
Apple Event Manager Reference
Carbon > Events & Other Input

2007-07-13

Apple Inc.
© 1993, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, AppleTalk,
Carbon, Cocoa, eMac, FireWire, LocalTalk, Logic,
Mac, Mac OS, Macintosh, OpenDoc, QuickDraw,
and SANE are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder and Spotlight are trademarks of Apple
Inc.

NuBus is a trademark of Texas Instruments.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Apple Event Manager Reference 13

Overview 13
Functions by Task 14

Adding Items to Descriptor Lists 14
Adding Parameters and Attributes to Apple Events and Apple Event Records 14
Coercing Descriptor Types 14
Counting the Items in Descriptor Lists 15
Creating an Apple Event 15
Creating and Duplicating Descriptors 15
Creating, Calling, and Deleting Universal Procedure Pointers 15
Creating Descriptor Lists and Apple Event Records 17
Creating Object Specifiers 17
Deallocating Memory for Descriptors 18
Deallocating Memory for Tokens 18
Deleting Descriptors 18
Dispatching Apple Events 18
Getting, Calling, and Removing Object Accessor Functions 18
Getting Data or Descriptors From Apple Events and Apple Event Records 18
Getting Information About the Apple Event Manager 19
Getting Items From Descriptor Lists 19
Getting the Sizes and Descriptor Types of Descriptors 19
Initializing the Object Support Library 20
Locating Processes on Remote Computers 20
Managing Apple Event Dispatch Tables 20
Managing Coercion Handler Dispatch Tables 20
Managing Special Handler Dispatch Tables 20
Operating On Descriptor Data 21
Requesting More Time to Respond to Apple Events 21
Requesting User Interaction 21
Resolving Object Specifiers 21
Sending an Apple Event 21
Creating Apple Event Structures in Memory 22
Creating Apple Event Structures Using Streams 22
Working With Lower Level Apple Event Functions 23
Serializing Apple Event Data 23
Suspending and Resuming Apple Event Handling 23
Miscellaneous 24

Functions 24
AEBuildAppleEvent 24
AEBuildDesc 26
AEBuildParameters 27

3
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

AECallObjectAccessor 28
AECheckIsRecord 29
AECoerceDesc 29
AECoercePtr 30
AECountItems 31
AECreateAppleEvent 32
AECreateDesc 33
AECreateDescFromExternalPtr 34
AECreateList 35
AECreateRemoteProcessResolver 36
AEDecodeMessage 37
AEDeleteItem 38
AEDeleteKeyDesc 39
AEDeleteParam 39
AEDisposeDesc 40
AEDisposeRemoteProcessResolver 40
AEDisposeToken 41
AEDuplicateDesc 42
AEFlattenDesc 42
AEGetArray 44
AEGetAttributeDesc 45
AEGetAttributePtr 46
AEGetCoercionHandler 47
AEGetDescData 48
AEGetDescDataRange 49
AEGetDescDataSize 50
AEGetEventHandler 51
AEGetInteractionAllowed 52
AEGetKeyDesc 52
AEGetKeyPtr 53
AEGetNthDesc 55
AEGetNthPtr 56
AEGetObjectAccessor 57
AEGetParamDesc 59
AEGetParamPtr 60
AEGetRegisteredMachPort 61
AEGetSpecialHandler 62
AEGetTheCurrentEvent 63
AEInitializeDesc 64
AEInstallCoercionHandler 64
AEInstallEventHandler 65
AEInstallObjectAccessor 67
AEInstallSpecialHandler 68
AEInteractWithUser 69
AEManagerInfo 70
AEObjectInit 71

4
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

AEPrintDescToHandle 72
AEProcessAppleEvent 73
AEProcessMessage 74
AEPutArray 75
AEPutAttributeDesc 76
AEPutAttributePtr 77
AEPutDesc 77
AEPutKeyDesc 78
AEPutKeyPtr 79
AEPutParamDesc 80
AEPutParamPtr 80
AEPutPtr 81
AERemoteProcessResolverGetProcesses 82
AERemoteProcessResolverScheduleWithRunLoop 83
AERemoveCoercionHandler 84
AERemoveEventHandler 85
AERemoveObjectAccessor 86
AERemoveSpecialHandler 87
AEReplaceDescData 88
AEResetTimer 88
AEResolve 89
AEResumeTheCurrentEvent 90
AESend 92
AESendMessage 94
AESetInteractionAllowed 95
AESetObjectCallbacks 96
AESetTheCurrentEvent 97
AESizeOfAttribute 98
AESizeOfFlattenedDesc 99
AESizeOfKeyDesc 99
AESizeOfNthItem 100
AESizeOfParam 101
AEStreamClose 101
AEStreamCloseDesc 102
AEStreamCloseList 102
AEStreamCloseRecord 103
AEStreamCreateEvent 103
AEStreamOpen 105
AEStreamOpenDesc 105
AEStreamOpenEvent 106
AEStreamOpenKeyDesc 106
AEStreamOpenList 107
AEStreamOpenRecord 107
AEStreamOptionalParam 108
AEStreamSetRecordType 109
AEStreamWriteAEDesc 109

5
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

AEStreamWriteData 110
AEStreamWriteDesc 110
AEStreamWriteKey 111
AEStreamWriteKeyDesc 112
AESuspendTheCurrentEvent 113
AEUnflattenDesc 114
CreateCompDescriptor 114
CreateLogicalDescriptor 115
CreateObjSpecifier 116
CreateOffsetDescriptor 117
CreateRangeDescriptor 118
DisposeAECoerceDescUPP 119
DisposeAECoercePtrUPP 119
DisposeAEDisposeExternalUPP 119
DisposeAEEventHandlerUPP 120
DisposeAEFilterUPP 120
DisposeAEIdleUPP 120
DisposeOSLAccessorUPP 120
DisposeOSLAdjustMarksUPP 121
DisposeOSLCompareUPP 121
DisposeOSLCountUPP 121
DisposeOSLDisposeTokenUPP 122
DisposeOSLGetErrDescUPP 122
DisposeOSLGetMarkTokenUPP 122
DisposeOSLMarkUPP 123
InvokeAECoerceDescUPP 123
InvokeAECoercePtrUPP 124
InvokeAEDisposeExternalUPP 124
InvokeAEEventHandlerUPP 125
InvokeAEFilterUPP 125
InvokeAEIdleUPP 125
InvokeOSLAccessorUPP 126
InvokeOSLAdjustMarksUPP 126
InvokeOSLCompareUPP 127
InvokeOSLCountUPP 127
InvokeOSLDisposeTokenUPP 128
InvokeOSLGetErrDescUPP 128
InvokeOSLGetMarkTokenUPP 129
InvokeOSLMarkUPP 129
NewAECoerceDescUPP 130
NewAECoercePtrUPP 130
NewAEDisposeExternalUPP 130
NewAEEventHandlerUPP 131
NewAEFilterUPP 131
NewAEIdleUPP 131
NewOSLAccessorUPP 132

6
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

NewOSLAdjustMarksUPP 132
NewOSLCompareUPP 133
NewOSLCountUPP 133
NewOSLDisposeTokenUPP 133
NewOSLGetErrDescUPP 134
NewOSLGetMarkTokenUPP 134
NewOSLMarkUPP 134
vAEBuildAppleEvent 135
vAEBuildDesc 136
vAEBuildParameters 137

Callbacks by Task 138
Callbacks When Resolving Remote Processes 138
Callbacks When Creating Apple Events 139
Callbacks When Sending Apple Events 139
Coercing Apple Event Data Callbacks 139
Handling Apple Events Callbacks 139
Object Accessor Callbacks 139
Object Callback Functions 140

Callbacks 140
AECoerceDescProcPtr 140
AECoercePtrProcPtr 141
AEDisposeExternalProcPtr 143
AEEventHandlerProcPtr 144
AEFilterProcPtr 146
AEIdleProcPtr 147
AERemoteProcessResolverCallback 148
OSLAccessorProcPtr 149
OSLAdjustMarksProcPtr 151
OSLCompareProcPtr 152
OSLCountProcPtr 154
OSLDisposeTokenProcPtr 155
OSLGetErrDescProcPtr 157
OSLGetMarkTokenProcPtr 158
OSLMarkProcPtr 160

Data Types 161
AEArrayData 161
AEBuildError 162
AEDesc 162
AEKeyDesc 163
AERemoteProcessResolverContext 163
ccntTokenRecord 164
IntlText 165
OffsetArray 165
TextRange 166
TextRangeArray 166
TScriptingSizeResource 166

7
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

WritingCode 167
AEAddressDesc 167
AEArrayDataPointer 167
AEArrayType 168
AECoerceDescUPP 168
AECoercePtrUPP 168
AECoercionHandlerUPP 168
AEDataStorage 169
AEDataStorageType 169
AEDescList 169
AEEventSource 170
AEDisposeExternalUPP 171
AEEventClass 171
AEEventHandlerUPP 171
AEEventID 172
AEFilterUPP 172
AEIdleUPP 172
AEKeyword 172
AERecord 173
AERemoteProcessResolverRef 173
AEReturnID 174
AESendOptions 174
AESendPriority 174
AEStreamRef 174
AETransactionID 175
AppleEvent 175
DescType 176
OffsetArrayHandle 176
OSLAccessorUPP 176
OSLAdjustMarksUPP 177
OSLCompareUPP 177
OSLCountUPP 177
OSLDisposeTokenUPP 177
OSLGetErrDescUPP 178
OSLGetMarkTokenUPP 178
OSLMarkUPP 178
AEInteractAllowed 179

Constants 179
AEBuild Error Codes 179
AESendMode 182
Apple Event Recording Event ID Constants 186
cAEList 187
Callback Constants for the AEResolve Function 187
cInsertionLoc 189
cKeystroke 189
Comparison Operator Constants 190

8
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constants for Object Specifiers, Positions, and Logical and Comparison Operations 191
cURL 195
cVersion 196
Data Array Constants 196
Descriptor Type Constants 197
eScheme 201
Event Class Constants 201
Event Handler Flags 202
Event ID Constants 202
Event Source Constants 204
Factoring Constants 205
ID Constants for the AECreateAppleEvent Function 205
Key Form and Descriptor Type Object Specifier Constants 206
Keyword Attribute Constants 209
Keyword Parameter Constants 211
Launch Apple Event Constants 212
Numeric Descriptor Type Constants 213
Object Class ID Constants 215
Other Descriptor Type Constants 217
Priority Constants for the AESend Function (Deprecated in Mac OS X) 217
Remote Process Dictionary Keys 218
Resume Event Dispatch Constants 219
Special Handler Callback Constants 219
Timeout Constants 221
User Interaction Level Constants 221
Whose Test Constants 223
kAEDoObjectsExist 223
kAEDebugPOSTHeader 224
kAEGetPrivilegeSelection 224
kAEHandleArray 225
kAEInfo 226
kAEInternetSuite 226
kAEISGetURL 226
kAEISHTTPSearchArgs 226
kAELogOut 226
kAEMenuClass 227
kAEMouseClass 227
kAENonmodifiable 227
kAEQDNotOr 228
kAESetPosition 228
kAESocks4Protocol 229
kAEUseHTTPProxyAttr 229
kAEUserTerminology 230
kAEUseSocksAttr 230
kAEUTHasReturningParam 230
kAEZoomIn 230

9
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

kBySmallIcon 230
kCaretPosition 231
kConnSuite 232
keyAEAngle 233
keyAEBaseAddr 233
keyAEDoScale 234
keyAEHiliteRange 234
keyAEKeyword 234
keyAELeadingEdge 235
keyAEPropData 235
keyAESuiteID 237
keyMenuID 237
keyMiscellaneous 237
keyReplyPortAttr 237
keySOAPStructureMetaData 238
keyUserNameAttr 238
kFAServerApp 238
kLaunchToGetTerminology 239
kNextBody 239
kOSIZDontOpenResourceFile 239
kReadExtensionTermsMask 239
kSOAP1999Schema 239
kTextServiceClass 239
kTSMHiliteCaretPosition 240
kTSMOutsideOfBody 242
pArcAngle 242
pFormula 242
pNewElementLoc 243
pScheme 243
pTextStyles 243
typeAEText 244
typeApplicationBundleID 244
typeFinderWindow 245
typeHIMenu 245
typeKernelProcessID 245
typeMachPort 246
typeMeters 247
typePixelMap 247
typeReplyPortAttr 248
typeSessionID 248
typeSMInt 248
typeTIFF 251
typeUnicodeText 251

Result Codes 252
Gestalt Constants 257

10
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Document Revision History 259

Index 263

11
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

12
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: CoreServices/CoreServices.h, Carbon/Carbon.h

Declared in AEDataModel.h
AEHelpers.h
AEInteraction.h
AEMach.h
AEObjects.h
AEPackObject.h
AERegistry.h
AEUserTermTypes.h
AppleEvents.h

Overview

The Apple Event Manager, a part of the Open Scripting Architecture (OSA), provides facilities for applications
to send and respond to Apple events and to make their operations and data available to AppleScript scripts.
For related API reference, see Open Scripting Architecture Reference.

An Apple event is a type of interprocess message that can specify complex operations and data. Apple events
provide a data transport and event dispatching mechanism that can be used within a single application,
between applications on the same computer, and between applications on different computers connected
to a network.

Applications typically use Apple events to request services and information from other applications or to
provide services and information in response to such requests. All applications that present a graphical
interface to the user through the Human Interface Toolbox (Carbon applications) or the Cocoa application
framework should be able to respond, if appropriate, to certain events sent by the Mac OS. These include
the open application (or launch), reopen, open documents, print documents, and quit events.

Some Apple Event Manager functions are marked as being thread safe—for all other functions, you should
call them only on the main thread.

For an overview of technologies that take advantage of the Apple Event Manager, see AppleScript Overview.

For information on working with Apple events, including events sent by the Mac OS, see “Responding to
Apple Events” in Apple Events Programming Guide. For information about individual four-character codes
used in Apple events, see AppleScript Terminology and Apple Event Codes Reference.

The Apple Event Manager is implemented by the AE framework, a subframework of the Core Services
framework. You don’t link directly with the AE framework—instead, you typically link with the Carbon
framework, which includes it. Some AppleEvent definitions are only available to clients of the Carbon
framework, which includes, for example, AEInteraction.h in the HIToolbox framework.

Overview 13
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

The AE framework does not force a connection to the window server. This allows daemons and startup items
that work with Apple events to continue working across log outs.

Functions by Task

Adding Items to Descriptor Lists

AEPutArray (page 75)
Inserts the data for an Apple event array into a descriptor list, replacing any previous descriptors in
the list.

AEPutDesc (page 77)
Adds a descriptor to any descriptor list, possibly replacing an existing descriptor in the list.

AEPutPtr (page 81)
Inserts data specified in a buffer into a descriptor list as a descriptor, possibly replacing an existing
descriptor in the list.

Adding Parameters and Attributes to Apple Events and Apple Event Records

AEPutAttributeDesc (page 76)
Adds a descriptor and a keyword to an Apple event as an attribute.

AEPutAttributePtr (page 77)
Adds a pointer to data, a descriptor type, and a keyword to an Apple event as an attribute.

AEPutKeyDesc (page 78)
Inserts a descriptor and a keyword into an Apple event record as an Apple event parameter.

AEPutKeyPtr (page 79)
Inserts data, a descriptor type, and a keyword into an Apple event record as an Apple event parameter.

AEPutParamDesc (page 80)
Inserts a descriptor and a keyword into an Apple event or Apple event record as an Apple event
parameter.

AEPutParamPtr (page 80)
Inserts data, a descriptor type, and a keyword into an Apple event or Apple event record as an Apple
event parameter.

Coercing Descriptor Types

AECoerceDesc (page 29)
Coerces the data in a descriptor to another descriptor type and creates a descriptor containing the
newly coerced data.

AECoercePtr (page 30)
Coerces data to a desired descriptor type and creates a descriptor containing the newly coerced data.

14 Functions by Task
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Counting the Items in Descriptor Lists

AECountItems (page 31)
Counts the number of descriptors in a descriptor list.

Creating an Apple Event

AECreateAppleEvent (page 32)
Creates an Apple event with several important attributes but no parameters.

Creating and Duplicating Descriptors

AECreateDesc (page 33)
Creates a new descriptor that incorporates the specified data.

AECreateDescFromExternalPtr (page 34)
Creates a new descriptor that uses a memory buffer supplied by the caller.

AEDuplicateDesc (page 42)
Creates a copy of a descriptor.

Creating, Calling, and Deleting Universal Procedure Pointers

DisposeAECoerceDescUPP (page 119)
Disposes of a universal procedure pointer to a function that coerces data stored in a descriptor.

DisposeAECoercePtrUPP (page 119)
Disposes of a universal procedure pointer to a function that coerces data stored in a buffer.

DisposeAEDisposeExternalUPP (page 119)
Disposes of a universal procedure pointer to a function that disposes of data supplied to the
AECreateDescFromExternalPtr function.

DisposeAEEventHandlerUPP (page 120)
Disposes of a universal procedure pointer to an event handler function.

DisposeAEFilterUPP (page 120)
Disposes of a universal procedure pointer to an Apple event filter function.

DisposeAEIdleUPP (page 120)
Disposes of a universal procedure pointer to an Apple event idle function.

DisposeOSLAccessorUPP (page 120)
Disposes of a universal procedure pointer to an object accessor function.

DisposeOSLAdjustMarksUPP (page 121)
Disposes of a universal procedure pointer to an object callback adjust marks function.

DisposeOSLCompareUPP (page 121)
Disposes of a universal procedure pointer to an object callback comparison function.

DisposeOSLCountUPP (page 121)
Disposes of a universal procedure pointer to an object callback count function.

Functions by Task 15
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

DisposeOSLDisposeTokenUPP (page 122)
Disposes of a universal procedure pointer to an object callback dispose token function.

DisposeOSLGetErrDescUPP (page 122)
Disposes of a universal procedure pointer to an object callback get error descriptor function.

DisposeOSLGetMarkTokenUPP (page 122)
Disposes of a universal procedure pointer to an object callback get mark function.

DisposeOSLMarkUPP (page 123)
Disposes of a universal procedure pointer to an object callback mark function.

InvokeAECoerceDescUPP (page 123)
Calls a universal procedure pointer to a function that coerces data stored in a descriptor.

InvokeAECoercePtrUPP (page 124)
Calls a universal procedure pointer to a function that coerces data stored in a buffer.

InvokeAEDisposeExternalUPP (page 124)
Calls a dispose external universal procedure pointer.

InvokeAEEventHandlerUPP (page 125)
Calls an event handler universal procedure pointer.

InvokeAEFilterUPP (page 125)
Calls an Apple event filter universal procedure pointer.

InvokeAEIdleUPP (page 125)
Calls an Apple event idle universal procedure pointer.

InvokeOSLAccessorUPP (page 126)
Calls an object accessor universal procedure pointer.

InvokeOSLAdjustMarksUPP (page 126)
Calls an object callback adjust marks universal procedure pointer.

InvokeOSLCompareUPP (page 127)
Calls an object callback comparison universal procedure pointer.

InvokeOSLCountUPP (page 127)
Calls an object callback count universal procedure pointer.

InvokeOSLDisposeTokenUPP (page 128)
Calls an object callback dispose token universal procedure pointer.

InvokeOSLGetErrDescUPP (page 128)
Calls an object callback get error descriptor universal procedure pointer.

InvokeOSLGetMarkTokenUPP (page 129)
Calls an object callback get mark universal procedure pointer.

InvokeOSLMarkUPP (page 129)
Calls an object callback mark universal procedure pointer.

NewAECoerceDescUPP (page 130)
Creates a new universal procedure pointer to a function that coerces data stored in a descriptor.

NewAECoercePtrUPP (page 130)
Creates a new universal procedure pointer to a function that coerces data stored in a buffer.

NewAEDisposeExternalUPP (page 130)
Creates a new universal procedure pointer to a function that disposes of data stored in a buffer.

NewAEEventHandlerUPP (page 131)
Creates a new universal procedure pointer to an event handler function.

16 Functions by Task
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

NewAEFilterUPP (page 131)
Creates a new universal procedure pointer to an Apple event filter function.

NewAEIdleUPP (page 131)
Creates a new universal procedure pointer to an Apple event idle function.

NewOSLAccessorUPP (page 132)
Creates a new universal procedure pointer to an object accessor function.

NewOSLAdjustMarksUPP (page 132)
Creates a new universal procedure pointer to an object callback adjust marks function.

NewOSLCompareUPP (page 133)
Creates a new universal procedure pointer to an object callback comparison function.

NewOSLCountUPP (page 133)
Creates a new universal procedure pointer to an object callback count function.

NewOSLDisposeTokenUPP (page 133)
Creates a new universal procedure pointer to an object callback dispose token function.

NewOSLGetErrDescUPP (page 134)
Creates a new universal procedure pointer to an object callback get error descriptor function.

NewOSLGetMarkTokenUPP (page 134)
Creates a new universal procedure pointer to an object callback get mark function.

NewOSLMarkUPP (page 134)
Creates a new universal procedure pointer to an object callback mark function.

Creating Descriptor Lists and Apple Event Records

AECreateList (page 35)
Creates an empty descriptor list or Apple event record.

Creating Object Specifiers

CreateCompDescriptor (page 114)
Creates a comparison descriptor that specifies how to compare one or more Apple event objects with
either another Apple event object or a descriptor.

CreateLogicalDescriptor (page 115)
Creates a logical descriptor that specifies a logical operator and one or more logical terms for the
Apple Event Manager to evaluate.

CreateObjSpecifier (page 116)
Assembles an object specifier that identifies one or more Apple event objects, from other descriptors.

CreateOffsetDescriptor (page 117)
Creates an offset descriptor that specifies the position of an element in relation to the beginning or
end of its container.

CreateRangeDescriptor (page 118)
Creates a range descriptor that specifies a series of consecutive elements in the same container.

Functions by Task 17
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Deallocating Memory for Descriptors

AEDisposeDesc (page 40)
Deallocates the memory used by a descriptor.

Deallocating Memory for Tokens

AEDisposeToken (page 41)
Deallocates the memory used by a token.

Deleting Descriptors

AEDeleteItem (page 38)
Deletes a descriptor from a descriptor list, causing all subsequent descriptors to move up one place.

AEDeleteKeyDesc (page 39)
Deletes a keyword-specified parameter from an Apple event record.

AEDeleteParam (page 39)
Deletes a keyword-specified parameter from an Apple event record.

Dispatching Apple Events

AEProcessAppleEvent (page 73)
Calls the handler, if one exists, for a specified Apple event.

Getting, Calling, and Removing Object Accessor Functions

AECallObjectAccessor (page 28)
Invokes the appropriate object accessor function for a specific desired type and container type.

AEGetObjectAccessor (page 57)
Gets an object accessor function from an object accessor dispatch table.

AEInstallObjectAccessor (page 67)
Adds or replaces an entry for an object accessor function to an object accessor dispatch table.

AERemoveObjectAccessor (page 86)
Removes an object accessor function from an object accessor dispatch table.

Getting Data or Descriptors From Apple Events and Apple Event Records

AEGetAttributeDesc (page 45)
Gets a copy of the descriptor for a specified Apple event attribute from an Apple event; typically used
when your application needs to pass the descriptor on to another function.

AEGetAttributePtr (page 46)
Gets a copy of the data for a specified Apple event attribute from an Apple event; typically used when
your application needs to work with the data directly.

18 Functions by Task
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEGetKeyDesc (page 52)
Gets a copy of the descriptor for a keyword-specified Apple event parameter from an Apple event
record

AEGetKeyPtr (page 53)
Gets a copy of the data for a specified Apple event parameter from an Apple event record.

AEGetParamDesc (page 59)
Gets a copy of the descriptor for a keyword-specified Apple event parameter from an Apple event or
an Apple event record.

AEGetParamPtr (page 60)
Gets a copy of the data for a specified Apple event parameter from an Apple event or an Apple event
record.

Getting Information About the Apple Event Manager

AEManagerInfo (page 70)
Provides information about the version of the Apple Event Manager currently available or the number
of processes that are currently recording Apple events.

Getting Items From Descriptor Lists

AEGetArray (page 44)
Extracts data from an Apple event array created with the AEPutArray function and stores it as a
standard array of fixed size items in the specified buffer.

AEGetNthDesc (page 55)
Copies a descriptor from a specified position in a descriptor list into a specified descriptor; typically
used when your application needs to pass the extracted data to another function as a descriptor.

AEGetNthPtr (page 56)
Gets a copy of the data from a descriptor at a specified position in a descriptor list; typically used
when your application needs to work with the extracted data directly.

Getting the Sizes and Descriptor Types of Descriptors

AESizeOfAttribute (page 98)
Gets the size and descriptor type of an Apple event attribute from a descriptor of type AppleEvent.

AESizeOfKeyDesc (page 99)
Gets the size and descriptor type of an Apple event parameter from a descriptor of type AERecord.

AESizeOfNthItem (page 100)
Gets the data size and descriptor type of the descriptor at a specified position in a descriptor list.

AESizeOfParam (page 101)
Gets the size and descriptor type of an Apple event parameter from a descriptor of type AERecord
or AppleEvent.

Functions by Task 19
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Initializing the Object Support Library

AEObjectInit (page 71)
Initializes the Object Support Library.

AESetObjectCallbacks (page 96)
Specifies the object callback functions for your application.

Locating Processes on Remote Computers
Available starting in Mac OS X version v10.3, these functions allow you to locate processes on remote
computers (a task supported by the PPCToolbox in Mac OS 9).

AECreateRemoteProcessResolver (page 36)
Creates an object for resolving a list of remote processes.

AEDisposeRemoteProcessResolver (page 40)
Disposes of an AERemoteProcessResolverRef.

AERemoteProcessResolverGetProcesses (page 82)
Returns an array of objects containing information about processes running on a remote machine.

AERemoteProcessResolverScheduleWithRunLoop (page 83)
Schedules a resolver for execution on a given run loop in a given mode.

Managing Apple Event Dispatch Tables

AEGetEventHandler (page 51)
Gets an event handler from an Apple event dispatch table.

AEInstallEventHandler (page 65)
Adds an entry for an event handler to an Apple event dispatch table.

AERemoveEventHandler (page 85)
Removes an event handler entry from an Apple event dispatch table.

Managing Coercion Handler Dispatch Tables

AEGetCoercionHandler (page 47)
Gets the coercion handler for a specified descriptor type.

AEInstallCoercionHandler (page 64)
Installs a coercion handler in either the application or system coercion handler dispatch table.

AERemoveCoercionHandler (page 84)
Removes a coercion handler from a coercion handler dispatch table.

Managing Special Handler Dispatch Tables

AEGetSpecialHandler (page 62)
Gets a specified handler from a special handler dispatch table.

20 Functions by Task
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEInstallSpecialHandler (page 68)
Installs a callback function in a special handler dispatch table.

AERemoveSpecialHandler (page 87)
Removes a handler from a special handler dispatch table.

Operating On Descriptor Data

AEGetDescData (page 48)
Gets the data from the specified descriptor.

AEGetDescDataSize (page 50)
Gets the size, in bytes, of the data in the specified descriptor.

AEGetDescDataRange (page 49)
Retrieves a specified series of bytes from the specified descriptor.

AEReplaceDescData (page 88)
Copies the specified data into the specified descriptor, replacing any previous data.

Requesting More Time to Respond to Apple Events

AEResetTimer (page 88)
Resets the timeout value for an Apple event to its starting value.

Requesting User Interaction

AEGetInteractionAllowed (page 52)
Gets your application’s current user interaction preferences for responding to an Apple event as a
server application.

AEInteractWithUser (page 69)
Initiates interaction with the user when your application is a server application responding to an
Apple event.

AESetInteractionAllowed (page 95)
Specifies user interaction preferences for responding to an Apple event when your application is the
server application.

Resolving Object Specifiers

AEResolve (page 89)
Resolves an object specifier.

Sending an Apple Event

AESend (page 92)
Sends the specified Apple event.

Functions by Task 21
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Creating Apple Event Structures in Memory

AEBuildAppleEvent (page 24)
Constructs an entire Apple event in a single call.

AEBuildDesc (page 26)
Provides a facility for compiling AEBuild descriptor strings into Apple event descriptors (AEDesc).

AEBuildParameters (page 27)
Adds additional parameters or attributes to an existing Apple event.

AEPrintDescToHandle (page 72)
Provides a pretty printer facility for displaying the contents of Apple event descriptors.

vAEBuildAppleEvent (page 135)
Allows you to encapsulate calls to AEBuildAppleEvent in a wrapper routine.

vAEBuildDesc (page 136)
Allows you to encapsulate calls to AEBuildDesc in your own wrapper routines.

vAEBuildParameters (page 137)
Allows you to encapsulate calls to AEBuildParameters in your own stdarg-style wrapper routines,
using techniques similar to those allowed by vsprintf.

Creating Apple Event Structures Using Streams

AEStreamClose (page 101)
Closes and deallocates an AEStreamRef.

AEStreamCloseDesc (page 102)
Marks the end of a descriptor in an AEStreamRef.

AEStreamCloseList (page 102)
Marks the end of a list of descriptors in an AEStreamRef.

AEStreamCloseRecord (page 103)
Marks the end of a record in an AEStreamRef.

AEStreamCreateEvent (page 103)
Creates a new Apple event and opens a stream for writing data to it.

AEStreamOpen (page 105)
Opens a new AEStreamRef for use in building a descriptor.

AEStreamOpenDesc (page 105)
Marks the beginning of a descriptor in an AEStreamRef.

AEStreamOpenEvent (page 106)
Opens a stream for an existing Apple event.

AEStreamOpenKeyDesc (page 106)
Marks the beginning of a key descriptor in an AEStreamRef.

AEStreamOpenList (page 107)
Marks the beginning of a descriptor list in an AEStreamRef.

AEStreamOpenRecord (page 107)
Marks the beginning of an Apple event record in an AEStreamRef.

AEStreamOptionalParam (page 108)
Designates a parameter in an Apple event as optional.

22 Functions by Task
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEStreamSetRecordType (page 109)
Sets the type of the most recently created record in an AEStreamRef.

AEStreamWriteAEDesc (page 109)
Copies an existing descriptor into an AEStreamRef.

AEStreamWriteData (page 110)
Appends data to the current descriptor in an AEStreamRef.

AEStreamWriteDesc (page 110)
Appends the data for a complete descriptor to an AEStreamRef.

AEStreamWriteKey (page 111)
Marks the beginning of a keyword/descriptor pair for a descriptor in an AEStreamRef.

AEStreamWriteKeyDesc (page 112)
Writes a complete keyword/descriptor pair to an AEStreamRef.

Working With Lower Level Apple Event Functions

AEGetRegisteredMachPort (page 61)
Returns the Mach port (in the form of a mach_port_t) that was registered with the bootstrap server
for this process.

AEDecodeMessage (page 37)
Decodes a Mach message and converts it into an Apple event and its related reply.

AESendMessage (page 94)
Sends an AppleEvent to a target process without some of the overhead required by AESend.

AEProcessMessage (page 74)
Decodes and dispatches a low level Mach message event to an event handler, including packaging
and returning the reply to the sender.

Serializing Apple Event Data

AESizeOfFlattenedDesc (page 99)
Returns the amount of buffer space needed to store the descriptor after flattening it.

AEFlattenDesc (page 42)
Flattens the specified descriptor and stores the data in the supplied buffer.

AEUnflattenDesc (page 114)
Unflattens the data in the passed buffer and creates a descriptor from it.

Suspending and Resuming Apple Event Handling

AEGetTheCurrentEvent (page 63)
Gets the Apple event that is currently being handled.

AEResumeTheCurrentEvent (page 90)
Informs the Apple Event Manager that your application wants to resume the handling of a previously
suspended Apple event or that it has completed the handling of the Apple event.

Functions by Task 23
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AESetTheCurrentEvent (page 97)
Specifies a current Apple event to take the place of the one your application has suspended.

AESuspendTheCurrentEvent (page 113)
Suspends the processing of the Apple event that is currently being handled.

Miscellaneous

AECheckIsRecord (page 29)
Determines whether a descriptor is truly an AERecord.

AEInitializeDesc (page 64)
Initializes a new descriptor.

Functions

AEBuildAppleEvent
Constructs an entire Apple event in a single call.

OSStatus AEBuildAppleEvent (
 AEEventClass theClass,
 AEEventID theID,
 DescType addressType,
 const void *addressData,
 Size addressLength,
 SInt16 returnID,
 SInt32 transactionID,
 AppleEvent *result,
 AEBuildError *error,
 const char *paramsFmt,
 ...
);

Parameters
theClass

The event class for the resulting Apple event. See AEEventClass (page 171).

theID
The event id for the resulting Apple event. See AEEventID (page 172).

addressType
The address type for the addressing information described in the next two parameters: usually one
of typeApplSignature, typeProcessSerialNumber, or typeKernelProcessID. See
DescType (page 176).

addressData
A pointer to the address information.

addressLength
The number of bytes pointed to by the addressData parameter.

24 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

returnID
The return ID for the created Apple event. If you pass a value of kAutoGenerateReturnID, the Apple
Event Manager assigns the created Apple event a return ID that is unique to the current session. If
you pass any other value, the Apple Event Manager assigns that value for the ID.

transactionID
The transaction ID for this Apple event. A transaction is a sequence of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. You can
specify the kAnyTransactionID constant if the Apple event is not one of a series of interdependent
Apple events.

result
A pointer to a descriptor where the resulting descriptor should be stored. See AppleEvent (page
175) for a description of the data type.

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 162) for a description of the data type.

paramsFmt
An AEBuild format string describing the AppleEvent record to be created. The format of these strings
is described in Technical Note TN2106, AEBuild*, AEPrint*, and Friends. That technote also describes
possible error return codes for syntax errors in the format string.

