
ATSUI Reference
Carbon > Text & Fonts

2007-06-28

Apple Inc.
© 2003, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Cocoa, iCal, Mac,
Mac OS, Macintosh, Quartz, and QuickDraw are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder and Numbers are trademarks of Apple
Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

ATSUI Reference 11

Overview 11
Functions by Task 11

Creating and Initializing Style Objects 11
Manipulating Style Attributes 12
Manipulating Font Features 12
Manipulating Font Variations 13
Creating and Initializing Text Layout Objects 13
Manipulating Text Layout Attributes 14
Manipulating Line Attributes 14
Manipulating Line Breaks 14
Substituting Fonts 15
Identifying Fonts 15
Drawing and Highlighting Text 16
Supporting User Interaction With Onscreen Text 16
Obtaining Text Metrics 17
Working With Tabs 17
Accessing Glyph Data 18
Flattening and Parsing Style Data 18
Creating, Calling, and Deleting Universal Procedure Pointers 18
Not Recommended 20

Functions 20
ATSUBatchBreakLines 20
ATSUBreakLine 22
ATSUCalculateBaselineDeltas 23
ATSUClearAttributes 24
ATSUClearFontFeatures 25
ATSUClearFontVariations 26
ATSUClearLayoutCache 27
ATSUClearLayoutControls 28
ATSUClearLineControls 29
ATSUClearSoftLineBreaks 30
ATSUClearStyle 30
ATSUCompareStyles 31
ATSUCopyAttributes 32
ATSUCopyLayoutControls 33
ATSUCopyLineControls 33
ATSUCountFontFeatureSelectors 34
ATSUCountFontFeatureTypes 35
ATSUCountFontInstances 35
ATSUCountFontNames 36

3
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUCountFontTracking 37
ATSUCountFontVariations 37
ATSUCreateAndCopyStyle 38
ATSUCreateAndCopyTextLayout 39
ATSUCreateFontFallbacks 39
ATSUCreateStyle 40
ATSUCreateTextLayout 41
ATSUCreateTextLayoutWithTextPtr 42
ATSUDirectAddStyleSettingRef 44
ATSUDirectGetLayoutDataArrayPtrFromLineRef 45
ATSUDirectGetLayoutDataArrayPtrFromTextLayout 46
ATSUDirectReleaseLayoutDataArrayPtr 48
ATSUDisposeFontFallbacks 48
ATSUDisposeStyle 49
ATSUDisposeTextLayout 49
ATSUDrawText 50
ATSUFindFontFromName 52
ATSUFindFontName 53
ATSUFlattenStyleRunsToStream 55
ATSUFONDtoFontID 56
ATSUFontCount 57
ATSUFontIDtoFOND 58
ATSUGetAllAttributes 59
ATSUGetAllFontFeatures 60
ATSUGetAllFontVariations 61
ATSUGetAllLayoutControls 62
ATSUGetAllLineControls 63
ATSUGetAttribute 65
ATSUGetContinuousAttributes 66
ATSUGetFontFeature 66
ATSUGetFontFeatureNameCode 67
ATSUGetFontFeatureSelectors 68
ATSUGetFontFeatureTypes 70
ATSUGetFontIDs 71
ATSUGetFontInstance 72
ATSUGetFontInstanceNameCode 73
ATSUGetFontVariationNameCode 74
ATSUGetFontVariationValue 74
ATSUGetGlyphBounds 75
ATSUGetIndFontName 78
ATSUGetIndFontTracking 80
ATSUGetIndFontVariation 81
ATSUGetLayoutControl 82
ATSUGetLineControl 83
ATSUGetNativeCurveType 84
ATSUGetObjFontFallbacks 85

4
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

ATSUGetRunStyle 86
ATSUGetSoftLineBreaks 87
ATSUGetStyleRefCon 88
ATSUGetTabArray 89
ATSUGetTextHighlight 90
ATSUGetTextLayoutRefCon 91
ATSUGetTextLocation 91
ATSUGetTransientFontMatching 92
ATSUGetUnjustifiedBounds 93
ATSUGlyphGetCubicPaths 95
ATSUGlyphGetCurvePaths 96
ATSUGlyphGetIdealMetrics 97
ATSUGlyphGetQuadraticPaths 98
ATSUGlyphGetScreenMetrics 99
ATSUHighlightInactiveText 100
ATSUHighlightText 101
ATSULeftwardCursorPosition 103
ATSUMatchFontsToText 106
ATSUMeasureTextImage 107
ATSUNextCursorPosition 109
ATSUOffsetToCursorPosition 110
ATSUOffsetToPosition 111
ATSUOverwriteAttributes 113
ATSUPositionToCursorOffset 113
ATSUPositionToOffset 115
ATSUPreviousCursorPosition 117
ATSURightwardCursorPosition 118
ATSUSetAttributes 119
ATSUSetFontFeatures 120
ATSUSetHighlightingMethod 121
ATSUSetLayoutControls 122
ATSUSetLineControls 124
ATSUSetObjFontFallbacks 126
ATSUSetRunStyle 127
ATSUSetSoftLineBreak 128
ATSUSetStyleRefCon 129
ATSUSetTabArray 129
ATSUSetTextLayoutRefCon 130
ATSUSetTextPointerLocation 131
ATSUSetTransientFontMatching 132
ATSUSetVariations 133
ATSUStyleIsEmpty 134
ATSUTextDeleted 135
ATSUTextInserted 136
ATSUTextMoved 137
ATSUUnderwriteAttributes 138

5
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

ATSUUnflattenStyleRunsFromStream 138
ATSUUnhighlightText 140
DisposeATSCubicClosePathUPP 142
DisposeATSCubicCurveToUPP 142
DisposeATSCubicLineToUPP 143
DisposeATSCubicMoveToUPP 143
DisposeATSQuadraticClosePathUPP 144
DisposeATSQuadraticCurveUPP 144
DisposeATSQuadraticLineUPP 144
DisposeATSQuadraticNewPathUPP 145
DisposeATSUDirectLayoutOperationOverrideUPP 145
DisposeRedrawBackgroundUPP 146
InvokeATSCubicClosePathUPP 146
InvokeATSCubicCurveToUPP 146
InvokeATSCubicLineToUPP 147
InvokeATSCubicMoveToUPP 147
InvokeATSQuadraticClosePathUPP 148
InvokeATSQuadraticCurveUPP 148
InvokeATSQuadraticLineUPP 149
InvokeATSQuadraticNewPathUPP 149
InvokeATSUDirectLayoutOperationOverrideUPP 150
InvokeRedrawBackgroundUPP 150
NewATSCubicClosePathUPP 151
NewATSCubicCurveToUPP 151
NewATSCubicLineToUPP 152
NewATSCubicMoveToUPP 152
NewATSQuadraticClosePathUPP 153
NewATSQuadraticCurveUPP 153
NewATSQuadraticLineUPP 154
NewATSQuadraticNewPathUPP 154
NewATSUDirectLayoutOperationOverrideUPP 155
NewRedrawBackgroundUPP 155

Callbacks 156
ATSCubicClosePathProcPtr 156
ATSCubicCurveToProcPtr 157
ATSCubicLineToProcPtr 158
ATSCubicMoveToProcPtr 159
ATSQuadraticClosePathProcPtr 160
ATSQuadraticCurveProcPtr 161
ATSQuadraticLineProcPtr 162
ATSQuadraticNewPathProcPtr 163
ATSUDirectLayoutOperationOverrideProcPtr 164
RedrawBackgroundProcPtr 165

Data Types 167
Core Data Types 167
USTL Data Structure Data Types 181

6
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Universal Procedure Pointers 193
Constants 196

Attribute Tags 196
Background Data Types 208
Caret Movement Types 208
Convenience Constants 209
Direct Data Selectors 210
Flattened Data Font Type Selectors 212
Flattened Data Format Selectors 213
Flattened Style Run Data Options 213
Flattened Data Version Numbers 213
Font Fallback Methods 214
Glyph Origin Selectors 215
Glyph Collection Types 216
Glyph Direction Selectors 217
Glyph Property Flags 217
Highlight Methods 219
Invalid Font ID Constant 219
Line Truncation Selectors 220
Layout Callback Status Values 221
Layout Operation Selectors 221
Line Alignment Selectors 223
Line Height and Font Tracking Selectors 223
Line Justification Selectors 224
Line Layout Attribute Tags 224
Line Layout Width Selector 229
No Selectors Option 229
Style Comparison Options 229
Style Line Count Types 230
Style Rendering Options 231
Tab Positioning Options 232
Text Buffer Convenience Constants 233
Unflattened Style Run Data Options 233
Vertical Character Types 234

Result Codes 234
Gestalt Constants 237

Appendix A Deprecated ATSUI Functions 239

Deprecated in Mac OS X v10.0 239
ATSUCreateTextLayoutWithTextHandle 239
ATSUIdle 241
ATSUSetTextHandleLocation 241

Deprecated in Mac OS X v10.1 243
ATSUCopyToHandle 243

Deprecated in Mac OS X v10.3 244

7
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

ATSUDrawGlyphInfo 244
ATSUGetFontFallbacks 245
ATSUGetGlyphInfo 246
ATSUMeasureText 247
ATSUSetFontFallbacks 247

Document Revision History 249

Index 253

8
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures

ATSUI Reference 11

Figure 1 The main header for the ustl data structure 182
Figure 2 Flattened text layout data 184
Figure 3 Flattened style run data 187
Figure 4 Flattened style list data 188

9
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

10
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

FIGURES

Framework: ApplicationServices/ApplicationServices.h

Declared in ATSLayoutTypes.h
ATSUnicodeDirectAccess.h
ATSUnicodeDrawing.h
ATSUnicodeFlattening.h
ATSUnicodeFonts.h
ATSUnicodeGlyphs.h
ATSUnicodeObjects.h
ATSUnicodeTypes.h

Overview

Apple Type Services for Unicode Imaging (ATSUI) enables the rendering of Unicode-encoded text with
advanced typographic features. It automatically handles many of the complexities inherent in text layout,
including the correct rendering of text in bidirectional and vertical script systems.

ATSUI may be useful to developers who are writing new text editors or word processing applications that
render Unicode-encoded text. You can also use ATSUI if you want to modify your existing application to
support Unicode text rendering.

This document describes the ATSUI application programming interface (API) through version 2.4. If you are
a font designer or want more information about fonts, see the Apple font site: http://developer.ap-
ple.com/fonts/

Functions by Task

Creating and Initializing Style Objects

ATSUCreateStyle (page 40)
Creates an opaque style object containing only default style attributes, font features, and font variations.

ATSUCreateAndCopyStyle (page 38)
Creates a copy of a style object.

ATSUCompareStyles (page 31)
Compares the attribute values of two style objects.

ATSUClearStyle (page 30)
Restores default values to a style object.

Overview 11
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

http://developer.apple.com/fonts/
http://developer.apple.com/fonts/

ATSUStyleIsEmpty (page 134)
Indicates whether a style object contains only default values.

ATSUSetStyleRefCon (page 129)
Sets application-specific data for a style object.

ATSUGetStyleRefCon (page 88)
Obtains application-specific data for a style object.

ATSUDisposeStyle (page 49)
Disposes of the memory associated with a style object.

Manipulating Style Attributes

ATSUSetAttributes (page 119)
Sets style attribute values in a style object.

ATSUCopyAttributes (page 32)
Copies all style attribute settings from a source style object to a destination style object.

ATSUOverwriteAttributes (page 113)
Copies to a destination style object the nondefault style attribute settings of a source style object.

ATSUUnderwriteAttributes (page 138)
Copies to a destination style object only those nondefault style attribute settings of a source style
object that are at default settings in the destination object.

ATSUGetAllAttributes (page 59)
Obtains an array of style attribute tags and value sizes for a style object.

ATSUGetAttribute (page 65)
Obtains a style attribute value for a style object.

ATSUGetContinuousAttributes (page 66)
Obtains the style attribute values that are continuous over a given text range.

ATSUClearAttributes (page 24)
Restores default values to the specified style attributes of a style object.

Manipulating Font Features

ATSUSetFontFeatures (page 120)
Sets font features in a style object.

ATSUGetAllFontFeatures (page 60)
Obtains the font features of a style object that are not at default settings.

ATSUGetFontFeature (page 66)
Obtains the font feature corresponding to an index into an array of font features for a style object.

ATSUClearFontFeatures (page 25)
Restores default settings to the specified font features of a style object.

ATSUGetFontFeatureTypes (page 70)
Obtains the available feature types of a font.

ATSUCountFontFeatureTypes (page 35)
Obtains the number of available feature types in a font.

12 Functions by Task
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUGetFontFeatureSelectors (page 68)
Obtains the available feature selectors for a given feature type in a font.

ATSUCountFontFeatureSelectors (page 34)
Obtains the number of available feature selectors for a given feature type in a font.

Manipulating Font Variations

ATSUSetVariations (page 133)
Sets font variation axes and values in a style object.

ATSUGetAllFontVariations (page 61)
Obtains a style object’s font variation values that are not at default settings.

ATSUGetFontVariationValue (page 74)
Obtains the current value for a font variation axis in a style object.

ATSUClearFontVariations (page 26)
Restores default values to the specified font variation axes of a style object.

ATSUGetIndFontVariation (page 81)
Obtains a variation axis and its value range for a font.

ATSUCountFontVariations (page 37)
Obtains the number of defined variation axes in a font.

ATSUGetFontInstance (page 72)
Obtains the font variation axis values for a font instance.

ATSUCountFontInstances (page 35)
Obtains the number of defined font instances in a font.

Creating and Initializing Text Layout Objects

ATSUCreateTextLayout (page 41)
Creates an opaque text layout object containing only default text layout attributes.

ATSUCreateTextLayoutWithTextPtr (page 42)
Creates an opaque text layout object containing default text layout attributes as well as associated
text and text styles.

ATSUCreateAndCopyTextLayout (page 39)
Creates a copy of a text layout object.

ATSUSetTextPointerLocation (page 131)
Associates text with a text layout object or updates previously associated text.

ATSUGetTextLocation (page 91)
Obtains information about the text associated with a text layout object.

ATSUSetRunStyle (page 127)
Defines a style run by associating style information with a run of text.

ATSUGetRunStyle (page 86)
Obtains style run information for a character offset in a run of text.

ATSUSetTextLayoutRefCon (page 130)
Sets application-specific data for a text layout object.

Functions by Task 13
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUGetTextLayoutRefCon (page 91)
Obtains application-specific data for a text layout object.

ATSUDisposeTextLayout (page 49)
Disposes of the memory associated with a text layout object.

Manipulating Text Layout Attributes

ATSUSetLayoutControls (page 122)
Sets layout control attribute values in a text layout object.

ATSUCopyLayoutControls (page 33)
Copies all layout control attribute settings from a source text layout object to a destination text layout
object.

ATSUGetAllLayoutControls (page 62)
Obtains an array of layout control attribute tags and value sizes for a text layout object.

ATSUGetLayoutControl (page 82)
Obtains a layout control attribute value for a text layout object.

ATSUClearLayoutControls (page 28)
Restores default values to the specified layout control attributes of a text layout object.

Manipulating Line Attributes

ATSUSetLineControls (page 124)
Sets layout control attribute values for a single line in a text layout object.

ATSUCopyLineControls (page 33)
Copies line control attribute settings from a line in a source text layout object to a line in a destination
text layout object.

ATSUGetAllLineControls (page 63)
Obtains an array of line control attribute tags and value sizes for a line in a text layout object.

ATSUGetLineControl (page 83)
Obtains a line control attribute value for a line in a text layout object.

ATSUClearLineControls (page 29)
Restores default values to the specified line control attributes of a line in a text layout object.

Manipulating Line Breaks

ATSUBreakLine (page 22)
Calculates and, optionally, sets a soft line break in a range of text.

ATSUBatchBreakLines (page 20)
Calculates soft line breaks for the text associated with a text layout object.

ATSUSetSoftLineBreak (page 128)
Sets a soft line break that you specify.

ATSUGetSoftLineBreaks (page 87)
Obtains soft line breaks in a range of text.

14 Functions by Task
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUClearSoftLineBreaks (page 30)
Removes soft line breaks from a range of text.

Substituting Fonts

ATSUMatchFontsToText (page 106)
Examines a text range for characters that cannot be drawn with the current font and suggests a
substitute font, if necessary.

ATSUSetTransientFontMatching (page 132)
Turns automatic font substitution on or off for a text layout object.

ATSUGetTransientFontMatching (page 92)
Obtains whether ATSUI automatically performs font substitution for a text layout object.

ATSUCreateFontFallbacks (page 39)
Creates an opaque object that can be set to contain a font list and a font-search method.

ATSUSetObjFontFallbacks (page 126)
Assigns a font list and a font-search method to a font fallback object.

ATSUGetObjFontFallbacks (page 85)
Obtains the font list and font-search method associated with a font fallback object.

ATSUDisposeFontFallbacks (page 48)
Disposes of the memory associated with a font fallback object.

Identifying Fonts

ATSUGetFontIDs (page 71)
Obtains a list of all the ATSUI-compatible fonts installed on the user’s system.

ATSUFontCount (page 57)
Obtains the number of ATSUI-compatible fonts installed on a user’s system.

ATSUFindFontName (page 53)
Obtains a name string and index value for the first font in a name table that matches the specified
ATSUI font ID, name code, platform, script, and/or language.

ATSUFindFontFromName (page 52)
Obtains an ATSUI font ID for the first entry in a name table that matches the specified name string,
name code, platform, script, and/or language.

ATSUGetIndFontName (page 78)
Obtains a name string, name code, platform, script, and language for the font that matches an ATSUI
font ID and name table index value.

ATSUCountFontNames (page 36)
Obtains the number of font names that correspond to a given ATSUI font ID.

ATSUGetIndFontTracking (page 80)
Obtains the name code and tracking value for the font tracking that matches an ASTUI font ID, glyph
orientation, and tracking table index.

ATSUCountFontTracking (page 37)
Obtains the number of entries in the font tracking table that correspond to a given ATSUI font ID and
glyph orientation.

Functions by Task 15
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUGetFontFeatureNameCode (page 67)
Obtains the name code for a font’s feature type or selector that matches an ASTUI font ID, feature
type, and feature selector.

ATSUGetFontVariationNameCode (page 74)
Obtains the name code for the font variation that matches an ASTUI font ID and font variation axis.

ATSUGetFontInstanceNameCode (page 73)
Obtains the name code for the font instance that matches an ASTUI font ID and font instance index
value.

Drawing and Highlighting Text

ATSUDrawText (page 50)
Renders a range of text at a specified location in a QuickDraw graphics port or Quartz graphics context.

ATSUHighlightText (page 101)
Renders a highlighted range of text at a specified location in a QuickDraw graphics port or Quartz
graphics context.

ATSUUnhighlightText (page 140)
Renders a previously highlighted range of text in an unhighlighted state.

ATSUSetHighlightingMethod (page 121)
Sets the method ATSUI uses to highlight and unhighlight text for a text layout object.

ATSUGetTextHighlight (page 90)
Obtains the highlight region for a range of text.

ATSUHighlightInactiveText (page 100)
Highlights previously selected text using an alpha value of 0.5.

ATSUClearLayoutCache (page 27)
Clears the layout cache of a line or an entire text layout object.

Supporting User Interaction With Onscreen Text

ATSUTextInserted (page 136)
Informs ATSUI of the location and length of a text insertion.

ATSUTextDeleted (page 135)
Informs ATSUI of the location and length of a text deletion.

ATSUTextMoved (page 137)
Informs ATSUI of the new memory location of relocated text.

ATSUPositionToOffset (page 115)
Obtains the memory offset for the glyph edge nearest a mouse-down event.

ATSUOffsetToPosition (page 111)
Obtains the caret position(s) corresponding to a memory offset.

ATSUNextCursorPosition (page 109)
Obtains the memory offset for the insertion point that follows the current insertion point in storage
order, as determined by a move of the specified length.

16 Functions by Task
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUPreviousCursorPosition (page 117)
Obtains the memory offset for the insertion point that precedes the current insertion point in storage
order, as determined by a move of the specified length.

ATSURightwardCursorPosition (page 118)
Obtains the memory offset for the insertion point to the right of the high caret position, as determined
by a move of the specified length at a line direction boundary.

ATSULeftwardCursorPosition (page 103)
Obtains the memory offset for the insertion point to the left of the high caret position, as determined
by a move of the specified length at a line direction boundary.

ATSUPositionToCursorOffset (page 113)
Obtains the memory offset for the glyph edge nearest a mouse-down event, after a move of the
specified length.

ATSUOffsetToCursorPosition (page 110)
Obtains the caret position(s) corresponding to a memory offset, after a move of the specified length.

Obtaining Text Metrics

ATSUMeasureTextImage (page 107)
Obtains the image bounding rectangle for a line of text after final layout.

ATSUGetUnjustifiedBounds (page 93)
Obtains the typographic bounding rectangle for a line of text prior to final layout.

ATSUGetGlyphBounds (page 75)
Obtains the typographic bounds of a line of glyphs after final layout.

ATSUCalculateBaselineDeltas (page 23)
Obtains the optimal baseline positions for glyphs in a style run.

ATSUGlyphGetIdealMetrics (page 97)
Obtains resolution-independent font metric information for glyphs associated with a given style
object.

ATSUGlyphGetScreenMetrics (page 99)
Obtains device-adjusted font metric information for glyphs associated with a given style object.

ATSUGetNativeCurveType (page 84)
Obtains the type of outline path used for glyphs associated with a given style object.

ATSUGlyphGetCurvePaths (page 96)
Obtains the outline paths for a glyph associated with a given style object.

ATSUGlyphGetCubicPaths (page 95)
Obtains the cubic outline paths for a glyph.

ATSUGlyphGetQuadraticPaths (page 98)
Obtains the quadratic outline paths for a glyph.

Working With Tabs

ATSUSetTabArray (page 129)
Sets a tab ruler for a text layout object.

Functions by Task 17
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUGetTabArray (page 89)
Retrieves the tab ruler associated with a text layout object.

Accessing Glyph Data

ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45)
Obtains the glyph data specified by a direct-data selector and for a specific line of text.

ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46)
Obtains a copy of the glyph data specified by a direct-data selector and for a specific line of text in a
text layout object.

ATSUDirectReleaseLayoutDataArrayPtr (page 48)
Releases a pointer to a direct-data array.

ATSUDirectAddStyleSettingRef (page 44)
Looks up, and if necessary, adds a style setting to a line of text.

Flattening and Parsing Style Data

ATSUFlattenStyleRunsToStream (page 55)
Flattens ATSUI style-run data so that it can be saved to disk or passed (through the pasteboard) to
another application.

ATSUUnflattenStyleRunsFromStream (page 138)
Unflattens previously-flattened ATSUI style run data so that it can be read from disk or accepted
(through the pasteboard) from another application.

Creating, Calling, and Deleting Universal Procedure Pointers

NewATSUDirectLayoutOperationOverrideUPP (page 155)
Creates a new universal procedure pointer (UPP) to a layout operation override callback.

InvokeATSUDirectLayoutOperationOverrideUPP (page 150)
Calls your layout operation override callback.

DisposeATSUDirectLayoutOperationOverrideUPP (page 145)
Disposes of a universal procedure pointer (UPP) to a layout operation override callback.

NewRedrawBackgroundUPP (page 155)
Creates a new universal procedure pointer (UPP) to a redraw background callback.

InvokeRedrawBackgroundUPP (page 150)
Invokes your redraw background callback.

DisposeRedrawBackgroundUPP (page 146)
Disposes of a new universal procedure pointer (UPP) to a redraw background callback.

NewATSCubicMoveToUPP (page 152)
Creates a new universal procedure pointer (UPP) to a cubic move-to callback.

InvokeATSCubicMoveToUPP (page 147)
Calls your cubic move-to callback.

18 Functions by Task
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

DisposeATSCubicMoveToUPP (page 143)
Disposes of a universal procedure pointer (UPP) to a cubic move-to callback.

NewATSCubicLineToUPP (page 152)
Creates a new universal procedure pointer (UPP) to a cubic line-to callback.

InvokeATSCubicLineToUPP (page 147)
Calls your cubic line-to callback.

DisposeATSCubicLineToUPP (page 143)
Disposes of a universal procedure pointer (UPP) to a cubic line-to callback.

NewATSCubicCurveToUPP (page 151)
Creates a new universal procedure pointer (UPP) to a cubic curve-to callback.

InvokeATSCubicCurveToUPP (page 146)
Calls your cubic curve-to callback.

DisposeATSCubicCurveToUPP (page 142)
Disposes of a universal procedure pointer (UPP) to a cubic curve-to callback.

NewATSCubicClosePathUPP (page 151)
Creates a new universal procedure pointer (UPP) to a cubic close-path callback.

InvokeATSCubicClosePathUPP (page 146)
Calls your cubic close-path callback.

DisposeATSCubicClosePathUPP (page 142)
Disposes of a universal procedure pointer (UPP) to a cubic close-path callback.

NewATSQuadraticNewPathUPP (page 154)
Creates a new universal procedure pointer (UPP) to a quadratic new-path callback.

InvokeATSQuadraticNewPathUPP (page 149)
Calls your quadratic new-path callback.

DisposeATSQuadraticNewPathUPP (page 145)
Disposes of a universal procedure pointer (UPP) to a quadratic new-path callback.

NewATSQuadraticLineUPP (page 154)
Creates a new universal procedure pointer (UPP) to a quadratic line callback.

InvokeATSQuadraticLineUPP (page 149)
Calls your quadratic line callback.

DisposeATSQuadraticLineUPP (page 144)
Disposes of a universal procedure pointer (UPP) to a quadratic line callback.

NewATSQuadraticCurveUPP (page 153)
Creates a new universal procedure pointer (UPP) to a quadratic curve callback.

InvokeATSQuadraticCurveUPP (page 148)
Calls your quadratic curve callback.

DisposeATSQuadraticCurveUPP (page 144)
Disposes of a universal procedure pointer (UPP) to a quadratic curve callback.

NewATSQuadraticClosePathUPP (page 153)
Creates a new universal procedure pointer (UPP) to a quadratic close-path callback.

InvokeATSQuadraticClosePathUPP (page 148)
Calls your quadratic close-path callback.

DisposeATSQuadraticClosePathUPP (page 144)
Disposes of a universal procedure pointer (UPP) to a quadratic close-path callback.

Functions by Task 19
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Not Recommended

ATSUFONDtoFontID (page 56)
Finds the ATSUI font ID that corresponds to a font family number, if one exists. (Deprecated. There is
no replacement because FONDs are a QuickDraw concept and QuickDraw is deprecated.)

ATSUFontIDtoFOND (page 58)
Finds the font family number that corresponds to an ATSUI font ID, if one exists. (Deprecated. There
is no replacement because FONDs are a QuickDraw concept and QuickDraw is deprecated.)

ATSUDrawGlyphInfo (page 244) Deprecated in Mac OS X v10.3
Draws glyphs at the specified location, based on style and layout information specified for each glyph.
(Deprecated. Use functions from “Accessing Glyph Data” (page 18) instead.)

ATSUGetFontFallbacks (page 245) Deprecated in Mac OS X v10.3
Obtains the global font list and search order that ATSUI uses when a font does not have the glyph
needed to image a character. (Deprecated. Use font fallback objects instead.)

ATSUGetGlyphInfo (page 246) Deprecated in Mac OS X v10.3
Obtains a copy of the style and layout information for each glyph in a line. (Deprecated. Use functions
from “Accessing Glyph Data” (page 18) instead.)

ATSUMeasureText (page 247) Deprecated in Mac OS X v10.3
(Deprecated. Use ATSUGetUnjustifiedBounds (page 93) instead.)

ATSUSetFontFallbacks (page 247) Deprecated in Mac OS X v10.3
Sets, on a global scope, the font list and search order for ATSUI to use when a font does not have the
glyph needed to image a character. (Deprecated. Use font fallback objects instead.)

ATSUCopyToHandle (page 243) Deprecated in Mac OS X v10.1
Copies an ATSUI style to a handle. (Deprecated. Use ATSUFlattenStyleRunsToStream (page 55)
instead.)

ATSUCreateTextLayoutWithTextHandle (page 239) Deprecated in Mac OS X v10.0
Creates an opaque text layout object containing default text layout attributes as well as associated
text and text styles. (Deprecated. Use ATSUCreateTextLayoutWithTextPtr (page 42) instead.
See the Discussion for more details.)

ATSUIdle (page 241) Deprecated in Mac OS X v10.0
Performs background processing. (Deprecated. There is no replacement because this function does
nothing in Mac OS X.)

ATSUSetTextHandleLocation (page 241) Deprecated in Mac OS X v10.0
Associates text with a text layout object. (Deprecated. Use ATSUSetTextPointerLocation (page
131) instead. See the Discussion for more details.)

Functions

ATSUBatchBreakLines
Calculates soft line breaks for the text associated with a text layout object.

20 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUBatchBreakLines (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iRangeStart,
 UniCharCount iRangeLength,
 ATSUTextMeasurement iLineWidth,
 ItemCount *oBreakCount
);

Parameters
iTextLayout

The ATSUTextLayout for which you want to determine soft line breaks.

iRangeStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the text range to examine. To specify the beginning of the text
buffer, pass the constant kATSUFromTextBeginning.

iRangeLength
The number of characters in which to consider in the determination of the soft line breaks.

iLineWidth
An ATSUTextMeasurement value specifying the line width for the text, as measured from the offset
provided in the iLineStart parameter. You must pass a nonzero value. You should use the same
width as the width layout control set for the text layout object since the final layout of each line is
based on the controls set for the line or the entire text layout object. If no line width has been set for
the line, ATSUBatchBreakLines uses the line width set for the text layout object; if this value is not
set, ATSUBatchBreakLines returns paramErr.

Note that the value you pass for the iLineWidth parameter is used only for the line-breaking
operation. For justification, flushness, and other operations to work properly you must also use this
value as the line width for the text layout object. You can set the line width for the text layout object
by calling the function ATSUSetLineControls or ATSUSetLayoutControls with the
kATSULineWidthTag and the line width value.

oBreakCount
The number of soft line breaks found and set from the call. If you do not want to obtain the number
of soft line breaks, then set this parameter to NULL.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUBatchBreakLines function is equivalent to repeatedly calling the ATSUBreakLine function with
the parameter iUseAsSoftLineBreak set to true. However the ATSUBatchBreakLines function performs
more efficiently than repeated call to the ATSUBreakLine function.

You must call the ATSUGetSoftLineBreaks function to obtain the actual soft line breaks that were
determined and set by the ATSUBatchBreakLines function.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

Functions 21
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUBreakLine
Calculates and, optionally, sets a soft line break in a range of text.

OSStatus ATSUBreakLine (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ATSUTextMeasurement iLineWidth,
 Boolean iUseAsSoftLineBreak,
 UniCharArrayOffset *oLineBreak
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the text range to examine. To specify the beginning of the text
buffer, pass the constant kATSUFromTextBeginning. When calling ATSUBreakLine repeatedly to
obtain all the soft line breaks for a given text range, in each subsequent call pass the value produced
in the oLineBreak parameter by the immediately prior call to ATSUBreakLine.

iLineWidth
An ATSUTextMeasurement value specifying the line width for the text, as measured from the offset
provided in the iLineStart parameter. You must pass a nonzero value. You can pass
kATSUUseLineControlWidth to indicate that ATSUBreakLine should use the previously set line
width attribute for the current line to determine how many characters can fit on the line. If no line
width has been set for the line, ATSUBreakLine uses the line width set for the text layout object; if
this value is not set, ATSUBreakLine returns paramErr.

Note that the value you pass for the iLineWidth parameter is used only for the line-breaking
operation. For justification, flushness, and other operations to work properly you must also use this
value as the line width for the text layout object. You can set the line width for the text layout object
by calling the function ATSUSetLineControls or ATSUSetLayoutControls with the
kATSULineWidthTag and the line width value.

iUseAsSoftLineBreak
A Boolean value indicating whether ATSUBreakLine should automatically set the line break produced
in the oLineBreak parameter. If true, ATSUBreakLine sets the line break and clears any
previously-set soft line breaks that precede the new break in the line but lie after the offset specified
by iLineStart.

oLineBreak
A pointer to a UniCharArrayOffset value. On return, the value specifies the offset from the beginning
of the text layout object’s text buffer to the location of the calculated soft line break. If the value
produced is the same value as specified in iLineStart, you have made an input parameter error.
In this case, check to make sure that the line width specified in iLineWidth is big enough for
ATSUBreakLine to perform line breaking. ATSUBreakLine does not return an error in this case.
ATSUI usually calculates a soft line break to be at the beginning of the first word that does not fit on
the line. But if ATSUBreakLine calculates the most optimal line break to be in the middle of a word,
it returns the result code kATSULineBreakInWord. Note that ATSUI produces a line break in the
middle of a word only as a last resort.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

22 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
When the user inserts or deletes text or changes text layout attributes that affect how glyphs are laid out,
you must determine whether the affected range of text still fits in the set line width, that is, whether the text
needs to be rewrapped. You can use the ATSUBreakLine function to calculate a soft line break, based on
the line width and text range you specify. If you pass true for iUseAsSoftLineBreak, ATSUBreakLine
sets the soft line break it calculates and performs line layout on the characters.

If you need to calculate and set soft line breaks for a range of text and you want to use the same width for
all lines in this range, you should call the function ATSUBatchBreakLines (page 20). Calling
ATSUBatchBreakLines is equivalent to repeatedly calling the ATSUBreakLine function with the parameter
iUseAsSoftLineBreak set to true. However, the ATSUBatchBreakLines function performs more efficiently
than repeated calls to the ATSUBreakLine function.

If you do choose to call the ATSUBreakLine function repeatedly to obtain all possible line breaks for a range
of text it will produce the previously set soft line break(s) if there are no additional line breaks to be found,
or if the user has altered the text range or its attributes in a way that does not affect glyph layout.

The ATSUBreakLine function suggests a soft line break each time it encounters a hard line break character
such as a carriage return, line feed, form feed, line separator, or paragraph separator. If ATSUBreakLine
does not encounter a hard line break, it uses the line width you specify to determine how many characters
fit on a line and suggests soft line breaks accordingly.

If you pass true for iUseAsSoftLineBreak, ATSUBreakLine uses the soft line break it calculates to perform
line layout on the characters. ATSUBreakLine then determines whether the characters still fit within the
line, which is necessary due to end-of-line effects such as swashes. When ATSUBreakLine sets a soft line
break, it clears any previously-set soft line breaks that precede the new break in the line but lie after the
offset specified by iLineStart.

Before calculating soft line breaks, ATSUBreakLine turns off any previously set line justification, rotation,
width, alignment, descent, and ascent values and treats the text as a single line. Additionally, ATSUBreakLine
examines the text layout object to ensure that each of the characters in the range is assigned to a style run.
If there are gaps between style runs, ATSUBreakLine assigns the characters in the gap to the style run that
precedes (in storage order) the gap. If there is no style run at the beginning of the text range, ATSUBreakLine
assigns these characters to the first style run it finds. If there no style run at the end of the text range,
ATSUBreakLine assigns the remaining characters to the last style run it finds.

For optimal performance, you should use ATSUBreakLine or ATSUBatchBreakLines to both calculate
and set soft line breaks in your text. You should typically only call the function ATSUSetSoftLineBreak (page
128) to set soft line breaks when you are using your own line-breaking algorithm to calculate soft line breaks.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUCalculateBaselineDeltas
Obtains the optimal baseline positions for glyphs in a style run.

Functions 23
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUCalculateBaselineDeltas (
 ATSUStyle iStyle,
 BslnBaselineClass iBaselineClass,
 BslnBaselineRecord oBaselineDeltas
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

iBaselineClass
A BslnBaselineClass constant identifying the primary baseline from which to measure other
baselines. See SFNTLayoutTypes.h for an enumeration of possible values. Pass the constant
kBSLNNoBaselineOverride to use the standard baseline value from the current font.

oBaselineDeltas
A BslnBaselineRecord array consisting of Fixed values. On return, the array contains baseline
offsets, specifying distances measured in points, from the default baseline to each of the other baseline
types in the style object. Positive values indicate baselines above the default baseline and negative
values indicate baselines below it. See SFNTLayoutTypes.h for a description of the
BslnBaselineRecord type.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
Depending on the writing system, a baseline may be above, below, or through the centers of glyphs. In
general, a style run has a default baseline, to which all glyphs are visually aligned when the text is laid out.
For example, in a run of Roman text, the default baseline is the Roman baseline, upon which glyphs sit (except
for descenders, which extend below the baseline).

You can call the ATSUCalculateBaselineDeltas function to obtain the distances from a specified baseline
type to that of other baseline types for a given style object. ATSUCalculateBaselineDeltas takes into
account font and text size when performing these calculations. ATSUI uses these distances to determine the
cross-stream shifting to apply when aligning glyphs in a style run. You can use the resulting array to set or
obtain the optimal baseline positions of glyphs in a style run. You can also set various baseline values to
create special effects such as drop capitals.

The functions ATSUSetLineControls (page 124) and ATSUSetLayoutControls (page 122) allow you to
set baseline offset values at the line or layout level, respectively, using the kATSULineBaselineValuesTag
control attribute tag. For more information on kATSULineBaselineValuesTag, see “Attribute Tags” (page
196).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUClearAttributes
Restores default values to the specified style attributes of a style object.

24 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUClearAttributes (
 ATSUStyle iStyle,
 ItemCount iTagCount,
 const ATSUAttributeTag iTag[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to restore default style attribute values.

iTagCount
An ItemCount value specifying the number of attributes to restore to default values. This value
should correspond to the number of elements in the iTag array. To restore all style attributes in the
specified style object, pass the constant kATSUClearAll in this parameter. In this case, the value in
the iTag parameter is ignored.

iTag
A pointer to the initial ATSUAttributeTag constant in an array of attribute tags. Each tag should
identify a style attribute to restore to its default value. See “Attribute Tags” (page 196) for a description
of the Apple-defined style attribute tag constants.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUClearAttributes function removes those style attribute values identified by the tag constants
in the iTag array and replaces them with the default values described in “Attribute Tags” (page 196). If you
specify that any currently unset attribute values be removed, the function does not return an error.

To remove all previously set style attribute, font feature, and font variation values from a style object, call
the function ATSUClearStyle (page 30).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUClearFontFeatures
Restores default settings to the specified font features of a style object.

OSStatus ATSUClearFontFeatures (
 ATSUStyle iStyle,
 ItemCount iFeatureCount,
 const ATSUFontFeatureType iType[],
 const ATSUFontFeatureSelector iSelector[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to restore default font feature settings.

Functions 25
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iFeatureCount
An ItemCount value specifying the number of font features to restore to default settings. This value
should correspond to the number of elements in the iType and iSelector arrays. To restore default
settings to all the font features in the specified style object, pass the constant kATSUClearAll in
this parameter. In this case, the values in the iType and iSelector parameters are ignored.

iType
A pointer to the initial ATSUFontFeatureType value in an array of feature types. Each value should
identify a font feature to restore to its default setting. To obtain all previously set font features for a
given style object, you can call the function ATSUGetAllFontFeatures (page 60).

iSelector
A pointer to the initial ATSUFontFeatureSelector value in an array of feature selectors. Each
element in the array must contain a valid feature selector corresponding to a font feature you provide
in the iType parameter. To obtain all previously set feature selectors for a given style object, you can
call the function ATSUGetAllFontFeatures (page 60).

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUClearFontFeatures function removes those font features that are identified by the feature
selector and type constants in the iSelector and iType arrays and replaces them with their font-defined
default values. Note that if you pass ATSUClearFontFeatures a font feature and selector that are already
at default settings, the function does not return an error.

To restore default font variations to a style object, call the function ATSUClearFontVariations (page 26).
To restore default style attributes to a style object, call ATSUClearAttributes (page 24). To restore all
default settings to a style object (for font features, variations, and style attributes), call the function
ATSUClearStyle (page 30).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUClearFontVariations
Restores default values to the specified font variation axes of a style object.

OSStatus ATSUClearFontVariations (
 ATSUStyle iStyle,
 ItemCount iAxisCount,
 const ATSUFontVariationAxis iAxis[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to restore default font variation axis settings.

26 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iAxisCount
An ItemCount value specifying the number of font variation axes to restore to default settings. This
value should correspond to the number of elements in the iAxis array. To restore default values to
all the font variation axes in the style object, pass the constant kATSUClearAll in this parameter. If
you pass kATSUClearAll the value in the iAxis parameter is ignored.

iAxis
A pointer to the initial ATSUFontVariationAxis tag in an array of font variation axes. Each element
in the array must contain a valid tag that corresponds to a font variation axis to restore to its default
setting. You can obtain variation axis tags for a style object from the function
ATSUGetAllFontVariations (page 61).

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUClearFontVariations function removes those font variation axis values identified by variation
axis tags in the iAxis array and replaces them with their font-defined default values. You can remove unset
font variation values from a style object without a function error.

To restore default font features to a style object, call the function ATSUClearFontFeatures (page 25). To
restore default style attributes, call ATSUClearAttributes (page 24). To restore all default settings to a
style object (for font features, variations, and style attributes), call the function ATSUClearStyle (page 30).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUClearLayoutCache
Clears the layout cache of a line or an entire text layout object.

OSStatus ATSUClearLayoutCache (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to clear a layout cache.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the
beginning of the line for which to discard the layout cache. If the range of text spans multiple lines,
you should call ATSUClearLayoutCache for each line, passing the offset corresponding to the
beginning of the new line to draw with each call. To clear the layout cache of the entire text layout
object, you can pass the constant kATSUFromTextBeginning.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Functions 27
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The layout cache contains all the layout information ATSUI calculates and needs to draw a range of text in a
text layout object. This includes caret positions, the memory locations of glyphs, and other information
needed to lay out the glyphs. ATSUI uses information in the layout cache to avoid laying out the text again,
thereby improving performance. When you clear the layout cache of a line or block of text, ATSUI takes longer
to redraw a line, since it must perform the calculations that support glyph layout again.

You should call the function ATSUClearLayoutCache when you need to decrease the amount of memory
your application uses. This function reclaims memory at the cost of optimal performance.

By default, the ATSUClearLayoutCache function removes the layout cache of a single line. To clear the
layout cache for multiple lines, you should call ATSUClearLayoutCache for each line. To clear the layout
cache of an entire text layout object, pass the constant kATSUFromTextBeginning in the iLineStart
parameter. Note that ATSUClearLayoutCache does not produce a function error if lines do not have a
layout cache.

The ATSUClearLayoutCache function flushes the layout cache but does not alter previously set text layout
attributes, soft line break positions, or the text memory location. If you do not want to retain these values,
you should dispose of the text layout object by calling the ATSUDisposeTextLayout (page 49) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUClearLayoutControls
Restores default values to the specified layout control attributes of a text layout object.

OSStatus ATSUClearLayoutControls (
 ATSUTextLayout iTextLayout,
 ItemCount iTagCount,
 const ATSUAttributeTag iTag[]
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to restore default layout control
attribute values.

iTagCount
An ItemCount value specifying the number of layout control attributes to restore to default values.
This value should correspond to the number of elements in the iTag array. To restore all layout control
attributes in the specified text layout object, pass the constant kATSUClearAll in this parameter.
In this case, the value in the iTag parameter is ignored.

iTag
A pointer to the initial ATSUAttributeTag constant in an array of attribute tags. Each tag should
identify a layout control attribute to restore to its default value. See “Attribute Tags” (page 196) for a
description of the Apple-defined layout control attribute tag constants.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

28 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The ATSUClearLayoutControls function removes those layout control attribute values identified by the
tag constants in the iTag array and replaces them with the default values described in “Attribute Tags” (page
196). If you specify that any currently unset attribute values be removed, the function does not return an
error.

To restore default values to line control attributes in a text layout object, call the function
ATSUClearLineControls (page 29).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUClearLineControls
Restores default values to the specified line control attributes of a line in a text layout object.

OSStatus ATSUClearLineControls (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ItemCount iTagCount,
 const ATSUAttributeTag iTag[]
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object containing the line for which to restore
default line control attribute values.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to restore attribute values.

iTagCount
An ItemCount value specifying the number of line control attributes to restore to default values.
This value should correspond to the number of elements in the iTag array. To restore all line control
attributes of the specified line, pass the constant kATSUClearAll in this parameter. In this case, the
value in the iTag parameter is ignored.

iTag
A pointer to the initial ATSUAttributeTag constant in an array of attribute tags. Each tag should
identify a line control attribute to restore to its default value. See “Attribute Tags” (page 196) for a
description of the Apple-defined line control attribute tag constants.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUClearLineControls function removes those line control attribute values identified by the tag
constants in the iTag array and replaces them with the default values described in “Attribute Tags” (page
196). If you specify that any currently unset attribute values be removed, the function does not return an
error.

Functions 29
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

To restore default values to layout control attributes in a text layout object, call the function
ATSUClearLayoutControls (page 28).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUClearSoftLineBreaks
Removes soft line breaks from a range of text.

OSStatus ATSUClearSoftLineBreaks (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iRangeStart,
 UniCharCount iRangeLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to remove line breaks.

iRangeStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the text range. To indicate that the specified text range starts at
the beginning of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify
the entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in
the iRangeLength parameter.

iRangeLength
A UniCharCount value specifying the length of the text range. If you want the range of text to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUClearSoftLineBreaks function clears all previously set soft line breaks for the specified text
range and clears any associated layout caches as well.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUClearStyle
Restores default values to a style object.

30 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUClearStyle (
 ATSUStyle iStyle
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to restore default values.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUClearStyle function clears a style object of all style attributes (including any application-defined
attributes), font features, and font variations and returns these values to their default settings. Default font
variations and font features are defined by the font; default style attribute values are described in “Attribute
Tags” (page 196). ATSUClearStyle does not remove reference constants.

To restore only default style attributes to a style object, you should call the function
ATSUClearAttributes (page 24). To restore only font variations to a style object, call
ATSUClearFontVariations (page 26). To restore only font features, call ATSUClearFontFeatures (page
25).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCompareStyles
Compares the attribute values of two style objects.

OSStatus ATSUCompareStyles (
 ATSUStyle iFirstStyle,
 ATSUStyle iSecondStyle,
 ATSUStyleComparison *oComparison
);

Parameters
iFirstStyle

An ATSUStyle value specifying the first style object to compare.

iSecondStyle
An ATSUStyle value specifying the second style object to compare.

oComparison
A pointer to an ATSUStyleComparison value. On return, the value contains the results of the
comparison and indicates whether the two style objects are the same, different, or one a subset of
the another. See “Style Comparison Options” (page 229) for a description of possible values.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Functions 31
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The ATSUCompareStyles function compares the contents of two style objects, including their style attributes,
font features, and font variations. It does not consider reference constants or application-defined style
attributes in the comparison.

You can call ATSUCompareStyles, in conjunction with the function ATSUGetAllAttributes (page 59),
to implement style sheets and tables of style runs.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCopyAttributes
Copies all style attribute settings from a source style object to a destination style object.

OSStatus ATSUCopyAttributes (
 ATSUStyle iSourceStyle,
 ATSUStyle iDestinationStyle
);

Parameters
iSourceStyle

An ATSUStyle value specifying the style object from which to copy style attributes.

iDestinationStyle
An ATSUStyle value specifying the style object to set style attributes to.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCopyAttributes function copies all style attributes to a destination style object from a source
style object, including any default values (those values not set by your application) in the source object.
Default values for style attributes are described in “Attribute Tags” (page 196).

The ATSUCopyAttributes function does not copy the contents of memory referenced by pointers within
custom style attributes or within reference constants. You are responsible for ensuring that this memory
remains valid until both the source and destination style objects are disposed of.

To copy style attributes that are explicitly set in the source but not in the destination style object, call the
function ATSUUnderwriteAttributes (page 138). To copy all style attributes that are explicitly set in the
source object into the destination object, whether or not the destination object has its own settings for these
values, call the function ATSUOverwriteAttributes (page 113).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

32 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUCopyLayoutControls
Copies all layout control attribute settings from a source text layout object to a destination text layout object.

OSStatus ATSUCopyLayoutControls (
 ATSUTextLayout iSourceTextLayout,
 ATSUTextLayout iDestTextLayout
);

Parameters
iSourceTextLayout

An ATSUTextLayout value specifying the text layout object from which to copy layout control
attributes.

iDestTextLayout
An ATSUTextLayout value specifying the text layout object for which to set layout control attributes.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCopyLayoutControls function copies all layout control attribute values to a destination text
layout object from a source text layout object, including any default (unset) values in the source object.
Default values for unset layout control attributes are described in “Attribute Tags” (page 196).

ATSUCopyLayoutControls does not copy the contents of memory referenced by pointers within reference
constants. You are responsible for ensuring that this memory remains valid until both the source and
destination text layout objects are disposed.

To copy line control attribute values from one text layout object to another, call the function
ATSUCopyLineControls (page 33).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCopyLineControls
Copies line control attribute settings from a line in a source text layout object to a line in a destination text
layout object.

OSStatus ATSUCopyLineControls (
 ATSUTextLayout iSourceTextLayout,
 UniCharArrayOffset iSourceLineStart,
 ATSUTextLayout iDestTextLayout,
 UniCharArrayOffset iDestLineStart
);

Parameters
iSourceTextLayout

An ATSUTextLayout value specifying the text layout object from which to copy line control attributes.

Functions 33
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iSourceLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line from which to copy control attributes.

iDestTextLayout
An ATSUTextLayout value specifying the text layout object for which to set line control attributes.
This can be the same text layout object passed in the iSourceTextLayout parameter if you want
to copy line control attributes from one line to another within a text layout object.

iDestLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to set control attributes.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCopyLineControls function copies all line control attribute values to a line in a destination text
layout object from a line in a source text layout object, including any default (unset) values in the source line.
Unset line control attributes are assigned the default values described in “Attribute Tags” (page 196).

ATSUCopyLineControls does not copy the contents of memory referenced by pointers within reference
constants. You are responsible for ensuring that this memory remains valid until the source text layout object
is disposed.

To copy layout control attributes from one text layout object to another, call the function
ATSUCopyLayoutControls (page 33).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCountFontFeatureSelectors
Obtains the number of available feature selectors for a given feature type in a font.

OSStatus ATSUCountFontFeatureSelectors (
 ATSUFontID iFontID,
 ATSUFontFeatureType iType,
 ItemCount *oSelectorCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iType
An ATSUFontFeatureType value specifying one of the font’s supported feature types. To obtain the
available feature types for a font, call the function ATSUGetFontFeatureTypes (page 70).

oSelectorCount
A pointer to an ItemCount value. On return, the value specifies the actual number of feature selectors
defined for the feature type by the font.

34 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCountFontFeatureSelectors function obtains the total number of feature selectors defined for
a given feature type in the font. You can use the count produced by ATSUCountFontFeatureSelectors
to determine how much memory to allocate for the oSelectors array in the function
ATSUGetFontFeatureSelectors (page 68).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCountFontFeatureTypes
Obtains the number of available feature types in a font.

OSStatus ATSUCountFontFeatureTypes (
 ATSUFontID iFontID,
 ItemCount *oTypeCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

oTypeCount
A pointer to an ItemCount value. On return, the value specifies the actual number of feature types
defined for the font.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCountFontFeatureTypes function obtains the total number of feature types defined for a font.
You can use the count produced by ATSUCountFontFeatureTypes to determine how much memory to
allocate for the oTypes array in the function ATSUGetFontFeatureTypes (page 70).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCountFontInstances
Obtains the number of defined font instances in a font.

Functions 35
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUCountFontInstances (
 ATSUFontID iFontID,
 ItemCount *oInstances
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

oInstances
A pointer to an ItemCount value. On return, the value specifies the number of font instances defined
for the font.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCountFontInstances function obtains the total number of font instances defined in a font. You
can use an index value derived from this count to get information about a specific font instance by calling
the function ATSUGetFontInstance (page 72).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCountFontNames
Obtains the number of font names that correspond to a given ATSUI font ID.

OSStatus ATSUCountFontNames (
 ATSUFontID iFontID,
 ItemCount *oFontNameCount
);

Parameters
iFontID

An ATSUFontID value specifying the font to examine.

oFontNameCount
A pointer to an ItemCount value. On return, the value specifies the number of entries in the font
name table corresponding to the given ATSUI font ID.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCountFontNames function obtains the number of font names defined in a font name table for a
given ATSUI font ID. This number includes repetitions of the same name in different platforms, languages,
and scripts; names of font features, variations, tracking settings, and instances for the font; and font names
identified by name code constants.

You can pass an index value based on this count to the function ATSUGetIndFontName (page 78) to obtain
a name string, name code, platform, script, and language for a given ATSUI font ID.

36 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCountFontTracking
Obtains the number of entries in the font tracking table that correspond to a given ATSUI font ID and glyph
orientation.

OSStatus ATSUCountFontTracking (
 ATSUFontID iFontID,
 ATSUVerticalCharacterType iCharacterOrientation,
 ItemCount *oTrackingCount
);

Parameters
iFont

An ATSUFontID value specifying the font to examine.

iCharacterOrientation
An ATSUVerticalCharacterType constant identifying the glyph orientation of the font tracking
entries, for example kATSUStronglyHorizontal or kATSUStronglyVertical. See “Vertical
Character Types” (page 234) for a description of possible values.

oTrackingCount
A pointer to an ItemCount value. On return, the value specifies the number of entries in the font
tracking table corresponding to the given ATSUI font ID and glyph orientation.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCountFontTracking function obtains the number of font tracking entries defined in a font tracking
table for a given ATSUI font ID and glyph orientation. You can pass an index value based on this count to
the function ATSUGetIndFontTracking (page 80) to obtain the name code and tracking value of a font
tracking.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCountFontVariations
Obtains the number of defined variation axes in a font.

