeed a gesture or informs the system the Ink is not
a gesture. There is only one tentative gesture—the Join gesture, shown in Figure 1-5. Note in the figure that
this gesture looks similar to the letter “v.” The Join gesture can only be used in an Ink-aware application,
because it is the application that must decide whether the Ink is a gesture or text.

12 Ink User Interface
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

When Ink Services receives Ink input that appears similar to that shown in Figure 1-5, it has no way to
determine whether the Ink input should be interpreted as the Join gesture or the letter “v.” Ink Services
tentatively interprets the Ink as a gesture and passes the gesture to your application. You application must
make the determination as to whether the Ink input is the Join gesture or the letter “v.” If you determine the
Ink input is the Join gesture, it is up to your application to apply the gesture to the appropriate text. If you
determine the Ink input is not the Join gesture, your application informs Ink Services of this by returning
eventNotHandledErr, which in turn posts the Ink as the letter “v.” See “Supporting Text Editing With Ink
Gestures” (page 28) for details on how to handle the Join gesture.

Figure 1-5 The Join gesture is indistinguishable from the letter “v”

All gestures except the Join gesture fall into the category of non-tentative gestures. Non-tentative gestures
are always treated as gestures, regardless of where they are drawn because Ink Services interprets them
unambiguously as gestures.

Table 1-1 lists gestures and the categories they can fall into. Notice that some gestures can be targeted or
untargeted while others are always untargeted. Join, the only tentative gesture, is always targeted.

Table 1-1 Gesture categories

TentativeUntargetedTargetedGesture

NoAlwaysNeverUndo

NoAlwaysNeverEscape

NoAlwaysNeverSelect All

NoAlwaysNeverDelete

Ink User Interface 13
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

TentativeUntargetedTargetedGesture

NoSometimesSometimesClear

NoSometimesSometimesCut

NoSometimesSometimesCopy

NoSometimesSometimesPaste

NoSometimesSometimesHorizontal Space

NoSometimesSometimesTab

NoSometimesSometimesReturn

YesNeverAlwaysJoin

Word List

Users can improve handwriting recognition, particularly for unusual words such as technical jargon, by
entering words into the Word List, shown in Figure 1-6. When the user clicks Add, a sheet appears that has
a text field into which the use can type a word. A user can edit or delete words in the list by clicking the
appropriate button.

Figure 1-6 A custom word list in the Ink preferences pane

14 Ink User Interface
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

Ink Window

The Ink window has two areas—the Ink toolbar and the Ink pad. When a user turns on handwriting recognition
in the Ink preferences pane, the Ink toolbar appears, as shown in Figure 1-7. A user can use the Ink toolbar
to:

 ■ Turn recognition on or off. This is handy if the user needs to quickly switch between using the stylus to
print and using it to control the pointer.

 ■ Show and hide the Ink pad

 ■ Open Ink Help

 ■ Open the Ink preferences pane

 ■ Activate Command, Shift, Option, and Control

Figure 1-7 The Ink toolbar

Click to turn
recognition
on and off

Click to show
or hide the Ink pad

Click to access menu
to open Ink Help
and Ink preferences

Command Option

Shift Control

When the users clicks the Ink pad icon, the Ink pad appears as shown in Figure 1-8. The Ink pad provides an
area for users to print or sketch and then insert the printed text or drawn art into a document. A user can
toggle between entering printed text and graphics by clicking the buttons in the lower-left of the Ink pad.
The Clear button erases anything currently displayed while Send pastes the entered text or sketch into the
insertion point of the currently active Mac OS X application.

Figure 1-8 The Ink window with the Ink pad open

Click to toggle between
text and graphic input

Ink User Interface 15
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

The Ink window provides a list of alternate interpretations for each unit of text (typically a word) entered by
the user. The list is in the form of a menu that the user can access by placing the pointer over a word and
then pressing the Control key while clicking the mouse. Figure 1-9 shows a contextual menu with a list of
alternates. The original Ink is listed as the last item.

Menu items for a set of alternates whose first letter is an alphabetical character always include an alternate
whose first letter is the opposite lettercase. Hence the second item shown in the menu in Figure 1-9 is Crash.
Menu items for a set of alternates whose first letter is a nonalphabetical character do not include a lettercase
alternate.

Figure 1-9 A menu with a list of alternate interpretations

When the user chooses a word from the list, Ink Services automatically reorders the menu items. The text
that was first in the list moves to the second or the third position, depending upon whether the first letter
is alphabetical or nonalphabetical. For example, for the list of words shown in Figure 1-9, if the user chooses
crush, the menu items are reordered as shown in Figure 1-10.

16 Ink User Interface
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

Figure 1-10 The reordered list of alternate interpretations

Notice that the list of alternates is kept to a maximum length of five. An uppercase alternate for crush is
added to the menu while the uppercase alternate Crash is dropped.

For a nonalphabetic first character, however, such as a number, the original moves to the second position.
So for the following items:

1239, 1234, 1289, 1284

If the user chooses 1234, the list is reordered as follows:

1234, 1239, 1289, 1284

An application may provide support for alternate word lists using the Ink Services API. For more information,
see “Implementing a Correction Model” (page 33).

Ink Writing Guides

A user can enter pen input directly into any application that accepts text input. Ink Services automatically
draws the user’s strokes as Ink, recognizes the text, and sends the recognized text to the application. All the
user needs to do is position the stylus and start printing. Ink provides writing guides to facilitate text entry,
as shown in Figure 1-11. A user may write almost anywhere on the screen and the recognition results flow
to the insertion point in the frontmost application. The only exceptions are specially designated controls and
screen areas, such as the Dock, the menu bar, window title bars, and scroll bars.

Ink User Interface 17
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

Figure 1-11 Ink writing guides facilitate pen input into an application

The Ink writing guides looks similar to a translucent piece of yellow, lined, writing paper and is positioned
wherever the user writes. The user’s printed input appears in the writing guides until Ink Services applies
recognition to the Ink text, at which point the Ink phrase is terminated. After the Ink text is recognized, the
text appears in the application window as typed text. It is possible for an application to control whether Ink
Services draws the writing guides.

How Ink Works in Mac OS X

The flow of Ink from stylus and tablet to an application is shown in Figure 1-12 (page 19). When the user
writes a line of text using a stylus, Ink performs a series of operations, as follows:

 ■ Raw data from the hardware is acquired and processed by the tablet driver, which emits pen events
using IOKit and Human Interface Device (HID) Manager calls.