Return Value
A numeric result code indicating the success of the call. A value of AEBuildSyntaxNoErr (zero) means the
call succeeded. You can use the error parameter to discover information about other errors. See “Apple
Event Manager Result Codes” (page 252).

Discussion
IMPORTANT: Following the parameters described above, the AEBuildAppleEvent function takes a variable
number of parameters as specified by the format string provided in the paramsFmt parameter.

This function and related “AEBuild” routines (including AEBuildDesc (page 26) and
AEBuildParameters (page 27), and the variable-argument versions, vAEBuildAppleEvent (page 135),
vAEBuildDesc (page 136), and vAEBuildParameters (page 137)) provide a very simple translation service
for converting specially formatted strings into complex Apple event descriptors. Normally, creating complex
Apple event descriptors requires a large number of calls to Apple event Manager routines to build up the
descriptor piece by piece. The AEBuildAppleEvent function and related routines allow you to consolidate
all of the calls required to construct a complex Apple event descriptor into a single system call that creates
the desired structure as directed by a format string that you provide.

In many ways, the AEBuild routines are very much like the standard C library's printf suite of routines. The
syntax for the format string that you provide is very simple and allows for the substitution of data items into
the Apple event descriptors being created.

The AEBuildAppleEvent function is similar to AECreateAppleEvent (page 32), but in addition to creating
the Apple event, it also constructs the parameters for the event from the last three arguments. You can use
AEBuildAppleEvent to build an entire Apple event, or AEBuildParameters (page 27) to add additional
parameters to an existing Apple event.

The syntax of the formatting string for an entire Apple event (as passed to AEBuildAppleEvent) is almost
identical to that used to represent the contents of an Apple event, without the curly braces. The event is
defined as a sequence of name-value pairs, with optional parameters preceded with a tilde (~) character.
The syntax is described in Technical Note TN2106, AEBuild*, AEPrint*, and Friends.

Functions 25
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

http://developer.apple.com/technotes/tn/tn2045.html
http://developer.apple.com/technotes/tn/tn2045.html

It is important to note that the identifier for the direct parameter in an Apple event, specified by the constant
keyDirectObject, is four minus signs ('----'). The minus sign has special meaning in AEBuild strings,
and it should always be enclosed in single quotes when it is used to identify the direct parameter for an
Apple event in a descriptor string.

Version Notes
Prior to Mac OS X version 10.3, AEBuildAppleEvent would fail if you supplied a data parameter with size
greater than 32767 bytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEBuildDesc
Provides a facility for compiling AEBuild descriptor strings into Apple event descriptors (AEDesc).

OSStatus AEBuildDesc (
 AEDesc *dst,
 AEBuildError *error,
 const char *src,
 ...
);

Parameters
dst

A pointer to a descriptor where the resulting descriptor should be stored. See AEDesc (page 162).

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 162).

src
An AEBuild format string describing the descriptor to be created.

Return Value
A numeric result code indicating the success of the call. A value of AEBuildSyntaxNoErr (zero) means the
call succeeded. You can use the error parameter to discover information about other errors. See also “Apple
Event Manager Result Codes” (page 252).

Discussion
This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple event Manager routines to build up the descriptor piece by piece.
The AEBuildDesc function and related routines allow you to consolidate all of the calls required to construct
a complex Apple event descriptor into a single system call that creates the desired structure as directed by
a format string that you provide.

For additional information on using the AEBuild routines, see the descriptions for AEBuildAppleEvent (page
24) and AEBuildParameters (page 27).

26 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Version Notes
Prior to Mac OS X version 10.3, AEBuildDesc would fail if you supplied a data parameter with size greater
than 32767 bytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEBuildParameters
Adds additional parameters or attributes to an existing Apple event.

OSStatus AEBuildParameters (
 AppleEvent *event,
 AEBuildError *error,
 const char *format,
 ...
);

Parameters
event

The Apple event to which you are adding parameters. See AppleEvent (page 175).

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 162).

format
An AEBuild format string describing the parameters to be created.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
This function can be called more than once to add any desired number of parameters or attributes to an
existing Apple event. The Apple event should already have been created through either a call to
AECreateAppleEvent (page 32) or AEBuildAppleEvent (page 24).

This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple event Manager routines to build up the descriptor piece by piece.
The AEBuildDesc function and related routines allow you to consolidate all of the calls required to construct
a complex Apple event descriptor into a single system call that creates the desired structure as directed by
a format string that you provide.

For additional information on using the AEBuild routines, see the descriptions for AEBuildAppleEvent (page
24) and AEBuildDesc (page 26).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

Functions 27
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AECallObjectAccessor
Invokes the appropriate object accessor function for a specific desired type and container type.

OSErr AECallObjectAccessor (
 DescType desiredClass,
 const AEDesc *containerToken,
 DescType containerClass,
 DescType keyForm,
 const AEDesc *keyData,
 AEDesc *token
);

Parameters
desiredClass

The type of the Apple event object requested. Some possible values are defined in “Object Class ID
Constants” (page 215). See DescType (page 176).

containerToken
A pointer to the token that identifies the container for the desired object. (Token is defined in
AEDisposeToken (page 41).) See AEDesc (page 162).

containerClass
The object class of the container for the desired objects. See DescType (page 176).

keyForm
The key form that specifies how to find the object within the container. Key form constants are
described in “Key Form and Descriptor Type Object Specifier Constants” (page 206). SeeDescType (page
176).

keyData
A pointer to the key data that identifies the object within the container. The type of this data is
form-specific. That is, formName typically has key data of type typeText. See AEDesc (page 162).

token
A pointer to a token. On return, a token specifying the desired object (or objects). Your application
should dispose of this token when it is through with it by calling AEDisposeToken (page 41). See
AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). AECallObjectAccessor returns any
result codes returned by the object accessor function it calls.

Discussion
If you want your application to do some of the Apple event object resolution normally performed by the
AEResolve (page 89) function, you can use AECallObjectAccessor to invoke an object accessor function.
This might be useful, for example, if you have installed an object accessor function using typeWildCard for
the AEInstallObjectAccessor function’s desiredClass parameter and typeAEList for the
containerType parameter. To return a list of tokens for a request like “line one of every window” the object
accessor function can create an empty list, then call AECallObjectAccessor for each requested element,
adding tokens for each element to the list one at a time.

The parameters of AECallObjectAccessor are identical to the parameters of an object accessor function,
as described in OSLAccessorProcPtr (page 149) with one exception—the Apple Event Manager adds a
reference constant parameter each time it calls the object accessor function.

28 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

You can also call a specific object accessor function directly through its universal procedure pointer with one
of the invoke functions described in “Creating, Calling, and Deleting Universal Procedure Pointers” (page
15).

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AECheckIsRecord
Determines whether a descriptor is truly an AERecord.

Boolean AECheckIsRecord (
 const AEDesc *theDesc
);

Parameters
theDesc

A pointer to the descriptor to check.

Return Value
Returns true if the descriptor is an AERecord or an AppleEvent, false otherwise.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoerceDesc
Coerces the data in a descriptor to another descriptor type and creates a descriptor containing the newly
coerced data.

OSErr AECoerceDesc (
 const AEDesc *theAEDesc,
 DescType toType,
 AEDesc *result
);

Parameters
theAEDesc

A pointer to the descriptor containing the data to coerce. See AEDesc (page 162).

Functions 29
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

toType
The desired descriptor type of the resulting descriptor. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 197). See DescType (page 176).

result
A pointer to a descriptor. On successful return, a descriptor containing the coerced data and matching
the descriptor type specified in toType. On error, a null descriptor. If the function returns successfully,
your application should call the AEDisposeDesc (page 40) function to dispose of the resulting
descriptor after it has finished using it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). If AECoerceDesc returns a nonzero result
code, it returns a null descriptor record (a descriptor record of type typeNull, which does not contain any
data) unless the Apple Event Manager is not available because of limited memory.

Version Notes
See the Version Notes section for the AECoercePtr (page 30) function for information on when to use
descriptor-based versus pointer-based coercion handlers starting in Mac OS X version 10.2.

Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch

Declared In
AEDataModel.h

AECoercePtr
Coerces data to a desired descriptor type and creates a descriptor containing the newly coerced data.

OSErr AECoercePtr (
 DescType typeCode,
 const void *dataPtr,
 Size dataSize,
 DescType toType,
 AEDesc *result
);

Parameters
typeCode

The descriptor type of the source data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 197). See DescType (page 176).

dataPtr
A pointer to the data to coerce.

dataSize
The length, in bytes, of the data to coerce.

toType
The desired descriptor type of the resulting descriptor. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 197).

30 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

result
A pointer to a descriptor. On successful return, a descriptor containing the coerced data and matching
the descriptor type specified in toType. On error, a null descriptor. If the function returns successfully,
your application should call the AEDisposeDesc (page 40) function to dispose of the resulting
descriptor after it has finished using it. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Starting in Mac OS X version 10.2, pointer-based coercion handlers are not called if the input type is
“structured”—that is, if the type to be coerced is typeAEList, typeAERecord, or coerced typeAERecord.
If you want to add a coercion handler for one of these types, it must be a descriptor-based handler. This does
not mean you are required to use descriptor-based coercion handlers everywhere—for “flat” data types, such
as typeText, pointer-based handlers are still fine.

Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECountItems
Counts the number of descriptors in a descriptor list.

OSErr AECountItems (
 const AEDescList *theAEDescList,
 long *theCount
);

Parameters
theAEDescList

A pointer to the descriptor list to count. See AEDescList (page 169).

theCount
A pointer to a count variable. On return, the number of descriptors in the specified descriptor list,
which can be 0, if the list is empty.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Your application typically counts the descriptors in a descriptor list when it is extracting data from an Apple
event. You can use the functions in “Getting Items From Descriptor Lists” to get an individual item from a
descriptor list or to iterate through the items.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Functions 31
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Related Sample Code
QTCarbonShell

Declared In
AEDataModel.h

AECreateAppleEvent
Creates an Apple event with several important attributes but no parameters.

OSErr AECreateAppleEvent (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 const AEAddressDesc *target,
 AEReturnID returnID,
 AETransactionID transactionID,
 AppleEvent *result
);

Parameters
theAEEventClass

The event class of the Apple event to create. This parameter becomes accessible through the
keyEventClassAttr attribute of the Apple event. Some event classes are described in “Event Class
Constants” (page 201). See AEEventClass (page 171).

theAEEventID
The event ID of the Apple event to create. This parameter becomes accessible through the
keyEventIDAttr attribute of the Apple event. Some event IDs are described in “Event ID
Constants” (page 202). See AEEventID (page 172).

target
A pointer to an address descriptor. Before calling AECreateAppleEvent, you set the descriptor to
identify the target (or server) application for the Apple event. This parameter becomes accessible
through the keyAddressAttr attribute of the Apple event. See AEAddressDesc (page 167).

returnID
The return ID for the created Apple event. If you pass a value of kAutoGenerateReturnID, the Apple
Event Manager assigns the created Apple event a return ID that is unique to the current session. If
you pass any other value, the Apple Event Manager assigns that value for the ID. This parameter
becomes accessible through the keyReturnIDAttr attribute of the Apple event. The return ID
constant is described in “ID Constants for the AECreateAppleEvent Function” (page 205). See
AEReturnID (page 174).

transactionID
The transaction ID for this Apple event. A transaction is a sequence of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. You can
specify the kAnyTransactionID constant if the Apple event is not one of a series of interdependent
Apple events. This parameter becomes accessible through the keyTransactionIDAttr attribute
of the Apple event. This transaction ID constant is described in “ID Constants for the
AECreateAppleEvent Function” (page 205). See AETransactionID (page 175).

32 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

result
A pointer to an Apple event. On successful return, the new Apple event. On error, a null descriptor
(one with descriptor type typeNull). If the function returns successfully, your application should call
the AEDisposeDesc (page 40) function to dispose of the resulting Apple event after it has finished
using it. See the AppleEvent (page 175) data type.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The AECreateAppleEvent function creates an empty Apple event. You can add parameters to the Apple
event after you create it with the functions described in “Adding Parameters and Attributes to Apple Events
and Apple Event Records” (page 14).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECreateDesc
Creates a new descriptor that incorporates the specified data.

OSErr AECreateDesc (
 DescType typeCode,
 const void *dataPtr,
 Size dataSize,
 AEDesc *result
);

Parameters
typeCode

The descriptor type for the new descriptor. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 197). See DescType (page 176).

dataPtr
A pointer to the data for the new descriptor. This data is copied into a newly-allocated block of memory
for the descriptor that is created. To minimize copying overhead, consider using
AECreateDescFromExternalPtr (page 34).

dataSize
The length, in bytes, of the data for the new descriptor.

result
A pointer to a descriptor. On successful return, a descriptor that incorporates the data specified by
the dataPtr parameter. On error, a null descriptor. If the function returns successfully, your application
should call the AEDisposeDesc (page 40) function to dispose of the resulting descriptor after it has
finished using it. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Functions 33
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
While it is possible to create an Apple event descriptor or a descriptor list or a descriptor with the
AECreateDesc function (assuming you have access to the raw data for an Apple event, list, or descriptor),
you typically create these structured objects with their specific creation routines—AECreateAppleEvent,
AECreateList, or AECreateDesc.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECreateDescFromExternalPtr
Creates a new descriptor that uses a memory buffer supplied by the caller.

OSStatus AECreateDescFromExternalPtr (
 OSType descriptorType,
 const void *dataPtr,
 Size dataLength,
 AEDisposeExternalUPP disposeCallback,
 SRefCon disposeRefcon,
 AEDesc *theDesc
);

Parameters
descriptorType

The descriptor type for the new descriptor.

dataPtr
A pointer to the data for the new descriptor. The memory that is pointed to cannot be a Handle
(which may move in memory), cannot be modified by the caller, and must be preserved in place (and
not freed), until the disposeCallback function is called.

If possible, the descriptor will be mapped into the address space of the recipient using shared memory,
avoiding an actual memory copy.

The pointer that is passed in does not need to be aligned to any particular boundary, but is optimized
to transfer data on a page boundary. You can get the current page size (4096 on all current Mac OS
X systems) with the getpagesize(3) call. (Type man 3 getpagesize in a Terminal window for
documentation.)

dataLength
The length, in bytes, of the data for the new descriptor.

disposeCallback
A universal procedure pointer to a dispose callback function of type
AEDisposeExternalProcPtr (page 143). Your callback function will be called when the block of
memory provided by dataPtr is no longer needed by the Apple Event Manager. The function can
be called at any time, including during creation of the descriptor.

34 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

disposeRefcon
A reference constant the Apple Event Manager passes to the disposeCallback function whenever
it calls the function. If your dispose function doesn’t require a reference constant, pass 0 for this
parameter.

theDesc
A pointer to a descriptor. On successful return, a descriptor that incorporates the data specified by
the dataPtr parameter. On error, a null descriptor. If the function returns successfully, your application
should call the AEDisposeDesc (page 40) function to dispose of the resulting descriptor after it has
finished using it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
This function is different than AECreateDesc (page 33), in that it creates a descriptor that uses the data
block provided by the caller “in place,” rather than allocate a block of memory and copy the data to it. This
function can provide dramatically improved performance if you’re working with large chunks of data. It
attempts to copy the descriptor to the address space of any recipient process using virtual memory APIs,
avoiding an actual memory copy. For example, you might want to use this function to pass a large image in
an Apple event.

You can use the AEGetDescDataRange (page 49) function to access a specific section of a large block of
data.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

AECreateList
Creates an empty descriptor list or Apple event record.

OSErr AECreateList (
 const void *factoringPtr,
 Size factoredSize,
 Boolean isRecord,
 AEDescList *resultList
);

Parameters
factoringPtr

A pointer to the data at the beginning of each descriptor that is the same for all descriptors in the
list. If there is no common data, or if you decide not to isolate the common data, pass NULL as the
value of this parameter.

factoredSize
The size of the common data. If there is no common data, or if you decide not to isolate the common
data, pass 0 as the value of this parameter. (See the Discussion section for more information.)

Functions 35
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

isRecord
A Boolean value that specifies the kind of list to create. Pass a value of TRUE to create an Apple event
record (a data structure of type AERecord (page 173)) or FALSE to create a descriptor list.

resultList
A pointer to a descriptor list variable. On successful return, the descriptor list or Apple event record
that the AECreateList function creates. On error, a null descriptor. See AEDescList (page 169).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The AECreateList function creates an empty descriptor list or Apple event record. You can use the functions
described in “Adding Items to Descriptor Lists” to populate the list as part of creating an Apple event. After
sending the Apple event with the AESend (page 92) function, you should dispose of the descriptor list with
the AEDisposeDesc (page 40) function when you no longer need it.

If you intend to use a descriptor list for a factored Apple event array, you must provide, in the factoringPtr
parameter, a pointer to the data shared by all items in the array and, in the factoredSize parameter, the
size of the common data. The common data must be 4, 8, or more than 8 bytes in length because it always
consists of (a) the descriptor type (4 bytes) (b) the descriptor type (4 bytes) and the size of each item’s data
(4 bytes) or (c) the descriptor type (4 bytes), the size of each item’s data (4 bytes), and some portion of the
data itself (1 or more bytes).

For information about data types used with Apple event arrays, see “Apple Event Manager Data Types” (page
161).

Version Notes
The factoringPtr and factoredSize parameters are not supported in Mac OS X v10.2 and later. You
should pass NULL and zero, respectively, for these parameters.

Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECreateRemoteProcessResolver
Creates an object for resolving a list of remote processes.

AERemoteProcessResolverRef AECreateRemoteProcessResolver (
 CFAllocatorRef allocator,
 CFURLRef url
);

Parameters
allocator

An object that is used to allocates and deallocate any Core Foundation types created or returned by
this API. You can pass kCFAllocatorDefault to get the default allocation behavior. The allocator
is based on CFAllocatorRef, an opaque data type described in the Core Foundation Reference
Documentation.

36 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

url
A CFURL reference identifying the remote host and port on which to look for processes. See the Core
Foundation Reference Documentation for a description of the CFURLRef data type.

Return Value
An AERemoteProcessResolverRef (page 173), which must be disposed of with
AEDisposeRemoteProcessResolver (page 40). A resolver can only be used one time; once it has obtained
a list of remote processes from a server, or gotten an error, it can no longer be scheduled. To retrieve a new
list of processes, create a new instance of this object.

Discussion
You supply this function with the URL for a remote host and port; it returns a reference to a resolver object.
To obtain a list of remote processes from the resolver, you can query it synchronously with
AERemoteProcessResolverGetProcesses (page 82), which blocks until the request completes (either
successfully or with an error).

If asynchronous behavior is desired, you can optionally use
AERemoteProcessResolverScheduleWithRunLoop (page 83) to schedule the resolver asynchronously
on a run loop. If so, you supply a callback routine (see AERemoteProcessResolverCallback (page 148))
that is executed when the resolver completes. To obtain information about the remote processes, you will
again have to call AERemoteProcessResolverGetProcesses (page 82).

A resolver can only be used once; once it has fetched the data or gotten an error it can no longer be scheduled.
The data obtained by the resolver is a CFArrayRef of CFDictionaryRef objects. For information on the
format of the returned remote process information, see the description of the function result for the function
AERemoteProcessResolverGetProcesses (page 82), and also “Remote Process Dictionary Keys” (page
218).

Version Notes
Thread safe starting in Mac OS X v10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AEDecodeMessage
Decodes a Mach message and converts it into an Apple event and its related reply.

OSStatus AEDecodeMessage (
 mach_msg_header_t *header,
 AppleEvent *event,
 AppleEvent *reply
);

Parameters
header

A pointer to a Mach message header for the event to be decoded.

Functions 37
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

event
A pointer to a null Apple event descriptor (one with descriptor type typeNull). On successful
completion, contains the decoded Apple event. If the function returns successfully, your application
should call the AEDisposeDesc (page 40) function to dispose of the resulting descriptor after it has
finished using it.

reply
A pointer to a null Apple event descriptor. On successful completion, contains the reply event from
the decoded Apple event. To send the reply, you use the following:

AESendMessage(reply, NULL, kAENoReply, kAEDefaultTimeout);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The Apple Event Manager provides the following functions (on Mac OS X only) for working with Apple events
at a lower level: AEGetRegisteredMachPort (page 61), AEDecodeMessage, AESendMessage (page 94),
and AEProcessMessage (page 74). See the descriptions for those functions for more information on when
you might use them.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEMach.h

AEDeleteItem
Deletes a descriptor from a descriptor list, causing all subsequent descriptors to move up one place.

OSErr AEDeleteItem (
 AEDescList *theAEDescList,
 long index
);

Parameters
theAEDescList

A pointer to the descriptor list containing the descriptor to delete. See AEDescList (page 169).

index
A one-based positive integer indicating the position of the descriptor to delete. AEDeleteItem
returns an error if you pass zero, a negative number, or a value that is out of range.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

38 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEDeleteKeyDesc
Deletes a keyword-specified parameter from an Apple event record.

OSErr AEDeleteKeyDesc (
 AERecord *theAERecord,
 AEKeyword theAEKeyword
);

Parameters
theAERecord

A pointer to the Apple event record to delete the parameter from.

theAEKeyword
The keyword that specifies the parameter to delete. Some keyword constants are described in “Keyword
Parameter Constants” (page 211). See AEKeyword (page 172).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
This function is declared as a macro that invokes AEDeleteParam (page 39), which can operate on an Apple
event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AEDeleteParam (page 39).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDeleteParam
Deletes a keyword-specified parameter from an Apple event record.

OSErr AEDeleteParam (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword
);

Parameters
theAppleEvent

A pointer to the Apple event or Apple event record to delete the parameter from. See
AppleEvent (page 175).

theAEKeyword
The keyword that specifies the parameter to delete. Some keyword constants are described in “Keyword
Parameter Constants” (page 211). See AEKeyword (page 172).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Functions 39
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDisposeDesc
Deallocates the memory used by a descriptor.

OSErr AEDisposeDesc (
 AEDesc *theAEDesc
);

Parameters
theAEDesc

A pointer to the descriptor to deallocate. On return, a null descriptor. If you pass a null descriptor in
this parameter, AEDisposeDesc returns noErr. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). As currently implemented, AEDisposeDesc
always returns noErr.

Discussion
The AEDisposeDesc function deallocates the memory used by a descriptor. After calling this method, the
descriptor becomes an empty descriptor with a type of typeNULL. Because all Apple event structures (except
for keyword-specified descriptors) are descriptors, you can use AEDisposeDesc for any of them.

Do not call AEDisposeDesc on a descriptor obtained from another Apple Event Manager function (such as
the reply event from a call to AESend (page 92)) unless that function returns successfully.

Special Considerations

If the AEDesc might contain an OSL token, dispose of it with AEDisposeToken (page 41).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
AEDataModel.h

AEDisposeRemoteProcessResolver
Disposes of an AERemoteProcessResolverRef.

40 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

void AEDisposeRemoteProcessResolver (
 AERemoteProcessResolverRef ref
);

Parameters
ref

The AERemoteProcessResolverRef (page 173) to dispose of. Acquired from a previous call to
AECreateRemoteProcessResolver (page 36).

Discussion
If this resolver is currently scheduled on a run loop, it is unscheduled, and the asynchronous callback is not
executed.

Version Notes
Thread safe starting in Mac OS X v10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AEDisposeToken
Deallocates the memory used by a token.

OSErr AEDisposeToken (
 AEDesc *theToken
);

Parameters
theToken

A pointer to the token to dispose of. On successful return, the pointer is set to the null descriptor. See
AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Your application calls the AEResolve (page 89) function to resolve an object specifier, with the help of the
object accessor functions described in “Object Accessor Callbacks” and the application object callback
functions described in “Object Callback Functions”.

When AEResolve returns a final token to your event handler as the result of the resolution of an object
specifier, your application must deallocate the memory used by the token. When your application calls the
AEDisposeToken function, the Apple Event Manager first calls your application’s token disposal function,
if you have provided one. The token disposal function is described in OSLDisposeTokenProcPtr (page
155).

If you haven’t provided a token disposal function, or if your application’s token disposal function returns
errAEEventNotHandled as the function result, the Apple Event Manager calls the system token disposal
function if one is available. If there is no system token disposal function or the function returns
errAEEventNotHandled as the function result, the Apple Event Manager calls the AEDisposeDesc function
to dispose of the token.

Functions 41
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEDuplicateDesc
Creates a copy of a descriptor.

OSErr AEDuplicateDesc (
 const AEDesc *theAEDesc,
 AEDesc *result
);

Parameters
theAEDesc

A pointer to the descriptor to duplicate. See AEDesc (page 162).

result
A pointer to a descriptor. On return, the descriptor contains a copy of the descriptor specified by the
theAEDesc parameter. If the function returns successfully, your application should call the
AEDisposeDesc (page 40) function to dispose of the resulting descriptor after it has finished using
it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
It is common for applications to send Apple events that have one or more attributes or parameters in common.
For example, if you send a series of Apple events to the same application, the address attribute is the same.
In these cases, the most efficient way to create the necessary Apple events is to make a template Apple event
that you can then copy—by calling the AEDuplicateDesc function—as needed. You then fill in or change
the remaining parameters and attributes of the copy, send the copy by calling the AESend (page 92) function
and, after AESend returns a result code, dispose of the copy by calling AEDisposeDesc (page 40). You can
use this approach to prepare structures of type AEDesc (page 162), AEDescList (page 169), AERecord (page
173), and AppleEvent (page 175).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEFlattenDesc
Flattens the specified descriptor and stores the data in the supplied buffer.

42 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSStatus AEFlattenDesc (
 const AEDesc *theAEDesc,
 Ptr buffer,
 Size bufferSize,
 Size *actualSize
);

Parameters
theAEDesc

A pointer to the descriptor to be flattened. See AEDesc (page 162).

buffer
A pointer to memory, allocated by the application, where the flattened data will be stored. See the
bufferSize parameter for information on how large a buffer you should allocate.

bufferSize
The size of the buffer pointed to by buffer. Prior to calling AEFlattenDesc, you call the
AESizeOfFlattenedDesc (page 99) function to determine the required size of the buffer for the
flatten operation.

If bufferSize is too small, AEFlattenDesc returns errAEBufferTooSmall and doesn’t store any
data in the buffer.

actualSize
A pointer to a size variable. On return, the variable contains the actual size of the flattened data. You
can specify NULL for this parameter if you do not care about the returned size.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Flattening a descriptor serializes the data it contains. That is, it reduces a complex, possibly deeply nested
structure to a series of bytes that can conveniently be stored. The descriptor can be reconstituted from the
stored bytes with the AEUnflattenDesc (page 114) function.

Applications can be scriptable and work with Apple events without needing to flatten and unflatten descriptors.
Flattening is a special-purpose capability that is useful in circumstances where it may be convenient to store
data by saving and restoring a descriptor, rather than having to manually extract the data from it, store the
data as a separate step, then manually recreate the descriptor (if necessary). For example, you might use
flattening to store a preference setting received through an Apple event.

Flattening and unflattening should work without loss of data on descriptors that represent AEDesc, AEList,
and AERecord structures. You can also use the process with AppleEvent descriptors. However, keep in
mind that Apple events may contain attributes that are relevant only to a running process, and these attributes
may not keep their meaning when the event is reconstituted.

Flattening and unflattening works across OS versions, including between Mac OS 9 and Mac OS X.

Flattening is endian-neutral. That is, you can save flattened data on a machine that is either big-endian or
little-endian, then retrieve and unflatten the data on either type of machine, without any special steps by
your application.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Functions 43
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Declared In
AEDataModel.h

AEGetArray
Extracts data from an Apple event array created with the AEPutArray function and stores it as a standard
array of fixed size items in the specified buffer.

OSErr AEGetArray (
 const AEDescList *theAEDescList,
 AEArrayType arrayType,
 AEArrayDataPointer arrayPtr,
 Size maximumSize,
 DescType *itemType,
 Size *itemSize,
 long *itemCount
);

Parameters
theAEDescList

A pointer to the descriptor list to get the array from. If the array is of type kAEDataArray,
kAEPackedArray, or kAEHandleArray, the descriptor list must be factored. A factored descriptor
list is one in which the Apple Event Manager automatically isolates the data that is common to all the
elements of the list so that the common data only appears in the list once. To create a factored
descriptor list, you call the AECreateList (page 35) function and specify the data that is common
to all elements in the descriptor array. See the Discussion section for related information. See
AEDescList (page 169).

arrayType
The Apple event array type to convert. Pass one of the constants: described in “Data Array
Constants” (page 196). See AEArrayType (page 168).

arrayPtr
A pointer to a buffer, allocated and disposed of by your application, for storing the array. The size in
bytes must be at least as large as the value you pass in the maximumSize parameter. On return, the
buffer contains the array of fixed-size items. See AEArrayDataPointer (page 167).

maximumSize
The maximum length, in bytes, of the expected data. The AEGetArray function will not return more
data than you specify in this parameter.

itemType
A pointer to a descriptor type. On return, for arrays of type kAEDataArray, kAEPackedArray, or
kAEHandleArray, the descriptor type of the items in the returned array. The AEGetArray function
doesn’t supply a value in itemType for arrays of type kAEDescArray and kAEKeyDescArray because
they may contain descriptors of different types. Possible descriptor types are listed in “Descriptor
Type Constants” (page 197). See DescType (page 176).

itemSize
A pointer to a size variable. On return, for arrays of type kAEDataArray or kAEPackedArray, the
size (in bytes) of each item in the returned array. You don’t get an item size for arrays of type
kAEDescArray, kAEKeyDescArray, or kAEHandleArray because descriptors and handles (though
not the data they point to) have a known size.

itemCount
A pointer to a size variable. On return, the number of items in the returned array.

44 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The AEGetArray function uses a buffer identified by the pointer in the arrayPtr parameter to store the
converted data for the Apple event array specified by the theAEDescList parameter. For example,
AEGetArray may convert an array of descriptors of type typeLongInteger into a simple array of integer
values or an array of descriptors of type typeFSS into an array of file specification records.

Even if the descriptor list that contains the array is factored, the converted data for each array item includes
the data common to all the descriptors in the list. The Apple Event Manager automatically reconstructs the
common data for each item when you call AEGetArray.

For information about creating and factoring descriptor lists for Apple event arrays, see AECreateList (page
35). For information about adding an Apple event array to a descriptor list, see AEPutArray (page 75).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetAttributeDesc
Gets a copy of the descriptor for a specified Apple event attribute from an Apple event; typically used when
your application needs to pass the descriptor on to another function.

OSErr AEGetAttributeDesc (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType desiredType,
 AEDesc *result
);

Parameters
theAppleEvent

A pointer to the Apple event to get the attribute descriptor from. See AppleEvent (page 175).

theAEKeyword
The keyword that specifies the desired attribute. Some keyword constants are described in “Keyword
Attribute Constants” (page 209). See AEKeyword (page 172).

result
A pointer to a descriptor. On successful return, a copy of the specified Apple event attribute, coerced,
if necessary, to the descriptor type specified in desiredType. On error, a null descriptor. If the function
returns successfully, your application should call the AEDisposeDesc (page 40) function to dispose
of the resulting descriptor after it has finished using it. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Functions 45
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
To get Apple event attribute data for your application to use directly, call AEGetAttributePtr (page 46).
To get a descriptor for an Apple event attribute to pass on to another Apple Event Manager routine, call
AEGetAttributeDesc.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetAttributePtr
Gets a copy of the data for a specified Apple event attribute from an Apple event; typically used when your
application needs to work with the data directly.

OSErr AEGetAttributePtr (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType desiredType,
 DescType *typeCode,
 void *dataPtr,
 Size maximumSize,
 Size *actualSize
);

Parameters
theAppleEvent

A pointer to the Apple event to get the attribute data from. See AppleEvent (page 175).

theAEKeyword
The keyword that specifies the desired attribute. Some keyword constants are described in “Keyword
Attribute Constants” (page 209). See AEKeyword (page 172).

desiredType
The desired descriptor type for the copied data. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 197).

If the descriptor specified by the theAEKeyword parameter is not of the desired type,
AEGetAttributePtr attempts to coerce the data to this type. However, if you pass a value of
typeWildCard, no coercion is performed, and the descriptor type of the returned data is the same
as the descriptor type of the Apple event attribute.

On return, you can determine the actual descriptor type by examining the typeCode parameter.

See DescType (page 176).

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the attribute data pointed
to by dataPtr. The returned type is either the same as the type specified by the desiredType
parameter or, if the desired type was type wildcard, the true type of the descriptor. For a list of
AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 197). See
DescType (page 176).

46 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

dataPtr
A pointer to a buffer, local variable, or other storage location, created and disposed of by your
application. The size in bytes must be at least as large as the value you pass in the maximumSize
parameter. On return, contains the attribute data.

maximumSize
The maximum length, in bytes, of the expected attribute data. The AEGetAttributePtr function
will not return more data than you specify in this parameter.

actualSize
A pointer to a size variable. On return, the length, in bytes, of the data for the specified Apple event
attribute. If this value is larger than the value you passed in the maximumSize parameter, the buffer
pointed to by dataPtr was not large enough to contain all of the data for the attribute, though
AEGetAttributePtr does not write beyond the end of the buffer. If the buffer was too small, you
can resize it and call AEGetAttributePtr again.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
To get Apple event attribute data for your application to use directly, call AEGetAttributePtr. To get a
descriptor for an Apple event attribute to pass on to another Apple Event Manager routine, call
AEGetAttributeDesc (page 45).

Before calling AEGetAttributePtr, you can call the AESizeOfAttribute (page 98) function to determine
a size for the dataPtr buffer. However, unless you specify typeWildCard for the desiredType parameter,
AEGetAttributePtr may coerce the data, which may cause the size of the data to change.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetCoercionHandler
Gets the coercion handler for a specified descriptor type.