Functions 37
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUCountFontVariations (
 ATSUFontID iFontID,
 ItemCount *oVariationCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

oVariationCount
A pointer to an ItemCount value. On return, the value specifies the number of variation axes defined
for the font.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCountFontVariations function obtains the total number of variation axes defined for a font.
You can use the count produced by ATSUCountFontVariations to get information about a specific font
variation axis from the function ATSUGetIndFontVariation (page 81).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUCreateAndCopyStyle
Creates a copy of a style object.

OSStatus ATSUCreateAndCopyStyle (
 ATSUStyle iStyle,
 ATSUStyle *oStyle
);

Parameters
iStyle

An ATSUStyle value specifying the style object to copy.

oStyle
A pointer to an ATSUStyle value. On return, the pointer refers to a newly created style object. This
style object contains the same values for style attributes, font features, and font variations as those
of the style object passed in the iStyle parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCreateAndCopyStyle function creates a new style object with values obtained from the source
style object’s style attributes, font features, and font variations. ATSUCreateAndCopyStyle does not copy
reference constants.

38 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

To create a new style object without copying a source object, you can call the function
ATSUCreateStyle (page 40). Alternately, to copy the contents of a source style object into an existing style
object, call the function ATSUCopyAttributes (page 32).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCreateAndCopyTextLayout
Creates a copy of a text layout object.

OSStatus ATSUCreateAndCopyTextLayout (
 ATSUTextLayout iTextLayout,
 ATSUTextLayout *oTextLayout
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to copy.

oTextLayout
A pointer to an ATSUTextLayout value. On return, the pointer refers to a newly created text layout
object containing the contents of the text layout object in the iTextLayout parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCreateAndCopyTextLayout function creates a copy of the source text layout object’s style runs
(including references to the associated text buffer and style objects), line attributes, layout attributes, and
layout caches. ATSUCreateAndCopyTextLayout does not copy reference constants.

To create a text layout object without copying a source object, you can the function
ATSUCreateTextLayout (page 41) or the function ATSUCreateTextLayoutWithTextPtr (page 42).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCreateFontFallbacks
Creates an opaque object that can be set to contain a font list and a font-search method.

Functions 39
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUCreateFontFallbacks (
 ATSUFontFallbacks *oFontFallback
);

Parameters
oFontFallback

A pointer to an ATSUFontFallbacks value. On return, the pointer refers to a newly created font
fallback object.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCreateFontFallbacks function creates an “empty” font fallback object, which can be used to
define ATSUI’s search behavior when seeking substitute fonts for a text layout object. Font fallback objects
are thread safe and can be shared among threads.

You set the font list and search method for the font fallback object by calling the function
ATSUSetObjFontFallbacks (page 126). To associate the font fallback object with a text layout object, call
either of the functions ATSUSetLayoutControls (page 122) or ATSUSetLineControls (page 124). You
pass these functions the control attribute value kATSULineFontFallbacksTag to set the font fallback
object.

Similarly to a style object, a font fallback object can be used with any number of text layout objects. While
it is innately more efficient to reuse font fallback objects, instead of repeatedly creating (and destroying)
them, there is another reason to share a given font fallback object among text layout objects. That is, as a
font fallback object is used, it continues to amass data about the system’s fonts and which are best applied
to the various ranges of Unicode. Therefore, for best performance, once you create a font fallback object,
you should keep it and use it as often as needed.

You should dispose of a font fallback object only when it is no longer needed in your application. To dispose
of the memory associated with a font fallback object, call the function ATSUDisposeFontFallbacks (page
48).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCreateStyle
Creates an opaque style object containing only default style attributes, font features, and font variations.

OSStatus ATSUCreateStyle (
 ATSUStyle *oStyle
);

Parameters
oStyle

A pointer to an ATSUStyle value. On return, the pointer refers to an empty style object.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

40 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The ATSUCreateStyle function creates a style object containing only default values for style attributes,
font features, and font variations. The default values for the font features and variations are assigned by the
font. The default style attribute values are described in “Attribute Tags” (page 196).

To make changes to the default style attribute values, you can call the function ATSUSetAttributes (page
119). To set font features and font variations, call the functions ATSUSetFontFeatures (page 120) and
ATSUSetVariations (page 133), respectively. You can also use the function
ATSUCreateAndCopyStyle (page 38) to create a new style object by copying all the settings from an
existing one.

For ATSUI to apply your selected character-style information, you must associate the style object with a text
run in a text layout object. A text run consists of one or more characters that are contiguous in memory. If
you associate these characters with a distinct style, you define a style run. You can use the function
ATSUSetRunStyle (page 127) to define a style run by associating a style object with a run of text in a text
layout object. Or, to create a text layout object and associate style objects with it at the same time, you can
call the function ATSUCreateTextLayoutWithTextPtr (page 42). In either case, each text run in a text
layout object must be assigned a style object, which may or may not differ from other style objects assigned
to other text runs in the text layout object.

Style objects are readily reusable and should be cached for later use, if possible. You can create a style object
once and then use it for as many text layout objects as appropriate. Style objects are thread-safe starting
with ATSUI version 2.3.

Note that you are responsible for disposing of the memory allocated for the style object. However, you should
dispose of any text layout objects with which the style object is associated prior to disposing of the style
object itself. To dispose of a style object, call the function ATSUDisposeStyle (page 49).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUCreateTextLayout
Creates an opaque text layout object containing only default text layout attributes.

OSStatus ATSUCreateTextLayout (
 ATSUTextLayout *oTextLayout
);

Parameters
oTextLayout

A valid pointer to an ATSUTextLayout value. On return, the value refers to an empty text layout
object.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCreateTextLayout function creates a text layout object containing only the default text layout
attributes described in “Attribute Tags” (page 196). The resulting text layout object is associated with neither
text nor style objects. However, most ATSUI functions that operate on text layout objects require that the
objects be associated with style information and text. To associate style objects and text with an empty text

Functions 41
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

layout object, you can call the functions ATSUSetRunStyle (page 127) and
ATSUSetTextPointerLocation (page 131). Or, to create a text layout object and associate style objects
and text with it at the same time, you can call the function ATSUCreateTextLayoutWithTextPtr (page
42).

To provide nondefault line or layout attributes for a text layout object, you can call the functions
ATSUSetLineControls (page 124) or ATSUSetLayoutControls (page 122). After setting text attributes,
call ATSUDrawText (page 50) to draw the text.

Text layout objects are readily reusable and should be cached for later use, if possible. You can reuse a text
layout object even if the text associated with it is altered. Call the functions
ATSUSetTextPointerLocation (page 131), ATSUTextDeleted (page 135), or ATSUTextInserted (page
136) to manage the altered text.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUCreateTextLayoutWithTextPtr
Creates an opaque text layout object containing default text layout attributes as well as associated text and
text styles.

OSStatus ATSUCreateTextLayoutWithTextPtr (
 ConstUniCharArrayPtr iText,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 UniCharCount iTextTotalLength,
 ItemCount iNumberOfRuns,
 const UniCharCount iRunLengths[],
 ATSUStyle iStyles[],
 ATSUTextLayout *oTextLayout
);

Parameters
iText

A pointer of type ConstUniCharArrayPtr, referring to a text buffer containing UTF-16–encoded
text. ATSUI associates this buffer with the new text layout object and analyzes the complete text of
the buffer when obtaining the layout context for the current text range. Thus, for paragraph-format
text, if you specify a buffer containing less than a complete paragraph, some of ATSUI’s layout results
are not guaranteed to be accurate. For example, with a buffer of less than a full paragraph, ATSUI can
neither reliably obtain the context for bidirectional processing nor reliably generate accent attachments
and ligature formations for Roman text.

iTextOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to include in the layout. To indicate that the specified text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify the
entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iTextLength parameter.

42 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iTextLength
A UniCharCount value specifying the length of the text range. Note that iTextOffset +
iTextLength must be less than or equal to the value of the iTextTotalLength parameter. If you
want the range of text to extend to the end of the text buffer, you can pass the constant
kATSUToTextEnd.

iTextTotalLength
A UniCharCount value specifying the length of the entire text buffer. This value should be greater
than or equal to the range of text defined by the iTextLength parameter.

iNumberOfRuns
An ItemCount value specifying the number of text style runs you want to define within the overall
text range. The number of style objects and style run lengths passed in the iStyles and iRunLengths
parameters, respectively, should be equal to the number of runs specified here.

iRunLengths
A pointer to the first element in a UniCharCount array. This array provides ATSUI with the lengths
of each of the text’s style runs. You can pass kATSUToTextEnd for the last style run length if you
want the style run to extend to the end of the text range. If the sum of the style run lengths is less
than the total length of the text range, the remaining characters are assigned to the last style run.

iStyles
A pointer to the first element in an ATSUStyle array. Each element in the array must contain a valid
style object that corresponds to a style run defined by the iRunLengths array.

oTextLayout
A valid pointer to an ATSUTextLayout value. On return, the value refers to the newly created text
layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUCreateTextLayoutWithTextPtr function creates a text layout object associated with style
objects and text and containing the default text layout attributes described in “Attribute Tags” (page 196).
To provide nondefault line or layout attributes for a text layout object, you can call the functions
ATSUSetLineControls (page 124) or ATSUSetLayoutControls (page 122). After setting text attributes,
call ATSUDrawText (page 50) to draw the text.

Because the only way that ATSUI interacts with text is via the memory references you associate with a text
layout object, you are responsible for keeping these references updated, as in the following cases:

1. When the user deletes or inserts a subrange within a text buffer (but the buffer itself is not relocated),
you should call the functions ATSUTextDeleted (page 135) and ATSUTextInserted (page 136),
respectively.

2. When you relocate the entire text buffer (but no other changes have occurred that would affect the
buffer’s current subrange), you should call the function ATSUTextMoved (page 137).

3. When both the buffer itself is relocated and a subrange of the buffer’s text is deleted or inserted (that
is, a combination of cases 1 and 2, above), you must use the function
ATSUSetTextPointerLocation (page 131) to inform ATSUI.

4. When you are associating an entirely different buffer with a text layout object, you must call the function
ATSUSetTextPointerLocation (page 131).

Functions 43
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Note that, because ATSUI objects retain state information, doing superfluous calling can degrade performance.
For example, you could call ATSUSetTextPointerLocation rather than ATSUTextInserted when the
user inserts text, but there would be a performance penalty, as all the layout caches are flushed when you
call ATSUSetTextPointerLocation, rather than just the affected ones.

Text layout objects are readily reusable and should themselves be cached for later use, if possible. Text objects
are thread-safe starting with ATSUI version 2.4.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUDirectAddStyleSettingRef
Looks up, and if necessary, adds a style setting to a line of text.

OSStatus ATSUDirectAddStyleSettingRef (
 ATSULineRef iLineRef,
 ATSUStyleSettingRef iStyleSettingRef,
 UInt16 *oStyleIndex
);

Parameters
iLineRef

An ATSULineRef value that specifies the line of text to which you want to add a style setting. You
should pass the same reference provided as a parameter to your
ATSUDirectLayoutOperationOverrideProcPtr (page 164) callback function.

iStyleSettingRef
An ATSUStyleSettingRef value that specifies the style setting you want ATSUI to look up or add
to the text layout object referenced by the line starting at the offset iLineOffset.

oStyleIndex
On return, points to the index of the ATSUStyleSettingRef passed in iStyleSettingRef for the
line referenced by iLineRef. If the ATSUStyleSettingRef does not exist in that context, ATSUI
adds it and returns the index value.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The function ATSUDirectAddStyleSettingRef checks to see if a line of text has a specified style setting
reference associated with it. If the style setting reference is not associated with the line of text, ATSUI adds
the style setting reference.

You must call this function from within an ATSUDirectLayoutOperationOverrideProcPtr (page 164)
callback function. You can use the function ATSUDirectAddStyleSettingRef to replace or substitute
glyphs. For example, you can check a line of text for a specific character, such as a whitespace character.
When your application finds a whitespace character, it can call the function
ATSUDirectAddStyleSettingRef to set style attributes that achieve the desired effect.

44 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Do not call this function if you obtained an ATSUStyleSettingRef array for the line specified by iLineRef
and have not yet disposed of the pointer to this array by calling the function
ATSUDirectReleaseLayoutDataArrayPtr (page 48), as the pointer is not guaranteed to be valid after
you call the function ATSUDirectAddStyleSettingRef.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDirectAccess.h

ATSUDirectGetLayoutDataArrayPtrFromLineRef
Obtains the glyph data specified by a direct-data selector and for a specific line of text.

OSStatus ATSUDirectGetLayoutDataArrayPtrFromLineRef (
 ATSULineRef iLineRef,
 ATSUDirectDataSelector iDataSelector,
 Boolean iCreate,
 void *oLayoutDataArrayPtr[],
 ItemCount *oLayoutDataCount
);

Parameters
iLineRef

An ATSULineRef value that specifies the line of text whose data you want to obtain. You should
pass the same ATSULineRef value passed to the
ATSUDirectLayoutOperationOverrideProcPtr (page 164) callback function from which you are
calling this function.

iDataSelector
A direct-data selector constant that specifies the data you want to obtain. You can pass any of the
constants described in “Direct Data Selectors” (page 210).

iCreate
A Boolean value that specifies whether to create an array if one does not already exist. Pass true if
you want an array created. If the line referenced by the iLineRef parameter does not already have
an array created that contains the data specified by the iDataSelector parameter, then ATSUI
creates a zero-filled array and returns the array in the oLayoutDataArray parameter. The iCreate
parameter has no effect for some data specified by the direct-data selector. See “Direct Data
Selectors” (page 210) for details.

oLayoutDataArrayPtr[]
On return, points to an array that contains the data specified by the iDataSelector parameter. The
data is for the line of text referenced by the iLineRef parameter. If an array for the specified data
does not exist, and if the iCreate is set to false, ATSUI returns NULL. If an array for the specified
data does not exist, and if the iCreate is set to true, ATSUI creates a zero-filled array. You can pass
NULL if you only want to obtain the number of entries in the array returned in the oLayoutDataArray
array.

oLayoutDataCount
On return, the number of entries in the array returned in the oLayoutDataArray array.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Functions 45
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The function ATSUDirectGetLayoutDataArrayPtrFromLineRef returns the data pointer specified by
the iDataSelector parameter and referenced by the iLineRef parameter. You must call this function
from within an ATSUDirectLayoutOperationOverrideProcPtr (page 164) callback function. You must
only release the data pointer by calling the function ATSUDirectReleaseLayoutDataArrayPtr (page
48). When you call this function, it signals ATSUI that you are done with the data and that ATSUI can merge
your modifications with the font’s data. If you do not properly free the data by calling the function
ATSUDirectReleaseLayoutDataArrayPtr, a memory leak may result.

The data you obtain is the actual data used by ATSUI in its layout process; it is not a copy. This function is
very efficient because ATSUI does not need to allocate memory and copy data. Furthermore, because you
obtain a pointer to the data that ATSUI uses for its layout, any modifications you make to the data effect the
final layout.

Many of the data arrays you can request are created by ATSUI only when necessary. If you plan to alter the
data in an array, make sure you set the iCreate parameter to true. This ensures that the array is created. If
an arrays are not created, ATSUI assumes all entries in the array are zero.

The pointer returned by this function is only valid within the context of the
ATSUDirectLayoutOperationOverrideProcPtr callback function. You must not retain it for later use.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeDirectAccess.h

ATSUDirectGetLayoutDataArrayPtrFromTextLayout
Obtains a copy of the glyph data specified by a direct-data selector and for a specific line of text in a text
layout object.

OSStatus ATSUDirectGetLayoutDataArrayPtrFromTextLayout (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineOffset,
 ATSUDirectDataSelector iDataSelector,
 void *oLayoutDataArrayPtr[],
 ItemCount *oLayoutDataCount
);

Parameters
iTextLayout

An ATSUTextLayout value that specifies the text layout object whose data you want to obtain.

iLineOffset
The edge offset that corresponds to the beginning of the line of text whose data you want to obtain.

iDataSelector
A direct-data selector constant that specifies the data you want to obtain. You can pass any of the
constants described in “Direct Data Selectors” (page 210).

46 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oLayoutDataArrayPtr[]
On return, points to an array that contains the data specified by the iDataSelector parameter. The
data is for the line of text referenced by the iLineOffset parameter. If an array for the specified
data does not exist, ATSUI returns NULL. You can pass NULL if you only want to obtain the number
of entries in the array in the oLayoutDataArray array.

oLayoutDataCount
On return, the number of entries in the array oLayoutDataArray.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The functionATSUDirectGetLayoutDataArrayPtrFromTextLayout returns a pointer to the data specified
by iDataSelector and referenced by iTextLayout for the line starting at iLineOffset. You must not
call this function from within an ATSUDirectLayoutOperationOverrideProcPtr (page 164)callback
function.

You should only release the data pointer by calling the function ATSUDirectReleaseLayoutDataArrayPtr.
When you call this function, it signals ATSUI that you are done with the data and that ATSUI can merge your
modifications with the font’s data. If you do not properly free the data by calling the function
ATSUDirectReleaseLayoutDataArrayPtr, a memory leak may result.

The data you obtain is a copy of the data ATSUI uses for its layout processes. This means the following:

 ■ Obtaining data through a copy operation takes more time than obtaining the actual data. This function
returns in order-n time instead of in a constant time.

 ■ Changing any of the data values has no effect on the layout.

Before you use this function, you should consider using the
functionATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45) with the
kATSULayoutOperationPostLayoutAdjustment selector.

If you use the function ATSUDirectGetLayoutDataArrayPtrFromTextLayout to obtain the
ATSUStyleSettingRef array, the structures referenced by each element of the array are invalid after you
call the function ATSUDirectReleaseLayoutDataArrayPtr to release the array. If want to retain one or
more of the elements in the ATSUStyleSettingRef array for later use, you must not call the function
ATSUDirectReleaseLayoutDataArrayPtr until all operations that use the elements in the
ATSUStyleSettingRef in the array are complete. The elements in the ATSUStyleSettingRef array are
valid only within the context of the callback from which they were obtained

Many of the requested data arrays are created by ATSUI only when necessary. This means that it's possible
for the function ATSUDirectGetLayoutDataArrayPtrFromTextLayout to return a NULL pointer and a
count of 0. If this is case and if the function does not return an error, the array doesn't exist. You should
interpret this result to mean that all values in the array are 0.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDirectAccess.h

Functions 47
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUDirectReleaseLayoutDataArrayPtr
Releases a pointer to a direct-data array.

OSStatus ATSUDirectReleaseLayoutDataArrayPtr (
 ATSULineRef iLineRef,
 ATSUDirectDataSelector iDataSelector,
 void *iLayoutDataArrayPtr[]
);

Parameters
iLineRef

An ATSULineRef value that specifies the line of text whose data is pointed to by the
iLayoutDataArrayPtr parameter. Pass NULL if you did not obtain the layout data array pointer
using a lineRef.

iDataSelector
A direct-data selector constant that specifies the data pointed to by the iLayoutDataArrayPtr
parameter. You can pass any of the constants described in “Direct Data Selectors” (page 210).

iLayoutDataArrayPtr[]
A pointer to the layout data array of which you want to dispose.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You must call the function ATSUDirectReleaseLayoutDataArrayPtr when you no longer need the
direct-data pointer you obtained from the ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45)
or ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46) functions. You must dispose of the
pointer to inform ATSUI you no longer need the data and to allow for ATSUI to make any internal adjustments
prior to completing the layout process.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeDirectAccess.h

ATSUDisposeFontFallbacks
Disposes of the memory associated with a font fallback object.

OSStatus ATSUDisposeFontFallbacks (
 ATSUFontFallbacks iFontFallbacks
);

Parameters
iFontFallbacks

An ATSUFontFallbacks value specifying the font fallback object to dispose. See the
ATSUFontFallbacks data type.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

48 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The ATSUDisposeFontFallbacks function frees the memory associated with the specified font fallback
object and its internal structures.

For best performance, once you create a font fallback object, you should keep it and use it as often as needed.
You should dispose of the font fallback object only when it is no longer needed in your application.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUDisposeStyle
Disposes of the memory associated with a style object.

OSStatus ATSUDisposeStyle (
 ATSUStyle iStyle
);

Parameters
iStyle

An ATSUStyle value specifying the style object to dispose of.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUDisposeStyle function frees the memory associated with the specified style object and its internal
structures, including style run attributes. It does not dispose of the memory pointed to by application-defined
style run attributes or reference constants. You are responsible for doing so.

You should call this function after calling the function ATSUDisposeTextLayout (page 49) to dispose of
any text layout objects associated with the style object.

For best performance, once you create a style object, you should keep it and use it as often as needed. You
should dispose of the style object only when it is no longer needed in your application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUDisposeTextLayout
Disposes of the memory associated with a text layout object.

Functions 49
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUDisposeTextLayout (
 ATSUTextLayout iTextLayout
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to dispose of.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUDisposeTextLayout function frees the memory associated with the specified text layout object
and its internal structures, including line and layout control attributes, style runs, and soft line breaks.
ATSUDisposeTextLayout does not dispose of any memory that may be allocated for reference constants
or style objects associated with the text layout object. You are responsible for doing so.

For best performance, text layout objects are readily reusable and should be cached for later use, if possible.
You can reuse a text layout object even if the text associated with it is altered. Call the functions
ATSUSetTextPointerLocation (page 131), ATSUTextDeleted (page 135), or ATSUTextInserted (page
136) to manage the altered text, rather than disposing of the text layout object and creating a new one.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUDrawText
Renders a range of text at a specified location in a QuickDraw graphics port or Quartz graphics context.

OSStatus ATSUDrawText (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineOffset,
 UniCharCount iLineLength,
 ATSUTextMeasurement iLocationX,
 ATSUTextMeasurement iLocationY
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to render text.

iLineOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to render. The function ATSUDrawText renders text to the first soft line break
it encounters. If the range of text spans multiple lines, you should call ATSUDrawText for each line,
passing the offset corresponding to the beginning of the new line to draw with each call. To indicate
that the specified text range starts at the beginning of the text buffer, you can pass the constant
kATSUFromTextBeginning. To specify the entire text buffer, pass kATSUFromTextBeginning in
this parameter and kATSUToTextEnd in the iLineLength parameter.

50 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iLineLength
A UniCharCount value specifying the length of the text range to render. If you want the range of
text to extend to the end of the text buffer, you can pass the constant kATSUToTextEnd. Keep in
mind that the function ATSUDrawText renders text one line at a time. If the range of text spans
multiple lines, you must call ATSUDrawText for each line.

iLocationX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
QuickDraw graphics port or in a Quartz graphics context) of the line containing the text range to
render. Note that the ATSUTextMeasurement type is defined as a Fixed value, so you must ensure
that your coordinates are converted to Fixed values before passing them to this function. Pass the
constant kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to draw
relative to the current pen location in the current graphics port.

iLocationY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or Quartz graphics context) of the line containing the text range to render. Note that
the ATSUTextMeasurement type is defined as a Fixed value, so you must ensure that your coordinates
are converted to Fixed values before passing them to this function. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to draw relative to
the current pen location in the current graphics port.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUDrawText function renders a range of text at a specified location in a QuickDraw graphics port or
Quartz graphics context. This function renders text to the first soft line break it encounters. If you draw into
a QuickDraw graphics port you get the best performance by using a bit depth of 16 bits. If you use bit depths
of 1, 4, or 8, your application incurs a performance penalty.

You typically call the ATSUDrawText function every time you need to draw or redraw unhighlighted text.
To draw highlighted text, call the function ATSUHighlightText (page 101).

ATSUDrawText uses the transfer mode and resolution that are set in the graphics port or graphics context.
If you explicitly set in the style object, then text color is taken from the style object, and the value in the
graphics port/context is ignored. If the text color was not explicitly set in the style object, ATSUDrawText
uses the graphics port/context setting.

ATSUDrawText examines the text layout object to ensure that each of the characters in the range is assigned
to a style run. If there are gaps between style runs, ATSUI assigns the characters in the gap to the style run
that precedes (in storage order) the gap. If there is no style run at the beginning of the text range, ATSUI
assigns these characters to the first style run it finds. If there is no style run at the end of the text range, ATSUI
assigns the remaining characters to the last style run it finds.

If you want to draw a range of text that spans multiple lines, you should call ATSUDrawText for each line of
text to draw, even if all the lines are in the same text layout object. You should adjust the iLineOffset
parameter to reflect the beginning of each line to be drawn.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeDrawing.h

Functions 51
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUFindFontFromName
Obtains an ATSUI font ID for the first entry in a name table that matches the specified name string, name
code, platform, script, and/or language.

OSStatus ATSUFindFontFromName (
 const void *iName,
 ByteCount iNameLength,
 FontNameCode iFontNameCode,
 FontPlatformCode iFontNamePlatform,
 FontScriptCode iFontNameScript,
 FontLanguageCode iFontNameLanguage,
 ATSUFontID *oFontID
);

Parameters
iName

A string that specifies the font name whose ATSUI font ID you want to obtain. The string that you
pass must be appropriate for the value you pass in the iFontNameCode parameter. For example, if
the iFontNameCode parameter is kFontPostscriptName, then you would supply a string that
specifies the PostScript name of the font.

iNameLength
A ByteCount value specifying the length of the font name string provided in the iName parameter.

iFontNameCode
The FontNameCode value of the font name for which to obtain an ATSUI font ID. The FontNameCode
is a UInt32 data type, and it is defined in the SFNTTypes.h header file. You can supply any of the
following constants, kFontCopyrightName, kFontFamilyName, kFontStyleName,
kFontUniqueName, kFontFullName, kFontVersionName, kFontPostscriptName,
kFontTrademarkName,kFontManufacturerName,kFontDesignerName,kFontDescriptionName,
kFontVendorURLName, kFontDesignerURLName, kFontLicenseDescriptionName,or
kFontLicenseInfoURLName.

iFontNamePlatform
A FontPlatformCode value specifying the encoding of the font name, for example,
kFontUnicodePlatform (for UTF-16), kFontMacintoshPlatform, kFontReservedPlatform,
kFontMicrosoftPlatform, or kFontCustomPlatform. If you pass the kFontNoPlatformCode
constant, ATSUFindFontFromName produces the first font in the name table matching the other
specified parameters. See the SFNTTypes.h header file for a definition of the FontPlatformCode
type and a list of possible values.

iFontNameScript
A FontScriptCode value specifying the script code of the font name, for example,
kFontRomanScript. Pass kFontNoScriptCode if you supplied the kFontUnicodePlatform
constant for the iFontNamePlatform parameter. If you pass the kFontNoScriptCode constant,
ATSUFindFontFromName produces the first font in the name table matching the other specified
parameters. See the SFNTTypes.h header file for a definition of the FontScriptCode type and a
list of possible values.

iFontNameLanguage
A FontLanguageCode value specifying the language of the font name, for example,
kFontNorwegianLanguage. Pass kFontNoLanguageCode if you supplied the
kFontUnicodePlatform constant for the iFontNamePlatform parameter. If you pass the
kFontNoLanguageCode constant, ATSUFindFontFromName produces the first font in the name
table matching the other specified parameters. See the SFNTTypes.h header file for a definition of
the FontLanguageCode type and a list of possible values.

52 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oFontID
On return, points to the unique identifier for the specified font that matches the specified name string,
name code, platform, script, and/or language. Note that because Apple Type Services assigns
ATSUFontID values systemwide at runtime, font IDs can change across system restarts.

Return Value
A result code. If no installed font matches the specified parameters, ATSUFindFontFromName produces the
constant kATSUInvalidFontID and returns the result code kATSUInvalidFontErr. See “ATSUI Result
Codes” (page 234).

Discussion
The ATSUFindFontFromName function obtains an ATSUI font ID for the first font that matches the specified
name string, name code, platform, script, and/or language. Because ATSUI cannot guarantee the uniqueness
of names among installed fonts, ATSUFindFontFromName does not necessarily find the only font ID that
matches these parameters. As a result, you may want to create a more sophisticated name-matching algorithm
or guarantee the uniqueness of names among installed fonts.

To find a name string and index value for the first font in a name table that matches an ATSUI font ID and
the specified font parameters, call the function ATSUFindFontName (page 53).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUFindFontName
Obtains a name string and index value for the first font in a name table that matches the specified ATSUI
font ID, name code, platform, script, and/or language.

OSStatus ATSUFindFontName (
 ATSUFontID iFontID,
 FontNameCode iFontNameCode,
 FontPlatformCode iFontNamePlatform,
 FontScriptCode iFontNameScript,
 FontLanguageCode iFontNameLanguage,
 ByteCount iMaximumNameLength,
 Ptr oName,
 ByteCount *oActualNameLength,
 ItemCount *oFontNameIndex
);

Parameters
iFontID

The ATSUFontID value of the font for which to obtain a name string. Note that because Apple Type
Services assigns ATSUFontID values systemwide at runtime, font IDs can change across system
restarts.

iFontNameCode
The FontNameCode value of the font for which to obtain a name string. The FontNameCode is a
UInt32 data type, and it is defined in the SFNTTypes.h header file.

Functions 53
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iFontNamePlatform
A FontPlatformCode value specifying the encoding of the font, for example,
kFontUnicodePlatform, kFontMacintoshPlatform, kFontReservedPlatform,
kFontMicrosoftPlatform, or kFontCustomPlatform. If you pass the kFontNoPlatformCode
constant, ATSUFindFontName produces the first font in the name table matching the other specified
parameters. See the SFNTTypes.h header file for a definition of the FontPlatformCode type and
a list of possible values.

iFontNameScript
A FontScriptCode value specifying the script code of the font, for example, kFontRomanScript.
If you pass the kFontNoScriptCode constant, ATSUFindFontName produces the first font in the
name table matching the other specified parameters. See the SFNTTypes.h header file for a definition
of the FontScriptCode type and a list of possible values.

iFontNameLanguage
A FontLanguageCode value specifying the language of the font, for example,
kFontNorwegianLanguage. If you pass the kFontNoLanguageCode constant, ATSUFindFontName
produces the first font in the name table matching the other specified parameters. See the
SFNTTypes.h header file for a definition of the FontLanguageCode type and a list of possible values.

iMaximumNameLength
A ByteCount value specifying the maximum length of the font name to obtain. Typically, this is
equivalent to the size of the buffer that you have allocated in the oName parameter. To determine
this length, see the Discussion.

oName
A pointer to a buffer. On return, the buffer contains the name string of the first font in the font name
table matching your specified parameters. If the buffer you allocate is not large enough,
ATSUFindFontName produces a partial string.

oActualNameLength
A pointer to a ByteCount value. On return, the value specifies the actual length of the complete
name string. This may be greater than the value passed in the iMaximumNameLength parameter.
You should check this value to ensure that you have allocated sufficient memory and therefore
obtained the complete name string for the font.

oFontNameIndex
A pointer to an ItemCount value. On return, the value provides a 0-based index to the font name in
the font name table.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUFindFontName function obtains a name string and index value for the first font in a name table
that matches the specified ATSUI font ID, name code, platform, script, and/or language.

Typically you use the ATSUFindFontName function by calling it twice, as follows:

1. Pass NULL for the oName and oFontNameIndex parameters, 0 for the iMaximumNameLength parameter,
and valid values for the other parameters. ATSUFindFontName returns the length of the font name
string in the oActualNameLength parameter.

2. Allocate enough space for a buffer of the returned size, then call the function again, passing a valid
pointer to the buffer in the oName parameter. On return, the buffer contains the font name string.

54 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

To obtain an ATSUI font ID for the first font in a name table that matches the specified name string, name
code, platform, script, and/or language, call the function ATSUFindFontFromName (page 52). To obtain the
font name string, name code, platform, script, and language for the font that matches an ATSUI font ID and
name table index, call the function ATSUGetIndFontName (page 78).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUFlattenStyleRunsToStream
Flattens ATSUI style-run data so that it can be saved to disk or passed (through the pasteboard) to another
application.

OSStatus ATSUFlattenStyleRunsToStream (
 ATSUFlattenedDataStreamFormat iStreamFormat,
 ATSUFlattenStyleRunOptions iFlattenOptions,
 ItemCount iNumberOfRunInfo,
 const ATSUStyleRunInfo iRunInfoArray[],
 ItemCount iNumberOfStyleObjects,
 const ATSUStyle iStyleArray[],
 ByteCount iStreamBufferSize,
 void *oStreamBuffer,
 ByteCount *oActualStreamBufferSize
);

Parameters
iStreamFormat

The format of the flattened data. There is only one format supported at this time, 'ustl' so you
must pass the constant kATSUDataStreamUnicodeStyledText.

iFlattenOptions
The options you want to use to flatten the data. There are no options supported at this time, so you
must pass the constant kATSUFlattenOptionsNoOptionsMask.

iNumberOfRunInfo
The number of style run information structures passed in the iRunInfoArray parameter. If you pass
0, ATSUI assumes there is only one style for the entire text block passed in the oStreamBuffer
parameter. The flattened data format passed to the iStreamFormat parameter must support the
use of one style.

iRunInfoArray[]
An array of ATSUStyleRunInfo structures that describes the style runs to be flattened. This array
must contain iNumberOfRunInfo entries. An ATSUStyleRunInfo structure contains an index into
an array of unique ATSUI style objects (ATSUStyle) and the length of the run to which the style object
applies. Each index in the ATSUStyleRunInfo structure must reference a valid ATSUStyle object
passed in the iStyleArray parameter. You can pass NULL, only if iNumberOfRunInfo is set to zero.

iNumberOfStyleObjects
The number of ATSUStyle objects in the array passed to the iStyleArray parameter. You must
pass a value that is greater than 0.

Functions 55
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iStyleArray[]
An array of ATSUStyle objects to be flattened. You cannot pass NULL.

iStreamBufferSize
The size of the stream buffer, pointed to by the oStreamBuffer parameter. You can pass 0 only if
the iStreamBufferSize parameter is set to NULL. If you are uncertain of the size of the array, see
the Discussion.

oStreamBuffer
On input, a pointer to the data you want to flatten. On return, points to the flattened data. If you pass
NULL for this parameter, no data is flattened. Instead, the size of the buffer is calculated by ATSUI and
returned in oActualStreamSize parameter. See the Discussion for more details. You are responsible
for allocating the text buffer passed in the oStreamBuffer parameter.

oActualStreamBufferSize
On return, the size of the data written to the oStreamBuffer parameter. You can pass NULL only if
the oStreamBuffer parameter is not NULL.

Return Value
A result code. See “ATSUI Result Codes” (page 234). This function can also return paramErr if you pass invalid
values for any of the parameters.

Discussion
The function ATSUFlattenStyleRunsToStream takes an array of ATSUStyle objects and style run
information and flattens the data to the specified format. The style runs must all reference the same block
of Unicode text (usually passed separately as text in the 'utxt' format). The style runs must also be in
ascending order relative to the text in the text block.

Typically you use the function ATSUFlattenStyleRunsFromStream by calling it twice, as follows:

1. Provide appropriate values for the iStreamFormat, iFlattenOptions, iNumberOfRunInfo,
iRunInfoArray, iNumberOfStyleObjects, and iStyleArrayparameters. Set iStreamBufferSize
to 0, oStreamBuffer to NULL, and pass a valid reference to a ByteCount variable in the
oActualStreamBufferSize parameter. Call the function ATSUFlattenStyleRunsToStream. On
return, oActualStreamBufferSize points to the size needed for the buffer.

2. Allocate an appropriately-sized buffer for the oStreamBuffer parameter and then call the function
ATSUFlattenStyleRunsToStream a second time.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFlattening.h

ATSUFONDtoFontID
Finds the ATSUI font ID that corresponds to a font family number, if one exists. (Deprecated. There is no
replacement because FONDs are a QuickDraw concept and QuickDraw is deprecated.)

Not recommended.

56 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUFONDtoFontID (
 short iFONDNumber,
 Style iFONDStyle,
 ATSUFontID *oFontID
);

Parameters
iFONDNumber

The font family number of the ATSUI-compatible font for which to obtain an ATSUI font ID.

iFONDStyle
The font family style of the font, if any. Style identifiers exist only for fonts that split a font family into
subgroups.

oFontID
A pointer to a ATSUFontID value. On return, the value provides a unique identifier for the specified
font family number and style.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The function ATSUFONDtoFontID is not recommended for use. Instead, use the Font Manager functions
that translate font family numbers to FMFont values, which are equivalent to ATSUFontID values. Font family
numbers were used by QuickDraw to represent fonts to the Font Manager. Some of these fonts, even if
compatible with ATSUI, may not have font IDs.

Note that Apple Type Services assigns ATSUFontID values systemwide at runtime. As a result, these font IDs
can change when the system is restarted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUFontCount
Obtains the number of ATSUI-compatible fonts installed on a user’s system.

OSStatus ATSUFontCount (
 ItemCount *oFontCount
);

Parameters
oFontCount

A pointer to an ItemCount value. On return, the value specifies the current number of
ATSUI-compatible fonts installed on the user’s system.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Functions 57
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The ATSUFontCount function obtains the number of fonts on a user’s system that are compatible with ATSUI.
Incompatible fonts include those that cannot be used to represent Unicode, the missing-character glyph
font, and fonts whose names begin with a period or a percent sign. You can use the count produced in the
oFontCount parameter to determine the amount of memory to allocate for the oFontIDs array in the
function ATSUGetFontIDs (page 71).

It is important to note that the set of installed ATSUI-compatible fonts may change while your application is
running. In Mac OS X, the set of installed fonts may change at any time. Although in Mac OS 9, fonts cannot
be removed from the Fonts folder while an application other than the Finder is running, they can be removed
from other locations, and it is possible for fonts to be added.

Additionally, just because the number of fonts stays the same between two successive calls to ATSUFontCount,
this does not mean that the font lists are the same. It is possible for a font to be added and another removed
between two successive calls to ATSUFontCount, leaving the total number unchanged.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUFontIDtoFOND
Finds the font family number that corresponds to an ATSUI font ID, if one exists. (Deprecated. There is no
replacement because FONDs are a QuickDraw concept and QuickDraw is deprecated.)

Not recommended.

OSStatus ATSUFontIDtoFOND (
 ATSUFontID iFontID,
 short *oFONDNumber,
 Style *oFONDStyle
);

Parameters
iFontID

The ATSUFontID value of the font for which to obtain a font family number. Note that because Apple
Type Services assigns ATSUFontID values systemwide at runtime, font IDs can change across system
restarts.

oFONDNumber
A pointer to a signed sixteen-bit integer. On return, the value identifies the font family number
corresponding to the specified ATSUI font ID.

oFONDStyle
A pointer to a Style value. On return, the value identifies the font family style of the font, if any. Style
identifiers exist only for fonts that split a font family into subgroups.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

58 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The function ATSUFontIDtoFOND is not recommended for use. Instead, use the Font Manager functions
that translate FMFont values, which are equivalent to ATSUFontID values, to font family numbers. Font
family numbers were used by QuickDraw to represent fonts to the Font Manager. Some of these fonts, even
if compatible with ATSUI, may not have font IDs.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetAllAttributes
Obtains an array of style attribute tags and value sizes for a style object.

OSStatus ATSUGetAllAttributes (
 ATSUStyle iStyle,
 ATSUAttributeInfo oAttributeInfoArray[],
 ItemCount iTagValuePairArraySize,
 ItemCount *oTagValuePairCount
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

oAttributeInfoArray
A pointer to memory you have allocated for an array of ATSUAttributeInfo values. On return, the
array contains pairs of tags and value sizes for any of the object’s style attributes that are not at default
values. If you are uncertain of how much memory to allocate for this array, see the Discussion.

iTagValuePairArraySize
An ItemCount value specifying the maximum number of tag and value size pairs to obtain for the
style object. Typically, this is equivalent to the number of ATSUAttributeInfo structures for which
you have allocated memory in the oAttributeInfoArray parameter. To determine this value, see
the Discussion.

oTagValuePairCount
A pointer to an ItemCount value. On return, the value specifies the actual number of
ATSUAttributeInfo structures in the style object. This may be greater than the value you specified
in the iTagValuePairArraySize parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetAllAttributes function obtains all nondefault style attribute tags and values sizes for a style
object. You can pass a tag and value-size pair obtained from ATSUGetAllAttributes to the function
ATSUGetAttribute (page 65) to determine the corresponding attribute value.

Typically you use the function ATSUGetAllAttributes by calling it twice, as follows:

Functions 59
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

1. Pass a reference to the style object to examine in the iStyle parameter, a valid pointer to an ItemCount
value in the oTagValuePairCount parameter, NULL for the oAttributeInfoArray parameter, and
0 for the iTagValuePairArraySize parameter. ATSUGetAllAttributes returns the size of the tag
and value-size arrays in the oTagValuePairCount parameter.

2. Allocate enough space for an array of the returned size, then call the ATSUGetAllAttributes function
again, passing a valid pointer in the oAttributeInfoArray parameter. On return, the pointer refers
to an array of the style attribute tag and value-size pairs contained in the style object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetAllFontFeatures
Obtains the font features of a style object that are not at default settings.

OSStatus ATSUGetAllFontFeatures (
 ATSUStyle iStyle,
 ItemCount iMaximumFeatureCount,
 ATSUFontFeatureType oFeatureType[],
 ATSUFontFeatureSelector oFeatureSelector[],
 ItemCount *oActualFeatureCount
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

iMaximumFeatureCount
An ItemCount value specifying the maximum number of feature types and selectors to obtain for
the style object. Typically, this is equivalent to the number of ATSUFontFeatureType and
ATSUFontFeatureSelector values for which you have allocated memory in the oFeatureType
and oFeatureSelector parameters, respectively. To determine this value, see the Discussion.

oFeatureType
A pointer to memory you have allocated for an array of ATSUFontFeatureType values. On return,
the array contains constants identifying each type of font feature that is at a nondefault setting in
the style object. If you are uncertain of how much memory to allocate for this array, see the Discussion.

oFeatureSelector
A pointer to memory you have allocated for an array of ATSUFontFeatureSelector values. On
return, the array contains constants identifying the feature selectors that are at nondefault settings
in the style object. Each selector determines the setting for a corresponding feature type produced
in the oFeatureType parameter. If you are uncertain of how much memory to allocate for this array,
see the Discussion.

oActualFeatureCount
A pointer to an ItemCount value. On return, the value specifies the actual number of font feature
types and selectors in the style object. This may be greater than the value you specified in the
iMaximumFeatureCount parameter.

60 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetAllFontFeatures function obtains all of a style object’s font features that are not at default
settings. Font features are grouped into categories called feature types, within which individual feature
selectors define particular feature settings. The arrays produced by ATSUGetAllFontFeatures contain
constants identifying the object’s font types and their corresponding font selectors.

Typically you use the function ATSUGetAllFontFeatures by calling it twice, as follows:

1. Pass a reference to the style object to examine in the iStyle parameter, a valid pointer to an ItemCount
value in the oActualFeatureCount parameter, NULL for the oFeatureType and oFeatureSelector
parameters, and 0 for the iMaximumFeatureCount parameter. ATSUGetAllFontFeatures returns
the size in the oActualFeatureCount parameter to use for the feature type and selector arrays.

2. Allocate enough space for arrays of the returned size, then call ATSUGetAllFontFeatures again,
passing a pointer to the arrays in the oFeatureType and oFeatureSelector parameters. On return,
the arrays contain the font feature types and selectors, respectively, for the style object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetAllFontVariations
Obtains a style object’s font variation values that are not at default settings.

OSStatus ATSUGetAllFontVariations (
 ATSUStyle iStyle,
 ItemCount iVariationCount,
 ATSUFontVariationAxis oVariationAxes[],
 ATSUFontVariationValue oFontVariationValues[],
 ItemCount *oActualVariationCount
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

iVariationCount
An ItemCount value specifying the maximum number of font variation values to obtain for the style
object. Typically, this is equivalent to the number of ATSUFontVariationAxis and
ATSUFontVariationValue values for which you have allocated memory in the oVariationAxes
and oFontVariationValues parameters, respectively. To determine this value, see the Discussion.

oVariationAxes
A pointer to memory you have allocated for an array of ATSUFontVariationAxis values. On return,
the array contains tags identifying those font variation axes in the style object that are not at default
values. If you are uncertain of how much memory to allocate for this array, see the Discussion.

Functions 61
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oFontVariationValues
A pointer to memory you have allocated for an array of ATSUFontVariationValue values. On return,
the array contains the current font variation values for the font variation axes produced in the
oVariationAxes array. If you are uncertain of how much memory to allocate for this array, see the
Discussion.

oActualVariationCount
A pointer to an ItemCount value. On return, the value specifies the actual number of nondefault font
variation values in the style object. This may be greater than the value you passed in the
iVariationCount parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetAllFontVariations function obtains all of a style object’s font variation axes that are not at
default settings, as well as the current values for the axes.

Typically you use the function ATSUGetAllFontVariations by calling it twice, as follows:

1. Pass a reference to the style object to examine in the iStyle parameter, a pointer to an ItemCount
value in the oActualVariationCount parameter, NULL for the oVariationAxes and
oFontVariationValues parameters, and 0 for the iVariationCount parameter.
ATSUGetAllFontVariations returns the size to use for the variation axes and value arrays in the
oActualVariationCount parameter.

2. Allocate enough space for arrays of the returned size, then call ATSUGetAllFontVariations again,
passing a pointer to the arrays in the oVariationAxes and oFontVariationValues parameters. On
return, the arrays contain the font variation axes and their corresponding values, respectively, for the
style object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetAllLayoutControls
Obtains an array of layout control attribute tags and value sizes for a text layout object.

OSStatus ATSUGetAllLayoutControls (
 ATSUTextLayout iTextLayout,
 ATSUAttributeInfo oAttributeInfoArray[],
 ItemCount iTagValuePairArraySize,
 ItemCount *oTagValuePairCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

62 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oAttributeInfoArray
A pointer to memory you have allocated for an array of ATSUAttributeInfo values. On return, the
array contains pairs of tags and value sizes for the object’s layout control attributes that are not at
default values. If you are uncertain of how much memory to allocate for this array, see the Discussion.

iTagValuePairArraySize
An ItemCount value specifying the maximum number of tag and value size pairs to obtain for the
text layout object. Typically, this is equivalent to the number of ATSUAttributeInfo structures for
which you have allocated memory in the oAttributeInfoArray parameter. To determine this value,
see the Discussion.

oTagValuePairCount
A pointer to an ItemCount value. On return, the value specifies the actual number of
ATSUAttributeInfo structures in the text layout object. This may be greater than the value you
specified in the iTagValuePairArraySize parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetAllLayoutControls function obtains all nondefault layout control attribute tags and their
values sizes for a text layout object. You can pass a tag and value size pair obtained from
ATSUGetAllLayoutControls to the function ATSUGetLayoutControl (page 82) to determine the
corresponding attribute value.

Typically you use the function ATSUGetAllLayoutControls by calling it twice, as follows:

1. Pass a reference to the text layout object to examine in the iTextLayout parameter, NULL for the
oAttributeInfoArray parameter, a pointer to an ItemCount value in the oTagValuePairCount
parameter, and 0 for the iTagValuePairArraySize parameter. ATSUGetAllLayoutControls returns
the size of the tag and value size arrays in the oTagValuePairCount parameter.

2. Allocate enough space for an array of the returned size, then call the ATSUGetAllLayoutControls
function again, passing a valid pointer in the oAttributeInfoArray parameter. On return, the pointer
refers to an array of the layout control attribute tag and value size pairs contained in the text layout
object.

To obtain the nondefault line control attribute tags and value sizes for a text layout object, call the function
ATSUGetAllLineControls (page 63).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetAllLineControls
Obtains an array of line control attribute tags and value sizes for a line in a text layout object.

Functions 63
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUGetAllLineControls (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ATSUAttributeInfo oAttributeInfoArray[],
 ItemCount iTagValuePairArraySize,
 ItemCount *oTagValuePairCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to obtain line control attribute values.

oAttributeInfoArray
A pointer to memory you have allocated for an array of ATSUAttributeInfo values. On return, the
array contains pairs of tags and value sizes for the object’s line control attributes that are not at default
values. If you are uncertain of how much memory to allocate for this array, see the Discussion.

iTagValuePairArraySize
An ItemCount value specifying the maximum number of tag and value size pairs to obtain for the
line. Typically, this is equivalent to the number of ATSUAttributeInfo structures for which you
have allocated memory in the oAttributeInfoArray parameter. To determine this value, see the
Discussion.

oTagValuePairCount
A pointer to an ItemCount value. On return, the value specifies the actual number of
ATSUAttributeInfo structures in the line. This may be greater than the value you specified in the
iTagValuePairArraySize parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetAllLineControls function obtains all nondefault line control attribute tags and their values
sizes for a line in a text layout object. You can pass a tag and value size pair obtained from
ATSUGetAllLineControls to the functionATSUGetLineControl (page 83) to determine the corresponding
attribute value.

Typically you use the function ATSUGetAllLineControls by calling it twice, as follows:

1. Pass a reference to the text layout object to examine in the iTextLayout parameter, the appropriate
UniCharArrayOffset value in the iLineStart parameter, NULL for the oAttributeInfoArray
parameter, a pointer to an ItemCount value in the oTagValuePairCount parameter, and 0 for the
iTagValuePairArraySize parameter. ATSUGetAllLineControls returns the size of the tag and
value size arrays in the oTagValuePairCount parameter.

2. Allocate enough space for an array of the returned size, then call the ATSUGetAllLineControls
function again, passing a valid pointer in the oAttributeInfoArray parameter. On return, the pointer
refers to an array of the line control attribute tag and value size pairs contained in the specified line.

To obtain the nondefault layout control attribute tags and value sizes for a text layout object, call the function
ATSUGetAllLayoutControls (page 62).

64 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetAttribute
Obtains a style attribute value for a style object.

OSStatus ATSUGetAttribute (
 ATSUStyle iStyle,
 ATSUAttributeTag iTag,
 ByteCount iExpectedValueSize,
 ATSUAttributeValuePtr oValue,
 ByteCount *oActualValueSize
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to obtain an attribute value.

iTag
An ATSUAttributeTag constant identifying the attribute value to obtain. See “Attribute Tags” (page
196) for a description of the Apple-defined style attribute tag constants.

iExpectedValueSize
The expected size (in bytes) of the value to obtain. To determine the size of an application-defined
style attribute value, see the Discussion.

oValue
An ATSUAttributeValuePtr value, identifying the memory you have allocated for the attribute
value. If you are uncertain of how much memory to allocate, see the Discussion. On return, oValue
contains a valid pointer to the actual attribute value.

oActualValueSize
A pointer to a ByteCount value. On return, the value contains the actual size (in bytes) of the attribute
value. You should examine this parameter if you are unsure of the size of the attribute value being
obtained, as in the case of custom style run attributes.

Return Value
A result code. See “ATSUI Result Codes” (page 234). Note that if the attribute value you want to obtain is not
set, ATSUGetAttribute produces the default value in the oValue parameter and returns the result code
kATSUNotSetErr.

Discussion
The ATSUGetAttribute function obtains the value of a specified style attribute for a given style object.

Before calling ATSUGetAttribute, you should call the function ATSUGetAllAttributes (page 59) to
obtain an array of nondefault style attribute tags and value sizes for the style object. You can then pass
ATSUGetAttribute the tag and value size for the attribute value to obtain.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 65
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Declared In
ATSUnicodeObjects.h

ATSUGetContinuousAttributes
Obtains the style attribute values that are continuous over a given text range.

OSStatus ATSUGetContinuousAttributes (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOffset,
 UniCharCount iLength,
 ATSUStyle oStyle
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the text range to examine. To indicate that the specified text range starts at the beginning
of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text
buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iLength
parameter.

iLength
A UniCharCount value specifying the length of the text range to examine. If you want the range of
text to extend to the end of the text buffer, you can pass the constant kATSUToTextEnd.

oStyle
An ATSUStyle value. On return, the style object contains those attributes that are the same for the
entire text range specified by the iOffset and iLength parameters.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetContinuousAttributes function examines the specified text range to obtain the style attribute
values (including those at default values) that remain consistent for the entire text range. You should call
ATSUGetContinuousAttributes to determine the style information that remains constant over text that
has been selected by the user.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetFontFeature
Obtains the font feature corresponding to an index into an array of font features for a style object.

66 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUGetFontFeature (
 ATSUStyle iStyle,
 ItemCount iFeatureIndex,
 ATSUFontFeatureType *oFeatureType,
 ATSUFontFeatureSelector *oFeatureSelector
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

iFeatureIndex
An ItemCount value specifying an index into the array of font features for the style object. This index
identifies the font feature to examine. Because this index is zero-based, you must pass a value between
0 and one less than the value produced in the oActualFeatureCount parameter of the function
ATSUGetAllFontFeatures (page 60).

oFeatureType
A pointer to memory you have allocated for an ATSUFontFeatureType value. On return, the value
identifies the font feature type corresponding to the index passed in the iFeatureIndex parameter.

oFeatureSelector
A pointer to memory you have allocated for an ATSUFontFeatureSelector value. On return, the
value identifies the font feature selector that corresponds to the feature type produced in the
oFeatureType parameter.

Return Value
A result code. Note that if the index specifies a font feature that is not set, ATSUGetFontFeature produces
the font-specified default value for the feature and returns the result code kATSUNotSetErr. See “ATSUI
Result Codes” (page 234).