Note: A pen event is a shorthand convention for referring to a mouse event that contains tablet data.

 ■ Pen events are passed to the Core Graphics layer. Unlike ordinary mouse events, pen events are usually
routed to the frontmost application, even if the event occurred somewhere other than in that application’s
windows. This allows the user to write anywhere on the screen. The exception to this occurs when pen
events are located within certain “instant mousing” areas, such as window title bars, scroll bars, the Dock,
and the main Menu Bar.

An instant-mousing area defines an area in which stylus input is interpreted as mouse input; the system
“instantly” interprets the stylus as a mouse in these special places and Ink is not generated. For any other
location, a user can signal Ink to interpret stylus input as mouse input by pressing and holding the stylus
still briefly. It not possible for a user to start Ink input with the stylus placed over an instant-mousing
area.

 ■ Pen events (mouse plus tablet data) are then passed to Ink Services, where the various components (see
Figure 1-1 (page 9)) perform the tasks listed in the Ink Input Method box shown in Figure 1-12 (page
19).

 ■ The input method component of Ink Services accumulates pen events into strokes and phrases.

Strokes are collections of points (onscreen locations), spanning the time from which the pen is pressed
to the tablet hard enough to generate a mouse-down event until the time at which the pen is lifted from
the tablet enough to generate a mouse-up event, and corresponds to the common concept of strokes
one might write with paper and pencil.

18 How Ink Works in Mac OS X
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

Phrases are collections of strokes, spanning the time from when the first stroke is started to the time at
which the phrase is terminated due to one of several common events—a timeout following a pen lift
(but staying in proximity), a lift that takes the stylus out of tablet proximity (the limited range over which
the tablet can sense the stylus), a recognizer-generated break (due to the user introducing an extra large
horizontal space or beginning a new line), or a direct request by the application to terminate the phrase.
An Ink phrase can represent a letter, word, or longer unit.

 ■ The Ink server hosts the recognizer which processes accumulated phrases. Ink Services is set up by default
to recognize both text and editing gestures. See “The Ink Recognizer” (page 20) for more information
on how the recognizer works.

If a user toggles the write-anywhere mode off, then pen events are ignored by Ink Services, everywhere
except in ink-aware applications. These points are not drawn by Ink Services nor interpreted by the
recognizer unless the application calls the Ink Services function InkSetApplicationWritingMode
with the iWhere parameter set to kInkWriteAnywhereInApp. As long as Ink is turned on, Ink will
always be drawn and recognized if the user writes directly into the Ink pad in the Ink window. Similarly,
as long as Ink is turned on, Ink drawing and recognition services will always be provided for your ink-aware
application once you enable them by calling InkSetApplicationWritingMode, regardless of the
user's write-anywhere preference setting.

 ■ When the Ink input is recognized, Ink Services generates one or more Carbon events of class
kEventClassInk and the appropriate event kind kEventInkText or kEventInkGesture. Your
application can obtain the data it requires to accomplish its goals by installing appropriate handlers for
Ink-related Carbon events. When your application is the active application (that is, the one that has
keyboard focus) it can receive the Carbon events, extract the relevant event parameters, and process
the data accordingly. If your application does not handle the events, then Ink Services handles them.

For more details, see “Ink-Related Carbon Events” (page 21).

Figure 1-12 The flow of Ink from stylus to application

IOKit: Tablet driver
CG: Write anywhere
	 Instant mousing Mouse event

+
Tablet data

Gather Ink data
into strokes

Add strokes to
current phrase

Terminate phrase

Instant mousing

InstantMouser
InkPoint
InkGesture
InkText
Carbon events

Tablet

Ink Input Method

Recognize
gestures/text

Ink Server

Application

Tablet data

How Ink Works in Mac OS X 19
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

The Ink Recognizer

The Ink recognizer is at the heart of Ink Services. It is the algorithmic component of Ink Services that identifies
written text and gestures. Built using neural-network technology, the architecture of the recognizer integrates
multiple representations of the input data. This design, combined with the training regimen used to build
the recognizer, provides robust, accurate character recognition despite individual differences in the writing
styles of users.

Three outcomes are possible from the Ink recognizer. The first two outcomes are the ones you are likely to
see; the third is a rare event.

 ■ The Ink input is recognized as a gesture.

When the recognizer determines with a high confidence level that the Ink input is a gesture, Ink Services
generates a gesture event.

Recall that Ink input in the form of the standalone letter “v” is tentatively treated as a gesture. If your
application determines the Ink input is not the Join gesture, not handling the gesture (returning
eventNotHandledErr) notifies Ink Services that the Ink input should be interpreted as text by the
recognizer. See “Gestures” (page 12) for more information.

 ■ The Ink input is recognized as text.

The recognizer ranks text interpretations according to a confidence level. Up to five interpretations are
returned to an application through the Ink text event (in the InkTextRef parameter). If the Ink text
event is not handled by the application, then for compatibility with non-ink-aware applications, only
the top-choice, highest confidence interpretation is returned in a
kEventTextInputUnicodeForKeyEvent event. If that event is not handled, then the text is returned
to the application receiving the input as raw keyDown events.

Using the Ink Services API, your application can obtain a list of interpretations, in ranked order, from the
recognizer, and then use the list to implement a correction model. For more information, see
“Implementing a Correction Model” (page 33).

 ■ The Ink input is not recognized.

In the rare case that handwritten input cannot be recognized, the recognition system returns a diamond
character that indicates the text is not recognized.

However, in the event of misrecognition it is more often the case that the Ink input is recognized as text,
but that the text has no meaning to the user. For example, the Ink input shown in Figure 1-13 would be
recognized as “54M^ NG” or some other meaningless text. With a little practice most users improve their
printed input to achieve a high recognition rate.

Note that the Ink input shown in the Figure 1-13 is script, not print. The recognizer is optimized for
printed text.

20 How Ink Works in Mac OS X
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

Figure 1-13 Ink input that is difficult to recognize

Ink-Related Carbon Events

Ink Services notifies your application of Ink-related events by generating Carbon events. The events listed in
Table 1-2 (page 21) are generated by the system, in the order listed, until an event in the chain is handled
by an event handler provided by your application. Once your application handles one of these events (by
returning any result other than the result code eventNotHandledErr), the chain is terminated and no
further events are generated by Ink Services for that data.

Table 1-2 Carbon events generated by Ink input

The event is received by your application
...