OSErr AEGetCoercionHandler (
 DescType fromType,
 DescType toType,
 AECoercionHandlerUPP *handler,
 SRefCon *handlerRefcon,
 Boolean *fromTypeIsDesc,
 Boolean isSysHandler
);

Parameters
fromType

The descriptor type of the data coerced by the handler. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 197). See DescType (page 176).

Functions 47
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

toType
The descriptor type of the resulting data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 197).

handler
A universal procedure pointer. On return, a pointer to the specified handler, if a coercion table entry
exists that exactly matches the values supplied in the parameters fromType and toType. See
AECoercionHandlerUPP (page 168).

handlerRefcon
A pointer to a reference constant. On return, the reference constant from the coercion table entry for
the specified coercion handler. The Apple Event Manager passes this reference constant to the handler
each time it calls the handler. The reference constant may have a value of 0.

fromTypeIsDesc
A pointer to a Boolean value. The AEGetCoercionHandler function returns a value of TRUE in this
parameter if the coercion handler expects the data as a descriptor or FALSE, if the coercion handler
expects a pointer to the data.

isSysHandler
Specifies the coercion table to get the handler from. Pass TRUE to get the handler from the system
coercion table or FALSE to get the handler from your application’s coercion table. Use of the system
coercion table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a coercion handler in a system coercion handler dispatch table with the
goal that the handler will get called when other applications perform coercions—this won’t work in Mac OS
X. For more information, see “Writing and Installing Coercion Handlers” in Apple Events Programming Guide.

In Mac OS 7.1 through 9.x and Mac OS X version v10.2 and later, AEGetCoercionHandler returns
errAEHandlerNotInstalled when there’s not an exact match, even if a wildcard handler is installed that
could handle the coercion. Mac OS X version v10.0.x and v10.1.x will return the wildcard handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetDescData
Gets the data from the specified descriptor.

48 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr AEGetDescData (
 const AEDesc *theAEDesc,
 void *dataPtr,
 Size maximumSize
);

Parameters
theAEDesc

A pointer to the descriptor to get the data from. See AEDesc (page 162).

dataPtr
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes should be the same as the value you pass in the maximumSize parameter.
On return, contains the data from the descriptor.

maximumSize
The length, in bytes, of the expected descriptor data. The AEGetDescData function will not return
more data than you specify in this parameter. You typically determine the maximum size by calling
AEGetDescDataSize (page 50).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Your application can call AEGetDescDataSize (page 50) to get the size, in bytes, of the data in a descriptor,
allocate a buffer or variable of that size, then call AEGetDescData to get the data.

This function works only with value descriptors created by AECreateDesc (page 33). You cannot get the
data of an AERecord (page 173) or AEDescList (page 169), for example.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
AEDataModel.h

AEGetDescDataRange
Retrieves a specified series of bytes from the specified descriptor.

Functions 49
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSStatus AEGetDescDataRange (
 const AEDesc *dataDesc,
 void *buffer,
 Size offset,
 Size length
);

Parameters
dataDesc

A pointer to the descriptor to get the data from. See AEDesc (page 162).

buffer
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes should be at least as large as the value you pass in the length parameter.
On return, contains the specified data from the descriptor.

offset
The zero-based offset to the data to be retrieved from the descriptor.

length
The number of bytes of contiguous data to retrieve.

Return Value
A result code. If the requested offset and length are such that they do not fit entirely within the descriptor’s
data, AEGetDescDataRange returns errAEBufferTooSmall. See also “Apple Event Manager Result
Codes” (page 252).

Discussion
This function is valid only for value type descriptors (such astypeUTF8Text). You can use this function when
you know the precise location of a subset of data within the descriptor. For example, if the descriptor contains
a block of your private data, you might retrieve just a particular chunk you need at a known offset, representing
an image, a string, or some other data type. Or if a descriptor contains an RGB color, you can access just the
blue field.

When used in conjunction with AECreateDescFromExternalPtr (page 34), AEGetDescDataRange can
provide greatly improved performance, especially when working with large blocks of data.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

AEGetDescDataSize
Gets the size, in bytes, of the data in the specified descriptor.

Size AEGetDescDataSize (
 const AEDesc *theAEDesc
);

Parameters
theAEDesc

A pointer to the descriptor to obtain the data size for. See AEDesc (page 162).

Return Value
Returns the size, in bytes, of the data in the specified descriptor.

50 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
This function works only with value descriptors created by AECreateDesc (page 33). You cannot get the
data size of an AERecord (page 173) or AEDescList (page 169), for example.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetEventHandler
Gets an event handler from an Apple event dispatch table.

OSErr AEGetEventHandler (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 AEEventHandlerUPP *handler,
 SRefCon *handlerRefcon,
 Boolean isSysHandler
);

Parameters
theAEEventClass

The event class for the desired handler. See AEEventClass (page 171).

theAEEventID
The event ID for the desired handler. See AEEventID (page 172).

handler
A universal procedure pointer. On return, a pointer to the specified handler, if a dispatch table entry
exists that exactly matches the values supplied in the parameters theAEEventClass and
theAEEventID.

If you use the typeWildCard constant for either or both of these parameters, AEGetEventHandler
will return an error unless an entry exists that specifies typeWildCard in exactly the same way. For
example, if you specify typeWildCard in both the theAEEventClass parameter and the
theAEEventID parameter, the Apple Event Manager will not return the first handler for any event
class and event ID in the dispatch table; instead, it will only return a handler if an entry exists that
specifies type typeWildCard for both the event class and the event ID.

For an explanation of wildcard values, see the Discussion section for AEInstallEventHandler (page
65).

See AEEventHandlerUPP (page 171).

handlerRefcon
A pointer to a reference constant. On return, the reference constant from the dispatch table entry for
the specified handler. The reference constant may have a value of 0.

isSysHandler
Specifies the Apple event dispatch table to get the handler from. Pass TRUE to get the handler from
the system dispatch table or FALSE to get the handler from your application’s dispatch table. See
Version Notes for related information.

Functions 51
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X. For more information, see
“The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

In Mac OS 7.1 through 9.x and Mac OS X version v10.2 and later, AEGetEventHandler returns
errAEHandlerNotInstalled when there’s not an exact match, even if a wildcard handler is installed that
could handle the event. Mac OS X version v10.0.x and v10.1.x will return the wildcard handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEGetInteractionAllowed
Gets your application’s current user interaction preferences for responding to an Apple event as a server
application.

OSErr AEGetInteractionAllowed (
 AEInteractAllowed *level
);

Parameters
level

A pointer to an interaction level variable. On return, the variable specifies the current user interaction
level, matching one of the values described in “User Interaction Level Constants” (page 221).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The current user interaction preference for responding to an Apple event is set either by default (to
kAEInteractWithLocal) or by a previous call to AESetInteractionAllowed (page 95).

For additional information on interaction level, see AESend (page 92) and “AESendMode” (page 182).

See also AEInteractWithUser (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEGetKeyDesc
Gets a copy of the descriptor for a keyword-specified Apple event parameter from an Apple event record

52 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr AEGetKeyDesc (
 AERecord *theAERecord,
 AEKeyword theAEKeyword,
 DescType desiredType,
 AEDesc *result
);

Parameters
theAERecord

A pointer to the Apple event record to get the parameter descriptor from.

theAEKeyword
A keyword that specifies the desired Apple event parameter. Some keyword constants are described
in “Keyword Parameter Constants” (page 211). See AEKeyword (page 172).

desiredType
The descriptor type for the desired Apple event parameter. For a list of AppleScript’s predefined
descriptor types, see “Descriptor Type Constants” (page 197).

If the requested Apple event parameter is not of the desired type, the Apple Event Manager attempts
to coerce it to the desired type. However, if you pass a value of typeWildCard, no coercion is
performed, and the descriptor type of the returned descriptor is the same as the descriptor type of
the Apple event parameter.

See DescType (page 176).

result
A pointer to a descriptor. On successful return, a copy of the descriptor for the specified Apple event
parameter, coerced, if necessary, to the descriptor type specified by the desiredType parameter.
On error, a null descriptor. If the function returns successfully, your application should call the
AEDisposeDesc (page 40) function to dispose of the resulting descriptor after it has finished using
it. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
This function is declared as a macro that invokes AEGetParamDesc (page 59), which can operate on an
Apple event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AEGetParamDesc (page 59).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetKeyPtr
Gets a copy of the data for a specified Apple event parameter from an Apple event record.

Functions 53
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr AEGetKeyPtr (
 AERecord *theAERecord,
 AEKeyword theAEKeyword,
 DescType desiredType,
 DescType *actualType,
 void *dataPtr,
 Size maximumSize,
 Size *actualSize
);

Parameters
theAERecord

A pointer to the Apple event record to get the parameter data from.

theAEKeyword
The keyword that specifies the desired Apple event record parameter. Some keyword constants are
described in “Keyword Parameter Constants” (page 211).

desiredType
The desired descriptor type for the copied data. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 197).

If the descriptor specified by the theAEKeyword parameter is not of the desired type, AEGetKeyPtr
attempts to coerce the data to this type. However, if the desired type is typeWildCard, no coercion
is performed.

On return, you can determine the actual descriptor type by examining the typeCode parameter.

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the data pointed to by
dataPtr. The returned type is either the same as the type specified by the desiredType parameter
or, if the desired type was type wildcard, the true type of the descriptor. Specify NULL if you do not
care about this return value. For a list of AppleScript’s predefined descriptor types, see “Descriptor
Type Constants” (page 197).

dataPtr
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes must be at least as large as the value you pass in the maximumSize
parameter. On return, contains the parameter data. Specify NULL if you do not care about this return
value.

maximumSize
The maximum length, in bytes, of the expected Apple event record parameter data. The AEGetKeyPtr
function will not return more data than you specify in this parameter.

actualSize
A pointer to a variable of type Size. On return, the length, in bytes, of the data for the specified Apple
event record parameter. If this value is larger than the value you passed in the maximumSize parameter,
the buffer pointed to by dataPtr was not large enough to contain all of the data for the parameter,
though AEGetKeyPtr does not write beyond the end of the buffer. If the buffer was too small, you
can resize it and call AEGetKeyPtr again. Specify NULL if you do not care about this return value.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
This function is declared as a macro that invokes AEGetParamPtr (page 60), which can operate on an Apple
event or an Apple event record. See the Discussion for that function for more information.

54 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Version Notes
See AEGetParamPtr (page 60).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetNthDesc
Copies a descriptor from a specified position in a descriptor list into a specified descriptor; typically used
when your application needs to pass the extracted data to another function as a descriptor.

OSErr AEGetNthDesc (
 const AEDescList *theAEDescList,
 long index,
 DescType desiredType,
 AEKeyword *theAEKeyword,
 AEDesc *result
);

Parameters
theAEDescList

A pointer to the descriptor list to get the descriptor from. See AEDescList (page 169).

index
A one-based positive integer indicating the position of the descriptor to get. AEGetNthDesc returns
an error if you pass zero, a negative number, or a value that is out of range.

desiredType
The desired descriptor type for the descriptor to copy. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 197).

If the descriptor specified by the index parameter is not of the desired type, AEGetNthDesc attempts
to coerce it to this type. However, if you pass a value of typeWildCard, no coercion is performed,
and the descriptor type of the copied descriptor is the same as the descriptor type of the original
descriptor.

See DescType (page 176).

theAEKeyword
A pointer to a keyword. On successful return, the keyword for the specified descriptor, if you are
getting data from a list of keyword-specified descriptors; otherwise, AEGetNthDesc returns the value
typeWildCard. Some keyword constants are described in “Keyword Attribute Constants” (page 209)
and “Keyword Parameter Constants” (page 211). See AEKeyword (page 172).

result
A pointer to a descriptor. On successful return, a copy of the descriptor specified by the index
parameter, coerced, if necessary, to the descriptor type specified by the desiredType parameter.
On error, a null descriptor. If the function returns successfully, your application should call the
AEDisposeDesc (page 40) function to dispose of the resulting descriptor after it has finished using
it. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Functions 55
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
If the Nth descriptor in the list is itself an Apple event record and the desired type is not wildcard, record, or
list, AEGetNthDescwill fail with an errAECoercionFailed error. This behavior prevents coercion problems.

You may find the AEGetNthPtr (page 56) function convenient for retrieving data for direct use in your
application, as it includes automatic coercion.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetNthPtr
Gets a copy of the data from a descriptor at a specified position in a descriptor list; typically used when your
application needs to work with the extracted data directly.

OSErr AEGetNthPtr (
 const AEDescList *theAEDescList,
 long index,
 DescType desiredType,
 AEKeyword *theAEKeyword,
 DescType *typeCode,
 void *dataPtr,
 Size maximumSize,
 Size *actualSize
);

Parameters
theAEDescList

A pointer to the descriptor list that contains the descriptor. See AEDescList (page 169).

index
A one-based positive integer indicating the position in the descriptor list of the descriptor to get the
data from. AEGetNthPtr returns an error if you pass zero, a negative number, or a value that is out
of range.

desiredType
The desired descriptor type for the copied data. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 197).

If the descriptor specified by the index parameter is not of the desired type, AEGetNthPtr attempts
to coerce the data to this type. If you pass a value of typeWildCard, no coercion is performed, and
the descriptor type of the copied data is the same as the descriptor type of the original descriptor.

See DescType (page 176).

theAEKeyword
A pointer to a keyword. On return, the keyword for the specified descriptor, if you are getting data
from a list of keyword-specified descriptors; otherwise, AEGetNthPtr returns the value typeWildCard.
Some keyword constants are described in “Keyword Attribute Constants” (page 209) and “Keyword
Parameter Constants” (page 211). See AEKeyword (page 172).

56 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the data pointed to by
dataPtr. For a list of AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page
197).

dataPtr
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes must be at least as large as the value you pass in the maximumSize
parameter. On return, contains the data from the descriptor at the position in the descriptor list
specified by the index parameter.

maximumSize
The maximum length, in bytes, of the expected data. The AEGetNthPtr function will not return more
data than you specify in this parameter.

actualSize
A pointer to a size variable. On return, the length, in bytes, of the data for the specified descriptor. If
this value is larger than the value of the maximumSize parameter, the buffer pointed to by dataPtr
was not large enough to contain all of the data for the descriptor, though AEGetNthPtr does not
write beyond the end of the buffer. If the buffer was too small, you can resize it and call AEGetNthPtr
again.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The AEGetNthPtr function uses a buffer to return the data for a specified descriptor from a specified
descriptor list. The function attempts to coerce the descriptor to the descriptor type specified by the
desiredType parameter.

Before calling AEGetNthPtr, you can call the AESizeOfNthItem (page 100) function to determine a size for
the dataPtr buffer. However, unless you specify typeWildCard for the desiredType parameter,
AESizeOfNthItem may coerce the data, which may cause the size of the data to change. If you are using
AEGetNthPtr to iterate through a list of descriptors of the same type with a fixed size, such as a list of
descriptors of type typeFSS, you can get the size once, allocate a buffer, and reuse it for each call.

The order of items in an Apple event record may change after an insertion or deletion. In addition, duplicating
an Apple event record is not guaranteed to preserve the item order.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
QTMetaData

Declared In
AEDataModel.h

AEGetObjectAccessor
Gets an object accessor function from an object accessor dispatch table.

Functions 57
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr AEGetObjectAccessor (
 DescType desiredClass,
 DescType containerType,
 OSLAccessorUPP *accessor,
 SRefCon *accessorRefcon,
 Boolean isSysHandler
);

Parameters
desiredClass

The object class of the Apple event objects located by the object accessor function to get. Pass the
value typeWildCard to get an object accessor function whose entry in an object accessor dispatch
table specifies typeWildCard as the object class. Pass the value cProperty to get an object accessor
function whose entry in an object accessor dispatch table specifies cProperty (a constant used to
specify a property of any object class). Some other possible values are defined in “Object Class ID
Constants” (page 215). See DescType (page 176).

containerType
The descriptor type of the token that identifies the container for the objects located by the requested
accessor function. (Token is defined in AEDisposeToken (page 41).) Pass the value typeWildCard
to get an object accessor function whose entry in an object accessor dispatch table specifies
typeWildCard as the descriptor type of the token used to specify the container type. See
DescType (page 176).

accessor
A universal procedure pointer. On return, a pointer to the requested object accessor function, if an
object accessor dispatch table entry exists that exactly matches the values supplied in the parameters
desiredClass and containerType. See OSLAccessorUPP (page 176).

accessorRefcon
A pointer to a reference constant. On return, points to the reference constant from the object accessor
dispatch table entry for the specified object accessor function. The reference constant may have a
value of 0.

isSysHandler
Specifies the object accessor dispatch table to get the object accessor function from. Pass TRUE to
get the object accessor function from the system object accessor dispatch table or FALSE to get the
object accessor function from your application’s object accessor dispatch table. Use of the system
object accessor dispatch table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Calling AEGetObjectAccessor does not remove the object accessor function from an object accessor
dispatch table.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

58 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEGetParamDesc
Gets a copy of the descriptor for a keyword-specified Apple event parameter from an Apple event or an
Apple event record.

OSErr AEGetParamDesc (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType desiredType,
 AEDesc *result
);

Parameters
theAppleEvent

A pointer to the Apple event to get the parameter descriptor from.

theAEKeyword
A keyword that specifies the desired Apple event parameter. Some keyword constants are described
in “Keyword Parameter Constants” (page 211).

desiredType
The descriptor type for the desired Apple event parameter. For a list of AppleScript’s predefined
descriptor types, see “Descriptor Type Constants” (page 197).

If the requested Apple event parameter is not of the desired type, the Apple Event Manager attempts
to coerce it to the desired type. However, if you pass a value of typeWildCard, no coercion is
performed, and the descriptor type of the returned descriptor is the same as the descriptor type of
the Apple event parameter.

result
A pointer to a descriptor. On successful return, a copy of the descriptor for the specified Apple event
parameter, coerced, if necessary, to the descriptor type specified by the desiredType parameter.
On error, a null descriptor. If the function returns successfully, your application should call the
AEDisposeDesc (page 40) function to dispose of the resulting descriptor after it has finished using
it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
You typically call AEGetParamDesc to get a descriptor for an Apple event parameter to pass on to another
Apple Event Manager routine. To get Apple event parameter data for your application to use directly, call
AEGetParamPtr (page 60).

If the actual parameter you are getting with AEGetParamDesc is a record, you can only request it as a
typeAERecord, typeAEList, or typeWildcard. For any other type, AEGetParamDesc will return
errAECoercionFail.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Functions 59
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Declared In
AEDataModel.h

AEGetParamPtr
Gets a copy of the data for a specified Apple event parameter from an Apple event or an Apple event record.

OSErr AEGetParamPtr (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType desiredType,
 DescType *actualType,
 void *dataPtr,
 Size maximumSize,
 Size *actualSize
);

Parameters
theAppleEvent

A pointer to the Apple event to get the parameter data from.

theAEKeyword
The keyword that specifies the desired Apple event parameter. Some keyword constants are described
in “Keyword Parameter Constants” (page 211).

desiredType
The desired descriptor type for the copied data. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 197).

If the descriptor specified by the theAEKeyword parameter is not of the desired type, AEGetParamPtr
attempts to coerce the data to this type. However, if the desired type is typeWildCard, no coercion
is performed.

On return, you can determine the actual descriptor type by examining the typeCode parameter.

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the data pointed to by
dataPtr. The returned type is either the same as the type specified by the desiredType parameter
or, if the desired type was type wildcard, the true type of the descriptor. Specify NULL if you do not
care about this return value. For a list of AppleScript’s predefined descriptor types, see “Descriptor
Type Constants” (page 197).

dataPtr
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size in bytes must be at least as large as the value you pass in the maximumSize
parameter. On return, contains the parameter data. Specify NULL if you do not care about this return
value.

maximumSize
The maximum length, in bytes, of the expected Apple event parameter data. The AEGetParamPtr
function will not return more data than you specify in this parameter.

60 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

actualSize
A pointer to a variable of type Size. On return, the length, in bytes, of the data for the specified Apple
event parameter. If this value is larger than the value you passed in the maximumSize parameter, the
buffer pointed to by dataPtr was not large enough to contain all of the data for the parameter,
though AEGetParamPtr does not write beyond the end of the buffer. If the buffer was too small,
you can resize it and call AEGetParamPtr again. Specify NULL if you do not care about this return
value.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
You should use this function only to extract data from value descriptors such as typeUTF8Text.

Because this function allows you to specify a desired type, it can result in coercion. When used correctly, this
has the positive effect of returning the data in the desired format. However, it can have side effects you may
not be expecting, such as the overhead of calls to coercion handlers. See also the Version Notes section below
for possible problems with coercion.

To get Apple event parameter data for your application to use directly, call AEGetParamPtr. To get a
descriptor for an Apple event parameter to pass on to another Apple Event Manager routine, call
AEGetParamDesc (page 59).

Before calling AEGetParamPtr, you can call the AESizeOfParam (page 101) function to determine a size for
the dataPtr buffer. However, unless you specify typeWildCard for the desiredType parameter,
AEGetParamPtr may coerce the data, which may cause the size of the data to change.

In some cases, you may get improved efficiency extracting information from an Apple event with the
AEGetDescDataRange (page 49) function.

Version Notes
Thread safe starting in Mac OS X v10.2.

If the actual parameter you are getting with AEGetParamPtr is a record, AEGetParamPtr will erroneously
allow you to get the parameter as any type at all, when it really should allow only typeAERecord, typeAEList,
or typeWildcard. For other types, it will place raw record data into the designated buffer. With AppleScript
1.1.2, it would then return errAECoercionFail, as expected. With AppleScript 1.3 and later, however, it
returns noErr.

You can work around this problem by checking the returned parameter from any call to AEGetParamPtr.
If the source type is typeAERecord and the type you asked for was anything other than typeAERecord,
typeAEList, or typeWildcard, you should assume the coercion failed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEGetRegisteredMachPort
Returns the Mach port (in the form of a mach_port_t) that was registered with the bootstrap server for this
process.

Functions 61
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

mach_port_t AEGetRegisteredMachPort (
 void
);

Return Value
Returns a Mach message port header.

Discussion
Apple events on Mac OS X are implemented in terms of Mach messages. If your application links with the
Carbon umbrella framework, it includes the HIToolbox framework, which initializes a Mach port and registers
it with the run loop for the application. That port is considered public, and is used for sending and receiving
Apple events.

Linking with the HIToolbox also requires that the application have a connection to the window server. To
facilitate writing server processes that can send and receive Apple events, the Apple Event Manager provides
the following functions (on Mac OS X only): AEGetRegisteredMachPort, AEDecodeMessage (page 37),
AESendMessage (page 94), and AEProcessMessage (page 74). Daemons and other processes with no user
interface can take advantage of these functions, while typical high-level applications will have no need for
them.

If your code doesn’t link with the HIToolbox or doesn’t have a run loop, it can call AEGetRegisteredMachPort
to register a port directly, then listen on that port for Apple events. It can use the other low-level functions
to process incoming Apple events on the port and to send Apple events through it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEMach.h

AEGetSpecialHandler
Gets a specified handler from a special handler dispatch table.

OSErr AEGetSpecialHandler (
 AEKeyword functionClass,
 AEEventHandlerUPP *handler,
 Boolean isSysHandler
);

Parameters
functionClass

The keyword for the special handler to get. You can specify any of the constants described in “Special
Handler Callback Constants” (page 219). See AEKeyword (page 172).

handler
A universal procedure pointer. On return, a pointer to the specified special handler, if one exists that
matches the value supplied in the functionClass parameter. See AEEventHandlerUPP (page 171).

isSysHandler
Specifies the special handler dispatch table to get the handler from. Pass TRUE to get the handler
from the system special handler dispatch table or FALSE to get the handler from your application’s
special handler dispatch table. Use of the system special handler dispatch table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

62 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
See also AEInstallSpecialHandler (page 68) and AERemoveSpecialHandler (page 87).

Version Notes
Thread safe starting in Mac OS X v10.2.

In Mac OS X, you should generally install all handlers in the application dispatch table. For Carbon applications
running in Mac OS 8 or Mac OS 9, a special handler in the system dispatch table could reside in the system
heap, where it would be available to other applications. However, this won’t work in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEGetTheCurrentEvent
Gets the Apple event that is currently being handled.

OSErr AEGetTheCurrentEvent (
 AppleEvent *theAppleEvent
);

Parameters
theAppleEvent

A pointer to an Apple event. On return, the Apple event that is currently being handled. If no Apple
event is currently being handled, AEGetTheCurrentEvent supplies a descriptor of descriptor type
typeNull, which does not contain any data. See AppleEvent (page 175).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
In many applications, the handling of an Apple event involves one or more long chains of calls to internal
functions. The AEGetTheCurrentEvent function makes it unnecessary for these calls to include the current
Apple event as a parameter; the functions can simply call AEGetTheCurrentEvent to get the current Apple
event when it is needed.

You can also use the AEGetTheCurrentEvent function to make sure that no Apple event is currently being
handled. For example, suppose your application always uses an application-defined function to delete a file.
That function can first call AEGetTheCurrentEvent and delete the file only if AEGetTheCurrentEvent
returns a null descriptor (that is, only if no Apple event is currently being handled).

Special Considerations

This function is not thread-safe and should only be called on the main thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

Functions 63
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEInitializeDesc
Initializes a new descriptor.

void AEInitializeDesc (
 AEDesc *desc
);

Parameters
desc

A pointer to a new descriptor. See AEDesc (page 162).

Discussion
The function sets the type of the descriptor to typeNull and sets the data handle to NULL. If you need to
initialize a descriptor that already has some data in it, use AEDisposeDesc (page 40) to deallocate the
memory and initialize the descriptor.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEInstallCoercionHandler
Installs a coercion handler in either the application or system coercion handler dispatch table.

OSErr AEInstallCoercionHandler (
 DescType fromType,
 DescType toType,
 AECoercionHandlerUPP handler,
 SRefCon handlerRefcon,
 Boolean fromTypeIsDesc,
 Boolean isSysHandler
);

Parameters
fromType

The descriptor type of the data coerced by the handler. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 197). See DescType (page 176).

toType
The descriptor type of the resulting data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 197).

If there was already an entry in the specified coercion handler table for the same source descriptor
type and result descriptor type, the existing entry is replaced. See DescType (page 176).

handler
A universal procedure pointer to the coercion handler function to install. See
AECoercionHandlerUPP (page 168).

64 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

handlerRefcon
A reference constant. The Apple Event Manager passes this value to the handler each time it calls it.
If your handler doesn’t require a reference constant, pass 0 for this parameter.

fromTypeIsDesc
Specifies the form of the data to coerce. Pass TRUE if the coercion handler expects the data as a
descriptor or FALSE if the coercion handler expects a pointer to the data. The Apple Event Manager
can provide a pointer to data more efficiently than it can provide a descriptor, so all coercion functions
should accept a pointer to data if possible.

isSysHandler
Specifies the coercion table to add the handler to. Pass TRUE to add the handler to the system coercion
table or FALSE to add the handler to your application’s coercion table. Use of the system coercion
table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Before using AEInstallCoercionHandler to install a handler for a particular descriptor type, you can use
the AEGetCoercionHandler (page 47) function to determine whether the table already contains a coercion
handler for that type.

Version Notes
See the Version Notes section for the AECoercePtr (page 30) function for information on when to use
descriptor-based versus pointer-based coercion handlers starting in Mac OS X version 10.2.

Thread safe starting in Mac OS X v10.2.

Your application should not install a coercion handler in a system coercion handler dispatch table with the
goal that the handler will get called when other applications perform coercions—this won’t work in Mac OS
X. For more information, see “Writing and Installing Coercion Handlers” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEInstallEventHandler
Adds an entry for an event handler to an Apple event dispatch table.

OSErr AEInstallEventHandler (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 AEEventHandlerUPP handler,
 SRefCon handlerRefcon,
 Boolean isSysHandler
);

Parameters
theAEEventClass

The event class for the Apple event or events to dispatch to this event handler. The Discussion section
describes interactions between this parameter and the theAEEventID parameter. See
AEEventClass (page 171).

Functions 65
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

theAEEventID
The event ID for the Apple event or events to dispatch to this event handler. The Discussion section
describes interactions between this parameter and the theAEEventClass parameter. See
AEEventID (page 172).

handler
A universal procedure pointer to the Apple event handler function to install. See
AEEventHandlerUPP (page 171).

handlerRefcon
A reference constant. The Apple Event Manager passes this value to the handler each time it calls it.
If your handler doesn’t require a reference constant, pass 0 for this parameter.

isSysHandler
Specifies the Apple event dispatch table to add the handler to. Pass TRUE to add the handler to the
system dispatch table or FALSE to add the handler to your application’s dispatch table. See Version
Notes for related information.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The parameters theAEEventClass and theAEEventID specify the event class and event ID of the Apple
events handled by the handler for this dispatch table entry. If there is already an entry in the specified dispatch
table for the same event class and event ID, it is replaced. For these parameters, you must provide one of
the following combinations:

 ■ the event class and event ID of a single Apple event to dispatch to the handler (for example, an event
class of kAECoreSuite and an event ID of kAEDelete so that a specific kind of delete event is
dispatched to the handler)

 ■ the typeWildCard constant for theAEEventClass and an event ID for theAEEventID, which indicates
that Apple events from all event classes whose event IDs match theAEEventID should be dispatched
to the handler (for example, an event class of typeWildCard and an event ID of kAEDelete so that
for all event classes, the delete event is dispatched to the handler)

 ■ an event class for theAEEventClass and the typeWildCard constant for theAEEventID, which
indicates that all events from the specified event class should be dispatched to the handler (for example,
an event class of kAECoreSuite and an event ID of typeWildCard so that all events for the core suite
are dispatched to the handler)

 ■ the typeWildCard constant for both the theAEEventClass and theAEEventID parameters, which
indicates that all Apple events should be dispatched to the handler

If you use the typeWildCard constant for either the theAEEventClass or the theAEEventID parameter
(or for both parameters), the corresponding handler must return the error errAEEventNotHandled if it
does not handle a particular event.

If an Apple event dispatch table contains one entry for an event class and a specific event ID, and also contains
another entry that is identical except that it specifies a wildcard value for either the event class or the event
ID, the Apple Event Manager dispatches the more specific entry. For example, if an Apple event dispatch
table includes one entry that specifies the event class as kAECoreSuite and the event ID as kAEDelete,
and another entry that specifies the event class as kAECoreSuite and the event ID as typeWildCard, the
Apple Event Manager dispatches the Apple event handler associated with the entry that specifies the event
ID as kAEDelete.

66 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

In addition to the Apple event handler dispatch tables, applications can add entries to special handler dispatch
tables, as described in “Managing Special Handler Dispatch Tables” (page 20).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X. For more information, see
“The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
AppleEvents.h

AEInstallObjectAccessor
Adds or replaces an entry for an object accessor function to an object accessor dispatch table.

OSErr AEInstallObjectAccessor (
 DescType desiredClass,
 DescType containerType,
 OSLAccessorUPP theAccessor,
 SRefCon accessorRefcon,
 Boolean isSysHandler
);

Parameters
desiredClass

The object type of the Apple event objects located by this accessor. See DescType (page 176).

containerType
The type of the token whose objects are accessed by this accessor. (Token is defined in
AEDisposeToken (page 41).) The accessor function finds objects in containers specified by tokens
of this type. See DescType (page 176).

theAccessor
A universal procedure pointer to the object accessor function to install. See OSLAccessorUPP (page
176).

accessorRefcon
A reference constant the Apple Event Manager passes to the object accessor function whenever it
calls the function. If your object accessor function doesn’t require a reference constant, pass 0 for this
parameter. To change the value of the reference constant, you must call AEInstallObjectAccessor
again.

isSysHandler
Specifies the object accessor dispatch table to add the entry to. Pass TRUE to add the entry to the
system object accessor dispatch table or FALSE to add the entry to your application’s object accessor
dispatch table. Use of the system object accessor dispatch table is not recommended.

Functions 67
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The AEInstallObjectAccessor function adds or replaces an entry to either the application or system
object accessor dispatch table.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

If your Carbon application running in Mac OS 8 or OS 9 installs a system object accessor function in its
application heap, rather than in the system heap, you must call AERemoveObjectAccessor (page 86) to
remove the function before your application terminates.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEInstallSpecialHandler
Installs a callback function in a special handler dispatch table.

OSErr AEInstallSpecialHandler (
 AEKeyword functionClass,
 AEEventHandlerUPP handler,
 Boolean isSysHandler
);

Parameters
functionClass

A value that specifies the type of handler to install. You can use any of the constants defined in “Special
Handler Callback Constants” (page 219).

If there is already an entry in the specified special handler dispatch table for the value you specify in
this parameter, it is replaced.

See AEKeyword (page 172).

handler
A universal procedure pointer to the special handler to install. See AEEventHandlerUPP (page 171).

isSysHandler
Specifies the special handler dispatch table to add the handler to. Pass TRUE to add the handler to
the system special handler dispatch table or FALSE to add the handler to your application’s special
handler dispatch table. Use of the system special handler dispatch table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
An Apple event special handler dispatch table contains entries with a function class keyword, the address of
the handler function that handles the Apple events indicated by the keyword, and a reference constant.
Depending on which handlers you choose to install, a special handler dispatch table can have entries for any
of the following:

68 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 ■ a predispatch handler (an Apple event handler that the Apple Event Manager calls immediately before
it dispatches an Apple event)

 ■ up to one each of the callback functions described in “Object Callback Functions” (page 140) these
functions, such as an object comparison function and an object-counting function, can be installed with
AEInstallSpecialHandler or with the AEInstallObjectAccessor (page 67) function

See also AEGetSpecialHandler (page 62) and AERemoveSpecialHandler (page 87).