Discussion
The ATSUGetFontFeature function obtains the setting for a specified font feature in a style object. You
might typically call ATSUGetFontFeature if you need to obtain one previously set feature after another
within your program’s processing loop. To obtain all previously set font features for a given style object, you
can call the function ATSUGetAllFontFeatures (page 60).

Before calling ATSUGetFontFeature, you should call the function ATSUGetAllFontFeatures (page 60)
to obtain a count of the font features that are set in the style object. You can then pass the index for the
feature whose setting you want to obtain in the iTag and iMaximumValueSize parameters of
ATSUGetFontFeature.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontFeatureNameCode
Obtains the name code for a font’s feature type or selector that matches an ASTUI font ID, feature type, and
feature selector.

Functions 67
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUGetFontFeatureNameCode (
 ATSUFontID iFontID,
 ATSUFontFeatureType iType,
 ATSUFontFeatureSelector iSelector,
 FontNameCode *oNameCode
);

Parameters
iFont

The ATSUFontID value of the font for which to obtain the name code for a feature type or selector.
Note that because Apple Type Services assigns ATSUFontID values systemwide at runtime, font IDs
can change across system restarts.

iType
An ATSUFontFeatureType constant identifying a valid feature type. To obtain the valid feature
types for a font, call the function ATSUGetFontFeatureTypes (page 70).

iSelector
An ATSUFontFeatureSelector constant identifying a valid feature selector that corresponds to
the feature type passed in the iType parameter. If you pass the constant kATSUNoSelector, the
name code produced by ATSUGetFontFeatureNameCode is that of the feature type, not the feature
selector. To obtain the valid feature selectors for a font, call the
functionATSUGetFontFeatureSelectors (page 68).

oNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font feature
selector or type. The FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h
header file.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetFontFeatureNameCode function obtains the name code for a font’s feature type or selector
that matches an ASTUI font ID, feature type and feature selector values. By default,
ATSUGetFontFeatureNameCode function obtains the name code of a feature selector. To determine the
name code of a feature type, pass the constant kATSUNoSelector in the iSelector parameter.

You can use the function ATSUFindFontName (page 53) to obtain the localized name string for the name
code produced by ATSUGetFontFeatureNameCode.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontFeatureSelectors
Obtains the available feature selectors for a given feature type in a font.

68 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUGetFontFeatureSelectors (
 ATSUFontID iFontID,
 ATSUFontFeatureType iType,
 ItemCount iMaximumSelectors,
 ATSUFontFeatureSelector oSelectors[],
 Boolean oSelectorIsOnByDefault[],
 ItemCount *oActualSelectorCount,
 Boolean *oIsMutuallyExclusive
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iType
An ATSUFontFeatureType value specifying one of the font’s supported feature types. To obtain the
available feature types for a font, call the function ATSUGetFontFeatureTypes (page 70).

iMaximumSelectors
An ItemCount value specifying the maximum number of feature selectors to obtain for the font’s
specified feature type. Typically, this is equivalent to the number of elements in the oSelectors
array.

oSelectors
A pointer to memory you have allocated for an array of ATSUFontFeatureSelector values. You
can call the function ATSUCountFontFeatureSelectors (page 34) to obtain the number of available
feature selectors for a given font feature type and thus determine the amount of memory to allocate.
On return, the array contains constants identifying each available feature selector for the given feature
type. The constants that represent font feature selectors are defined in the header file
SFNTLayoutTypes.h and are described in Inside Mac OS X: Rendering Unicode Text With ATSUI.

oSelectorIsOnByDefault
A pointer to memory you have allocated for an array of Boolean values. The number of elements in
this array should correspond to the number of elements in the oSelectors array. On return, the
array contains Boolean values indicating whether the corresponding feature selector in the
oSelectors array is on or off. If true, the feature selector is on by default; if false, off.

oActualSelectorCount
A pointer to an ItemCount value. On return, the value specifies the actual number of feature selectors
defined for the given feature type. This value may be greater than the value you specify in the
iMaximumSelectors parameter.

oIsMutuallyExclusive
A pointer to a Boolean value. On return, the value indicates whether the feature selectors for the
given feature type are exclusive or nonexclusive. If a feature type is exclusive you can choose only
one of its available feature selectors at a time, such as whether to display numbers as proportional
or fixed-width. If a feature type is nonexclusive, you can enable any number of feature selectors at
once. If true, the feature type is exclusive and only one selector can be used at a time.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
A given font may not support all possible feature types and selectors. If you select features that are not
available in a font, you won’t see a change in the glyph’s appearance. To determine the available features
of a font, you can call the functions ATSUGetFontFeatureTypes (page 70) and
ATSUGetFontFeatureSelectors.

Functions 69
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

The ATSUGetFontFeatureSelectors function reads the font data table for the specified font and obtains
its supported feature selectors for the given feature types. You can then use this information both to present
the user a list of font features from which to select and to call such functions as ATSUSetFontFeatures (page
120) with more accuracy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontFeatureTypes
Obtains the available feature types of a font.

OSStatus ATSUGetFontFeatureTypes (
 ATSUFontID iFontID,
 ItemCount iMaximumTypes,
 ATSUFontFeatureType oTypes[],
 ItemCount *oActualTypeCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iMaximumTypes
An ItemCount value specifying the maximum number of feature types to obtain for the font. Typically,
this is equivalent to the number of elements in the oTypes array.

oTypes
A pointer to memory you have allocated for an array of ATSUFontFeatureType values. You can call
the function ATSUCountFontFeatureTypes (page 35) to obtain the number of available feature
types for a given font and thus determine the amount of memory to allocate. On return, the array
contains constants identifying each type of feature that is defined for the font. The constants that
represent font feature types are defined in the header file SFNTLayoutTypes.h and are described
in Inside Mac OS X: Rendering Unicode Text With ATSUI.

oActualTypeCount
A pointer to an ItemCount value. On return, the value specifies the actual number of feature types
defined in the font. This may be greater than the value you specify in the iMaximumTypes parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
A given font may not support all possible feature types and selectors. If you select features that are not
available in a font, you won’t see a change in the glyph’s appearance. To determine the available features
of a font, you can call the functions ATSUGetFontFeatureTypes and
ATSUGetFontFeatureSelectors (page 68).

The ATSUGetFontFeatureTypes function reads the font data table for the specified font and obtains its
supported feature types. You can then use this information both to present the user a list of font features
from which to select and to call such functions as ATSUSetFontFeatures (page 120) with more accuracy.

70 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontIDs
Obtains a list of all the ATSUI-compatible fonts installed on the user’s system.

OSStatus ATSUGetFontIDs (
 ATSUFontID oFontIDs[],
 ItemCount iArraySize,
 ItemCount *oFontCount
);

Parameters
oFontIDs

A pointer to memory you have allocated for an array of ATSUFontID values. On return, the array
contains unique identifiers for each of the ATSUI-compatible fonts installed on the user’s system. You
should allocate enough memory to contain an array the size of the count produced by the function
ATSUFontCount (page 57).

iArraySize
An ItemCount value specifying the maximum number of fonts to obtain. Typically, this is equivalent
to the number of ATSUFontID values for which you have allocated memory in the oFontIDs
parameter.

oFontCount
A pointer to an ItemCount value. On return, the value specifies the actual number of ATSUI-compatible
fonts installed on the user’s system. This may be greater than the value you specified in the
iArraySize parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetFontIDs function obtains the IDs of all the fonts on the user’s system except for the last-resort
font. It is important to note that the set of installed ATSUI-compatible fonts may change while your application
is running. In Mac OS X, the set of installed fonts may change at any time. Although in Mac OS 9, fonts cannot
be removed from the Fonts folder while an application other than the Finder is running, they can be removed
from other locations, and it is possible for fonts to be added.

To ensure an accurate representation of the set of installed ATSUI-compatible fonts, you should call
ATSUGetFontIDs to rebuild your font menu each time your application is brought to the foreground.

Finally, note that Apple Type Services assigns ATSUFontID values systemwide at runtime. As a result, these
font IDs can change across system restarts.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 71
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Declared In
ATSUnicodeFonts.h

ATSUGetFontInstance
Obtains the font variation axis values for a font instance.

OSStatus ATSUGetFontInstance (
 ATSUFontID iFontID,
 ItemCount iFontInstanceIndex,
 ItemCount iMaximumVariations,
 ATSUFontVariationAxis oAxes[],
 ATSUFontVariationValue oValues[],
 ItemCount *oActualVariationCount
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iFontInstanceIndex
An ItemCount value specifying an index into an array of instances for the font. This index identifies
the font instance to examine. Because this index is zero-based, you must pass a value between 0 and
one less than the value produced in the oInstances parameter of the function
ATSUCountFontInstances (page 35).

iMaximumVariations
An ItemCount value specifying the maximum number of font variation axes to obtain for the font
instance. Typically, this is equivalent to the number of ATSUFontVariationAxis and
ATSUFontVariationValue values for which you have allocated memory in the oAxes and oValues
parameters, respectively. To determine this value, see the Discussion.

oAxes
A pointer to memory you have allocated for an array of ATSUFontVariationAxis values. On return,
the array contains tags identifying the font variation axes that constitute the font instance. If you are
uncertain of how much memory to allocate for this array, see the Discussion.

oValues
A pointer to memory you have allocated for an array of ATSUFontVariationValue values. On return,
the array contains the defined values for the font variation axes produced in the oAxes array. If you
are uncertain of how much memory to allocate for this array, see the Discussion.

oActualVariationCount
A pointer to an ItemCount value. On return, the value specifies the actual number of font variation
axes that constitute the font instance. This may be greater than the value you passed in the
iMaximumVariations parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
A font instance consists of a named set of values for each variation axis in a font. For example, suppose a
font has the variation axis 'wght' with a minimum value of 0.0, a default of 0.5, and a maximum of 1.0.
Additionally, the variation axis 'wdth' is also defined for the font, with a similar value range. The type
designer can then choose to declare a font instance for a set of specific values within these axes, such as

72 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

“Demibold” for a value of 0.8 for the 'wght' axis and 0.5 for the 'wdth' axis. By calling the function
ATSUGetFontInstance, you can obtain the variation axis values for a given index into an array of font
instances.

Typically you use the function ATSUGetFontInstance by calling it twice, as follows:

1. Pass the ID of the font to examine in the iFont parameter, a valid pointer to an ItemCount value in
the oActualVariationCount parameter, NULL for the oAxes and oValues parameters, and 0 for the
other parameters. ATSUGetFontInstance returns the size to use for the oAxes and oValues arrays
in the oActualVariationCount parameter.

2. Allocate enough space for arrays of the returned size, then call the ATSUGetFontInstance again,
passing pointers to the arrays in the oAxes and oValues parameters. On return, the arrays contain the
font variation axes and their corresponding values, respectively, for the font instance.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontInstanceNameCode
Obtains the name code for the font instance that matches an ASTUI font ID and font instance index value.

OSStatus ATSUGetFontInstanceNameCode (
 ATSUFontID iFontID,
 ItemCount iInstanceIndex,
 FontNameCode *oNameCode
);

Parameters
iFont

The ATSUFontID value of the font for which to obtain a font instance name code. Note that because
Apple Type Services assigns ATSUFontID values systemwide at runtime, font IDs can change across
system restarts.

iInstanceIndex
An ItemCount value providing an index to the font instance for which to obtain a name code. Because
this index must be 0-based, you should pass a value between 0 and one less than the count produced
by the function ATSUCountFontInstances (page 35).

oNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font instance.
The FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h header file.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
A font instance consists of a named set of values for each variation axis in a font. The
ATSUGetFontInstanceNameCode function obtains the name code for the font instance that matches an
ASTUI font ID and font instance index value.

Functions 73
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

You can use the function ATSUFindFontName (page 53) to obtain the localized name string for the name
code produced by ATSUGetFontInstanceNameCode. You can obtain the font variation axis values for a
font instance by calling the functionATSUGetFontInstance (page 72).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontVariationNameCode
Obtains the name code for the font variation that matches an ASTUI font ID and font variation axis.

OSStatus ATSUGetFontVariationNameCode (
 ATSUFontID iFontID,
 ATSUFontVariationAxis iAxis,
 FontNameCode *oNameCode
);

Parameters
iFont

The ATSUFontID value of the font for which to obtain a font variation name code. Note that because
Apple Type Services assigns ATSUFontID values systemwide at runtime, font IDs can change across
system restarts.

iAxis
An ATSUFontVariationAxis value representing a valid variation axis tag. To obtain a valid variation
axis tag for a font, you can call the functionsATSUGetIndFontVariation (page 81) or
ATSUGetFontInstance (page 72).

oNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font variation.
The FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h header file.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetFontVariationNameCode function obtains the name code for the font variation that matches
an ASTUI font ID and font variation axis tag. You can use the function ATSUFindFontName (page 53) to
obtain the localized name string for the name code produced by ATSUGetFontVariationNameCode.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetFontVariationValue
Obtains the current value for a font variation axis in a style object.

74 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUGetFontVariationValue (
 ATSUStyle iStyle,
 ATSUFontVariationAxis iFontVariationAxis,
 ATSUFontVariationValue *oFontVariationValue
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

iFontVariationAxis
An ATSUFontVariationAxis tag specifying the style object’s variation axis to examine. You can
obtain variation axis tags for a style object from the function ATSUGetAllFontVariations (page
61).

oFontVariationValue
A pointer to memory you have allocated for an ATSUFontVariationValue value. On return,
ATSUGetFontVariationValue produces the currently set value for the style object’s specified
variation axis. If this value has not been set, ATSUGetFontVariationValue produces the font-defined
default value.

Return Value
A result code. Note that if no value has been set for the specified variation axis, ATSUGetFontVariationValue
produces the font-defined default value and returns the result code kATSUNotSetErr. See “ATSUI Result
Codes” (page 234).

Discussion
The ATSUGetFontVariationValue function obtains the setting for a specified font variation axis in a style
object. You might typically call ATSUGetFontVariationValue if you need to obtain one previously set
variation axis value after another within your program’s processing loop. To obtain all nondefault font variation
axis values for a given style object, you can call the function ATSUGetAllFontVariations (page 61).

Before calling ATSUGetFontVariationValue, call the function ATSUGetAllFontVariations (page 61) to
obtain the font variation axes that are set for the style object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetGlyphBounds
Obtains the typographic bounds of a line of glyphs after final layout.

Functions 75
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUGetGlyphBounds (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iBoundsCharStart,
 UniCharCount iBoundsCharLength,
 UInt16 iTypeOfBounds,
 ItemCount iMaxNumberOfBounds,
 ATSTrapezoid oGlyphBounds[],
 ItemCount *oActualNumberOfBounds
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin of the line containing the
glyphs in the current graphics port or Quartz graphics context. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to obtain the glyph
bounds relative to the current pen location in the current graphics port or graphics context. You can
pass 0 to obtain only the dimensions of the bounds relative to one another, not their actual onscreen
position.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin of the line containing the
glyphs in the current graphics port or Quartz graphics context. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to obtain the glyph
bounds relative to the current pen location in the current graphics port or graphics context. You can
pass 0 to obtain only the dimensions of the bounds relative to one another, not their actual onscreen
position.

iBoundsCharStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the
character corresponding to the first glyph to measure. To indicate that the text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning.

iBoundsCharLength
A UniCharCount value specifying the length of the text range to measure. If you want the range to
extend to the end of the text buffer, you can pass the constant kATSUToTextEnd.

iTypeOfBounds
A glyph bounds constant indicating whether the width of the resulting typographic glyph bounds is
determined using the caret origin (midway between two characters), the glyph origin in device space,
or the glyph origin in fractional absolute positions (uncorrected for device display). See “Glyph Origin
Selectors” (page 215) for a description of possible values.

iMaxNumberOfBounds
An ItemCount value specifying the maximum number of bounding trapezoids to obtain. Typically,
this is equivalent to the number of bounds in the oGlyphBounds array. To determine this value, see
the Discussion.

76 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oGlyphBounds
A pointer to memory you have allocated for an array of ATSTrapezoid values. On return, the array
contains a trapezoid representing the typographic bounds for glyphs in the text range. If the specified
range of text encloses nested bidirectional text, ATSUGetGlyphBounds produces multiple trapezoids
defining these regions.In ATSUI 1.1, the maximum number of enclosing trapezoids that can be returned
is 31; in ATSUI 1.2, the maximum number is 127. If you pass a range that covers an entire line,
ATSUGetGlyphBounds returns 1 trapezoid. If you are uncertain of how much memory to allocate for
this array, see the Discussion.

oActualNumberOfBounds
A pointer to an ItemCount value. On return, the value specifies the actual number of enclosing
trapezoids bounding the specified characters. This may be greater than the value you provide in the
iMaxNumberOfBounds parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
There are two kinds of bounds that your application may typically want to obtain for a block of text:
typographic bounds and image bounds. The image bounds define the smallest rectangle that completely
encloses the filled or framed parts of a block of text—that is, the text’s “inked” glyphs. Because of the potential
differences in glyph height in a text block, your application may instead need to determine the typographic
bounds. The typographic bounding rectangle contains the extra space above and below the image bounding
rectangle where characters with ascenders or descenders would be drawn (even if none currently are).

The ATSUGetGlyphBounds function produces the enclosing trapezoid(s) that represent the typographic
bounds for glyphs in a final, laid-out range of text. You typically call this function when you need to obtain
an enclosing trapezoid for a line, taking rotation and all other layout attributes into account.

ATSUI determines the height of each trapezoid by examining any line ascent and descent attribute values
you may have set for the line. If you have not set these attributes for the line, the ATSUGetGlyphBounds
function uses any line ascent and descent values you may have set for the text layout object containing the
line. If these are not set, ATSUGetGlyphBounds uses the font’s natural line ascent and descent values for
the line. If these are previously set, ATSUGetGlyphBounds uses the ATSUStyle ascent and or descent/leading
values.

Depending on the value you pass in the iTypeOfBounds parameter, the width of the resulting trapezoid(s)
is determined using one of the following values:

 ■ the caret origin, located halfway between two characters, which should be used when performing your
own highlighting

 ■ the glyph origin in device space, which is useful for obtaining bounds adjusted for specific rendering
and device constraints

 ■ the glyph origin in fractional (or “ideal”) absolute positions, uncorrected for device display

Note that the coordinates produced for the trapezoid(s) are offset by the amount specified in the
iTextBasePointX and iTextBasePointY parameters. If your goal in calling the ATSUGetGlyphBounds
function is to obtain metrics for drawing the typographic bounds on the screen, pass the position of the
origin of the line in the current graphics port or graphics context in these parameters. This enables
ATSUGetGlyphBounds to match the trapezoids to their onscreen image.

Before calculating the typographic glyph bounds for the given text range, the ATSUGetGlyphBounds function
examines the text layout object to make sure that the style runs cover the entire range of text. If there are
gaps between style runs, ATSUGetGlyphBounds assigns the characters in the gap to the style run following

Functions 77
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

the gap. If there is no style run at the beginning of the range of text, ATSUGetGlyphBounds assigns these
characters to the first style run it can find. If there is no style run at the end of the range of text,
ATSUGetGlyphBounds assigns the remaining characters to the last style run it can find.

Typically you use the ATSUGetGlyphBounds function by calling it twice, as follows:

1. Pass NULL for the oGlyphBounds parameter, 0 for the iMaxNumberOfBounds parameter, and valid
values for the other parameters. The ATSUGetGlyphBounds function returns the actual number of
trapezoids needed to enclose the glyphs in the oActualNumberOfBounds parameter.

2. Allocate enough space for a buffer of the returned size, then call the function again, passing a valid
pointer to the buffer in the oGlyphBounds parameter. On return, the buffer contains the trapezoids for
the glyphs’ typographic bounds.

To obtain the typographic bounds of a line of text prior to line layout, call the function
ATSUGetUnjustifiedBounds (page 93). To calculate the image bounding rectangle for a final laid-out
line, call the function ATSUMeasureTextImage (page 107).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeDrawing.h

ATSUGetIndFontName
Obtains a name string, name code, platform, script, and language for the font that matches an ATSUI font
ID and name table index value.

OSStatus ATSUGetIndFontName (
 ATSUFontID iFontID,
 ItemCount iFontNameIndex,
 ByteCount iMaximumNameLength,
 Ptr oName,
 ByteCount *oActualNameLength,
 FontNameCode *oFontNameCode,
 FontPlatformCode *oFontNamePlatform,
 FontScriptCode *oFontNameScript,
 FontLanguageCode *oFontNameLanguage
);

Parameters
iFontID

The ATSUFontID value of the font for which to obtain information. Note that because Apple Type
Services assigns ATSUFontID values systemwide at runtime, font IDs can change across system
restarts.

iFontNameIndex
An ItemCount value providing an index to the font for which to obtain information. Because this
index must be 0-based, you should pass a value between 0 and one less than the count produced by
the function ATSUCountFontNames (page 36).

78 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iMaximumNameLength
A ByteCount value specifying the maximum length of the font name string to obtain. Typically, this
is equivalent to the size of the buffer that you have allocated in the oName parameter. To determine
this length, see the Discussion.

oName
A pointer to a buffer. On return, the buffer contains the name string of the font matching the ATSUI
font ID and name table index value being passed. If the buffer you allocate is not large enough to
contain the name string, ATSUGetIndFontName produces a partial string.

oActualNameLength
A pointer to a ByteCount value. On return, the value specifies the actual length of the complete
name string. This may be greater than the value passed in the iMaximumNameLength parameter.
You should check this value to ensure that you have allocated sufficient memory and therefore
obtained the complete name string for the font.

oFontNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font. The
FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h header file. ATSUI can
return any of the following constants, kFontCopyrightName, kFontFamilyName, kFontStyleName,
kFontUniqueName, kFontFullName, kFontVersionName, kFontPostscriptName,
kFontTrademarkName,kFontManufacturerName,kFontDesignerName,kFontDescriptionName,
kFontVendorURLName, kFontDesignerURLName, kFontLicenseDescriptionName, or
kFontLicenseInfoURLName.

oFontNamePlatform
A pointer to a FontPlatformCode value. On return, this value specifies the encoding of the font, for
example, kFontUnicodePlatform, kFontMacintoshPlatform, kFontReservedPlatform,
kFontMicrosoftPlatform, or kFontCustomPlatform. See the SFNTTypes.h header file for a
definition of the FontPlatformCode type and a list of possible values.

oFontNameScript
A pointer to a FontScriptCode value. On return, this value specifies the script code of the font, for
example, kFontRomanScript. See the SFNTTypes.h header file for a definition of the
FontScriptCode type and a list of possible values.

oFontNameLanguage
A pointer to a FontLanguageCode value. On return, this value specifies the language of the font, for
example, kFontNorwegianLanguage. See the SFNTTypes.h header file for a definition of the
FontLanguageCode type and a list of possible values.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetIndFontName function obtains a name string, name code, language code, script code, and
platform code for the font that matches the specified ATSUI font ID and name table index value.

Typically you use the ATSUGetIndFontName function by calling it twice, as follows:

1. Pass valid values for the iFontID, iFontNameIndex, and oActualNameLength parameters, 0 for the
iMaximumNameLength parameter, and NULL for the other parameters. ATSUGetIndFontName returns
the length of the font name string in the oActualNameLength parameter.

2. Allocate enough space for a buffer of the returned size, then call the function again, passing a valid
pointer to the buffer in the oName parameter. On return, the buffer contains the font name string.

Functions 79
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

To find a name string and index value for the first font in a name table that matches an ATSUI font ID and
the specified font parameters, call the function ATSUFindFontName (page 53). To obtain an ATSUI font ID
for the first font in a name table that matches the specified name string, name code, platform, script, and/or
language, call the function ATSUFindFontFromName (page 52).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetIndFontTracking
Obtains the name code and tracking value for the font tracking that matches an ASTUI font ID, glyph
orientation, and tracking table index.

OSStatus ATSUGetIndFontTracking (
 ATSUFontID iFontID,
 ATSUVerticalCharacterType iCharacterOrientation,
 ItemCount iTrackIndex,
 Fixed *oFontTrackingValue,
 FontNameCode *oNameCode
);

Parameters
iFont

The ATSUFontID value of the font tracking for which to obtain a name code and tracking value. Note
that because Apple Type Services assigns ATSUFontID values systemwide at runtime, font IDs can
change across system restarts.

iCharacterOrientation
An ATSUVerticalCharacterType constant identifying the glyph orientation of the font tracking
value to obtain, for example kATSUStronglyHorizontal or kATSUStronglyVertical. See “Vertical
Character Types” (page 234) for a description of possible values.

iTrackIndex
An ItemCount value providing an index to the font tracking for which to obtain information. Because
this index must be 0-based, you should pass a value between 0 and one less than the count produced
by the function ATSUCountFontTracking (page 37).

oFontTrackingValue
A pointer to a Fixed value. On return, the value contains the font tracking value.

oNameCode
A pointer to a FontNameCode value. On return, the value contains the name code for the font tracking.
The FontNameCode is a UInt32 data type, and it is defined in the SFNTTypes.h header file.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You can call the ATSUGetIndFontTracking function to obtain the name code and tracking value that
matches the specified ATSUI font ID, glyph orientation, and tracking table index value.

80 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

You can use the function ATSUFindFontName (page 53) to obtain the localized name string for the name
code produced by ATSUGetIndFontTracking.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetIndFontVariation
Obtains a variation axis and its value range for a font.

OSStatus ATSUGetIndFontVariation (
 ATSUFontID iFontID,
 ItemCount iVariationIndex,
 ATSUFontVariationAxis *oATSUFontVariationAxis,
 ATSUFontVariationValue *oMinimumValue,
 ATSUFontVariationValue *oMaximumValue,
 ATSUFontVariationValue *oDefaultValue
);

Parameters
iFont

An ATSUFontID value identifying the font to examine.

iVariationIndex
An ItemCount value specifying an index into the array of variation axes for the font. This index
identifies the font variation axis to examine. Because this index is zero-based, you must pass a value
between 0 and one less than the value produced in the oVariationCount parameter of the function
ATSUCountFontVariations (page 37).

oATSUFontVariationAxis
A pointer to an ATSUFontVariationAxis value. On return, the value provides a four-character code
identifying the font variation axis corresponding to the specified index.

oMinimumValue
A pointer to an ATSUFontVariationValue value. On return, the value identifies the variation axis
minimum.

oMaximumValue
A pointer to an ATSUFontVariationValue value. On return, the value identifies the variation axis
maximum.

oDefaultValue
A pointer to an ATSUFontVariationValue value. On return, the value identifies the variation axis
default.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
By calling the function ATSUGetIndFontVariation, you can obtain a variation axis and its maximum,
minimum, and default values for a font.

Functions 81
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

If you supply font variation axes and values to the function ATSUSetVariations (page 133), you can change
the appearance of a style object’s font accordingly.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUGetLayoutControl
Obtains a layout control attribute value for a text layout object.

OSStatus ATSUGetLayoutControl (
 ATSUTextLayout iTextLayout,
 ATSUAttributeTag iTag,
 ByteCount iExpectedValueSize,
 ATSUAttributeValuePtr oValue,
 ByteCount *oActualValueSize
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to obtain a layout control
attribute value.

iTag
An ATSUAttributeTag constant identifying the attribute value to obtain. See “Attribute Tags” (page
196) for a description of the Apple-defined attribute tag constants.

iExpectedValueSize
The expected size (in bytes) of the value to obtain. To determine the size of an application-defined
style attribute value, see the Discussion.

oValue
An ATSUAttributeValuePtr pointer, identifying the memory you have allocated for the attribute
value. If you are uncertain of how much memory to allocate, see the Discussion. On return, oValue
contains a valid pointer to the actual attribute value. If the value is unset, ATSUGetLayoutControl
produces the default value in this parameter.

oActualValueSize
A pointer to a ByteCount value. On return, the value contains the actual size (in bytes) of the attribute
value. You should examine this parameter if you are unsure of the size of the attribute value being
obtained.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetLayoutControl function obtains the value of a specified layout control attribute for a given
text layout object.

Before calling ATSUGetLayoutControl, you should call the function ATSUGetAllLayoutControls (page
62) to obtain an array of nondefault layout control attribute tags and value sizes for the text layout object.
You can then pass the tag and value size for the attribute value to obtain to ATSUGetLayoutControl.

82 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Typically you use the function ATSUGetLayoutControl by calling it twice, as follows:

1. Pass a reference to the text layout object to examine in the iTextLayout parameter, NULL for the
oValue parameter, 0 for the iExpectedValueSize parameter. ATSUGetLayoutControl returns the
actual size of the attribute value in the oActualValueSize parameter.

2. Allocate enough space for an array of the returned size, then call the ATSUGetLayoutControl function
again, passing a valid pointer in the oValue parameter. On return, the pointer refers to the actual attribute
value contained in the text layout object.

To obtain the value of a line control attribute value for a text layout object, call the function
ATSUGetLineControl (page 83).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetLineControl
Obtains a line control attribute value for a line in a text layout object.

OSStatus ATSUGetLineControl (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ATSUAttributeTag iTag,
 ByteCount iExpectedValueSize,
 ATSUAttributeValuePtr oValue,
 ByteCount *oActualValueSize
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to obtain a line control attribute
value.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to obtain a line control attribute value.

iTag
An ATSUAttributeTag constant identifying the attribute value to obtain. See “Attribute Tags” (page
196) for a description of the Apple-defined attribute tag constants.

iExpectedValueSize
The expected size (in bytes) of the value to obtain.

oValue
An ATSUAttributeValuePtr pointer, identifying the memory you have allocated for the attribute
value. If you are uncertain of how much memory to allocate, see the Discussion. On return, oValue
contains a valid pointer to the actual attribute value. If the value is unset, ATSUGetLineControl
produces the default value in this parameter.

Functions 83
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oActualValueSize
A pointer to a ByteCount value. On return, the value contains the actual size (in bytes) of the attribute
value. You should examine this parameter if you are unsure of the size of the attribute value being
obtained.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetLineControl function obtains the value of a specified line control attribute for a given line of
text in a text layout object.

Before calling ATSUGetLineControl, you should call the function ATSUGetAllLineControls (page 63)
to obtain an array of nondefault line control attribute tags and value sizes for the line. You can then pass the
tag and value size for the attribute value to obtain to ATSUGetLineControl.

To obtain the value of a layout control attribute value for a text layout object, call the function
ATSUGetLayoutControl (page 82).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetNativeCurveType
Obtains the type of outline path used for glyphs associated with a given style object.

OSStatus ATSUGetNativeCurveType (
 ATSUStyle iATSUStyle,
 ATSCurveType *oCurveType
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

oCurveType
A pointer to an ATSCurveType value. On return, the value provides a constant specifying the type
of outline path being used. Possible values include kATSCubicCurveType, kATSQuadCurveType,
and kATSOtherCurveType.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You can call the ATSUGetNativeCurveType function to obtain the type of outline path used for glyphs
associated with a given style object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

84 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Declared In
ATSUnicodeGlyphs.h

ATSUGetObjFontFallbacks
Obtains the font list and font-search method associated with a font fallback object.

OSStatus ATSUGetObjFontFallbacks (
 ATSUFontFallbacks iFontFallbacks,
 ItemCount iMaxFontFallbacksCount,
 ATSUFontID oFonts[],
 ATSUFontFallbackMethod *oFontFallbackMethod,
 ItemCount *oActualFallbacksCount
);

Parameters
iFontFallbacks

An ATSUFontFallbacks value specifying the font fallback object to examine.

iMaxFontFallbacksCount
An ItemCount value specifying the maximum number of fonts that you want to obtain. Typically,
this is equivalent to the size of the array allocated in the oFonts parameter. To determine this value,
see the Discussion.

oFonts
A pointer to memory you have allocated for an array of ATSUFontID values. If you are uncertain of
how much memory to allocate, see the Discussion. On return, the array contains font IDs identifying
the fonts in the font list associated with the font fallback object.

oFontFallbackMethod
A pointer to an ATSUFontFallbackMethod value. On return, the value identifies the font-search
method associated with the font fallback object. See “Font Fallback Methods” (page 214) for a
description of possible values.

oActualFallbacksCount
A pointer to an ItemCount value. On return, the value specifies the actual number of fonts in the
font list associated with the text layout object. This value may be greater than that passed in the
iMaxFontFallbacksCount parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetObjFontFallbacks function obtains the list of fonts and the search order associated with a
given font fallback object.

Typically you use the function ATSUGetObjFontFallbacks by calling it twice, as follows:

1. Pass valid values for the iFontFallbacks and oActualFallbacksCount parameters, NULL for the
oFonts and oFontFallbackMethod parameters and 0 for the iMaxFontFallbacksCount parameter.
ATSUGetObjFontFallbacks returns the size of the font array in the oActualFallbacksCount
parameter.

2. Allocate enough space for an array of the returned size, then call the function again, passing a valid
pointer in the oFonts parameter. On return, the array contains the font list associated with the font
fallback object.

Functions 85
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

You set the font list and search method for a font fallback object by calling the function
ATSUSetObjFontFallbacks (page 126).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetRunStyle
Obtains style run information for a character offset in a run of text.

OSStatus ATSUGetRunStyle (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOffset,
 ATSUStyle *oStyle,
 UniCharArrayOffset *oRunStart,
 UniCharCount *oRunLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to obtain style run information.

iOffset
A pointer to a UniCharArrayOffset value. This value should specify the offset from the beginning
of the text buffer to the character for which to obtain style run information. To specify the beginning
of the text buffer, you can pass the constant kATSUFromTextBeginning.

oStyle
A pointer to an ATSUStyle value. On return, the value specifies the style object assigned to the range
of text containing the character at iOffset. Note that if you pass an offset in the iOffset parameter
that is at a style run boundary, ATSUGetRunStyle produces style run information for the following,
not preceding, style run.

oRunStart
A pointer to a UniCharArrayOffset value. On return, the value specifies the offset from the beginning
of the text buffer to the first character of the style run containing the character at iOffset. Note that
the entire style run does not necessarily share the same unset attribute values as the character at
iOffset.

oRunLength
A pointer to a UniCharCount value. On return, the value specifies the length of the style run containing
the character at iOffset.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You can use the ATSUGetRunStyle function to obtain the style object assigned to a given text offset.
ATSUGetRunStyle also produces the encompassing text range that shares the style object with the offset.

86 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Note that the style object contains those previously set style attributes, font features, and font variations that
are continuous for the range of text that includes the specified text offset. If you want to obtain all shared
style information for a style run, including any unset attributes, call the function
ATSUGetContinuousAttributes (page 66) instead.

If only one style run is set in the text layout object, and it does not cover the entire text layout object,
ATSUGetRunStyle uses the style run information for the iOffset parameter to set the style run information
for the remaining text.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetSoftLineBreaks
Obtains soft line breaks in a range of text.

OSStatus ATSUGetSoftLineBreaks (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iRangeStart,
 UniCharCount iRangeLength,
 ItemCount iMaximumBreaks,
 UniCharArrayOffset oBreaks[],
 ItemCount *oBreakCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iRangeStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the text range to examine. To indicate that the specified text range
starts at the beginning of the text buffer, you can pass the constant kATSUFromTextBeginning, To
specify the entire text buffer, passkATSUFromTextBeginning in this parameter andkATSUToTextEnd
in the iRangeLength parameter.

iRangeLength
A UniCharCount value specifying the length of the text range. If you want the range of text to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

iMaximumBreaks
An ItemCount value specifying the maximum number of soft line breaks to obtain. Typically, this is
equivalent to the number of UniCharArrayOffset values for which you have allocated memory in
the oBreaks array. To determine this value, see the Discussion.

oBreaks
A pointer to memory you have allocated for an array of UniCharArrayOffset values. On return,
the array contains offsets from the beginning of the text buffer to each of the soft line breaks in the
text range. If you are uncertain of how much memory to allocate for this array, see the Discussion.

Functions 87
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oBreakCount
A pointer to an ItemCount value. On return, the value specifies the actual number of soft line breaks
in the range of text. This may be greater than the value you specified in the iMaximumBreaks
parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetSoftLineBreaks function obtains the soft line breaks that are currently set in a given text
range.

Typically you use the function ATSUGetSoftLineBreaks by calling it twice, as follows:

1. Pass valid values for the iTextLayout, iRangeStart, iRangeLength, and oBreakCount parameters.
Pass NULL for the oBreaks parameter and 0 for the iMaximumBreaks parameter. On return, the value
of the oBreakCount parameter specifies the number of items in the offset array.

2. Allocate enough space for an array of the appropriate size (number of items in the array multiplied by
4 bytes per item), then call the function again, passing a valid pointer in the oBreaks parameter. On
return, the pointer refers to an array containing the text range’s soft line breaks.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUGetStyleRefCon
Obtains application-specific data for a style object.

OSStatus ATSUGetStyleRefCon (
 ATSUStyle iStyle,
 URefCon *oRefCon
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to obtain application-specific data.

oRefCon
A pointer to a 32-bit value. On return, the value contains or refers to application-specific style data.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetStyleRefCon function obtains a reference constant (that is, application-specific data) associated
with a style object. To associate a reference constant with a style object, call the function
ATSUSetStyleRefCon (page 129).

Availability
Available in Mac OS X v10.0 and later.

88 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetTabArray
Retrieves the tab ruler associated with a text layout object.

OSStatus ATSUGetTabArray (
 ATSUTextLayout iTextLayout,
 ItemCount iMaxTabCount,
 ATSUTab oTabs[],
 ItemCount *oTabCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object whose tab ruler you want to obtain.

iMaxTabCount
The maximum number of tabs that can be written to the iTabs array.

oTabs[]
An array of ATSUTab values. On return, this array contains the current tab values in order of position
along the line from left to right. Pass NULL if you want to retrieve the number of tabs, but not the tab
values.

oTabCount
The number of tabs set for the text layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
This function can be used to retrieve all the tabs that were previously set for a text layout object, using the
function ATSUSetTabArray. All the returned tabs will be in order of position along the line.Typically you
use the ATSUGetTabArray function by calling it twice, as follows:

1. Pass NULL for the oTabs parameter, 0 for the iMaxTabCount parameter, and valid values for the other
parameters. The ATSUGetTabArray function returns the actual number of tabs in the oTabCount
parameter.

2. Allocate enough space for a buffer of the returned size, then call the function again, passing a valid
pointer to the buffer in the oTabs parameter. On return, the buffer contains the tab values in order of
position along the line from left to right.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

Functions 89
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUGetTextHighlight
Obtains the highlight region for a range of text.

OSStatus ATSUGetTextHighlight (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iHighlightStart,
 UniCharCount iHighlightLength,
 RgnHandle oHighlightRegion
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object containing the text range.

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to obtain the highlight
region relative to the current pen location in the current graphics port.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to obtain the highlight
region relative to the current pen location in the current graphics port.

iHighlightStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range. If the range of text spans multiple lines, you should call
ATSUGetTextHighlight for each line, passing the offset corresponding to the beginning of the
new line with each call. To indicate that the specified text range starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iHighlightLength
parameter.

iHighlightLength
A UniCharCount value specifying the length of the text range. If you want the text range to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

oHighlightRegion
A valid RgnHandle value. On return, ATSUGetTextHighlight produces a MacRegion structure
containing the highlight region for the specified range of text. In the case of discontinuous highlighting,
the region consists of multiple components, with MacRegion.rgnBBox specifying the bounding box
around the entire area of discontinuous highlighting.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetTextHighlight function obtains the highlight region for a range of text. To highlight text,
call the function ATSUHighlightText (page 101).

90 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

The ATSUGetTextHighlight function uses the previously set line ascent and descent values to calculate
the height of the highlight region. If these values have not been set for the line, ATSUGetTextHighlight
uses the line ascent and descent values set for the text layout object containing the line. If these are not set,
it uses the default values.

Version Notes
When there are discontinuous highlighting regions, the structure produced in the oHighlightRegion
parameter is made up of multiple components. In ATSUI 1.1, the maximum number of components that can
be produced is 31. In ATSUI 1.2, the maximum number of components is 127.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUGetTextLayoutRefCon
Obtains application-specific data for a text layout object.

OSStatus ATSUGetTextLayoutRefCon (
 ATSUTextLayout iTextLayout,
 URefCon *oRefCon
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to obtain application-specific
data.

oRefCon
A pointer to a 32-bit value. On return, the value contains or refers to application-specific text layout
data.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetTextLayoutRefCon function obtains a reference constant (that is, application-specific data)
associated with a text layout object. To associate a reference constant with a text layout object, call the
function ATSUSetTextLayoutRefCon (page 130).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetTextLocation
Obtains information about the text associated with a text layout object.

Functions 91
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUGetTextLocation (
 ATSUTextLayout iTextLayout,
 void **oText,
 Boolean *oTextIsStoredInHandle,
 UniCharArrayOffset *oOffset,
 UniCharCount *oTextLength,
 UniCharCount *oTextTotalLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

oText
A pointer to data of any type. On return, the pointer is set to either a pointer or a handle that refers
to the text buffer for the specified text layout object.

oTextIsStoredInHandle
A pointer to a Boolean value. On return, the value is set to true if the text buffer in the oText
parameter is accessed by a handle; if false, a pointer.

oOffset
A pointer to a UniCharArrayOffset value. On return, the value specifies the offset from the beginning
of the text buffer to the first character of the layout’s current text range.

oTextLength
A pointer to a UniCharCount value. On return, the value specifies the length of the text range.

oTextTotalLength
A pointer to a UniCharCount value. On return, the value specifies the length of the entire text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
When you call the ATSUGetTextLocation function for a given text layout object, ATSUI obtains the location
of the text layout object’s associated text in physical memory, the length of the text range and its text buffer,
and whether the text is accessed by a pointer or handle.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetTransientFontMatching
Obtains whether ATSUI automatically performs font substitution for a text layout object.

92 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUGetTransientFontMatching (
 ATSUTextLayout iTextLayout,
 Boolean *oTransientFontMatching
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

oTransientFontMatching
A pointer to a Boolean value. On return, the value indicates whether ATSUI performs automatic font
substitution for the text layout object. If true, ATSUI automatically performs font substitution for the
text range associated with the text layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You can call the ATSUGetTransientFontMatching function to find out whether ATSUI automatically
performs font substitution for a given text layout object when a character cannot be drawn with the assigned
font. To turn automatic font substitution on or off for a text layout object, call the function
ATSUSetTransientFontMatching (page 132).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetUnjustifiedBounds
Obtains the typographic bounding rectangle for a line of text prior to final layout.

OSStatus ATSUGetUnjustifiedBounds (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 UniCharCount iLineLength,
 ATSUTextMeasurement *oTextBefore,
 ATSUTextMeasurement *oTextAfter,
 ATSUTextMeasurement *oAscent,
 ATSUTextMeasurement *oDescent
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the line. To indicate that the line starts at the beginning of the text buffer, you can pass
the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iLineLengthparameter.

Functions 93
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iLineLength
A UniCharCount value specifying the length of the line. If you want the line to extend to the end of
the text buffer, you can pass the constant kATSUToTextEnd.

oTextBefore
A pointer to an ATSUTextMeasurement value. On return, the value specifies the starting point of
the typographic bounds for the line, relative to the origin (0,0) of the line and taking into account
cross-stream shifting. Note that the ATSUMeasureText function might produce negative values for
the typographic starting point of the line if, for example, the initial character of the line is allowed to
hang into the margin. For horizontal text, this value corresponds to the left side of the bounding
rectangle.

oTextAfter
A pointer to an ATSUTextMeasurement value. On return, the value specifies the end point of the
typographic bounds for the line, relative to the origin (0,0) of the line and taking into account
cross-stream shifting. For horizontal text, this value corresponds to the right side of the bounding
rectangle.

oAscent
A pointer to an ATSUTextMeasurement value. On return, the value specifies the ascent of the
typographic bounds for the line, relative to the origin (0,0) of the line and taking into account
cross-stream shifting. For horizontal text, this value corresponds to the top side of the bounding
rectangle.

oDescent
A pointer to an ATSUTextMeasurement value. On return, the value specifies the descent of the
typographic bounds for the line, relative to the origin (0,0) of the line and taking into account
cross-stream shifting. For horizontal text, this value corresponds to the bottom side of the bounding
rectangle.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
There are two kinds of bounds that your application may typically want to obtain for a block of text:
typographic bounds and image bounds. The image bounds define the smallest rectangle that completely
encloses the filled or framed parts of a block of text—that is, the text’s “inked” glyphs. Because of the potential
differences in glyph height in a text block, your application may instead need to determine the typographic
bounds. The typographic bounding rectangle contains the extra space above and below the image bounding
rectangle where characters with ascenders or descenders would be drawn (even if none currently are).

The ATSUGetUnjustifiedBounds function calculates the typographic bounds (in coordinates independent
of the rendering device) for a line of text. Note that ATSUGetUnjustifiedBounds calculates these bounds
prior to the text’s final layout, and therefore, the calculated bounds might not reflect those of the final laid-out
line. To obtain the typographic bounds of a line after it is laid out, you can call the function
ATSUGetGlyphBounds (page 75).

The ATSUGetUnjustifiedBounds function ignores any previously set line attributes such as line rotation,
flushness, justification, ascent, and descent in its calculations. You typically only call
ATSUGetUnjustifiedBoundswhen you need to find out what the width of a line is without these attributes,
such as for determining your own line breaks or the leading and line spacing to impose on a line.

The ATSUGetUnjustifiedBounds function treats the specified text range as a single line. That is, if the
range of text you specify is less than a line, it nevertheless treats the initial character in the range as the start
of a line, for measuring purposes. If the range of text extends beyond a line, ATSUGetUnjustifiedBounds
ignores soft line breaks, again, treating the text as a single line.

94 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Before calculating the typographic bounds for the text range, the ATSUGetUnjustifiedBounds function
examines the text layout object to ensure that each of the characters in the range is assigned to a style run.
If there are gaps between style runs, ATSUGetUnjustifiedBounds assigns the characters in the gap to the
style run that precedes (in storage order) the gap. If there is no style run at the beginning of the text range,
ATSUGetUnjustifiedBounds assigns these characters to the first style run it finds. If there is no style run
at the end of the text range, ATSUGetUnjustifiedBounds assigns the remaining characters to the last
style run it finds.

To obtain the image bounding rectangle of a laid-out line, call the function ATSUMeasureTextImage (page
107).

Version Notes
As of ASTUI version 2.4, this function replaces the ATSUMeasureText function.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUGlyphGetCubicPaths
Obtains the cubic outline paths for a glyph.

OSStatus ATSUGlyphGetCubicPaths (
 ATSUStyle iATSUStyle,
 GlyphID iGlyphID,
 ATSCubicMoveToUPP iMoveToProc,
 ATSCubicLineToUPP iLineToProc,
 ATSCubicCurveToUPP iCurveToProc,
 ATSCubicClosePathUPP iClosePathProc,
 void *iCallbackDataPtr,
 OSStatus *oCallbackResult
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iGlyphID
A GlyphID value identifying the glyph for which to obtain an outline path.

iMoveToProc
A pointer to your callback function for handling the pen move-to operation.

iLineToProc
A pointer to your callback function for handling the line-to operation.

iCurveToProc
A pointer to your callback function for handling the curve-to operation.

iClosePathProc
A pointer to your callback function for handling the close-path operation.

Functions 95
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iCallbackDataPtr
A pointer to any data your callback functions need. This pointer is passed through to your callback
functions.

oCallbackResult
On output, a value that indicates the status of your callback function. When a callback function returns
any value other than 0, the ATSGlyphGetCubicPaths function stops parsing the glyph path outline
and returns the result kATSOutlineParseAbortedErr.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The glyph outlines that are returned are the hinted outlines at the font size specified in the style object. If
you want to use unhinted outlines, set the font size to a very large size, (for example, 1000 points) and then
scale down the returned curves to the desired size.

As of Mac OS X version 10.1, the curves returned by this function are derived from quadratic curves, irrespective
of the native curve type of the font.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGlyphGetCurvePaths
Obtains the outline paths for a glyph associated with a given style object.

OSStatus ATSUGlyphGetCurvePaths (
 ATSUStyle iATSUStyle,
 GlyphID iGlyphID,
 ByteCount *ioBufferSize,
 ATSUCurvePaths *oPaths
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iGlyphID
A GlyphID value identifying the glyph for which to obtain an outline path.

ioBufferSize
A pointer to a ByteCount value specifying the size of the buffer you have allocated for the
ATSUCurvePaths structure in the oPaths parameter. On return, the value provides the actual size
of buffer needed to contain the produced ATSUCurvePaths structure.

oPaths
A pointer to an ATSUCurvePaths structure. On return, the ATSUCurvePaths structure contains a
value specifying the number of contours that comprise the glyph’s outline, as well as an array of
ATSUCurvePath structures, each of which defines a contour.

96 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Return Value
A result code. See “ATSUI Result Codes” (page 234). If the font is a protected font, returns
kATSUInvalidFontErr.

Discussion
This function only returns quadratic paths. The glyph outlines that are returned are the hinted outlines at
the font size specified in the style object. If you want to obtain unhinted outlines, set the font size to a very
large size, (for example, 1000 points) and then scale down the returned curves to the desired size. More
typically, however, you would use the functions ATSUGlyphGetCubicPaths (page 95) and
ATSUGlyphGetQuadraticPaths (page 98) when drawing curves.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGlyphGetIdealMetrics
Obtains resolution-independent font metric information for glyphs associated with a given style object.

OSStatus ATSUGlyphGetIdealMetrics (
 ATSUStyle iATSUStyle,
 ItemCount iNumOfGlyphs,
 GlyphID iGlyphIDs[],
 ByteOffset iInputOffset,
 ATSGlyphIdealMetrics oIdealMetrics[]
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iNumOfGlyphs
An ItemCount value specifying the number of glyphs to examine. This value should be the same as
the number of glyph IDs being passed in the iGlyphIDs parameter and the number of
ATSGlyphIdealMetrics structures for which memory is allocated in the oIdealMetricsparameter.

iGlyphIDs
A pointer to the first GlyphID value in an array of glyph IDs. Each ID should identify a glyph for which
to obtain font metric information.

iInputOffset
A ByteOffset value specifying the offset in bytes between glyph IDs in the iGlyphIDs array.

oIdealMetrics
A pointer to memory you have allocated for an array of ATSGlyphIdealMetrics structures. On
return, each structure contains advance and side-bearing values for a glyph.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The advance width is the full horizontal width of the glyph as measured from its origin to the origin of the
next glyph on the line, including the left-side and right-side bearings. For vertical text, the advance height
is the sum of the top-side bearing, the bounding-box height, and the bottom-side bearing.

Functions 97
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

You can call the ATSUGlyphGetIdealMetrics function to obtain an array of ATSGlyphIdealMetrics
structures containing values for the specified glyphs’ advance and side bearings.
ATSUGlyphGetIdealMetrics can analyze both horizontal and vertical text, automatically producing the
appropriate bearing values (oriented for width or height, respectively) for each.

You should call ATSUGlyphGetIdealMetrics to obtain resolution-independent glyph metrics. To obtain
device-adjusted (that is, resolution-dependent) glyph metrics, call the function
ATSUGlyphGetScreenMetrics (page 99).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGlyphGetQuadraticPaths
Obtains the quadratic outline paths for a glyph.

OSStatus ATSUGlyphGetQuadraticPaths (
 ATSUStyle iATSUStyle,
 GlyphID iGlyphID,
 ATSQuadraticNewPathUPP iNewPathProc,
 ATSQuadraticLineUPP iLineProc,
 ATSQuadraticCurveUPP iCurveProc,
 ATSQuadraticClosePathUPP iClosePathProc,
 void *iCallbackDataPtr,
 OSStatus *oCallbackResult
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iGlyphID
A GlyphID value identifying the glyph for which to obtain an outline path.

iNewPathProc
A pointer to your callback function for handling the new-path operation.

iLineProc
A pointer to your callback function for handling the line operation.

iCurveProc
A pointer to your callback function for handling the curve operation.

iClosePathProc
A pointer to your callback function for handling the close-path operation.

iCallbackDataPtr
A pointer to any data your callback functions need. This pointer is passed through to your callback
functions.

98 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oCallbackResult
On output, a value that indicates the status of your callback function. When a callback function returns
any value other than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline
and returns the result kATSOutlineParseAbortedErr.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The glyph outlines that are returned are the hinted outlines at the font size specified in the style object. If
you want to use unhinted outlines, set the font size to a very large size, (for example, 1000 points) and then
scale down the returned curves to the desired size.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGlyphGetScreenMetrics
Obtains device-adjusted font metric information for glyphs associated with a given style object.

OSStatus ATSUGlyphGetScreenMetrics (
 ATSUStyle iATSUStyle,
 ItemCount iNumOfGlyphs,
 GlyphID iGlyphIDs[],
 ByteOffset iInputOffset,
 Boolean iForcingAntiAlias,
 Boolean iAntiAliasSwitch,
 ATSGlyphScreenMetrics oScreenMetrics[]
);

Parameters
iATSUStyle

An ATSUStyle value specifying the style object to examine.

iNumOfGlyphs
An ItemCount value specifying the number of glyphs to examine. This value should be the same as
the number of glyph IDs being passed in the iGlyphIDs parameter and the number of
ATSGlyphScreenMetrics structures for which memory is allocated in the oScreenMetrics
parameter.

iGlyphIDs
A pointer to the first GlyphID value in an array of glyph IDs. Each ID should identify a glyph for which
to obtain font metric information.

iInputOffset
A ByteOffset value specifying the offset in bytes between glyph IDs in the iGlyphIDs array.

iForcingAntiAlias
A Boolean value indicating whether anti-aliasing is forced for the style object.

iAntiAliasSwitch
A Boolean value indicating whether anti-aliasing is currently on or off.