Carbon eventEvent category

along with tablet coordinates and a
pressure value, only when recognition is
disabled.

kEventMouseDownkEventMouseDraggedpen

only at the start of a phrase.kEventAppIsEventInInstantMouserinstant mousing

during a phrase.kEventInkPointInk point

only when a gesture is recognized.kEventInkGesturegesture

when text is recognized.kEventInkTexttext

when Unicode text is recognized and when
kEventInkText is not handled.

kEventTextInputUnicodeForKeyEventUnicode text

when text is recognized and the previous
events are not handled.

kEventRawKeyDownkey

How Ink Works in Mac OS X 21
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

The Ink-specific events most important to any application that uses Ink Services—instant mousing, Ink point,
Ink gesture, Ink text —are described in the sections that follow. For more information, see “Obtaining
Parameters from Ink Text and Gesture Events” (page 25).

Instant Mousing Events

The event kEventAppIsEventInInstantMouser is dispatched only when the stylus is initially pressed to
a tablet and before Ink Services determines whether the user is writing or not. Instant mousing areas are
those areas where you do not want the tablet to start Inking. Once the user begins to write, Ink input does
not generate instant-mousing events until the current phrase is terminated.

Instant mousing in standard Carbon and Cocoa controls, drag regions, and so forth is handled for you
automatically. If your application implements its own custom controls that you want to be treated as instant
mousing areas, it must provide a handler for this event. The handler must check the location of the pen event
and return noErr if the pen's location is in a custom instant mousing region, which will force the pen to
behave as a mouse. Your handler should return eventNotHandledErr outside the custom mousing regions,
to allow the user to commence writing in most locations.

Note: Cocoa applications can implement the NSResponder method shouldBeTreatedAsInkEvent for
these purposes. This method returns YES if theEvent should be treated as an Ink event, NO if theEvent
should be treated as a mouse event. This provides the ability to distinguish when a pen-down should start
an Ink input event versus when a pen-down should be treated as a mouse down event. This allows for both
a write-anywhere model for pen-based input and arbitrary application-defined instant-mousing regions.
Note the inverse semantics from the Carbon event.

Ink Point Events

Ink Services sends an Ink point event (kEventInkPoint) whenever it detects a pen event at the start of or
within a phrase (that is, whenever the user is actually entering Ink and not mousing). If the Ink point event
is not handled by your application, Ink Services continues to handle the event through the normal recognition
path. If the Ink point event is handled by your application, Ink Services drops the current mouse event from
further recognition handling. This allows your application to treat certain areas of a window as special,
non-inking areas, and provides the option for your application to terminate the Ink input session. It also
allows your application to draw its own Ink, while letting Ink Services manage the inking-versus-mousing
decision, and even carry out normal recognition services (if your event handler returns eventNotHandledErr).

If your application chooses to handle Ink point events, be aware that you can receive mouse events that lie
outside your application’s windows. For example, if your application draws its own Ink, it could continue to
track the Ink points past the visible bounds of the window, making the out-of-bounds Ink visible if the user
scrolls to look at it. Or your application could provide a separate Ink-background window for Ink input for
the out-of-bounds Ink, similar to the Ink writing guides provided by Ink Services.

Ink Gesture Events

Ink Services dispatches an Ink gesture event (kEventInkGesture) only if the Ink is recognized as a gesture
with a high degree of confidence. All gestures except the Join gesture can be interpreted unambiguously as
a gesture. So for most gestures, whether your application handles a gesture event or not, the event chain is
terminated at that point—either your application handles the gesture or it returns eventNotHandledErr
and Ink Services handles the gesture. However, if the Join gesture (which must be targeted) is not handled
by your application, Ink Services performs text recognition on the Ink and posts it as the letter “v.”

22 How Ink Works in Mac OS X
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

If an application does not handle the gesture, then Ink Services posts the command event (HICommand)
associated with the editing action specified by the gesture. If a command event isn’t defined for the gesture,
as in the case of the Escape, Delete, Tab, Horizontal Space, and Return, then Ink Services posts the keyboard
equivalent for the gesture. For these gestures, this is simply the key event associated with the gesture (Escape,
Delete, Tab, Space, and Return key presses).

Recall that the Join gesture, which is a tentative gesture, must be handled by the application, otherwise Ink
Services treats it as the letter “v.” (There is no command event or keyboard equivalent fallback.) As such, the
Join gesture is only available in an Ink-aware application. See “Gestures” (page 12) for more information.

Ink Text Events

The Ink text event (kEventInkText) is sent when Ink Services recognizes Ink input as text. In Roman languages
the Ink text event typically corresponds to an individual word. It contains the original raw Ink and the
recognized text and typically includes a list of alternate interpretations that your application can show should
you want to provide an easy-to-use correction model. (See “Implementing a Correction Model” (page 33)
for details.)

The parameters associated with an Ink text event are kEventParamInkTextRef and
kEventParamInkTextKeyboardShortcut. The parameter kEventParamInkTextRef is a reference to an
opaque Ink text object (InkTextRef). An Ink text object contains data that describes the recognized text.
You can’t access the object directly, but you can use a variety of Ink Services functions to obtain data from
the object.

The parameter kEventParamInkTextKeyboardShortcut is a Boolean value that indicates whether the
Ink text is likely a keyboard equivalent. The value is true if the Command or Control key is pressed and the
top-choice alternate text is a single character. Checking for this parameter provides an easy way for you to
determine if the text associated with an InkTextRef is likely to be a keyboard equivalent instead of text.
Otherwise, to determine whether the Ink text is a keyboard equivalent, you would need to extract the
kEventParamInkTextRef parameter, retrieve the CFStringRef for the text, determine the length of the
string, and then check for modifier keys. In most cases, you don’t need to handle an Ink text event that is a
keyboard equivalent, and can immediately return eventNotHandledErr.

If the Ink text event is not a keyboard equivalent and you do not handle the event, Ink Services posts a
kEventTextInputUnicodeForKeyEvent event. If that goes unhandled, Ink Services posts a sequence of
raw keyDown events corresponding to the top-choice recognition result.

Mouse Event Coalescing

Mouse events, whether generated by a mouse and mouse driver or by a graphics tablet and tablet driver,
have the potential of being posted at a faster rate than the system can handle. For example, if an application
redraws a window for each mouseDragged event generated when a user drags a window, the window could
move slowly or lag behind the pointer. To avoid slowing down the application, the Carbon Event Manager
coalesces mouse events instead of placing all the mouse events in a queue. Mouse event coalescing is a
process that merges mouseMoved and mouseDragged events by checking to see if one of these events exists
in the event queue, and if it does, replacing the previously queued event with the more recently-generated
event. Note that mouseUp and mouseDown events are never coalesced, as they are semantically meaningful.