Version Notes
Thread safe starting in Mac OS X v10.2.

For Carbon applications running in Mac OS 8 or Mac OS 9, a handler in the system special handler dispatch
table should reside in the system heap, where it may be available to other applications. If you put your system
handler code in your application heap, be sure to use AERemoveSpecialHandler to remove the handler
when your application quits. Otherwise, your handler will still have an entry in the system dispatch table
with a pointer a handler that no longer exists. Another application may dispatch an Apple event that attempts
to call your handler, leading to a system crash.

Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEInteractWithUser
Initiates interaction with the user when your application is a server application responding to an Apple event.

OSErr AEInteractWithUser (
 SInt32 timeOutInTicks,
 NMRecPtr nmReqPtr,
 AEIdleUPP idleProc
);

Parameters
timeOutInTicks

The amount of time (in ticks) that your handler is willing to wait for a response from the user. You
can specify a number of ticks or use one of the constants defined in “Timeout Constants” (page 221).

nmReqPtr
A pointer to a Notification Manager record provided by your application. You can specify NULL for
this parameter to get the default notification handling provided by the Apple Event Manager. See
the Notification Manager documentation for a description of the NMRecPtr data type.

idleProc
A universal procedure pointer to your application’s idle function, which handles events while waiting
for the Apple Event Manager to return control. See AEIdleUPP (page 172).

Functions 69
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). The AEInteractWithUser function
returns the errAENoUserInteraction result code if the user interaction preferences don’t allow user
interaction. If AEInteractWithUser returns the noErr result code, then your application is in the foreground
and is free to interact with the user.

Discussion
Your application should call the AEInteractWithUser function before displaying a dialog box or alert box
or otherwise interacting with the user in response to an Apple event. The AEInteractWithUser function
checks whether the client application set the kAENeverInteract flag for the current Apple event, if any,
and if so, returns an error. If not, then AEInteractWithUser checks the server application’s preference set
by the AESetInteractionAllowed (page 95) function and compares it against the source of the Apple
event—that is, whether it came from the same application, another process on the same computer, or a
process running on another computer.

If the user interaction preference settings permit the application to come to the foreground, this function
brings your application to the front, either directly or by posting a notification request.

Your application should normally pass a notification record in the nmReqPtr parameter rather than specifying
NULL for default notification handling. If you specify NULL, the Apple Event Manager looks for an application
icon with the ID specified by the application’s bundle ('BNDL') resource and the application’s file reference
('FREF') resource. The Apple Event Manager first looks for an 'SICN' resource with the specified ID if it
can’t find an 'SICN' resource, it looks for the 'ICN#' resource and compresses the icon to fit in the menu
bar. The Apple Event Manager won’t look for any members of an icon family other than the icon specified
in the 'ICN#' resource.

If the application doesn’t have 'SICN' or 'ICN#' resources, or if it doesn’t have a file reference resource,
the Apple Event Manager passes no icon to the Notification Manager, and no icon appears in the upper-right
corner of the screen. Therefore, if you want to display any icon other than those of type 'SICN' or 'ICN#',
you must specify a notification record as the second parameter to the AEInteractWithUser function.

If you want the Notification Manager to use a color icon when it posts a notification request, you should
provide a Notification Manager record that specifies a 'cicn' resource.

For additional information on interaction level, see AESend (page 92) and “AESendMode” (page 182).

See also AESetInteractionAllowed (page 95) and AEGetInteractionAllowed (page 52).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEManagerInfo
Provides information about the version of the Apple Event Manager currently available or the number of
processes that are currently recording Apple events.

70 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr AEManagerInfo (
 AEKeyword keyWord,
 long *result
);

Parameters
keyWord

A value that determines the kind of information the function supplies in the result parameter.

Pass the value keyAERecorderCount to obtain the number of processes that are currently recording
Apple events.

Pass the value keyAEVersion to obtain version information for the Apple Event Manager, in
NumVersion format.

Some keyword constants are defined in “Keyword Parameter Constants” (page 211).

See AEKeyword (page 172).

result
A pointer to a long value. On return, provides information that depends on what you pass in the
keyword parameter.

If you pass keyAERecorderCount, result specifies the number of processes that are currently
recording Apple events.

If you pass keyAEVersion, result supplies version information for the Apple Event Manager, in a
format that matches the 'vers' resource.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
For recordable applications, the information provided by AEManagerInfomay be useful when the application
is responding to Apple events that it sends to itself.

For information on determining whether the Apple Event Manager is available, see the Apple Event Manager
Gestalt Selector, described in Inside Mac OS X: Gestalt Manager Reference.

Version Notes
Thread safe starting in Mac OS X v10.2.

The AEManagerInfo function is available only in version 1.01 and later of the Apple Event Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEObjectInit
Initializes the Object Support Library.

Functions 71
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr AEObjectInit (
 void
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
You must call this function before calling any of the Apple Event Manager functions that describe or manipulate
Apple event objects.

You should call the AEObjectInit function to initialize the Apple Event Manager functions that handle
object specifiers and Apple event objects.

Version Notes
To make these functions available to your application with version 1.01 and earlier versions of the Apple
Event Manager, you must also link the Apple Event Object Support Library with your application when you
build it. For more information, see the Version Notes section for the AppleScript Gestalt Selector described
in Inside Mac OS X: Gestalt Manager Reference and the function AERemoveSpecialHandler (page 87).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEPrintDescToHandle
Provides a pretty printer facility for displaying the contents of Apple event descriptors.

OSStatus AEPrintDescToHandle (
 const AEDesc *desc,
 Handle *result
);

Parameters
desc

A pointer to a descriptor containing the information to be printed. See AEDesc (page 162).

result
A pointer to a location for a new Handle data type. On return, contains a new handle allocated by
the Memory Manager.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The data handle returned in the result parameter contains a text string formatted using the “AEBuild”
syntax. This string is useful for looking at the contents of Apple events sent by other applications and for
debugging your own descriptors.

AEPrintDescToHandle prints the contents of AEDesc, AERecord, and AEDescList descriptors in a format
that is suitable for input to AEBuildDesc (page 26). AEPrintDescToHandle also attempts display coerced
Apple event records as the coerced record type instead of as the original type. Any data structures that cannot
be identified are displayed as hexadecimal data.

72 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEPrintDescToHandle prints the contents of Apple events in a slightly different format. For these events,
the event class and event ID appear at the beginning of the output string, followed by the contents of the
event enclosed in curly braces. In addition, each attribute is printed with its four-character identifier and
preceded by an ampersand character. You cannot use the output string to recreate the Apple event from
AEBuildAppleEvent (page 24).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEProcessAppleEvent
Calls the handler, if one exists, for a specified Apple event.

OSErr AEProcessAppleEvent (
 const EventRecord *theEventRecord
);

Parameters
theEventRecord

A pointer to the event record for the Apple event to process. See the Event Manager documentation
for a description of the EventRecord data type.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). This is the error result from the Apple
event handler (or errAEHandlerNotFound). In most cases your application should ignore this error because
it will be seen by the Apple event sender as the keyErrorNumber parameter in the reply.

Discussion
After receiving a high-level event (and optionally determining whether it is a type of high-level event other
than an Apple event that your application might support), your application typically calls the
AEProcessAppleEvent function to determine the type of Apple event received and call the corresponding
handler. Your application should always handle high-level events immediately, or the Apple Event Manager
may return the event to the sending application with the errAEEventNotHandled result code.

The AEProcessAppleEvent function looks first in the application’s special handler dispatch table for an
entry that was installed by the AEInstallSpecialHandler (page 68) function with the constant
keyPreDispatch. If the application’s special handler dispatch table does not include such a handler or if
the handler returns errAEEventNotHandled, AEProcessAppleEvent looks in the application’s Apple
event dispatch table for an entry that matches the event class and event ID of the specified Apple event. You
install handlers in the application’s dispatch table with the AEInstallEventHandler (page 65) function.

If the application’s Apple event dispatch table does not include such a handler or if the handler returns
errAEEventNotHandled, the AEProcessAppleEvent function looks in the system special handler dispatch
table for an entry that was installed with the constant keyPreDispatch. If the system special handler dispatch
table does not include such a handler or if the handler returns errAEEventNotHandled,
AEProcessAppleEvent looks in the system Apple event dispatch table for an entry that matches the event
class and event ID of the specified Apple event.

If the system Apple event dispatch table does not include such a handler, the Apple Event Manager returns
the result code errAEEventNotHandled to the server (or target) application and, if the client application
is waiting for a reply, to the client application.

Functions 73
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

If AEProcessAppleEvent finds an entry in one of the dispatch tables that matches the event class and
event ID of the specified Apple event, it calls the corresponding handler.

If an Apple event dispatch table contains one entry for an event class and a specific event ID, and also contains
another entry that specifies a wildcard value for either the event class or the event ID, the Apple Event
Manager uses the more specific entry. For example, if one entry specifies an event class of kAECoreSuite
and an event ID of kAEDelete and another entry specifies an event class of kAECoreSuite and an event
ID of typeWildCard, the Apple Event Manager will dispatch an Apple event with an event ID of kAEDelete
to the handler from the entry that specifies the event ID as kAEDelete.

Version Notes
Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X. For more information, see
“The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
AEInteraction.h

AEProcessMessage
Decodes and dispatches a low level Mach message event to an event handler, including packaging and
returning the reply to the sender.

OSStatus AEProcessMessage (
 mach_msg_header_t *header
);

Parameters
header

A pointer to the received Mach message that should be processed. The contents of the message
header are invalid after calling this method.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The Apple Event Manager provides the following functions (on Mac OS X only) for working with Apple events
at a lower level: AEGetRegisteredMachPort (page 61), AEDecodeMessage (page 37),
AESendMessage (page 94), and AEProcessMessage. See the descriptions for those functions for more
information on when you might use them.

If your daemon or other code has initialized a Mach port and is listening on it for Apple events and other
messages, it can call AEProcessMessage to handle any incoming events it identifies as Apple events, while
handling other types of events itself. AEProcessMessage will dispatch the event to an event handler (by
calling AEDecodeMessage for you) and package and return the reply to the sender, simplifying handling for
your code.

The Apple Event Manager reserves Mach message IDs in the range 0 to 999 for its own use.
AEProcessMessage returns a paramErr result code if the Mach message did not contain an Apple event.

74 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEMach.h

AEPutArray
Inserts the data for an Apple event array into a descriptor list, replacing any previous descriptors in the list.

OSErr AEPutArray (
 AEDescList *theAEDescList,
 AEArrayType arrayType,
 const AEArrayData *arrayPtr,
 DescType itemType,
 Size itemSize,
 long itemCount
);

Parameters
theAEDescList

A pointer to the descriptor list to put the Apple event array into. If there are any descriptors already
in the descriptor list, they are replaced. If the array type is kAEKeyDescArray, theAEDescListmust
point to an Apple event record; otherwise, it can point to either a descriptor list or an Apple event
record.

If you pass a pointer to a factored descriptor list, created by calling the AECreateList (page 35)
function, each array item in the array pointed to by the arrayPtr parameter must include the data
that is common to all the descriptors in the list. The Apple Event Manager automatically isolates the
common data you specified in the call to AECreateList. A factored descriptor list is described in
the Discussion section.

See AEDescList (page 169).

arrayType
The Apple event array type to create. Pass a value specified by one of the constants described in “Data
Array Constants” (page 196). See AEArrayType (page 168).

arrayPtr
A pointer to a buffer, local variable, or other storage location, created and disposed of by your
application, that contains the array to put into the descriptor list. See AEArrayData (page 161).

itemType
For arrays of type kAEDataArray, kAEPackedArray, or kAEHandleArray, the descriptor type of
the array items to create. Use one of the constants described in “Descriptor Type Constants” (page
197), such as typeLongInteger. You don’t need to specify an item type for arrays of type
kAEDescArray or kAEKeyDescArray because the data is already stored in descriptors which contain
a descriptor type. See DescType (page 176).

itemSize
For arrays of type kAEDataArray or kAEPackedArray, the size (in bytes) of the array items to create.
You don’t need to specify an item size for arrays of type kAEDescArray, kAEKeyDescArray, or
kAEHandleArray because their descriptors (though not the data they point to) have a known size.

itemCount
The number of elements in the array.

Functions 75
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
A factored descriptor list is one in which the Apple Event Manager automatically isolates the data that is
common to all the elements of the list so that the common data only appears in the list once. To create a
factored descriptor list, you call the AECreateList (page 35) function and specify the data that is common
to all elements in the descriptor array.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutAttributeDesc
Adds a descriptor and a keyword to an Apple event as an attribute.

OSErr AEPutAttributeDesc (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 const AEDesc *theAEDesc
);

Parameters
theAppleEvent

A pointer to the Apple event to add an attribute to. See the AppleEvent (page 175) data type.

theAEKeyword
The keyword for the attribute to add. If the Apple event already includes an attribute with this keyword,
the attribute is replaced.

Some keyword constants are described in “Keyword Attribute Constants” (page 209).

See AEKeyword (page 172).

theAEDesc
A pointer to the descriptor to assign to the attribute. The descriptor type of the specified descriptor
should match the defined descriptor type for that attribute. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The AEPutAttributeDesc function takes a descriptor and a keyword and adds them to an Apple event as
an attribute. If the descriptor type required for the attribute is different from the descriptor type of the
descriptor, the Apple Event Manager attempts to coerce the descriptor into the required type, with one
exception: the Apple Event Manager does not attempt to coerce the data for an address attribute, thereby
allowing applications to use their own address types.

Version Notes
Thread safe starting in Mac OS X v10.2.

76 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutAttributePtr
Adds a pointer to data, a descriptor type, and a keyword to an Apple event as an attribute.

OSErr AEPutAttributePtr (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType typeCode,
 const void *dataPtr,
 Size dataSize
);

Parameters
theAppleEvent

A pointer to the Apple event to add an attribute to. See the AppleEvent (page 175) data type.

theAEKeyword
The keyword for the attribute to add. If the Apple event already includes an attribute with this keyword,
the attribute is replaced.

Some keyword constants are described in “Keyword Attribute Constants” (page 209).

See AEKeyword (page 172).

typeCode
The descriptor type for the attribute to add. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 197). See DescType (page 176).

dataPtr
A pointer to the data for the attribute to add.

dataSize
The length, in bytes, of the data for the attribute to add.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutDesc
Adds a descriptor to any descriptor list, possibly replacing an existing descriptor in the list.

Functions 77
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr AEPutDesc (
 AEDescList *theAEDescList,
 long index,
 const AEDesc *theAEDesc
);

Parameters
theAEDescList

A pointer to the descriptor list to add a descriptor to. See AEDescList (page 169).

index
A one-based positive integer indicating the position to insert the descriptor at. If there is already a
descriptor in the specified position, it is replaced.

You can pass a value of zero or count + 1 to add the descriptor at the end of the list. AEPutDesc
returns an error (AEIllegalIndex) if you pass a negative number or a value that is out of range.

theAEDesc
A pointer to the descriptor to add to the list. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutKeyDesc
Inserts a descriptor and a keyword into an Apple event record as an Apple event parameter.

OSErr AEPutKeyDesc (
 AERecord *theAERecord,
 AEKeyword theAEKeyword,
 const AEDesc *theAEDesc
);

Parameters
theAERecord

A pointer to the Apple event record to add a parameter to.

theAEKeyword
The keyword specifying the parameter to add. If the Apple event record already has a parameter with
this keyword, the parameter is replaced.

Some keyword constants are described in “Keyword Parameter Constants” (page 211).

See AEKeyword (page 172).

theAEDesc
A pointer to the descriptor for the parameter to add. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

78 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
This function is declared as a macro that invokes AEPutParamDesc (page 80), which can operate on an
Apple event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AEPutParamDesc (page 80).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutKeyPtr
Inserts data, a descriptor type, and a keyword into an Apple event record as an Apple event parameter.

OSErr AEPutKeyPtr (
 AERecord *theAERecord,
 AEKeyword theAEKeyword,
 DescType typeCode,
 const void *dataPtr,
 Size dataSize
);

Parameters
theAERecord

A pointer to the Apple event record to add a parameter to.

theAEKeyword
The keyword for the parameter to add. If the Apple event record already includes a parameter with
this keyword, the parameter is replaced.

Some keyword constants are described in “Keyword Parameter Constants” (page 211).

See AEKeyword (page 172).

typeCode
The descriptor type for the parameter to add. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 197). See DescType (page 176).

dataPtr
A pointer to the data for the parameter to add.

dataSize
The length, in bytes, of the data for the parameter to add.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
This function is declared as a macro that invokes AEPutParamPtr (page 80), which can operate on an Apple
event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AEPutParamPtr (page 80).

Availability
Available in Mac OS X v10.0 and later.

Functions 79
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Declared In
AEDataModel.h

AEPutParamDesc
Inserts a descriptor and a keyword into an Apple event or Apple event record as an Apple event parameter.

OSErr AEPutParamDesc (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 const AEDesc *theAEDesc
);

Parameters
theAppleEvent

A pointer to the Apple event to add a parameter to. See the AppleEvent (page 175) data type.

theAEKeyword
The keyword specifying the parameter to add. If the Apple event already has a parameter with this
keyword, the parameter is replaced.

Some keyword constants are described in “Keyword Parameter Constants” (page 211).

See AEKeyword (page 172).

theAEDesc
A pointer to the descriptor for the parameter to add. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutParamPtr
Inserts data, a descriptor type, and a keyword into an Apple event or Apple event record as an Apple event
parameter.

OSErr AEPutParamPtr (
 AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType typeCode,
 const void *dataPtr,
 Size dataSize
);

Parameters
theAppleEvent

A pointer to the Apple event to add a parameter to. See the AppleEvent (page 175) data type.

80 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

theAEKeyword
The keyword for the parameter to add. If the Apple event already includes an parameter with this
keyword, the parameter is replaced.

Some keyword constants are described in “Keyword Parameter Constants” (page 211).

See AEKeyword (page 172).

typeCode
The descriptor type for the parameter to add. For a list of AppleScript’s predefined descriptor types,
see “Descriptor Type Constants” (page 197). See DescType (page 176).

dataPtr
A pointer to the data for the parameter to add.

dataSize
The length, in bytes, of the data for the parameter to add.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEPutPtr
Inserts data specified in a buffer into a descriptor list as a descriptor, possibly replacing an existing descriptor
in the list.

OSErr AEPutPtr (
 AEDescList *theAEDescList,
 long index,
 DescType typeCode,
 const void *dataPtr,
 Size dataSize
);

Parameters
theAEDescList

A pointer to the descriptor list to add a descriptor to. See AEDescList (page 169).

index
A one-based positive integer indicating the position to insert the descriptor at. If there is already a
descriptor in the specified position, it is replaced.

You can pass a value of zero or count + 1 to add the descriptor at the end of the list. AEPutPtr returns
an error (AEIllegalIndex) if you pass a negative number or a value that is out of range.

typeCode
The descriptor type for the descriptor to be put into the list. For a list of AppleScript’s predefined
descriptor types, see “Descriptor Type Constants” (page 197). See DescType (page 176).

Functions 81
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

dataPtr
A pointer to the data for the descriptor to add.

dataSize
The length, in bytes, of the data for the descriptor to add.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
AEDataModel.h

AERemoteProcessResolverGetProcesses
Returns an array of objects containing information about processes running on a remote machine.

CFArrayRef AERemoteProcessResolverGetProcesses (
 AERemoteProcessResolverRef ref,
 CFStreamError *outError
);

Parameters
ref

The AERemoteProcessResolverRef (page 173) to query. Acquired from a previous call to
AECreateRemoteProcessResolver (page 36).

outError
If the function result is NULL, outError contains information about the failure. See the Core Foundation
Reference Documentation for a description of the CFStreamError data type.

Return Value
In the case of an error, returns NULL, in which case the outError parameter provides error information. If
successful, returns a CFArrayRef of CFDictionaryRef objects containing information about the discovered
remote processes. Each dictionary contains the URL of a remote application and its human readable name;
it may also contain a CFNumberRef specifying a user ID for the application, if it has one; and it may also
contain a CFNumberRef specifying the process ID for the process. The array is owned by the resolver, so you
must retain it before disposing of the resolver object itself. For information on the keys for getting information
from the dictionary, see “Remote Process Dictionary Keys” (page 218).

Discussion
You first call AECreateRemoteProcessResolver (page 36) to obtain a reference to a resolver object you
can use to obtain a list of processes running on a specified remote machine. See the description for that
function for additional information. You then pass that reference to
AERemoteProcessResolverGetProcesses to get an array of objects containing information about the
discovered remote processes.

82 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

If the resolver was not previously scheduled for execution (by a call to the
AERemoteProcessResolverScheduleWithRunLoop (page 83) function),
AERemoteProcessResolverGetProcesseswill block until the resulting array is available or an error occurs.
If the resolver was previously scheduled but had not yet completed fetching the array, this call will block
until the resolver does complete.

Version Notes
Thread safe starting in Mac OS X v10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AERemoteProcessResolverScheduleWithRunLoop
Schedules a resolver for execution on a given run loop in a given mode.

void AERemoteProcessResolverScheduleWithRunLoop (
 AERemoteProcessResolverRef ref,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode,
 AERemoteProcessResolverCallback callback,
 const AERemoteProcessResolverContext *ctx
);

Parameters
ref

The AERemoteProcessResolverRef (page 173) to query. Acquired from a previous call to
AECreateRemoteProcessResolver (page 36).

runLoop
The run loop on which to schedule resolution of remote processes. For information on run loops, see
Introduction to Run Loops. See the Core Foundation Reference Documentation for a description of
the CFRunLoop data type.

runLoopMode
Specifies the run loop mode. See Input Modes for information on available modes. See the Core
Foundation Reference Documentation for a description of the CFStringRef data type.

callback
A callback function to be executed when the resolver completes. See
AERemoteProcessResolverCallback (page 148) for information on the callback definition.

ctx
Optionally supplies information of use while resolving remote processes. If this parameter is not NULL,
the info field of this structure is passed to the callback function (otherwise, the info parameter to the
callback function will explicitly be NULL). See AERemoteProcessResolverContext (page 163)
for a description of this data type.

Discussion
Schedules a resolver for execution on a given run loop in a given mode. The resolver will move through
various internal states as long as the specified run loop is run. When the resolver completes, either with
success or with an error condition, the callback is executed. There is no explicit unschedule of the resolver;
you must dispose of it to remove it from the run loop.

Functions 83
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Version Notes
Thread safe starting in Mac OS X v10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AERemoveCoercionHandler
Removes a coercion handler from a coercion handler dispatch table.

OSErr AERemoveCoercionHandler (
 DescType fromType,
 DescType toType,
 AECoercionHandlerUPP handler,
 Boolean isSysHandler
);

Parameters
fromType

The descriptor type of the data coerced by the handler. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 197). See DescType (page 176).

toType
The descriptor type of the resulting data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 197). See DescType (page 176).

handler
A universal procedure pointer to the coercion handler to remove. Although the parameters fromType
and toType are sufficient to identify the handler, you can identify the handler explicitly as a safeguard.
If you pass NULL for this parameter, the Apple Event Manager relies solely on the event class and
event ID to identify the handler. See AECoercionHandlerUPP (page 168).

isSysHandler
Specifies the coercion table to remove the handler from. Pass TRUE to remove the handler from the
system coercion table or FALSE to remove the handler from your application’s coercion table. Use of
the system coercion table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Use of system coercion tables is not recommended. For more information, see “Writing and Installing Coercion
Handlers” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

84 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AERemoveEventHandler
Removes an event handler entry from an Apple event dispatch table.

OSErr AERemoveEventHandler (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 AEEventHandlerUPP handler,
 Boolean isSysHandler
);

Parameters
theAEEventClass

The event class for the handler to remove. See AEEventClass (page 171).

theAEEventID
The event ID for the handler to remove. See AEEventID (page 172).

handler
A universal procedure pointer to the handler to remove. Although the parameters theAEEventClass
and theAEEventID are sufficient to identify the handler, you can identify the handler explicitly as a
safeguard. If you pass NULL for this parameter, the Apple Event Manager relies solely on the event
class and event ID to identify the handler.

If you use the typeWildCard constant for either or both of the event class and event ID parameters,
AERemoveEventHandler will return an error unless an entry exists that specifies typeWildCard in
exactly the same way. For example, if you specify typeWildCard in both the theAEEventClass
parameter and the theAEEventID parameter, AERemoveEventHandler will not remove the first
handler for any event class and event ID in the dispatch table; instead, it will only remove a handler
if an entry exists that specifies type typeWildCard for both the event class and the event ID.

For an explanation of wildcard values, see the Discussion section for AEInstallEventHandler (page
65).

See AEEventHandlerUPP (page 171).

isSysHandler
Specifies the Apple event dispatch table to remove the handler from. Pass TRUE to remove the handler
from the system dispatch table or FALSE to remove the handler from your application’s dispatch
table. See Version Notes for related information.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive events—this won’t work in Mac OS X. For more information, see
“The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

Functions 85
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AERemoveObjectAccessor
Removes an object accessor function from an object accessor dispatch table.

OSErr AERemoveObjectAccessor (
 DescType desiredClass,
 DescType containerType,
 OSLAccessorUPP theAccessor,
 Boolean isSysHandler
);

Parameters
desiredClass

The object class of the Apple event objects located by the object accessor function to remove. Pass
the value typeWildCard to remove an object accessor function whose entry in an object accessor
dispatch table specifies typeWildCard as the object class. Pass the value cProperty to remove an
object accessor function whose entry in an object accessor dispatch table specifies cProperty (a
constant used to specify a property of any object class). Some other possible values are defined in
“Object Class ID Constants” (page 215). See DescType (page 176).

containerType
The descriptor type of the token that identifies the container for the objects located by the object
accessor function to remove. (Token is defined in AEDisposeToken (page 41).) Pass the value
typeWildCard to remove an object accessor function whose entry in an object accessor dispatch
table specifies typeWildCard as the descriptor type of the token used to specify the container type.
See DescType (page 176).

theAccessor
A universal procedure pointer to the special handler to remove. Although the functionClass
parameter is sufficient to identify the handler to remove, you can identify the handler explicitly as a
safeguard. If you pass NULL for this parameter, the Apple Event Manager relies solely on the function
class to identify the handler. A universal procedure pointer (UPP) to the object accessor function to
remove. Although the parameters desiredClass and containerType are sufficient to identify the
function to remove, you can identify the function explicitly by providing a UPP in this parameter. If
you pass NULL for this parameter, the Apple Event Manager relies solely on the desired class and
container type. See OSLAccessorUPP (page 176).

isSysHandler
Specifies the object accessor dispatch table to remove the object accessor function from. Pass TRUE
to remove the object accessor function from the system object accessor dispatch table or FALSE to
remove the object accessor function from your application’s object accessor dispatch table. Use of
the system object accessor dispatch table is not recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

86 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AERemoveSpecialHandler
Removes a handler from a special handler dispatch table.

OSErr AERemoveSpecialHandler (
 AEKeyword functionClass,
 AEEventHandlerUPP handler,
 Boolean isSysHandler
);

Parameters
functionClass

The keyword for the special handler to remove. Pass one of the constants described in “Special Handler
Callback Constants” (page 219). See AEKeyword (page 172).

handler
A universal procedure pointer to the special handler to remove. Although the functionClass
parameter is sufficient to identify the handler to remove, you can identify the handler explicitly as a
safeguard. If you pass NULL for this parameter, the Apple Event Manager relies solely on the function
class to identify the handler. See AEEventHandlerUPP (page 171).

isSysHandler
Specifies the special handler dispatch table to remove the handler from. Pass TRUE to remove the
handler from the system special handler dispatch table or FALSE to remove the handler from your
application’s special handler dispatch table. Use of the system special handler dispatch table is not
recommended.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See also AEInstallSpecialHandler (page 68) and AEGetSpecialHandler (page 62).

Version Notes
Thread safe starting in Mac OS X v10.2.

Your application should not install a special handler in a system dispatch table with the goal that the handler
will get called when other applications receive events—this won’t work in Mac OS X.

In some previous versions of the Mac OS, applications might have reason to disable, within the application
only, all Apple Event Manager functions that support Apple event objects—that is, all the functions available
to an application as a result of linking the Object Support Library (OSL) and calling the AEObjectInit (page
71) function.

To disable the OSL, you should pass the keyword keySelectProc in the functionClass parameter, NULL
in the handler parameter, and FALSE in the isSysHandler parameter. An application that expects its copy
of the OSL to move after it is installed—for example, an application that keeps it in a stand-alone code
resource—would need to disable the OSL. When an application calls AEObjectInit to initialize the OSL,
the OSL installs the addresses of its functions as extensions to the pack. If those functions move, the addresses
become invalid.

Once you have called the AERemoveSpecialHandler function to disable the OSL, subsequent calls by your
application to any of the Apple Event Manager functions that support Apple event objects will return errors.
To initialize the OSL after disabling it with the AERemoveSpecialHandler function, your application must
call AEObjectInit again.

Functions 87
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

If you expect to initialize the OSL and disable it several times, you should call AERemoveObjectAccessor
to remove your application’s object accessor functions from your application’s object accessor dispatch table
before you call AERemoveSpecialHandler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

AEReplaceDescData
Copies the specified data into the specified descriptor, replacing any previous data.

OSErr AEReplaceDescData (
 DescType typeCode,
 const void *dataPtr,
 Size dataSize,
 AEDesc *theAEDesc
);

Parameters
typeCode

Specifies the descriptor type of the data pointed to by dataPtr. For a list of AppleScript’s predefined
descriptor types, see “Descriptor Type Constants” (page 197). See DescType (page 176).

dataPtr
A pointer to the data to store in the specified descriptor.

dataSize
The size, in bytes, of the data pointed to by the dataSize parameter.

theAEDesc
A pointer to a descriptor. On return, contains the copied data. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEResetTimer
Resets the timeout value for an Apple event to its starting value.

88 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr AEResetTimer (
 const AppleEvent *reply
);

Parameters
reply

A pointer to the default reply for an Apple event, provided by the Apple Event Manager. See
AppleEvent (page 175).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The AEResetTimer function resets the timeout value for an Apple event to its starting value. A server
application can call this function when it knows it cannot fulfill a client application’s request (either by
returning a result or by sending back a reply Apple event) before the client application is due to time out.

When your application calls AEResetTimer, the Apple Event Manager for the server application uses the
default reply to send a Reset Timer event to the client application the Apple Event Manager for the client
application’s computer intercepts this Apple event and resets the client application’s timer for the Apple
event. (The Reset Timer event is never dispatched to a handler, so the client application does not need a
handler for it.)

Version Notes
Prior to Mac OS X version 10.3, calling AEResetTimer did not reset the timeout value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEResolve
Resolves an object specifier.

OSErr AEResolve (
 const AEDesc *objectSpecifier,
 short callbackFlags,
 AEDesc *theToken
);

Parameters
objectSpecifier

A pointer to the object specifier to resolve. See AEDesc (page 162).

callbackFlags
A value that determines what additional assistance, if any, your application can give the Apple Event
Manager when it parses the object specifier. The value is specified by adding the desired constants
described in “Callback Constants for the AEResolve Function” (page 187). Most applications use
kAEIDoMinimum.

Functions 89
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

theToken
A pointer to a descriptor. On return, a token that identifies the Apple event objects specified by the
objectSpecifier parameter. (Token is defined in AEDisposeToken (page 41).)

Your object accessor functions may need to create many tokens to resolve a single object specifier;
this parameter contains only the final token that identifies the requested Apple event object.

Whenever the AEResolve function returns final token to your event handler as the result of the
resolving an object specifier passed to AEResolve, your application must deallocate the memory
used by the token. If your application uses complex tokens, it must dispose of the token by calling
AEDisposeToken (page 41). If your application uses simple tokens, you can use either
AEDisposeToken (page 41) or AEDisposeDesc (page 40). See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). The AEResolve function returns any
result code returned by one of your application’s object accessor functions or object callback functions. For
example, an object accessor function can return errAENoSuchObject (–1728) when it can’t find an Apple
event object, or it can return more specific result codes. If any object accessor function or object callback
function returns a result code other than noErr or errAEEventNotHandled, AEResolve immediately
disposes of any existing tokens and returns. The result code it returns in this case is the result code returned
by the object accessor function or the object callback function.

Discussion
If an Apple event parameter consists of an object specifier, your handler for the event typically calls the
AEResolve function to begin the process of resolving the object specifier.

The AEResolve function resolves the object specifier passed in the objectSpecifier parameter with the
help of your object accessor functions, described in “Object Accessor Callbacks” (page 139), and the object
callback functions, described in “Object Callback Functions” (page 140).

For information on how to receive error information from the AEResolve function, see
OSLGetErrDescProcPtr (page 157).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEResumeTheCurrentEvent
Informs the Apple Event Manager that your application wants to resume the handling of a previously
suspended Apple event or that it has completed the handling of the Apple event.

OSErr AEResumeTheCurrentEvent (
 const AppleEvent *theAppleEvent,
 const AppleEvent *reply,
 AEEventHandlerUPP dispatcher,
 SRefCon handlerRefcon
);

Parameters
theAppleEvent

A pointer to the Apple event to resume handling for. See AppleEvent (page 175).

90 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

reply
A pointer to the default reply provided by the Apple Event Manager for the Apple event. See
AppleEvent (page 175).

dispatcher
One of the following:

 ■ a universal procedural pointer to a function that the Apple Event Manager calls to handle the
resumed event, or

 ■ the constant kAEUseStandardDispatch, which tells the Apple Event Manager to handle the
resumed event with its standard dispatching mechanism, or

 ■ the constant kAENoDispatch, which tells the Apple Event Manager the Apple event has been
completely processed and doesn’t need to be dispatched.

See the handlerRefcon parameter for more information.