Functions 99
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oScreenMetrics
A pointer to memory you have allocated for an array of ATSGlyphScreenMetrics structures. On
return, each structure contains device-adjusted metrics for a glyph, including advance and side
bearings, but also values for the top left, height, and width of the glyph.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You can call the ATSUGlyphGetScreenMetrics function to obtain an array of ATSGlyphScreenMetrics
structures containing values for the specified glyphs’ advance and side bearings, top left, height, and width.

You should call ATSUGlyphGetScreenMetrics to obtain device-adjusted (that is, resolution-dependent)
glyph metrics. To obtain resolution-independent glyph metrics, call the function
ATSUGlyphGetIdealMetrics (page 97).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUHighlightInactiveText
Highlights previously selected text using an alpha value of 0.5.

OSStatus ATSUHighlightInactiveText (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iHighlightStart,
 UniCharCount iHighlightLength
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object containing the text range.

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to obtain the highlight
region relative to the current pen location in the current graphics port.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to obtain the highlight
region relative to the current pen location in the current graphics port.

100 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iHighlightStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range. If the range of text spans multiple lines, you should call
ATSUGetTextHighlight for each line, passing the offset corresponding to the beginning of the
new line with each call. To indicate that the specified text range starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iHighlightLength
parameter.

iHighlightLength
A UniCharCount value specifying the length of the text range. If you want the text range to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUHighlightText
Renders a highlighted range of text at a specified location in a QuickDraw graphics port or Quartz graphics
context.

OSStatus ATSUHighlightText (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iHighlightStart,
 UniCharCount iHighlightLength
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to render highlighted text.

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range to highlight. Pass
the constant kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to draw
relative to the current pen location in the current graphics port.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or graphics context) of the line containing the text range to highlight. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to draw relative to
the current pen location in the current graphics port.

Functions 101
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iHighlightStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to highlight. If the range of text spans multiple lines, you should call
ATSUHighlightText for each line, passing the offset corresponding to the beginning of the new
line to draw with each call. To indicate that the specified text range starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iHighlightLength
parameter.

iHighlightLength
A UniCharCount value specifying the length of the text range to highlight. If you want the range of
text to extend to the end of the text buffer, you can pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
When the user selects a series of glyphs, the characters in memory corresponding to the glyphs make up the
selection range and should be highlighted to indicate where the next editing operation is to occur. The
characters in a selection range are always contiguous in memory, but their corresponding glyphs are not
necessarily so onscreen. If the selection range crosses a direction boundary, it is appropriate to display
discontinuous highlighting.

The ATSUHighlightText function renders a highlighted range of text at a specified location in a QuickDraw
graphics port or Quartz graphics context, using the highlight information in the graphics port or context.
ATSUHighlightText automatically produces discontinuous highlighting, if needed. You typically call the
ATSUHighlightText function every time you need to draw or redraw highlighted text.

If you provide your own CGContextRef (for example, one created by calling the function QDBeginCGContext)
for an ATSUTextLayout, highlighting performed by calling the function ATSUHighlightTextwill not work
unless you first call the function ATSUSetHighlightingMethod with the iMethod parameter set to
kRedrawHighlighting and a pointer to an ATSUUnhighlightData structure as the iUnhighlightData
parameter.

Before drawing the highlighted text, ATSUHighlightText examines the text layout object to ensure that
each of the characters in the range is assigned to a style run. If there are gaps between style runs, ATSUI
assigns the characters in the gap to the style run that precedes (in storage order) the gap. If there is no style
run at the beginning of the text range, ATSUI assigns these characters to the first style run it finds. If there is
no style run at the end of the text range, ATSUI assigns the remaining characters to the last style run it finds.

ATSUHighlightText uses the previously set line ascent and descent values to calculate the height of the
highlighted region. If these values have not been set for the line, ATSUHighlightText uses the line ascent
and descent values set for the text layout object containing the line. If these are not set, it uses the default
values.

To draw a highlighted text range that spans multiple lines, you should call ATSUHighlightText for each
line of the text range, even if all the lines are in the same text layout object. You should adjust the
iHighlightStart parameter to reflect the beginning of each line to be drawn.

After calling ATSUHighlightText, to properly redraw the unhighlighted text and background, you should
always call the function ATSUUnhighlightText (page 140).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

102 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Declared In
ATSUnicodeDrawing.h

ATSULeftwardCursorPosition
Obtains the memory offset for the insertion point to the left of the high caret position, as determined by a
move of the specified length at a line direction boundary.

OSStatus ATSULeftwardCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOldOffset,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *oNewOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOldOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the current caret
position. To specify the beginning of the text buffer, pass the constant kATSUFromTextBeginning.
For bidirectional text, you can specify the previous layout by passing the constant
kATSUFromPreviousLayout and the following layout by passing the constant
kATSUFromFollowingLayout. See the Discussion for example code that shows how to use these
constants.

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 208) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

oNewOffset
A pointer to a UniCharArrayOffset value. On return, the value provides the memory offset
corresponding to the new insertion point. This offset may be outside the initial text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
Line direction boundaries can occur on the trailing edges of two glyphs, the leading edges of two glyphs, or
at the beginning or end of a text segment. At direction boundaries, a single insertion point in memory can
require two caret positions onscreen, one for text entry in each direction. The two separate carets (known
as a split caret or a dual caret) consist of a high caret and a low caret. The high (primary) caret is displayed
at the caret position for inserting text whose direction corresponds to the line direction (the dominant
direction for the overall line of text). The low (secondary) caret is displayed at the caret position for inserting
text whose direction is counter to the overall line direction.

The ATSURightwardCursorPosition function obtains the memory offset for the insertion point to the
left of the high caret position, as determined by a move of the specified length at a line direction boundary.

You should use the ATSULeftwardCursorPosition function or the function
ATSURightwardCursorPosition (page 118) to determine caret position when the user presses the right
and left arrow keys.

Functions 103
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Except in the case of Indic text (and other cases where the font rearranges the glyphs), for left-to-right text,
calling the function ATSULeftwardCursorPosition has the same effect as calling
ATSUPreviousCursorPosition (page 117). For right-to-left text, calling the function
ATSULeftwardCursorPosition has the same effect as calling ATSUNextCursorPosition (page 109).

The following code shows how to use the constants kATSUFromPreviousLayout and
kATSUFromFollowingLayout with the function ATSULeftwardCursorPosition:

typedef struct TLayoutWithEndOffset
{
 ATSUTextLayout layout;
 UInt32 endOffset;
};

typedef struct TLayoutsWithEndOffsets
{
 UInt32 count;
 TLayoutWithEndOffset layouts[];
}

UniCharArrayOffset MyAbsoluteToRelativeOffset (
 TLayoutsWithEndOffsets * iLayouts,
 UniCharArrayOffset iAbsoluteOffset);
UniCharArrayOffset MyRelativeToAbsoluteOffset (
 TLayoutsWithEndOffsets * iLayouts,
 UInt32 iLayoutIndex,
 UniCharArrayOffset iRelativeOffset);
UniCharArrayOffset MyGetLayoutEndOffset (
 TLayoutsWithEndOffsets * iLayouts,
 UInt32 iLayoutIndex);

/* Passing in current offset relative to the beginning of */
/* the entire text buffer (absolute), */
/* not just the current paragraph. This returns the new (absolute) */
/* offset relative to the beginning of the entire text buffer.*/
UniCharArrayOffset
MyLeftwardCursorPosition (TLayoutsWithEndOffsets * iLayouts,
 UInt32 iLayoutIndex,
 UniCharArrayOffset iAbsoluteOffset,
 ATSUCursorMovementType iType)
{
 OSStatus status;
 UInt32 newLayoutIndex = iLayoutIndex;
 UniCharArrayOffset newRelativeOffset;

 status = ATSULeftwardCursorPosition(
 iLayouts->layouts[iLayoutIndex].layout,
 MyAbsoluteToRelativeOffset (iLayouts, iAbsoluteOffset),
 iType, &newRelativeOffset);

 if (status == noErr)
 {
 /* If the API returns the same value as */
 /* that passed in then we're at */
 /* the edge of the layout so need to move */
 /* to the adjacent layout. f */
 /* If that value is zero then we're moving to the previous layout. */
 /* (This is left-to-right text.) */

104 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

 if ((newRelativeOffset == iRelativeOffset) &&
 (iRelativeOffset == 0))
 {
 /* Don't want to move before the first layout! */
 if (iLayoutIndex != 0)
 {
 /* Pass kATSUFromFollowingLayout to the previous */
 /* ATSUTextLayout. */
 /* Note that the returned offset is relative to
 /* the ATSUTextLayout passed in here.*/
 newLayoutIndex--;
 status = ATSULeftwardCursorPosition(
 iLayouts[newLayoutIndex],
 kATSUFromFollowingLayout,
 iType &newRelativeOffset);
 }
 }
 else
 {
 UniCharArrayOffset endAbsoluteOffset = MyGetLayoutEndOffset(
 iLayouts, iLayoutIndex);

 /* We've moved to the very end of this layout */
 /* (past the trailing carriage return presumably) */
 /* so we're moving to the following layout. */
 /* Make sure we aren't at the */
 /* end of the text buffer. (This is right-to-left text.) */
 if ((newRelativeOffset == MyAbsoluteToRelativeOffset (
 iLayouts, endAbsoluteOffset)) &&
 (iLayoutIndex != iLayouts->count))
 {
 newLayoutIndex++;
 status = ATSULeftwardCursorPosition(
 iLayouts->layouts[newLayoutIndex],
 kATSUFromPreviousLayout, iType,
 &newRelativeOffset);

 /* If we're moving from one paragraph to the following one */
 /* and we aren't at the beginning of the layout means
 /* that we're moving to a left-to-right */
 /* paragraph and we must back up one so that*/
 /* we're just before the line ending whitespace
 /* (space or <CR>), unless the */
 /* following layout is the last one. */
 if ((newRelOffset > 0) && (newLayoutIndex !=
 iLayouts->count))
 newRelativeOffset--;
 }
 }
 }
 return MyRelativeToAbsoluteOffset(iLayouts, newLayoutIndex,
 newRelativeOffset);
}

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 105
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Declared In
ATSUnicodeDrawing.h

ATSUMatchFontsToText
Examines a text range for characters that cannot be drawn with the current font and suggests a substitute
font, if necessary.

OSStatus ATSUMatchFontsToText (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iTextStart,
 UniCharCount iTextLength,
 ATSUFontID *oFontID,
 UniCharArrayOffset *oChangedOffset,
 UniCharCount *oChangedLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iTextStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the range to examine. To start at the beginning of the text buffer,
pass the constant kATSUFromTextBeginning.

iTextLength
A UniCharCount value specifying the length of the text range to examine. If you want the range of
text to extend to the end of the text buffer, you can pass the constant kATSUToTextEnd.

oFontID
A pointer to a ATSUFontID value. On return, the value provides a font ID for the suggested substitute
font or kATSUInvalidFontID, if no substitute font is available.

oChangedOffset
A pointer to a UniCharArrayOffset value. On return, this value specifies the offset from the
beginning of the text buffer to the first character that cannot be drawn with the current font.

oChangedLength
A pointer to a UniCharCount value. On return, this value specifies the length of the text range that
cannot be drawn with the current font.

Return Value
A result code. See “ATSUI Result Codes” (page 234). The result code noErr indicates that all the characters in
the given range can be rendered with their current font(s) and no font substitution is needed. If you receive
either of the result codes kATSUFontsMatched or kATSUFontsNotMatched, you should update the input
range and call ATSUMatchFontsToText again to ensure that all the characters in the range can be drawn.

Discussion
When you call the ATSUMatchFontsToText function, ATSUI scans the given range of text for characters
that cannot be drawn with the currently assigned font. When ATSUI finds such a character, it identifies a
substitute font for drawing the character. ATSUI then continues scanning the text range for subsequent
characters that cannot be drawn, stopping when it

 ■ finds a character that can be drawn with the currently assigned font, or

 ■ finds a character that cannot be drawn with either the currently assigned font or the substitute font, or

106 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

 ■ reaches the end of the text range you have specified

ATSUI’s default behavior for finding a substitute font is to recommend the first valid font that it finds when
scanning the fonts in the user’s system. ATSUI first searches in the standard application fonts for various
languages. If that fails, ATSUI searches through the remaining fonts on the system in the order in which the
Font Manager returns the fonts. After ATSUI has searched all the fonts in the system, any unmatched text is
drawn using the last-resort font. That is, missing glyphs are represented by and empty box to indicate to the
user that a valid font for that character is not installed on their system. You can alter ATSUI’s default search
behavior by calling the function ATSUCreateFontFallbacks (page 39) and defining your own font fallback
settings for the text layout object.

So, for example, if the subrange of text for which you wanted to perform font substitution was the text
“abcde”, and the characters ‘c’ and ‘d’ could not be drawn with the current font, but could be drawn with
font X, and the character ‘e’ either could be drawn with the current font or could not be drawn with font X,
then ATSUMatchFontsToText produces the ID of font X in the oFont parameter and sets the
oChangedOffset parameter to 2 and the oChangedLength parameter to 2.

Because ATSUI does not necessarily completely scan the text range you specify with each call to
ATSUMatchFontsToText, if ATSUI does find any characters that cannot be rendered with their current font,
you should call ATSUMatchFontsToText again and update the input range to check that all the subsequent
characters in the range can be drawn. For that reason, you should call ATSUMatchFontsToText from within
a loop to assure that the entire range of text is checked.

Note that calling ATSUMatchFontsToText does not cause the suggested font substitution to be performed.
If you want ATSUI to perform font substitution for you, you can call the function
ATSUSetTransientFontMatching (page 132).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUMeasureTextImage
Obtains the image bounding rectangle for a line of text after final layout.

OSStatus ATSUMeasureTextImage (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineOffset,
 UniCharCount iLineLength,
 ATSUTextMeasurement iLocationX,
 ATSUTextMeasurement iLocationY,
 Rect *oTextImageRect
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

Functions 107
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iLineOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the line to examine. To indicate that the specified line starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iLineLengthparameter.

iLineLength
A UniCharCount value specifying the length of the text range. If you want the range of text to extend
to the end of the text buffer, you can pass the constant kATSUToTextEnd. However, the image
bounds is restricted to the line in which iLineOffset resides.

iLocationX
An ATSUTextMeasurement value specifying the x-coordinate of the line’s origin in the current
graphics port or Quartz graphics context. Pass the constant kATSUUseGrafPortPenLoc, described
in “Convenience Constants” (page 209), for the dimensions of the bounds relative to the current pen
location in the current graphics port or graphics context. You can pass 0 to obtain only the dimensions
of the bounding rectangle relative to one another, not their actual onscreen position.

iLocationY
An ATSUTextMeasurement value specifying the y-coordinate of the line’s origin in the current
graphics port or Quartz graphics context. Pass the constant kATSUUseGrafPortPenLoc, described
in “Convenience Constants” (page 209), for the dimensions of the bounds relative to the current pen
location in the current graphics port or graphics context. You can pass 0 to obtain only the dimensions
of the bounding rectangle relative to one another, not their actual onscreen position.

oTextImageRect
A pointer to a Rect structure. On return, the structure contains the dimensions of the image bounding
rectangle for the text, offset by the values specified in the iLocationX and iLocationY parameters.
If the line is rotated, the sides of the rectangle are parallel to the coordinate axis.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUMeasureTextImage function obtains the image bounds of a laid-out line of text. These bounds
are described by the smallest rectangle that completely encloses the filled or framed parts of a block of
text—that is, the text’s “inked” glyphs.

In measuring the line, the ATSUMeasureTextImage function takes into account line rotation, alignment,
and justification, as well as other characteristics that affect layout, such as hanging punctuation. (If the line
is rotated, the sides of the rectangle are parallel to the coordinate axes and encompass the rotated line.) If
no attributes are set for the line, ATSUMeasureTextImage uses the global attributes set for the text layout
object.

Because the height of the image bounding rectangle is determined by the actual device metrics,
ATSUMeasureTextImage ignores any previously set line ascent and descent values for the line it is measuring.

Before calculating the image bounds for the text range, the ATSUMeasureTextImage function examines
the text layout object to ensure that each of the characters in the range is assigned to a style run. If there
are gaps between style runs, ATSUMeasureTextImage assigns the characters in the gap to the style run
that precedes (in storage order) the gap. If there is no style run at the beginning of the text range, the
ATSUMeasureTextImage function assigns these characters to the first style run it finds. If there is no style
run at the end of the text range, ATSUMeasureTextImage assigns the remaining characters to the last style
run it finds.

108 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

To obtain the final typographic bounds of a line, call the function ATSUGetGlyphBounds (page 75). To
calculate the unjustified typographic bounds of a line, call the function ATSUGetUnjustifiedBounds (page
93).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUNextCursorPosition
Obtains the memory offset for the insertion point that follows the current insertion point in storage order,
as determined by a move of the specified length.

OSStatus ATSUNextCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOldOffset,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *oNewOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOldOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the current caret
position. To specify the beginning of the text buffer, pass the constant kATSUFromTextBeginning.

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 208) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

oNewOffset
A pointer to a UniCharArrayOffset value. On return, the value provides the memory offset
corresponding to the following insertion point. This offset may be outside the initial text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUNextCursorPosition function obtains the memory offset for the insertion point that follows the
current insertion point in storage order, as determined by a move of the specified length.

You should use the ATSUNextCursorPosition function or the function
ATSUPreviousCursorPosition (page 117) to determine caret position when the initial memory offset is
not at a line direction boundary. If the initial offset is at a line direction boundary, you should instead use
the functions ATSURightwardCursorPosition (page 118) or ATSULeftwardCursorPosition (page 103).

Availability
Available in Mac OS X v10.0 and later.

Functions 109
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUOffsetToCursorPosition
Obtains the caret position(s) corresponding to a memory offset, after a move of the specified length.

OSStatus ATSUOffsetToCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOffset,
 Boolean iIsLeading,
 ATSUCursorMovementType iMovementType,
 ATSUCaret *oMainCaret,
 ATSUCaret *oSecondCaret,
 Boolean *oCaretIsSplit
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the glyph edge nearest
the event, after a movement of the specified type. You can obtain this value by examining the offset
produced in theioPrimaryOffsetparameter of the functionATSUPositionToCursorOffset (page
113).

iIsLeading
A Boolean value indicating whether the specified offset corresponds to the leading or trailing edge
of the glyph. You can obtain this information from the functionATSUPositionToCursorOffset (page
113). This value is relevant if the offset occurs at a line direction boundary or within a glyph cluster.

iMovementType
An ATSUCursorMovementType constant identifying the unit of cursor movement. See “Caret
Movement Types” (page 208) for a description of possible values (which range from a single Unicode
character to a Unicode word in length). Note that ATSUI may not be able to move the cursor by a
single Unicode character in some cases, since doing so might place the cursor in the middle of a
surrogate pair.

oMainCaret
A pointer to an ATSUCaret structure. On return, the structure contains the starting and ending pen
locations of the high caret if the value produced in the oCaretIsSplit parameter is true. If the
value is false, the structure contains the starting and ending pen locations of the main caret.

oSecondCaret
A pointer to an ATSUCaret structure. On return, the structure contains the starting and ending pen
locations of the low caret if the value passed back in the oCaretIsSplit parameter is true. If the
value is false, the structure contains the starting and ending pen locations of the main caret (that
is, the same values as the oMainCaret parameter).

oCaretIsSplit
A pointer to a Boolean value. On return, the value indicates whether the offset specified in the
iOffset parameter occurs at a line direction boundary. If true, the offset occurs at a line direction
boundary; otherwise, false.

110 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUOffsetToPosition
Obtains the caret position(s) corresponding to a memory offset.

OSStatus ATSUOffsetToPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOffset,
 Boolean iIsLeading,
 ATSUCaret *oMainCaret,
 ATSUCaret *oSecondCaret,
 Boolean *oCaretIsSplit
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOffset
A UniCharArrayOffset value specifying the memory offset for which to obtain the corresponding
caret position. To respond to a mouse-down event, pass the offset produced in the ioPrimaryOffset
parameter of the function ATSUPositionToOffset (page 115)—that is, the offset corresponding to
the glyph edge closest to the event.

iIsLeading
A Boolean value indicating whether the offset corresponds to the leading or trailing edge of the
glyph. You can obtain this information from the function ATSUPositionToOffset (page 115). This
value is relevant if the offset occurs at a line direction boundary or within a glyph cluster.

oMainCaret
A pointer to an ATSUCaret structure. On return, the structure contains the starting and ending pen
locations of the high caret if the value produced in oCaretIsSplit is true. If the value is false,
the structure contains the starting and ending pen locations of the main caret.

oSecondCaret
A pointer to an ATSUCaret structure. On return, the structure contains the starting and ending pen
locations of the low caret if the value passed back in the oCaretIsSplit parameter is true. If the
value is false, the structure contains the starting and ending pen locations of the main caret (that
is, the same values as the oMainCaret parameter).

oCaretIsSplit
A pointer to a Boolean value. On return, the value indicates whether the offset specified in the
iOffset parameter occurs at a line direction boundary. If true, the offset occurs at a line direction
boundary; otherwise, false.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Functions 111
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The process of hit-testing text obtains the location of a mouse-down event relative both to the position of
onscreen glyphs and to the corresponding offset between character codes in memory. You can then use the
location information obtained by hit-testing to set the insertion point (that is, the caret) or selection range
(for highlighting).

Hit-testing text is complicated by the fact that a given line of text may be bidirectional. Therefore, the onscreen
order of glyphs may not readily correspond to the storage order of the corresponding character codes. And
the concept of which glyph comes “first” in a line of text cannot always be limited to the visual terms “left”
and “right.” Because of these complexities, it is more accurate to speak in terms of “leading” and “trailing”
edges to glyphs. A “leading edge” is defined as the edge of a glyph that you first encounter when you read
the text that includes that glyph. For example, when reading Roman text, you first encounter the left edge
of a Roman glyph. Similarly, the “trailing edge” is defined as the edge of the glyph encountered last.

ATSUI can translate the location of a mouse click into an onscreen position, as well as to a memory offset.
When you use ATSUI for hit-testing, ATSUI takes into account the glyph edge (whether leading or trailing)
nearest to where the click occurred, thus providing positional information in complex situations, such as at
line direction boundaries or within glyph clusters.

Line direction boundaries can occur on the trailing edges of two glyphs, the leading edges of two glyphs, or
at the beginning or end of a text segment. At direction boundaries, a single insertion point in memory can
require two caret positions onscreen, one for text entry in each direction. The two separate carets (known
as a split caret or a dual caret) consist of a high caret and a low caret. The high (primary) caret is displayed
at the caret position for inserting text whose direction corresponds to the line direction (the dominant
direction for the overall line of text). The low (secondary) caret is displayed at the caret position for inserting
text whose direction is counter to the overall line direction.

The first step in obtaining the caret position(s) for a mouse-down event is to pass the location (in local
coordinates, relative to the line origin) of the event to the function ATSUPositionToOffset (page 115). The
ATSUPositionToOffset function produces the memory offset corresponding to the glyph edge nearest
the event. If the mouse-down event occurs at a line direction boundary or within a glyph cluster, the
ATSUPositionToOffset function produces two offsets. You can then provide the offset(s) to the
ATSUOffsetToPosition function, to obtain the actual caret position(s) for the event.

The ATSUOffsetToPosition function produces two structures of type ATSUCaret. These structures contain
the pen positioning information needed to draw the caret(s) for the event, specified relative to the origin of
the line in the current graphics port or graphics context. Specifically, the ATSUCaret structures contain x-y
coordinates for both the caret’s starting and ending pen positions (the latter taking into account line rotation,
caret slanting, and split-caret appearances).

If the memory offset you pass to ATSUOffsetToPosition is at a line boundary, the structure produced in
the oMainCaret parameter contains the starting and ending pen locations for the high caret, while the
oSecondCaret parameter contains the corresponding values for the low caret. If the offset is not at a line
boundary, both parameters contain the starting and ending pen locations of the main caret.

Because you provide the ATSUOffsetToPosition function an offset relative to the origin of the line where
the hit occurred, ATSUOffsetToPosition produces positioning information that is also relative. Therefore,
you must transform the positions produced by the ATSUOffsetToPosition function before drawing the
caret(s). To transform the caret location(s), add the starting and ending caret coordinates to the coordinates
of the origin of the line in which the hit occurred. For example, if ATSUOffsetToPosition produces starting
and ending pen locations of (25,0), (25,25) in the oMainCaret parameter (and the oSecondCaret parameter
contains the same coordinates, meaning that the caret was not split), you would add these to the position
of the origin of the line in the graphics port or context. If the position of the line origin was at (50,50), then
the starting and ending pen locations of the caret would be (75,50), (75,75).

112 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUOverwriteAttributes
Copies to a destination style object the nondefault style attribute settings of a source style object.

OSStatus ATSUOverwriteAttributes (
 ATSUStyle iSourceStyle,
 ATSUStyle iDestinationStyle
);

Parameters
iSourceStyle

An ATSUStyle value specifying the style object from which to copy nondefault style attributes.

iDestinationStyle
An ATSUStyle value specifying the style object containing the style attributes to be overwritten.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUOverwriteAttributes function copies all nondefault style attribute values from a source style
object to a destination style object. The source object’s nondefault values are applied to the destination
object whether or not the destination object also has nondefault values for the copied attributes. All other
settings in the destination style object are left unchanged.

ATSUOverwriteAttributes does not copy the contents of memory referenced by pointers within custom
style attributes or within reference constants. You are responsible for ensuring that this memory remains
valid until both the source and destination style objects are disposed of.

To create a style object that contains all the contents of another style object, call the function
ATSUCreateAndCopyStyle (page 38). To copy all the style attributes (including any default settings) of a
style object into an existing style object, call the function ATSUCopyAttributes (page 32). To copy style
attributes that are set in the source but not in the destination style object, call the function
ATSUUnderwriteAttributes (page 138).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUPositionToCursorOffset
Obtains the memory offset for the glyph edge nearest a mouse-down event, after a move of the specified
length.

Functions 113
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUPositionToCursorOffset (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iLocationX,
 ATSUTextMeasurement iLocationY,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *ioPrimaryOffset,
 Boolean *oIsLeading,
 UniCharArrayOffset *oSecondaryOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object in which the mouse-down event occurred.

iLocationX
An ATSUTextMeasurement value specifying the x-coordinate of the event, in local coordinates,
relative to the origin of the line where the event occurred. That is, to specify the x-coordinate value,
you should subtract the x-coordinate of the line origin from the x-coordinate of the event (in local
coordinates). You can pass the constant kATSUUseGrafPortPenLoc, described in “Convenience
Constants” (page 209), for the location of the mouse-down event relative to the current pen location
in the current graphics port.

iLocationY
An ATSUTextMeasurement value specifying the y-coordinate of the event, in local coordinates,
relative to the origin of the line where the event occurred. That is, to specify the y-coordinate value,
you should subtract the y-coordinate of the line origin from the y-coordinate of the event (in local
coordinates). You can pass the constant kATSUUseGrafPortPenLoc, described in “Convenience
Constants” (page 209), for the location of the mouse-down event relative to the current pen location
in the current graphics port.

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 208) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

ioPrimaryOffset
A pointer to a UniCharArrayOffset value specifying the offset corresponding to the beginning of
the line where the event occurred. On return, the value specifies the offset corresponding to the glyph
edge nearest the event, after a movement of the specified type. This offset corresponds to where the
insertion point would be placed after the move. To determine whether this offset indicates the leading
or trailing edge of the glyph, you can examine the value produced in the oIsLeading parameter.

oIsLeading
A pointer to a Boolean value. On return, the value indicates whether the offset produced in the
ioPrimaryOffset parameter is leading or trailing. The ATSUPositionToOffset function produces
a value of true if the offset is leading (that is, more closely associated with the subsequent character
in memory). It produces a value of false if the offset is trailing (that is, more closely associated with
the preceding character in memory).

oSecondaryOffset
A pointer to a UniCharArrayOffset value. On return, the value typically specifies the same offset
as that produced in the ioPrimaryOffset parameter, unless the event occurred within a glyph
cluster or at a line direction boundary. If so, the value specifies the secondary offset, for the glyph
edge furthest from the event.

114 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUPositionToCursorOffset function produces the memory offset for the glyph edge nearest a
mouse-down event, after a move of the specified length. This offset corresponds to where an insertion point
would be placed after the move.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUPositionToOffset
Obtains the memory offset for the glyph edge nearest a mouse-down event.

OSStatus ATSUPositionToOffset (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iLocationX,
 ATSUTextMeasurement iLocationY,
 UniCharArrayOffset *ioPrimaryOffset,
 Boolean *oIsLeading,
 UniCharArrayOffset *oSecondaryOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object in which the mouse-down event occurred.

iLocationX
An ATSUTextMeasurement value specifying the x-coordinate of the event, in local coordinates,
relative to the origin of the line where the event occurred. That is, to specify the x-coordinate value,
you should subtract the x-coordinate of the line origin from the x-coordinate of the hit point (in local
coordinates). You can pass the constant kATSUUseGrafPortPenLoc, described in “Convenience
Constants” (page 209), for the location of the mouse-down event relative to the current pen location
in the current graphics port.

iLocationY
An ATSUTextMeasurement value specifying the y-coordinate of the event, in local coordinates,
relative to the origin of the line where the event occurred. That is, to specify the y-coordinate value,
you should subtract the y-coordinate of the line origin from the y-coordinate of the hit point (in local
coordinates). You can pass the constant kATSUUseGrafPortPenLoc, described in “Convenience
Constants” (page 209), for the location of the mouse-down event relative to the current pen location
in the current graphics port.

ioPrimaryOffset
A pointer to a UniCharArrayOffset value specifying the offset corresponding to the beginning of
the line where the event occurred. On return, the value specifies the offset corresponding to the glyph
edge that is visually closest to the event. To determine whether this offset indicates the leading or
trailing edge of the glyph, you can examine the value produced in the oIsLeading parameter.

Functions 115
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oIsLeading
A pointer to a Boolean value. On return, the value indicates whether the offset produced in the
ioPrimaryOffset parameter is leading or trailing. The function ATSUPositionToOffset produces
a value of true if the offset is leading (that is, more closely associated with the subsequent character
in memory). It produces a value of false if the offset is trailing (that is, more closely associated with
the preceding character in memory).

oSecondaryOffset
A pointer to a UniCharArrayOffset value. On return, the value typically specifies the same offset
as that produced in the ioPrimaryOffset parameter, unless the event occurred within a glyph
cluster or at a line direction boundary. If so, the value specifies a secondary offset. The secondary
offset is associated with the glyph that has a different direction from the primary line direction.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The process of hit-testing text obtains the location of a mouse-down event relative both to the position of
onscreen glyphs and to the corresponding offset between character codes in memory. You can then use the
location information obtained by hit-testing to set the insertion point (that is, the caret) or selection range
(for highlighting).

Hit-testing text is complicated by the fact that a given line of text may be bidirectional. Therefore, the onscreen
order of glyphs may not readily correspond to the storage order of the corresponding character codes. And
the concept of which glyph comes “first” in a line of text cannot always be limited to the visual terms “left”
and “right.” Because of these complexities, it is more accurate to speak in terms of “leading” and “trailing”
edges to glyphs. A “leading edge” is defined as the edge of a glyph that you first encounter when you read
the text that includes that glyph. For example, when reading Roman text, you first encounter the left edge
of a Roman glyph. Similarly, the “trailing edge” is defined as the edge of the glyph encountered last.

ATSUI can translate the location of a mouse click into an onscreen position, as well as to a memory offset.
When you use ATSUI for hit-testing, ATSUI takes into account the glyph edge (whether leading or trailing)
nearest to where the click occurred, thus providing positional information in complex situations, such as at
line direction boundaries or within glyph clusters.

The first step in obtaining the caret position(s) for a mouse-down event is to pass the location (in local
coordinates, relative to the line origin) of the event to the function ATSUPositionToOffset. For example,
if you have a mouse-down event whose position in local coordinates is (75,50), you would subtract this value
from the position of the origin of the line in the current graphics port. If the position of the origin of the line
in the current graphics port is (50,50), then the relative position of the event that you would pass in the
iLocationX and iLocationY parameters is (25,0).

The ATSUPositionToOffset function produces the memory offset corresponding to the glyph edge nearest
the event. If the mouse-down event occurs at a line direction boundary or within a glyph cluster,
ATSUPositionToOffset produces two offsets. You can then provide the offset(s) to the
ATSUOffsetToPosition (page 111) function, to obtain the actual caret position(s) for the event.

When you call the ATSUPositionToOffset function, ATSUI examines the Unicode directionality of the
character corresponding to the event location. The ATSUPositionToOffset function produces a value of
true in the oIsLeading parameter if the offset is leading (that is, more closely associated with the subsequent
character in memory and therefore indicative of a left-to-right line direction). It produces a value of false
if the offset is trailing (that is, more closely associated with the preceding character in memory and indicative
of a right-to-left line direction).

116 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Finally, note that when the event occurs beyond the leftmost or rightmost caret positions of the line (not
taking into account line rotation), such that no glyph corresponds to the location of the hit, the
ATSUPositionToOffset function produces the primary offset of the closest edge of the line to the input
location. The oIsLeading flag depends on the directionality of the closest glyph and the side of the line to
which the input location is closest. In this case, the secondary offset is equal to the primary offset, since no
glyph was hit.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeDrawing.h

ATSUPreviousCursorPosition
Obtains the memory offset for the insertion point that precedes the current insertion point in storage order,
as determined by a move of the specified length.

OSStatus ATSUPreviousCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOldOffset,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *oNewOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOldOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the current caret
position. To specify the beginning of the text buffer, pass the constant kATSUFromTextBeginning,

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 208) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

oNewOffset
A pointer to a UniCharArrayOffset value. On return, the value provides the memory offset
corresponding to the preceding insertion point. This offset may be outside the initial text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUPreviousCursorPosition function obtains the memory offset for the insertion point that precedes
the current insertion point in storage order, as determined by a move of the specified length.

You should use the ATSUPreviousCursorPosition function or the function
ATSUNextCursorPosition (page 109) to determine caret position when the initial offset is not at a line
direction boundary. If the initial offset is at a line direction boundary, you should instead use the functions
ATSURightwardCursorPosition (page 118) or ATSULeftwardCursorPosition (page 103).

Functions 117
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSURightwardCursorPosition
Obtains the memory offset for the insertion point to the right of the high caret position, as determined by
a move of the specified length at a line direction boundary.

OSStatus ATSURightwardCursorPosition (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iOldOffset,
 ATSUCursorMovementType iMovementType,
 UniCharArrayOffset *oNewOffset
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object to examine.

iOldOffset
A UniCharArrayOffset value specifying the memory offset corresponding to the current caret
position. To specify the beginning of the text buffer, pass the constant kATSUFromTextBeginning.
For bidirectional text, you can specify the previous layout by passing the constant
kATSUFromPreviousLayout and the following layout by passing the constant
kATSUFromFollowingLayout. See the Discussion for the function
ATSULeftwardCursorPosition (page 103) for an example of how these constants can be used.

iMovementType
An ATSUCursorMovementType constant identifying the unit of movement. See “Caret Movement
Types” (page 208) for a description of possible values (which range from a single Unicode character
to a Unicode word in length). Note that ATSUI may not be able to move the caret by a single Unicode
character in some cases, since doing so might place the insertion point in the middle of a surrogate
pair.

oNewOffset
A pointer to a UniCharArrayOffset value. On return, the value provides the memory offset
corresponding to the new insertion point. This offset may be outside the initial text buffer.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
Line direction boundaries can occur on the trailing edges of two glyphs, the leading edges of two glyphs, or
at the beginning or end of a text segment. At direction boundaries, a single insertion point in memory can
require two caret positions onscreen, one for text entry in each direction. The two separate carets (known
as a split caret or a dual caret) consist of a high caret and a low caret. The high (primary) caret is displayed
at the caret position for inserting text whose direction corresponds to the line direction (the dominant
direction for the overall line of text). The low (secondary) caret is displayed at the caret position for inserting
text whose direction is counter to the overall line direction.

The ATSURightwardCursorPosition function obtains the memory offset for the insertion point to the
right of the high caret position, as determined by a move of the specified length at a line direction boundary.

118 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

You should use the ATSURightwardCursorPosition function or the function
ATSULeftwardCursorPosition (page 103) to determine caret position when the user presses the right
and left arrow keys.

Except in the case of Indic text (and other cases where the font rearranges the glyphs), for left-to-right text,
calling the function ATSURightwardCursorPosition has the same effect as calling
ATSUNextCursorPosition (page 109). For right-to-left text, calling the function
ATSURightwardCursorPosition has the same effect as calling ATSUPreviousCursorPosition (page
117).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUSetAttributes
Sets style attribute values in a style object.

OSStatus ATSUSetAttributes (
 ATSUStyle iStyle,
 ItemCount iAttributeCount,
 const ATSUAttributeTag iTag[],
 const ByteCount iValueSize[],
 const ATSUAttributeValuePtr iValue[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to set attributes.

iAttributeCount
An ItemCount value specifying the number of attributes to set. This value should correspond to the
number of elements in the iTag and iValueSize arrays.

iTag
A pointer to the initial ATSUAttributeTag value in an array of attribute tags. Each element in the
array must contain a valid style attribute tag that corresponds to the style attribute value to set. Note
that an attribute tag cannot be used in versions of the Mac OS that are earlier than the version in
which the tag was introduced. For example, a tag available in Mac OS version 10.2 cannot be used in
Mac OS version 10.1 or earlier. You can call the function Gestalt to check version information for ATSUI.
See “Attribute Tags” (page 196) for a description of the Apple-defined style attribute tag constants
and for availability information.

iValueSize
A pointer to the initial ByteCount value in an array of attribute value sizes. Each element in the array
must contain the size (in bytes) of the corresponding style run attribute value being set.
ATSUSetAttributes sets style attributes after confirming the sizes in the array.

iValue
A pointer to the initial ATSUAttributeValuePtr value in an array of attribute value pointers. Each
pointer in the array must reference an attribute value corresponding to a tag in the iTag array. The
value referenced by the pointer must be legal for that tag.

Functions 119
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Return Value
A result code. See “ATSUI Result Codes” (page 234). If there is a function error, ATSUSetAttributes does
not set any attributes in the style object.

Discussion
Style attributes are a collection of values and settings that override the font-specified behavior for displaying
and formatting text in a style run. To specify a style attribute, ATSUI uses a “triple” consisting of (1) an attribute
tag, (2) a value for that tag, and (3) the size of the value.

The ATSUSetAttributes function enables you to set multiple style attribute values for a style object. When
you call ATSUSetAttributes, any style attributes that you do not set retain their previous values. To set
font features and font variations, call the functions ATSUSetFontFeatures (page 120) and
ATSUSetVariations (page 133), respectively.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUSetFontFeatures
Sets font features in a style object.

OSStatus ATSUSetFontFeatures (
 ATSUStyle iStyle,
 ItemCount iFeatureCount,
 const ATSUFontFeatureType iType[],
 const ATSUFontFeatureSelector iSelector[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to set font features.

iFeatureCount
An ItemCount value specifying the number of font features to set. This value should correspond to
the number of elements in the iType and iSelector arrays.

iType
A pointer to the initial ATSUFontFeatureType value in an array of feature types. Each element in
the array must contain a valid feature type that corresponds to a feature selector in the iSelector
array. To obtain the valid feature types for a font, call the function ATSUGetFontFeatureTypes (page
70).

iSelector
A pointer to the initial ATSUFontFeatureSelector value in an array of feature selectors. Each
element in the array must contain a valid feature selector that corresponds to a feature type in the
iType array. To obtain the valid feature selectors for a font, call the function
ATSUGetFontFeatureSelectors (page 68).

Return Value
A result code. See “ATSUI Result Codes” (page 234).

120 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The ATSUSetFontFeatures function enables you to set multiple font features for a style object. Any unset
font features retain their font-defined default values. To set style attributes and font variations for a style
object, call the functions ATSUSetAttributes (page 119) and ATSUSetVariations (page 133), respectively.

The constants that represent font feature types are defined in the header file SFNTLayoutTypes.h. When
you use ATSUI to access and set font features, you must use the constants defined in this header file, which
are described in Inside Mac OS X: Rendering Unicode Text With ATSUI. As feature types can be added at any
time, you should check Apple’s font feature registry website for the most up-to-date list of font feature types
and selectors: http://developer.apple.com/fonts/Registry/index.html.

Version Notes
Prior to ATSUI 1.2, ATSUSetFontFeatures does not remove contradictory font features. You are responsible
for maintaining your own list and removing contradictory settings when they occur. Beginning with ATSUI
1.2, ATSUSetFontFeatures removes contradictory font features if they are set.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeFonts.h

ATSUSetHighlightingMethod
Sets the method ATSUI uses to highlight and unhighlight text for a text layout object.

OSStatus ATSUSetHighlightingMethod (
 ATSUTextLayout iTextLayout,
 ATSUHighlightMethod iMethod,
 const ATSUUnhighlightData *iUnhighlightData
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to set the highlighting method.

iMethod
An ATSUHighlightMethod value specifying the type of highlighting for ATSUI to use
(kInvertHighlighting or kRedrawHighlighting). The default highlighting method, if you do
not call ATSUSetHighlightingMethod, is inversion. See “Highlight Methods” (page 219) for a
description of available values.

iUnhighlightData
A pointer to an ATSUUnhighlightData structure if you are setting the iMethod parameter to
kRedrawHighlighting or NULL if setting iMethod to kInvertHighlighting. Before calling
ATSUSetHighlightingMethod, you should set the ATSUUnhighlightData structure to contain
the data needed (either a color or a UPP for a background drawing callback) to redraw the background.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
In Mac OS 9 and by default in Mac OS X (except with Cocoa applications—see below), ATSUI highlights text
by “inverting” the region containing the text, that is, its background color. Although inversion provides
satisfactory highlighting in most cases, it does not always provide the best result for grayscale text. (Mac OS
X sets a lower threshold for antialiasing, while in Mac OS 9 grayscale text can be turned off by the user.)

Functions 121
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

http://developer.apple.com/fonts/Registry/index.html

In Mac OS X, when using a Quartz graphics context, you can instruct ATSUI to use the redraw method of
highlighting, rather than simple inversion. (Note that Cocoa applications always use the redraw method of
highlighting.) The redraw method allows for accurate highlighting of more complex backgrounds, such as
those containing multiple colors, patterns, or pictures. To set redrawing on, call the
ATSUSetHighlightingMethod function and specify that the redraw method be used (by passing
kRedrawHighlighting in the iMethod parameter).

If you specify the redraw method of highlighting when you call ATSUSetHighlightingMethod, then you
must also specify how the background is to be redrawn when the function ATSUUnhighlightText (page
140) is called. ATSUI can restore the desired background in one of two ways, depending on the background’s
complexity:

 ■ When the background is a single color (such as white), ATSUI can readily unhighlight the background.
In such a case, you specify the background color that ATSUI uses by calling
ATSUSetHighlightingMethodand settingiUnhighlightData.dataType tokATSUBackgroundColor
and providing the background color in iUnhighlightData.unhighlightData. With these settings
defined, when you call ATSUUnhighlightText, ATSUI simply calculates the previously highlighted
area, repaints it with the specified background color, and then redraws the text.

 ■ When the background is more complex (containing, for example, multiple colors, patterns, or pictures),
you must provide a redraw background callback function when you call ATSUSetHighlightingMethod.
You do this by setting iUnhighlightData.dataType to kATSUBackgroundCallback and providing
a RedrawBackgroundUPP in iUnhighlightData.unhighlightData. Then when you call
ATSUUnhighlightText and ATSUI calls your callback, you are responsible for redrawing the background
of the unhighlighted area. If you choose to also redraw the text, then your callback should return false
as a function result. If your callback returns true ATSUI redraws any text that needs to be redrawn. See
RedrawBackgroundProcPtr (page 165) for additional information.

Version Notes
Mac OS 9 applications cannot use the redraw method of highlighting and must use the inversion method,
instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUSetLayoutControls
Sets layout control attribute values in a text layout object.

122 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUSetLayoutControls (
 ATSUTextLayout iTextLayout,
 ItemCount iAttributeCount,
 const ATSUAttributeTag iTag[],
 const ByteCount iValueSize[],
 const ATSUAttributeValuePtr iValue[]
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set layout control attributes.

iAttributeCount
An ItemCount value specifying the number of attributes to set. This value should correspond to the
number of elements in the iTag and iValueSize arrays.

iTag
A pointer to the initial ATSUAttributeTag value in an array of layout control attribute tags. Each
element in the array must contain a valid tag that corresponds to the layout control attribute to set.
See “Attribute Tags” (page 196) for a description of the Apple-defined layout control attribute tag
constants.

iValueSize
A pointer to the initial ByteCount value in an array of attribute value sizes. Each element in the array
must contain the size (in bytes) of the corresponding layout control attribute being set.
ATSUSetLayoutControls sets layout attributes after confirming the sizes in the array.

iValue
A pointer to the initial ATSUAttributeValuePtr value in an array of attribute value pointers. Each
value in the array must correspond to a tag in the iTag array and be a legal value for that tag.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
When you use ATSUI to image your text, you can control the text’s display and formatting at a number of
different levels.

One level is that of the entire text range associated with your text layout object, also known as the “layout
level.” To affect display and formatting on this level, you can specify various layout control attributes using
the ATSUSetLayoutControls function. These attributes affect the width of the text area from margin to
margin, the alignment of the text, its justification, rotation, and direction, as well as other layout options.

Another level is that of a single line of text, that is, the “line level.” To affect display and formatting on this
level, you specify various line control attributes via the function ATSUSetLineControls (page 124). These
attributes are similar to those that you can apply on a full-layout basis, but each affects only an individual
text line.

Given that ATSUI allows you to control similar aspects of the display and formatting of your text at either the
line level or the layout level (or both, or neither), it is up to you to decide how much layout control to take.
However, you should note the following:

 ■ Setting layout control attributes overrides the corresponding default layout-level settings for a text
layout object. Any layout attributes that you do not set retain the default values described in “Attribute
Tags” (page 196).

Functions 123
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

 ■ Setting line control attributes overrides the corresponding layout-level settings (whether set or at default
values) for a text layout object. This is true even if you set the layout-level attributes subsequently to the
line-level ones.

 ■ From a performance standpoint, it is preferable to work from the layout level and not specify layout line
by line unless necessary.

Finally, it is also possible to control the display and formatting of your text at the level of an individual
character or “run” of characters. At this level, you customize layout by manipulating style settings in a style
object. Among the character-level aspects you can control are style attributes (such as font size and color),
font features (such as ligatures), and font variations (such as continually varying font weights or widths).
However, there are certain line control attributes (specified via the ATSLineLayoutOptions flags) that can
override style attributes applied to the same text.

Similarly to style attributes, you use a “triple” to specify a line or layout control attribute. That is, an attribute
tag, the value of the attribute it sets, and the size (in bytes) of the attribute value. Attribute tags are constants
supplied by ATSUI. Attribute values may be a scalar, a structure, or a pointer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUSetLineControls
Sets layout control attribute values for a single line in a text layout object.

OSStatus ATSUSetLineControls (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 ItemCount iAttributeCount,
 const ATSUAttributeTag iTag[],
 const ByteCount iValueSize[],
 const ATSUAttributeValuePtr iValue[]
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set line control attribute
values.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the first character of the line for which to set control attributes.

iAttributeCount
An ItemCount value specifying the number of attributes to set. This value should correspond to the
number of elements in the iTag and iValueSize arrays.

iTag
A pointer to the initial ATSUAttributeTag value in an array of line control attribute tags. Each
element in the array must contain a valid tag that corresponds to the line control attribute to set. See
“Attribute Tags” (page 196) for a description of the Apple-defined line control attribute tag constants.

124 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iValueSize
A pointer to the initial ByteCount value in an array of attribute value sizes. Each element in the array
must contain the size (in bytes) of the corresponding line control attribute being set.
ATSUSetLineControls sets line attributes after confirming the sizes in the array.

iValue
A pointer to the initial ATSUAttributeValuePtr value in an array of attribute value pointers. Each
value in the array must correspond to a tag in the iTag array and be a legal value for that tag.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
When you use ATSUI to image your text, you can control the text’s display and formatting at a number of
different levels. One level is that of the entire text range associated with your text layout object, also known
as the “layout level.” To affect display and formatting on this level, you can specify various layout control
attributes using the ATSUSetLayoutControls (page 122) function. These attributes affect the width of the
text area from margin to margin, the alignment of the text, its justification, rotation, and direction, as well
as other layout options.

Another level is that of a single line of text, that is, the “line level.” To affect display and formatting on the
line level, you specify various line control attributes using the function ATSUSetLineControls. These
attributes are similar to those that you can apply on a full-layout basis, but each affects only an individual
text line.

You can break text into lines by calling the functions ATSUBatchBreakLines (page 20) or
ATSUBreakLine (page 22). You can define separate lines of text by specifying soft breaks either by

 ■ calling the function ATSUBatchBreakLines

 ■ calling the function ATSUBreakLine with the iUseAsSoftBreak parameter set to true

 ■ specifying the soft line breaks using the function ATSUSetSoftLineBreak

Given that ATSUI allows you to control similar aspects of the display and formatting of your text at either the
line level or the layout level (or both, or neither), it is up to you to decide how much layout control to take.
However, you should note the following:

 ■ Setting layout control attributes overrides the corresponding default layout-level settings for a text
layout object. Any layout attributes that you do not set retain the default values described in “Attribute
Tags” (page 196).

 ■ Setting line control attributes overrides the corresponding layout-level settings (whether set or at default
values) for a text layout object. This is true even if you set the layout-level attributes subsequently to the
line-level ones. Any line attributes that you do not set retain their default values.

 ■ From a performance standpoint, it is preferable to work from the layout level and not specify layout line
by line unless necessary.

Finally, it is also possible to control the display and formatting of your text at the level of an individual
character or “run” of characters. At this level, you customize layout by manipulating style settings in a style
object. Among the character-level aspects you can control are style attributes (such as font size and color),
font features (such as ligatures), and font variations (such as continually varying font weights or widths).
However, there are certain line control attributes (specified via the ATSLineLayoutOptions flags) that can
override style attributes applied to the same text.

Functions 125
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Similarly to style attributes, you use a “triple” to specify a line or layout control attribute. That is, an attribute
tag, the value of the attribute it sets, and the size (in bytes) of the attribute value. Attribute tags are constants
supplied by ATSUI. Attribute values may be a scalar, a structure, or a pointer.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetObjFontFallbacks
Assigns a font list and a font-search method to a font fallback object.

OSStatus ATSUSetObjFontFallbacks (
 ATSUFontFallbacks iFontFallbacks,
 ItemCount iFontFallbacksCount,
 const ATSUFontID iFonts[],
 ATSUFontFallbackMethod iFontFallbackMethod
);

Parameters
iFontFallbacks

An ATSUFontFallbacks value specifying the font fallback object for which to define settings.

iFontFallbacksCount
An ItemCount value specifying the number of fonts that ATSUI is to search. This value is typically
equal to the number of font IDs you are providing in the iFonts array.

iFonts
A pointer to the first ATSUFontID value in an array of font IDs identifying the fonts ATSUI is to search.

iFontFallbackMethod
An ATSUFontFallbackMethod value identifying the order in which ATSUI is to search. See “Font
Fallback Methods” (page 214) for a description of possible values.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUSetObjFontFallbacks function defines the settings for a font fallback object. These settings
determine the font list and search order that ATSUI uses when seeking substitute fonts for the text layout
object with which the font fallback object is associated.

Creating, defining settings for, and associating a font fallback object with a text layout object is the only way
to ensure that ATSUI uses your preferred font fallback settings for your text. To create a font fallback object,
you first call the function ATSUCreateFontFallbacks (page 39). You then define settings for the object
by calling the ATSUSetObjFontFallbacks function. To associate the font fallback object with a text layout
object call the function ATSUSetLayoutControls (page 122). You pass these functions the control attribute
value kATSULineFontFallbacksTag to set the font fallback object.

If you do not call ATSUSetObjFontFallbacks to change ATSUI’s default search behavior, ATSUI searches
all the fonts on the system sequentially and uses the first valid font it finds for a substitute. If you are careful
in ordering the fonts that you supply to ATSUSetObjFontFallbacks, you can minimize the time ATSUI
needs to find a substitute font.

126 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Font fallback settings affect the behavior of the function ATSUMatchFontsToText (page 106) and of font
selection during layout and drawing when the function ATSUSetTransientFontMatching (page 132) is
set to on.

To obtain the font list and font-search method associated with a font fallback object, call the function
ATSUGetObjFontFallbacks (page 85).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetRunStyle
Defines a style run by associating style information with a run of text.

OSStatus ATSUSetRunStyle (
 ATSUTextLayout iTextLayout,
 ATSUStyle iStyle,
 UniCharArrayOffset iRunStart,
 UniCharCount iRunLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying a text layout object with an associated text buffer.
ATSUSetRunStyle assigns a style object to a run of text in this buffer.

iStyle
An ATSUStyle value specifying the style object to associate with the text run.

iRunStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the text run.

iRunLength
A UniCharCount value specifying the length of the text run.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
A text run consists of one or more characters that are contiguous in memory. If you associate these characters
with a distinct style, you define a style run. You can use the ATSUSetRunStyle function to define a style
run, by associating a style object with a run of text in a text layout object. There is a limit of 64K different
styles for each ATSUI text layout object. Each text run must be assigned its own style object, which may or
may not differ from other style objects assigned to other text runs in a given text layout object.