Since Ink is accumulated predominantly through mouseDragged events (that have tablet data associated
with them), event coalescing can reduce the fidelity of the data used to draw Ink input and to perform
handwriting recognition. Reduced fidelity can produce Ink that appears faceted instead of smooth, and can
reduce recognition accuracy.

How Ink Works in Mac OS X 23
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

To avoid fidelity problems, Ink Services temporarily disables event coalescing when a stylus enters proximity
of the graphics tablet. Thus Ink data is guaranteed to be smooth, for both rendering and recognition purposes.
When the stylus leaves the proximity of the tablet, or when the stylus is pressed down in an instant-mousing
region, event coalescing is enabled again. Thus coalescing is active, as usual, during window drags and normal
mouse activity.

If your application calls the function InkSetApplicationWritingMode to disable Ink Services management
of pen events so that your application can accumulate Ink data on its own, your application may need to
manage event coalescing. Otherwise, Ink rendering and recognition may suffer from fidelity problems. You
can use the Carbon Event Manager function SetMouseCoalescingEnabled to manage event coalescing
in your application. Make sure that you disable event coalescing only when absolutely necessary. See Carbon
Event Manager Reference for more information on event coalescing.

24 How Ink Works in Mac OS X
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Ink Services Concepts

This section shows how you can use the Ink Services API to accomplish the following tasks:

 ■ “Obtaining Parameters from Ink Text and Gesture Events” (page 25), shows how your application can
obtain the data associated with Ink input.

 ■ “Handling Phrase Termination” (page 26), discusses how to override automatic phrase termination and
request phrase termination at the appropriate time for your application.

 ■ “Supporting Text Editing With Ink Gestures” (page 28), discusses the gestures you must handle and
those you can let Ink Services handle for you.

 ■ “Implementing a Correction Model” (page 33), shows how your application can access a list of alternate
interpretations for Ink input and present those alternates in a contextual menu to your users.

 ■ “Implementing Deferred Recognition” (page 35), describes how to set the recognition state, collect
tablet data, accumulate an Ink phrase, and request recognition at the appropriate time.

Obtaining Parameters from Ink Text and Gesture Events

If you want to perform any of the other tasks described in this chapter, you will need to obtain one or more
event parameters from Ink-related Carbon events. This section shows you how to obtain the parameters
associated with Ink text and gesture events. Before you read this section, you should be familiar with the
events and event parameters discussed in “Ink-Related Carbon Events” (page 21).

Ink Services generates Carbon events of class kEventClassInk. When Ink Services recognizes a phrase as
text, it generates the event kEventInkText. You can extract the associated
parameters—kEventParamInkTextRef and kEventParamInkTextKeyboardShortcut—by calling the
Carbon Event Manager function GetEventParameter, as shown in Listing 2-1. Checking for the
kEventParamInkTextKeyboardShortcut parameter provides an easy way for you to determine if the
InkTextRef is likely to be a keyboard equivalent for a command instead of text. If this parameter is false,
the you can use the function InkTextCreateCFString to obtain the recognized text associated with the
Ink text object (InkTextRef). When you pass 0 to this function, you obtain the most likely interpretation.

Listing 2-1 Extracting parameters for the Ink text event

OSStatus status = noErr;
InkTextRef myInkTextRef;
Boolean myKeyboardShorcut;

status = GetEventParameter (myEvent,
 kEventParamInkTextRef,
 typePtr,
 NULL,
 sizeof (Ptr),
 NULL,
 &myInkTextRef);

Obtaining Parameters from Ink Text and Gesture Events 25
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

status = GetEventParameter (myEvent,
 kEventParamInkTextKeyboardShortcut,
 typeBoolean,
 NULL,
 sizeof (Boolean),
 NULL,
 &myKeyboardShortcut);

if (myKeyboardShortcut == false)
 return (eventNotHandledErr);
InkTextCreateCFString (myInkTextRef, 0);
// Your code to insert the text into the application document.

When Ink Services recognizes an Ink phrase as a gesture, Ink Services generates the event kEventInkGesture.
You can extract the associated parameters—kEventParamInkGestureKind,
kEventParamInkGestureBounds, and kEventParamInkGestureHotspot—using the code shown in
Listing 2-2.

Listing 2-2 Extracting parameters for the Ink gesture event

OSStatus status = noErr;
UInt32 myGestureKind;
HIRect myGestureBounds;
HIPoint myGestureHotspot;

status = GetEventParameter (myEvent,
 kEventParamInkGestureKind,
 typeUInt32,
 NULL,
 sizeof (UInt32),
 NULL,
 &myGestureKind);

status = GetEventParameter (myEvent,
 kEventParamInkGestureBounds,
 typeHIRect,
 NULL,
 sizeof (HIRect),
 NULL,
 &myGestureBounds);

status = GetEventParameter (myEvent,
 kEventParamInkGestureHotspot,
 typeHIPoint,
 NULL,
 sizeof (HIPoint),
 NULL,
 &myGestureHotspot);

Handling Phrase Termination

The default behavior is for Ink Services to terminate a phrase when one of the following events occur:

26 Handling Phrase Termination
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

 ■ The user removes the stylus from the proximity of the tablet

 ■ A specified period of time elapses in which the stylus is not pressed to the tablet (The user can control
the period of time in the Ink preferences pane.)

 ■ The user writes sufficiently far away from the previous Ink—either horizontally, or on a new line

You can use the function InkSetPhraseTerminationMode if your application does not want the default
behavior or wants complete control over when Ink phrases are terminated. If you turn off automatic phrase
termination, you must make sure you manage phrase termination appropriately for your application.

If you want to control phrase termination in your application, you must perform the following tasks:

 ■ Call the function InkSetPhraseTerminationMode to turn off automatic phrase termination. You can
do so using the following line of code:

InkSetPhraseTerminationMode (kInkSourceUser, kInkTerminationNone);

The first parameter to this function specifies the source of the Ink data stream. This example shows how
to control termination of an Ink phrase that originates from direct user input (kInkSourceUser) rather
than from the application (kInkSourceApplication).

 ■ Write code that monitors Ink input and checks for the termination conditions you define.

The termination conditions you define determine how you should best carry out this step. For example,
if you provide users with a “terminate phrase” button in the user interface, then your application should
check for the command issued by the button press.