The dispatch constants are described in “Resume Event Dispatch Constants” (page 219).

See AEEventHandlerUPP (page 171).

handlerRefcon
If the dispatcher parameter specifies a universal procedure pointer to your routine, the reference
constant is passed to your handler. If you pass the value kAEUseStandardDispatch or
kAENoDispatch for the dispatcher parameter, you must pass 0 for the handlerRefcon parameter.

If the value of dispatcher is kAEUseStandardDispatch, the Apple Event Manager ignores the
handlerRefcon parameter and instead passes the reference constant stored in the Apple event
dispatch table entry for the resumed Apple event.

If the value of dispatcher is any other value then it is a universal procedure pointer to an event
handler, and the Apple Event Manager passes the value from the handlerRefcon parameter as the
reference constant when it calls the handler.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). This is the error result from the Apple
event handler (or errAEHandlerNotFound). In most cases your application should ignore this error because
it will be seen by the Apple event sender as the keyErrorNumber parameter in the reply.

Discussion
Applications call AESuspendTheCurrentEvent (page 113) to suspend handling of an Apple event and
AEResumeTheCurrentEvent to resume it again. You typically call the AESuspendTheCurrentEvent
function when your application needs to do some lengthy processing before responding to the event.

When your application calls the AEResumeTheCurrentEvent function, the Apple Event Manager resumes
handling the specified Apple event using the handler specified in the dispatcher parameter, if any. If
kAENoDispatch is specified in the dispatcher parameter, AEResumeTheCurrentEvent simply informs
the Apple Event Manager that the specified event has been handled.

Special Considerations

This function is not thread-safe and, along with AESuspendTheCurrentEvent, should be called only on
the main thread.

When your application suspends an Apple event, it does not need to dispose of the Apple event or the reply
Apple event passed to the handler that suspends the event, whether or not the application eventually resumes
the event. However, if the application will later resume the event, the handler that suspends the event should
save a copy of the underlying data storage for the Apple event and the reply event. When resuming the
event, you pass those copies to AEResumeTheCurrentEvent, which uses the information they contain to
identify the original event and reply. For related information, see AESuspendTheCurrentEvent (page 113).

Functions 91
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Make sure all processing involving the event or the reply has been completed before your application calls
AEResumeTheCurrentEvent. Do not call AEResumeTheCurrentEvent for an event that was not suspended.

An Apple event handler that suspends an event should not immediately call AEResumeTheCurrentEvent,
because the handler will generate an error. Instead, the handler should just return after suspending the event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AESend
Sends the specified Apple event.

OSErr AESend (
 const AppleEvent *theAppleEvent,
 AppleEvent *reply,
 AESendMode sendMode,
 AESendPriority sendPriority,
 SInt32 timeOutInTicks,
 AEIdleUPP idleProc,
 AEFilterUPP filterProc
);

Parameters
theAppleEvent

A pointer to the Apple event to send. See AppleEvent (page 175).

reply
A pointer to a reply Apple event. On return, contains the reply Apple event from the server application,
if you specified the kAEWaitReply flag in the sendMode parameter. If you specify the kAEQueueReply
flag in the sendMode parameter, you receive the reply Apple event in your event queue. If you specify
kAENoReply flag, the reply Apple event is a null descriptor (one with descriptor type typeNull). If
you specify kAEWaitReply in the sendMode parameter, and if the function returns successfully (see
function result below), your application is responsible for using the AEDisposeDesc (page 40)
function to dispose of the descriptor returned in the reply parameter.

sendMode
Specifies various options for how the server application should handle the Apple event. To obtain a
value for this parameter, you add together constants to set bits that specify the reply mode, the
interaction level, the application switch mode, the reconnection mode, and the return receipt mode.
For more information, see “AESendMode” (page 182).

sendPriority
See the Version Notes section below for important information. A value that specifies the priority for
processing the Apple event. You can specify normal or high priority, using the constants described
in “AESendMode” (page 182). See AESendPriority (page 174).

92 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

timeOutInTicks
If the reply mode specified in the sendMode parameter is kAEWaitReply, or if a return receipt is
requested, this parameter specifies the length of time (in ticks) that the client application is willing
to wait for the reply or return receipt from the server application before timing out. Most applications
should use the kAEDefaultTimeout constant, which tells the Apple Event Manager to provide an
appropriate timeout duration. If the value of this parameter is kNoTimeOut, the Apple event never
times out. These constants are described in “Timeout Constants” (page 221).

idleProc
A universal procedure pointer to a function that handles events (such as update, operating-system,
activate, and null events) that your application receives while waiting for a reply. Your idle function
can also perform other tasks (such as displaying a wristwatch or spinning beach ball cursor) while
waiting for a reply or a return receipt.

If your application specifies the kAEWaitReply flag in the sendMode parameter and you wish your
application to get periodic time while waiting for the reply to return, you must provide an idle function.
Otherwise, you can pass a value of NULL for this parameter. For more information on the idle function,
see AEIdleProcPtr (page 147).

filterProc
A universal procedure pointer to a function that determines which incoming Apple events should be
received while the handler waits for a reply or a return receipt. If your application doesn’t need to
filter Apple events, you can pass a value of NULL for this parameter. If you do so, no application-oriented
Apple events are processed while waiting. For more information on the filter function, see
AEFilterProcPtr (page 146).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). The AESend function returns noErr if the
Event Manager successfully sends the Apple event—this value does not indicate that the Apple event was
handled successfully. If the handler returns a result code other than noErr, and if the client is waiting for a
reply, AESend returns the result code in the keyErrorNumber parameter of the reply Apple event. For a
result code other than noErr, you should not call the AEDisposeDesc (page 40) function to dispose of the
descriptor returned in the reply parameter, because the descriptor is invalid.

Discussion
You typically create an Apple event to send with the AECreateAppleEvent (page 32) function and add
information to it with the functions described in “Adding Parameters and Attributes to Apple Events and
Apple Event Records” (page 14).

If the Apple Event Manager cannot find a handler for the Apple event in the server application’s dispatch
table or in the system dispatch table, it returns the result code errAEEventNotHandled to the server
application (as the result of the AEProcessAppleEvent (page 73) function). If the client application is
waiting for a reply, the Apple Event Manager also returns this result code to the client in the keyErrorNumber
parameter of the reply event.

In addition to specifying the wait duration for replies, the timeOutInTicks parameter is used as a wait
value when queuing events for other applications. The Apple Event Manager waits for the specified duration
as it attempts to queue the event. If you specify kAEWaitReply and the target application quits or crashes
after the event is queued but before the reply is returned, the Apple Event Manager returns a
sessionClosedErr result code.

In some situations, there are advantages to sending Apple events with the AESendMessage (page 94)
function. That function requires less overhead than AESend and it allows you to send Apple events without
linking to the entire Carbon framework (and window server), as required by AESend. For more information
on sending Apple events, see “Sending an Apple Event” in Apple Events Programming Guide.

Functions 93
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Version Notes
In Mac OS 9 and earlier, you use the sendMode parameter to specify how the server should handle the Apple
event. “AESendMode” (page 182) provides a complete description of the constants you use with this parameter.
The sendPriority parameter is deprecated in Mac OS X and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AESendMessage
Sends an AppleEvent to a target process without some of the overhead required by AESend.

OSStatus AESendMessage (
 const AppleEvent *event,
 AppleEvent *reply,
 AESendMode sendMode,
 long timeOutInTicks
);

Parameters
event

A pointer to the Apple event to send.

reply
A pointer to a reply Apple event. On return, contains the reply Apple event from the server application,
if you specified the kAEWaitReply flag in the sendMode parameter. If you specify the kAEQueueReply
flag in the sendMode parameter, you receive the reply Apple event in your event queue. If you specify
kAENoReply flag, the reply Apple event is a null descriptor (one with descriptor type typeNull). If
you specify kAEWaitReply in the sendMode parameter, and if the function returns successfully (see
function result below), your application is responsible for using the AEDisposeDesc (page 40)
function to dispose of the descriptor returned in the reply parameter.

sendMode
Specifies various options for how the server application should handle the Apple event. To obtain a
value for this parameter, you add together constants to set bits that specify the reply mode, the
interaction level, the application switch mode, the reconnection mode, and the return receipt mode.
For more information, see “AESendMode” (page 182).

timeOutInTicks
If the reply mode specified in the sendMode parameter is kAEWaitReply, or if a return receipt is
requested, this parameter specifies the length of time (in ticks) that the client application is willing
to wait for the reply or return receipt from the server application before timing out. Most applications
should use the kAEDefaultTimeout constant, which tells the Apple Event Manager to provide an
appropriate timeout duration. If the value of this parameter is kNoTimeOut, the Apple event never
times out. These constants are described in “Timeout Constants” (page 221).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The AESendMessage function allows you to send Apple events without linking to the entire Carbon framework,
as required by AESend (page 92). Linking with Carbon brings in the HIToolbox framework, which requires
that your application have a connection to the window server. Daemons and other applications that have

94 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

no interface but wish to send and receive Apple events can use the following functions for working with
Apple events at a lower level: AESendMessage, AEGetRegisteredMachPort (page 61),
AEDecodeMessage (page 37), and AEProcessMessage (page 74). See the descriptions for those functions
for more information on when you might use them.

If the target of an event sent with AESendMessage is the current process (as specified by using
typeProcessSerialNumber of { 0, kCurrentProcess } in the Apple event being sent), the Apple
event is dispatched directly to the appropriate event handler in your process and not serialized.

Special Considerations

The AESendMessage function is both asynchronous and thread-safe, so you could, for example, set up a
thread to send an Apple event and wait for a reply. If you use threads, you must add a typeReplyPortAttr
attribute to your event that identifies the Mach port on which to receive the reply.

However, due to a bug that was present prior to Mac OS X version 10.5, you could not safely dispose of a
Mach port you created to use as the reply port. Disposing of the port could, rarely, lead to a crash, while
failing to dispose of if leaked resources. The sample code project AESendThreadSafe shows how to safely
work around the bug in earlier Mac OS versions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEMach.h

AESetInteractionAllowed
Specifies user interaction preferences for responding to an Apple event when your application is the server
application.

OSErr AESetInteractionAllowed (
 AEInteractAllowed level
);

Parameters
level

The desired user interaction level. Pass one of the values described in “User Interaction Level
Constants” (page 221).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
If you don’t set the user interaction level by calling AESetInteractionAllowed, the default level is
kAEInteractWithLocal (which indicates that your server application may interact with the user in response
to an Apple event only if the client application is on the same computer as the server application).

For additional information on interaction level, see AESend (page 92) and “AESendMode” (page 182).

See also AESetInteractionAllowed (page 95) and AEInteractWithUser (page 69).

Availability
Available in Mac OS X v10.0 and later.

Functions 95
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Declared In
AEInteraction.h

AESetObjectCallbacks
Specifies the object callback functions for your application.

OSErr AESetObjectCallbacks (
 OSLCompareUPP myCompareProc,
 OSLCountUPP myCountProc,
 OSLDisposeTokenUPP myDisposeTokenProc,
 OSLGetMarkTokenUPP myGetMarkTokenProc,
 OSLMarkUPP myMarkProc,
 OSLAdjustMarksUPP myAdjustMarksProc,
 OSLGetErrDescUPP myGetErrDescProcPtr
);

Parameters
myCompareProc

Either a universal procedure pointer to the object comparison function provided by your application
or NULL if no function is provided. See OSLCompareUPP (page 177).

myCountProc
Either a universal procedure pointer to the object-counting function provided by your application or
NULL if no function is provided. See OSLCountUPP (page 177).

myDisposeTokenProc
Either a universal procedure pointer to the token disposal function provided by your application or
NULL if no function is provided. (Token is defined in AEDisposeToken (page 41). See
OSLDisposeTokenUPP (page 177).

myGetMarkTokenProc
Either a universal procedure pointer to the function for returning a mark token provided by your
application or NULL if no function is provided. See OSLGetMarkTokenUPP (page 178).

myMarkProc
Either a universal procedure pointer to the object-marking function provided by your application or
NULL if no function is provided. See OSLMarkUPP (page 178).

myAdjustMarksProc
Either a universal procedure pointer to the mark-adjusting function provided by your application or
NULL if no function is provided. See OSLAdjustMarksUPP (page 177).

myGetErrDescProcPtr
Either a universal procedure pointer to the error callback function provided by your application or
NULL if no function is provided. See OSLGetErrDescUPP (page 178).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
This function is just a convenient wrapper for AEInstallSpecialHandler (page 68). You can manipulate
the special handler table with more control using the routines described in “Managing Special Handler
Dispatch Tables” (page 20).

Your application can provide only one each of the object callback functions specified by
AESetObjectCallbacks—one object comparison function, one object-counting function, and so on. As a
result, each of these callback functions must perform the requested task (comparing, counting, and so on)

96 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

for all the object classes that your application supports. In contrast, your application may provide many
different object accessor functions if necessary, depending on the object classes and token types your
application supports. You install object accessor functions with AEInstallObjectAccessor (page 67).

To replace object callback functions that have been previously installed, you can call AESetObjectCallbacks
again. Each additional call to AESetObjectCallbacks replaces any object callback functions installed by
previous calls. Only those functions you specify are replaced; to avoid replacing existing callback functions,
specify a value of NULL for the functions you don’t want to replace.

You cannot use AESetObjectCallbacks to replace system object callback functions or object accessor
functions. To install system object callback functions, use the function AEInstallSpecialHandler (page
68).

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AESetTheCurrentEvent
Specifies a current Apple event to take the place of the one your application has suspended.

OSErr AESetTheCurrentEvent (
 const AppleEvent *theAppleEvent
);

Parameters
theAppleEvent

A pointer to the Apple event to handle as the current event. See AppleEvent (page 175).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
There is usually no reason for your application to use the AESetTheCurrentEvent function. Instead of
calling this function, your application should let the Apple Event Manager set the current Apple event through
its standard dispatch mechanism.

If you need to avoid the dispatch mechanism, you must use the AESetTheCurrentEvent function only in
the following way:

1. Your application suspends handling of an Apple event by calling the AESuspendTheCurrentEvent (page
113) function.

2. Your application calls the AESetTheCurrentEvent function. This informs the Apple Event Manager
that your application is handling the suspended Apple event. In this way, any functions that call the
AEGetTheCurrentEvent (page 63) function can ascertain which event is currently being handled.

Functions 97
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

3. When your application finishes handling the Apple event, it calls the AEResumeTheCurrentEvent (page
90) function with the value kAENoDispatch to tell the Apple Event Manager that the event has been
processed and need not be dispatched.

Special Considerations

This function is not thread-safe and should only be called on the main thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AESizeOfAttribute
Gets the size and descriptor type of an Apple event attribute from a descriptor of type AppleEvent.

OSErr AESizeOfAttribute (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType *typeCode,
 Size *dataSize
);

Parameters
theAppleEvent

A pointer to the Apple event to get the attribute data from. See AppleEvent (page 175).

theAEKeyword
The keyword that specifies the attribute. Some keyword constants are described in “Keyword Attribute
Constants” (page 209). See AEKeyword (page 172).

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the attribute. For a list of
AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 197). Can be NULL.
See DescType (page 176).

dataSize
A pointer to a size variable. On return, the length, in bytes, of the data in the attribute. Can be NULL.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

98 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AESizeOfFlattenedDesc
Returns the amount of buffer space needed to store the descriptor after flattening it.

Size AESizeOfFlattenedDesc (
 const AEDesc *theAEDesc
);

Parameters
theAEDesc

A pointer to the descriptor to be flattened. See AEDesc (page 162).

Return Value
The size, in bytes, required to store the flattened descriptor.

Discussion
You call this function before calling AEFlattenDesc (page 42) to determine the required size of the buffer
for the flatten operation.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AESizeOfKeyDesc
Gets the size and descriptor type of an Apple event parameter from a descriptor of type AERecord.

OSErr AESizeOfKeyDesc (
 const AppleEvent *theAERecord,
 AEKeyword theAEKeyword,
 DescType *typeCode,
 Size *dataSize
);

Parameters
theAERecord

A pointer to the Apple event record to get the parameter data from.

theAEKeyword
The keyword that specifies the desired parameter. Some keyword parameter constants are described
in “Keyword Parameter Constants” (page 211). See AEKeyword (page 172).

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the Apple event parameter.
For a list of AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 197). See
DescType (page 176).

dataSize
A pointer to a size variable. On return, the length, in bytes, of the data in the Apple event parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Functions 99
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
This function is declared as a macro that invokes AESizeOfParam (page 101), which can operate on an Apple
event or an Apple event record. See the Discussion for that function for more information.

Version Notes
See AESizeOfParam (page 101).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AESizeOfNthItem
Gets the data size and descriptor type of the descriptor at a specified position in a descriptor list.

OSErr AESizeOfNthItem (
 const AEDescList *theAEDescList,
 long index,
 DescType *typeCode,
 Size *dataSize
);

Parameters
theAEDescList

A pointer to the descriptor list containing the descriptor. See AEDescList (page 169).

index
A one-based positive integer indicating the position of the descriptor to get the data size for.
AESizeOfNthItem returns an error if you pass zero, a negative number, or a value that is out of
range.

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the descriptor. For a list of
AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 197). See
DescType (page 176).

dataSize
A pointer to a size variable. On return, the length (in bytes) of the data in the descriptor.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

100 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AESizeOfParam
Gets the size and descriptor type of an Apple event parameter from a descriptor of type AERecord or
AppleEvent.

OSErr AESizeOfParam (
 const AppleEvent *theAppleEvent,
 AEKeyword theAEKeyword,
 DescType *typeCode,
 Size *dataSize
);

Parameters
theAppleEvent

A pointer to the Apple event to get the parameter data from. See AppleEvent (page 175).

theAEKeyword
The keyword that specifies the desired parameter. Some keyword parameter constants are described
in “Keyword Parameter Constants” (page 211). See AEKeyword (page 172).

typeCode
A pointer to a descriptor type. On return, specifies the descriptor type of the Apple event parameter.
For a list of AppleScript’s predefined descriptor types, see “Descriptor Type Constants” (page 197). See
DescType (page 176).

dataSize
A pointer to a size variable. On return, the length, in bytes, of the data in the Apple event parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEStreamClose
Closes and deallocates an AEStreamRef.

OSStatus AEStreamClose (
 AEStreamRef ref,
 AEDesc *desc
);

Parameters
ref

An AEStreamRef (page 174)containing the stream data.

desc
A pointer to a descriptor for receiving a the stream data, or NULL if you want to discard the data. See
AEDesc (page 162).

Functions 101
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Use this function to dispose of an AEStreamRef you created using AEStreamCreateEvent (page 103),
AEStreamOpen (page 105), or AEStreamOpenEvent (page 106). To retrieve the resulting descriptor from the
stream prior to disposal, pass in a pointer to an AEDesc structure in the desc parameter. If this parameter
exists, AEStreamClose fills in the descriptor with the stream data. If the stream contains invalid information,
possibly due to improperly balanced calls to “AEStream” functions, the returned descriptor type is set to
typeNull.

Regardless of any errors returned by this function, it is always safe to call AEDisposeDesc (page 40) on the
returned descriptor.

Specifying NULL for the desc parameter causes AEStreamClose to discard the stream data and dispose of
the AEStreamRef. When you call AEStreamClose in this way, you do not need to worry about balancing
nested calls to “AEStream” functions. This technique is particularly useful during error-handling situations
where you need to dispose of a stream but do not know its exact state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamCloseDesc
Marks the end of a descriptor in an AEStreamRef.

OSStatus AEStreamCloseDesc (
 AEStreamRef ref
);

Parameters
ref

An AEStreamRef (page 174)containing the stream data.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Call this function to balance a preceding call to AEStreamOpenDesc (page 105) or
AEStreamOpenKeyDesc (page 106). This function completes the definition of the AEDesc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamCloseList
Marks the end of a list of descriptors in an AEStreamRef.

102 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSStatus AEStreamCloseList (
 AEStreamRef ref
);

Parameters
ref

An AEStreamRef (page 174)containing the stream data.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Call this function to balance a preceding call to AEStreamOpenList (page 107). This function completes the
definition of the AEDescList.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamCloseRecord
Marks the end of a record in an AEStreamRef.

OSStatus AEStreamCloseRecord (
 AEStreamRef ref
);

Parameters
ref

An AEStreamRef (page 174)containing the stream data.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Call this function to balance a preceding call to AEStreamOpenRecord (page 107). This function completes
the definition of the Apple event record.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamCreateEvent
Creates a new Apple event and opens a stream for writing data to it.

Functions 103
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEStreamRef AEStreamCreateEvent (
 AEEventClass clazz,
 AEEventID id,
 DescType targetType,
 const void *targetData,
 Size targetLength,
 SInt16 returnID,
 SInt32 transactionID
);

Parameters
clazz

The event class of the Apple event. See AEEventClass (page 171).

id
The event ID of the Apple event. See AEEventID (page 172).

targetType
The address type for the addressing information in the next two parameters. Usually contains one of
the following values:typeApplSignature.typeKernelProcessID, ortypeProcessSerialNumber.
See DescType (page 176).

targetData
A pointer to the address information. The data in this pointer must match the data associated with
the specified targetType.

targetLength
The number of bytes pointed to by the targetData parameter.

returnID
The return ID for the created Apple event. If you pass a value of kAutoGenerateReturnID, the Apple
Event Manager assigns the created Apple event a return ID that is unique to the current session. If
you pass any other value, the Apple Event Manager assigns that value for the ID. The return ID constant
is described in “ID Constants for the AECreateAppleEvent Function” (page 205). See AEReturnID (page
174).

transactionID
The transaction ID for this Apple event. A transaction is a sequence of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. You can
specify the kAnyTransactionID constant if the Apple event is not one of a series of interdependent
Apple events. This transaction ID constant is described in “ID Constants for the AECreateAppleEvent
Function” (page 205). See AETransactionID (page 175).

Return Value
An AEStreamRef (page 174) associated with the new event.

Discussion
This routine effectively combines a call to AECreateAppleEvent (page 32) followed by a call to
AEStreamOpenEvent (page 106) to create a new Apple event in the stream. You can use the returned
AEStreamRef to add parameters to the new Apple event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

104 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEStreamOpen
Opens a new AEStreamRef for use in building a descriptor.

AEStreamRef AEStreamOpen (
 void
);

Return Value
A new AEStreamRef (page 174) or NULL if the stream data structures cannot be allocated.

Discussion
This function creates a new stream for use in describing the contents of a descriptor, descriptor list, or Apple
event record (AEDesc, AEDescList, or AERecord).

You can use the returned AEStreamRef with other “AEStream” routines to build the contents of a descriptor.
When you are done building the descriptor, use AEStreamClose (page 101) to close the stream.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOpenDesc
Marks the beginning of a descriptor in an AEStreamRef.

OSStatus AEStreamOpenDesc (
 AEStreamRef ref,
 DescType newType
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

newType
A type code for the new AEDesc being added to the stream. See DescType (page 176).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Use this routine to mark the beginning of a descriptor definition in an AEDesc. After calling this routine, you
should call AEStreamWriteData (page 110) one or more times to write the descriptor data to the stream.
When you are done writing data, you must call AEStreamCloseDesc (page 102) to complete the descriptor
definition.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

Functions 105
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEStreamOpenEvent
Opens a stream for an existing Apple event.

AEStreamRef AEStreamOpenEvent (
 AppleEvent *event
);

Parameters
event

An existing Apple event. See AppleEvent (page 175).

Return Value
An AEStreamRef (page 174) for the Apple event or NULL if the stream data structures could not be allocated.

Discussion
Use this function to open a stream and add parameters to an existing Apple event. This function copies any
parameters already in the Apple event to the stream prior to returning the AEStreamRef. When you are
done adding parameters, use AEStreamClose (page 101) to save them to the Apple event and close the
stream.

If there is not enough available storage to complete the operation, AEStreamOpenEvent returns NULL and
leaves the Apple event unchanged.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOpenKeyDesc
Marks the beginning of a key descriptor in an AEStreamRef.

OSStatus AEStreamOpenKeyDesc (
 AEStreamRef ref,
 AEKeyword key,
 DescType newType
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

key
The AEKeyword associated with the new descriptor being added to the stream. See AEKeyword (page
172).

newType
A type code for the new AEDesc being added to the stream. See DescType (page 176).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

106 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
Use this routine to mark the beginning of a keyword/descriptor definition in an Apple event record. After
calling this routine, you should call AEStreamWriteData (page 110) one or more times to write the record
data to the stream. When you are done writing data, you must call AEStreamCloseDesc (page 102) to
complete the record definition.

This routine must be called only as part of an Apple event record definition. You cannot use this routine to
write keyword/descriptor definitions to other descriptor types, such as an AEDesc or AEDescList, even if
those types are nested inside an Apple event record. In situations where you need to create nested records,
this routine opens a new keyword/descriptor definition in the Apple event record associated with the most
recent call to AEStreamOpenRecord (page 107).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOpenList
Marks the beginning of a descriptor list in an AEStreamRef.

OSStatus AEStreamOpenList (
 AEStreamRef ref
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
This routine marks the beginning of a sequence of zero or more descriptor definitions that you use to build
an AEDescList structure. After calling this routine, you can write any number of AEDesc, AEDescList, or
AERecord structures to the stream as elements of the list. When you are done, you must call
AEStreamCloseList (page 102) to complete the AEDescList definition.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOpenRecord
Marks the beginning of an Apple event record in an AEStreamRef.

Functions 107
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSStatus AEStreamOpenRecord (
 AEStreamRef ref,
 DescType newType
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

newType
A type code for the new record you are adding to the stream. This value can be typeAERecord or
any other appropriate value. See DescType (page 176).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
This routine marks the beginning of a sequence of zero or more keyword/descriptor definitions that you use
to build an AERecord structure. You must balance each call to this method with a corresponding call to
AEStreamCloseRecord (page 103).

For information on adding keyword/descriptor data to the record, see the AEStreamOpenKeyDesc (page
106), AEStreamWriteKey (page 111), and AEStreamWriteKeyDesc (page 112) routines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamOptionalParam
Designates a parameter in an Apple event as optional.

OSStatus AEStreamOptionalParam (
 AEStreamRef ref,
 AEKeyword key
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

key
The AEKeyword associated with any keyword/descriptor pair in an Apple event. See AEKeyword (page
172).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Calls to this routine must be preceded by a call to either AEStreamCreateEvent (page 103) or
AEStreamOpenEvent (page 106).

The descriptor associated with the specified key does not need to exist before you call this routine.

108 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamSetRecordType
Sets the type of the most recently created record in an AEStreamRef.

OSStatus AEStreamSetRecordType (
 AEStreamRef ref,
 DescType newType
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

newType
The new type code for the AERecord being added to the stream. See DescType (page 176).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Use this routine to change the type of a record after it has been opened. You must call this routine between
calls to AEStreamOpenRecord (page 107) and AEStreamCloseRecord (page 103). The type you specify in
the newType parameter replaces the previous type specified by AEStreamOpenRecord (page 107).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteAEDesc
Copies an existing descriptor into an AEStreamRef.

OSStatus AEStreamWriteAEDesc (
 AEStreamRef ref,
 const AEDesc *desc
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

desc
A pointer to the descriptor you want to copy into the stream. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Functions 109
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
You can use this routine to incorporate an existing descriptor into the stream. For example, you could use
this routine if you had a complex descriptor you wanted to add to multiple streams, but which would be
costly to create each time.

Do not use AEStreamOpenDesc (page 105) and AEStreamCloseDesc (page 102) with this routine to open
and close the descriptor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteData
Appends data to the current descriptor in an AEStreamRef.

OSStatus AEStreamWriteData (
 AEStreamRef ref,
 const void *data,
 Size length
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

data
A pointer to the block of memory containing the descriptor data. This routine copies the memory
block immediately, so you do not need to retain it for the benefit of this routine.

length
The number of bytes pointed to by the data parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
You can call this routine any number of times to build up the data contents of the descriptor incrementally.
You must precede calls to this routine by a call to either AEStreamOpenDesc (page 105) or
AEStreamOpenKeyDesc (page 106). When you are done adding data to the descriptor, call
AEStreamCloseDesc (page 102) to complete the descriptor definition.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteDesc
Appends the data for a complete descriptor to an AEStreamRef.

110 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSStatus AEStreamWriteDesc (
 AEStreamRef ref,
 DescType newType,
 const void *data,
 Size length
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

newType
A type code for the new AEDesc being added to the stream. See DescType (page 176).

data
A pointer to the block of memory containing the descriptor data. This routine copies the memory
block immediately, so you do not need to retain it for the benefit of this routine.

length
The number of bytes pointed to by the data parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Use this routine to write the data for a descriptor to the stream. When using this routine, you must supply
all of the descriptor data at once.

Do not use AEStreamOpenDesc (page 105) and AEStreamCloseDesc (page 102) with this routine to open
and close the descriptor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteKey
Marks the beginning of a keyword/descriptor pair for a descriptor in an AEStreamRef.

OSStatus AEStreamWriteKey (
 AEStreamRef ref,
 AEKeyword key
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

key
The AEKeyword associated with the new descriptor being added to the stream. See AEKeyword (page
172).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Functions 111
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
You must follow this call with a sequence of “AEStream” calls to specify exactly one descriptor that goes with
the keyword. The descriptor you create can be of type AEDesc, AEDescList, or AERecord.

If you are creating nested descriptors, this routine begins a new keyword/descriptor pair for the descriptor
most recently opened by a call to AEStreamWriteKey (page 111) or AEStreamOpenEvent (page 106). You
cannot use this routine to write parameters to any other types of descriptors, even if they are nested inside
of an AERecord.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEStreamWriteKeyDesc
Writes a complete keyword/descriptor pair to an AEStreamRef.

OSStatus AEStreamWriteKeyDesc (
 AEStreamRef ref,
 AEKeyword key,
 DescType newType,
 const void *data,
 Size length
);

Parameters
ref

An AEStreamRef (page 174) containing the stream data.

key
The AEKeyword associated with the new descriptor being added to the stream. See AEKeyword (page
172).

newType
A type code for the new AEDesc being added to the stream. See DescType (page 176).

data
A pointer to the block of memory containing the descriptor data. This routine copies the memory
block immediately, so you do not need to retain it for the benefit of this routine.

length
The number of bytes pointed to by the data parameter.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Use this routine to add a descriptor to the currently open AERecord inside a stream. You cannot use this
routine to write parameters to any other types of descriptors, even if they are nested inside of an AERecord.
This routine can only be called in between calls to AEStreamOpenRecord (page 107) and
AEStreamCloseRecord (page 103).

This method is analogous to the Apple Event Manager routine AEPutParamPtr (page 80), except it is for
use with streams.

112 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AESuspendTheCurrentEvent
Suspends the processing of the Apple event that is currently being handled.

OSErr AESuspendTheCurrentEvent (
 const AppleEvent *theAppleEvent
);

Parameters
theAppleEvent

A pointer to the Apple event to suspend handling for. If the pointed-to Apple event is not the current
event, AESuspendTheCurrentEvent does nothing and returns noErr. See AppleEvent (page 175).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
You typically call the AESuspendTheCurrentEvent function from an Apple event handler function, such
as when your application needs to do some lengthy processing before responding to the event. After a
successful call to this function, you are not required to return a result or a reply for the Apple event that was
being handled. You can, however, return a result if you later call the AEResumeTheCurrentEvent (page
90) function to resume event processing.

Whether you will resume the suspended Apple event or not, you do not need to dispose of the Apple event
or the reply Apple event passed to your handler. However, if your handler will later resume the event, you
must save a copy of the underlying data storage for the Apple event and the reply event. When resuming
the event, you pass those copies to AEResumeTheCurrentEvent (page 90), which uses the information
they contain to identify the original event and reply.

You cannot merely save the pointers that are passed to your handler because they do not persist after your
handler returns (although the underlying Apple events do persist). Use a function such as
AEDuplicateDesc (page 42) to obtain copies of the Apple event and reply event. Later, after calling
AEResumeTheCurrentEvent to resume the event, call AEDisposeDesc (page 40) to dispose of the copies.

Special Considerations

This function is not thread-safe and, along with AEResumeTheCurrentEvent, should be called only on the
main thread.

If your application suspends handling of an Apple event it sends to itself, the Apple Event Manager immediately
returns from the AESend (page 92) call with the error code errAETimeout, regardless of the parameters
specified in the call to AESend. The function calling AESend should take the timeout error as confirmation
that the event was sent.

As with other calls to AESend that return a timeout error, the handler continues to process the event
nevertheless. The handler’s reply, if any, is provided in the reply event when the handling is completed. The
Apple Event Manager provides no notification that the reply is ready. If no data has yet been placed in the
reply event, the Apple Event Manager returns errAEReplyNotArrived when your application attempts to
extract data from the reply.

Functions 113
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEUnflattenDesc
Unflattens the data in the passed buffer and creates a descriptor from it.

OSStatus AEUnflattenDesc (
 const void *buffer,
 AEDesc *result
);

Parameters
buffer

A pointer to memory, allocated by the application, that contains flattened data produced by a previous
call to AEFlattenDesc (page 42).

result
A null descriptor. On successful completion, points to a descriptor created from the flattened data.
The caller is responsible for disposing of the descriptor.

Return Value
A result code. Returns paramErr if the flattened data in buffer is found to be invalid. See “Apple Event
Manager Result Codes” (page 252) for other possible values.

Discussion
This function assumes the passed buffer contains valid flattened data, produced by a previous call to
AEFlattenDesc (page 42). See that function for a description of when you might want to flatten and
unflatten descriptors, and of possible limitations.

Flattening and unflattening works across OS versions, including between Mac OS 9 and Mac OS X.

Flattening is endian-neutral. That is, you can save flattened data on a machine that is either big-endian or
little-endian, then retrieve and unflatten the data on either type of machine, without any special steps by
your application.