You can create a new style object containing only default settings by calling the function
ATSUCreateStyle (page 40). To make changes to the default style attributes, you can call the function
ATSUSetAttributes (page 119). To set font features and font variations, call the functions
ATSUSetFontFeatures (page 120) and ATSUSetVariations (page 133), respectively.

Functions 127
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Note that if you call ATSUSetRunStyle on a text run that is already associated with a style object, the style
set by ATSUSetRunStyle overrides the previous style. Additionally, upon completion, ATSUSetRunStyle
adjusts the lengths of any style runs on either side of the affected style run.

For example, you may currently have a run of text, 40 characters long, that is assigned a single style, styleA.
If you call ATSUSetRunStyle, you can reassign characters at offset 10–29 to a new style, styleB. If you do
so, you would then have three style runs, where there once was one: characters at offset 0–9 (styleA), 10–29
(styleB), and 30–39 (styleA).

After calling ATSUSetRunStyle, you can call the function ATSUDrawText (page 50) to display the styled
text. When you call ATSUDrawText, if you have not previously assigned styles to all the characters you request
to be drawn, ATSUI automatically does so. Specifically, ATSUI extends the first style it locates immediately
prior (in storage order) to the unstyled characters to include those unassigned characters. If the unstyled
characters are at the beginning of the text stream, ATSUI finds the first style run in the stream and extends
it backward to the first character.

You should call ATSUSetRunStyle whenever you create a new text layout object without any associated
styles, as by using the function ATSUCreateTextLayout (page 41). You should also call ATSUSetRunStyle
to assign a style to a text run in response to a user action, such as when the user selects a run of text and
changes the font.

You do not need to call ATSUSetRunStyle when you change style attributes or text layout attributes. In
such cases, ATSUI automatically updates the layout of the text as appropriate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUSetSoftLineBreak
Sets a soft line break that you specify.

OSStatus ATSUSetSoftLineBreak (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineBreak
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set a line break.

iLineBreak
A UniCharArrayOffset value specifying the offset from the beginning of the text layout object’s
text buffer to the line break to set.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUSetSoftLineBreak function enables you to set a soft line break in a text range. You should
typically only call ATSUSetSoftLineBreak to set line breaks when you are using your own line-breaking
algorithm to calculate these breaks. For optimal performance, you should use ATSUBatchBreakLines (page
20) to both calculate and set soft line breaks in your text.

128 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

After calling ATSUSetSoftLineBreak, you should call the function ATSUGetUnjustifiedBounds (page
93) to determine whether the characters still fit within the line, which is necessary due to end-of-line effects
such as swashes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUSetStyleRefCon
Sets application-specific data for a style object.

OSStatus ATSUSetStyleRefCon (
 ATSUStyle iStyle,
 URefCon iRefCon
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to set application-specific data.

iRefCon
A 32-bit value containing or referring to application-specific style data.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUSetStyleRefCon function associates a reference constant (that is, application-specific data) with
a style object. If you copy or clear a style object that contains a reference constant, the reference constant is
neither copied nor removed. To obtain application-specific data for a style object, call the function
ATSUGetStyleRefCon (page 88).

When you dispose of a style object that contains a reference constant, you are responsible for freeing any
memory allocated for the reference constant. Calling the function ATSUDisposeStyle (page 49) does not
do so.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetTabArray
Sets a tab ruler for a text layout object.

Functions 129
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUSetTabArray (
 ATSUTextLayout iTextLayout,
 const ATSUTab iTabs[],
 ItemCount iTabCount
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which you want to set a tab ruler.

iTabs[]
An array of the tab values you want applied to the text layout object. This tab ruler is applied to all
lines in the text layout object. You can pass NULL if iTabCount equals 0. Passing NULL effectively
deletes any tab ruler that was set previously.

iTabCount
The number of tabs in the given iTabs array. If value is 0, any previously-set tab ruler is cleared from
the text layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
When a tab ruler is set for a text layout object, ATSUI automatically aligns text such that any tabs in the text
are laid out to follow the tab ruler’s specifications. If you want to use tabs in your text and you also want to
use the function ATSUBatchBreakLines, then you must set tabs by calling the function ATSUSetTabArray.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetTextLayoutRefCon
Sets application-specific data for a text layout object.

OSStatus ATSUSetTextLayoutRefCon (
 ATSUTextLayout iTextLayout,
 URefCon iRefCon
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set application-specific
data.

iRefCon
A 32-bit value containing or referring to application-specific text layout data.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

130 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The ATSUSetTextLayoutRefCon function associates a reference constant (that is, application-specific data)
with a text layout object. You might typically use ATSUSetTextLayoutRefCon to track user preferences
that can effect layout, for example.

If you copy or clear a text layout object containing a reference constant, the reference constant is not copied
or removed. When you dispose of a text layout object that contains a reference constant, you are responsible
for freeing any memory allocated for the reference constant. Calling the function
ATSUDisposeTextLayout (page 49) does not do so.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUSetTextPointerLocation
Associates text with a text layout object or updates previously associated text.

OSStatus ATSUSetTextPointerLocation (
 ATSUTextLayout iTextLayout,
 ConstUniCharArrayPtr iText,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 UniCharCount iTextTotalLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set text.

iText
A pointer of type ConstUniCharArrayPtr, referring to a text buffer containing UTF-16–encoded
text. ATSUI associates this buffer with the text layout object and analyzes the complete text of the
buffer when obtaining the layout context for the current text range. Thus, for paragraph-format text,
if you specify a buffer containing less than a complete paragraph, some of ATSUI’s layout results are
not guaranteed to be accurate. For example, with a buffer of less than a full paragraph, ATSUI can
neither reliably obtain the context for bidirectional processing nor reliably generate accent attachments
and ligature formations.

iTextOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to include in the layout. To indicate that the specified text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify the
entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iTextLength parameter.

iTextLength
A UniCharCount value specifying the length of the text range. Note that iTextOffset +
iTextLength must be less than or equal to the value of the iTextTotalLength parameter. If you
want the range of text to extend to the end of the text buffer, you can pass the constant
kATSUToTextEnd.

Functions 131
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iTextTotalLength
A UniCharCount value specifying the length of the entire text buffer. This value should be greater
than or equal to the range of text defined by the iTextLength parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
For ATSUI to render your text, you must associate the text with both a text layout object and style information.
Some functions, such as ATSUCreateTextLayoutWithTextPtr (page 42), create a text layout object and
associate text with it concurrently. However, if you use the function ATSUCreateTextLayout (page 41) to
create a text layout object, you must assign text to the object prior to attempting most ATSUI operations.

You can use the function ATSUSetTextPointerLocation or to associate text with a text layout object.
When you call this function, you are both assigning a text buffer to a text layout object and specifying the
current text subrange within the buffer to include in the layout.

If there is already text associated with a text layout object, calling ATSUSetTextPointerLocation overrides
the previously associated text, as well as clearing the object’s layout caches. You would typically only call
this function for a text layout object with existing associated text if either (a) both the buffer itself is relocated
and a subrange of the buffer’s text is deleted or inserted or (b) when associating an entirely different buffer
with a text layout object.

Note that, because ATSUI objects retain state, doing superfluous calling can degrade performance. For
example, you could call ATSUSetTextPointerLocation rather than ATSUTextInserted (page 136) when
the user simply inserts a subrange of text within a text buffer, but there would be a performance penalty, as
all the layout caches are flushed by ATSUSetTextPointerLocation, rather than just the affected ones.

Similarly, you should not call ATSUSetTextPointerLocation, when an entire text buffer associated with
a text layout object is relocated, but no other changes have occurred that would affect the buffer’s current
subrange. Instead, you should call ATSUTextMoved (page 137), which is a more focused function and therefore
more efficient.

After associating text with a text layout object, use ATSUSetRunStyle (page 127) to associate style information
with the text. You can then call the function ATSUDrawText (page 50) to display the text or a subrange of
the text.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetTransientFontMatching
Turns automatic font substitution on or off for a text layout object.

132 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUSetTransientFontMatching (
 ATSUTextLayout iTextLayout,
 Boolean iTransientFontMatching
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object for which to set automatic font
substitution on or off.

iTransientFontMatching
A Boolean value indicating whether ATSUI is to perform automatic font substitution for the text
layout object. If you pass true, ATSUI performs automatic font substitution for the text range associated
with the text layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
Calling the ATSUSetTransientFontMatching function sets ATSUI’s automatic font substitution to on or
off for a given text layout object. When automatic font substitution is on, ATSUI scans the text range associated
with specified text layout object looking for undrawable characters whenever a layout is performed, for
example, when text is measured or drawn. When ATSUI finds a character that cannot be drawn with the
currently assigned font, it identifies a valid font for the character and draws the character. ATSUI continues
scanning the text range for characters in need of substitute fonts, replacing the font and redrawing the
characters as needed. ATSUI stops scanning when it reaches the end of the text range associated with the
text layout object.

ATSUI’s default behavior for finding a substitute font is to use the first valid font that it finds when sequentially
scanning the fonts in the user’s system. However, you can alter this behavior by calling the function
ATSUCreateFontFallbacks (page 39) and defining your own font fallback settings for the text layout
object. If ATSUI cannot find any suitable replacement fonts, it substitutes the missing-character glyph—that
is, a glyph representing an empty box—to indicate to the user that a valid font is not installed on their system.

Note that when ATSUSetTransientFontMatching performs font substitution, it does not change the font
attribute in the associated style object. That is, the font attribute for the style object associated with the
redrawn character(s) remains set to the invalid font—not the valid substitute font— just as it was prior to
calling ATSUSetTransientFontMatching.

If you want ATSUI to identify a substitute font, but you do not want ATSUI to automatically perform the font
substitution, you can call the function ATSUMatchFontsToText (page 106).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

ATSUSetVariations
Sets font variation axes and values in a style object.

Functions 133
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUSetVariations (
 ATSUStyle iStyle,
 ItemCount iVariationCount,
 const ATSUFontVariationAxis iAxes[],
 const ATSUFontVariationValue iValue[]
);

Parameters
iStyle

An ATSUStyle value specifying the style object for which to set font variation values.

iVariationCount
An ItemCount value specifying the number of font variation values to set. This value should correspond
to the number of elements in the iAxes and iValue arrays.

iAxes
A pointer to the initial ATSUFontVariationAxis value in an array of font variation axes. Each element
in the array must represent a valid variation axis tag that corresponds to a variation value in the
iValue array. To obtain a valid variation axis tag for a font, you can call the functions
ATSUGetIndFontVariation (page 81) or ATSUGetFontInstance (page 72).

iValue
A pointer to the initial ATSUFontVariationValue value in an array of font variation values. Each
element in the array must contain a value that is valid for the corresponding variation axis in the
iAxes parameter. You can obtain a font’s maximum, minimum, and default values for a given variation
axis by calling the function ATSUGetIndFontVariation (page 81). You can obtain the font variation
axis values for a font instance by calling ATSUGetFontInstance (page 72).

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
If you supply font variation axes and values to the ATSUSetVariations function, you can change the
appearance of a style object’s font accordingly. You may specify any number of variation axes and values in
a style object. Any of the font’s variations that you do not set retain their font-defined default values.

You can also use the ATSUSetVariations function to supply your own value within any variation axes
defined for the font. However, if the font does not support the variation axis you specify, your custom variation
has no visual effect.

By calling the function ATSUGetIndFontVariation (page 81), you can obtain a variation axis and its
maximum, minimum, and default values for a font.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFonts.h

ATSUStyleIsEmpty
Indicates whether a style object contains only default values.

134 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUStyleIsEmpty (
 ATSUStyle iStyle,
 Boolean *oIsClear
);

Parameters
iStyle

An ATSUStyle value specifying the style object to examine.

oIsClear
A pointer to a Boolean value. On return, the value is set to true if the style object contains only
default values for style attributes, font features, and font variations. If false, the style object contains
one or more nondefault values for style attributes, font features, or font variations.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You can call the ATSUStyleIsEmpty function to determine whether a style object contains only default
values for style attributes, font features, and font variations. ATSUStyleIsEmpty does not consider reference
constants in its evaluation.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUTextDeleted
Informs ATSUI of the location and length of a text deletion.

OSStatus ATSUTextDeleted (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iDeletedRangeStart,
 UniCharCount iDeletedRangeLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object containing the deleted text.

iDeletedRangeStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the
memory location of the deleted text. To specify a deletion point at the beginning of the text buffer,
you can pass the constant kATSUFromTextBeginning. To specify that the entire text buffer has
been deleted, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iDeletedRangeLength parameter.

iIDeletedRangeLength
A UniCharCount value specifying the length of the deleted text. To specify a deletion length extending
to the end of the text buffer, you can pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Functions 135
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
When you call the ATSUTextDeleted function to inform ATSUI of a text deletion, it shortens the style run(s)
containing the deleted text by the amount of the deletion. If a style run corresponds entirely to a range of
deleted text, that style run is removed. If the deletion point is between two style runs, the first style run is
shortened (or removed).

The ATSUTextDeleted function also shortens the total length of the text buffer containing the deleted text
by the amount of the deletion. That is, it shifts the memory location of the text following the deleted text
by iDeletedRangeLength. ATSUTextDeleted also removes any soft line breaks that fall within the deleted
text and updates affected drawing caches.

The ATSUTextDeleted function does not change the actual memory location of the affected text. You are
responsible for deleting the corresponding text is from the text buffer. You are also responsible for calling
the function ATSUDisposeStyle (page 49) to dispose of the memory associated with any style runs that
have been removed.

Note that calling the function ATSUTextDeleted automatically removes previously-set soft line breaks if
the line breaks are within the range of text that is deleted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUTextInserted
Informs ATSUI of the location and length of a text insertion.

OSStatus ATSUTextInserted (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iInsertionLocation,
 UniCharCount iInsertionLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object containing the inserted text.

iInsertionLocation
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the
memory location of the inserted text. To specify an insertion point at the beginning of the text buffer,
you can pass the constant kATSUFromTextBeginning.

iInsertionLength
A UniCharCount value specifying the length of the inserted text.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
When you call the ATSUTextInserted function to inform ATSUI of a text insertion, it extends the style run
containing the insertion point by the amount of the inserted text. If the insertion point is between two style
runs, the first style run is extended to include the new text.

136 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

The ATSUTextInserted function also extends the total length of the text buffer containing the inserted
text by the amount of the inserted text. That is, it shifts the memory location of the text following the inserted
text by iInsertionLength. ATSUTextInserted then updates drawing caches.

Note that the ATSUTextInserted function does not change the actual memory location of the inserted
text. You are responsible for placing the inserted text into the text buffer at the appropriate location.

The ATSUTextInserted function does not insert style runs or line breaks; to do so, call the functions
ATSUSetRunStyle (page 127) and ATSUSetSoftLineBreak (page 128), respectively. Break line operations
should be redone after you call ATSUTextInserted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUTextMoved
Informs ATSUI of the new memory location of relocated text.

OSStatus ATSUTextMoved (
 ATSUTextLayout iTextLayout,
 ConstUniCharArrayPtr iNewLocation
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object associated with the relocated text.

iNewLocation
A ConstUniCharArrayPtr specifying the new memory location of the moved text.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should call the ATSUTextMoved function when a range of text consisting of less than an entire text
buffer has been moved. The ATSUTextMoved function informs ATSUI of the new memory location of the
text. You are responsible for moving the text. The text buffer should remain otherwise unchanged.

When a range of text consisting of an entire text buffer has been moved, you should:

 ■ Call the function ATSUSetTextPointerLocation (page 131) to update the text buffer’s location.

 ■ Call the function ATSUSetRunStyle (page 127) to update the corresponding style runs for the text
buffer.

 ■ Call the function ATSUDrawText (page 50) to display the updated text.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeObjects.h

Functions 137
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUUnderwriteAttributes
Copies to a destination style object only those nondefault style attribute settings of a source style object
that are at default settings in the destination object.

OSStatus ATSUUnderwriteAttributes (
 ATSUStyle iSourceStyle,
 ATSUStyle iDestinationStyle
);

Parameters
iSourceStyle

An ATSUStyle value specifying the style object from which to copy nondefault style attributes.

iDestinationStyle
An ATSUStyle value specifying the style object containing style attribute values to be set.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUUnderwriteAttributes function copies to a destination style object only those nondefault style
attribute values of a source style object that are not currently set in a destination style object. Note that the
corresponding value in the destination object must not be set in order for a copied value to be applied. All
other quantities in the destination style object are left unchanged.

ATSUUnderwriteAttributesdoes not copy the contents of memory referenced by pointers within custom
style attributes or within reference constants. You are responsible for ensuring that this memory remains
valid until both the source and destination style objects are disposed of.

To create a style object that contains all the contents of another style object, call the function
ATSUCreateAndCopyStyle (page 38). To copy all the style attributes (including any default settings) of a
style object into an existing style object, call the function ATSUCopyAttributes (page 32). To copy style
attributes that are set in the source whether or not they are set in the destination style object, call the function
ATSUOverwriteAttributes (page 113).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUUnflattenStyleRunsFromStream
Unflattens previously-flattened ATSUI style run data so that it can be read from disk or accepted (through
the pasteboard) from another application.

138 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus ATSUUnflattenStyleRunsFromStream (
 ATSUFlattenedDataStreamFormat iStreamFormat,
 ATSUUnFlattenStyleRunOptions iUnflattenOptions,
 ByteCount iStreamBufferSize,
 const void *iStreamBuffer,
 ItemCount iNumberOfRunInfo,
 ItemCount iNumberOfStyleObjects,
 ATSUStyleRunInfo oRunInfoArray[],
 ATSUStyle oStyleArray[],
 ItemCount *oActualNumberOfRunInfo,
 ItemCount *oActualNumberOfStyleObjects
);

Parameters
iStreamFormat

The format of the flattened data. There is only one format supported at this time ('ustl') so you
must pass the constant kATSUDataStreamUnicodeStyledText.

iUnflattenOptions
The options you want to use to unflatten the data. There are no options supported at this time, so
you must pass the constant kATSUUnflattenOptionsNoOptionsMask.

iStreamBufferSize
The size of the buffer pointed to by the iStreamBuffer parameter. You must pass a value greater
than 0.

iStreamBuffer
A pointer to the buffer that contains the flattened data. The data must be of the format specified by
the iStreamFormat parameter and must be of size specified by the iStreamBufferSize parameter.
You cannot pass NULL.

iNumberOfRunInfo
The number of style run information structures passed in the iRunInfoArray parameter. If you are
uncertain of the number of style run information structures, see the Discussion.

iNumberOfStyleObjects
The number of ATSUStyle objects in the array passed into the iStyleArray parameter. If you are
uncertain of the number of ATSUStyle objects, see the Discussion.

oRunInfoArray[]
On return, points to an array of style run information structures. Each structure contains a style run
length and index into the oStyleArray array. If you are uncertain of how much memory to allocate
for this array, see the Discussion. You are responsible for disposing of the array when you no longer
need it.

oStyleArray[]
On return, a pointer to an array of the unique ATSUI style objects (ATSUStyle) obtained from the
flattened data. The indices returned in the array oRunInfoArray are indices into this array. If you
are uncertain of how much memory to allocate for this array, see the Discussion. You are responsible
for disposing of the array and the ATSUI style objects in the array when you no longer need the array.

oActualNumberOfRunInfo
On return, points to the actual number of ATSUStyleRunInfo structures obtained from the flattened
data. The actual number of structures is the number of entries added to the array oRunInfoArray.
You can pass NULL if you to not want to obtain this value.

Functions 139
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

oActualNumberOfStyleObjects
On return, points to the actual number of unique ATSUI style objects (ATSUStyle) obtained from the
flattened data. The actual number is the number of entries added to the oStyleArray array. You
can pass NULL if you do no want to obtain this value.

Return Value
A result code. See “ATSUI Result Codes” (page 234). This function can also return paramErr if you pass invalid
values for any of the parameters.

Discussion
The function ATSUUnflattenStyleRunsFromStream extracts the ATSUI style run information from
previously-flattened data. The style objects and style run information structures are returned in two separate
arrays—the array oStyleArray and the array oRunInfoArray. These arrays are not parallel. Each ATSUStyle
object in the oStyleArray is a unique ATSUStyle object. To figure out which ATSUStyle object belongs
to which text run, the caller must parse the array of ATSUStyleRunInfo structures. These structures contain
the style run lengths and an index into the oStyleArray.

Typically you use the function ATSUUnflattenStyleRunsFromStream by calling it twice, as follows:

1. Provide appropriate values for the iStreamFormat, iUnflattenOptions, and iStreamBuffer
parameters. Pass 0 for the iNumberOfRunInfo and iNumberOfStyleObjects parameters, NULL for
the oRunInfoArray and oStyleArray, parameters and valid ItemCount references for the
oActualNumberOfRunInfo and oActualNumberOfStyleObjects parameters. On return,
oActualNumberOfRunInfo andoActualNumberOfStyleObjectspoint to the sizes needed to allocate
these arrays.

2. Allocate appropriately-sized arrays of ATSUStyleRunInfo data structures and ATSUStyle objects. Call
the function ATSUUnflattenStyleRunsFromStream a second time, passing the newly allocated arrays
in the oRunInfoArray and oStyleArray parameters, with the iNumberOfRunInfo and
iNumberOfStyleObjects parameters set to the values you obtained from the first call.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeFlattening.h

ATSUUnhighlightText
Renders a previously highlighted range of text in an unhighlighted state.

OSStatus ATSUUnhighlightText (
 ATSUTextLayout iTextLayout,
 ATSUTextMeasurement iTextBasePointX,
 ATSUTextMeasurement iTextBasePointY,
 UniCharArrayOffset iHighlightStart,
 UniCharCount iHighlightLength
);

Parameters
iTextLayout

An ATSUTextLayout value identifying the text layout object for which to render unhighlighted text.

140 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iTextBasePointX
An ATSUTextMeasurement value specifying the x-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to draw relative to
the current pen location in the current graphics port.

iTextBasePointY
An ATSUTextMeasurement value specifying the y-coordinate of the origin (in either the current
graphics port or in a Quartz graphics context) of the line containing the text range. Pass the constant
kATSUUseGrafPortPenLoc, described in “Convenience Constants” (page 209), to draw relative to
the current pen location in the current graphics port.

iHighlightStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the text range. If the text range spans multiple lines, you should call
ATSUUnhighlightText for each line, passing the offset corresponding to the beginning of the new
line to draw with each call. To indicate that the specified text range starts at the beginning of the text
buffer, you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iHighlightLength
parameter.

iHighlightLength
A UniCharCount value specifying the length of the text range. To indicate that the text range extends
to the end of the text buffer, pass the constant kATSUToTextEnd.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUUnhighlightText function renders a previously highlighted range of text in an unhighlighted
state. You should always call ATSUUnhighlightText after calling the function ATSUHighlightText (page
101), to properly redraw the unhighlighted text and background.

If the inversion method of highlighting was used, when you call ATSUUnhighlightText, it merely undoes
the inversion and renders the text.

If the redraw method of highlighting was used, ATSUUnhighlightText turns off the highlighting and
restores the desired background. Depending on the complexity of the background, ATSUI restores the
background in one of two ways:

 ■ When the background is a single color (such as white), ATSUI can readily unhighlight the background.
In such a case, you specify the background color that ATSUI uses by calling the function
ATSUSetHighlightingMethod (page 121) and setting iMethod to kRedrawHighlighting and
iUnhighlightData.dataType to kATSUBackgroundColor and providing the background color in
iUnhighlightData.unhighlightData. With these settings defined, when you call
ATSUUnhighlightText, ATSUI simply calculates the previously highlighted area, repaints it with the
specified background color, and then redraws the text.

 ■ When the background is more complex (containing, for example, multiple colors, patterns, or pictures),
you must provide a redraw background callback function when you call ATSUSetHighlightingMethod.
You do this by setting iUnhighlightData.dataType to kATSUBackgroundCallback and providing
a RedrawBackgroundUPP in iUnhighlightData.unhighlightData. When ATSUI calls your callback,
you are responsible for redrawing the background of the unhighlighted area. If you choose to also redraw
the text, then your callback should return false as a function result. If your callback returns true ATSUI
redraws any text that needs to be redrawn. See RedrawBackgroundProcPtr (page 165) for additional
information.

Functions 141
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Before calculating the dimensions of the area to unhighlight, ATSUUnhighlightText examines the text
layout object to ensure that each of the characters in the range is assigned to a style run. If there are gaps
between style runs, ATSUI assigns the characters in the gap to the style run that precedes (in storage order)
the gap. If there is no style run at the beginning of the text range, ATSUI assigns these characters to the first
style run it finds. If there is no style run at the end of the text range, ATSUI assigns the remaining characters
to the last style run it finds.

The ATSUUnhighlightText function uses the previously set line ascent and descent values to calculate the
height of the region to unhighlight. If these values have not been set for the line, ATSUUnhighlightText
uses the line ascent and descent values set for the text layout object containing the line. If these are not set,
it uses the default values.

If you want to remove highlighting from a text range that spans multiple lines, you should call
ATSUUnhighlightText for each line of text that is being unhighlighted, even if all the lines belong to the
same text layout object. You should adjust the iHighlightStart parameter to reflect the beginning of
each line to be unhighlighted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

DisposeATSCubicClosePathUPP
Disposes of a universal procedure pointer (UPP) to a cubic close-path callback.

void DisposeATSCubicClosePathUPP (
 ATSCubicClosePathUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSCubicClosePathProcPtr (page 156) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSCubicCurveToUPP
Disposes of a universal procedure pointer (UPP) to a cubic curve-to callback.

142 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

void DisposeATSCubicCurveToUPP (
 ATSCubicCurveToUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSCubicCurveToProcPtr (page 157) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSCubicLineToUPP
Disposes of a universal procedure pointer (UPP) to a cubic line-to callback.

void DisposeATSCubicLineToUPP (
 ATSCubicLineToUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSCubicLineToProcPtr (page 158) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSCubicMoveToUPP
Disposes of a universal procedure pointer (UPP) to a cubic move-to callback.

void DisposeATSCubicMoveToUPP (
 ATSCubicMoveToUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSCubicMoveToProcPtr (page 159) for more information.

Availability
Available in Mac OS X v10.0 and later.

Functions 143
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Declared In
ATSUnicodeGlyphs.h

DisposeATSQuadraticClosePathUPP
Disposes of a universal procedure pointer (UPP) to a quadratic close-path callback.

void DisposeATSQuadraticClosePathUPP (
 ATSQuadraticClosePathUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSQuadraticClosePathProcPtr (page 160) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSQuadraticCurveUPP
Disposes of a universal procedure pointer (UPP) to a quadratic curve callback.

void DisposeATSQuadraticCurveUPP (
 ATSQuadraticCurveUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSQuadraticCurveProcPtr (page 161) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSQuadraticLineUPP
Disposes of a universal procedure pointer (UPP) to a quadratic line callback.

144 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

void DisposeATSQuadraticLineUPP (
 ATSQuadraticLineUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSQuadraticLineProcPtr (page 162) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSQuadraticNewPathUPP
Disposes of a universal procedure pointer (UPP) to a quadratic new-path callback.

void DisposeATSQuadraticNewPathUPP (
 ATSQuadraticNewPathUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSQuadraticNewPathProcPtr (page 163) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

DisposeATSUDirectLayoutOperationOverrideUPP
Disposes of a universal procedure pointer (UPP) to a layout operation override callback.

void DisposeATSUDirectLayoutOperationOverrideUPP (
 ATSUDirectLayoutOperationOverrideUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback ATSUDirectLayoutOperationOverrideProcPtr (page 164) for more information.

Availability
Available in Mac OS X v10.2 and later.

Functions 145
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Declared In
ATSLayoutTypes.h

DisposeRedrawBackgroundUPP
Disposes of a new universal procedure pointer (UPP) to a redraw background callback.

void DisposeRedrawBackgroundUPP (
 RedrawBackgroundUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback RedrawBackgroundProcPtr (page 165) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

InvokeATSCubicClosePathUPP
Calls your cubic close-path callback.

OSStatus InvokeATSCubicClosePathUPP (
 void *callBackDataPtr,
 ATSCubicClosePathUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not need to use the function InvokeATSCubicClosePathUPP, as ATSUI calls your cubic close-path
callback for you. See the callback ATSCubicClosePathProcPtr (page 156) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSCubicCurveToUPP
Calls your cubic curve-to callback.

146 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus InvokeATSCubicCurveToUPP (
 const Float32Point *pt1,
 const Float32Point *pt2,
 const Float32Point *pt3,
 void *callBackDataPtr,
 ATSCubicCurveToUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not need to use the function InvokeATSCubicCurveToUPP, as ATSUI calls your cubic curve-to
callback for you. See the callback ATSCubicCurveToProcPtr (page 157) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSCubicLineToUPP
Calls your cubic line-to callback.

OSStatus InvokeATSCubicLineToUPP (
 const Float32Point *pt,
 void *callBackDataPtr,
 ATSCubicLineToUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not need to use the function InvokeATSCubicLineToUPP, as ATSUI calls your cubic line-to
callback for you. See the callback ATSCubicLineToProcPtr (page 158) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSCubicMoveToUPP
Calls your cubic move-to callback.

Functions 147
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus InvokeATSCubicMoveToUPP (
 const Float32Point *pt,
 void *callBackDataPtr,
 ATSCubicMoveToUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not need to use the function InvokeATSCubicMoveToUPP, as ATSUI calls your cubic move-to
callback for you. See the callback ATSCubicMoveToProcPtr (page 159) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSQuadraticClosePathUPP
Calls your quadratic close-path callback.

OSStatus InvokeATSQuadraticClosePathUPP (
 void *callBackDataPtr,
 ATSQuadraticClosePathUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not need to use the function InvokeATSQuadraticClosePathUPP, as ATSUI calls your quadratic
close-path callback for you. See the callback ATSQuadraticClosePathProcPtr (page 160) for more
information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSQuadraticCurveUPP
Calls your quadratic curve callback.

148 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus InvokeATSQuadraticCurveUPP (
 const Float32Point *pt1,
 const Float32Point *controlPt,
 const Float32Point *pt2,
 void *callBackDataPtr,
 ATSQuadraticCurveUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not need to use the function InvokeATSQuadraticCurveUPP, as ATSUI calls your quadratic
curve callback for you. See the callback ATSQuadraticCurveProcPtr (page 161) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSQuadraticLineUPP
Calls your quadratic line callback.

OSStatus InvokeATSQuadraticLineUPP (
 const Float32Point *pt1,
 const Float32Point *pt2,
 void *callBackDataPtr,
 ATSQuadraticLineUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not need to use the function InvokeATSQuadraticLineUPP, as ATSUI calls your quadratic line
callback for you. See the callback ATSQuadraticLineProcPtr (page 162) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSQuadraticNewPathUPP
Calls your quadratic new-path callback.

Functions 149
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

OSStatus InvokeATSQuadraticNewPathUPP (
 void *callBackDataPtr,
 ATSQuadraticNewPathUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not need to use the function InvokeATSQuadraticNewPathUPP, as ATSUI calls your quadratic
new-path callback for you. See the callback ATSQuadraticNewPathProcPtr (page 163) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

InvokeATSUDirectLayoutOperationOverrideUPP
Calls your layout operation override callback.

OSStatus InvokeATSUDirectLayoutOperationOverrideUPP (
 ATSULayoutOperationSelector iCurrentOperation,
 ATSULineRef iLineRef,
 URefCon iRefCon,
 void *iOperationCallbackParameterPtr,
 ATSULayoutOperationCallbackStatus *oCallbackStatus,
 ATSUDirectLayoutOperationOverrideUPP userUPP
);

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not need to use the function InvokeATSUDirectLayoutOperationOverrideUPP, as ATSUI
calls your layout operation override callback for your. See the callback
ATSUDirectLayoutOperationOverrideProcPtr (page 164) for more information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

InvokeRedrawBackgroundUPP
Invokes your redraw background callback.

150 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Boolean InvokeRedrawBackgroundUPP (
 ATSUTextLayout iLayout,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 ATSTrapezoid iUnhighlightArea[],
 ItemCount iTrapezoidCount,
 RedrawBackgroundUPP userUPP
);

Return Value
A Boolean value that indicates whether or not the callback was invoked successfully .

Discussion
You should not need to use the function InvokeRedrawBackgroundUPP, as ATSUI calls your redraw
background callback for you. See the callback RedrawBackgroundProcPtr (page 165) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

NewATSCubicClosePathUPP
Creates a new universal procedure pointer (UPP) to a cubic close-path callback.

ATSCubicClosePathUPP NewATSCubicClosePathUPP (
 ATSCubicClosePathProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your cubic close-path callback.

Return Value
On return, a UPP to the cubic close-path callback.

Discussion
See the callback ATSCubicClosePathProcPtr (page 156) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSCubicCurveToUPP
Creates a new universal procedure pointer (UPP) to a cubic curve-to callback.

Functions 151
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSCubicCurveToUPP NewATSCubicCurveToUPP (
 ATSCubicCurveToProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your cubic curve-to callback.

Return Value
On return, a UPP to the cubic curve-to callback.

Discussion
See the callback ATSCubicCurveToProcPtr (page 157) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSCubicLineToUPP
Creates a new universal procedure pointer (UPP) to a cubic line-to callback.

ATSCubicLineToUPP NewATSCubicLineToUPP (
 ATSCubicLineToProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your cubic line-to callback.

Return Value
On return, a UPP to the cubic line-to callback.

Discussion
See the callback ATSCubicLineToProcPtr (page 158) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSCubicMoveToUPP
Creates a new universal procedure pointer (UPP) to a cubic move-to callback.

ATSCubicMoveToUPP NewATSCubicMoveToUPP (
 ATSCubicMoveToProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your cubic move-to callback.

152 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Return Value
On return, a UPP to the cubic move-to callback.

Discussion
See the callback ATSCubicMoveToProcPtr (page 159) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSQuadraticClosePathUPP
Creates a new universal procedure pointer (UPP) to a quadratic close-path callback.

ATSQuadraticClosePathUPP NewATSQuadraticClosePathUPP (
 ATSQuadraticClosePathProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your quadratic close-path callback.

Return Value
On return, a UPP to the quadratic close-path callback.

Discussion
See the callback ATSQuadraticClosePathProcPtr (page 160) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSQuadraticCurveUPP
Creates a new universal procedure pointer (UPP) to a quadratic curve callback.

ATSQuadraticCurveUPP NewATSQuadraticCurveUPP (
 ATSQuadraticCurveProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your quadratic curve callback.

Return Value
On return, a UPP to the quadratic curve callback.

Discussion
See the callback ATSQuadraticCurveProcPtr (page 161) for more information.

Functions 153
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSQuadraticLineUPP
Creates a new universal procedure pointer (UPP) to a quadratic line callback.

ATSQuadraticLineUPP NewATSQuadraticLineUPP (
 ATSQuadraticLineProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your quadratic line callback.

Return Value
On return, a UPP to the quadratic line callback.

Discussion
See the callback ATSQuadraticLineProcPtr (page 162) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

NewATSQuadraticNewPathUPP
Creates a new universal procedure pointer (UPP) to a quadratic new-path callback.

ATSQuadraticNewPathUPP NewATSQuadraticNewPathUPP (
 ATSQuadraticNewPathProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your quadratic new-path callback.

Return Value
On return, a UPP to the quadratic new-path callback.

Discussion
See the callback ATSQuadraticNewPathProcPtr (page 163) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

154 Functions
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

NewATSUDirectLayoutOperationOverrideUPP
Creates a new universal procedure pointer (UPP) to a layout operation override callback.

ATSUDirectLayoutOperationOverrideUPP NewATSUDirectLayoutOperationOverrideUPP (
 ATSUDirectLayoutOperationOverrideProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your layout operation override callback.

Return Value
On return, a UPP to the layout operation override callback.

Discussion
See the callback ATSUDirectLayoutOperationOverrideProcPtr (page 164) for more information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

NewRedrawBackgroundUPP
Creates a new universal procedure pointer (UPP) to a redraw background callback.

RedrawBackgroundUPP NewRedrawBackgroundUPP (
 RedrawBackgroundProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your redraw background callback.

Return Value
On return, a UPP to the redraw background callback.

Discussion
See the callback RedrawBackgroundProcPtr (page 165) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

Functions 155
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Callbacks

ATSCubicClosePathProcPtr
Defines a pointer to a cubic close-path callback for drawing glyphs that overrides ATSUI’s cubic close-path
operation for drawing glyphs.

typedef OSStatus(* ATSCubicClosePathProcPtr)
(
 void *callBackDataPtr
);

If you name your function MyATSCubicClosePathCallback, you would declare it like this:

OSStatus MyATSCubicClosePathCallback (
 void *callBackDataPtr
);

Parameters
callBackDataPtr

A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetCurvePaths (page 96). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetCubicPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized cubic close-path callback as a parameter to the function
ATSUGlyphGetCubicPaths (page 95).

To provide a pointer to your cubic close-path callback, you create a universal procedure pointer (UPP) of type
ATSCubicClosePathUPP, using the function NewATSCubicClosePathUPP (page 151). You can do so with
code similar to the following:

ATSCubicClosePathUPP MyCubicClosePathUPP;
MyCubicClosePathUPP = NewATSCubicClosePathUPP (&MyATSCubicClosePathCallback);

When you no longer need to use your cubic close-path callback, you should use the function
DisposeATSCubicClosePathUPP (page 142) to dispose of the universal procedure pointer associated with
the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

156 Callbacks
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSCubicCurveToProcPtr
Defines a pointer to a cubic curve-to callback for drawing glyphs that overrides ATSUI’s cubic curve-to
operation for drawing glyphs.

typedef OSStatus(* ATSCubicCurveToProcPtr)
(
 const Float32Point *pt1,
 const Float32Point *pt2,
 const Float32Point *pt3,
 void *callBackDataPtr
);

If you name your function MyATSCubicCurveToCallback, you would declare it like this:

OSStatus MyATSCubicCurveToCallback (
 const Float32Point *pt1,
 const Float32Point *pt2,
 const Float32Point *pt3,
 void *callBackDataPtr
);

Parameters
pt1

A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the first off-curve point for this segment of the glyph.

pt2
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the second off-curve point for this segment of the glyph.

pt3
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the end of the curve (an on-curve point) for this segment of the glyph.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetCurvePaths (page 96). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetCubicPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized cubic curve-to function as a parameter to the function
ATSUGlyphGetCubicPaths (page 95).

To provide a pointer to your cubic curve-to callback, you create a universal procedure pointer (UPP) of type
ATSCubicCurveToUPP, using the function NewATSCubicCurveToUPP (page 151). You can do so with code
similar to the following:

ATSCubicCurveToUPP MyCubicCurveToUPP;
MyCubicCurveToUPP = NewATSCubicCurveToUPP (&MyATSCubicCurveToCallback);

Callbacks 157
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

When you no longer need to use your cubic curve-to callback, you should use the function
DisposeATSCubicCurveToUPP (page 142) to dispose of the universal procedure pointer associated with
the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSCubicLineToProcPtr
Defines a pointer to a cubic line-to callback for drawing glyphs that overrides ATSUI’s cubic line-to operation
for drawing glyphs.

typedef OSStatus(* ATSCubicLineToProcPtr)
(
 const Float32Point *pt,
 void *callBackDataPtr
);

If you name your function MyATSCubicLineToCallback, you would declare it like this:

OSStatus MyATSCubicLineToCallback (
 const Float32Point *pt,
 void *callBackDataPtr
);

Parameters
pt

A Float32Point data structure that contains the x and y coordinates for the relative point to which
the pen should draw a line.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetCurvePaths (page 96). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetCubicPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized cubic line-to callback as a parameter to the function
ATSUGlyphGetCubicPaths (page 95).

To provide a pointer to your cubic line-to callback, you create a universal procedure pointer (UPP) of type
ATSCubicLineToUPP, using the function NewATSCubicLineToUPP (page 152). You can do so with code
similar to the following:

ATSCubicLineToUPP MyCubicLineToUPP;
MyCubicLineToUPP = NewATSCubicLineToUPP (&MyATSCubicLineToCallback);

158 Callbacks
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

When you no longer need to use your cubic line-to callback, you should use the function
DisposeATSCubicLineToUPP (page 143) to dispose of the universal procedure pointer associated with the
callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSCubicMoveToProcPtr
Defines a pointer to a cubic move-to function for drawing glyphs that overrides ATSUI’s cubic move-to
operation for drawing glyphs.

typedef OSStatus(* ATSCubicMoveToProcPtr)
(
 const Float32Point *pt,
 void *callBackDataPtr
);

If you name your function MyATSCubicMoveToCallback, you would declare it like this:

OSStatus MyATSCubicMoveToCallback (
 const Float32Point *pt,
 void *callBackDataPtr
);

Parameters
pt

A Float32Point data structure that contains the x and y coordinates for the relative point to which
the pen should move before it begins drawing this segment of the glyph.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetCurvePaths (page 96). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetCubicPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized cubic move-to callback as a parameter to the function
ATSUGlyphGetCubicPaths (page 95).

To provide a pointer to your cubic move-to callback, you create a universal procedure pointer (UPP) of type
ATSCubicMoveToUPP, using the function NewATSCubicMoveToUPP (page 152). You can do so with code
similar to the following:

ATSCubicMoveToUPP MyCubicMoveToUPP;
MyCubicMoveToUPP = ATSCubicMoveToUPP (&MyATSCubicMoveToCallback);

Callbacks 159
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

When you no longer need to use your cubic move-to callback, you should use the function
DisposeATSCubicMoveToUPP (page 143) to dispose of the universal procedure pointer associated with the
callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticClosePathProcPtr
Defines a pointer to a quadratic close-path callback for drawing glyphs that overrides ATSUI’s quadratic
close-path operation for drawing glyphs.

typedef OSStatus(* ATSQuadraticClosePathProcPtr)
(
 void *callBackDataPtr
);

If you name your function MyATSQuadraticClosePathCallback, you would declare it like this:

OSStatus MyATSQuadraticClosePathCallback
(
 void *callBackDataPtr
);

Parameters
callBackDataPtr

A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetQuadraticPaths (page 98). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized quadratic close-path callback as a parameter to the function
ATSUGlyphGetQuadraticPaths (page 98).

To provide a pointer to your quadratic close-path callback, you create a universal procedure pointer (UPP)
of type ATSQuadraticClosePathUPP, using the function NewATSQuadraticClosePathUPP (page 153).
You can do so with code similar to the following:

ATSQuadraticClosePathUPP MyQuadraticClosePathUPP;
MyQuadraticClosePathUPP = NewATSQuadraticClosePathUPP
(&MyATSQuadraticClosePathCallback);

When you no longer need to use your quadratic close-path callback, you should use the function
DisposeATSQuadraticClosePathUPP (page 144) to dispose of the universal procedure pointer associated
with the callback.

160 Callbacks
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticCurveProcPtr
Defines a pointer to a quadratic curve callback for drawing glyphs that overrides ATSUI’s quadratic curve
operation for drawing glyphs.

typedef OSStatus(* ATSQuadraticCurveProcPtr)
(
 const Float32Point *pt1,
 const Float32Point *controlPt,
 const Float32Point *pt2,
 void *callBackDataPtr
);

If you name your function MyATSQuadraticCurveCallback, you would declare it like this:

OSStatus MyATSQuadraticCurveCallback (
 const Float32Point *pt1,
 const Float32Point *controlPt,
 const Float32Point *pt2,
 void *callBackDataPtr
);

Parameters
pt1

A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the start of the curve (an on-curve point) for this segment of the glyph.

controlPt
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the control point (an off-curve point) for this segment of the glyph.

pt2
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the end of the curve (an on-curve point) for this segment of the glyph.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetQuadraticPaths (page 98). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized quadratic curve callback as a parameter to the function
ATSUGlyphGetQuadraticPaths (page 98).

Callbacks 161
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

To provide a pointer to your quadratic curve callback, you create a universal procedure pointer (UPP) of type
ATSQuadraticCurveUPP, using the function NewATSQuadraticCurveUPP (page 153). You can do so with
code similar to the following:

ATSQuadraticCurveUPP MyQuadraticCurveUPP;
MyQuadraticCurveUPP = NewATSQuadraticCurveUPP (&MyATSQuadraticCurveCallback);

When you no longer need to use your quadratic curve callback, you should use the function
DisposeATSQuadraticCurveUPP (page 144) to dispose of the universal procedure pointer associated with
the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticLineProcPtr
Defines a pointer to a quadratic line callback for drawing glyphs that overrides ATSUI’s quadratic line operation
for drawing glyphs.

typedef OSStatus(* ATSQuadraticLineProcPtr)
(
 const Float32Point *pt1,
 const Float32Point *pt2,
 void *callBackDataPtr
);

If you name your function MyATSQuadraticLineCallback, you would declare it like this:

OSStatus MyATSQuadraticLineCallback (
 const Float32Point *pt1,
 const Float32Point *pt2,
 void *callBackDataPtr
);

Parameters
pt1

A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the start of the line for this segment of the glyph.

pt2
A Float32Point data structure that contains the x and y coordinates for the relative point that
defines the end of the line for this segment of the glyph.

callBackDataPtr
A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetQuadraticPaths (page 98). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

162 Callbacks
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
You supply a pointer to your customized quadratic line callback as a parameter to the function
ATSUGlyphGetQuadraticPaths (page 98).

To provide a pointer to your quadratic line callback, you create a universal procedure pointer (UPP) of type
ATSQuadraticLineUPP, using the function NewATSQuadraticLineUPP (page 154). You can do so with
code similar to the following:

ATSQuadraticLineUPP MyQuadraticLineUPP;
MyQuadraticLineUPP = NewATSQuadraticLineUPP (&MyATSQuadraticLineCallback);

When you no longer need to use your quadratic line callback, you should use the function
DisposeATSQuadraticLineUPP (page 144) to dispose of the universal procedure pointer associated with
the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticNewPathProcPtr
Defines a pointer to a quadratic new-path callback for drawing glyphs that overrides ATSUI’s quadratic
new-path operation for drawing glyphs.

typedef OSStatus(* ATSQuadraticNewPathProcPtr)
(
 void *callBackDataPtr
);

If you name your function MyATSQuadraticNewPathCallback, you would declare it like this:

OSStatus MyATSQuadraticNewPathCallback
(
 void *callBackDataPtr
);

Parameters
callBackDataPtr

A pointer to any data your callback function needs. You pass this pointer to the function
ATSUGlyphGetQuadraticPaths (page 98). Then, ATSUI passes the pointer through to your callback
function when your callback function is invoked.

Return Value
A value that indicates the status of your callback function. When a callback function returns any value other
than 0, the ATSGlyphGetQuadraticPaths function stops parsing the path outline and returns the result
kATSOutlineParseAbortedErr.

Discussion
You supply a pointer to your customized quadratic new-path callback as a parameter to the function
ATSUGlyphGetQuadraticPaths (page 98).

Callbacks 163
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

To provide a pointer to your quadratic new-path callback, you create a universal procedure pointer (UPP) of
type ATSQuadraticNewPathUPP, using the function NewATSQuadraticNewPathUPP (page 154). You can
do so with code similar to the following:

ATSQuadraticNewPathUPP MyQuadraticNewPathUPP;
MyQuadraticNewPathUPP = NewATSQuadraticNewPathUPP
(&MyATSQuadraticNewPathCallback);

When you no longer need to use your quadratic new-path callback, you should use the function
DisposeATSQuadraticNewPathUPP (page 145) to dispose of the universal procedure pointer associated
with the callback.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSUDirectLayoutOperationOverrideProcPtr
Defines a pointer to a layout operation callback that overrides an ATSUI layout operation.

typedef CALLBACK_API_C (OSStatus, ATSUDirectLayoutOperationOverrideProcPtr
)
 ATSULayoutOperationSelector iCurrentOperation,
 ATSULineRef iLineRef,
 UInt32 iRefCon,
 void *iOperationCallbackParameterPtr,
 ATSULayoutOperationCallbackStatus *oCallbackStatus
);

If you name your function MyLayoutOperationOverrideCallback, you would declare it like this:

OSStatus MyLayoutOperationOverrideCallback
(
 ATSULayoutOperationSelector iCurrentOperation,
 ATSULineRef iLineRef,
 UInt32 iRefCon,
 void *iOperationCallbackParameterPtr,
 ATSULayoutOperationCallbackStatus *oCallbackStatus
);

Parameters
iCurrentOperation

The operation that triggered the callback. This value is passed to your callback by ATSUI. If you write
a callback that handles more than one layout operation, you can use this value to determine which
operation you should handle.

iLineRef
An ATSULineRef value that specifies the line of text on which your callback will operation. Your
callback gets called for each line of text associated with the text layout object on which you installed
the callback.

164 Callbacks
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

iRefCon
An unsigned 32-bit integer. This is an optional value. You can use this value to specify any data your
application needs, such as user preference data.

iOperationCallbackParameterPtr
A pointer. This is currently unused and should be set to NULL.

oCallbackStatus
A layout callback status value. On output, you must supply a status value to indicate to ATSUI whether
or not your callback handled the operation. See “Layout Callback Status Values” (page 221) for a list
of the constants you can supply.

Discussion
ATSUI calls your layout operation override function each time the layout operation you specify is invoked.
You associate a universal procedure pointer with a text layout object by treating the callback as a layout
attribute. That is, you set up a triple (tag, size, value) to specify the layout operation your callback handles,
then you call the function ATSUSetLayoutControls (page 122) to associate the triple with the text layout
object whose layout operation you want to override. The attribute tag you specify is
kATSULayoutOperationOverrideTag. The attribute value you specify is an
ATSULayoutOperationOverrideSpecifier structure that contains a selector for a layout operation and
a pointer to your callback function.

To provide a pointer to your layout operation override callback, you create a universal procedure pointer
(UPP) of type ATSUDirectLayoutOperationOverrideUPP, using the function
NewATSUDirectLayoutOperationOverrideUPP (page 155). You can do so with code similar to the following:

ATSUDirectLayoutOperationOverrideUPP MyLayoutOperationOverrideUPP;
MyLayoutOperationOverrideUPP = NewATSUDirectLayoutOperationOverrideUPP
 (&MyLayoutOperationOverrideCallback);

When your layout operation is completed, you should use the function
DisposeATSUDirectLayoutOperationOverrideUPP (page 145) to dispose of the universal procedure
pointer associated with your layout operation override function. However, if you plan to use the same layout
operation override function in subsequent layout operations, you can reuse the same UPP, rather than dispose
of it and later create a new UPP.

You are limited to the ATSUI functions you can call from within your callback. You can call only those functions
that have do not trigger ATSUI to perform the layout operation again. Otherwise, you run the risk of causing
infinite recursion. Most functions that use “create”, “get”, or “copy” semantics are safe to use within your
callback. If you call one of the restricted functions, the function returns immediately with the error
kATSUInvalidCallInsideCallbackErr.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

RedrawBackgroundProcPtr
Defines a pointer to a redraw-background callback that overrides ATSUI’s highlighting method for drawing
backgrounds.

Callbacks 165
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef Boolean (* RedrawBackgroundProcPtr)
(
 ATSUTextLayout iLayout,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 ATSTrapezoid *iUnhighlightArea,
 ItemCount iTrapezoidCount
);

If you name your function MyRedrawBackgroundCallback, you would declare it like this:

Boolean MyRedrawBackgroundCallback (
 ATSUTextLayout iLayout,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 ATSTrapezoid *iUnhighlightArea,
 ItemCount iTrapezoidCount
);

Parameters
iLayout

An ATSUTextLayout value that specifies the text layout object on which your callback will operate.

iTextOffset
The offset of the text to be highlighted.

iTextLength
The length of the text to be highlighted.

iUnhighlightArea
An array of ATSTrapezoid data structures that describe the boundaries of the highlight area. The
boundary values in this array are always specified in QuickDraw coordinates.

iTrapezoidCount
The number of ATSTrapezoid data structures in the iUnhighlightArea array.

Return Value
A Boolean value that indicates whether ATSUI should redraw the text. If your function redraws the text, your
callback should return false, otherwise you callback should return true to have ATSUI redraw any text that
needs to be redrawn.

Discussion
ATSUI calls your customized redraw-background callback when it needs to redraw complex backgrounds
(and optionally the text as well). For ATSUI to use your callback, you must first call the
ATSUSetHighlightingMethod (page 121) function with the iMethod parameter set to
kRedrawHighlighting. You must also pass an ATSUUnhighlightData data structure as a parameter to
the ATSUSetHighlightingMethod function. This structure should contain a pointer to your redraw
background callback.

To provide a pointer to your redraw background callback, you create a universal procedure pointer (UPP) of
type RedrawBackgroundUPP, using the function NewRedrawBackgroundUPP (page 155). You can do so
with code similar to the following:

RedrawBackgroundUPP gMyRedrawBackgroundUPP;
gMyRedrawBackgroundUPP = NewRedrawBackgroundUPP
 (&MyRedrawBackgroundCallback);

166 Callbacks
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

For ATSUI to invoke your callback function, you must also pass the RedrawBackgroundUPP in the
unhighlightData.backgroundUPP field of the iUnhighlightData parameter for the function
ATSUSetHighlightingMethod. When finished, you must call the function
DisposeRedrawBackgroundUPP (page 146) to dispose of the RedrawBackgroundUPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

Data Types

Core Data Types

ATSUAttributeInfo
Contains an attribute tag and the size of the attribute.

struct ATSUAttributeInfo {
 ATSUAttributeTag fTag;
 ByteCount fValueSize;
};

Fields
fTag

Identifies a particular style run or text attribute value. For a description of the Apple-defined style run
and text layout attribute tag constants, see “Attribute Tags” (page 196).

fValueSize
The size (in bytes) of the style run or text layout attribute value.