In such a case or if your phrase termination criteria depends on such data as where the user is writing,
the proximity of the pen to the tablet, whether a modifier key is pressed, or the amount of pressure
applied to the pen, you can install a Carbon event handler for the event kEventInkPoint, then monitor
the location and other relevant parameters returned in this event.

You may find it useful to call the function InkIsPhraseInProgress. The function returns true when
there is an Ink phrase that can be terminated.

 ■ When your application determines your termination conditions have been met, call the function
InkTerminateCurrentPhrase.

Listing 2-3 shows an example of a handler for a hypothetical application that provides users with a “terminate
phrase” button. The application must first install the handler (which, in this case, handles the event
kEventInkPoint) and call the function InkSetPhraseTermination with the parameter
kInkTerminationNone. A detailed explanation for each numbered line of code appears following the
listing.

Listing 2-3 Code that handles phrase termination

{

 GetEventParameter (myInkPointEventRef, kEventParamEventRef,
 typeEventRef, NULL, sizeof (EventRef), NULL,

// 1 &myMouseEventRef);

// 2 if (GetEventKind (myMouseEventRef) == kEventMouseDown)
 {

// 3 if (MyTestForButtonHit (myMouseEventRef) == true)
 {

// 4 if (InkIsPhraseInProgress() == true)

Handling Phrase Termination 27
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

 {
// 5 InkTerminateCurrentPhrase(kInkSourceUser);

 return (noErr);
 }
 }
 }

// 6 return (eventNotHandledErr);

}

Here’s what the code does:

1. Extracts the mouse event reference from the Ink point event.

2. Checks to see if the event is a mouse down event.

3. Checks to see if the mouse down event is in the termination button provided by the application. The
MyTestForButtonHit function is an application-defined function that determines if the mouse event
is within the bounds of the termination button.

4. Checks to see if Ink Services has an Ink phrase in progress; otherwise there is nothing to terminate. Note
that the function InkIsPhraseInProgress should be called only to check whether a phrase is in
progress for an Ink data stream that originate from the user, and not for one that originates from your
application. See Ink Services Reference for more information.

5. Terminates the phrase and returns noErr to indicate the event has been handled. You must pass the
constant kInkSourceUser to specify that the function InkTerminateCurrentPhrase should be
applied to the Ink data stream that originates from direct user input.

6. Returns eventNotHandledErr if any of the previous if statements are false. If there is an Ink phrase
in progress, it is not terminated.

Supporting Text Editing With Ink Gestures

Before you begin to write any code that supports text editing using Ink gestures, you should be thoroughly
familiar with the terms “targeted gesture,” “untargeted gesture,” and “tentative gesture,” because you handle
each of these gestures differently. These terms are described in “Gestures” (page 12). You should also be
familiar with the Ink-gesture event and event parameters described in “Ink Gesture Events” (page 22), as
gesture information is available to your application through Carbon events.

To support text editing with Ink gestures, your application must write and install an event handler for the
Carbon event kind kEventInkGesture. The parameters associated with an Ink gesture event are:

 ■ kEventParamInkGestureKind—The gesture kind can be any of the constants listed in Table 2-1 (page
29). These constants are defined as the InkGestureKind enumeration in the Ink Services API. The
Horizontal Space and Return gestures are each represented by two constants because the user can write
these gestures facing the opposite direction of what’s shown in the Ink pane of System Preferences. The
left and right distinction for the Horizontal Space gesture indicates the side on which the long, horizontal
tail is drawn. The left and right distinction for the Return gesture indicates the direction the small
angle-bracket points.

28 Supporting Text Editing With Ink Gestures
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

 ■ kEventParamInkGestureBounds—The gesture bounds is the rectangle to which some gestures should
apply. You can use this information when your application handles targeted gestures.

 ■ kEventParamInkGestureHotspot—The gesture hot spot is the area to which some gestures should
apply. Only targeted gestures can have a hot spot. You can use this information when your application
handles targeted gestures.

Table 2-1 Gesture constants

Gesture kind constantGesture

kInkGestureUndoUndo

kInkGestureClearClear

kInkGestureSelectAllSelect All

kInkGestureEscapeEscape

kInkGestureCutCut

kInkGestureCopyCopy

kInkGesturePastePaste

kInkGestureLeftSpaceHorizontal Space

kInkGestureRightSpaceHorizontal Space

kInkGestureTabTab

kInkGestureLeftReturnReturn

kInkGestureRightReturnReturn

kInkGestureDeleteDelete

kInkGestureJoinJoin

After your event handler obtains the gesture kind from the event parameter kEventParamInkGestureKind
(see Listing 2-2 (page 26)), it should handle gestures as follows:

 ■ For gestures that are always untargeted (Undo, Select All, Escape, and Delete), return
eventNotHandledErr. Because these gestures are always untargeted, you can let Ink Services handle
them for you. Ink Services converts the unhandled gesture to the command event (HICommand) associated
with the editing action specified by the gesture. If a command event isn’t defined for the gesture, as in
the case of the Escape and Delete, or if the command goes unhandled, then Ink Services posts the
keyboard equivalent for the gesture. Untargeted gestures apply to the current selection or insertion
point.

See “Handling Untargeted Gestures” (page 32) for more details.

Supporting Text Editing With Ink Gestures 29
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

 ■ For the Join gesture (which is a tentative gesture), check to see if the top-left and top-right points of the
bounding box defined by the gesture are sufficiently close to the end and beginning of two words (or
other editable objects), with a space between the words. If so, then your application should elide the
space between the words and return noErr. See “Handling Targeted Gestures” (page 30) for more
details.

If not, then return eventNotHandledErr to signal to Ink Services to process the raw Ink as text and
post the recognition results, which should be the letter “v.”

You must make sure that you return eventNotHandledErr when you determine the Ink is not a Join
gesture, otherwise the user will never be able to enter the letter “v” as a standalone character.

 ■ For all other gestures, check to see if the gesture’s hot spot (or bounding box, as appropriate) is over a
suitable target, such as a word, image, or other object. If so, then apply the gesture to that target. Note
that any non-empty selection range is a suitable target, and should be treated as a single editable object
for applying targeted gestures. (So if a gesture hot spot is anywhere in the selection, the gesture should
be applied to the entire selection.) See “Handling Targeted Gestures” (page 30) for more details.

If the gesture is not over a suitable target, then it should be applied to the current selection, if it is
non-empty, else it should be applied to the insertion point, like an untargeted gesture.