Version Notes
Thread safe starting in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

CreateCompDescriptor
Creates a comparison descriptor that specifies how to compare one or more Apple event objects with either
another Apple event object or a descriptor.

114 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr CreateCompDescriptor (
 DescType comparisonOperator,
 AEDesc *operand1,
 AEDesc *operand2,
 Boolean disposeInputs,
 AEDesc *theDescriptor
);

Parameters
comparisonOperator

The comparison operator for comparing the descriptors in the operand1 and operand2 parameters.
The standard comparison operators are defined in “Comparison Operator Constants” (page 190).

The actual comparison of the two operands is performed by the object comparison function provided
by the client application. The way a comparison operator is interpreted is up to each application.

See DescType (page 176).

operand1
A pointer to an object specifier. See AEDesc (page 162).

operand2
A pointer to a descriptor (which can be an object specifier or any other descriptor) whose value is
compared to the value of operand1. See AEDesc (page 162).

disposeInputs
A Boolean value. Pass TRUE if the function should automatically dispose of any descriptors you have
provided in the operand1 and operand2 parameters to the function. Pass FALSE if your application
will dispose of the descriptors itself. A value of FALSE may be more efficient for some applications
because it allows them to reuse descriptors.

theDescriptor
A pointer to a descriptor. On successful return, the comparison descriptor created by
CreateCompDescriptor. Your application must dispose of this descriptor after it has finished using
it. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

CreateLogicalDescriptor
Creates a logical descriptor that specifies a logical operator and one or more logical terms for the Apple Event
Manager to evaluate.

Functions 115
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr CreateLogicalDescriptor (
 AEDescList *theLogicalTerms,
 DescType theLogicOperator,
 Boolean disposeInputs,
 AEDesc *theDescriptor
);

Parameters
theLogicalTerms

A pointer to a list containing comparison descriptors (typeLogicalDescriptor), logical descriptors
(typeCompDescriptor), or both. If the value of the parameter theLogicOperator is kAEAND or
kAEOR, the list can contain any number of descriptors. If the value of the parameter
theLogicOperator is kAENOT, logically this list should contain a single descriptor. However, the
function will not return an error if the list contains more than one descriptor for a logical operator of
kAENOT. See AEDescList (page 169).

theLogicOperator
A logical operator represented by one of the constants described in “Constants for Object Specifiers,
Positions, and Logical and Comparison Operations” (page 191). What you pass for this parameter helps
determine what you pass for the theLogicalTerms parameter. See DescType (page 176).

disposeInputs
A Boolean value. Pass TRUE if the function should automatically dispose of the descriptors you have
provided in the theLogicalTerms parameter or (FALSE) if your application will. A value of FALSE
may be more efficient for some applications because it allows them to reuse descriptors.

theDescriptor
A pointer to a descriptor. On successful return, the logical descriptor created by
CreateLogicalDescriptor. Your application must dispose of this descriptor after it has finished
using it. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
The CreateLogicalDescriptor function creates a logical descriptor, which specifies a logical operator
and one or more logical terms for the Apple Event Manager to evaluate.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

CreateObjSpecifier
Assembles an object specifier that identifies one or more Apple event objects, from other descriptors.

116 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr CreateObjSpecifier (
 DescType desiredClass,
 AEDesc *theContainer,
 DescType keyForm,
 AEDesc *keyData,
 Boolean disposeInputs,
 AEDesc *objSpecifier
);

Parameters
desiredClass

The object class of the desired Apple event objects. See DescType (page 176).

theContainer
A pointer to a descriptor that describes the container for the requested object, usually in the form of
another object specifier. See AEDesc (page 162).

keyForm
The key form for the object specifier.

keyData
A pointer to a descriptor that supplies the key data for the object specifier.

disposeInputs
A Boolean value. Pass (TRUE) if the function should dispose of the descriptors for the theContainer
and keyData parameters or (FALSE) if your application will. A value of FALSE may be more efficient
for some applications because it allows them to reuse descriptors.

objSpecifier
On successful return, a pointer to the object specifier created by the CreateObjSpecifier function.
If the function returns successfully, your application should call the AEDisposeDesc (page 40)
function to dispose of this descriptor after it has finished using it.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

CreateOffsetDescriptor
Creates an offset descriptor that specifies the position of an element in relation to the beginning or end of
its container.

OSErr CreateOffsetDescriptor (
 long theOffset,
 AEDesc *theDescriptor
);

Parameters
theOffset

A positive integer that specifies the offset from the beginning of the container (the first element has
an offset of 1), or a negative integer that specifies the offset from the end (the last element has an
offset of –1).

Functions 117
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

theDescriptor
A pointer to a descriptor. On successful return, the offset descriptor created by
CreateOffsetDescriptor. On error, returns a null descriptor. Your application must dispose of the
descriptor after it has finished using it. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

CreateRangeDescriptor
Creates a range descriptor that specifies a series of consecutive elements in the same container.

OSErr CreateRangeDescriptor (
 AEDesc *rangeStart,
 AEDesc *rangeStop,
 Boolean disposeInputs,
 AEDesc *theDescriptor
);

Parameters
rangeStart

A pointer to an object specifier that identifies the first Apple event object in the range. See
AEDesc (page 162).

rangeStop
A pointer to an object specifier that identifies the last Apple event object in the range. See
AEDesc (page 162).

disposeInputs
A Boolean value. Pass (TRUE) if the function should dispose of the descriptors for the rangeStart
and rangeStop parameters and set them to the null descriptor or (FALSE) if your application will. A
value of FALSEmay be more efficient for some applications because it allows them to reuse descriptors.

theDescriptor
A pointer to a descriptor. On successful return, the range descriptor created by
CreateRangeDescriptor. Your application must dispose of this descriptor after it has finished using
it. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Although the rangeStart and rangeStop parameters can be any object specifiers—including object
specifiers that specify more than one Apple event object—most applications expect these parameters to
specify single Apple event objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEPackObject.h

118 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

DisposeAECoerceDescUPP
Disposes of a universal procedure pointer to a function that coerces data stored in a descriptor.

void DisposeAECoerceDescUPP (
 AECoerceDescUPP userUPP
);

Discussion
See the AECoerceDescProcPtr (page 140) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

DisposeAECoercePtrUPP
Disposes of a universal procedure pointer to a function that coerces data stored in a buffer.

void DisposeAECoercePtrUPP (
 AECoercePtrUPP userUPP
);

Discussion
See the AECoercePtrProcPtr (page 141) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

DisposeAEDisposeExternalUPP
Disposes of a universal procedure pointer to a function that disposes of data supplied to the
AECreateDescFromExternalPtr function.

void DisposeAEDisposeExternalUPP (
 AEDisposeExternalUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to be disposed of. See AEDisposeExternalUPP (page 171).

Discussion
See the AECreateDescFromExternalPtr (page 34) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

Functions 119
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

DisposeAEEventHandlerUPP
Disposes of a universal procedure pointer to an event handler function.

void DisposeAEEventHandlerUPP (
 AEEventHandlerUPP userUPP
);

Discussion
See the AEEventHandlerProcPtr (page 144) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

DisposeAEFilterUPP
Disposes of a universal procedure pointer to an Apple event filter function.

void DisposeAEFilterUPP (
 AEFilterUPP userUPP
);

Discussion
See the AEFilterProcPtr (page 146) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

DisposeAEIdleUPP
Disposes of a universal procedure pointer to an Apple event idle function.

void DisposeAEIdleUPP (
 AEIdleUPP userUPP
);

Discussion
See the AEIdleProcPtr (page 147) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

DisposeOSLAccessorUPP
Disposes of a universal procedure pointer to an object accessor function.

120 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

void DisposeOSLAccessorUPP (
 OSLAccessorUPP userUPP
);

Discussion
See the OSLAccessorProcPtr (page 149) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLAdjustMarksUPP
Disposes of a universal procedure pointer to an object callback adjust marks function.

void DisposeOSLAdjustMarksUPP (
 OSLAdjustMarksUPP userUPP
);

Discussion
See the OSLAdjustMarksProcPtr (page 151) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLCompareUPP
Disposes of a universal procedure pointer to an object callback comparison function.

void DisposeOSLCompareUPP (
 OSLCompareUPP userUPP
);

Discussion
See the OSLCompareProcPtr (page 152) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLCountUPP
Disposes of a universal procedure pointer to an object callback count function.

Functions 121
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

void DisposeOSLCountUPP (
 OSLCountUPP userUPP
);

Discussion
See the OSLCountProcPtr (page 154) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLDisposeTokenUPP
Disposes of a universal procedure pointer to an object callback dispose token function.

void DisposeOSLDisposeTokenUPP (
 OSLDisposeTokenUPP userUPP
);

Discussion
See the OSLDisposeTokenProcPtr (page 155) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLGetErrDescUPP
Disposes of a universal procedure pointer to an object callback get error descriptor function.

void DisposeOSLGetErrDescUPP (
 OSLGetErrDescUPP userUPP
);

Discussion
See the OSLGetErrDescProcPtr (page 157) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLGetMarkTokenUPP
Disposes of a universal procedure pointer to an object callback get mark function.

122 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

void DisposeOSLGetMarkTokenUPP (
 OSLGetMarkTokenUPP userUPP
);

Discussion
See the OSLGetMarkTokenProcPtr (page 158) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

DisposeOSLMarkUPP
Disposes of a universal procedure pointer to an object callback mark function.

void DisposeOSLMarkUPP (
 OSLMarkUPP userUPP
);

Discussion
See the OSLMarkProcPtr (page 160) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeAECoerceDescUPP
Calls a universal procedure pointer to a function that coerces data stored in a descriptor.

OSErr InvokeAECoerceDescUPP (
 const AEDesc *fromDesc,
 DescType toType,
 SRefCon handlerRefcon,
 AEDesc *toDesc,
 AECoerceDescUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the AECoerceDescProcPtr (page 140) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

Functions 123
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

InvokeAECoercePtrUPP
Calls a universal procedure pointer to a function that coerces data stored in a buffer.

OSErr InvokeAECoercePtrUPP (
 DescType typeCode,
 const void *dataPtr,
 Size dataSize,
 DescType toType,
 SRefCon handlerRefcon,
 AEDesc *result,
 AECoercePtrUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the AECoercePtrProcPtr (page 141) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

InvokeAEDisposeExternalUPP
Calls a dispose external universal procedure pointer.

void InvokeAEDisposeExternalUPP (
 const void *dataPtr,
 Size dataLength,
 SRefCon refcon,
 AEDisposeExternalUPP userUPP
);

Parameters
dataPtr

A pointer to the data to be disposed of. The data must be immutable and must not be freed until this
UPP is called.

dataLength
The length, in bytes, of the data to be disposed of.

refcon
A reference constant, supplied by your application, that you can use in your dispose function.

Discussion
See the AEDisposeExternalProcPtr (page 143) function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

124 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

InvokeAEEventHandlerUPP
Calls an event handler universal procedure pointer.

OSErr InvokeAEEventHandlerUPP (
 const AppleEvent *theAppleEvent,
 AppleEvent *reply,
 SRefCon handlerRefcon,
 AEEventHandlerUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the AEEventHandlerProcPtr (page 144) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

InvokeAEFilterUPP
Calls an Apple event filter universal procedure pointer.

Boolean InvokeAEFilterUPP (
 EventRecord *theEvent,
 SInt32 returnID,
 AETransactionID transactionID,
 const AEAddressDesc *sender,
 AEFilterUPP userUPP
);

Return Value
The return value of the callback function. The filter routine returns TRUE to accept the Apple event or FALSE
to filter it out.

Discussion
See the AEFilterProcPtr (page 146) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

InvokeAEIdleUPP
Calls an Apple event idle universal procedure pointer.

Functions 125
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Boolean InvokeAEIdleUPP (
 EventRecord *theEvent,
 SInt32 *sleepTime,
 RgnHandle *mouseRgn,
 AEIdleUPP userUPP
);

Return Value
The return value of the callback function. The filter routine returns TRUE if your application is no longer willing
to wait for a reply from the server or for the user to bring the application to the front. It returns FALSE if your
application is still willing to wait.

Discussion
See the AEIdleProcPtr (page 147) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

InvokeOSLAccessorUPP
Calls an object accessor universal procedure pointer.

OSErr InvokeOSLAccessorUPP (
 DescType desiredClass,
 const AEDesc *container,
 DescType containerClass,
 DescType form,
 const AEDesc *selectionData,
 AEDesc *value,
 SRefCon accessorRefcon,
 OSLAccessorUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the OSLAccessorProcPtr (page 149) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLAdjustMarksUPP
Calls an object callback adjust marks universal procedure pointer.

126 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr InvokeOSLAdjustMarksUPP (
 long newStart,
 long newStop,
 const AEDesc *markToken,
 OSLAdjustMarksUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the OSLAdjustMarksProcPtr (page 151) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLCompareUPP
Calls an object callback comparison universal procedure pointer.

OSErr InvokeOSLCompareUPP (
 DescType oper,
 const AEDesc *obj1,
 const AEDesc *obj2,
 Boolean *result,
 OSLCompareUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the OSLCompareProcPtr (page 152) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLCountUPP
Calls an object callback count universal procedure pointer.

Functions 127
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr InvokeOSLCountUPP (
 DescType desiredType,
 DescType containerClass,
 const AEDesc *container,
 long *result,
 OSLCountUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the OSLCountProcPtr (page 154) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLDisposeTokenUPP
Calls an object callback dispose token universal procedure pointer.

OSErr InvokeOSLDisposeTokenUPP (
 AEDesc *unneededToken,
 OSLDisposeTokenUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the OSLDisposeTokenProcPtr (page 155) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLGetErrDescUPP
Calls an object callback get error descriptor universal procedure pointer.

OSErr InvokeOSLGetErrDescUPP (
 AEDesc **appDescPtr,
 OSLGetErrDescUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the OSLGetErrDescProcPtr (page 157) callback function.

128 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLGetMarkTokenUPP
Calls an object callback get mark universal procedure pointer.

OSErr InvokeOSLGetMarkTokenUPP (
 const AEDesc *dContainerToken,
 DescType containerClass,
 AEDesc *result,
 OSLGetMarkTokenUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the OSLGetMarkTokenProcPtr (page 158) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

InvokeOSLMarkUPP
Calls an object callback mark universal procedure pointer.

OSErr InvokeOSLMarkUPP (
 const AEDesc *dToken,
 const AEDesc *markToken,
 long index,
 OSLMarkUPP userUPP
);

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
See the OSLMarkProcPtr (page 160) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

Functions 129
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

NewAECoerceDescUPP
Creates a new universal procedure pointer to a function that coerces data stored in a descriptor.

AECoerceDescUPP NewAECoerceDescUPP (
 AECoerceDescProcPtr userRoutine
);

Return Value
See AECoerceDescUPP (page 168).

Discussion
See the AECoerceDescProcPtr (page 140) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

NewAECoercePtrUPP
Creates a new universal procedure pointer to a function that coerces data stored in a buffer.

AECoercePtrUPP NewAECoercePtrUPP (
 AECoercePtrProcPtr userRoutine
);

Return Value
See AECoercePtrUPP (page 168).

Discussion
See the AECoercePtrProcPtr (page 141) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

NewAEDisposeExternalUPP
Creates a new universal procedure pointer to a function that disposes of data stored in a buffer.

AEDisposeExternalUPP NewAEDisposeExternalUPP (
 AEDisposeExternalProcPtr userRoutine
);

Return Value
See AEDisposeExternalUPP (page 171).

Discussion
See the AEDisposeExternalProcPtr (page 143) callback function.

130 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

NewAEEventHandlerUPP
Creates a new universal procedure pointer to an event handler function.

AEEventHandlerUPP NewAEEventHandlerUPP (
 AEEventHandlerProcPtr userRoutine
);

Return Value
See AEEventHandlerUPP (page 171).

Discussion
See the AEEventHandlerProcPtr (page 144) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

NewAEFilterUPP
Creates a new universal procedure pointer to an Apple event filter function.

AEFilterUPP NewAEFilterUPP (
 AEFilterProcPtr userRoutine
);

Return Value
See AEFilterUPP (page 172).

Discussion
See the AEFilterProcPtr (page 146) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

NewAEIdleUPP
Creates a new universal procedure pointer to an Apple event idle function.

Functions 131
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEIdleUPP NewAEIdleUPP (
 AEIdleProcPtr userRoutine
);

Return Value
See AEIdleUPP (page 172).

Discussion
See the AEIdleProcPtr (page 147) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

NewOSLAccessorUPP
Creates a new universal procedure pointer to an object accessor function.

OSLAccessorUPP NewOSLAccessorUPP (
 OSLAccessorProcPtr userRoutine
);

Return Value
See OSLAccessorUPP (page 176).

Discussion
See the OSLAccessorProcPtr (page 149) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLAdjustMarksUPP
Creates a new universal procedure pointer to an object callback adjust marks function.

OSLAdjustMarksUPP NewOSLAdjustMarksUPP (
 OSLAdjustMarksProcPtr userRoutine
);

Return Value
See OSLAdjustMarksUPP (page 177).

Discussion
See the OSLAdjustMarksProcPtr (page 151) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

132 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

NewOSLCompareUPP
Creates a new universal procedure pointer to an object callback comparison function.

OSLCompareUPP NewOSLCompareUPP (
 OSLCompareProcPtr userRoutine
);

Return Value
See OSLCompareUPP (page 177).

Discussion
See the OSLCompareProcPtr (page 152) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLCountUPP
Creates a new universal procedure pointer to an object callback count function.

OSLCountUPP NewOSLCountUPP (
 OSLCountProcPtr userRoutine
);

Return Value
See OSLCountUPP (page 177).

Discussion
See the OSLCountProcPtr (page 154) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLDisposeTokenUPP
Creates a new universal procedure pointer to an object callback dispose token function.

OSLDisposeTokenUPP NewOSLDisposeTokenUPP (
 OSLDisposeTokenProcPtr userRoutine
);

Return Value
See OSLDisposeTokenUPP (page 177).

Discussion
See the OSLDisposeTokenProcPtr (page 155) callback function.

Functions 133
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLGetErrDescUPP
Creates a new universal procedure pointer to an object callback get error descriptor function.

OSLGetErrDescUPP NewOSLGetErrDescUPP (
 OSLGetErrDescProcPtr userRoutine
);

Return Value
See OSLGetErrDescUPP (page 178).

Discussion
See the OSLGetErrDescProcPtr (page 157) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLGetMarkTokenUPP
Creates a new universal procedure pointer to an object callback get mark function.

OSLGetMarkTokenUPP NewOSLGetMarkTokenUPP (
 OSLGetMarkTokenProcPtr userRoutine
);

Return Value
See OSLGetMarkTokenUPP (page 178).

Discussion
See the OSLGetMarkTokenProcPtr (page 158) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

NewOSLMarkUPP
Creates a new universal procedure pointer to an object callback mark function.

134 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSLMarkUPP NewOSLMarkUPP (
 OSLMarkProcPtr userRoutine
);

Return Value
See OSLMarkUPP (page 178).

Discussion
See the OSLMarkProcPtr (page 160) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

vAEBuildAppleEvent
Allows you to encapsulate calls to AEBuildAppleEvent in a wrapper routine.

OSStatus vAEBuildAppleEvent (
 AEEventClass theClass,
 AEEventID theID,
 DescType addressType,
 const void *addressData,
 Size addressLength,
 SInt16 returnID,
 SInt32 transactionID,
 AppleEvent *resultEvt,
 AEBuildError *error,
 const char *paramsFmt,
 va_list args
);

Parameters
theClass

The event class for the resulting Apple event. See AEEventClass (page 171).

theID
The event id for the resulting Apple event. See AEEventID (page 172).

addressType
The address type for the addressing information described in the next two parameters: usually one
of typeApplSignature, typeProcessSerialNumber, or typeKernelProcessID. See
DescType (page 176).

addressData
A pointer to the address information.

addressLength
The number of bytes pointed to by the addressData parameter.

returnID
The return ID for the created Apple event. If you pass a value of kAutoGenerateReturnID, the Apple
Event Manager assigns the created Apple event a return ID that is unique to the current session. If
you pass any other value, the Apple Event Manager assigns that value for the ID.

Functions 135
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

transactionID
The transaction ID for this Apple event. A transaction is a sequence of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. You can
specify the kAnyTransactionID constant if the Apple event is not one of a series of interdependent
Apple events.

result
A pointer to a descriptor where the resulting descriptor should be stored. See AppleEvent (page
175) for a description of the data type.

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See “AEBuild Error Codes” (page 179) for the syntax error codes that can be returned in this structure.

paramsFmt
An AEBuild format string describing the AppleEvent record to be created. The format of these strings
is described in Technical Note TN2106, AEBuild*, AEPrint*, and Friends.

args
A variable array of arguments to be substituted into the paramsFmt format string. See the ANSI C
Interfaces documentation for a description of the va_list data type.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Passing an argument list to vAEBuildAppleEvent corresponds to passing a series of individual parameters
to the AEBuildAppleEvent (page 24) function.

This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple event Manager routines to build up the descriptor piece by piece.
The vAEBuildAppleEvent function and related routines allow you to consolidate all of the calls required
to construct a complex Apple event descriptor into a single system call that creates the desired structure as
directed by a format string that you provide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

vAEBuildDesc
Allows you to encapsulate calls to AEBuildDesc in your own wrapper routines.

136 Functions
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

http://developer.apple.com/technotes/tn/tn2045.html

OSStatus vAEBuildDesc (
 AEDesc *dst,
 AEBuildError *error,
 const char *src,
 va_list args
);

Parameters
dst

A pointer to a descriptor where the resulting descriptor should be stored. See AEDesc (page 162).

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 162).

src
An AEBuild format string describing the descriptor to be created.

args
A reference to a previously defined, variable argument parameter list to use with the descriptor-string.
The file <stdarg.h> defines macros for declaring and using the va_list data type.

Return Value
A numeric result code indicating the success of the call. A value of AEBuildSyntaxNoErr (zero) means the
call succeeded. You can use the error parameter to discover information about other errors. See “Apple
Event Manager Result Codes” (page 252).

Discussion
Passing an argument list to vAEBuildDesc corresponds to passing a series of individual parameters to the
AEBuildDesc (page 26) function.

This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple Event Manager routines to build up the descriptor piece by piece.
The vAEBuildDesc function and related routines allow you to consolidate all of the calls required to construct
a complex Apple event descriptor into a single system call that creates the desired structure as directed by
a format string that you provide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

vAEBuildParameters
Allows you to encapsulate calls to AEBuildParameters in your own stdarg-style wrapper routines, using
techniques similar to those allowed by vsprintf.

Functions 137
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSStatus vAEBuildParameters (
 AppleEvent *event,
 AEBuildError *error,
 const char *format,
 va_list args
);

Parameters
event

The Apple event to which you are adding parameters. See AppleEvent (page 175).

error
A pointer to an AEBuildError structure where additional information about any errors that occur
will be saved. This is an optional parameter and you can pass NULL if this information is not required.
See AEBuildError (page 162).

format
An AEBuild format string describing the AEDesc parameters to be created.

args
A reference to a previously defined, variable argument parameter list to use with the descriptor-string.
The file <stdarg.h> defines macros for declaring and using the va_list data type.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252).

Discussion
Passing an argument list to vAEBuildParameters corresponds to passing a series of individual parameters
to the AEBuildParameters (page 27) function.

This function and related “AEBuild” routines provide a very simple translation service for converting specially
formatted strings into complex Apple event descriptors. Normally, creating complex Apple event descriptors
requires a large number of calls to Apple event Manager routines to build up the descriptor piece by piece.
The vAEBuildParameters function and related routines allow you to consolidate all of the calls required
to construct a complex Apple event descriptor into a single system call that creates the desired structure as
directed by a format string that you provide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

Callbacks by Task

Callbacks When Resolving Remote Processes

AERemoteProcessResolverCallback (page 148)
Defines a pointer to a function the Apple Event Manager calls when the asynchronous execution of
a remote process resolver completes, either due to success or failure, after a call to the
AERemoteProcessResolverScheduleWithRunLoop function. Your callback function can use the
reference passed to it to get the remote process information.

138 Callbacks by Task
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Callbacks When Creating Apple Events

AEDisposeExternalProcPtr (page 143)
Defines a pointer to a function the Apple Event Manager calls to dispose of a descriptor created by
the AECreateDescFromExternalPtr function. Your callback function disposes of the buffer you
originally passed to that function.

Callbacks When Sending Apple Events

AEFilterProcPtr (page 146)
Defines a pointer to a function the Apple Event Manager calls while your application waits for a reply
to an Apple event. Your filter function determines which high-level events your application is willing
to handle.

AEIdleProcPtr (page 147)
Defines a pointer to a function the Apple Event Manager calls while your application waits for a reply
to an Apple event. Your idle function must handle update, null, operating-system, and activate events.

Coercing Apple Event Data Callbacks

AECoerceDescProcPtr (page 140)
Defines a pointer to a function that coerces data stored in a descriptor. Your descriptor coercion
callback function coerces the data from the passed descriptor to the specified type, returning the
coerced data in a second descriptor.

AECoercePtrProcPtr (page 141)
Defines a pointer to a function that coerces data stored in a buffer. Your pointer coercion callback
routine coerces the data from the passed buffer to the specified type, returning the coerced data in
a descriptor.

Handling Apple Events Callbacks

AEEventHandlerProcPtr (page 144)
Defines a pointer to a function that handles one or more Apple events. Your Apple event handler
function performs any action requested by the Apple event, adds parameters to the reply Apple event
if appropriate (possibly including error information), and returns a result code.

Object Accessor Callbacks

OSLAccessorProcPtr (page 149)
Your object accessor function either finds elements or properties of an Apple event object.

Callbacks by Task 139
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Object Callback Functions

OSLAdjustMarksProcPtr (page 151)
Defines a pointer to an adjust marks callback function. Your adjust marks function unmarks objects
previously marked by a call to your marking function.

OSLCompareProcPtr (page 152)
Defines a pointer to an object comparison callback function. Your object comparison function compares
one Apple event object to another or to the data for a descriptor.

OSLCountProcPtr (page 154)
Defines a pointer to an object counting callback function. Your object counting function counts the
number of Apple event objects of a specified class in a specified container object.

OSLDisposeTokenProcPtr (page 155)
Defines a pointer to a dispose token callback function. Your dispose token function, required only if
you use a complex token format, disposes of the specified token.

OSLGetErrDescProcPtr (page 157)
Defines a pointer to an error descriptor callback function. Your error descriptor callback function
supplies a pointer to an address where the Apple Event Manager can store the current descriptor if
an error occurs during a call to the AEResolve function.

OSLGetMarkTokenProcPtr (page 158)
Defines a pointer to a mark token callback function. Your mark token function returns a mark token.

OSLMarkProcPtr (page 160)
Defines a pointer to an object marking callback function. Your object-marking function marks a specific
Apple event object.

Callbacks

AECoerceDescProcPtr
Defines a pointer to a function that coerces data stored in a descriptor. Your descriptor coercion callback
function coerces the data from the passed descriptor to the specified type, returning the coerced data in a
second descriptor.

typedef OSErr (*AECoerceDescProcPtr)
(
 const AEDesc * fromDesc,
 DescType toType,
 long handlerRefcon,
 AEDesc * toDesc
);

If you name your function MyAECoerceDescCallback, you would declare it like this:

OSErr MyAECoerceDescCallback (
 const AEDesc * fromDesc,
 DescType toType,
 long handlerRefcon,
 AEDesc * toDesc
);

140 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Parameters
fromDesc

A pointer to the descriptor that contains the data to coerce. See AEDesc (page 162).

toType
The desired descriptor type for the resulting descriptor. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 197). See DescType (page 176).

handlerRefcon
A reference constant that is stored in the coercion dispatch table entry for the handler. The Apple
Event Manager passes this value to the handler each time it calls it. The reference constant may have
a value of 0.

toDesc
A pointer to a descriptor where your coercion routine must store the descriptor that contains the
coerced data. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your handler should return noErr if it
successfully handled the coercion, errAECoercionFailed if it can’t handle the coercion and it wants the
Apple Event Manager to continue dispatching to other coercion handlers, or a nonzero result code otherwise.

Discussion
Your coercion handler should coerce the data to the desired descriptor type and return the resulting data in
the descriptor specified by the result parameter.

To provide a pointer to your descriptor coercion callback function, you create a universal procedure pointer
(UPP) of type AECoerceDescUPP (page 168), using the function NewAECoerceDescUPP (page 130). You can
do so with code like the following:

AECoerceDescUPP MyCoerceDescUPP;
MyCoerceDescUPP = NewAECoerceDescUPP (&MyCoerceDescCallback)

You can then pass the UPP MyCoerceDescUPP as a parameter to any function that installs or removes a
coercion handler, such as AEInstallCoercionHandler (page 64). If your application installs the same
coercion handler to coerce more than one type of data, you can use the same UPP to install the handler
multiple times.

If you wish to call your descriptor coercion callback function directly, you can use the
InvokeAECoerceDescUPP (page 123) function.

After you are finished with a descriptor coercion callback function, and have removed it with the
AERemoveCoercionHandler (page 84) function, you can dispose of the UPP with the
DisposeAECoerceDescUPP (page 119) function. However, don’t dispose of the UPP if any remaining coercion
handler uses it or if you plan to install the coercion handler again.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoercePtrProcPtr
Defines a pointer to a function that coerces data stored in a buffer. Your pointer coercion callback routine
coerces the data from the passed buffer to the specified type, returning the coerced data in a descriptor.

Callbacks 141
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typedef OSErr (*AECoercePtrProcPtr) (
 DescType typeCode,
 const void * dataPtr,
 Size dataSize,
 DescType toType,
 long handlerRefcon,
 AEDesc * result
);

If you name your function MyAECoercePtrCallback, you would declare it like this:

OSErr MyAECoercePtrCallback (
 DescType typeCode,
 const void * dataPtr,
 Size dataSize,
 DescType toType,
 long handlerRefcon,
 AEDesc * result
);

Parameters
typeCode

The descriptor type of the original data. For a list of AppleScript’s predefined descriptor types, see
“Descriptor Type Constants” (page 197). See DescType (page 176).

dataPtr
A pointer to the data to coerce.

dataSize
The length, in bytes, of the data to coerce.

toType
The desired descriptor type for the resulting descriptor. For a list of AppleScript’s predefined descriptor
types, see “Descriptor Type Constants” (page 197). See DescType (page 176).

handlerRefcon
A reference constant that is stored in the coercion dispatch table entry for the handler. The Apple
Event Manager passes this value to the handler each time it calls it. The reference constant may have
a value of NULL.

result
A pointer to a descriptor where your coercion routine must store the descriptor that contains the
coerced data. If your routine cannot coerce the data, return a null descriptor. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your handler should return noErr if it
successfully handled the coercion, errAECoercionFailed if it can’t handle the coercion and it wants the
Apple Event Manager to continue dispatching to other coercion handlers, or a nonzero result code otherwise.

Discussion
To provide a pointer to your coercion callback function, you create a universal procedure pointer (UPP) of
type AECoercePtrUPP (page 168), using the function NewAECoercePtrUPP (page 130). You can do so with
code like the following:

AECoercePtrUPP MyCoercePtrUPP;
MyCoercePtrUPP = NewAECoercePtrUPP (&MyCoercePtrCallback)

142 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

You can then pass the UPP MyCoercePtrUPP as a parameter to any function that installs or removes a
coercion handler, such as AEInstallCoercionHandler (page 64). If your application installs the same
coercion handler to coerce more than one type of data, you can use the same UPP to install the handler
multiple times.

If you wish to call your coercion callback function directly, you can use the InvokeAECoercePtrUPP (page
124) function.

After you are finished with a coercion callback function, and have removed it with the
AERemoveCoercionHandler (page 84) function, you can dispose of the UPP with the
DisposeAECoercePtrUPP (page 119) function. However, don’t dispose of the UPP if any remaining coercion
handler uses it or if you plan to install the coercion handler again.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDisposeExternalProcPtr
Defines a pointer to a function the Apple Event Manager calls to dispose of a descriptor created by the
AECreateDescFromExternalPtr function. Your callback function disposes of the buffer you originally
passed to that function.

typedef (void, AEDisposeExternalProcPtr)(
 const void *dataPtr,
 Size dataLength,
 long refcon);

If you name your function MyAEDisposeExternalCallback, you would declare it like this:

void MyAEDisposeExternalCallback (
 const void *dataPtr,
 Size dataLength,
 long refcon);

Parameters
dataPtr

A pointer to the data to be disposed of. The data must be immutable and must not be freed until this
callback function is called.

dataLength
The length, in bytes, of the data in the dataPtr parameter.

refcon
A reference constant, supplied by your application in its original call to
AECreateDescFromExternalPtr (page 34). The Apple Event Manager passes this value to your
dispose function each time it calls it. The reference constant may have a value of 0.

Return Value
Your callback routine should not return a value.

Callbacks 143
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
Your application must provide a universal procedure pointer to a dispose function as a parameter to the
AECreateDescFromExternalPtr (page 34) function.

To provide a pointer to your dispose callback function, you create a universal procedure pointer (UPP) of
type AEDisposeExternalProcPtr, using the function NewAEDisposeExternalUPP (page 130). You can
do so with code like the following:

AEDisposeExternalProcPtr MyDisposeCallbackUPP;
MyDisposeCallbackUPP = NewAEDisposeExternalUPP (&MyAEDisposeExternalCallback);

You can then pass the UPPMyDisposeCallbackUPP as a parameter to theAECreateDescFromExternalPtr
function.

If you wish to call your dispose callback function directly, you can use the
InvokeAEDisposeExternalUPP (page 124) function.