Discussion
Several ATSUI functions pass back an array of structures of this type. The function
ATSUGetAllAttributes (page 59) passes back an array of ATSUAttributeInfo structures to represent
the data sizes of all previously set style run attribute values and the corresponding style run attribute tags
that identify those style run attribute values. The function ATSUGetAllLayoutControls (page 62) passes
back an array of ATSUAttributeInfo structures to represent the data sizes of all previously set text layout
attribute values for an entire text layout object and the corresponding text layout attribute tags that identify
those text layout attribute values. The function ATSUGetAllLineControls (page 63) passes back an array
of ATSUAttributeInfo structures to represent the data sizes of all previously set text layout attribute values
for a single line in a text layout object and the corresponding text layout attribute tags that identify those
text layout attribute values.

ATSLayoutRecord
Contains basic layout information for a single glyph.

Data Types 167
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSLayoutRecord {
 ATSGlyphRef glyphID;
 ATSGlyphInfoFlags flags;
 ByteCount originalOffset;
 Fixed realPos;
};
typedef struct ATSLayoutRecord ATSLayoutRecord;

Fields
glyphID

A reference to a glyph ID.

flags
A flag that specifies the glyph’s properties. See “Glyph Property Flags” (page 217) for the constants
you can use.

originalOffset
The byte offset of the character with which this glyph is associated.

realPos
A Fixed value that specifies the real position of the glyph. This is the x-coordinate of the glyph.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

ATSUStyleSettingRef
A reference to an opaque style setting object.

typedef struct LLCStyleInfo* ATSUStyleSettingRef;

Discussion
You can obtain a style setting reference by calling the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46) with the selector set to
kATSUDirectDataStyleSettingATSUStyleSettingRefArray. You can move a style setting reference
from one text layout object to another by calling the function ATSUDirectAddStyleSettingRef (page
44).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeDirectAccess.h

ATSUAttributeValuePtr
Represents a pointer to a style run or text layout attribute value of unknown size.

168 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef void* ATSUAttributeValuePtr;

Discussion
Each attribute value pointed to by ATSUAttributeValuePtr is identified by an attribute tag and the size
(in bytes) of the attribute value.

You pass the ATSUAttributeValuePtr type to functions that set or clear attribute values in style and text
layout objects. The ATSUAttributeValuePtr type is passed back by functions that query style and text
layout objects for their attribute values. You must dereference this pointer and cast it to the appropriate data
type to obtain the actual attribute value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ConstATSUAttributeValuePtr
A pointer to a constant attribute value pointer (ATSUAttributeValuePtr).

typedef const void* ConstATSUAttributeValuePtr;

Discussion
An ATSUAttributeValuePtr data type provides generic access to storage of attribute values which vary
in size.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSURGBAlphaColor
Contains color information that includes alpha channel information.

struct ATSURGBAlphaColor {
 float red;
 float green;
 float blue;
 float alpha;
};
typedef struct ATSURGBAlphaColor ATSURGBAlphaColor;

Fields
red

A value that specifies the red component of the background color.

green
A value that specifies the green component of the background color.

blue
A value that specifies the blue component of the background color.

Data Types 169
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

alpha
A value that specifies thee alpha channel component of the background color.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeTypes.h

ATSUBackgroundColor
Redefines the ATSUBackgroundColor data type to be an ATSURGBAlphaColor data type.

typedef ATSURGBAlphaColor ATSUBackgroundColor;

Discussion
Prior to Mac OS X version 10.2, the ATSUBackgroundColor data type did not include an alpha channel.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUBackgroundData
A union that contains a background color or a universal procedure pointer to a callback that redraws the
background.

union ATSUBackgroundData {
 ATSUBackgroundColor backgroundColor;
 RedrawBackgroundUPP backgroundUPP;
};

Fields
backgroundColor

A structure that specifies the background color.

backgroundUPP
A universal procedure pointer to a callback function for redrawing complex backgrounds. See
RedrawBackgroundUPP (page 196) for more information.

ATSUCaret
Contains the coordinates needed to draw a caret.

170 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSUCaret {
 Fixed fX;
 Fixed fY;
 Fixed fDeltaX;
 Fixed fDeltaY;
};

Fields
fX

Represents the x-coordinate of the caret’s starting pen position relative to the position of the origin
of the line in the current graphics port in which the hit occurred.

fY
Represents the y-coordinate of the caret’s starting pen position relative to the position of the origin
of the line in the current graphics port in which the hit occurred.

fDeltaX
Represents the x-coordinate of the caret’s ending pen position relative to the position of the origin
of the line in the current graphics port in which the hit occurred. This position takes into account line
rotation. You do not have to rotate it yourself.

fDeltaY
Represents the y-coordinate of the caret’s ending pen position relative to the position of the origin
of the line in the current graphics port in which the hit occurred. This position takes into account line
rotation. You do not have to rotate it yourself.

Discussion
The function ATSUOffsetToPosition (page 111) passes back two structures of type ATSUCaret to represent
the caret position relative to the origin of the line in the current graphics port, corresponding to a specified
edge offset. If the edge offset is at a line boundary, the structure passed back in oMainCaret contains the
starting and ending pen locations of the high caret, while oSecondCaret contains the low caret. If the offset
is not at a line boundary, both parameters contain the same structure. This structure contains the starting
and ending pen locations of the main caret.

You can use the information in this structure to draw a caret by calling the MoveTo and LineTo functions.
For example.

MoveTo (fX, fY);
LineTo (fDeltaX, fDeltaY);

ATSUFontFeatureType
Represents the attributes of a particular font feature.

typedef UInt16 ATSUFontFeatureType;

Discussion
Font features are typographic and layout capabilities that you can select or deselect and which control many
aspects of glyph selection, ordering, and positioning. Font features include fundamental controls such as
whether your text is drawn with contextual forms, as well as details of appearance such as whether you want
alternate forms of glyphs to be used at the beginning of a word. To a large extent, how text looks when it is
laid out is a function of the number and kinds of font features you choose.

Data Types 171
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Font vendors create tables that implement the specific set of features which are included in a font by the
font designer. Note that only a few feature types and selectors may be available with a given font. If you
select features that are not available in a font, you won’t see a change in the glyph’s appearance. To determine
the available features of a font, you can call the functions ATSUGetFontFeatureTypes (page 70) and
ATSUGetFontFeatureSelectors (page 68).

For a complete discussion of font features, the selectors you use to access them, and illustrations of the
features, see Inside Mac OS X: Rendering Unicode Text With ATSUI.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUFontFeatureSelector
Represents the state (on or off) of a particular feature type.

typedef UInt16 ATSUFontFeatureSelector;

Discussion
You pass the ATSUFontFeatureSelector type to functions that set or clear font feature selectors in a style
run. The ATSUFontFeatureSelector type is passed back by functions that obtain font feature selectors in
a style run. For a complete discussion of font feature selectors, see Inside Mac OS X: Rendering Unicode Text
With ATSUI.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUFontVariationAxis
Represents a stylistic attribute and the range of values that the font can use to express this attribute.

typedef FourCharCode ATSUFontVariationAxis;

Discussion
Font variations allow your application to produce a range of type styles algorithmically. You can obtain a a
variation axis and its maximum, minimum, and default values for a font by calling the function
ATSUGetIndFontVariation (page 81). For a complete discussion of font variations, see Inside Mac OS X:
Rendering Unicode Text With ATSUI.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

172 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUFontVariationValue
Represents the range of values that the font can use for a particular font variation.

typedef Fixed ATSUFontVariationValue;

Discussion
You pass the ATSUFontVariationValue type to functions that set and clear font variations in a style run.
The ATSUFontVariationValue type is passed back by functions that query a style run for font variations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUFontFallbacks
An opaque structure that contains a font fallback list and font fallback cache information.

typedef struct OpaqueATSUFontFallbacks *ATSUFontFallbacks;

Availability
Available in Mac OS X v10.1 and later.

Declared In
ATSUnicodeTypes.h

ATSUFontID
Represents the unique identifier of a font to the font management system in ATSUI.

typedef FMFont ATSUFontID;

Discussion
You pass the ATSUFontID type with functions that set and obtain font information. The ATSUFontID type
is passed back by functions that count fonts installed on a user’s system. The ATSUFontID type can be also
used to set and get the font in a style run; see “Attribute Tags” (page 196).

An ATSUFontID specifies a font family and instance. This value is not guaranteed to remain constant if the
system is restarted. You should obtain the font’s unique name and store that information in documents for
which you need persistent font information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUGlyphInfo
Contains information about a glyph.

Data Types 173
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSUGlyphInfo {
 GlyphID glyphID;
 UInt16 reserved;
 UInt32 layoutFlags;
 UniCharArrayOffset charIndex;
 ATSUStyle style;
 Float32 deltaY;
 Float32 idealX;
 SInt16 screenX;
 SInt16 caretX;
};

Fields
glyphID

A glyph ID. This is unique to the associated font.

reserved
Reserved for Apple’s use.

layoutFlags
The layout flags associated with this glyph.

charIndex
The index of the character in the Unicode character stream from which this glyph is derived.

style
An ATSUStyle value that specifies the style object associated with this glyph.

deltaY
The cross-stream shift value for this glyph.

idealX
The ideal with-stream offset from the origin of this layout.

screenX
The device-adjusted with-stream offset from the origin of this layout.

caretX
The position in device coordinates where a trailing caret for this glyph intersects the baseline.

Discussion
This data structure is used by ATSUI to return the glyph information associated with one glyph.

ATSUGlyphInfoArray
Contains text layout information for an array of glyphs.

struct ATSUGlyphInfoArray {
 ATSUTextLayout layout;
 ItemCount numGlyphs;
 ATSUGlyphInfo glyphs[1];
};

Fields
layout

An ATSUTextLayout value that specifies the text layout object associated with the glyphs.

numGlyphs
The number of glyphs associated with the text layout object.

174 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

glyphs
An array of glyph information structures.

Discussion
This data structure is used by ATSUI to return the glyph information associated with the glyphs in a text
layout object.

ATSUGlyphSelector
Contains information that directs ATSUI to use a specific glyph instead of the one ATSUI normally derives.

struct ATSUGlyphSelector {
 GlyphCollection collection;
 GlyphID glyphID;
};
typedef struct ATSUGlyphSelector ATSUGlyphSelector;

Fields
collection

A value that represents the collection of glyphs you want ATSUI to use. See “Glyph Collection Types
” (page 216) for possible values you can supply.

glyphID
A glyph ID value or a collection ID (CID) value. Supply a glyph ID when the collection type is
kGlyphCollectionGID. Otherwise supply a CID.

Discussion
The ATSUGlyphSelector structure along with the attribute tag kATSUGlyphSelectorTag allow display
of glyphs that do not have an explicit Unicode character. You can use the kATSUGlyphSelectorTag to
access characters in fonts that otherwise would not be accessible. You can choose the variant glyph by
font-specific glyph ID or CID. For more information on CID conventions, see go to http://www.adobe.com.
You can get the variant glyph information from an input method through the Text Services Manager using
the Carbon event key kEventParamTextInputGlyphInfoArray.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeTypes.h

ATSJustPriorityWidthDeltaOverrides
Contains justification width delta override structures, one for each priority-level override.

typedef ATSJustWidthDeltaEntryOverride ATSJustPriorityWidthDeltaOverrides[4];

Discussion
For more information see ATSJustWidthDeltaEntryOverride (page 176).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSLayoutTypes.h

Data Types 175
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

http://www.adobe.com

ATSJustWidthDeltaEntryOverride
Contains values that specify the amount of space that can be added to or removed from the right and left
sides of each of the glyphs of a given justification priority.

struct ATSJustWidthDeltaEntryOverride {
 Fixed beforeGrowLimit;
 Fixed beforeShrinkLimit;
 Fixed afterGrowLimit;
 Fixed afterShrinkLimit;
 JustificationFlags growFlags;
 JustificationFlags shrinkFlags;
};
typedef struct ATSJustWidthDeltaEntryOverride ATSJustWidthDeltaEntryOverride;

Fields
beforeGrowLimit

The proportion by which a glyph can expand on the left side (top side for vertical text). For example,
a value of 0.2 means that a 24-point glyph can have by no more than 4.8 points (0.2 x 24 = 4.8) of
extra space added on the left side (top side for vertical text).

beforeShrinkLimit
The proportion by which a glyph can shrink on the left side (top side for vertical text). If specified,
this value should be negative.

afterGrowLimit
The proportion by which a glyph can expand on the right side (bottom side for vertical text).

afterShrinkLimit
The proportion by which a glyph can shrink on the right side (bottom side for vertical text). If specified,
this value should be negative.

growFlags
Mask constants that indicate whether ATSUI should apply the limits defined in the beforeGrowLimit
and afterGrowLimit fields. See “Justification Override Mask Constants” in the Font Manager for a
description of possible values. These mask constants also control whether unlimited gap absorption
should be applied to the priority of glyphs specified in the given width delta override structure. You
can use these mask constants to selectively override the grow case only, while retaining default
behavior for other cases.

shrinkFlags
Mask constants that indicate whether ATSUI should apply the limits defined in the
beforeShrinkLimit and afterShrinkLimit fields. See “Justification Override Mask Constants”
in the Font Manager for a description of possible values. These mask constants also control whether
unlimited gap absorption should be applied to the priority of glyphs specified in the given width
delta override structure. You can use these mask constants to selectively override the shrink case
only, while retaining default behavior for other cases.

Discussion
The JustWidthDeltaEntryOverride structure specifies proportions for justification growth and shrinkage,
both on the left and the right sides. The growth and shrinkage values override the font-specified widths,
such as those specified by the font for kashidas.

It also contains justification flags. The ATSJustWidthDeltaEntryOverride data type can be used to set
and get justification behavior and priority override weighting; see “Attribute Tags” (page 196).

If you need to access other 'just' table constants and structures from the 'sfnt' resource, see the header
file SFNTLayoutTypes.h.

176 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSLayoutTypes.h

ATSULayoutOperationOverrideSpecifier
Contains an layout operation selector and a pointer to a layout operation override callback.

struct ATSULayoutOperationOverrideSpecifier {
 ATSULayoutOperationSelector operationSelector;
 ATSUDirectLayoutOperationOverrideUPP overrideUPP;
};
typedef struct ATSULayoutOperationOverrideSpecifier
ATSULayoutOperationOverrideSpecifier;

Fields
operationSelector

A layout operation selector that specifies the operation for which the callback should be invoked. See
“Layout Operation Selectors” (page 221) for the selectors you can specify.

overrideUPP
A universal procedure pointer to a layout operation override callback.

Discussion
You can pass this structure as an attribute value for the layout attribute tag
kATSULayoutOperationOverrideTag.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

ATSULineRef
Represents a reference to a structure that specifies a line of text.

typedef struct ATSGlyphVector *ATSULineRef;

Discussion
You get an ATSUI line reference from ATSUI when your layout operation override callback is invoked. The
line reference refers to the line that ATSUI is in the process of laying out.

From within your callback, you pass an ATSUI line reference to the function
ATSUDirectGetLayoutDataArrayPtrFromLineRef to obtain layout data for that line. The only way you
can obtain an ATSUI line reference is from inside your layout operation override callback. An ATSUI line
reference is not valid is outside of the callback.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

Data Types 177
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUStyle
Represents a reference to an opaque structure that contains information about a style object.

typedef struct OpaqueATSUStyle *ATSUStyle;

Discussion
A style object is an opaque structure encapsulating the following character-level style settings

 ■ style attributes: including font ID, font size, font color, kerning control, optical alignment, verticality, and
with-stream (left-right) and cross-stream (up-down) shifting (as for superscripts and subscripts)

 ■ font features: including ligatures, swashes, and alternate glyph forms

 ■ font variations: such as continually varying font weight, width, or slant

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUStyleRunInfo
Contains information for a style run.

struct ATSUStyleRunInfo {
 UniCharCount runLength;
 ItemCount styleObjectIndex;
};
typedef struct ATSUStyleRunInfo ATSUStyleRunInfo;

Fields
runLength

The length of the style run.

styleObjectIndex
An index into an array of unique style objects.

Discussion
This structure is used by the function ATSUUnflattenStyleRunsFromStream (page 138) to return style
run information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSUTab
Contains tab settings.

178 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSUTab {
 ATSUTextMeasurement tabPosition;
 ATSUTabType tabType;
};
typedef struct ATSUTab ATSUTab;

Fields
tabPosition

Specifies a tab position.

tabType
Specifies a type of tab stop. See “Tab Positioning Options” (page 232).

Discussion
You can set tabs for a text layout object by calling the function ATSUSetTabArray (page 129). You can obtain
tab settings by calling the function ATSUGetTabArray (page 89).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeTypes.h

ATSUTextLayout
Represents a reference to an opaque text layout structure that contains information about a text layout.

typedef struct OpaqueATSUTextLayout* ATSUTextLayout;

Discussion
The basic building block upon which ATSUI operates is a text layout object (ATSUTextLayout). A text layout
object ties one or more paragraphs of text together with style attributes that may apply to characters, lines,
or the entire layout. The text layout object itself contains information about line and layout attributes,
including justification, rotation, direction, and others. Character style information is contained in a style
object, which is only associated with, not contained by, a text layout object. For more information on text
layout objects, see Inside Mac OS X: Rendering Unicode Text With ATSUI.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSUTextMeasurement
Represents measurements needed by ATSUI to lay out text, such as outline metrics and line width, ascent,
descent.

typedef Fixed ATSUTextMeasurement;

Discussion
The ATSUTextMeasurement type is defined as a Fixed value, with a limit of 32K. You must ensure that your
measurements are converted to Fixed values before passing them to ATSUI functions that use this type.

Data Types 179
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSUI uses fractional Fixed values instead of short values used in QuickDraw Text. Fractional Fixed values
provide exact outline metrics and line specifications such as line width, ascent, descent, and so on.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

ATSTrapezoid
Contains the coordinates of the typographic bounding trapezoid for the final layout of a line a text.

struct ATSTrapezoid {
 FixedPoint upperLeft;
 FixedPoint upperRight;
 FixedPoint lowerRight;
 FixedPoint lowerLeft;
};

Fields
upperLeft

A structure of type FixedPoint that contains the upper left coordinates (assuming a horizontal line
of text) of the typographic glyph bounds.

upperRight
A structure of type FixedPoint that contains the upper right coordinates (assuming a horizontal
line of text) of the typographic glyph bounds.

lowerRight
A structure of type FixedPoint that identifies the lower right coordinates (assuming a horizontal
line of text) of the typographic glyph bounds.

lowerLeft
A structure of type FixedPoint that identifies the lower left coordinates (assuming a horizontal line
of text) of the typographic glyph bounds.

Discussion
The dimensions of the resulting trapezoid are relative to the coordinates specified in the iTextBasePointX
and iTextBasePointY parameters. The width of the glyph bounds is determined based on the value passed
in the iTypeOfBounds parameter.

The function ATSUGetGlyphBounds (page 75) passes back an array of structures of type ATSTrapezoid
to specify the enclosing trapezoid(s) of a final laid-out line of text. If the range of text spans directional
boundaries, ATSUGetGlyphBounds produces multiple trapezoids defining these regions.

Version Notes
In ATSUI 1.1, the function ATSUGetGlyphBounds can pass back a maximum of 31 bounding trapezoids. In
ATSUI 1.2, ATSUGetGlyphBounds can pass back as many as 127 bounding trapezoids.

ATSUUnhighlightData
Contains data needed to redraw the background.

180 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSUUnhighlightData {
 ATSUBackgroundDataType dataType;
 ATSUBackgroundData unhighlightData;
};

Fields
dataType

The data type of the background—a color or a callback.

unhighlightData
A background color or a universal procedure pointer to a callback that redraws the background.

USTL Data Structure Data Types

The data types in this section define the 'ustl' data structure, which is the data structure used by ATSUI
to contain flattened data. The 'ustl' data structure has four blocks. The Block 1 structure defines is a header
for the entire 'ustl' data structure. Block 2 structures define flattened text layout data. (Note that Block 2
structures are not currently used by the functions ATSUFlattenStyleRunsToStream (page 55) and
ATSUUnflattenStyleRunsFromStream (page 138).) Block 3 structures define flattened style run data. Block
4 structures define flattened style data.

The 'ustl' data structure can accommodate any ATSUI text layout and style run data associated with a
document. That is, the 'ustl' data structure can contain data for multiple text layout objects, multiple style
runs, and multiple style objects. Within each block (text layout, style run, and style) you must specify the
number structures in that block.

ATSFlatDataMainHeaderBlock
Contains the 'ustl' data structure version and size and provides offsets to the text layout, style run, and
style list data blocks.

struct ATSFlatDataMainHeaderBlock {
 UInt32 version;
 ByteCount sizeOfDataBlock;
 ByteCount offsetToTextLayouts;
 ByteCount offsetToStyleRuns;
 ByteCount offsetToStyleList;
};
typedef struct ATSFlatDataMainHeaderBlock ATSFlatDataMainHeaderBlock;

Fields
version

The version number of the 'ustl' data structure. You must make sure this number is the first item
in the data block, otherwise the data may not be readable by code written to parse earlier versions
of 'ustl' data.

sizeOfDataBlock
The total size of the data in bytes, including the four bytes needed for the version number.

offsetToTextlayouts
The offset from the beginning of the data block to the flattened text layout data. You can set this
value to 0 if there is no text layout data. This value specifies the offset to the
ATSFlatDataTextLayoutDataHeader (page 182) structure.

Data Types 181
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

offsetToStyleRuns
The offset from the beginning of the data to the flattened style run data. You can set this value to 0
if there is no flattened style run data. This value specifies the offset to the
ATSFlatDataStyleRunDataHeader (page 186) structure.

offsetToStyleList
The offset to the flattened style list data. You can set this value to 0 if there is no flattened style list
data. This value specifies the offset to the ATSFlatDataStyleListHeader (page 187) structure.

Discussion
The structure ATSFlatDataMainHeaderBlock is Block 1 of the 'ustl' data structure. This structure contains
information about the rest of the 'ustl' data structure and provides offsets to each of the other three data
blocks. Figure 1 illustrates the main header structure.

Figure 1 The main header for the ustl data structure

4

4

Header section of a 'ustl' resource Bytes

Offset to flattened text layout data

Offset to flattened style run data

Offset to flattened style list data

Resource data version

Size of resource data

4

4

4

Per the 'ustl' specification, all data blocks with the 'ustl' data structure must maintain 4-byte alignment.
For such items as font names, which have a variable width, you must add padding bytes to ensure the 4-byte
alignment is always maintained.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataTextLayoutDataHeader
Contains size, length, and offset information for a text layout data block.

182 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSFlatDataTextLayoutDataHeader {
 ByteCount sizeOfLayoutData;
 ByteCount textLayoutLength;
 ByteCount offsetToLayoutControls;
 ByteCount offsetToLineInfo;
};
typedef struct ATSFlatDataTextLayoutDataHeader ATSFlatDataTextLayoutDataHeader;

Fields
sizeOfLayoutData

The size of the flattened text layout data. This value must include any bytes that have been added to
maintain the required 4-byte alignment.

textLayoutLength
The number of characters to which the flattened text layout data applies.

offsetLayoutControls
The offset to the flattened layout control data. This offset is relative to the start of the text layout data
block, and specifies the offset to theATSFlatDataLayoutControlsDataHeader (page 185) structure.
The offset can be set to zero if there are no layout controls.

offsetToLineLength
The offset to the flattened line info data. This offset is relative to the start of the text layout data block,
and specifies the offset to the ATSFlatDataLineInfoHeader (page 185) structure. The offset can
be set to zero if there is no line info in this layout.

Discussion
The ATSFlatDataTextLayoutDataHeader structure is a block 2 data structure and it is the main header
for text layout data. If you have text layout data to flatten or unflatten, you must have one of these structures.
for each text layout object whose data you want to flatten.

Note that the ATSFlatDataTextLayoutDataHeader data structure(s) must be preceded by an ItemCount
value that specifies the number of ATSFlatDataTextLayoutDataHeader data structures included in the
flattened data. Although the ItemCount value is not part of any 'ustl' data structure, you need to include
this 4-byte value when you flatten your text layout data so that you can successfully parse the flattened data
at a later time.

The offsetToTextLayouts field in the ATSFlatDataMainHeaderBlock (page 181) structure specifies the
offset to the structure ATSFlatDataTextLayoutDataHeader.

Figure 2 depicts the flattened text layout data. At the top of the figure is the information contained in the
data header (ATSFlatDataTextLayoutDataHeader). Following the header are layout controls data (see
ATSFlatDataLayoutControlsDataHeader (page 185)) and line length data (see
ATSFlatDataLineInfoHeader (page 185) and ATSFlatDataLineInfoData (page 186)).

Data Types 183
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Figure 2 Flattened text layout data

For each
text
layout
object

For each
previously
set text
layout
attribute

Flattened text layout data Bytes

4Number of text layout objects

Size of line and text layout attribute data 4

Number of characters covered by
text layout object 4

Offset to text layout attribute data 4

Offset to line attribute data 4

Number of previously set text layout attributes 4

Attribute value

4Attribute tag

Size of attribute value 4

Variable

Number of lines 4

Line length 4

Number of previously set line attributes 4

For
each
line

For each
previously
set line
attribute

Attribute tag 4

Size of attribute value 4

Attribute value Variable

If the offsetToLayoutControls value is not zero, there must be a
ATSFlatDataLayoutControlsDataHeader (page 185) structure that contains a count of the number of
layout controls and an array of layout control attribute data.

If the offsetToLineInfo is not zero, then following the flattened layout controls data you must have an
ATSFlatDataLineInfoHeader (page 185) structure.

This and other Block 2 structures are not currently used by the functions
ATSUFlattenStyleRunsToStream (page 55) and ATSUUnflattenStyleRunsFromStream (page 138).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

184 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSFlatDataLayoutControlsDataHeader
Contains the number of flattened layout controls and an array of layout control attribute data.

struct ATSFlatDataLayoutControlsDataHeader {
 ItemCount numberOfLayoutControls;
 ATSUAttributeInfo controlArray[1];
};typedef struct ATSFlatDataLayoutControlsDataHeader
ATSFlatDataLayoutControlsDataHeader;

Fields
numberOfLayoutControls

The number of flattened layout controls. There should be at least one layout control that specifies
the line direction of the layout.

controlArray[1]
The first entry in an array of ATSUI attribute information. There should be numberOfLayoutControls
entries in this array. If necessary, each ATSUI attribute info structure in the array should be followed
by padding bytes to maintain the required 4-byte alignment. The value in the fValueSize field of
each ATSUAttributeInfo structure must specify the size of the attribute value, and must not reflect
any padding bytes you added.

Discussion
The ATSFlatDataLayoutControlsDataHeader structure is the header for the flattened layout controls
structure. The offsetToLayoutControls field in the ATSFlatDataTextLayoutDataHeader (page 182)
structure specifies the offset to the structure ATSFlatDataLayoutControlsDataHeader. If there are no
layout controls, you do not need the ATSFlatDataLayoutControlsDataHeader structure.

This and other Block 2 structures are not currently used by the functions
ATSUFlattenStyleRunsToStream (page 55) and ATSUUnflattenStyleRunsFromStream (page 138).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataLineInfoHeader
Contains the number of lines and an array of line information data.

struct ATSFlatDataLineInfoHeader {
 ItemCount numberOfLines;
 ATSFlatDataLineInfoData lineInfoArray[1];
};
typedef struct ATSFlatDataLineInfoHeader ATSFlatDataLineInfoHeader;

Fields
numberOfLines

The number of flattened line info structures that are stored in this block. This value should be greater
than zero and equal to the number of soft line breaks in the layout plus one.

lineInfoArray[1]
The first entry in a array of ATSFlatDataLineInfoData (page 186) structures. There should be
numberOfLines entries in this array.

Data Types 185
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The ATSFlatDataLineInfoHeader structure is the main data header for the flattened line info data. The
value offsetToLineInfo in the ATSFlatDataTextLayoutDataHeader (page 182) specifies the offset to
the ATSFlatDataLineInfoHeader structure.

This and other Block 2 structures are not currently used by the functions
ATSUFlattenStyleRunsToStream (page 55) and ATSUUnflattenStyleRunsFromStream (page 138).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataLineInfoData
Contains a line length and the number of line controls for a line of flattened text.

struct ATSFlatDataLineInfoData {
 UniCharCount lineLength;
 ItemCount numberOfLineControls;
};
typedef struct ATSFlatDataLineInfoData ATSFlatDataLineInfoData;

Fields
lineLength

The number of UniChars characters in the line.

numberOfLineControls
The number of line controls applied to the line. You can set this value to zero if there are no line
controls applied to this line.

Discussion
If the numberOfLineControls is not zero, then you must supply an array of ATSUAttributeInfo structures
that contains numberOfLineControls elements.

This and other Block 2 structures are not currently used by the functions
ATSUFlattenStyleRunsToStream (page 55) and ATSUUnflattenStyleRunsFromStream (page 138).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleRunDataHeader
Contains the number of style runs and style run information for the style run data block.

186 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSFlatDataStyleRunDataHeader {
 ItemCount numberOfStyleRuns;
 ATSUStyleRunInfo styleRunArray[1];
};
typedef struct ATSFlatDataStyleRunDataHeader ATSFlatDataStyleRunDataHeader;

Fields
numberOfStyleRuns

The number of style run data structures stored in this block.

styleRunArray[1]
The first entry in a array of ATSUStyleRunInfo structures. There should be numberOfStyleRuns
entries in this array.

Discussion
The ATSFlatDataStyleRunDataHeader structure precedes style run data structures. The
offsetToStyleRuns field in the ATSFlatDataMainHeaderBlock (page 181) specifies the offset to the
structure ATSFlatDataStyleRunDataHeader.

Figure 3 Flattened style run data

Flattened style run data Bytes

Number of style runs

Style run length

4

4

For each style run
Index of style object

corresponding to this style run 4

This is a Block 3 structure. Block 3 structures are used by ATSUI style run flattening and parsing functions,
ATSUFlattenStyleRunsToStream (page 55) and ATSUUnflattenStyleRunsFromStream (page 138),
to represent flattened style run information. These structures work together with Block 4 structures.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleListHeader
Contains the number of styles and the first item in the style list style data header.

Data Types 187
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSFlatDataStyleListHeader {
 ItemCount numberOfStyles;
 ATSFlatDataStyleListStyleDataHeader styleDataArray[1];
};
typedef struct ATSFlatDataStyleListHeader ATSFlatDataStyleListHeader;

Fields
numberOfStyles

The number of flattened style objects in this block.

styleDataArray[1]
The first item in an array of ATSFlatDataStyleListStyleDataHeader (page 189) structures. There
should be numberOfStyles entries in this array. Note that the data stored in these structures can
be of variable sizes.

Discussion
The ATSFlatDataStyleListHeader structure is the main header for Block 4. The offsetToStyleList
field in the ATSFlatDataMainHeaderBlock (page 181) specifies the offset to the structure
ATSFlatDataStyleListHeader.

Figure 4 Flattened style list data

Flattened style list data Bytes

Number of style objects 4

Size of attribute data 4

Number of previously set style run attributes 4

Number of previously set font features 4

Number of previously set font variations 4

For each
style object

For each
previously
set style
run attribute

Size of attribute value

Attribute tag 4

4

Attribute value Variable

Feature type 4

Feature selector 4

For each
previously
set font
feature

For each
previously
set font
variation

Variation axis 4

Variation value 4

Availability
Available in Mac OS X v10.2 and later.

188 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleListStyleDataHeader
Contains size information and the number of attributes, features, and variations for the style list data block.

struct ATSFlatDataStyleListStyleDataHeader {
 ByteCount sizeOfStyleInfo;
 ItemCount numberOfSetAttributes;
 ItemCount numberOfSetFeatures;
 ItemCount numberOfSetVariations;
};
typedef struct ATSFlatDataStyleListStyleDataHeader
ATSFlatDataStyleListStyleDataHeader;

Fields
sizeOfStyleInfo

The size of the flattened style object. This value should include the four bytes for this field
(sizeOfStyleInfo) and any padding bytes you add to end of the structure to maintain the required
4-byte alignment.

numberOfSetAttributes
The number of attributes in the flattened style object. You should have at least one attribute for the
font data, although you can set this value to 0 if you do not want to specify font data.

numberOfSetFeatures
The number of font features in the flattened style object. You can set this value to 0 if there are no
font features in the style object.

numberOfSetVariations
The number of font variations in the flattened style object. You can set this value to 0 if there are no
font variations in the style object.

Discussion
The ATSFlatDataStyleListStyleDataHeader structure forms the beginning of an individually flattened
ATSUStyle object. This structure precedes the following data:

1. If the value numberOfSetAttributes is non-zero, there must be an array of ATSUAttributeInfo
structures immediately following the ATSFlatDataStyleListStyleDataHeader structure to store
the style attributes. This is a variable-size array. The number of ATSUAttributeInfo structures must
be equal to the value numberOfSetAttributes, one structure for each attribute.

If the value numberOfSetAttributes is zero, you do not need an array of ATSUAttributeInfo
structures.

2. If the value numberOfSetFeatures is non-zero, there must be an array of
ATSFlatDataStyleListFeatureData structures. These structures must appear immediately following
the ATSUAttributeInfo array above (if there is such an array). The number of
ATSFlatDataStyleListFeatureData structures must be equal to the value numberOfSetFeatures,
one structure for each feature.

If the value numberOfSetFeatures is zero, you do not need an array of
ATSFlatDataStyleListFeatureData structures.

Data Types 189
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

3. If the value numberOfSetVariations is non-zero, there must be an array of
ATSFlatDataStyleListVariationData structures immediately following the
ATSFlatDataStyleListFeatureData array (if there is such an array). The number of
ATSFlatDataStyleListVariationData structures must be equal to the value
numberOfSetVariations, one structure for each variation.

This is a Block 4 structure. Block 4 structures store flattened ATSUStyle objects and are currently used by
the ATSUI style run flattening and parsing functions, ATSUFlattenStyleRunsToStream (page 55) and
ATSUUnflattenStyleRunsFromStream (page 138).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleListFeatureData
Contains flattened font feature data.

struct ATSFlatDataStyleListFeatureData {
 ATSUFontFeatureType theFeatureType;
 ATSUFontFeatureSelector theFeatureSelector;
};
typedef struct ATSFlatDataStyleListFeatureData ATSFlatDataStyleListFeatureData;

Fields
theFeatureType

A font feature type.

theFeatureSelector
A font feature selector.

Discussion
This is a Block 4 structure. The structure ATSFlatDataStyleListFeatureData stores flattened font feature
data. If the value numberOfSetFeatures in the ATSFlatDataStyleListStyleDataHeader (page 189)
structure is non-zero, an array of these structure must follow the array of font data attributes (if such an array
exists) if the numberOfSetFeatures is non-zero. The number of ATSFlatDataStyleListFeatureData
structures must be equal to the value numberOfSetFeatures.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataStyleListVariationData
Contains flattened font variation axis data.

190 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSFlatDataStyleListVariationData {
 ATSUFontVariationAxis theVariationAxis;
 ATSUFontVariationValue theVariationValue;
};
typedef struct ATSFlatDataStyleListVariationData ATSFlatDataStyleListVariationData;

Fields
theVariationAxis

A font variation axis.

theVariationValue
A font variation value.

Discussion
This is a Block 4 structure. The structure ATSFlatDataStyleListVariationData stores flattened font
variation data. If the value numberOfSetVariations in the
ATSFlatDataStyleListStyleDataHeader (page 189) structure is non-zero, an array of these structure
must follow the array of font features (if such an array exists) if the numberOfSetVariations is non-zero.
The number of ATSFlatDataStyleListVariationData structures must be equal to the value
numberOfSetVariations.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataFontNameDataHeader
Contains font name information.

struct ATSFlatDataFontNameDataHeader {
 ATSFlatDataFontSpeciferType nameSpecifierType;
 ByteCount nameSpecifierSize;
};
typedef struct ATSFlatDataFontNameDataHeader ATSFlatDataFontNameDataHeader;

Fields
nameSpecifierType

A font specifier for the type of the font name data you plan to supply. See “Flattened Data Font Type
Selectors” (page 212) for a list of the font specifiers you can supply. The font name data must follow
the ATSFlatDataFontNameDataHeader structure.

nameSpecifierSize
The size of the flattened font name data. This value must not include any padding bytes that may be
necessary to achieve the required 4-byte alignment, unless the padding bytes are specified as part
of structure, such as with the ATSFlatDataFontSpecRawNameData structure.

Discussion
Font information can be recorded in an ATSUStyle object using the attribute tag kATSUFontTag and an
attribute value that is of type ATSUFontID. Unfortunately, a font ID can vary between systems or system
startups, which means you cannot ensure that the font used when the style is flattened is the same font that
will be used with the style is unflattened. To preserve font information, you must flatten font name data. You
specify font information using the structure ATSFlatDataFontNameDataHeader. You store this structure
as a style attribute value. You must make sure this structure maintains the required 4-byte alignment.

Data Types 191
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Following the ATSFlatDataFontNameDataHeader structure must be the flattened font name data of the
type specified by the nameSpecifierType field. For instance, if the value of the nameSpecType field is
kATSFlattenedFontNameSpecifierRawNameData, the structure that immediately follows should be a
ATSFlatDataFontSpecRawNameDataHeader (page 192) structure.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataFontSpecRawNameDataHeader
Contains raw font name data.

struct ATSFlatDataFontSpecRawNameDataHeader {
 ItemCount numberOfFlattenedNames;
 ATSFlatDataFontSpecRawNameData nameDataArray[1];
};
typedef struct ATSFlatDataFontSpecRawNameDataHeader
ATSFlatDataFontSpecRawNameDataHeader;

Fields
numberOfFlattenedNames

The number of flattened font names. There must be at least one flattened font name, otherwise the
structure is malformed.

nameDataArray[1]
The first element in an array of raw font name data.

Discussion
The function ATSUUnflattenStyleRunsFromStream (page 138) searches for fonts that match the font
data provides in the nameDataArray. ATSUI obtains matches for all the font name specifiers in the structure.
You must supply at least one entry in the nameDataArray, but you may want to supply more than one entry
to ensure a specific match. For example, the default ATSUI implementation is to use two name specifiers—the
full name of the font (kFontFullName) and the font manufacturer’s name (kFontManufacturerName).

The ATSFlatDataFontSpecRawNameDataHeader structure must be followed by one or more
ATSFlatDataFontSpecRawNameData structures. The number of structures must match the value specified
by the numberOfFlattenedName field.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

ATSFlatDataFontSpecRawNameData
Contains data for a font name.

192 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

struct ATSFlatDataFontSpecRawNameData {
 FontNameCode fontNameType;
 FontPlatformCode fontNamePlatform;
 FontScriptCode fontNameScript;
 FontLanguageCode fontNameLanguage;
 ByteCount fontNameLength;
};
typedef struct ATSFlatDataFontSpecRawNameData ATSFlatDataFontSpecRawNameData;

Fields
fontNameType

The type of font name. You must supply this parameter.

fontNamePlatform
The platform type of the font name. You should specify this if you know it (Unicode, Mac, and so
forth). If you do not know the platform type, then specify kFontNoPlatform. In this case all matching
is done by ATSUI based on the first font in the name table that matches the other parameters in this
structure.

fontNameScript
The script code of the font name based on the platform specified in the fontNamePlatform field.
If you set this to kFontNoScript, the name is matched based on the first font in the name table that
matches the other font name parameters in this structure.

fontNameLanguage
The language of the font name. If you set this to kFontNoLanguage, the name is matched based on
the first font in the name table that matches the other font name parameters in this structure.

fontNameLength
The length of the font name. The length should include any padding bytes needed to maintain the
required 4-byte alignment.

Discussion
The ATSFlatDataFontSpecRawNameData structure is the structure in which raw font name data is actually
stored. This structure is used only when the value of the nameSpecifierType field in the
ATSFlatDataFontNameDataHeader (page 191) structure iskATSFlattenedFontSpecifierRawNameData.
The structure stores multiple font name table entries for the purposes of reconstructing an ATSUFontID
value for the same font at some time in the future.

When the ATSUI parsing function ATSUUnflattenStyleRunsFromStream searches for fonts to match the
font data in this structure, it obtains matches for all the font name specifiers in the structure. The default
ATSUI implementation is to use two name specifiers—the full name of the font (kFontFullName) and the
font manufacturer’s name (kFontManufacturerName).

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSUnicodeFlattening.h

Universal Procedure Pointers

ATSUDirectLayoutOperationOverrideUPP
Defines a universal procedure pointer to a layout operation callback.

Data Types 193
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef ATSUDirectLayoutOperationOverrideProcPtr
ATSUDirectLayoutOperationOverrideUPP;

Discussion
For more information, see the description of the ATSUDirectLayoutOperationOverrideProcPtr (page
164) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
ATSLayoutTypes.h

ATSCubicClosePathUPP
Defines a universal procedure pointer to a cubic close-path callback.

typedef ATSCubicClosePathProcPtr ATSCubicClosePathUPP;

Discussion
For more information, see the description of the ATSCubicClosePathProcPtr (page 156) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSCubicCurveToUPP
Defines a universal procedure pointer to a cubic curve-to callback.

typedef ATSCubicCurveToProcPtr ATSCubicCurveToUPP;

Discussion
For more information, see the description of the ATSCubicCurveToProcPtr (page 157) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSCubicLineToUPP
Defines a universal procedure pointer to a cubic line-to callback.

typedef ATSCubicLineToProcPtr ATSCubicLineToProcUPP;

Discussion
For more information, see the description of the ATSCubicLineToProcPtr (page 158) callback function.

194 Data Types
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

ATSCubicMoveToUPP
Defines a universal procedure pointer to a cubic move-to callback.

typedef ATSCubicMoveToProcPtr ATSCubicMoveToUPP;

Discussion
For more information, see the description of the ATSCubicMoveToProcPtr (page 159) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticClosePathUPP
Defines a universal procedure pointer to a quadratic close-path callback.

typedef ATSQuadraticClosePathProcPtr ATSQuadraticClosePathUPP;

Discussion
For more information, see the description of the ATSQuadraticClosePathProcPtr (page 160) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticCurveUPP
Defines a universal procedure pointer to a quadratic curve callback.

typedef ATSQuadraticCurveProcPtr ATSQuadraticCurveUPP;

Discussion
For more information, see the description of the ATSQuadraticCurveProcPtr (page 161) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticLineUPP
Defines a universal procedure pointer to a quadratic line callback.

typedef ATSQuadraticLineProcPtr ATSQuadraticLineUPP;

Discussion
For more information, see the description of the ATSQuadraticLineProcPtr (page 162) callback function.

Data Types 195
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

ATSQuadraticNewPathUPP
Defines a universal procedure pointer to a quadratic new-path callback.

typedef ATSQuadraticNewPathProcPtr ATSQuadraticNewPathUPP;

Discussion
For more information, see the description of the ATSQuadraticNewPathProcPtr (page 163) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeGlyphs.h

RedrawBackgroundUPP
Defines a universal procedure pointer to a redraw-background callback.

typedef RedrawBackgroundProcPtr RedrawBackgroundUPP;

Discussion
For more information, see the description of the RedrawBackgroundProcPtr (page 165) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ATSUnicodeTypes.h

Constants

Attribute Tags
Specify attributes that can be applied to a style object, a text layout object, or a line in a text layout object.

196 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef UInt32 ATSUAttributeTag;
enum {
 kATSULineWidthTag = 1L,
 kATSULineRotationTag = 2L,
 kATSULineDirectionTag = 3L,
 kATSULineJustificationFactorTag = 4L,
 kATSULineFlushFactorTag = 5L,
 kATSULineBaselineValuesTag = 6L,
 kATSULineLayoutOptionsTag = 7L,
 kATSULineAscentTag = 8L,
 kATSULineDescentTag = 9L,
 kATSULineLangRegionTag = 10L,
 kATSULineTextLocatorTag = 11L,
 kATSULineTruncationTag = 12L,
 kATSULineFontFallbacksTag = 13L,
 kATSULineDecimalTabCharacterTag = 14L,
 kATSULayoutOperationOverrideTag = 15L,
 kATSULineHighlightCGColorTag = 17L,
 kATSUMaxLineTag = 18L,
 kATSULineLanguageTag = 10L,
 kATSUCGContextTag = 32767L,
 kATSUQDBoldfaceTag = 256L,
 kATSUQDItalicTag = 257L,
 kATSUQDUnderlineTag = 258L,
 kATSUQDCondensedTag = 259L,
 kATSUQDExtendedTag = 260L,
 kATSUFontTag = 261L,
 kATSUSizeTag = 262L,
 kATSUColorTag = 263L,
 kATSULangRegionTag = 264L,
 kATSUVerticalCharacterTag = 265L,
 kATSUImposeWidthTag = 266L,
 kATSUBeforeWithStreamShiftTag = 267L,
 kATSUAfterWithStreamShiftTag = 268L,
 kATSUCrossStreamShiftTag = 269L,
 kATSUTrackingTag = 270L,
 kATSUHangingInhibitFactorTag = 271L,
 kATSUKerningInhibitFactorTag = 272L,
 kATSUDecompositionFactorTag = 273L,
 kATSUBaselineClassTag = 274L,
 kATSUPriorityJustOverrideTag = 275L,
 kATSUNoLigatureSplitTag = 276L,
 kATSUNoCaretAngleTag = 277L,
 kATSUSuppressCrossKerningTag = 278L,
 kATSUNoOpticalAlignmentTag = 279L,
 kATSUForceHangingTag = 280L,
 kATSUNoSpecialJustificationTag = 281L,
 kATSUStyleTextLocatorTag = 282L,
 kATSUStyleRenderingOptionsTag = 283L,
 kATSUAscentTag = 284L,
 kATSUDescentTag = 285L,
 kATSULeadingTag = 286L,
 kATSUGlyphSelectorTag = 287L,
 kATSURGBAlphaColorTag = 288L,
 kATSUFontMatrixTag = 289L,
 kATSUStyleUnderlineCountOptionTag = 290L,
 kATSUStyleUnderlineColorOptionTag = 291L,
 kATSUStyleStrikeThroughTag = 292L,

Constants 197
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

 kATSUStyleStrikeThroughCountOptionTag = 293L,
 kATSUStyleStrikeThroughColorOptionTag = 294L,
 kATSUStyleDropShadowTag = 295L,
 kATSUStyleDropShadowBlurOptionTag = 296L,
 kATSUStyleDropShadowOffsetOptionTag = 297L,
 kATSUStyleDropShadowColorOptionTag = 298L,
 kATSUMaxStyleTag = 299L,
 kATSULanguageTag = 264L,
 kATSUMaxATSUITagValue = 65535L
};

Constants
kATSULineWidthTag

Specifies the desired width of a line of text, in typographic points, of the line when drawn as justified
or right-aligned text. The associated value is of type ATSUTextMeasurement (page 179) and has a
default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineRotationTag
Specifies the angle by which the entire line should be rotated. The associated value is a Fixed value
that specifies degrees in a right-hand coordinate system, and has a default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineDirectionTag
Specifies a left-to-right or right-to-left direction for the glyphs in a text layout object, regardless of
their natural direction as specified in the font. The associated value is Boolean
(kATSURightToLeftBaseDirection or kATSULeftToRightBaseDirection) and has a default
value of GetSysDirection(). See “Glyph Direction Selectors” (page 217) for more information on
the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineJustificationFactorTag
Specifies how ATSUI should typographically fit a line of text to a given width (or height, in the case
of vertical text). The associated value is a Fract value between 0 and 1 and has a default value of
kATSUNoJustification. See “Line Justification Selectors” (page 224) for information on the values
that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineFlushFactorTag
Specifies how ATSUI should place text in relation to one or both margins, which are the left and right
sides (or top and bottom sides) of the text area. The associated value is a Fract value between 0 and
1 and has a default value of kATSUStartAlignment. See “Line Alignment Selectors ” (page 223) for
information on the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

198 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSULineBaselineValuesTag
Specifies the positions of different baseline types with respect to one another in a line of text. The
associated value is of type BslnBaselineRecord and contains default values all of which are 0. The
values are calculated from other style attributes such as font and point size.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineLayoutOptionsTag
Specifies how ATSUI should manipulate basic attributes of a line or the text layout object, such as
whether a line should have optical hangers or whether the last line of a text layout object should be
justified. The associated value is of type ATSLineLayoutOptions and has a default value of
kATSLineNoLayoutOptions. See “Line Layout Attribute Tags” (page 224) for information on the
values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineAscentTag
Specifies line ascent. The associated value is of type ATSUTextMeasurement (page 179) and has a
default value of kATSUseLineHeight. See “Line Height and Font Tracking Selectors” (page 223) for
information on the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineDescentTag
Specifies line descent. The associated value is of type ATSUTextMeasurement (page 179) and has a
default value of kATSUseLineHeight. See “Line Height and Font Tracking Selectors” (page 223) for
information on the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineLangRegionTag
Specifies line language region. The associated value is a region code (see the Script Manager reference
for a list of region codes) and has a default value of kTextRegionDontCare.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineTextLocatorTag
Specifies line text location. The associated value is of type TextBreakLocatorRef and has a default
value of NULL.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineTruncationTag
Specifies where in a line truncation should occur. The associated value is of type ATSULineTruncation
and has a default value of kATSUTruncateNone. See “Line Truncation Selectors” (page 220) for the
values that can be associated with the line truncation tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Constants 199
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSULineFontFallbacksTag
Specifies line font fallbacks. The associated value is of type ATSUFontFallbacks (page 173). See
“Font Fallback Methods” (page 214) for information on the values that can be associated with this tag.

Available in Mac OS X v10.1 and later.

Declared in ATSUnicodeTypes.h.

kATSULineDecimalTabCharacterTag
Specifies the current setting for the decimal separator, and affects the behavior of decimal tabs for a
text layout (not an individual line). The associated value is of type CFStringRef. The CFString object
(CFStringRef) is retained by the style object in which it is set. The default value is the user setting
in System Preferences.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

kATSULineHighlightCGColorTag
Specifies the current setting of the highlight color and opacity. The associated value is of type
CGColorRef. This can be set as a line or layout control. The CGColor object (CGColorRef) is retained
by the text layout object in which it is set.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSULayoutOperationOverrideTag
Specifies to override a layout operation. The associated value is of type
ATSULayoutOperationOverrideSpecifier and has a default value of NULL.

Available starting with Mac OS X version 10.2.