If the gesture is being applied to the selection or the insertion point, whether due to a hot spot in the
selection or one that is not over any suitable target, your application may choose to return
eventNotHandledErr to let Ink Services apply the editing action automatically.

Handling Targeted Gestures

You can use gesture and text relationships to determine the extent of the text modified by the gesture. Most
targeted gestures have a defined hot spot that your application can use to determine the area to apply the
editing action.

Table 2-2 lists targeted gestures, whether the gesture has a hot spot, and the editing actions you should
perform when you handle the gesture.

Table 2-2 Targeted gestures, hot spots, and editing actions

Perform the following action ...Has a hot spotConstant

delete the text if the gesture bounds
overlaps by 50% or more.

No, use the gesture
bounds

kInkGestureClear

cut the text (a single word in Roman
languages) the hot spot overlaps.

Yes, the starting point of
the gesture

kInkGestureCut

copy the text (a single word in
Roman languages) the hot spot
overlaps.

Yes, the starting point of
the gesture

kInkGestureCopy

paste the Clipboard contents into the
location specified by the hot spot.
Paste over a word if the hot spot is
on a word.

Yes, the starting point of
the gesture

kInkGesturePaste

30 Supporting Text Editing With Ink Gestures
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

Perform the following action ...Has a hot spotConstant

insert a single space character into
the location specified by the hot
spot.

Yes, the topmost point
of the gesture

kInkGestureLeftSpacekInkGesture-
RightSpace

insert a single tab character into the
location specified by the hot spot.

Yes, the starting point of
the gesture

kInkGestureTab

insert a return (new line) character
into the location specified by the hot
spot.

Yes, the leftmost point of
the gesture

kInkGestureLeftReturn

insert a return (new line) character
into the location specified by the hot
spot.

Yes, the rightmost point
of the gesture

kInkGestureRightReturn

delete the space between the words
specified by the top-left and
top-right points of gesture bounds.

No, you must extract two
points from the gesture
bounds

kInkGestureJoin

Figure 2-1 shows gesture bounds for four editing gestures—Cut, Horizontal Space, Clear, and Join. The Cut
and Horizontal Space gestures have a hot spot but the Clear gesture does not. Rather, the bounds of the
Clear gesture define its targeting area. The Join gesture doesn’t have a hot spot per se; instead it has two
points that specify the two words that should be joined. These two points are contained in the gesture
bounds, and your application must extract the points from the bounds.

Figure 2-1 Gesture bounds and hot spots

Gesture bounds

Clear gesture

Cut gesture

Gesture bounds

Hot spot

Gesture bounds

Horizontal Space gesture

Hot spot

Join gesture

Gesture bounds

To handle the Clear gesture, which does not have a hot spot, your application should apply the editing action
to all of the text the gesture overlaps (to a sufficient degree—say, more than 50% of the onscreen area of
each word—on a word-by-word basis). For example, the Clear gesture in Figure 2-2 is written over the words
“or insertion point” so your application should delete those words. To make that determination you would
first obtain the gesture bounds from the event kInkGestureEvent, then determine the words the gesture
is written over, and delete those words.

Supporting Text Editing With Ink Gestures 31
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

Figure 2-2 The Clear gesture

For targeted gestures that have a hot spot, only the hot spot is relevant to the editing action your application
takes; the gesture bounds aren’t. For example, to handle the Horizontal Space gesture your application must
obtain the hot spot from the event kInkGestureEvent.The Horizontal Space gesture in Figure 2-3 is
positioned between the letters “r” and “g.” To process this gesture, your application would determine the
characters on either side of the hot spot, then insert a space in that position.

Figure 2-3 The Horizontal Space gesture

If the gesture hot spot is drawn outside your application’s windows or in a location where the gesture would
not apply, the gesture should be treated as an untargeted gesture. That is, you should either return
kEventNotHandledErr and let Ink Services handle the gesture for you, or you should apply the editing
action to the current text selection or insertion point (if there is no selection).

Handling Untargeted Gestures

Your application does not need to handle untargeted gestures; it can simply return kEventNotHandledErr
and let Ink Services handle the gesture for you. If for some reason you decide to handle untargeted gestures,
you should perform the actions listed in Table 2-3. Note that the editing action for an untargeted gesture
can depend on whether or not there is a selection.

32 Supporting Text Editing With Ink Gestures
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

Table 2-3 Actions specified by untargeted Ink gestures

If there is no selection,
specifies to ...

If there is a selection, specifies
to ...

Constant

undo the last action.undo the last action.kInkGestureUndo

do nothing.clear the current selection.kInkGestureClear

select all items in the window
that has user focus.

select all items in the window
that has user focus.

kInkGestureSelectAll

act as if the Escape key is
pressed.

act as if the Escape key is
pressed.

kInkGestureEscape

do nothing.cut the current selection.kInkGestureCut

do nothing.copy the current selection.kInkGestureCopy

paste the Clipboard contents
into the insertion point.

paste the Clipboard contents
over the current selection.

kInkGesturePaste

insert a single space character
at the insertion point.

replace the current selection
with a single space character.

kInkGestureLeftSpacekInkGesture-
RightSpace

insert a single tab character.replace the current selection
with a single tab character.

kInkGestureTab

insert a return (new line)
character.

replace the current selection
with a return (new line)
character.

kInkGesture-
LeftReturnkInkGestureRightReturn

delete the item immediately
preceding the insertion point.

delete the current selection.kInkGestureDelete

Implementing a Correction Model

Ink Services communicates events through the Carbon Event Manager. Once Ink Services interprets an Ink
phrase, it sends your application the Carbon event kind kEventInkText whose associated parameter is a
reference to an opaque Ink text object (InkTextRef). The Ink text object contains the original Ink entered
by the user and a list of interpretations for the Ink in ranked order. Ink Services creates a list of up to five
possible interpretations. The most likely interpretation is the first item in the list, with less likely interpretations
appearing in rank order after this item. (See “Ink Window” (page 15) for details on how Ink orders the
interpretations.)

Your application can implement an easy-to-use correction model by performing the following tasks:

 ■ Create a contextual menu.

Although the menu doesn’t have to be a contextual one, alternate interpretations are typically presented
to the user in this way. See “Ink Window” (page 15) for an example of what a contextual menu looks
like when used for Ink.

Implementing a Correction Model 33
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

You can create a menu any way you like. For example, you can:

 ❏ Create the menu in Interface Builder and then unarchive the menu using the Interface Builder
Services API. For more information, see Unarchiving Interface Objects With Interface Builder Services.

 ❏ Use the Menu Manager API. For more information, see Menu Manger Reference.