After you are finished with your dispose callback function, you can dispose of the UPP with the
DisposeAEDisposeExternalUPP (page 119) function. However, if you will use the same dispose function
in subsequent calls to AECreateDescFromExternalPtr, you can reuse the same UPP, rather than dispose
of it and later create a new UPP.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

AEEventHandlerProcPtr
Defines a pointer to a function that handles one or more Apple events. Your Apple event handler function
performs any action requested by the Apple event, adds parameters to the reply Apple event if appropriate
(possibly including error information), and returns a result code.

typedef OSErr (*AEEventHandlerProcPtr)
(
 const AppleEvent * theAppleEvent,
 AppleEvent * reply,
 long handlerRefcon
);

If you name your function MyAEEventHandlerCallback, you would declare it like this:

OSErr MyAEEventHandlerCallback (
 const AppleEvent * theAppleEvent,
 AppleEvent * reply,
 long handlerRefcon
);

Parameters
theAppleEvent

A pointer to the Apple event to handle. See AppleEvent (page 175).

144 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

reply
A pointer to the default reply Apple event provided by the Apple Event Manager. See
AppleEvent (page 175). If no reply is expected, reply has descriptor type typeNull.

handlerRefcon
The reference constant stored in the Apple event dispatch table when you install the handler function
for the Apple event. You can store any 32-bit value in the dispatch table and use it any way you want
when the handler is called. The reference constant may have a value of NULL.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your handler should always return noErr
if it successfully handled the Apple event. If an error occurs, your handler should return either
errAEEventNotHandled or some other nonzero result code. For more information, see the Discussion
section.

Discussion
An Apple event handler should extract any parameters and attributes from the Apple event, perform the
requested action, and add parameters to the reply Apple event if appropriate. You must provide an Apple
event handler for each Apple event your application supports. The AEProcessAppleEvent (page 73)
function calls one of your Apple event handlers when it processes an Apple event.

If an error occurs because your application cannot understand the event, return errAEEventNotHandled,
so that the Apple Event Manager may be able to find another handler to handle the event. If the error occurs
because the event is impossible to handle as specified, return the result code returned by whatever function
caused the failure, or whatever other result code is appropriate.

For example, suppose your application receives a kAEGetData event that requests the name of the current
printer, and your application cannot handle such an event. In this situation, you should return
errAEEventNotHandled so that another handler available to the Apple Event Manager can have a chance
to handle the event. This strategy allows users to take advantage of system capabilities from within your
application via system handlers.

If your Apple event handler calls the AEResolve (page 89) function and AEResolve calls an object accessor
function in the system object accessor dispatch table, your Apple event handler may not recognize the
descriptor type of the token returned by the function. In this case, your handler should return the result code
errAEUnknownObjectType. When your handler returns this result code, the Apple Event Manager attempts
to locate a system Apple event handler that can recognize the token.

For additional information on dealing with error conditions, see OSLGetErrDescProcPtr (page 157).

To provide a pointer to your event handler callback function, you create a universal procedure pointer (UPP)
of type AEEventHandlerUPP (page 171), using the function NewAEEventHandlerUPP (page 131). You can
do so with code like the following:

AEEventHandlerUPP MyEventHandlerUPP;
MyEventHandlerUPP = NewAEEventHandlerUPP (&MyEventHandlerCallback)

You can then pass the UPP MyEventHandlerUPP as a parameter to any function that installs or removes a
handler, such as AEInstallEventHandler (page 65). If your application installs the same event handler
to handle more than one kind of event (more than one pair of event class and event ID), you can use the
same UPP to install the handler multiple times.

If you wish to call your event handler callback function directly, you can use the
InvokeAEEventHandlerUPP (page 125) function.

Callbacks 145
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

After you are finished with an event handler callback function, and have removed it with the
AERemoveEventHandler (page 85) function, you can dispose of the UPP with the
DisposeAEEventHandlerUPP (page 120) function. However, don’t dispose of the UPP if any remaining
handler uses it or if you plan to install the handler again.

Version Notes
Your application should not install a handler in a system dispatch table with the goal that the handler will
get called when other applications receive an Apple event—this won’t work in Mac OS X. For more information,
see “The System Dispatch Table” in “Apple Event Dispatching” in Apple Events Programming Guide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEFilterProcPtr
Defines a pointer to a function the Apple Event Manager calls while your application waits for a reply to an
Apple event. Your filter function determines which high-level events your application is willing to handle.

typedef Boolean (*AEFilterProcPtr) (
 EventRecord * theEvent,
 long returnID,
 long transactionID,
 const AEAddressDesc * sender
);

If you name your function MyAEFilterCallback, you would declare it like this:

Boolean MyAEFilterCallback (
 EventRecord * theEvent,
 long returnID,
 long transactionID,
 const AEAddressDesc * sender
);

Parameters
theEvent

A pointer to the event record for a high-level event. The next three parameters contain valid information
only if the event is an Apple event. See the Event Manager documentation for a description of the
EventRecord data type.

returnID
Return ID for the Apple event.

transactionID
Transaction ID for the Apple event.

sender
A pointer to the address of the process that sent the Apple event. See AEAddressDesc (page 167).

Return Value
Your filter routine returns TRUE to accept the Apple event or FALSE to filter it out.

146 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
If your application provides a universal procedure pointer to a reply filter function as a parameter to the
AESend (page 92) function, the reply filter function can indicate any high-level events that it is willing to
handle while your application is waiting for a reply.

If your filter function returns true, the Apple Event Manager will dispatch the event through the standard
dispatch mechanism (equivalent to calling AEProcessAppleEvent (page 73)).

To provide a pointer to your reply filter callback function, you create a universal procedure pointer (UPP) of
type AEFilterUPP (page 172), using the function NewAEFilterUPP (page 131). You can do so with code
like the following:

AEFilterUPP MyReplyFilterUPP;
MyReplyFilterUPP = NewAEFilterUPP (&MyReplyFilterCallback)

You can then pass the UPP MyReplyFilterUPP as a parameter to the AESend function.

If you wish to call your filter callback function directly, you can use the InvokeAEFilterUPP (page 125)
function.

After you are finished with your filter callback function, you can dispose of the UPP with the
DisposeAEFilterUPP (page 120) function. However, if you will use the same filter function in subsequent
calls to AESend, you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEIdleProcPtr
Defines a pointer to a function the Apple Event Manager calls while your application waits for a reply to an
Apple event. Your idle function must handle update, null, operating-system, and activate events.

typedef Boolean (*AEIdleProcPtr) (
 EventRecord * theEvent,
 long * sleepTime,
 RgnHandle * mouseRgn
);

If you name your function MyAEIdleCallback, you would declare it like this:

Boolean MyAEIdleCallback (
 EventRecord * theEvent,
 long * sleepTime,
 RgnHandle * mouseRgn
);

Parameters
theEvent

A pointer to the event record of the event to process. See the Event Manager documentation for a
description of the EventRecord data type.

Callbacks 147
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

sleepTime
A pointer to a value that specifies the amount of time (in ticks) your application is willing to relinquish
the processor if no events are pending.

mouseRgn
A pointer to a value that specifies a screen region that determines the conditions under which your
application is to receive notice of mouse-moved events. See the QuickDraw Manager documentation
for a description of the RgnHandle data type.

Return Value
Your idle routine returns TRUE if your application is no longer willing to wait for a reply from the server or
for the user to bring the application to the front. It returns FALSE if your application is still willing to wait.

Discussion
If your application provides a pointer to an idle function as a parameter to the AESend (page 92) function
or the AEInteractWithUser (page 69) function, the Apple Event Manager will call the idle function to
handle any update event, null event, operating-system event, or activate event received for your application
while it is waiting for a reply.

To provide a pointer to your idle callback function, you create a universal procedure pointer (UPP) of type
AEIdleUPP (page 172), using the function NewAEIdleUPP (page 131). You can do so with code like the
following:

AEIdleUPP MyIdleUPP;
MyIdleUPP = NewAEIdleUPP (&MyIdleCallback)

You can then pass the UPP MyIdleUPP as a parameter to either the AESend function or the
AEInteractWithUser function.

If you wish to call your idle callback function directly, you can use the InvokeAEIdleUPP (page 125) function.

After you are finished with your idle callback function, you can dispose of the UPP with the
DisposeAEIdleUPP (page 120) function. However, if you will use the same idle function in subsequent calls
to AESend or AEInteractWithUser, you can reuse the same UPP, rather than dispose of it and later create
a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AERemoteProcessResolverCallback
Defines a pointer to a function the Apple Event Manager calls when the asynchronous execution of a remote
process resolver completes, either due to success or failure, after a call to the
AERemoteProcessResolverScheduleWithRunLoop function. Your callback function can use the reference
passed to it to get the remote process information.

typedef (void, AERemoteProcessResolverCallback)(
 AERemoteProcessResolverRef ref,
 void *info);

If you name your function MyAERemoteProcessCallback, you would declare it like this:

void MyAERemoteProcessCallback (

148 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 AERemoteProcessResolverRef ref,
 void *info);

Parameters
ref

A reference of type AERemoteProcessResolverRef (page 173) you can query to obtain the remote
process information. Acquired from a previous call to AECreateRemoteProcessResolver (page
36).

info
An untyped pointer your application can use to pass information it needs when resolving remote
processes. The application originally supplies this pointer in the
AERemoteProcessResolverContext (page 163) structure in the ctx parameter) when it calls the
AERemoteProcessResolverScheduleWithRunLoop function.

Return Value
Your callback routine should not return a value.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

OSLAccessorProcPtr
Your object accessor function either finds elements or properties of an Apple event object.

typedef OSErr (*OSLAccessorProcPtr) (
 DescType desiredClass,
 const AEDesc * container,
 DescType containerClass,
 DescType form,
 const AEDesc * selectionData,
 AEDesc * value,
 long accessorRefcon
);

If you name your function MyObjectAccessorCallback, you would declare it like this:

OSErr MyObjectAccessorCallback (
 DescType desiredClass,
 const AEDesc * container,
 DescType containerClass,
 DescType form,
 const AEDesc * selectionData,
 AEDesc * value,
 long accessorRefcon
);

Parameters
desiredClass

The object class of the desired Apple event object or objects. Constants for object class IDs are
described in “Object Class ID Constants” (page 215). See DescType (page 176).

Callbacks 149
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

container
A pointer to a descriptor that specifies the container of the desired Apple event object or objects. See
AEDesc (page 162).

containerClass
The object class of the container. Constants for object class IDs are described in “Object Class ID
Constants” (page 215). See DescType (page 176).

form
The key form specified by the object specifier being resolved. Constants for key form are described
in “Key Form and Descriptor Type Object Specifier Constants” (page 206). See DescType (page 176).

selectionData
A pointer to a descriptor containing the key data specified by the object specifier being resolved. See
AEDesc (page 162).

value
A pointer to a descriptor where your object accessor routine stores a descriptor that identifies the
found object. See AEDesc (page 162).

accessorRefcon
A reference constant. The Apple Event Manager passes this value to your object accessor function
each time it calls it. The reference constant may have a value of 0.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your object accessor function should
return noErr if it successfully located the requested object and errAEEventNotHandled if it could not
locate the object. When the Apple Event Manager receives the result code errAEEventNotHandled after
calling an object accessor function, it attempts to use other methods of locating the requested objects, such
as calling an equivalent system object accessor function.

Discussion
To resolve an object specifier, your application calls the AEResolve (page 89) function. AEResolve in turn
calls application-defined object accessor functions to locate specific Apple event objects and properties in
the application’s data structures. Your application provides one or more object accessor functions that can
locate all the element classes and properties it supports.

Each object accessor function provided by your application should either find elements or properties of an
Apple event object. The AEResolve function uses the object class ID of the specified Apple event object
and the descriptor type of the token that identifies the object’s container to determine which object accessor
function to call. To install an object accessor function, use the AEInstallObjectAccessor (page 67)
function.

To provide a pointer to your object accessor callback function, you create a universal procedure pointer (UPP)
of type OSLAccessorUPP (page 176), using the function NewOSLAccessorUPP (page 132). You can do so
with code like the following:

AEObjectAccessorUPP MyObjectAccessorUPP;
MyObjectAccessorUPP = NewAEObjectAccessorUPP (&MyObjectAccessorCallback)

You can then pass the UPP MyObjectAccessorUPP as a parameter to any function that installs or removes
an object accessor, such as AEInstallObjectAccessor (page 67). If your application installs the same
object accessor to handle more than one kind of object class or property of an Apple event, you can use the
same UPP to install the accessor multiple times.

If you wish to call your object accessor callback function directly, you can use the
InvokeOSLAccessorUPP (page 126) function.

150 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

After you are finished with an object accessor callback function, and have removed it with the
AERemoveObjectAccessor (page 86) function, you can dispose of the UPP with the
DisposeOSLAccessorUPP (page 120) function. However, don’t dispose of the UPP if any remaining accessor
function uses it or if you plan to install the accessor function again.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLAdjustMarksProcPtr
Defines a pointer to an adjust marks callback function. Your adjust marks function unmarks objects previously
marked by a call to your marking function.

typedef OSErr (*OSLAdjustMarksProcPtr)
(
 long newStart,
 long newStop,
 const AEDesc * markToken
);

If you name your function MyAdjustMarksCallback, you would declare it like this:

OSErr MyAdjustMarksCallback (
 long newStart,
 long newStop,
 const AEDesc * markToken
);

Parameters
newStart

The mark count value (provided when the MyAdjustMarksCallback callback function was called
to mark the object) for the first object in the new set of marked objects.

newStop
The mark count value (provided when the MyAdjustMarksCallback callback function was called
to mark the object) for the last object in the new set of marked objects.

markToken
A pointer to the mark token for the marked objects. (Token is defined in AEDisposeToken (page
41). See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your adjust marks function should return
noErr if it successfully adjusted the marks and errAEEventNotHandled if it could not locate the object.
When the Apple Event Manager gets an error result of errAEEventNotHandled, it attempts to adjust the
marks by calling the equivalent system mark-adjusting function.

Callbacks 151
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
When the Apple Event Manager needs to identify either a range of elements or the absolute position of an
element in a group of Apple event objects that pass a test, it can use your application’s mark-adjusting
function to unmark objects previously marked by a call to your marking function.

For example, suppose an object specifier specifies any row in the table "MyCustomers" for which
the City column is "San Francisco". The Apple Event Manager first uses the appropriate object
accessor function to locate all the rows in the table for which the City column is "San Francisco" and calls
the application’s marking function repeatedly to mark them. It then generates a random number between
1 and the number of rows it found that passed the test and calls the application’s mark-adjusting function
to unmark all the rows whose mark count does not match the randomly generated number. If the randomly
chosen row has a mark count value of 5, the Apple Event Manager passes the value 5 to the mark-adjusting
function in both the newStart parameter and the newStop parameter, and passes the current mark token
in the markToken parameter.

When the Apple Event Manager calls your MyAdjustMarksCallback function, your application must
dispose of any data structures that it created to mark the previously marked objects.

To provide a pointer to your adjust marks callback function, you create a universal procedure pointer (UPP)
of type OSLAdjustMarksUPP (page 177), using the function NewOSLAdjustMarksUPP (page 132). You can
do so with code like the following:

OSLAdjustMarksUPP MyAdjustMarksUPP;
MyAdjustMarksUPP = NewOSLAdjustMarksUPP (&MyAdjustMarksCallback)

You can then pass the UPP MyAdjustMarksUPP as a parameter to the AESetObjectCallbacks (page 96)
function or the AEInstallSpecialHandler (page 68) function.

If you wish to call your adjust marks callback function directly, you can use the
InvokeOSLAdjustMarksUPP (page 126) function.

After you are finished with your adjust marks callback function, you can dispose of the UPP with the
DisposeOSLAdjustMarksUPP (page 121) function. However, if you will use the same adjust marks function
in subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLCompareProcPtr
Defines a pointer to an object comparison callback function. Your object comparison function compares one
Apple event object to another or to the data for a descriptor.

typedef OSErr (*OSLCompareProcPtr) (
 DescType oper,
 const AEDesc * obj1,
 const AEDesc * obj2,
 Boolean * result
);

If you name your function MyCompareObjectsCallback, you would declare it like this:

152 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSErr MyCompareObjectsCallback (
 DescType oper,
 const AEDesc * obj1,
 const AEDesc * obj2,
 Boolean * result
);

Parameters
oper

A comparison operator that specifies the type of comparison to perform. The available comparison
operators are described in “Comparison Operator Constants” (page 190). For related information, see
the function CreateCompDescriptor (page 114). See DescType (page 176).

obj1
A pointer to a token describing the first Apple event object to compare. (Token is defined in
AEDisposeToken (page 41). See AEDesc (page 162).

obj2
A pointer to a token or some other descriptor that specifies either an Apple event object or a value
to compare to the Apple event object specified by the obj1 parameter. See AEDesc (page 162).

result
A pointer to a Boolean value where your object comparison function stores a value indicating the
result of the comparison operation. You store TRUE if the values of the obj1 and obj2 parameters
have the relationship specified by the comparisonOperator parameter; otherwise, you store FALSE.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your object comparison function should
return noErr if it successfully compared the objects and errAEEventNotHandled if it can’t compare the
objects. When the Apple Event Manager gets an error result of errAEEventNotHandled, it attempts to use
other methods of comparing the specified objects, such as calling an equivalent system object comparison
function.

Discussion
The Apple Event Manager calls your object comparison function when, in the course of resolving an object
specifier, the manager needs to compare an Apple event object with another object or with a value in a
descriptor.

If you want the Apple Event Manager to help your application resolve object specifiers of key form formTest
(and if your application doesn’t specify kAEIDoWhose as described in “Callback Constants for the AEResolve
Function” (page 187)), you should provide an object-counting function, as described in
OSLCountProcPtr (page 154), and an object comparison function.

It is up to your application to interpret the comparison operators it receives. The meaning of comparison
operators differs according to the Apple event objects being compared, and not all comparison operators
apply to all object classes. The available comparison operators are described in “Comparison Operator
Constants” (page 190).

To provide a pointer to your object comparison callback function, you create a universal procedure pointer
(UPP) of type OSLCompareUPP (page 177), using the function NewOSLCompareUPP (page 133). You can do
so with code like the following:

OSLCompareObjectsUPP MyCompareObjectsUPP;
MyCompareObjectsUPP = NewOSLCompareObjectsUPP(&MyCompareObjectsCallback)

Callbacks 153
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

You can then pass the UPP MyCompareObjectsUPP as a parameter to the AESetObjectCallbacks (page
96) function or the AEInstallSpecialHandler (page 68) function.

If you wish to call your object comparison callback function directly, you can use the
InvokeOSLCompareUPP (page 127) function.

After you are finished with your object comparison callback function, you can dispose of the UPP with the
DisposeOSLCompareUPP (page 121) function. However, if you will use the same object comparison function
in subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLCountProcPtr
Defines a pointer to an object counting callback function. Your object counting function counts the number
of Apple event objects of a specified class in a specified container object.

typedef OSErr (*OSLCountProcPtr) (
 DescType desiredType,
 DescType containerClass,
 const AEDesc * container,
 long * result
);

If you name your function MyCountObjectsCallback, you would declare it like this:

OSErr MyCountObjectsCallback (
 DescType desiredType,
 DescType containerClass,
 const AEDesc * container,
 long * result
);

Parameters
desiredType

The object class of the Apple event objects to be counted. See DescType (page 176).

containerClass
The object class of the container for the Apple event objects to be counted. See DescType (page
176).

container
A pointer to a token that identifies the container for the Apple event objects to be counted. (Token
is defined in AEDisposeToken (page 41). See AEDesc (page 162).

154 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

result
A pointer to a variable where your object-counting function stores the number of Apple objects of
the specified class in the specified container.

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your object counting function should
return noErr if it successfully counted the objects and errAEEventNotHandled if it can’t count the objects.
When the Apple Event Manager receives the result code errAEEventNotHandled after calling an object
counting function, it attempts to use other methods of counting the specified objects, such as calling an
equivalent system object counting function.

Discussion
If you want the Apple Event Manager to help your application resolve object specifiers of key form formTest
(and if your application doesn’t specify kAEIDoWhose as described in “Callback Constants for the AEResolve
Function” (page 187)), you should provide an object comparison function, as described in
OSLCompareProcPtr (page 152), and an object-counting function.

The Apple Event Manager calls your object-counting function when, in the course of resolving an object
specifier, the manager requires a count of the number of Apple event objects of a given class in a given
container.

To provide a pointer to your object counting callback function, you create a universal procedure pointer
(UPP) of type OSLCountUPP (page 177), using the function NewOSLCountUPP (page 133). You can do so with
code like the following:

OSLCountObjectsUPP MyCountObjectsUPP;
MyCountObjectsUPP = NewOSLCountObjectsUPP (&MyCountObjectsCallback)

You can then pass the UPP MyCountObjectsUPP as a parameter to the AESetObjectCallbacks (page
96) function or the AEInstallSpecialHandler (page 68) function.

If you wish to call your object counting callback function directly, you can use the InvokeOSLCountUPP (page
127) function.

After you are finished with your object counting callback function, you can dispose of the UPP with the
DisposeOSLCountUPP (page 121) function. However, if you will use the same object counting function in
subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLDisposeTokenProcPtr
Defines a pointer to a dispose token callback function. Your dispose token function, required only if you use
a complex token format, disposes of the specified token.

Callbacks 155
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typedef OSErr (*OSLDisposeTokenProcPtr)
(
 AEDesc * unneededToken
);

If you name your function MyDisposeTokenCallback, you would declare it like this:

OSErr MyDisposeTokenCallback (
 AEDesc * unneededToken
);

Parameters
unneededToken

A pointer to the token to dispose of. (Token is defined in AEDisposeToken (page 41).) On successful
return, your function must set this to the null descriptor. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your token disposal function should return
noErr if it successfully disposed of the token and errAEEventNotHandled if it can’t dispose of the token.
When the Apple Event Manager receives the result code errAEEventNotHandled after calling a token
disposal function, it attempts to use other methods of disposing of the specified token, such as calling an
equivalent system token disposal function if one is available or, if that fails, by calling AEDisposeDesc (page
40).

Discussion
The Apple Event Manager calls your token disposal function whenever it needs to dispose of a token. It also
calls your disposal function when your application calls the AEDisposeToken (page 41) function. If your
application does not provide a token disposal function, the Apple Event Manager calls AEDisposeDesc (page
40) instead.

Your token disposal function must be able to dispose of all of the token types used by your application.

If your application supports marking, a call to MyDisposeTokenCallback to dispose of a mark token lets
your application know that it can unmark the objects marked with that mark token, as described in the
Discussion section for OSLGetMarkTokenProcPtr (page 158).

To provide a pointer to your token disposal callback function, you create a universal procedure pointer (UPP)
of type OSLDisposeTokenUPP (page 177), using the function NewOSLDisposeTokenUPP (page 133). You
can do so with code like the following:

OSLDisposeTokenUPP MyDisposeTokenUPP;
MyDisposeTokenUPP = NewOSLDisposeTokenUPP (&MyDisposeTokenCallback)

You can then pass the UPP MyDisposeTokenUPP as a parameter to the AESetObjectCallbacks (page
96) function or the AEInstallSpecialHandler (page 68) function.

If you wish to call your token disposal callback function directly, you can use the
InvokeOSLDisposeTokenUPP (page 128) function.

After you are finished with your token disposal callback function, you can dispose of the UPP with the
DisposeOSLDisposeTokenUPP (page 122) function. However, if you will use the same token disposal function
in subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

156 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Version Notes
In Mac OS X, your application can not make an object callback function available to other applications by
installing it in a system object accessor dispatch table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLGetErrDescProcPtr
Defines a pointer to an error descriptor callback function. Your error descriptor callback function supplies a
pointer to an address where the Apple Event Manager can store the current descriptor if an error occurs
during a call to the AEResolve function.

typedef OSErr (*OSLGetErrDescProcPtr)
(
 AEDesc ** appDescPtr
);

If you name your function MyGetErrorDescCallback, you would declare it like this:

OSErr MyGetErrorDescCallback (
 AEDesc ** appDescPtr
);

Parameters
appDescPtr

A pointer to a pointer to a descriptor address. Your error descriptor callback function supplies a pointer
to an address of a descriptor where the Apple Event Manager can store the current descriptor if an
error occurs. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your error descriptor function should
return noErr if it completes successfully and a nonzero error value if it is unsuccessful. If it returns a nonzero
value, the Apple Event Manager continues to resolve the object specifier as if it had never called the error
callback function.

Discussion
Your get error descriptor callback function simply supplies a pointer to an address. Shortly after your application
calls the AEResolve (page 89) function, the Apple Event Manager calls your get error descriptor callback
function and writes a null descriptor to the address supplied by your callback, overwriting whatever was
there previously.

If an error occurs during the resolution of the object specifier, the Apple Event Manager calls your get error
descriptor callback function again and writes the descriptor it is currently working with—often an object
specifier—to the address supplied by your callback. If AEResolve returns an error during the resolution of
an object specifier, this address contains the descriptor responsible for the error.

Callbacks 157
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

You should always write a null descriptor at the address provided by your get error descriptor callback
function before calling AEResolve. When recovering from an error, the Apple Event Manager, never writes
to the address you provide unless it already contains a null descriptor. You may wish to maintain a single
global variable of type AEDesc and have your get error descriptor callback function always provide the
address of that variable.

After AEResolve returns, if your error descriptor is not the null descriptor, you are responsible for disposing
of it.

To provide a pointer to your get error descriptor callback function, you create a universal procedure pointer
(UPP) of type OSLGetErrDescUPP (page 178), using the function NewOSLGetErrDescUPP (page 134). You
can do so with code like the following:

OSLGetErrorDescUPP MyGetErrorDescUPP;
MyGetErrorDescUPP = NewOSLGetErrorDescUPP (&MyGetErrorDescCallback)

You can then pass the UPP MyGetErrorDescUPP as a parameter to the AESetObjectCallbacks (page
96) function or the AEInstallSpecialHandler (page 68) function.

If you wish to call your get error descriptor callback function directly, you can use the
InvokeOSLGetErrDescUPP (page 128) function.

After you are finished with your get error descriptor callback function, you can dispose of the UPP with the
DisposeOSLGetErrDescUPP (page 122) function. However, if you will use the same get error descriptor
callback function in subsequent calls to the function AESetObjectCallbacks or the function
AEInstallSpecialHandler, you can reuse the same UPP, rather than dispose of it and later create a new
UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLGetMarkTokenProcPtr
Defines a pointer to a mark token callback function. Your mark token function returns a mark token.

typedef OSErr (*OSLGetMarkTokenProcPtr)
(
 const AEDesc * dContainerToken,
 DescType containerClass,
 AEDesc * result
);

If you name your function MyGetMarkTokenCallback, you would declare it like this:

OSErr MyGetMarkTokenCallback (
 const AEDesc * dContainerToken,
 DescType containerClass,
 AEDesc * result
);

158 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Parameters
dContainerToken

A pointer to the Apple event object that contains the elements to be marked with the mark token.
(Token is defined in AEDisposeToken (page 41). See AEDesc (page 162).

containerClass
The object class of the container that contains the objects to be marked. See DescType (page 176).

result
A pointer to a descriptor where your mark token function should return a mark token. If your function
can’t return a mark token, it should return a null descriptor. See AEDesc (page 162).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your mark token function should return
noErr if it successfully supplies a mark token and errAEEventNotHandled if it fails to supply a mark token.
When the Apple Event Manager gets an error result of errAEEventNotHandled after calling a mark token
function, it attempts to get a mark token by calling the equivalent system marking callback function.

Discussion
To get a mark token, the Apple Event Manager calls your mark token function. Like other tokens, the mark
token returned can be a descriptor of any type; however, unlike other tokens, a mark token identifies the
way your application will mark Apple event objects during the current session while resolving a single object
specifier that specifies the key form formTest.

A mark token is valid until the Apple Event Manager either disposes of it by calling AEDisposeToken (page
41) or returns it as the result of the AEResolve (page 89) function. If the final result of a call to AEResolve
is a mark token, the Apple event objects currently marked for that mark token are those specified by the
object specifier passed to AEResolve, and your application can proceed to do whatever the Apple event
has requested. Note that your application is responsible for disposing of a final mark token with a call to
AEDisposeToken, just as for any other final token.

If your application supports marking, it should also provide a token disposal function modeled after the token
disposal function described in OSLDisposeTokenProcPtr (page 155). When the Apple Event Manager calls
AEDisposeToken to dispose of a mark token that is not the final result of a call to AEResolve, the subsequent
call to your token disposal function lets you know that you can unmark the Apple event objects marked with
that mark token. A call to AEDisposeDesc to dispose of a mark token (which would occur if you did not
provide a token disposal function) would go unnoticed.

To provide a pointer to your mark token callback function, you create a universal procedure pointer (UPP)
of type OSLGetMarkTokenUPP (page 178), using the function NewOSLGetMarkTokenUPP (page 134). You
can do so with code like the following:

OSLGetMarkTokenUPP MyGetMarkTokenUPP;
MyGetMarkTokenUPP = NewOSLGetMarkTokenUPP (&MyGetMarkTokenCallback)

You can then pass the UPP MyGetMarkTokenUPP as a parameter to the AESetObjectCallbacks (page
96) function or the AEInstallSpecialHandler (page 68) function.

If you wish to call your mark token callback function directly, you can use the
InvokeOSLGetMarkTokenUPP (page 129) function.

After you are finished with your mark token callback function, you can dispose of the UPP with the
DisposeOSLGetMarkTokenUPP (page 122) function. However, if you will use the same mark token function
in subsequent calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler,
you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Callbacks 159
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLMarkProcPtr
Defines a pointer to an object marking callback function. Your object-marking function marks a specific Apple
event object.

typedef OSErr (*OSLMarkProcPtr) (
 const AEDesc * dToken,
 const AEDesc * markToken,
 long index
);

If you name your function MyMarkCallback, you would declare it like this:

OSErr MyMarkCallback (
 const AEDesc * dToken,
 const AEDesc * markToken,
 long index
);

Parameters
dToken

A pointer to the token for the Apple event object to be marked. (Token is defined in
AEDisposeToken (page 41). See AEDesc (page 162).

markToken
A pointer to the mark token used to mark the Apple event object. See AEDesc (page 162).

index
The number of times your MyMarkCallback function has been called for the current mark token
(that is, the number of Apple event objects that have so far passed the test, including the element to
be marked).

Return Value
A result code. See “Apple Event Manager Result Codes” (page 252). Your object marking function should
return noErr if it successfully marks the Apple event object and errAEEventNotHandled if it fails to mark
the object. When the Apple Event Manager gets an error result of errAEEventNotHandled after calling an
object marking function, it attempts to get mark the object by calling the equivalent system object marking
function.

Discussion
To mark an Apple event object using the current mark token, the Apple Event Manager calls the object-marking
function provided by your application. In addition to marking the specified object, your MyMarkCallback
function should record the mark count for each object that it marks. The mark count recorded for each marked
object allows your application to determine which of a set of marked tokens pass a test, as described in the
Discussion section for the OSLAdjustMarksProcPtr (page 151) function.

To provide a pointer to your mark callback function, you create a universal procedure pointer (UPP) of type
OSLMarkUPP (page 178), using the function NewOSLMarkUPP (page 134). You can do so with code like the
following:

160 Callbacks
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSLMarkUPP MyMarkUPP;
MyMarkUPP = NewOSLMarkUPP (&MyMarkCallback)

You can then pass the UPP MyMarkUPP as a parameter to the AESetObjectCallbacks (page 96) function
or the AEInstallSpecialHandler (page 68) function.

If you wish to call your mark callback function directly, you can use the InvokeOSLMarkUPP (page 129)
function.

After you are finished with your mark callback function, you can dispose of the UPP with the
DisposeOSLMarkUPP (page 123) function. However, if you will use the same mark function in subsequent
calls to the function AESetObjectCallbacks or the function AEInstallSpecialHandler, you can reuse
the same UPP, rather than dispose of it and later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

Data Types

AEArrayData
Stores array information to be put into a descriptor list with the AEPutArray function or extracted from a
descriptor list with the AEGetArray function.

union AEArrayData {
 short kAEDataArray[1];
 char kAEPackedArray[1];
 Handle kAEHandleArray[1];
 AEDesc kAEDescArray[1];
 AEKeyDesc kAEKeyDescArray[1];
};
typedef union AEArrayData AEArrayData;

Discussion
When your application calls the AEPutArray (page 75) function to put information into a descriptor list or
the AEGetArray (page 44) function to get information from a descriptor list, it uses an to store the
information. The type of array depends on the data for the array, as specified by one of the constants described
in “Data Array Constants” (page 196).

Array items in Apple event arrays of type kAEDataArray, kAEPackedArray, or kAEHandleArray must be
factored—that is, contained in a factored descriptor list. Before adding array items to a factored descriptor
list, you should provide both a pointer to the data that is common to all array items and the size of that
common data when you first call AECreateList (page 35) to create a factored descriptor list. When you
call AEPutArray to add the array data to such a descriptor list, the Apple Event Manager automatically
isolates the common data you specified in the call to AECreateList.

When you call AEGetArray or AEPutArray, you specify a pointer of data type AEArrayDataPointer that
points to a buffer containing the data for the array.

Data Types 161
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEBuildError
Defines a structure for storing additional error code information for “AEBuild” routines.

struct AEBuildError {
 AEBuildErrorCode fError;
 UInt32 fErrorPos;
};
typedef struct AEBuildError AEBuildError;

Fields
fError

The error code. See “AEBuild Error Codes” (page 179) for a list of errors.

fErrorPos
The character position where the parser detected the error.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AEDesc
Stores data and an accompanying descriptor type to form the basic building block of all Apple Events.

struct AEDesc {
 DescType descriptorType;
 AEDataStorage dataHandle;
};
typedef struct AEDesc AEDesc;

Fields
descriptorType

A four-character code of type DescType (page 176) that indicates the type of data in the structure.
See DescType (page 176).

dataHandle
An opaque storage type that points to the storage for the descriptor data. Your application doesn’t
access this data directly—rather, it calls one of the functions AEGetDescDataSize (page 50),
AEGetDescData (page 48), or AEReplaceDescData (page 88). See AEDataStorage (page 169).