Declared in ATSUnicodeTypes.h.

kATSUMaxLineTag
A convenience tag that specifies the upper limit of the text layout attribute tags.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULineLanguageTag
Not recommended. Instead use kATSULineLangRegionTag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUCGContextTag
Specifies to use a Quartz context. When you use this tag to set up a Quartz context, ATSUI uses an
8-bit, sub-pixel rendering. This method of rendering positions glyph origins on fractional points, which
results in superior rendering compared to ATSUI’s default 4-bit pixel-aligned rendering. The attribute
has a default value of NULL; you must provide a pointer to a CGContext. The CGContext is not
retained by the text layout object; if the context is destroyed, the text layout contains an invalid
CGContext. Available only in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

200 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSUQDBoldfaceTag
Specifies a boldface text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated algorithmically. The associated value is of type
Boolean and has a default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUQDItalicTag
Specifies an italic text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated. The associated value is of type Boolean and has a
default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUQDUnderlineTag
Specifies an underline text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated. The associated value is of type Boolean and has a
default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUQDCondensedTag
Specifies a condensed text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated. The associated value is of type Boolean and has a
default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUQDExtendedTag
Specifies an extended text style. Text style attribute tags are included for compatibility with the Style
type used by the QuickDraw function TextFace. If a font variant for this text style exists, ATSUI uses
that variant. Otherwise, the variant is generated The associated value is of type Boolean and has a
default value of false.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUFontTag
Specifies a unique value that identifies a font to the font management system. The associated value
is of type ATSUFontID (page 173) and has a default value of GetScriptVariable
(smSystemScript, smScriptAppFond).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Constants 201
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSUSizeTag
Specifies the font size of the text in the style run. The associated value, in typographic points (72 per
inch), is of type Fixed and has a default value of GetScriptVariable (smSystemScript,
smScriptAppFondSize).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUColorTag
Specifies the color of the glyphs in a style run. The associated value is of type RGBColor and has a
default value of (0,0,0).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULangRegionTag
Specifies a language region. The associated value is a region code (see the Script Manager reference
for a list of region codes) and has a default value of GetScriptManagerVariable (smRegionCode).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUVerticalCharacterTag
Specifies which direction (vertical or horizontal) glyphs should be drawn. The associated value is of
type ATSUVerticalCharacterType and has a default value of kATSUStronglyHorizontal. See
“Vertical Character Types” (page 234) for more information on the values that can be associated with
this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUImposeWidthTag
Specifies an imposed width. The associated value is of type ATSUTextMeasurement (page 179) and
has a default value of 0; all glyphs use their own font defined advance widths.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUBeforeWithStreamShiftTag
Specifies a uniform shift parallel to the baseline of the positions of individual pairs or sets of glyphs
in the style run that’s applied before (to the left) the glyphs of the style run. The associated value is
of type Fixed and has a default value of 0. Starting with Mac OS version 10.3, glyphs cannot be
negatively shifted such that later glyphs appear before earlier glyphs. In other words, ATSUI limits
the shift to a value that is, at most, the advance of the previous glyph.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUAfterWithStreamShiftTag
Specifies a uniform shift parallel to the baseline of the positions of individual pairs or sets of glyphs
in the style run that’s applied after (to the right) the glyphs of the style run. The associated value is
of type Fixed and has a default value of 0. Starting with Mac OS version 10.3, glyphs cannot be
negatively shifted such that later glyphs appear before earlier glyphs. In other words, ATSUI limits
the shift to a value that is, at most, the advance of the current glyph.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

202 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSUCrossStreamShiftTag
Specifies the distance to raise or lower glyphs in the style run perpendicular to the text stream. This
shift is vertical for horizontal text and horizontal for vertical text. The associated value (in points, 72
per inch) is of type Fixed and has a default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTrackingTag
Specifies the relative proportion of font-defined adjustments to apply to interglyph positions. The
associated value is of type Fixed and has a default value of kATSNoTracking. See “Line Height and
Font Tracking Selectors” (page 223) for information on the values that can be associated with this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUHangingInhibitFactorTag
Specifies to what degree punctuation glyphs can hang beyond the end of a line for justification
purposes. The associated value is a Fract value between 0 and 1 and has a default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUKerningInhibitFactorTag
Specifies how much to inhibit kerning; that is, the increase or decrease the space between glyphs.
The associated value is a Fract value between 0 and 1 and has a default value of 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUDecompositionFactorTag
Specifies the fractional adjustment to the font-specified threshold at which ligature decomposition
occurs during justification. The associated value is a Fract value between -1.0 and 1.0 and has a
default value of 0 (no adjustment to the font-specified threshold).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUBaselineClassTag
Specifies the preferred baseline (such as Roman, hanging, or ideographic centered) to use for text of
a given font in a style run. The associated value is of type BslnBaselineClass (see
SFNTLayoutTypes.h) and has a default value of kBSLNRomanBaseline. You can set the value to
kBSLNNoBaselineOverride to use intrinsic baselines.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUPriorityJustOverrideTag
Specifies the degree to which ATSUI should override justification behavior for glyphs in the style run.
The associated value is of type ATSJustWidthDeltaEntryOverride (page 176). The default values
in this structure are all 0.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Constants 203
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSUNoLigatureSplitTag
Specifies whether or not ligatures and compound characters in a style have divisible components.
The associated value is a Boolean and has a default value of false; ligatures and compound characters
have divisible components.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUNoCaretAngleTag
Specifies whether the text caret or edges of a highlighted area are always parallel to the slant of the
style run’s text or always perpendicular to the baseline. The associated value is a Boolean and has a
default value of false; use the character's angularity to determine its boundaries.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUSuppressCrossKerningTag
Specifies whether or not to suppress cross kerning. The associated value is a Boolean and has a
default value of false; do not suppress automatic cross kerning (defined by font).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUNoOpticalAlignmentTag
Specifies the amount to which ATSUI should adjust glyph positions at the ends of lines to give a more
even visual appearance to margins. The associated value is a Boolean and has a default value of
false; do not suppress character's automatic optical positional alignment

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUForceHangingTag
Specifies to treat glyphs in a style run as hanging punctuation, whether or not the font designer
intended them to be. The associated value is a Boolean and has a default value of false; do not
force the character's to hang beyond the line boundaries

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUNoSpecialJustificationTag
Specifies whether processes (such as glyph stretching and ligature decomposition) that occur at the
end of the justification process should be applied. The associated value is a Boolean and has a default
value of false; perform post-compensation justification if needed

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleTextLocatorTag
Specifies style text locator. The associated value is of type TextBreakLocatorRef and has a default
value of NULL—region derived locator or the default Text Utilities locator.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

204 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSUStyleRenderingOptionsTag
Specifies style rendering options. The associated value is of type ATSUStyleRenderingOptions
and has a default value of kATSStyleApplyHints—ATS glyph rendering uses hinting. See “Style
Rendering Options” (page 231) for more information on the values that can be associated with this
tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUAscentTag
Specifies the ascent value of a style’s font. The associated value is of type
ATSUTextMeasurement (page 179) and has a default value of the ascent value of the style object’s
font with the current point size.

Available starting with Mac OS X version 10.2.

Declared in ATSUnicodeTypes.h.

kATSUDescentTag
Specifies the descent value of a style’s font. The associated value is of type
ATSUTextMeasurement (page 179) and has a default value of the descent value of the style object’s
font with the current point size. The leading value is not included as par of the descent.

Declared in ATSUnicodeTypes.h.

Available starting with Mac OS X version 10.2.

kATSULeadingTag
Specifies the leading value of a style’s font. The associated value is of type
ATSUTextMeasurement (page 179) and has a default value of the leading value of the style object’s
font with the current point size.

Available starting with Mac OS X version 10.2.

Declared in ATSUnicodeTypes.h.

kATSUGlyphSelectorTag
Specifies a glyph collection. The associated value is an address to an ATSUGlyphSelector (page
175) data structure. Using this tag allows you access to characters in the fonts that otherwise would
not be accessible. You can choose the variant glyph by providing a font-specific glyph ID or a CID.
For more information on CID conventions, see http://www.adobe.com. You can get the variant glyph
information from an input method through the Text Services Manager using the Carbon event key,
kEventParamTextInputGlyphInfoArray.

Declared in ATSUnicodeTypes.h.

Available starting with Mac OS X version 10.2.

kATSURGBAlphaColorTag
Specifies RGB color with an alpha channel. The associated value is of type ATSURGBAlphaColor and
has a default value of (0,0,0,1).

Available starting with Mac OS X version 10.2.

Declared in ATSUnicodeTypes.h.

Constants 205
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

http://www.adobe.com

kATSUFontMatrixTag
Specifies a font transformation matrix. The associated value is of type CGAffineTransform. (See the
Quartz 2D reference documentation for more information on this data type.) You can use a font matrix
to achieve effects through ATSUI at a style-run level that were previously available only by changing
settings directly in a CGContext. When you use the tag kATSUFontMatrixTag, you associate a font
transformation matrix with an ATSUStyle object. You can set the values in the font transformation
matrix to achieve such effects as reversing glyphs across the X-axes and rotating glyphs Note that
ATSUI’s layout uses the transformed metrics so layout will be effected and in some cases the effects
might be unexpected. For example, for a transformation that mirrors the glyph across the Y-axes the
metrics are in reverse and glyphs are rendered on top of each other.

Declared in ATSUnicodeTypes.h.

Available starting with Mac OS X version 10.2.

kATSUStyleUnderlineCountOptionTag
Specifies the number of strokes to be drawn for an underline. The associated value is of type
ATSUStyleLineCountType. The default value is kATSUStyleSingleLineCount. May be set as a
style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleUnderlineColorOptionTag
Specifies the color of the strokes to draw for an underlined run of text. The associated value is of type
CGColorRef. The default value is NULL. If NULL, the text color is used. The CGColor object
(CGColorRef) is retained by the style object in which it is set. May be set as a style attribute.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

kATSUStyleStrikeThroughTag
Specifies strikethrough style. The associated value is of type Boolean. The default value is false.
May be set as a style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleStrikeThroughCountOptionTag
Specifies the number of strokes to be drawn for a strikethrough. The associated value is of type
ATSUStyleLineCountType. The default value is kATSUStyleSingleLineCount. May be set as a
style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleStrikeThroughColorOptionTag
Specifies the color of the strokes to draw for a strikethrough style. The associated value is of type
CGColorRef. The CGColor object (CGColorRef) is retained by the style object in which it is set. The
default value is NULL. If NULL, the text color is used. May be set as a style attribute.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

206 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSUStyleDropShadowTag
Specifies the text should be drawn with a drop shadow. The associated value is of type Boolean. The
default value is false. Only takes effect if a CGContext is used for drawing. If you set this style attribute,
you also need to set the drop shadow color using the tag kATSUStyleDropShadowColorOptionTag.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

kATSUStyleDropShadowBlurOptionTag
Specifies the amount of blur for a drop shadow. The associated value is of type float. The default
value is 0.0. May be set as a style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleDropShadowColorOptionTag
Specifies the color and opacity of a drop shadow. The associated value is of type CGColorRef. The
default value is NULL. You need to set the CGColorRef to a value other than NULL if you want to see
the drop shadow. May be set as a style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleDropShadowOffsetOptionTag
Specifies the amount of offset from the text to be used when drawing a drop shadow. The associated
value is of type CGSize. The default value is (3.0, -3.0). May be set as a style attribute.

Available in Mac OS X version 10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUMaxStyleTag
A convenience tag that specifies the upper limit of style attribute tags.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULanguageTag
This tag is obsolete. Instead use kATSULangRegionTag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUMaxATSUITagValue
Specifies this maximum Apple ATSUI reserved tag value. If you define a tag, it must have a value larger
than the value of this tag.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
An attribute tag cannot be used in versions of the Mac OS that are earlier than the version in which the tag
was introduced. For example, a tag available in Mac OS version 10.2 cannot be used in Mac OS version 10.1
or earlier. You can call the function Gestalt to check version information for ATSUI.

Attribute tags indicates the particular type of attribute under consideration: font, size, color, and so on. Each
style run may have at most one attribute with a given attribute tag (that is, a style run can't have more than
one font or size) but may have none.

Constants 207
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Some of the constants specify attributes that are applied to a style run, while other attributes are applied to
an entire text layout object or to just a line in a text layout object. The constant descriptions assume horizontal
text. If you set or get the an attribute that has been set for vertical text, you should interpret the constant
descriptions accordingly.

Most of the constants in this section are described in further detail in Inside Mac OS X: Rendering Unicode Text
With ATSUI. Where appropriate, that document provides illustrations that show the effect of applying an
attribute. It also describes how to write code that sets style, line, and layout attributes.

A style run may have at most one style attribute with a given attribute tag. That is, a style run can't have
more than one font or size attribute set but the style run does not need to have any attribute set explicitly.

When you set an attribute value for a line, the value overrides the attribute value set for the text layout object
that contains the line. This is true even if you set line attributes before you set attributes for the entire text
layout object that contains the line.

You can create your own attribute tag as long as your tag is outside those values reserved by Apple— 0 to
65,535 (0 to 0x0000FFFF). See Rendering Unicode Text With ATSUI for information on creating and registering
your own attribute tags.

Background Data Types
Specify the data type of the background—a color or a callback.

typedef UInt32 ATSUBackgroundDataType;
enum {
 kATSUBackgroundColor = 0,
 kATSUBackgroundCallback = 1
};

Constants
kATSUBackgroundColor

Specifies the data type of the text background is a color.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUBackgroundCallback
Specifies the data type of the text background is a callback.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Caret Movement Types
Specify the unit distance by which the caret moves.

208 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef UInt16 ATSUCursorMovementType;
enum {
 kATSUByCharacter = 0,
 kATSUByTypographicCluster = 1,
 kATSUByWord = 2,
 kATSUByCharacterCluster = 3,
 kATSUByCluster = 1
};

Constants
kATSUByCharacter

Specifies to move the caret by a units based on single characters.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUByTypographicCluster
Specifies to move the caret by units of clusters based on characters or ligatures.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUByWord
Specifies to move the caret by units based on words.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUByCharacterCluster
Specifies to move the caret by units based only on clusters of characters.

Available only in Mac OS X and in CarbonLib versions 1.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUByCluster
An obsolete name for the constant kATSUByTypographicCluster.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
A caret movement type is used to indicate the unit (character, word, and so on) by which to move the caret.
You use these constants when you call the ATSUI caret movement functions. Functions that use caret
movement types use this information to calculate the edge offset in memory that corresponds to the resulting
cursor position.

Convenience Constants
Specify whether to clear values or whether drawing, measuring, or hit-testing should be done relative to the
current pen location in the current graphics port.

Constants 209
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

enum {
 kATSUUseGrafPortPenLoc = (unsigned long)0xFFFFFFFF,
 kATSUClearAll = (unsigned long)0xFFFFFFFF
};

Constants
kATSUUseGrafPortPenLoc

Indicates that drawing, measuring, or hit-testing should be done relative to the current pen location
in the current graphics port.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUClearAll
Removes all previously set values from a style object, a single line, or a text layout object.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You can pass the kATSUUseGrafPortPenLoc constant to functions that operate on text layout objects to
indicate that drawing, measuring, or hit-testing should be done relative to the current pen location in the
current graphics port.

You can pass the kATSUClearAll constant to the following functions to remove previously set values from
a style object: to ATSUClearAttributes (page 24) to remove style run attributes, to
ATSUClearFontFeatures (page 25) to remove font features, and to ATSUClearFontVariations (page
26) to remove font variations.

You can also use the kATSUClearAll constant to remove previously set text layout attributes: to
ATSUClearLineControls (page 29), to remove text layout attributes from a single line of a text layout
object, and to ATSUClearLayoutControls (page 28) to remove text layout attributes from every line in a
text layout object.

Direct Data Selectors
Specify the layout data to obtain when calling the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout.

210 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef UInt32 ATSUDirectDataSelector;
enum {
 kATSUDirectDataAdvanceDeltaFixedArray = 0L,
 kATSUDirectDataBaselineDeltaFixedArray = 1L,
 kATSUDirectDataDeviceDeltaSInt16Array = 2L,
 kATSUDirectDataStyleIndexUInt16Array = 3L,
 kATSUDirectDataStyleSettingATSUStyleSettingRefArray = 4L,
 kATSUDirectDataLayoutRecordATSLayoutRecordVersion1 = 100L,
 kATSUDirectDataLayoutRecordATSLayoutRecordCurrent =
 kATSUDirectDataLayoutRecordATSLayoutRecordVersion1
};

Constants
kATSUDirectDataAdvanceDeltaFixedArray

Specifies the parallel advance delta (delta X) array, which is an array of Fixed values. This array is
created only on demand. If you plan to modify the data in this array, you should set the iCreate
parameter to true when you call the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46) to obtain this array.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataBaselineDeltaFixedArray
Specifies the parallel baseline delta (delta Y) array, which is an array of Fixed values. This array is
created only on demand. If you plan to modify the data in this array, you should set the iCreate
parameter to true when you call the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46) to obtain this array.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataDeviceDeltaSInt16Array
Specifies the parallel device delta array, which is an array of SInt16 values used to adjust truncated
fractional values for devices that do not accept fractional positioning. The array specified by this
selector is also used to provide precise positioning for connected scripts. This array is created only
on demand. If you plan to modify the data in this array, you should set the iCreate parameter to
true when you call the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45)
or ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46) to obtain this array.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataStyleIndexUInt16Array
Specifies the parallel style index array, which is an array of (UInt16) values. The values in this array
are indexes into the style setting reference (ATSUStyleSettingRef) array. This array is created only
on demand. If you plan to modify the data in this array, you should set the iCreate parameter to
true when you call the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45)
or ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46) to obtain this array.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

Constants 211
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSUDirectDataStyleSettingATSUStyleSettingRefArray
Specifies the style setting reference (ATSUStyleSettingRef) array. This array is always available if
the text layout object has any text associated with it. Setting the iCreate parameter when you call
the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46) to obtain this array has no
effect.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataLayoutRecordATSLayoutRecordVersion1
Specifies the ATSLayoutRecord array, with the version 1 of the ATSLayoutRecord data structure.
You should not use this selector. Instead use the selector
kATSUDirectDataLayoutRecordATSLayoutRecordCurrent to ensure that your code uses the
most current version of the ATSLayoutRecord data structure. ATSUI performs the most efficient
processing only for the latest version of ATSLayoutRecord data structure. This array is always available
if the text layout object has any text associated with it. Setting the iCreate parameter when you
call the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46) to obtain this array has no
effect.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

kATSUDirectDataLayoutRecordATSLayoutRecordCurrent
Specifies the ATSLayoutRecord array, with the current version of the ATSLayoutRecord data
structure. Always use this selector to get the array of ATSLayoutRecord data structures. This array
is always available if the text layout object has any text associated with it. Setting the iCreate
parameter when you call the functions ATSUDirectGetLayoutDataArrayPtrFromLineRef (page
45) or ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46) to obtain this array has
no effect.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeDirectAccess.h.

Discussion
You can provide direct data selectors to the functions
ATSUDirectGetLayoutDataArrayPtrFromLineRef (page 45) or
ATSUDirectGetLayoutDataArrayPtrFromTextLayout (page 46).

Flattened Data Font Type Selectors
Specifies the data type for flattened font name data.

typedef UInt32 ATSFlatDataFontSpeciferType;
enum {
 kATSFlattenedFontSpecifierRawNameData = 'namd'
};

Constants
kATSFlattenedFontSpecifierRawNameData

Specifies to use the font name as the flattened font name.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

212 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Flattened Data Format Selectors
Specify the format to use when flattening or unflattening data.

typedef UInt32 ATSUFlattenedDataStreamFormat;
enum {
 kATSUDataStreamUnicodeStyledText = 'ustl'
};

Constants
kATSUDataStreamUnicodeStyledText

Specifies to use the 'ustl' data specification when flattening or unflattening data.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

Flattened Style Run Data Options
Specify options to use when flattening ATSUI style run data.

typedef UInt32 ATSUFlattenStyleRunOptions;
enum {
 kATSUFlattenOptionNoOptionsMask = 0x00000000
};

Constants
kATSUFlattenOptionNoOptionsMask

Specifies that no options are to be used.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

Discussion
Additional options may be added in the future.

Flattened Data Version Numbers
Specify versions of the 'ustl' specification.

enum {
 kATSFlatDataUstlVersion0 = 0,
 kATSFlatDataUstlVersion1 = 1,
 kATSFlatDataUstlVersion2 = 2,
 kATSFlatDataUstlCurrentVersion = kATSFlatDataUstlVersion2};

Constants
kATSFlatDataUstlVersion0

Specifies version 0. This version is obsolete.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

Constants 213
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSFlatDataUstlVersion1
Specifies version 1. This version is obsolete.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

kATSFlatDataUstlVersion2
Specifies version 2.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

kATSFlatDataUstlCurrentVersion
Specifies the current version.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeFlattening.h.

Discussion
The ATSUI functions ATSUFlattenStyleRunsToStream and ATSUUnflattenStyleRunsFromStream
operate on data that conform to version 2 of the 'ustl' specification.

Font Fallback Methods
Specify the method by which ATSUI tries to find an appropriate font for a character if the assigned font does
not contain the needed glyphs.

typedef UInt16 ATSUFontFallbackMethod;
enum {
 kATSUDefaultFontFallbacks = 0,
 kATSULastResortOnlyFallback = 1,
 kATSUSequentialFallbacksPreferred = 2,
 kATSUSequentialFallbacksExclusive = 3
};

Constants
kATSUDefaultFontFallbacks

Specifies to use ATSUI’s default font search method. ATSUI searches through all available fonts on
the system for one that matches any text that cannot be drawn with the font specified in the current
ATSU style object (ATSUStyle). ATSUI first searches in the standard application fonts for various
languages. If that fails, it searches through the remaining fonts on the system in whatever order the
Font Manager returns them. After ATSUI has searched all the fonts in the system, any unmatched text
is drawn with the last-resort font.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSULastResortOnlyFallback
Specifies that ATSUI should use the last resort font if the assigned font does not contain the needed
glyphs.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

214 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSUSequentialFallbacksPreferred
Specifies that ATSUI should first search sequentially through the list of supplied fonts before it searching
through all available fonts on the system.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUSequentialFallbacksExclusive
Specifies that ATSUI should search exclusively through the list of supplied fonts. ATSUI use the
last-resort font if it does not find a match in the list of supplied fonts.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Glyph Origin Selectors
Specify which glyph origin to use to determine the width of the typographic glyph bounds.

enum {
 kATSUseCaretOrigins = 0,
 kATSUseDeviceOrigins = 1,
 kATSUseFractionalOrigins = 2,
 kATSUseOriginFlags = 3
};

Constants
kATSUseCaretOrigins

Specifies to use the caret origin to determine the width of the typographic glyph bounds. The caret
origin is halfway between two characters.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSUseDeviceOrigins
Specifies to use the glyph origin in device space to determine the width of the typographic glyph
bounds. This is useful if you need to adjust text on the screen.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSUseFractionalOrigins
Specifies to use the glyph origin in fractional absolute positions (which are uncorrected for display
device) to determine the width of the typographic glyph bounds. This provides the ideal position of
laid-out text and is useful if you need to scale text on the screen. The glyph origin is also used to
obtain the width of the typographic bounding rectangle when you call the function
ATSUMeasureText.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSUseOriginFlags
The number of glyph origin selectors.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

Constants 215
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
You can pass a glyph bounds selector in the iTypeOfBounds parameter of the function
ATSUGetGlyphBounds (page 75) to indicate whether the width of the resulting typographic glyph bounds
is determined using the caret origin, glyph origin in device space, or glyph origin in fractional absolute
positions.

Glyph Collection Types
Specify a character set.

typedef UInt16 GlyphCollection;
enum {
 kGlyphCollectionGID = 0,
 kGlyphCollectionAdobeCNS1 = 1,
 kGlyphCollectionAdobeGB1 = 2,
 kGlyphCollectionAdobeJapan1 = 3,
 kGlyphCollectionAdobeJapan2 = 4,
 kGlyphCollectionAdobeKorea1 = 5,
 kGlyphCollectionUnspecified = 0xFF
};

Constants
kGlyphCollectionGID

Indicates that the glyph value represents the actual glyph ID of a specific font.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeCNS1
Specifies Adobe CNS1 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeGB1
Specifies Adobe GB1 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeJapan1
Specifies Adobe Japan1 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeJapan2
Specifies Adobe Japan2 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kGlyphCollectionAdobeKorea1
Specifies Adobe Korea1 CID-keyed fonts.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

216 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kGlyphCollectionUnspecified
Indicates that the glyph collection is not specified.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

Discussion
A CID-keyed font is a PostScript font that uses a font file format developed by Adobe for fonts that have large
character sets, such as Chinese, Japanese, and Korean fonts. For more information on CID-keyed fonts, see
the Adobe website:

http://partners.adobe.com/

Glyph Direction Selectors
Specify a glyph direction.

enum {
 kATSULeftToRightBaseDirection = 0,
 kATSURightToLeftBaseDirection = 1
};

Constants
kATSULeftToRightBaseDirection

Imposes left-to-right direction on glyphs in a line of horizontal text; for vertical text, imposes
top-to-bottom direction.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSURightToLeftBaseDirection
Imposes right-to-left direction on glyphs in a line of horizontal text; for vertical text, imposes
bottom-to-top direction.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
These constants specify values for the kATSULineDirectionTag attribute tag. You can use one of these
constants to set or obtain glyph direction in a line of text or an entire text layout object, regardless of their
font-specified direction; see the functions ATSUSetLayoutControls (page 122),
ATSUSetLineControls (page 124), ATSUGetLayoutControl (page 82), and ATSUGetLineControl (page
83).

Glyph Property Flags
Specify properties for a glyph.

Constants 217
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

http://partners.adobe.com/

typedef UInt32 ATSGlyphInfoFlags;
enum {
 kATSGlyphInfoAppleReserved = 0x1FFBFFE8,
 kATSGlyphInfoIsAttachment = (unsigned long)0x80000000,
 kATSGlyphInfoIsLTHanger = 0x40000000,
 kATSGlyphInfoIsRBHanger = 0x20000000,
 kATSGlyphInfoTerminatorGlyph = 0x00080000,
 kATSGlyphInfoIsWhiteSpace = 0x00040000,
 kATSGlyphInfoHasImposedWidth = 0x00000010,
 kATSGlyphInfoByteSizeMask = 0x00000007
};

Constants
kATSGlyphInfoAppleReserved

This flag is reserved by Apple. If you try to use it you may get an invalid value error.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoIsAttachment
Specifies that the glyph attaches to another glyph.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoIsLTHanger
Specifies that the glyph can hang off the left or top edge of a line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoIsRBHanger
Specifies that the glyph can hang off the right or bottom edge of a line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoTerminatorGlyph
Specifies that the glyph is not truly a glyph, but an end-marker to allow the calculation of the previous
glyph's advance.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoIsWhiteSpace
Specifies that the glyph is a whitespace glyph.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSGlyphInfoHasImposedWidth
Specifies that the glyph has an imposed width (that is, an advance width) specified by the style.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

218 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSGlyphInfoByteSizeMask
Specifies the size of the character that spawned the glyph. This is a three-bit mask that you can use
to obtain the size of the original character that spawned a glyph. If you perform a logical and operation
between this mask and an ATSGlyphInfoFlags flag, you obtain the size in bytes of the original
character (0 - 7 bytes).

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

Discussion
Glyph information flags are set in the individual ATSLayoutRecord structure and apply only to the
ATSGlyphRef reference in that structure. The flags are used by the ATSUI to tag a glyph with one or more
specific properties.

Highlight Methods
Specify a text highlighting method.

typedef UInt32 ATSUHighlightMethod;
enum {
 kInvertHighlighting = 0,
 kRedrawHighlighting = 1
};

Constants
kInvertHighlighting

Specifies to use inversion for highlighting. You can use this when the background is a single color.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kRedrawHighlighting
Specifies to use your callback for highlighting. You should use this when the background is complex
(containing, for example, multiple colors, patterns, or pictures).

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You set the highlighting method by calling the function ATSUSetHighlightingMethod (page 121).

Invalid Font ID Constant
Specifies a Font ID is not valid.

enum {
 kATSUInvalidFontID = 0
};

Constants
kATSUInvalidFontID

Indicates that the font ID is invalid.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Constants 219
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
The functions ATSUFONDtoFontID (page 56), ATSUFindFontFromName (page 52), and
ATSUMatchFontsToText (page 106) pass back this constant to indicate an invalid font ID. This constant is
available with ATSUI 1.0.

Line Truncation Selectors
Specify where in a line truncation should occur.

typedef UInt32 ATSULineTruncation;
enum {
 kATSUTruncateNone = 0,
 kATSUTruncateStart = 1,
 kATSUTruncateEnd = 2,
 kATSUTruncateMiddle = 3,
 kATSUTruncateSpecificationMask = 7,
 kATSUTruncFeatNoSquishing = 8
};

Constants
kATSUTruncateNone

Specifies not to truncate the line.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncateStart
Specifies to truncate the line at the beginning.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncateEnd
Specifies to truncate the line at the end.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncateMiddle
Specifies to truncate the line in the middle

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncateSpecificationMask
Reserved for the truncation specification (0 - 7).

Available in Mac OS X v10.1 and later.

Declared in ATSUnicodeTypes.h.

kATSUTruncFeatNoSquishing
Specifies not to perform any negative justification in lieu of truncation.

Available in Mac OS X v10.1 and later.

Declared in ATSUnicodeTypes.h.

220 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
Line truncation options specify values for the kATSULineTruncation attribute tag. You can add any line
truncation option to the option kATSUTruncateSpecificationMask. For example, adding
kATSUTruncateEnd andkATSUTruncFeatNoSquishing to the maskkATSUTruncateSpecificationMask
results in the value 0x0000000A.

Layout Callback Status Values
Specify the status of a layout operation override callback.

typedef UInt32 ATSULayoutOperationCallbackStatus;
enum {
 kATSULayoutOperationCallbackStatusHandled = 0x00000000,
 kATSULayoutOperationCallbackStatusContinue = 0x00000001
};

Constants
kATSULayoutOperationCallbackStatusHandled

Specifies that your callback function has handled the operation which triggered the callback. This
indicates to ATSUI that it does not need to perform any further processing for the layout operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationCallbackStatusContinue
Specifies that your callback function has not handled the operation which triggered the callback. This
indicates to ATSUI that needs to perform its own processing for the layout operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

Discussion
You must return one of these status values from your
ATSUDirectLayoutOperationOverrideProcPtr (page 164) callback function to indicate to ATSUI whether
or not your callback handled the layout operation.

Layout Operation Selectors
Specify a layout operation.

Constants 221
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef UInt32 ATSULayoutOperationSelector;
enum {
 kATSULayoutOperationNone = 0x00000000,
 kATSULayoutOperationJustification = 0x00000001,
 kATSULayoutOperationMorph = 0x00000002,
 kATSULayoutOperationKerningAdjustment = 0x00000004,
 kATSULayoutOperationBaselineAdjustment = 0x00000008,
 kATSULayoutOperationTrackingAdjustment = 0x00000010,
 kATSULayoutOperationPostLayoutAdjustment = 0x00000020,
 kATSULayoutOperationAppleReserved = (unsigned long)0xFFFFFFC0
};

Constants
kATSULayoutOperationNone

Specifies that no layout operation is currently selected.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationJustification
Specifies the justification operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationMorph
Specifies the character-morphing operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationKerningAdjustment
Specifies the kerning-adjustment operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationBaselineAdjustment
Specifies the baseline-adjustment operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationTrackingAdjustment
Specifies the tracking-adjustment operation.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationPostLayoutAdjustment
Specifies the period of time after ATSUI has completed its layout operations.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSULayoutOperationAppleReserved
This selector is reserved for future use.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

222 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
You can use layout operation selectors to specify to ATSUI which operations to override. These selectors can
also be passed from ATSUI to your application to indicate which operation is currently in progress.

Line Alignment Selectors
Specify the alignment of text relative to the margins in a line of text or in an entire text layout object.

#define kATSUStartAlignment ((Fract) 0x00000000L)
#define kATSUEndAlignment ((Fract) 0x40000000L)
#define kATSUCenterAlignment ((Fract) 0x20000000L)

Constants
kATSUStartAlignment

Specifies that horizontal text should be drawn to the right of the left margin (that is, its left edge
coincides with the text layout object’s position plus text width). Vertical text should be drawn below
the top margin.

kATSUEndAlignment
Specifies that horizontal text should be drawn to the left of the right margin. Vertical text should be
drawn above the bottom margin.

kATSUCenterAlignment
Specifies that horizontal text should be drawn between the left and right margins with an equal
amount of space on either side. Vertical text should be drawn between the top and bottom margins
with an equal amount of space on either side.

Discussion
You can use one of these constants to set or obtain the alignment of text relative to the margins in a line of
text or in an entire text layout object; see the functions ATSUSetLayoutControls (page 122),
ATSUSetLineControls (page 124), ATSUGetLayoutControl (page 82), and ATSUGetLineControl (page
83), respectively.

Line Height and Font Tracking Selectors
Specify how to determine line height and whether to turn off font tracking.

enum {
 kATSUseGlyphAdvance = 0x7FFFFFFF,
 kATSUseLineHeight = 0x7FFFFFFF,
 kATSNoTracking = (long)0x80000000
};

Constants
kATSUseGlyphAdvance

Specifies that ATSUI use the natural glyph advance value in a line or entire text layout object.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSUseLineHeight
Specifies that ATSUI use the natural line ascent and descent values dictated by the font and pixel size
to determine line ascent and descent in a line or entire text layout object.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

Constants 223
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSNoTracking
A value of type negativeInfinity that indicates that font tracking should be off.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

Discussion
You use line height selectors to set line ascent and descent text layout attributes. You can set the line ascent
text layout attribute for a line or an entire text layout object by passing the kATSULineAscentTag tag to
the functions ATSUSetLineControls (page 124) and ATSUSetLayoutControls (page 122), respectively.
You can set the line descent text layout attribute for a line or an entire text layout object by passing the
kATSULineDescentTag tag to the functions ATSUSetLineControls (page 124) and
ATSUSetLayoutControls (page 122), respectively.

Line Justification Selectors
Specify the degree of line justification for a single line or an entire text layout object.

#define kATSUNoJustification ((Fract) 0x00000000L)
#define kATSUFullJustification ((Fract) 0x40000000L)

Constants
kATSUNoJustification

Indicates no justification.

kATSUFullJustification
Full justification between the text margins. White space is “stretched” to make the line extend to both
text margins.

Discussion
You can set the line justification text layout attribute for a line or an entire text layout object by passing the
kATSULineJustificationFactorTag tag the functions ATSUSetLineControls (page 124) and
ATSUSetLayoutControls (page 122), respectively.

Line Layout Attribute Tags
Specify line layout attributes to be applied at the line level.

224 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef UInt32 ATSLineLayoutOptions;
enum {
 kATSLineNoLayoutOptions = 0x00000000,
 kATSLineIsDisplayOnly = 0x00000001,
 kATSLineHasNoHangers = 0x00000002,
 kATSLineHasNoOpticalAlignment = 0x00000004,
 kATSLineKeepSpacesOutOfMargin = 0x00000008,
 kATSLineNoSpecialJustification = 0x00000010,
 kATSLineLastNoJustification = 0x00000020,
 kATSLineFractDisable = 0x00000040,
 kATSLineImposeNoAngleForEnds = 0x00000080,
 kATSLineFillOutToWidth = 0x00000100,
 kATSLineTabAdjustEnabled = 0x00000200,
 kATSLineIgnoreFontLeading = 0x00000400,
 kATSLineApplyAntiAliasing = 0x00000800,
 kATSLineNoAntiAliasing = 0x00001000,
 kATSLineDisableNegativeJustification = 0x00002000,
 kATSLineDisableAutoAdjustDisplayPos = 0x00004000,
 kATSLineUseQDRendering = 0x00008000,
 kATSLineDisableAllJustification = 0x00010000,
 kATSLineDisableAllGlyphMorphing = 0x00020000,
 kATSLineDisableAllKerningAdjustments = 0x00040000,
 kATSLineDisableAllBaselineAdjustments = 0x00080000,
 kATSLineDisableAllTrackingAdjustments = 0x00100000,
 kATSLineDisableAllLayoutOperations = kATSLineDisableAllJustification
|
 kATSLineDisableAllGlyphMorphing |
 kATSLineDisableAllKerningAdjustments |
 kATSLineDisableAllBaselineAdjustments |
 kATSLineDisableAllTrackingAdjustments,
 kATSLineUseDeviceMetrics = 0x01000000,
 kATSLineBreakToNearestCharacter = 0x02000000,
 kATSLineAppleReserved = (unsigned long)0xFCE00000};

Constants
kATSLineNoLayoutOptions

Specifies not to apply any options.

Available i n ATSUI 1.0 and later.

Declared in ATSLayoutTypes.h.

kATSLineIsDisplayOnly
This line option is no longer used. Instead use kATSLineUseDeviceMetrics.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSLineHasNoHangers
Specifies not to form hanging punctuation on the line. If the bit specified by this mask is set, the
automatic hanging punctuation in the text layout object is overridden. The value in this bit overrides
any adjustment to hanging punctuation set for a style run inside the text layout object using the style
run attribute tags kATSUForceHangingTag or kATSUHangingInhibitFactorTag.

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.0 and later.

Constants 225
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSLineHasNoOpticalAlignment
Specifies not to perform optical alignment on the line. Optical alignment adjusts characters at the
text margin so that they appear to be properly aligned; strict alignment can often cause the illusion
of a ragged edge. The value in this bit overrides any adjustment to optical alignment set for a style
run inside the text layout object using the style run attribute tag kATSUNoOpticalAlignmentTag.

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.0 and later.

kATSLineKeepSpacesOutOfMargin
Specifies that the trailing white spaces at the end of a line of justified text should be placed outside
the margin.

Available in ATSUI 1.0 and later.

Declared in ATSLayoutTypes.h.

kATSLineNoSpecialJustification
Specifies not to perform post-compensation justification on the line, even if such processing is
necessary. This flag cannot be set for a single line of a text layout object. The value in this bit overrides
any adjustment to the postcompensation actions set for a style run using the style run attribute tag
kATSUNoSpecialJustificationTag.

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.0 and later.

kATSLineLastNoJustification
Specifies not to justify a line if it is the last line of a justified text layout object. This flag is meaningless
when setting a line’s text layout attributes.

Available in ATSUI 1.0 and later.

Declared in ATSLayoutTypes.h.

kATSLineFractDisable
Specifies to position of the text in the line or text layout object relative to fractional absolute positions,
which are uncorrected for device display. This provides the ideal position of laid-out text and is useful
for scaling text onscreen. This origin is also used to get the width of the typographic bounding
rectangle when you call the function ATSUGetUnjustifiedBounds (page 93).

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.1 and later.

kATSLineImposeNoAngleForEnds
Specifies to draw the carets on the far right and left sides of an unrotated line as vertical, no matter
what the angle of text.

Available in ATSUI 1.1 and later.

Declared in ATSLayoutTypes.h.

kATSLineFillOutToWidth
Specifies to extend highlighting to both ends of a line, regardless of caret locations. This option does
not effect the caret locations. This is provided for your convenience to extend your highlighting to
the full width of the line.

Available in ATSUI 1.1 and later.

Declared in ATSLayoutTypes.h.

226 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSLineTabAdjustEnabled
Specifies to automatically adjust the tab character width so that it fits the specified line width. If you
are using ATSUI’s tab functions—ATSUSetTabArray (page 129) and ATSUGetTabArray (page 89)
to define a tab rule you do not need to use this selector. The selector is useful if you are handling
your own tabs and only applies if the tab is at the end of a line (backing store). You must set this bit
to ensure that highlighting is done correctly across tab stops. To ensure this, you should also set the
bit specified by the kATSLineImposeNoAngleForEnds mask constant.

Declared in ATSLayoutTypes.h.

Available in ATSUI 1.2 and later.

kATSLineIgnoreFontLeading
Specifies to ignore any leading value specified by a font.

Available in ATSUI 2.3 and later.

Declared in ATSLayoutTypes.h.

kATSLineApplyAntiAliasing
Specifies that Apple Type Services should produce antialiased glyph images even if system preferences
or Quartz settings indicate otherwise.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineNoAntiAliasing
Specifies that Apple Type Services should turn-off antialiasing glyph imaging even if system preferences
or Quartz settings indicate otherwise. This option negates the kATSLineApplyAntiAliasing bit if
it is set.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableNegativeJustification
Specifies to allow glyph positions to extend beyond the line's assigned width if the line width is not
sufficient to hold all its glyphs. This ensures that negative justification is not used.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAutoAdjustDisplayPos
Specifies not to automatically adjust individual character positions when rendering lines that have
any integer glyph positioning, whether the integer glyph positioning is due to non-antialiased
characters or though the use of the selector kATSLineFractDisable.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineUseQDRendering
Specifies to use QuickDraw to render a line of text instead of the default ATSUI rendering. With Mac
OS X version 10.2, ATSUI renders text through Quartz, even if you do not attach a CGContext to a
text layout object. In the default case, ATSUI retrieves the internal canonical CGContext of the current
port, and renders to that port using Quartz at an antialiasing setting that simulates QuickDraw
rendering. That is, a 4-bit pixel-aligned antialiasing. Because the default setting gives you simulated
QuickDraw rendering, you should use the tag kATSLineUseQDRendering only if you must have
backward compatibility. With Mac OS X version 10.3, this option no longer does anything different
from not declaring a CGContext.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

Constants 227
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

kATSLineDisableAllJustification
Specifies not to perform any justification operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllGlyphMorphing
Specifies not to perform any glyph-morphing operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllKerningAdjustments
Specifies not to perform any kerning-adjustment operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllBaselineAdjustments
Specifies not to perform any baseline-adjustment operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllTrackingAdjustments
Specifies not to perform any tracking-adjustment operations on the line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineDisableAllLayoutOperations
Specifies to turn off all layout adjustments for this line.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineUseDeviceMetrics
Specifies to used rounded device metrics instead of fractional path metrics. This optimizes display of
text and should be used only in cases in which the text is displayed onscreen as opposed to printed
or output to PDF. If you use this option to display text onscreen as well as to print or create a PDF,
you will get different results between the two types of output. This attribute is not recommended for
Quartz antialiased text.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSLineBreakToNearestCharacter
Specifies that line breaking should occur at the nearest character, not word. This could cause a word
to be split over multiple lines.

Available in Mac OS X version 10.3 and later.

Declared in ATSLayoutTypes.h.

kATSLineAppleReserved
This selector is reserved by Apple. If you try to use it, ATSUI returns the
kATSUInvalidAttributeValueEr result code.

Available in ATSUI 1.1 and later.

Declared in ATSLayoutTypes.h.

228 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
You can use a constant of type ATSLineLayoutOptions to set or obtain the line layout options in a line of
text or for an entire text layout object; see the functions ATSUSetLineControls (page 124) and
ATSUSetLayoutControls (page 122), respectively.

Line Layout Width Selector
Specifies a line width.

enum {
 kATSUUseLineControlWidth = 0X7FFFFFFF
};

Constants
kATSUUseLineControlWidth

Indicates that the functions ATSUBreakLine or ATSUBatchBreakLines should use the previously
set line width attribute for the current line to determine how many characters can fit on the line. If
no line width has been set for the line, these functions use the line width set for the text layout object;
if not set, these functions use the default line width value.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You can pass this constant to the functions ATSUBreakLine (page 22) or ATSUBatchBreakLines (page
20) to indicate that the function should use the line width previously set for that line to calculate the soft
line break. If no line width has been set for the line, these functions use the line width set for the text layout
object.

No Selectors Option
Specifies no selectors are chosen.

enum {
 kATSUNoSelector = 0x0000FFFF
};

Constants
kATSUNoSelector

Specifies no selectors are chosen.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Style Comparison Options
Specify how two style objects compare to each other.

Constants 229
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef UInt16 ATSUStyleComparison;
enum {
 kATSUStyleUnequal = 0,
 kATSUStyleContains = 1,
 kATSUStyleEquals = 2,
 kATSUStyleContainedBy = 3
};

Constants
kATSUStyleUnequal

Specifies that styles are unequal.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleContains
Specifies that style 1 contains style 2 as a proper subset.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleEquals
Specifies that style 1 equals style 2.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleContainedBy
Specifies that style 1 is contained by style 2.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
The function ATSUCompareStyles (page 31) returns a constant of type ATSUStyleComparison to indicate
whether two style objects are the same, different, or a subset of one another.

Style Line Count Types
Specifies how many lines to draw for a given style type.

typedef UInt16 ATSUStyleLineCountType;
enum {
 kATSUStyleSingleLineCount = 1,
 kATSUStyleDoubleLineCount = 2
};

Constants
kATSUStyleSingleLineCount

Specifies to use a single line.

Available in Mac OS X v10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUStyleDoubleLineCount
Specifies to use a double line.

Available in Mac OS X v10.3 and later.

Declared in ATSUnicodeTypes.h.

230 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
These constants are available in Mac OS X version 10.3 and later. Currently only the underline and strike
through styles support this type.

Style Rendering Options
Specify rendering options for a style object.

typedef UInt32 ATSStyleRenderingOptions;
enum {
 kATSStyleNoOptions = 0x00000000,
 kATSStyleNoHinting = 0x00000001,
 kATSStyleApplyAntiAliasing = 0x00000002,
 kATSStyleNoAntiAliasing = 0x00000004,
 kATSStyleAppleReserved = (unsigned long)0xFFFFFFF8,
 kATSStyleApplyHints = kATSStyleNoOptions
};

Constants
kATSStyleNoOptions

Specifies no options are set.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSStyleNoHinting
Specifies that Apple Type Services (ATS) should produce unhinted glyph outlines. The default behavior
is for ATS to produce is hinted glyph outlines.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSStyleApplyAntiAliasing
Specifies that Apple Type Services should produce antialiased glyph images even if system preferences
or Quartz 2D settings indicate otherwise.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSStyleNoAntiAliasing
Specifies that Apple Type Services should turn-off antialiasing glyph imaging even if system preferences
or Quartz 2D settings indicate otherwise. This selector negates the kATSStyleApplyAntiAliasing
selector if is set.

Available in Mac OS X v10.2 and later.

Declared in ATSLayoutTypes.h.

kATSStyleAppleReserved
This selector is reserved by Apple. If you try to use it, you will get an invalid value error.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

kATSStyleApplyHints
Specifies that Apple Type Services should produce hinted glyph outlines. This selector is obsolete; do
not use it. It is listed here only for backwards compatibility.

Available in Mac OS X v10.0 and later.

Declared in ATSLayoutTypes.h.

Constants 231
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Discussion
You can set style rendering attributes for a style object (ATSUStyle) by using the
kATSUStyleRenderingOptionsTag attribute tag and calling the function ATSUSetAttributes (page
119). Style rendering options provide fine control over how a style is rendered.

Tab Positioning Options
Specify text positioning for ATSUI tab stops.

typedef UInt16 ATSUTabType;
enum {
 kATSULeftTab = 0,
 kATSUCenterTab = 1,
 kATSURightTab = 2,
 kATSUDecimalTab = 3,
 kATSUNumberTabTypes = 4
};

Constants
kATSULeftTab

Specifies that the left side of the tabbed text should be flush against the tab stop.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kATSUCenterTab
Specifies that the tabbed text should be centered on the tab stop.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kATSURightTab
Specifies that the right side of the tabbed text should be flush against the tab stop.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

kATSUDecimalTab
Specifies that the decimal point of a value should be centered on the tab stop. To set a decimal tab,
use the tag kATSULineDecimalTabCharacterTag. This tag specifies the current setting for the
decimal separator, and affects the behavior of decimal tabs for a text layout (not an individual line).
The default character that is used as a separator is set by the user in System Preferences.

Declared in ATSUnicodeTypes.h.

Available in Mac OS X version 10.3 and later.

kATSUNumberTabTypes
Specifies the number of valid tab types.

Available in Mac OS X v10.2 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You can use tab type constants to set a tab ruler. The default value is the user setting in System Preferences.

232 Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

Text Buffer Convenience Constants
Refer to the beginning or end of a text buffer.

enum {
 kATSUFromTextBeginning = (unsigned long)0xFFFFFFFF,
 kATSUToTextEnd = (unsigned long)0xFFFFFFFF,
 kATSUFromPreviousLayout = (unsigned long)0xFFFFFFFE,
 kATSUFromFollowingLayout = (unsigned long)0xFFFFFFFD
};

Constants
kATSUFromTextBeginning

Indicates that the range of text to be operated on should start at the beginning of the text layout
object’s text buffer.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUToTextEnd
Indicates that the range of text to be operated on should span to the end of the text layout object’s
text buffer.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUFromPreviousLayout
Used for bidirectional cursor movement between paragraphs in the functions
ATSURightwardCursorPosition and ATSULeftwardCursorPosition.

Available in Mac OS X v10.3 and later.

Declared in ATSUnicodeTypes.h.

kATSUFromFollowingLayout
Used for bidirectional cursor movement between paragraphs in the functions
ATSURightwardCursorPostion and ATSULeftwardCursorPosition.

Available in Mac OS X v10.3 and later.

Declared in ATSUnicodeTypes.h.

Discussion
Do not pass these constants to functions which do not explicitly state they will accept them.

ATSUI functions that draw, highlight, measure, or otherwise operate on text do so to a range of text, not the
entire text buffer (unless you specify the entire buffer). You specify the beginning of this range with an edge
offset of type UniCharArrayOffset, and demarcate the end of the range by indicating a length of type
UniCharCount.

If you want the range to start at the beginning of the text buffer, you should pass the constant
kATSUFromTextBeginning. If you want the range to span the end of the text buffer, you should pass the
constant kATSUToTextEnd. If you want the range to span the entire text buffer, pass
kATSUFromTextBeginning in conjunction with the constant kATSUToTextEnd. For bidirectional text, you
can specify the previous layout by passing the constant kATSUFromPreviousLayout and the following
layout by passing the constant kATSUFromFollowingLayout.

Unflattened Style Run Data Options
Specify options to use when unflattening ATSUI style run data.

Constants 233
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

typedef UInt32 ATSUUnflattenStyleRunOptions;
enum {
 kATSUUnflattenOptionNoOptionsMask = 0x00000000
};

Constants
kATSUUnflattenOptionNoOptionsMask

Specifies that no options are to be used.

Discussion
Additional options may be added in the future.

Vertical Character Types
Specify the glyph orientation of font tracking settings or a style run.

typedef UInt16 ATSUVerticalCharacterType;
enum {
 kATSUStronglyHorizontal = 0,
 kATSUStronglyVertical = 1
};

Constants
kATSUStronglyHorizontal

Specifies a horizontal orientation.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

kATSUStronglyVertical
Specifies a vertical orientation.

Available in Mac OS X v10.0 and later.

Declared in ATSUnicodeTypes.h.

Discussion
You can pass a constant of type ATSUVerticalCharacterType to the functions
ATSUCountFontTracking (page 37) and ATSUGetIndFontTracking (page 80) to specify the glyph
orientation of font tracking settings, since font tracking settings differ depending upon glyph orientations.

You can also use one of these constants to set or obtain the glyph orientation of a style run; see the functions
ATSUSetAttributes (page 119) and ATSUGetAttribute (page 65), respectively.

Result Codes

The most common result codes returned by Apple Type Services for Unicode Imaging are listed below.

DescriptionValueResult Code

The ATSUI text layout object is not initialized or is in
an otherwise invalid state.

-8790kATSUInvalidTextLayoutErr

Available beginning with ATSUI 1.0.

234 Result Codes
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

DescriptionValueResult Code

The ATSUI style object is not initialized or in an
otherwise invalid state.

-8791kATSUInvalidStyleErr

Available beginning with ATSUI 1.0.

The text range extends beyond the limits of the text
layout object’s text range.

-8792kATSUInvalidTextRangeErr

Available beginning with ATSUI 1.0.

One or more characters cannot be rendered with the
assigned font, but can be rendered with a substitute
font from among those currently active.

-8793kATSUFontsMatched

Available beginning with ATSUI 1.0.

One or more characters can neither be rendered with
the assigned font nor with any other currently active
font.

-8794kATSUFontsNotMatched

Available beginning with ATSUI 1.0.

The font ID corresponds to an existing font that isn’t
available to ATSUI.

-8795kATSUNoCorrespondingFontErr

Available beginning with ATSUI 1.0.

The font ID does not correspond to any installed font
or ATSUI is unable to obtain the font data (as in the
case of a protected font).

-8796kATSUInvalidFontErr

Available beginning with ATSUI 1.0.

The attribute value is invalid or undefined.-8797kATSUInvalidAttributeValueErr

Available beginning with ATSIU 1.0.

The allocated attribute value size is less than required.-8798kATSUInvalidAttributeSizeErr

Available beginning with ATSUI 1.0.

The tag is an ATSUI-reserved value or the wrong type
of attribute tag (that is, a style run attribute tag
instead of text layout attribute tag and vice versa).

-8799kATSUInvalidAttributeTagErr

Available beginning with ATSUI 1.0.

Indicates an attempt to read style data from an invalid
cache (that is, the format of the cached data does not
match that used by ATSUI or the cached data is
corrupt).

-8800kATSUInvalidCacheErr

Available beginning with ATSUI 1.0.

Result Codes 235
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

DescriptionValueResult Code

The ATSUI style object’s attribute, font feature, font
variation is not set; the ATSUI text layout object or
single line’s attribute is not set; or a font name is not
set.

-8801kATSUNotSetErr

Available beginning with ATSUI 1.0.

No style runs are assigned to the ATSUI text layout
object.

-8802kATSUNoStyleRunsAssignedErr

Available beginning with ATSUI 1.1.

The QuickDraw function DrawText encountered an
error rendering or measuring a line of text.

-8803kATSUQuickDrawTextErr

Available beginning with ATSUI 1.1.

Apple Type Services (ATS) encountered an error while
performing an operation requested by ATSUI.

-8804kATSULowLevelErr

Available beginning with ATSUI 1.1.

The 'CMAP' table cannot be accessed or synthesized
for a font.

-8805kATSUNoFontCmapAvailableErr

Available beginning with ATSUI 1.1.

There is no font scaler available for a font.-8806kATSUNoFontScalerAvailableErr

Available beginning with ATSUI 1.1.

The coordinate values passed to the function caused
a coordinate overflow (greater than 32 KB).

-8807kATSUCoordinateOverflowErr

Available beginning with ATSUI 1.1.

The function ATSUBreakLineperformed a line break
within a word.

-8808kATSULineBreakInWord

Available beginning with ATSUI 1.2.

An ATSUI object is being used by another thread.-8809kATSUBusyObjectErr

Available in Mac OS X v10.1 and later.

The ATSUFontFallback object is not initialized or
is otherwise in an in valid state.

-8900kATSUInvalidFontFallbacksErr

Available in Mac OS X v10.1 and later.

The data-flattening format is invalid or is not
supported by this version of ATSUI.

-8901kATSUUnsupportedStreamFormatErr

Available in Mac OS X v10.2 and later.

The data is not formatted as specified by the
data-flattening format constant, or the data is corrupt.

-8902kATSUBadStreamErr

Available in Mac OS X v10.2 and later.

236 Result Codes
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

DescriptionValueResult Code

The output buffer is too small to contain the data
output by the function.

-8903kATSUOutputBufferTooSmallErr

Available in Mac OS X v10.2 and later.

Your callback is making a call that could cause an
infinite recursion.

-8904kATSUInvalidCallInsideCallbackErr

Available in Mac OS X v10.2 and later.

No ATSUI-related result codes may exceed this value.
Result code values between
kATSUInvalidTextLayoutErr andkATSULastErr
are reserved.

-8959kATSULastErr

Available beginning with ATSUI 1.0.

Gestalt Constants

You can check for version and feature availability information by using the ATSUI attribute and version
selectors defined in the Gestalt Manager. For more information see Gestalt Manager Reference.