You can obtain either document from the developer documentation website, accessed through:

http://developer.apple.com/

 ■ Insert the list of interpretations into the menu.

You can call the Ink Services function InkTextInsertAlternatesInMenu, supplying the InkTextRef
and a valid menu reference as parameters, as shown in the following code:

alternateItemsCount = InkTextInsertAlternatesInMenu (
 myInkRef, // obtained through your Carbon event handler
 myAlternatesMenu, // a valid menu reference
 0); // location in menu to insert list

 ■ Show the contextual menu to the user and obtain the user’s selection, if any.

Your application should display the menu by calling the Menu Manager functionContextualMenuSelect
(or other appropriate function, such as PopUpMenuSelect).

You can get the user’s selection by checking the return value of outUserSelectionType, as shown in
the following code:

status = ContextualMenuSelect (myAlternatesMenu,
 myMouseLocation, // the location to display the menu
 false, // reserved for future use
 kCMHelpItemRemoveHelp, // don’t provide a help item
 NULL. // a help string, which is not relevant here
 NULL, // no need for system to examine the selection
 &selectionType, //on output, indicates selection type
 &menuID, // on output, the menu ID of chosen item
 &menuItemIndex); // on output, menu item of chosen item

 ■ If the user chooses an item, you should obtain the string associated with the menu item and then call
your function to replace the word in the document with the string returned by this function.

You can obtain the string associated with the user’s choice using one of the following two methods:

 ❏ Call the Ink Services function InkTextCreateCFString, supplying 0 as the iIndex parameters.

This will always return the current top-choice interpretation, which will have been automatically
altered by the user's selection. Note, however, that if the user selects the original first interpretation,
the text may not have changed. Also, if you have placed other, non-Ink items in the menu, the user
may have selected one of those instead of having made a selection from amongst the Ink alternates.
So if you populate the menu with items unrelated to Ink, you may need to use the second method.

 ❏ Call the Menu Manager function CopyMenuItemTextAsCFString supplying the values that were
returned in the parameters outMenuID and outMenuItem when you called the Menu Manager
function ContextualMenuSelect to display the menu.

This method will always return the user's selection, whether it is from amongst the Ink alternates or
not, though the text interpretation still may or may not have changed, and it is your application's
responsibility to determine the proper outcome of the user's selection.

34 Implementing a Correction Model
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

http://developer.apple.com/

 ■ The next time you need to show the menu, you must rebuild the menu before you insert the list of
interpretations.

Delete items you no longer want in the menu and then reinsert the appropriate menu items, making
sure that you map the Ink Services alternates correctly to your menu. Text alternates supplied by Ink
Services can be identified by the command ID 'inka'. You can find out how many text alternates items
are in the menu using the following code:

alternateItemsCount = CountMenuItemsWithCommandID (myAlternatesMenu,
 'inka');

If there are Ink Services items in the menu, you must delete the previous interpretations before you can
add the current interpretations. If the Ink Services menu item had been placed at the beginning of the
menu, you can do so with the following code:

if (alternateItemsCount > 0)
 DeleteMenuItems (myAlternatesMenu, 1, alternateItemsCount);

You would also have to remove the single separator item identified by 'inks' and the Ink data item identified
by 'inkd'. Or you could simply dispose of the old menuRef and create and populate a new one.

When a user selects an item from the list of alternates, Ink Services reorders the internal alternates list within
the source Ink text object (InkTextRef). Thus the user’s choice persists in the system data structures without
requiring your application to call any additional functions. If it is important for your application to maintain
the original order of alternates, then you must use your own internal data structures to keep track of the
original list.

Implementing Deferred Recognition

Deferred recognition is the ability to convert pen strokes to text at some time other than when the strokes
are first written by the user. If you want to implement deferred recognition, your application must be
responsible for collecting Ink input and deciding when recognition occurs. Your application can draw its own
Ink by either disabling Ink Services or by requesting that Ink Services doesn’t process events it would otherwise
have handled. Your application can then access all relevant data directly from standard mouse events.

To implement deferred recognition, your application must perform the following tasks:

 ■ Inform Ink Services not to handle Ink events.

You can accomplish with the following call:

InkSetApplicationRecognitionMode (kInkWriteNowhereInApp);

 ■ Install a Carbon event handler to gather tablet data.

Your handler should handle mouseDown, mouseUp, and mouseDragged events. You should obtain the
mouse location, tablet data, and key modifiers from each mouse event your application receives.

You obtain the mouse location by extracting the event parameter kEventParamMouseLocation. You
get the tablet data record by extracting the event parameter kEventParamTabletPointRec. You
obtain the key modifiers (if any) in use by extracting the event parameter kEventParamKeyModifiers.
The following code shows how to obtain the relevant data from the event parameters:

OSStatus = noErr;

Implementing Deferred Recognition 35
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

HIPoint location;
TabletPointRec tabletPt;
UInt32 modifiers;

// Get the full-resolution, floating point mouse location
status = GetEventParameter (myInEvent,
 kEventParamMouseLocation,
 typeHIPoint,
 NULL, // On output, the actual type
 sizeof (location),
 NULL, // On output, the actual size
 &location);
require_noerr (status, TabletEvent_err); /* macro to handle error */

// Get the tablet data record
status = GetEventParameter (myInEvent,
 kEventParamTabletPointRec,
 typeTabletPointRec,
 NULL,
 sizeof (TabletPointRec),
 NULL,
 (void*) &tabletPt);
require_noerr (status, TabletEvent_err);

// Get any keyboard modifiers in use
status = GetEventParameter (myInEvent,
 kEventParamKeyModifiers,
 typeUInt32,
 NULL,
 sizeof (modifiers),
 NULL,
 &modifiers);
require_noerr (status, TabletEvent_err);

If it is useful for your application, you can also obtain tablet proximity data. Proximity data defines events
which occur when the stylus is near, but not touching, the tablet.

Note: You could gather the same data by handling the event kEventInkPoint, and while handling
mouse events directly may incur slightly less overhead than handling Ink point events, gathering your
own Ink in this fashion requires your application to manage all of the pen-vs.-mouse issues (has the pen
moved far enough, soon enough, is the pen placed in an instant mouser, and so forth).

Your application would also have to manage event coalescing and phrase termination itself. Managing
these requires additional work for you and is likely to produce a different user experience in your
application. Thus we recommend against managing real-time user handwriting input using mouse
events, and only show this example to indicate how raw data can be handled for applications where
that is necessary and appropriate.