Gestalt Constants 237
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

238 Gestalt Constants
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

ATSUI Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.0

ATSUCreateTextLayoutWithTextHandle
Creates an opaque text layout object containing default text layout attributes as well as associated text and
text styles. (Deprecated in Mac OS X v10.0. Use ATSUCreateTextLayoutWithTextPtr (page 42) instead.
See the Discussion for more details.)

Not recommended.

OSStatus ATSUCreateTextLayoutWithTextHandle (
 UniCharArrayHandle iText,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 UniCharCount iTextTotalLength,
 ItemCount iNumberOfRuns,
 const UniCharCount iRunLengths[],
 ATSUStyle iStyles[],
 ATSUTextLayout *oTextLayout
);

Parameters
iText

A handle of type UniCharArrayHandle referring to a text buffer containing UTF-16–encoded text.
ATSUI associates this buffer with the new text layout object and analyzes the entire text of the buffer
when obtaining the layout context for the current text range. Thus, for paragraph-format text, if you
specify a buffer containing less than a complete paragraph, some of ATSUI’s layout results are not
guaranteed to be accurate. For example, with a buffer of less than a full paragraph, ATSUI can neither
reliably obtain the context for bidirectional processing nor reliably generate accent attachments and
ligature formations for Roman text.

iTextOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to include in the layout. To indicate that the specified text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning. To specify the
entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iTextLength parameter.

iTextLength
A UniCharCount value specifying the length of the text range. Note that iTextOffset +
iTextLength must be less than or equal to the value of the iTextTotalLength parameter. If you
want the range of text to extend to the end of the text buffer, you can pass the constant
kATSUToTextEnd.

Deprecated in Mac OS X v10.0 239
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

iTextTotalLength
A UniCharCount value specifying the length of the entire text buffer. This value should be greater
than or equal to the range of text defined by the iTextLength parameter.

iNumberOfRuns
An ItemCount value specifying the number of text style runs you want to define within the text
range. The number of style objects and style run lengths passed in the iStyles and iRunLengths
parameters, respectively, should each be equal to the number of runs specified here.

iRunLengths
A pointer to a UniCharCount array specifying the lengths of each style run in the text layout object.
You can pass kATSUToTextEnd for the last style run length if you want the style run to extend to the
end of the text range. If the sum of the style run lengths is less than the total length of the text range,
the remaining characters are assigned to the last style run.

iStyles
A pointer to the first element in an ATSUStyle array. Each element in the array must contain a valid
style object that corresponds to a style run defined by the iRunLengths array.

oTextLayout
A valid pointer to an ATSUTextLayout value. On return, the value refers to the newly created text
layout object.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should use the function ATSUCreateTextLayoutWithTextPtr (page 42) instead of using the function
ATSUCreateTextLayoutWithTextHandle.

The ATSUCreateTextLayoutWithTextHandle function creates a text layout object associated with style
objects and text and containing the default text layout attributes described in “Attribute Tags” (page 196).
To provide nondefault line or layout attributes for a text layout object, you can call the functions
ATSUSetLineControls (page 124) or ATSUSetLayoutControls (page 122). After setting text attributes,
call ATSUDrawText (page 50) to draw the text.

Because the only way that ATSUI interacts with text is via the memory references you associate with a text
layout object, you are responsible for keeping these references updated, as in the following cases:

1. When the user deletes or inserts a subrange within a text buffer (but the buffer itself is not relocated),
you should call the functions ATSUTextDeleted (page 135) and ATSUTextInserted (page 136),
respectively.

2. When you relocate the entire text buffer (but no other changes have occurred that would affect the
buffer’s current subrange), you should call the function ATSUTextMoved (page 137).

3. When both the buffer itself is relocated and a subrange of the buffer’s text is deleted or inserted (that
is, a combination of cases 1 and 2, above), you must use either the function
ATSUSetTextHandleLocation (page 241) or the functionATSUSetTextPointerLocation (page 131)
to inform ATSUI.

4. When you are associating an entirely different buffer with a text layout object, you must call either the
function ATSUSetTextHandleLocation (page 241) or the function
ATSUSetTextPointerLocation (page 131).

240 Deprecated in Mac OS X v10.0
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

Note that, because ATSUI objects retain state information, doing superfluous calling can degrade performance.
For example, you could call ATSUSetTextHandleLocation rather than ATSUTextInsertedwhen the user
inserts text, but there would be a performance penalty, as all the layout caches are flushed when you call
ATSUSetTextHandleLocation, rather than just the affected ones.

Text layout objects are readily reusable and should themselves be cached for later use, if possible.

The ATSUCreateTextLayoutWithTextHandle function associates text with a text layout object via a
handle, but ATSUI functions that need to access the text return the handle to its original state upon completion.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUIdle
Performs background processing. (Deprecated in Mac OS X v10.0. There is no replacement because this
function does nothing in Mac OS X.)

Not recommended.

OSStatus ATSUIdle (
 ATSUTextLayout iTextLayout
);

Parameters
iTextLayout

A reference to the text layout object in which you want ATSUI to perform background processing.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The function ATSUIdle is not recommended. Current versions of ATSUI do not implement background
processing for text layout objects. In Mac OS X, the function ATSUIdle does nothing.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUSetTextHandleLocation
Associates text with a text layout object. (Deprecated in Mac OS X v10.0. Use
ATSUSetTextPointerLocation (page 131) instead. See the Discussion for more details.)

Deprecated in Mac OS X v10.0 241
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

Not recommended.

OSStatus ATSUSetTextHandleLocation (
 ATSUTextLayout iTextLayout,
 UniCharArrayHandle iText,
 UniCharArrayOffset iTextOffset,
 UniCharCount iTextLength,
 UniCharCount iTextTotalLength
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object with which to associate text.

iText
A handle of type UniCharArrayHandle, referring to a text buffer containing UTF-16–encoded text.
ATSUI associates this buffer with the text layout object and analyzes the complete text of the buffer
when obtaining the layout context for the current text range. Thus, for paragraph-format text, if you
specify a buffer containing less than a complete paragraph, some of ATSUI’s layout results are not
guaranteed to be accurate. For example, with a buffer of less than a full paragraph, ATSUI can neither
reliably obtain the context for bidirectional processing nor reliably generate accent attachments and
ligature formations for Roman text.

iTextOffset
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the range to include in the layout. To indicate that the specified text range starts at the
beginning of the text buffer, you can pass the constant kATSUFromTextBeginning,. To specify the
entire text buffer, pass kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the
iTextLength parameter.

iTextLength
A UniCharCount value specifying the length of the text range. Note that iTextOffset +
iTextLength must be less than or equal to the value of the iTextTotalLength parameter. If you
want the range of text to extend to the end of the text buffer, you can pass the constant
kATSUToTextEnd.

iTextTotalLength
A UniCharCount value specifying the length of the entire text buffer. This value should be greater
than or equal to the range of text defined by the iTextLength parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should use the function ATSUSetTextPointerLocation (page 131) instead of the function
ATSUSetTextHandleLocation.

For ATSUI to render your text, you must associate the text with both a text layout object and style information.
Some functions, such as ATSUCreateTextLayoutWithTextPtr (page 42), create a text layout object and
associate text with it concurrently. However, if you use the function ATSUCreateTextLayout (page 41) to
create a layout object, you must assign text to the text layout object prior to attempting most ATSUI operations.

You can use either of the functionsATSUSetTextHandleLocationorATSUSetTextPointerLocation (page
131) to associate text with a text layout object. When you call these functions, you are both assigning a text
buffer to a text layout object and specifying the current text subrange within the buffer to include in the
layout.

242 Deprecated in Mac OS X v10.0
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

If there is already text associated with a text layout object, calling ATSUSetTextHandleLocation or
ATSUSetTextPointerLocation overrides the previously associated text, as well as clearing the object’s
layout caches. You would typically only call these functions for a text layout object with existing associated
text if either (a) both the buffer itself is relocated and a subrange of the buffer’s text is deleted or inserted
or (b) when associating an entirely different buffer with a text layout object.

Note that, because ATSUI objects retain state, doing superfluous calling can degrade performance. For
example, you could call ATSUSetTextHandleLocation rather than ATSUTextInserted (page 136) when
the user simply inserts a subrange of text within a text buffer, but there would be a performance penalty, as
all the layout caches are flushed by ATSUSetTextHandleLocation, rather than just the affected ones.

Similarly, you should not call ATSUSetTextHandleLocation, when an entire text buffer associated with a
text layout object is relocated, but no other changes have occurred that would affect the buffer’s current
subrange. Instead, you should call ATSUTextMoved (page 137), which is a more focused function and therefore
more efficient.

After associating text with the text layout object, use ATSUSetRunStyle (page 127) to associate style
information with the text. You can then call the function ATSUDrawText (page 50) to display the text.

Note that while ATSUSetTextHandleLocation associates text with a text layout object via a handle, ATSUI
functions that need to access the text return the handle to its original state upon function completion.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

Deprecated in Mac OS X v10.1

ATSUCopyToHandle
Copies an ATSUI style to a handle. (Deprecated in Mac OS X v10.1. Use
ATSUFlattenStyleRunsToStream (page 55) instead.)

Not Recommended

OSStatus ATSUCopyToHandle (
 ATSUStyle iStyle,
 Handle oStyleHandle
);

Parameters
iStyle

An ATSUStyle value.

oStyleHandle
A valid handle.

Return Value
A result code.

Deprecated in Mac OS X v10.1 243
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

Discussion
The ATSUCopyToHandle function is not recommended for use, as this function does not produce the correct
data format for the display of ATSUI style data. You should instead use the function
ATSUFlattenStyleRunsToStream to flatten style data and the function
ATSUUnflattenStyleRunsFromStream to unflatten style data. These functions read and write data using
the ustl data specification. You can use a data block format of this type to copy and paste Unicode-encoded
styled text between applications or within your application. The ustl data structure contains flattened text
layout data, flattened style run data, and flattened style list data. For more information on the ustl data
structure see Inside Mac OS X: ATSUI Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.1.
Not available to 64-bit applications.

Declared In
ATSUnicodeFlattening.h

Deprecated in Mac OS X v10.3

ATSUDrawGlyphInfo
Draws glyphs at the specified location, based on style and layout information specified for each glyph.
(Deprecated in Mac OS X v10.3. Use functions from “Accessing Glyph Data” (page 18) instead.)

Not recommended.

OSStatus ATSUDrawGlyphInfo (
 ATSUGlyphInfoArray *iGlyphInfoArray,
 Float32Point iLocation
);

Parameters
iGlyphInfoArray

A pointer to an ATSUGlyphInfoArray structure containing the glyph information to draw. You can
obtain an ATSUGlyphInfoArray structure from the function ATSUGetGlyphInfo (page 246).

iLocation
A Float32Point data structure that contains the x and y coordinates at which to draw the glyph(s).
Each coordinate in the Float32Point data structure is a Float32 value.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You must use ATSUDrawGlyphInfo to draw glyphs if you have previously called the function
ATSUGetGlyphInfo (page 246), and you have modified the glyph information. However, if you want to
modify the glyph information you should use the functions ATSUGlyphGetQuadraticPaths (page 98) or
ATSUGlyphGetCubicPaths (page 95) instead of calling the function ATSUGetGlyphInfo.

Availability
Available in Mac OS X v10.0 and later.

244 Deprecated in Mac OS X v10.3
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUGetFontFallbacks
Obtains the global font list and search order that ATSUI uses when a font does not have the glyph needed
to image a character. (Deprecated in Mac OS X v10.3. Use font fallback objects instead.)

Not recommended.

OSStatus ATSUGetFontFallbacks (
 ItemCount iMaxFontFallbacksCount,
 ATSUFontID oFontIDs[],
 ATSUFontFallbackMethod *oFontFallbackMethod,
 ItemCount *oActualFallbacksCount
);

Parameters
iMaxFontFallbacksCount

An ItemCount value specifying the maximum number of fonts that you want to obtain. Typically,
this is equivalent to the size of the array allocated in the oFontIDs parameter. To determine this
value, see the Discussion.

oFontIDs
A pointer to memory you have allocated for an array of ATSUFontID values. If you are uncertain of
how much memory to allocate, see the Discussion. On return, the array contains font IDs identifying
the fonts ATSUI searches when seeking a substitute font.

oFontFallbackMethod
A pointer to an ATSUFontFallbackMethod value. On return, the value identifies the order in which
ATSUI searches fonts. See “Font Fallback Methods” (page 214) for a description of possible values.

oActualFallbacksCount
A pointer to an ItemCount value. On return, the value specifies the actual number of fonts that ATSUI
searches. This value may be greater than that passed in the iMaxFontFallbacksCount parameter.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
You should not use this function because it operates on a global scope and may not be available in future
versions of ATSUI. You should instead use the function ATSUGetObjFontFallbacks (page 85) with a font
fallback object that has been associated with a text layout object. See InsideMacOS X: Rendering Unicode Text
With ATSUI for step-by-step instructions on creating a font fallback object and associating it with a text layout
object.

Special Considerations

Global font fallback settings can be changed by any ATSUI client, so they can be changed unexpectedly. The
only way to ensure that ATSUI uses your preferred font fallback settings for your text is to create a font fallback
object and associated it with a text layout object. See the Discussion for more details.

Version Notes
Available beginning with ATSUI 1.1.

Deprecated in Mac OS X v10.3 245
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

ATSUGetGlyphInfo
Obtains a copy of the style and layout information for each glyph in a line. (Deprecated in Mac OS X v10.3.
Use functions from “Accessing Glyph Data” (page 18) instead.)

Not recommended.

OSStatus ATSUGetGlyphInfo (
 ATSUTextLayout iTextLayout,
 UniCharArrayOffset iLineStart,
 UniCharCount iLineLength,
 ByteCount *ioBufferSize,
 ATSUGlyphInfoArray *oGlyphInfoPtr
);

Parameters
iTextLayout

An ATSUTextLayout value specifying the text layout object to examine.

iLineStart
A UniCharArrayOffset value specifying the offset from the beginning of the text buffer to the first
character of the line to examine. To indicate that the line starts at the beginning of the text buffer,
you can pass the constant kATSUFromTextBeginning. To specify the entire text buffer, pass
kATSUFromTextBeginning in this parameter and kATSUToTextEnd in the iLineLengthparameter.

iLineLength
A UniCharCount value specifying the length of the line. If you want the line to extend to the end of
the text buffer, you can pass the constant kATSUToTextEnd.

ioBufferSize
A pointer to a ByteCount value specifying the size of the buffer you have allocated for the
ATSUGlyphInfoArray structure produced in the oGlyphInfoPtr parameter. On return, the value
specifies the actual size of the ATSUGlyphInfoArray structure.

oGlyphInfoPtr
A pointer to an ATSUGlyphInfoArray structure. On return, the structure contains values identifying
the text layout object, the number of glyphs in the specified line, and an array of ATSUGlyphInfo
structures for each of the glyphs. Each ATSUGlyphInfo structure contains information identifying
the glyph, the style object with which it is associated, and other related layout values.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
The ATSUGetGlyphInfo function obtains a copy of the style and layout information for each glyph in a line
of text. Copying can be slow, so it’s best to use this function only if you do not plan to modify the glyph
information. If you do modify the glyph information, you can only draw the modified glyphs by calling the

246 Deprecated in Mac OS X v10.3
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

function ATSUDrawGlyphInfo (page 244). Because you are working with a copy of the glyph data and not
the actual data that ATSUI has, if you try to draw text by calling the ATSUDrawText (page 50) function, none
of the changes you make to the glyph information will be reflected in the drawn text.

Note that is you obtain glyph information with the function ATSUGetGlyphInfo and then draw glyphs using
ATSUDrawGlyphInfo, ATSUI does not take synthetic styles into account when it draw. This means that font
substitution will not work.

If you want to modify glyph information you should instead use the ATSUI direct-access functions
ATSUGlyphGetQuadraticPaths (page 98) or ATSUGlyphGetCubicPaths (page 95). You use each of
these functions along with callback functions you supply for drawing the glyphs. When you modify and draw
glyphs using ATSUI’s direct-access functions, you obtain access to the same information as that supplied by
the function ATSUGetGlyphInfo, but in a way that allows font substitution to work. For more information
on retrieving and drawing glyph outlines, see Inside Mac OS X: Rendering Unicode Text With ATSUI.

The Unicode characters in the text layout object (ATSUTextLayout) and the glyphs returned by the function
ATSUGetGlyphInfo do not necessarily have a one-to-one correspondence. For example, the accented Latin
character é can be represented by an e with a combining ´ accent. In this case, two characters map to one
glyph.

Common ligatures such as fi also form automatically for some fonts, causing two characters to map to one
glyph. Right-to-left scripts such as Arabic, and complex scripts such as Devanagari or Thai have even more
complicated mappings from characters to glyphs.

For this reason it's best to use the high level ATSUI functions whenever possible, and to associate a paragraph
of text with a text layout object. Your application is then completely insulated from such issues.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeGlyphs.h

ATSUMeasureText
(Deprecated in Mac OS X v10.3. Use ATSUGetUnjustifiedBounds (page 93) instead.)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeDrawing.h

ATSUSetFontFallbacks
Sets, on a global scope, the font list and search order for ATSUI to use when a font does not have the glyph
needed to image a character. (Deprecated in Mac OS X v10.3. Use font fallback objects instead.)

Deprecated in Mac OS X v10.3 247
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

Not recommended.

OSStatus ATSUSetFontFallbacks (
 ItemCount iFontFallbacksCount,
 const ATSUFontID iFontIDs[],
 ATSUFontFallbackMethod iFontFallbackMethod
);

Parameters
iFontFallbacksCount

An ItemCount value specifying the number of fonts to be searched. This value should be equivalent
to the number of elements in the iFontIDs array.

iFontIDs
A pointer to the first ATSUFontID value in the array of fonts to be searched.

iFontFallbackMethod
An ATSUFontFallbackMethod value specifying the order in which ATSUI is to search the fonts. See
“Font Fallback Methods” (page 214) for a description of possible search orders.

Return Value
A result code. See “ATSUI Result Codes” (page 234).

Discussion
When you call ATSUSetFontFallbacks, any settings you apply are global to the process and are used by
all ATSUI clients in the process. Therefore, any ATSUI clients in the process can change these global font
fallback settings unexpectedly. Other application threads can modify the font fallbacks settings, as well. The
only way to ensure that ATSUI uses your preferred font fallback settings for your text is to create a font fallback
object and associated it with a text layout object.

You create a font fallback object by calling the function ATSUCreateFontFallbacks (page 39). You define
settings for the object by calling the function ATSUSetObjFontFallbacks (page 126). To associate the font
fallback object with a text layout object, call either of the functions ATSUSetLayoutControls (page 122)
or ATSUSetLineControls (page 124). See InsideMacOSX: RenderingUnicode TextWithATSUI for step-by-step
instructions on creating a font fallback object and associating it with a text layout object.

Special Considerations

You should not use this function because it operates on a global scope and may not be available in future
versions of ATSUI. Instead, use font fallback objects as described in the Discussion.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
ATSUnicodeObjects.h

248 Deprecated in Mac OS X v10.3
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated ATSUI Functions

This table describes the changes to ATSUI Reference.

NotesDate

Corrected several technical and typographical errors.2007-06-28

Removed information that incorrectly stated that you can set custom layout
and line attributes. You can custom attributes only for styles.

Added clarification to the use of CGContextRef drawing destination in the
function ATSUHighLightText.

Added deprecation infomation.2006-07-31

Minor techincal fix.2005-11-09

Added information to the function ATSUFindFontFromName and made a few
minor technical corrections.

2005-08-11

Fixed typographical errors.2005-07-07

Added framework and header file information to the introduction. The ATSUI
API is now defined in multiple header files.

2003-10-15

Updated header file information for each function.

Added two constants for decimal tab support—kATSUDecimalTab and
kATSULineDecimalTabCharacterTag.

Changed the name of the “Text Offset and Length Constants” group to “Text
Buffer Convenience Constants” (page 233) to reflect the addition of two constants
used for bidirectional support.

Added a constant to support highlighting using a CGColor
type—kATSULineHighlightCGColorTag.

Added several new style attributes. See “Attribute Tags” (page 196).

Added a new enumeration—“Style Line Count Types” (page 230)—to specify
line counts for underline and strike through styles.

Added information to the functions ATSURightwardCursorPosition (page
118) andATSULeftwardCursorPosition (page 103) concerning new constants
for bidirectional support. See “Text Buffer Convenience Constants” (page 233)
for a description of the new constants.

249
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Added a new line layout option for line
breaking—kATSLineBreakToNearestCharacter.

Improved wording for the function ATSUFindFontFromName (page 52).

Fixed typographical errors.

Updated availability information for the function ATSUBatchBreakLines.
Improved wording in the discussion of the ATSUGetSoftLineBreaks function.

2003-06-12

Removed the ATSUI gestalt constants. All gestalt constants are now documented
in Inside Mac OS X: Gestalt Manager Reference.

2003-04-07

Corrected information about the result code returned from the function
ATSUGlyphGetCurvePaths.

Added header information for each function.2002-10-28

Added additional information to the functions
ATSUFlattenStyleRunsFromStream and
ATSUUnflattenStyleRunsFromStream.

Moved list of deprecated functions to Appendix A.

Fixed typographical errors.

Updated for ATSUI version 2.4. This document includes a complete revision of
the existing documentation.

2002-09-10

Added documentation for flattening and unflattening functions and data types.
These allow you to save and retrieve ATSUI style data in a flattened format. The
format for flattening ('ustl') is also updated.

Added documentation for direct-access functions and data types. These allow
you to access glyph data directly.

Added documentation for functions and data types added for Mac OS X version
10.2, including new line-layout options, style rendering options, glyph
information flags, a layout operation callback, support for tabs, and batch line
breaking. You’ll find new attribute tags for text measurement (ascent, descent,
leading, color (includes alpha channel), glyph selection, and font transformation.

Added documentation for font fallback objects.

Added documentation for new gestalt constants.

Revised existing ATSUI result codes and added new ones.

Updated Carbon support status of functions. Moved deprecated functions and
data types to Legacy ATSUI Reference.

Replaced the function ATSUMeasureTextwith ATSUGetUnjustifiedBounds.

250
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Updated for ATSUI version 1.2.2001-07-17

251
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

252
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

ATSCubicClosePathProcPtr callback 156
ATSCubicClosePathUPP data type 194
ATSCubicCurveToProcPtr callback 157
ATSCubicCurveToUPP data type 194
ATSCubicLineToProcPtr callback 158
ATSCubicLineToUPP data type 194
ATSCubicMoveToProcPtr callback 159
ATSCubicMoveToUPP data type 195
ATSFlatDataFontNameDataHeader structure 191
ATSFlatDataFontSpecRawNameData structure 192
ATSFlatDataFontSpecRawNameDataHeader structure

192
ATSFlatDataLayoutControlsDataHeader structure

185
ATSFlatDataLineInfoData structure 186
ATSFlatDataLineInfoHeader structure 185
ATSFlatDataMainHeaderBlock structure 181
ATSFlatDataStyleListFeatureData structure 190
ATSFlatDataStyleListHeader structure 187
ATSFlatDataStyleListStyleDataHeader structure

189
ATSFlatDataStyleListVariationData structure 190
ATSFlatDataStyleRunDataHeader structure 186
ATSFlatDataTextLayoutDataHeader structure 182
ATSJustPriorityWidthDeltaOverrides data type

175
ATSJustWidthDeltaEntryOverride structure 176
ATSLayoutRecord structure 167
ATSQuadraticClosePathProcPtr callback 160
ATSQuadraticClosePathUPP data type 195
ATSQuadraticCurveProcPtr callback 161
ATSQuadraticCurveUPP data type 195
ATSQuadraticLineProcPtr callback 162
ATSQuadraticLineUPP data type 195
ATSQuadraticNewPathProcPtr callback 163
ATSQuadraticNewPathUPP data type 196
ATSTrapezoid structure 180
ATSUAttributeInfo structure 167
ATSUAttributeValuePtr data type 168

ATSUBackgroundColor data type 170
ATSUBackgroundData structure 170
ATSUBatchBreakLines function 20
ATSUBreakLine function 22
ATSUCalculateBaselineDeltas function 23
ATSUCaret structure 170
ATSUClearAttributes function 24
ATSUClearFontFeatures function 25
ATSUClearFontVariations function 26
ATSUClearLayoutCache function 27
ATSUClearLayoutControls function 28
ATSUClearLineControls function 29
ATSUClearSoftLineBreaks function 30
ATSUClearStyle function 30
ATSUCompareStyles function 31
ATSUCopyAttributes function 32
ATSUCopyLayoutControls function 33
ATSUCopyLineControls function 33
ATSUCopyToHandle function (Deprecated in Mac OS X

v10.1) 243
ATSUCountFontFeatureSelectors function 34
ATSUCountFontFeatureTypes function 35
ATSUCountFontInstances function 35
ATSUCountFontNames function 36
ATSUCountFontTracking function 37
ATSUCountFontVariations function 37
ATSUCreateAndCopyStyle function 38
ATSUCreateAndCopyTextLayout function 39
ATSUCreateFontFallbacks function 39
ATSUCreateStyle function 40
ATSUCreateTextLayout function 41
ATSUCreateTextLayoutWithTextHandle function

(Deprecated in Mac OS X v10.0) 239
ATSUCreateTextLayoutWithTextPtr function 42
ATSUDirectAddStyleSettingRef function 44
ATSUDirectGetLayoutDataArrayPtrFromLineRef

function 45
ATSUDirectGetLayoutDataArrayPtrFromTextLayout

function 46
ATSUDirectLayoutOperationOverrideProcPtr

callback 164

253
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

Index

ATSUDirectLayoutOperationOverrideUPP structure
193

ATSUDirectReleaseLayoutDataArrayPtr function
48

ATSUDisposeFontFallbacks function 48
ATSUDisposeStyle function 49
ATSUDisposeTextLayout function 49
ATSUDrawGlyphInfo function (Deprecated in Mac OS X

v10.3) 244
ATSUDrawText function 50
ATSUFindFontFromName function 52
ATSUFindFontName function 53
ATSUFlattenStyleRunsToStream function 55
ATSUFONDtoFontID function 56
ATSUFontCount function 57
ATSUFontFallbacks data type 173
ATSUFontFeatureSelector data type 172
ATSUFontFeatureType data type 171
ATSUFontID data type 173
ATSUFontIDtoFOND function 58
ATSUFontVariationAxis data type 172
ATSUFontVariationValue data type 173
ATSUGetAllAttributes function 59
ATSUGetAllFontFeatures function 60
ATSUGetAllFontVariations function 61
ATSUGetAllLayoutControls function 62
ATSUGetAllLineControls function 63
ATSUGetAttribute function 65
ATSUGetContinuousAttributes function 66
ATSUGetFontFallbacks function (Deprecated in Mac

OS X v10.3) 245
ATSUGetFontFeature function 66
ATSUGetFontFeatureNameCode function 67
ATSUGetFontFeatureSelectors function 68
ATSUGetFontFeatureTypes function 70
ATSUGetFontIDs function 71
ATSUGetFontInstance function 72
ATSUGetFontInstanceNameCode function 73
ATSUGetFontVariationNameCode function 74
ATSUGetFontVariationValue function 74
ATSUGetGlyphBounds function 75
ATSUGetGlyphInfo function (Deprecated in Mac OS X

v10.3) 246
ATSUGetIndFontName function 78
ATSUGetIndFontTracking function 80
ATSUGetIndFontVariation function 81
ATSUGetLayoutControl function 82
ATSUGetLineControl function 83
ATSUGetNativeCurveType function 84
ATSUGetObjFontFallbacks function 85
ATSUGetRunStyle function 86
ATSUGetSoftLineBreaks function 87
ATSUGetStyleRefCon function 88

ATSUGetTabArray function 89
ATSUGetTextHighlight function 90
ATSUGetTextLayoutRefCon function 91
ATSUGetTextLocation function 91
ATSUGetTransientFontMatching function 92
ATSUGetUnjustifiedBounds function 93
ATSUGlyphGetCubicPaths function 95
ATSUGlyphGetCurvePaths function 96
ATSUGlyphGetIdealMetrics function 97
ATSUGlyphGetQuadraticPaths function 98
ATSUGlyphGetScreenMetrics function 99
ATSUGlyphInfo structure 173
ATSUGlyphInfoArray structure 174
ATSUGlyphSelector structure 175
ATSUHighlightInactiveText function 100
ATSUHighlightText function 101
ATSUIdle function (Deprecated in Mac OS X v10.0) 241
ATSULayoutOperationOverrideSpecifier structure

177
ATSULeftwardCursorPosition function 103
ATSULineRef structure 177
ATSUMatchFontsToText function 106
ATSUMeasureText function (Deprecated in Mac OS X

v10.3) 247
ATSUMeasureTextImage function 107
ATSUNextCursorPosition function 109
ATSUOffsetToCursorPosition function 110
ATSUOffsetToPosition function 111
ATSUOverwriteAttributes function 113
ATSUPositionToCursorOffset function 113
ATSUPositionToOffset function 115
ATSUPreviousCursorPosition function 117
ATSURGBAlphaColor structure 169
ATSURightwardCursorPosition function 118
ATSUSetAttributes function 119
ATSUSetFontFallbacks function (Deprecated in Mac

OS X v10.3) 247
ATSUSetFontFeatures function 120
ATSUSetHighlightingMethod function 121
ATSUSetLayoutControls function 122
ATSUSetLineControls function 124
ATSUSetObjFontFallbacks function 126
ATSUSetRunStyle function 127
ATSUSetSoftLineBreak function 128
ATSUSetStyleRefCon function 129
ATSUSetTabArray function 129
ATSUSetTextHandleLocation function (Deprecated in

Mac OS X v10.0) 241
ATSUSetTextLayoutRefCon function 130
ATSUSetTextPointerLocation function 131
ATSUSetTransientFontMatching function 132
ATSUSetVariations function 133
ATSUStyle data type 178

254
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

ATSUStyleIsEmpty function 134
ATSUStyleRunInfo structure 178
ATSUStyleSettingRef structure 168
ATSUTab structure 178
ATSUTextDeleted function 135
ATSUTextInserted function 136
ATSUTextLayout data type 179
ATSUTextMeasurement data type 179
ATSUTextMoved function 137
ATSUUnderwriteAttributes function 138
ATSUUnflattenStyleRunsFromStream function 138
ATSUUnhighlightData structure 180
ATSUUnhighlightText function 140
Attribute Tags 196

B

Background Data Types 208

C

Caret Movement Types 208
ConstATSUAttributeValuePtr data type 169
Convenience Constants 209

D

Direct Data Selectors 210
DisposeATSCubicClosePathUPP function 142
DisposeATSCubicCurveToUPP function 142
DisposeATSCubicLineToUPP function 143
DisposeATSCubicMoveToUPP function 143
DisposeATSQuadraticClosePathUPP function 144
DisposeATSQuadraticCurveUPP function 144
DisposeATSQuadraticLineUPP function 144
DisposeATSQuadraticNewPathUPP function 145
DisposeATSUDirectLayoutOperationOverrideUPP

function 145
DisposeRedrawBackgroundUPP function 146

F

Flattened Data Font Type Selectors 212
Flattened Data Format Selectors 213
Flattened Data Version Numbers 213
Flattened Style Run Data Options 213
Font Fallback Methods 214

G

Glyph Collection Types 216
Glyph Direction Selectors 217
Glyph Origin Selectors 215
Glyph Property Flags 217

H

Highlight Methods 219

I

Invalid Font ID Constant 219
InvokeATSCubicClosePathUPP function 146
InvokeATSCubicCurveToUPP function 146
InvokeATSCubicLineToUPP function 147
InvokeATSCubicMoveToUPP function 147
InvokeATSQuadraticClosePathUPP function 148
InvokeATSQuadraticCurveUPP function 148
InvokeATSQuadraticLineUPP function 149
InvokeATSQuadraticNewPathUPP function 149
InvokeATSUDirectLayoutOperationOverrideUPP

function 150
InvokeRedrawBackgroundUPP function 150

K

kATSFlatDataUstlCurrentVersion constant 214
kATSFlatDataUstlVersion0 constant 213
kATSFlatDataUstlVersion1 constant 214
kATSFlatDataUstlVersion2 constant 214
kATSFlattenedFontSpecifierRawNameData constant

212
kATSGlyphInfoAppleReserved constant 218
kATSGlyphInfoByteSizeMask constant 219
kATSGlyphInfoHasImposedWidth constant 218
kATSGlyphInfoIsAttachment constant 218
kATSGlyphInfoIsLTHanger constant 218
kATSGlyphInfoIsRBHanger constant 218
kATSGlyphInfoIsWhiteSpace constant 218
kATSGlyphInfoTerminatorGlyph constant 218
kATSLineAppleReserved constant 228
kATSLineApplyAntiAliasing constant 227
kATSLineBreakToNearestCharacter constant 228
kATSLineDisableAllBaselineAdjustments constant

228
kATSLineDisableAllGlyphMorphing constant 228

255
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

kATSLineDisableAllJustification constant 228
kATSLineDisableAllKerningAdjustments constant

228
kATSLineDisableAllLayoutOperations constant

228
kATSLineDisableAllTrackingAdjustments constant

228
kATSLineDisableAutoAdjustDisplayPos constant

227
kATSLineDisableNegativeJustification constant

227
kATSLineFillOutToWidth constant 226
kATSLineFractDisable constant 226
kATSLineHasNoHangers constant 225
kATSLineHasNoOpticalAlignment constant 226
kATSLineIgnoreFontLeading constant 227
kATSLineImposeNoAngleForEnds constant 226
kATSLineIsDisplayOnly constant 225
kATSLineKeepSpacesOutOfMargin constant 226
kATSLineLastNoJustification constant 226
kATSLineNoAntiAliasing constant 227
kATSLineNoLayoutOptions constant 225
kATSLineNoSpecialJustification constant 226
kATSLineTabAdjustEnabled constant 227
kATSLineUseDeviceMetrics constant 228
kATSLineUseQDRendering constant 227
kATSNoTracking constant 224
kATSStyleAppleReserved constant 231
kATSStyleApplyAntiAliasing constant 231
kATSStyleApplyHints constant 231
kATSStyleNoAntiAliasing constant 231
kATSStyleNoHinting constant 231
kATSStyleNoOptions constant 231
kATSUAfterWithStreamShiftTag constant 202
kATSUAscentTag constant 205
kATSUBackgroundCallback constant 208
kATSUBackgroundColor constant 208
kATSUBadStreamErr constant 236
kATSUBaselineClassTag constant 203
kATSUBeforeWithStreamShiftTag constant 202
kATSUBusyObjectErr constant 236
kATSUByCharacter constant 209
kATSUByCharacterCluster constant 209
kATSUByCluster constant 209
kATSUByTypographicCluster constant 209
kATSUByWord constant 209
kATSUCenterAlignment constant 223
kATSUCenterTab constant 232
kATSUCGContextTag constant 200
kATSUClearAll constant 210
kATSUColorTag constant 202
kATSUCoordinateOverflowErr constant 236
kATSUCrossStreamShiftTag constant 203

kATSUDataStreamUnicodeStyledText constant 213
kATSUDecimalTab constant 232
kATSUDecompositionFactorTag constant 203
kATSUDefaultFontFallbacks constant 214
kATSUDescentTag constant 205
kATSUDirectDataAdvanceDeltaFixedArray constant

211
kATSUDirectDataBaselineDeltaFixedArray

constant 211
kATSUDirectDataDeviceDeltaSInt16Array constant

211
kATSUDirectDataLayoutRecordATSLayoutRecordCurrent

constant 212
kATSUDirectDataLayoutRecordATSLayoutRecordVersion1

constant 212
kATSUDirectDataStyleIndexUInt16Array constant

211
kATSUDirectDataStyleSettingATSUStyleSettingRef-

Array constant 212
kATSUEndAlignment constant 223
kATSUFlattenOptionNoOptionsMask constant 213
kATSUFontMatrixTag constant 206
kATSUFontsMatched constant 235
kATSUFontsNotMatched constant 235
kATSUFontTag constant 201
kATSUForceHangingTag constant 204
kATSUFromFollowingLayout constant 233
kATSUFromPreviousLayout constant 233
kATSUFromTextBeginning constant 233
kATSUFullJustification constant 224
kATSUGlyphSelectorTag constant 205
kATSUHangingInhibitFactorTag constant 203
kATSUImposeWidthTag constant 202
kATSUInvalidAttributeSizeErr constant 235
kATSUInvalidAttributeTagErr constant 235
kATSUInvalidAttributeValueErr constant 235
kATSUInvalidCacheErr constant 235
kATSUInvalidCallInsideCallbackErr constant 237
kATSUInvalidFontErr constant 235
kATSUInvalidFontFallbacksErr constant 236
kATSUInvalidFontID constant 219
kATSUInvalidStyleErr constant 235
kATSUInvalidTextLayoutErr constant 234
kATSUInvalidTextRangeErr constant 235
kATSUKerningInhibitFactorTag constant 203
kATSULangRegionTag constant 202
kATSULanguageTag constant 207
kATSULastErr constant 237
kATSULastResortOnlyFallback constant 214
kATSULayoutOperationAppleReserved constant 222
kATSULayoutOperationBaselineAdjustment

constant 222

256
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

kATSULayoutOperationCallbackStatusContinue
constant 221

kATSULayoutOperationCallbackStatusHandled
constant 221

kATSULayoutOperationJustification constant 222
kATSULayoutOperationKerningAdjustment constant

222
kATSULayoutOperationMorph constant 222
kATSULayoutOperationNone constant 222
kATSULayoutOperationOverrideTag constant 200
kATSULayoutOperationPostLayoutAdjustment

constant 222
kATSULayoutOperationTrackingAdjustment

constant 222
kATSULeadingTag constant 205
kATSULeftTab constant 232
kATSULeftToRightBaseDirection constant 217
kATSULineAscentTag constant 199
kATSULineBaselineValuesTag constant 199
kATSULineBreakInWord constant 236
kATSULineDecimalTabCharacterTag constant 200
kATSULineDescentTag constant 199
kATSULineDirectionTag constant 198
kATSULineFlushFactorTag constant 198
kATSULineFontFallbacksTag constant 200
kATSULineHighlightCGColorTag constant 200
kATSULineJustificationFactorTag constant 198
kATSULineLangRegionTag constant 199
kATSULineLanguageTag constant 200
kATSULineLayoutOptionsTag constant 199
kATSULineRotationTag constant 198
kATSULineTextLocatorTag constant 199
kATSULineTruncationTag constant 199
kATSULineWidthTag constant 198
kATSULowLevelErr constant 236
kATSUMaxATSUITagValue constant 207
kATSUMaxLineTag constant 200
kATSUMaxStyleTag constant 207
kATSUNoCaretAngleTag constant 204
kATSUNoCorrespondingFontErr constant 235
kATSUNoFontCmapAvailableErr constant 236
kATSUNoFontScalerAvailableErr constant 236
kATSUNoJustification constant 224
kATSUNoLigatureSplitTag constant 204
kATSUNoOpticalAlignmentTag constant 204
kATSUNoSelector constant 229
kATSUNoSpecialJustificationTag constant 204
kATSUNoStyleRunsAssignedErr constant 236
kATSUNotSetErr constant 236
kATSUNumberTabTypes constant 232
kATSUOutputBufferTooSmallErr constant 237
kATSUPriorityJustOverrideTag constant 203
kATSUQDBoldfaceTag constant 201

kATSUQDCondensedTag constant 201
kATSUQDExtendedTag constant 201
kATSUQDItalicTag constant 201
kATSUQDUnderlineTag constant 201
kATSUQuickDrawTextErr constant 236
kATSURGBAlphaColorTag constant 205
kATSURightTab constant 232
kATSURightToLeftBaseDirection constant 217
kATSUseCaretOrigins constant 215
kATSUseDeviceOrigins constant 215
kATSUseFractionalOrigins constant 215
kATSUseGlyphAdvance constant 223
kATSUseLineHeight constant 223
kATSUseOriginFlags constant 215
kATSUSequentialFallbacksExclusive constant 215
kATSUSequentialFallbacksPreferred constant 215
kATSUSizeTag constant 202
kATSUStartAlignment constant 223
kATSUStronglyHorizontal constant 234
kATSUStronglyVertical constant 234
kATSUStyleContainedBy constant 230
kATSUStyleContains constant 230
kATSUStyleDoubleLineCount constant 230
kATSUStyleDropShadowBlurOptionTag constant 207
kATSUStyleDropShadowColorOptionTag constant

207
kATSUStyleDropShadowOffsetOptionTag constant

207
kATSUStyleDropShadowTag constant 207
kATSUStyleEquals constant 230
kATSUStyleRenderingOptionsTag constant 205
kATSUStyleSingleLineCount constant 230
kATSUStyleStrikeThroughColorOptionTag constant

206
kATSUStyleStrikeThroughCountOptionTag constant

206
kATSUStyleStrikeThroughTag constant 206
kATSUStyleTextLocatorTag constant 204
kATSUStyleUnderlineColorOptionTag constant 206
kATSUStyleUnderlineCountOptionTag constant 206
kATSUStyleUnequal constant 230
kATSUSuppressCrossKerningTag constant 204
kATSUToTextEnd constant 233
kATSUTrackingTag constant 203
kATSUTruncateEnd constant 220
kATSUTruncateMiddle constant 220
kATSUTruncateNone constant 220
kATSUTruncateSpecificationMask constant 220
kATSUTruncateStart constant 220
kATSUTruncFeatNoSquishing constant 220
kATSUUnflattenOptionNoOptionsMask constant 234
kATSUUnsupportedStreamFormatErr constant 236
kATSUUseGrafPortPenLoc constant 210

257
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

kATSUUseLineControlWidth constant 229
kATSUVerticalCharacterTag constant 202
kGlyphCollectionAdobeCNS1 constant 216
kGlyphCollectionAdobeGB1 constant 216
kGlyphCollectionAdobeJapan1 constant 216
kGlyphCollectionAdobeJapan2 constant 216
kGlyphCollectionAdobeKorea1 constant 216
kGlyphCollectionGID constant 216
kGlyphCollectionUnspecified constant 217
kInvertHighlighting constant 219
kRedrawHighlighting constant 219

L

Layout Callback Status Values 221
Layout Operation Selectors 221
Line Alignment Selectors 223
Line Height and Font Tracking Selectors 223
Line Justification Selectors 224
Line Layout Attribute Tags 224
Line Layout Width Selector 229
Line Truncation Selectors 220

N

NewATSCubicClosePathUPP function 151
NewATSCubicCurveToUPP function 151
NewATSCubicLineToUPP function 152
NewATSCubicMoveToUPP function 152
NewATSQuadraticClosePathUPP function 153
NewATSQuadraticCurveUPP function 153
NewATSQuadraticLineUPP function 154
NewATSQuadraticNewPathUPP function 154
NewATSUDirectLayoutOperationOverrideUPP

function 155
NewRedrawBackgroundUPP function 155
No Selectors Option 229

R

RedrawBackgroundProcPtr callback 165
RedrawBackgroundUPP data type 196

S

Style Comparison Options 229
Style Line Count Types 230

Style Rendering Options 231

T

Tab Positioning Options 232
Text Buffer Convenience Constants 233

U

Unflattened Style Run Data Options 233

V

Vertical Character Types 234

258
2007-06-28 | © 2003, 2007 Apple Inc. All Rights Reserved.

INDEX

	ATSUI Reference
	Contents
	Figures
	ATSUI Reference
	Overview
	Functions by Task
	Creating and Initializing Style Objects
	Manipulating Style Attributes
	Manipulating Font Features
	Manipulating Font Variations
	Creating and Initializing Text Layout Objects
	Manipulating Text Layout Attributes
	Manipulating Line Attributes
	Manipulating Line Breaks
	Substituting Fonts
	Identifying Fonts
	Drawing and Highlighting Text
	Supporting User Interaction With Onscreen Text
	Obtaining Text Metrics
	Working With Tabs
	Accessing Glyph Data
	Flattening and Parsing Style Data
	Creating, Calling, and Deleting Universal Procedure Pointers
	Not Recommended

	Functions
	ATSUBatchBreakLines
	ATSUBreakLine
	ATSUCalculateBaselineDeltas
	ATSUClearAttributes
	ATSUClearFontFeatures
	ATSUClearFontVariations
	ATSUClearLayoutCache
	ATSUClearLayoutControls
	ATSUClearLineControls
	ATSUClearSoftLineBreaks
	ATSUClearStyle
	ATSUCompareStyles
	ATSUCopyAttributes
	ATSUCopyLayoutControls
	ATSUCopyLineControls
	ATSUCountFontFeatureSelectors
	ATSUCountFontFeatureTypes
	ATSUCountFontInstances
	ATSUCountFontNames
	ATSUCountFontTracking
	ATSUCountFontVariations
	ATSUCreateAndCopyStyle
	ATSUCreateAndCopyTextLayout
	ATSUCreateFontFallbacks
	ATSUCreateStyle
	ATSUCreateTextLayout
	ATSUCreateTextLayoutWithTextPtr
	ATSUDirectAddStyleSettingRef
	ATSUDirectGetLayoutDataArrayPtrFromLineRef
	ATSUDirectGetLayoutDataArrayPtrFromTextLayout
	ATSUDirectReleaseLayoutDataArrayPtr
	ATSUDisposeFontFallbacks
	ATSUDisposeStyle
	ATSUDisposeTextLayout
	ATSUDrawText
	ATSUFindFontFromName
	ATSUFindFontName
	ATSUFlattenStyleRunsToStream
	ATSUFONDtoFontID
	ATSUFontCount
	ATSUFontIDtoFOND
	ATSUGetAllAttributes
	ATSUGetAllFontFeatures
	ATSUGetAllFontVariations
	ATSUGetAllLayoutControls
	ATSUGetAllLineControls
	ATSUGetAttribute
	ATSUGetContinuousAttributes
	ATSUGetFontFeature
	ATSUGetFontFeatureNameCode
	ATSUGetFontFeatureSelectors
	ATSUGetFontFeatureTypes
	ATSUGetFontIDs
	ATSUGetFontInstance
	ATSUGetFontInstanceNameCode
	ATSUGetFontVariationNameCode
	ATSUGetFontVariationValue
	ATSUGetGlyphBounds
	ATSUGetIndFontName
	ATSUGetIndFontTracking
	ATSUGetIndFontVariation
	ATSUGetLayoutControl
	ATSUGetLineControl
	ATSUGetNativeCurveType
	ATSUGetObjFontFallbacks
	ATSUGetRunStyle
	ATSUGetSoftLineBreaks
	ATSUGetStyleRefCon
	ATSUGetTabArray
	ATSUGetTextHighlight
	ATSUGetTextLayoutRefCon
	ATSUGetTextLocation
	ATSUGetTransientFontMatching
	ATSUGetUnjustifiedBounds
	ATSUGlyphGetCubicPaths
	ATSUGlyphGetCurvePaths
	ATSUGlyphGetIdealMetrics
	ATSUGlyphGetQuadraticPaths
	ATSUGlyphGetScreenMetrics
	ATSUHighlightInactiveText
	ATSUHighlightText
	ATSULeftwardCursorPosition
	ATSUMatchFontsToText
	ATSUMeasureTextImage
	ATSUNextCursorPosition
	ATSUOffsetToCursorPosition
	ATSUOffsetToPosition
	ATSUOverwriteAttributes
	ATSUPositionToCursorOffset
	ATSUPositionToOffset
	ATSUPreviousCursorPosition
	ATSURightwardCursorPosition
	ATSUSetAttributes
	ATSUSetFontFeatures
	ATSUSetHighlightingMethod
	ATSUSetLayoutControls
	ATSUSetLineControls
	ATSUSetObjFontFallbacks
	ATSUSetRunStyle
	ATSUSetSoftLineBreak
	ATSUSetStyleRefCon
	ATSUSetTabArray
	ATSUSetTextLayoutRefCon
	ATSUSetTextPointerLocation
	ATSUSetTransientFontMatching
	ATSUSetVariations
	ATSUStyleIsEmpty
	ATSUTextDeleted
	ATSUTextInserted
	ATSUTextMoved
	ATSUUnderwriteAttributes
	ATSUUnflattenStyleRunsFromStream
	ATSUUnhighlightText
	DisposeATSCubicClosePathUPP
	DisposeATSCubicCurveToUPP
	DisposeATSCubicLineToUPP
	DisposeATSCubicMoveToUPP
	DisposeATSQuadraticClosePathUPP
	DisposeATSQuadraticCurveUPP
	DisposeATSQuadraticLineUPP
	DisposeATSQuadraticNewPathUPP
	DisposeATSUDirectLayoutOperationOverrideUPP
	DisposeRedrawBackgroundUPP
	InvokeATSCubicClosePathUPP
	InvokeATSCubicCurveToUPP
	InvokeATSCubicLineToUPP
	InvokeATSCubicMoveToUPP
	InvokeATSQuadraticClosePathUPP
	InvokeATSQuadraticCurveUPP
	InvokeATSQuadraticLineUPP
	InvokeATSQuadraticNewPathUPP
	InvokeATSUDirectLayoutOperationOverrideUPP
	InvokeRedrawBackgroundUPP
	NewATSCubicClosePathUPP
	NewATSCubicCurveToUPP
	NewATSCubicLineToUPP
	NewATSCubicMoveToUPP
	NewATSQuadraticClosePathUPP
	NewATSQuadraticCurveUPP
	NewATSQuadraticLineUPP
	NewATSQuadraticNewPathUPP
	NewATSUDirectLayoutOperationOverrideUPP
	NewRedrawBackgroundUPP

	Callbacks
	ATSCubicClosePathProcPtr
	ATSCubicCurveToProcPtr
	ATSCubicLineToProcPtr
	ATSCubicMoveToProcPtr
	ATSQuadraticClosePathProcPtr
	ATSQuadraticCurveProcPtr
	ATSQuadraticLineProcPtr
	ATSQuadraticNewPathProcPtr
	ATSUDirectLayoutOperationOverrideProcPtr
	RedrawBackgroundProcPtr

	Data Types
	Core Data Types
	ATSUAttributeInfo
	ATSLayoutRecord
	ATSUStyleSettingRef
	ATSUAttributeValuePtr
	ConstATSUAttributeValuePtr
	ATSURGBAlphaColor
	ATSUBackgroundColor
	ATSUBackgroundData
	ATSUCaret
	ATSUFontFeatureType
	ATSUFontFeatureSelector
	ATSUFontVariationAxis
	ATSUFontVariationValue
	ATSUFontFallbacks
	ATSUFontID
	ATSUGlyphInfo
	ATSUGlyphInfoArray
	ATSUGlyphSelector
	ATSJustPriorityWidthDeltaOverrides
	ATSJustWidthDeltaEntryOverride
	ATSULayoutOperationOverrideSpecifier
	ATSULineRef
	ATSUStyle
	ATSUStyleRunInfo
	ATSUTab
	ATSUTextLayout
	ATSUTextMeasurement
	ATSTrapezoid
	ATSUUnhighlightData

	USTL Data Structure Data Types
	ATSFlatDataMainHeaderBlock
	ATSFlatDataTextLayoutDataHeader
	ATSFlatDataLayoutControlsDataHeader
	ATSFlatDataLineInfoHeader
	ATSFlatDataLineInfoData
	ATSFlatDataStyleRunDataHeader
	ATSFlatDataStyleListHeader
	ATSFlatDataStyleListStyleDataHeader
	ATSFlatDataStyleListFeatureData
	ATSFlatDataStyleListVariationData
	ATSFlatDataFontNameDataHeader
	ATSFlatDataFontSpecRawNameDataHeader
	ATSFlatDataFontSpecRawNameData

	Universal Procedure Pointers
	ATSUDirectLayoutOperationOverrideUPP
	ATSCubicClosePathUPP
	ATSCubicCurveToUPP
	ATSCubicLineToUPP
	ATSCubicMoveToUPP
	ATSQuadraticClosePathUPP
	ATSQuadraticCurveUPP
	ATSQuadraticLineUPP
	ATSQuadraticNewPathUPP
	RedrawBackgroundUPP

	Constants
	Attribute Tags
	Background Data Types
	Caret Movement Types
	Convenience Constants
	Direct Data Selectors
	Flattened Data Font Type Selectors
	Flattened Data Format Selectors
	Flattened Style Run Data Options
	Flattened Data Version Numbers
	Font Fallback Methods
	Glyph Origin Selectors
	Glyph Collection Types
	Glyph Direction Selectors
	Glyph Property Flags
	Highlight Methods
	Invalid Font ID Constant
	Line Truncation Selectors
	Layout Callback Status Values
	Layout Operation Selectors
	Line Alignment Selectors
	Line Height and Font Tracking Selectors
	Line Justification Selectors
	Line Layout Attribute Tags
	Line Layout Width Selector
	No Selectors Option
	Style Comparison Options
	Style Line Count Types
	Style Rendering Options
	Tab Positioning Options
	Text Buffer Convenience Constants
	Unflattened Style Run Data Options
	Vertical Character Types

	Result Codes
	Gestalt Constants

	Appendix A: Deprecated ATSUI Functions
	Deprecated in Mac OS X v10.0
	ATSUCreateTextLayoutWithTextHandle
	ATSUIdle
	ATSUSetTextHandleLocation

	Deprecated in Mac OS X v10.1
	ATSUCopyToHandle

	Deprecated in Mac OS X v10.3
	ATSUDrawGlyphInfo
	ATSUGetFontFallbacks
	ATSUGetGlyphInfo
	ATSUMeasureText
	ATSUSetFontFallbacks

	Revision History
	Index
	A
	B
	C
	D
	F
	G
	H
	I
	K
	L
	N
	R
	S
	T
	U
	V