 ■ Store tablet data.

As your application collects tablet-generated data, it must store the data (HIPoint, TabletPointRec,
and any key modifiers) in any way that makes sense for your application. However, it is advisable not to
use an array. The number of points that can be generated by a single stroke is variable, and may be quite
large. Using an array would require you to allocate large arrays and to check for an array-bounds overrun.

 ■ Add the stroke to the current Ink phrase.

36 Implementing Deferred Recognition
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

When a stroke has been completed (as indicated by the first mouse-up event after a stroke has been
initiated), you can add it to the current Ink phrase by building an array of InkPoint data structures, and
filling the structures with the collected data. (The InkPoint data structure holds mouse location
(HIPoint), tablet data (TabletPointRec), and key modifier information (UInt32).) The data must be
in the chronological order in which it was generated.

Then, you must call the function InkAddStrokeToCurrentPhrase to add the stroke to the current Ink
phrase. When you call the function, you must pass the number of structures in the array, as well as the
array of InkPoint structures, as shown in the following code:

UInt32 myPointCount;
InkPoint * myInkPointArray;

InkAddStrokeToCurrentPhrase (myPointCount, myInkPointArray);

It’s best to dynamically assemble and destroy the InkPoint array when you need to call this function.

 ■ When your application determines that a phrase is complete and ready to be recognized, it can call the
functionInkTerminateCurrentPhrasewith theiSourceparameter set tokInkSourceApplication.

Calling this function terminates the phrase and triggers the Ink recognizer.

 ■ Handle the Ink event (kEventInkText or kEventInkGesture) that is generated by the recognizer
when recognition is complete for the phrase.

A similar approach may be used to import larger quantities of data, gathered in an offline mode, potentially
using a proprietary data format, such as for a digital pen that stores ink written on paper pads. Converting
such data into InkPoint arrays and invoking the functions InkAddStrokeToCurrentPhrase and
InkTerminateCurrentPhrase would allow such devices to use the recognition services provided by Ink
Services.

Implementing Deferred Recognition 37
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

38 Implementing Deferred Recognition
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Ink Services Tasks

This table describes the changes to Using Ink Services in Your Application.

NotesDate

Made changes to the text and source code in the section “Handling Phrase
Termination” (page 26) to reflect the use of the iSource input parameter to
the functions InkSetPhraseTerminationMode and
InkTerminateCurrentPhrase.

2003-07-24

In the section “Implementing a Correction Model” (page 33) changed “Menu
items” to “Text alternates” in the sentence “Text alternates supplied by Ink
Services can be identified by the command ID 'inka'.” This reflects the addition
to the Ink Services API of two command IDs for the separator 'inks' and Ink
data 'inkd' menu items. See the Ink Services Reference for more information.

Made a change to the section “Implementing Deferred Recognition” (page 35)
to reflect the use of the iSource input parameter to the function
InkTerminateCurrentPhrase.

First release of this document. This is a preliminary version.2003-06-19

39
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

40
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

deferred recognition The process of recognizing an
ink phrase that was drawn by the user at an earlier
time.

event coalescing See mouse event coalescing.

gesture A handwritten mark that is recognized as
having a special meaning, such as, Select All, Cut, and
Copy.

Ink Raw data that represents the input drawn by the
user with the stylus.

Ink pad The part of the Ink window that provides a
simple note pad interface where handwritten input
is converted into editable text.

Ink phrase The grouping of ink data created by the
recognition system, based on the timing and spacing
of the user's handwriting. In Roman languages, an ink
phrase is typically a short string of characters with no
spaces between them such as an individual character,
several characters, a word, or, an entire URL. For most
situations an Ink phrase is equivalent to a word.

Ink server The component of Ink technology that
manages the recognizer, the language model, and
the Ink window.

Ink text Words written in electronic ink.

Ink input method A low-level task which takes the
user input and then draws the appropriate data on
the screen. In effect, converting physical pen strokes
into electronic Ink.

Ink text object An opaque object that contains
information about an Ink phrase.

Ink toolbar The toolbar that appears at the top of
the Ink window.

Ink window Comprised of the Ink toolbar and the
Ink pad, allows the user to control various aspects of
Ink and to enter Ink input.

Ink writing guides The lines (alternating solid and
broken) that appear when a user is writing directly
into an application.

instant mousing area An area in which stylus input
is interpreted as mouse input; the system “instantly”
interprets the stylus as a mouse in these special places
and ink is not generated.

mouse event coalescing A process that merges
mouseMoved and mouseDragged events by checking
to see if one of these events exists in the event queue,
and if it does, updating the queue with the position
and delta information from the more
recently-generated event.

pen See stylus.

pen event A mouse event that contains tablet data.

phrase termination Defines when Ink input should
be processed by the recognizer.

recognized text Ink words processed by the
recognition system.

recognizer The algorithmic component of Ink
Services that identifies written text and gestures.

searchable Ink Ink that remains visible to the user
as ink, but for which recognition has taken place.

stroke An array of points that define the path of the
stylus, starting with a stylus-down event and ending
when the stylus is lifted.

stylus The hand held instrument used to enter data
into the computer. Also referred to as a pen.

41
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

Glossary

targeted gesture A gesture that has a defined hot
spot that an application can use to determine the
area to which the gesture should apply.

tentative gesture Ink that the system treats
tentatively as a gesture until your application either
confirms the Ink is indeed a gesture or informs the
system the Ink is not a gesture. The Join gesture is
the only tentative gesture.

termination mode The conditions that define the
end of an Ink phrase.

untargeted gesture A gesture that does not have a
defined hot spot. An application should apply the
gesture to the current selection or insertion point.

42
2003-07-24 | © 2003 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

	Using Ink Services in Your Application
	Contents
	Figures, Tables, and Listings
	Introduction
	Ink Services Concepts
	Ink User Interface
	Ink Preferences Pane
	Settings
	Gestures
	Word List

	Ink Window
	Ink Writing Guides

	How Ink Works in Mac OS X
	The Ink Recognizer
	Ink-Related Carbon Events
	Instant Mousing Events
	Ink Point Events
	Ink Gesture Events
	Ink Text Events

	Mouse Event Coalescing

	Ink Services Tasks
	Obtaining Parameters from Ink Text and Gesture Events
	Handling Phrase Termination
	Supporting Text Editing With Ink Gestures
	Handling Targeted Gestures
	Handling Untargeted Gestures

	Implementing a Correction Model
	Implementing Deferred Recognition

	Revision History
	Glossary