Discussion
The Apple Event Manager uses one or more descriptors to construct Apple event attributes and parameters,
object specifiers, tokens, and many other types of data it works with. (Token is defined in
AEDisposeToken (page 41).) A descriptor consists of an opaque data storage container and a descriptor
type that identifies the type of the data stored in the descriptor.

162 Data Types
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

The descriptor type is a structure of type DescType, which in turn is of data type ResType—that is, a
four-character code. “Descriptor Type Constants” (page 197) lists the constants for the basic descriptor types
used by the Apple Event Manager. For information about descriptor types used with object specifiers, see
“Key Form and Descriptor Type Object Specifier Constants” (page 206).

Version Notes
Prior to Carbon, the AEDataStorage (page 169) data type was defined as follows:

typedef Handle AEDataStorage;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEKeyDesc
Associates a keyword with a descriptor to form a keyword-specified descriptor.

struct AEKeyDesc {
 AEKeyword descKey;
 AEDesc descContent;
};
typedef struct AEKeyDesc AEKeyDesc;

Fields
descKey

A four-character code of type AEKeyword (page 172) that uniquely identifies the key that is associated
with the data in the structure. Some keyword constants are described in “Keyword Attribute
Constants” (page 209) and “Keyword Parameter Constants” (page 211). See AEKeyword (page 172).

descContent
A descriptor of type AEDesc (page 162) that stores the keyword descriptor data. See AEDesc (page
162).

Discussion
The Apple Event Manager uniquely identifies the various parts of an Apple event by means of keywords
associated with corresponding descriptors. A keyword is an arbitrary constant of type AEKeyword (page 172)
that represents a four-character code.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AERemoteProcessResolverContext
Supplied as a parameter when performing asynchronous resolution of remote processes.

Data Types 163
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

struct AERemoteProcessResolverContext {
 CFIndex version;
 void * info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct AERemoteProcessResolverContext AERemoteProcessResolverContext;

Fields
version

This should be set to zero (0).

info
A pointer to arbitrary information. The pointer is retained and passed to the callback, allowing you
to provide information to that routine.

retain
A prototype for a function callback that retains the specified data. Called on the info pointer. This
field may be NULL.

release
A prototype for a function callback that releases the specified data. Called on the info pointer. This
field may be NULL.

copyDescription
A prototype for a function callback that provides a description of the specified data. Called on the
info pointer. This field may be NULL.

Discussion
When you call AERemoteProcessResolverScheduleWithRunLoop (page 83) for asynchronous resolution,
you supply a reference to a structure of this type, along with a reference to a callback routine, defined by
AERemoteProcessResolverCallback (page 148). The context is copied and the info pointer retained.
When the callback is made, the info pointer is passed to the callback.

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

ccntTokenRecord
Stores token information used by the AEResolve function while locating a range of objects.

struct ccntTokenRecord {
 DescType tokenClass;
 AEDesc token;
};
typedef struct ccntTokenRecord ccntTokenRecord;

Fields
tokenClass

The class ID of the container represented by the token parameter. See DescType (page 176).

token
A token for the current container. (Token is defined in AEDisposeToken (page 41). See AEDesc (page
162).

164 Data Types
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
When the AEResolve (page 89) function calls an object accessor function to locate a range of objects, the
Apple Event Manager replaces the descriptor of type typeCurrentContainerwith a token for the container
of each boundary object. When using AEResolve to resolve the object specifier, your application doesn’t
need to examine the contents of this token, because the Apple Event Manager keeps track of it.

If your application attempts to resolve some or all of the object specifier without calling AEResolve, the
application may need to examine the token before it can locate the boundary objects. The token provided
by the Apple Event Manager for a boundary object’s container is a descriptor of type typeTokenwhose data
storage pointer refers to a structure of type ccntTokenRecord.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

IntlText
International text consists of an ordered series of bytes, beginning with a 4-byte language code and a 4-byte
script code that together determine the format of the bytes that follow. (Deprecated. Use Unicode text
instead.)

struct IntlText {
 ScriptCode theScriptCode;
 LangCode theLangCode;
 char theText[1];
};
typedef struct IntlText IntlText;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

OffsetArray
Specifies offsets of ranges of text. Not typically used by developers.

struct OffsetArray {
 sort fNumOfOffsets;
 long fOffset[1];
};
typedef struct OffsetArray OffsetArray;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

Data Types 165
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

TextRange
Specifies a range of text. Not typically used by developers.

struct TextRange {
 long fStart;
 long fEnd;
 short fHiliteStyle;
};
typedef struct TextRange TextRange;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

TextRangeArray
Specifies an array of text ranges. Not typically used by developers.

struct TextRangeArray {
 short fNumOfRanges;
 TextRange fRange[1];
};
typedef struct TextRangeArray TextRangeArray;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

TScriptingSizeResource
Defines a data type to store stack and heap information. Not typically used by developers.

struct TScriptingSizeResource {
 short scriptingSizeFlags;
 unsigned long minStackSize;
 unsigned long preferredStackSize;
 unsigned long maxStackSize;
 unsigned long minHeapSize;
 unsigned long preferredHeapSize;
 unsigned long maxHeapSize;
};
typedef struct TScriptingSizeResource TScriptingSizeResource;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEUserTermTypes.h

166 Data Types
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

WritingCode
struct WritingCode {
 ScriptCode theScriptCode;
 LangCode theLangCode;
};
typedef struct WritingCode WritingCode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

AEAddressDesc
A descriptor that contains the address of an application. Typically used to describe the target application for
an Apple event.

typedef AEDesc AEAddressDesc;

Discussion
An address descriptor is identical to a descriptor of data type AEDesc (page 162); however, the data for an
address descriptor must always consist of the address of an application.

Every Apple event includes an attribute specifying the address of the target application. The address in an
address descriptor can be specified as one of these types (or as any other descriptor type you define that
can be coerced to one of these types): typeApplSignature, typeSessionID, or
typeProcessSerialNumber. These constants are described in “Descriptor Type Constants” (page 197). You
can also use “typeApplicationBundleID” (page 244).

If your application sends Apple events to itself using a typeProcessSerialNumber address descriptor with
the lowLongOfPSN field set to kCurrentProcess (and the highLongOfPSN field set to 0), the Apple Event
Manager jumps directly to the appropriate Apple event handler without going through the normal
event-processing sequence.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEArrayDataPointer
A pointer to a union of type AEArrayData.

typedef AEArrayData * AEArrayDataPointer

Discussion
This data type merely defines a pointer to an AEArrayData (page 161) union.

Data Types 167
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEArrayType
Stores a value that specifies an array type.

typedef SInt8 AEArrayType;

Discussion
You use this data type with the AEGetArray (page 44) function and the AEPutArray (page 75) function
to specify an array type, using one of the constants from “Data Array Constants” (page 196).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoerceDescUPP
Defines a data type for the universal procedure pointer for the AECoerceDescProcPtr callback function
pointer.

typedef AECoerceDescProcPtr AECoerceDescUPP;

Discussion
For a description of a coerce descriptor callback function, see AECoerceDescProcPtr (page 140).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoercePtrUPP
Defines a data type for the universal procedure pointer for the AECoercePtrProcPtr callback function
pointer.

typedef AECoercePtrProcPtr AECoercePtrUPP;

Discussion
For a description of a coerce pointer callback function, see AECoercePtrProcPtr (page 141).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AECoercionHandlerUPP
Defines a data type for the universal procedure pointer for the AECoercionHandlerUPP callback function
pointer.

168 Data Types
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typedef AECoerceDescUPP AECoercionHandlerUPP;

Discussion
For a description of a coercion handler callback function, see AECoercePtrProcPtr (page 141).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDataStorage
A pointer to an opaque data type that provides storage for an AEDesc descriptor.

typedef AEStorageDataType * AEDataStorage;

Discussion
The Apple Event Manager defines the AEDataStorage data type to serve as a data storage field in the
AEDesc (page 162) structure. Your application doesn’t access the data pointed to by a data storage pointer
directly. Rather, you work with the following functions:

 ■ AEGetDescDataSize (page 50)

 ■ AEGetDescData (page 48)

 ■ AEGetDescDataRange (page 49)

 ■ AEReplaceDescData (page 88)

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDataStorageType
An opaque data type used to store data in Apple event descriptors.

typedef struct OpaqueAEDataStorageType * AEDataStorageType;

Discussion
See AEDesc (page 162) for related information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEDescList
A descriptor whose data consists of a list of one or more descriptors.

Data Types 169
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typedef AEDesc AEDescList;

Discussion
A descriptor list is identical to a descriptor of data type AEDesc (page 162) —the only difference is that the
data in a descriptor list must always consist of a list of other descriptors.

Descriptor lists are a key building block of Apple events. Many Apple Event Manager functions take or return
lists of descriptors in descriptor lists. For example, see the functions described in “Counting the Items in
Descriptor Lists” (page 15) and “Getting Items From Descriptor Lists” (page 19).

The format of the data in the dataHandle of the descriptor is private. You can only operate on the contained
elements with Apple Event Manager functions, including those described in “Counting the Items in Descriptor
Lists” (page 15) and “Getting Items From Descriptor Lists” (page 19).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEEventSource
A data type for values that specify how an Apple event was delivered.

typedef SInt8 AEEventSource;

Discussion
“Event Source Constants” (page 204) lists the valid constant values for a variable or parameter of type
AEEventSource.

You might use a variable of this type, for example, to get the source type of an Apple event by calling the
function AEGetAttributePtr (page 46). You pass the keyEventSourceAttr constant as the value for
the theAEKeyWord parameter and you pass a pointer to a variable of type AEEventSource for the dataPtr
parameter. On return, the variable will contain one of the event source constant values described in “Event
Source Constants” (page 204). The complete call looks like the following:

AppleEvent theAppleEvent; // previously obtained Apple event
DescType returnedType;
AEEventSource sourceOfAE;
Size actualSize;
OSErr myErr;
myErr = AEGetAttributePtr(theAppleEvent,
 keyEventSourceAttr,
 typeShortInteger,
 &returnedType,
 (void *) &sourceOfAE,
 sizeof (sourceOfAE),
 &actualSize);

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleEvents.h

170 Data Types
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEDisposeExternalUPP
Defines a universal procedure pointer to a function the Apple Event Manager calls to dispose of a descriptor
created by the AECreateDescFromExternalPtr function.

typedef AEDisposeExternalProcPtr AEDisposeExternalUPP;

Discussion
See the AEDisposeExternalProcPtr (page 143) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
AEDataModel.h

AEEventClass
Specifies the event class of an Apple event.

typedef FourCharCode AEEventClass;

Discussion
Apple events are identified by their event class and event ID attributes. The event class is the attribute that
identifies a group of related Apple events. When you call the AEProcessAppleEvent (page 73) function,
the Apple Event Manager uses these attributes to identify a handler for a specific Apple event.

For more information on Apple event classes, see “Event Class Constants” (page 201).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEEventHandlerUPP
Defines a data type for the universal procedure pointer for the AEEventHandlerUPP callback function
pointer.

typedef AEEventHandlerProcPtr AEEventHandlerUPP;

Discussion
For a description of an event handler callback function, see AEEventHandlerProcPtr (page 144).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

Data Types 171
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

AEEventID
Specifies the event ID of an Apple event.

typedef FourCharCode AEEventID;

Discussion
Apple events are identified by their event class and event ID attributes. The event ID is the attribute that
identifies a particular Apple event within its event class. In conjunction with the event class, the event ID
uniquely identifies the Apple event and communicates what action the Apple event should perform.

For more information on Apple event IDs, see “Event ID Constants” (page 202).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEFilterUPP
Defines a data type for the universal procedure pointer for the AEFilterProcPtr callback function pointer.

typedef AEFilterProcPtr AEFilterUPP;

Discussion
For a description of a filter callback function, see AEFilterProcPtr (page 146).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEIdleUPP
Defines a data type for the universal procedure pointer for the AEIdleProcPtr callback function pointer.

typedef AEIdleProcPtr AEIdleUPP;

Discussion
For a description of an idle callback function, see AEIdleProcPtr (page 147).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

AEKeyword
A four-character code that uniquely identifies a descriptor in an Apple event record or an Apple event.

172 Data Types
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typedef FourCharCode AEKeyword;

Discussion
The Apple Event Manager uniquely identifies the various parts of an Apple event by means of keywords
associated with corresponding descriptors. Keywords are arbitrary names, stored as four-character codes of
type AEKeyword. A keyword combined with a descriptor forms a keyword-specified descriptor, which is
defined by a data structure of type AERemoteProcessResolverContext (page 163).

The Apple Event Manager also uses keywords for Apple event attributes. Keyword constants used by the
Apple Event Manager are defined in “Keyword Attribute Constants” (page 209) and “Keyword Parameter
Constants” (page 211).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AERecord
A descriptor whose data is a list of keyword-specified descriptors.

typedef AEDescList AERecord;

Discussion
The Apple Event Manager provides routines that allow your application to create Apple event records and
extract data from them when creating or responding to Apple events. You also work with Apple event records
if your application resolves or creates object specifiers. Functions that use Apple event records are described
in “Getting Data or Descriptors From Apple Events and Apple Event Records” (page 18) and “Adding
Parameters and Attributes to Apple Events and Apple Event Records” (page 14).

The descriptor list of keyword-specified descriptors in an Apple event record must specify Apple event
parameters—they cannot specify Apple event attributes. Only descriptor lists of type Apple event can contain
both attributes and parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AERemoteProcessResolverRef
An opaque reference to an object that encapsulates the mechanism for obtaining a list of processes running
on a remote machine.

typedef AERemoteProcessResolver * AERemoteProcessResolverRef;

Discussion
You create an instance of AERemoteProcessResolverRef by calling
AECreateRemoteProcessResolver (page 36), and you must disposed of it by calling
AEDisposeRemoteProcessResolver (page 40). An instance of this type is not a CFType (the base type
used by all Core Foundation derived opaque types). For more information, see Core Foundation Reference
Documentation.

Data Types 173
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
AppleEvents.h

AEReturnID
Specifies a return ID for a created Apple event.

typedef SInt16 AEReturnID;

Discussion
When you call the AECreateAppleEvent (page 32) function, you pass a value of type AEReturnID for the
returnID parameter. “ID Constants for the AECreateAppleEvent Function” (page 205) lists the valid constant
values for a variable or parameter of this type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AESendOptions
This data type is not available. (Deprecated. Not available in Apple Event Manager API.)

typedef OptionBits AESendOptions;

AESendPriority
Specifies the processing priority for a sent Apple event.

typedef SInt16 AESendPriority;

Discussion
When you call the AESend (page 92) function, you pass a value of type AESendPriority for the
sendPriority parameter. “Priority Constants for the AESend Function (Deprecated in Mac OS X)” (page
217) lists the valid constant values for a variable or parameter of this type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AEStreamRef
An opaque data structure for storing stream-based descriptor data.

174 Data Types
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typedef struct OpaqueAEStreamRef * AEStreamRef;

Discussion
You create AEStreamRef objects and manipulate their contents using the “AEStream” routines found in the
section “Creating Apple Event Structures Using Streams” (page 22)

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEHelpers.h

AETransactionID
Specifies a transaction ID.

typedef SInt32 AETransactionID;

Discussion
A transaction is a sequence of Apple events that are sent back and forth between the client and server
applications, beginning with the client’s initial request for a service. When you call the
AECreateAppleEvent (page 32) function, you pass a value of type AETransactionID for the
transactionID parameter. “ID Constants for the AECreateAppleEvent Function” (page 205) lists the valid
constant values for a variable or parameter of this type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

AppleEvent
A descriptor whose data is a list of descriptors containing both attributes and parameters that make up an
Apple event.

typedef AERecord AppleEvent;

Discussion
The Apple event data type describes a full-fledged Apple event. Like the data for an Apple event record (data
type AERecord (page 173)), the data for an Apple event consists of a list of keyword-specified descriptors.
Unlike an Apple event record, the data for an Apple event is conceptually divided into two parts, one for
attributes and one for parameters. This division within the Apple event allows the Apple Event Manager to
distinguish between an event’s attributes and its parameters.

For additional information on the structure of an Apple event and on how to build one, see “Building an
Apple Event” in Apple Events Programming Guide.

Many functions work with Apple events, including the functions described in “Getting Data or Descriptors
From Apple Events and Apple Event Records” (page 18), “Adding Parameters and Attributes to Apple Events
and Apple Event Records” (page 14), “Creating an Apple Event” (page 15), and “Sending an Apple Event” (page
21).

Data Types 175
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

DescType
Specifies the type of the data stored in an AEDesc descriptor.

typedef ResType DescType;

Discussion
A DescType data type is a four-character code that stores a value that identifies the data in an AEDesc (page
162) descriptor, the basic building block for all Apple events.

The descriptor type constants used by the Apple Event Manager are described in “Descriptor Type
Constants” (page 197) and “Key Form and Descriptor Type Object Specifier Constants” (page 206).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEDataModel.h

OffsetArrayHandle
Defines a data type that points to an OffsetArray. Not typically used by developers.

typedef OffsetArrayPtr * OffsetArrayHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
AERegistry.h

OSLAccessorUPP
Defines a data type for the universal procedure pointer for the OSLAccessorProcPtr callback function
pointer.

typedef OSLAccessorProcPtr OSLAccessorUPP;

Discussion
For a description of an object accessor callback function, see OSLAccessorProcPtr (page 149).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

176 Data Types
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

OSLAdjustMarksUPP
Defines a data type for the universal procedure pointer for the OSLAdjustMarksProcPtr callback function
pointer.

typedef OSLAdjustMarksProcPtr OSLAdjustMarksUPP;

Discussion
For a description of an adjust marks callback function, see OSLAdjustMarksProcPtr (page 151).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLCompareUPP
Defines a data type for the universal procedure pointer for the OSLCompareProcPtr callback function
pointer.

typedef OSLCompareProcPtr OSLCompareUPP;

Discussion
For a description of a compare callback function, see OSLCompareProcPtr (page 152).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLCountUPP
Defines a data type for the universal procedure pointer for the OSLCountProcPtr callback function pointer.

typedef OSLCountProcPtr OSLCountUPP;

Discussion
For a description of a count callback function, see OSLCountProcPtr (page 154).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLDisposeTokenUPP
Defines a data type for the universal procedure pointer for the OSLDisposeTokenProcPtr callback function
pointer.

Data Types 177
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typedef OSLDisposeTokenProcPtr OSLDisposeTokenUPP;

Discussion
For a description of a dispose token callback function, see OSLDisposeTokenProcPtr (page 155).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLGetErrDescUPP
Defines a data type for the universal procedure pointer for the OSLGetErrDescProcPtr callback function
pointer.

typedef OSLGetErrDescProcPtr OSLGetErrDescUPP;

Discussion
For a description of a get error descriptor callback function, see OSLGetErrDescProcPtr (page 157).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLGetMarkTokenUPP
Defines a data type for the universal procedure pointer for the OSLGetMarkTokenProcPtr callback function
pointer.

typedef OSLGetMarkTokenProcPtr OSLGetMarkTokenUPP;

Discussion
For a description of a mark token callback function, see OSLGetMarkTokenProcPtr (page 158).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

OSLMarkUPP
Defines a data type for the universal procedure pointer for the OSLMarkProcPtr callback function pointer.

typedef OSLMarkProcPtr OSLMarkUPP;

Discussion
For a description of a mark callback function, see OSLMarkProcPtr (page 160).

178 Data Types
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEObjects.h

AEInteractAllowed
Specifies an interaction level.

typedef SInt8 AEInteractAllowed;

Discussion
When you call theAEGetInteractionAllowed (page 52) function or theAESetInteractionAllowed (page
95) function, you receive or pass a value of type AEInteractAllowed for the level parameter. Interaction
levels are described and the valid interaction level constants are listed in “User Interaction Level
Constants” (page 221).

Availability
Available in Mac OS X v10.0 and later.

Declared In
AEInteraction.h

Constants

AEBuild Error Codes
Represents syntax errors found by an “AEBuild” routine.

Constants 179
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typedef UInt32 AEBuildErrorCode;
enum {
aeBuildSyntaxNoErr = 0,
aeBuildSyntaxBadToken = 1,
aeBuildSyntaxBadEOF = 2,
aeBuildSyntaxNoEOF = 3,
aeBuildSyntaxBadNegative = 4,
aeBuildSyntaxMissingQuote = 5,
aeBuildSyntaxBadHex = 6,
aeBuildSyntaxOddHex = 7,
aeBuildSyntaxNoCloseHex = 8,
aeBuildSyntaxUncoercedHex = 9,
aeBuildSyntaxNoCloseString = 10,
aeBuildSyntaxBadDesc = 11,
aeBuildSyntaxBadData = 12,
aeBuildSyntaxNoCloseParen = 13,
aeBuildSyntaxNoCloseBracket = 14,
aeBuildSyntaxNoCloseBrace = 15,
aeBuildSyntaxNoKey = 16,
aeBuildSyntaxNoColon = 17,
aeBuildSyntaxCoercedList = 18,
aeBuildSyntaxUncoercedDoubleAt = 19
};

Constants
aeBuildSyntaxNoErr

No error.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadToken
An illegal character was specified.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadEOF
An unexpected end of format string was encountered.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoEOF
There were unexpected characters beyond the end of the format string.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadNegative
A minus sign “-” was not followed by digits.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxMissingQuote
A string was not terminated by a closing quotation mark.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

180 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

aeBuildSyntaxBadHex
A hex string contained characters other than hexadecimal digits.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxOddHex
A hex string contained an odd number of digits.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseHex
A hex string was missing a “$” or “»” character.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxUncoercedHex
A hex string must be coerced to a type.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseString
A string was missing a closing quote.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadDesc
An illegal descriptor was specified.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxBadData
Bad data was found inside a variable argument list.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseParen
A data value was missing a closing parenthesis.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseBracket
A comma or closing bracket “]” was expected.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoCloseBrace
A comma or closing brace “}” was expected.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

Constants 181
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

aeBuildSyntaxNoKey
A keyword was missing from a descriptor.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxNoColon
In a descriptor, one of the keywords was not followed by a colon.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxCoercedList
Cannot coerce a list.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

aeBuildSyntaxUncoercedDoubleAt
You must coerce a “@@” substitution.

Available in Mac OS X v10.0 and later.

Declared in AEHelpers.h.

AESendMode
Specify send preferences to the AESend function.

typedef SInt32 AESendMode;
enum {
 kAENoReply = 0x00000001,
 kAEQueueReply = 0x00000002,
 kAEWaitReply = 0x00000003,
 kAEDontReconnect = 0x00000080,
 kAEWantReceipt = 0x00000200,
 kAENeverInteract = 0x00000010,
 kAECanInteract = 0x00000020,
 kAEAlwaysInteract = 0x00000030,
 kAECanSwitchLayer = 0x00000040,
 kAEDontRecord = 0x00001000,
 kAEDontExecute = 0x00002000,
 kAEProcessNonReplyEvents = 0x00008000
};

Constants
kAENoReply

The reply preference—your application does not want a reply Apple event. If you set the bit specified
by this constant, the server processes the Apple event as soon as it has the opportunity.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

182 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAEQueueReply
The reply preference—your application wants a reply Apple event. If you set the bit specified by this
constant, the reply appears in your event queue as soon as the server has the opportunity to process
and respond to your Apple event.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEWaitReply
The reply preference—your application wants a reply Apple event and is willing to give up the
processor while waiting for the reply. For example, if the server application is on the same computer
as your application, your application yields the processor to allow the server to respond to your Apple
event.

If you set the bit specified by this constant, you must provide an idle function. This function should
process any update events, null events, operating-system events, or activate events that occur while
your application is waiting for a reply. For more information on idle routines, see
AEInteractWithUser (page 69).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEDontReconnect
Deprecated and unsupported in Mac OS X. The reconnection preference—the Apple Event Manager
must not automatically try to reconnect if it receives a sessClosedErr result code from the PPC
Toolbox. If you don’t set this flag, the Apple Event Manager automatically attempts to reconnect and
reestablish the session.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEWantReceipt
Deprecated and unsupported in Mac OS X. The return receipt preference—the sender wants to receive
a return receipt for this Apple event from the Event Manager. (A return receipt means only that the
receiving application accepted the Apple event the Apple event may or may not be handled successfully
after it is accepted.) If the receiving application does not send a return receipt before the request
times out, AESend returns errAETimeout as its function result.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAENeverInteract
The user interaction preference—the server application should never interact with the user in response
to the Apple event. If you set the bit specified by this constant, the AEInteractWithUser (page 69)
function (when called by the server) returns the errAENoUserInteraction result code. When you
send an Apple event to a remote application, the default is to set this bit.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 183
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAECanInteract
The user interaction preference—the server application can interact with the user in response to the
Apple event. By convention, you set the bit specified by this constant if the user needs to supply
information to the server. If you set the bit and the server allows interaction, the
AEInteractWithUser (page 69) function either brings the server application to the foreground or
posts a notification request. When you send an Apple event to a local application, the default is to
set this bit.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEAlwaysInteract
The user interaction preference—the server application should always interact with the user in
response to the Apple event. By convention, you set the bit specified by this constant whenever the
server application normally asks a user to confirm a decision or interact in any other way, even if no
additional information is needed from the user. If you set the bit specified by this constant, the
AEInteractWithUser (page 69) function either brings the server application to the foreground or
posts a notification request.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAECanSwitchLayer
The application switch preference—if both the client and server allow interaction, and if the client
application is the active application on the local computer and is waiting for a reply (that is, it has set
the kAEWaitReply flag), AEInteractWithUser brings the server directly to the foreground.
Otherwise, AEInteractWithUser uses the Notification Manager to request that the user bring the
server application to the foreground.

You should specify the kAECanSwitchLayer flag only when the client and server applications reside
on the same computer. In general, you should not set this flag if it would be confusing or inconvenient
to the user for the server application to come to the front unexpectedly. This flag is ignored if you
are sending an Apple event to a remote computer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEDontRecord
The recording preference—your application is sending an event to itself but does not want the event
recorded. When Apple event recording is on, the Apple Event Manager records a copy of every event
your application sends to itself except for those events for which this flag is set.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEDontExecute
The execution preference—your application is sending an Apple event to itself for recording purposes
only—that is, you want the Apple Event Manager to send a copy of the event to the recording process
but you do not want your application actually to receive the event.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEProcessNonReplyEvents
Allow processing of non-reply Apple events while awaiting a synchronous Apple event reply (you
specified kAEWaitReply for the reply preference).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

184 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
You use these constants with the sendMode parameter to the AESend (page 92) function to specify how
the server application should handle the reply mode, the interaction level, the application switch mode, the
reconnection mode, the return receipt mode, the recording mode, and whether to process non-reply Apple
events. To obtain a value for this parameter, you add together constants to set the appropriate bits for the
Apple event you are about to send. The following paragraphs provide additional information about how you
use these constants.

You can set only one flag reply preference (kAENoReply, kAEQueueReply, or kAEWaitReply), one user
interaction preference (kAENeverInteract, kAECanInteract, or kAEAlwaysInteract), and one recording
and execution preference (kAEDontRecord or kAEDontExecute).

Before the Apple Event Manager sends a reply event back to the client application, the keyAddressAttr
attribute contains the address of the client application. After the client receives the reply event, the
keyAddressAttr attribute contains the address of the server application.

If you specify kAEWaitReply, the Apple Event Manager uses the Event Manager to send the event. The
Apple Event Manager then calls the WaitNextEvent function on behalf of your application, causing your
application to yield the processor and giving the server application a chance to receive and handle the Apple
event. Your application continues to yield the processor until the server handles the Apple event or the
request times out.

Specify the kAEWantReceipt flag if your application wants notification that the server application has
accepted the Apple event. If you specify this flag, your application receives a return receipt as a high-level
event.

If you specify the kAEWantReceipt flag and the server application does not accept the Apple event within
the time specified by the timeOutInTicks parameter to AESend, the AESend function returns a timeout
error. Note that AESend also returns a timeout error if your application sets the kAEWaitReply flag and
does not receive the reply Apple event within the time specified by the timeOutInTicks parameter.

You use one of the three flags—kAENeverInteract, kAECanInteract, and kAEAlwaysInteract—to
specify whether the server should interact with the user when handling the Apple event. Specify
kAENeverInteract if the server should not interact with the user when handling the Apple event. You
might specify this constant if you don’t want the user to be interrupted while the server is handling the Apple
event.

Use the kAECanInteract flag if the server should interact with the user when the user needs to supply
information to the server. Use the kAEAlwaysInteract flag if the server should interact with the user
whenever the server normally asks a user to confirm a decision or interact in any other way, even if no
additional information is needed from the user. Note that it is the responsibility of the server and client
applications to agree on how to interpret the kAEAlwaysInteract flag.

If the client application does not set any one of the user interaction flags, the Apple Event Manager sets a
default, depending on the location of the target of the Apple event. If the server application is on a remote
computer, the Apple Event Manager sets the kAENeverInteract flag as the default. If the target of the
Apple event is on the local computer, the Apple Event Manager sets the kAECanInteract flag as the default.

The server application should call AEInteractWithUser if it needs to interact with the user. If both the
client and the server allow user interaction, the Apple Event Manager attempts to bring the server to the
foreground if it is not already the foreground process. If both the kAECanSwitchLayer and the
kAEWaitReply flags are set, and if the client application is the active application on the local computer, the
Apple Event Manager brings the server application directly to the front. Otherwise, the Apple Event Manager

Constants 185
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

posts a notification request asking the user to bring the server application to the front, regardless of whether
the kAECanSwitchLayer flag is set. This ensures that the user will not be interrupted by an unexpected
application switch.

Specify the kAEDontRecord flag if your application is sending an Apple event to itself that you don’t want
to be recorded. When Apple event recording has been turned on, every event that your application sends
to itself will be automatically recorded by the Apple Event Manager except those sent with the kAEDontRecord
flag set.

Specify the kAEDontExecute flag if your application is sending an Apple event to itself for recording purposes
only—that is, if you want the Apple Event Manager to send a copy of the event to the recording process but
you do not want your application actually to receive the event.

See also “Requesting User Interaction” (page 21).

Version Notes
The kAEDontReconnect and kAEWantReceipt constants are deprecated and unsupported in Mac OS X.

Declared In
AEDataModel.h

Apple Event Recording Event ID Constants
Specify event IDs for events that deal with Apple event recording.

enum {
 kAEStartRecording = 'reca',
 kAEStopRecording = 'recc',
 kAENotifyStartRecording = 'rec1',
 kAENotifyStopRecording = 'rec0',
 kAENotifyRecording = 'recr'
};

Constants
kAEStartRecording

Event ID for an event by a scripting component to the recording process (or to any running process
on the local computer), but handled by the Apple Event Manager. The Apple Event Manager responds
by turning on recording and sending a recording on event to all running processes on the local
computer.

If sent by process serial number (PSN), this event must be addressed using a real PSN; it should never
be sent to an address specified as kCurrentProcess.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEStopRecording
Event ID for an event sent by a scripting component to the recording process (or to any running
process on the local computer), but handled by the Apple Event Manager. The Apple Event Manager
responds by sending a recording off event to all running processes on the local computer.

If sent by a PSN, this event must be addressed using a real PSN; it should never be sent to an address
specified as kCurrentProcess.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

186 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAENotifyStartRecording
An event that notifies an application that recording has been turned on.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAENotifyStopRecording
An event that notifies an application that recording has been turned off.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAENotifyRecording
Wildcard event class and event ID handled by a recording process in order to receive and record
copies of recordable events sent to it by the Apple Event Manager. Scripting components install a
handler for this event on behalf of a recording process when recording is turned on and remove the
handler when recording is turned off.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Version Notes
These constants are available only in version 1.0.1 and later of the Apple Event Manager.

cAEList
enum {
 cAEList = 'list',
 cApplication = 'capp',
 cArc = 'carc',
 cBoolean = 'bool',
 cCell = 'ccel',
 cChar = 'cha ',
 cColorTable = 'clrt',
 cColumn = 'ccol',
 cDocument = 'docu',
 cDrawingArea = 'cdrw',
 cEnumeration = 'enum',
 cFile = 'file',
 cFixed = 'fixd',
 cFixedPoint = 'fpnt',
 cFixedRectangle = 'frct',
 cGraphicLine = 'glin',
 cGraphicObject = 'cgob',
 cGraphicShape = 'cgsh',
 cGraphicText = 'cgtx',
 cGroupedGraphic = 'cpic'
};

Callback Constants for the AEResolve Function
Specify supported callback features to the AEResolve function.

Constants 187
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 kAEIDoMinimum = 0x0000,
 kAEIDoWhose = 0x0001,
 kAEIDoMarking = 0x0004,
 kAEPassSubDescs = 0x0008,
 kAEResolveNestedLists = 0x0010,
 kAEHandleSimpleRanges = 0x0020,
 kAEUseRelativeIterators = 0x0040
};

Constants
kAEIDoMinimum

The application does not handle whose tests or provide marking callbacks.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEIDoWhose
The application supports whose tests (supports key form formWhose).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEIDoMarking
The application provides marking callback functions. Marking callback functions are described in
“Object Callback Functions” (page 140).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Discussion
You use these constants to supply a value for the callbackFlags parameter to the AEResolve (page 89)
function. This value specifies whether your application supports whose descriptors or provides marking
callback functions. To obtain a value for this parameter, you can add together constants to set the appropriate
bits, as shown in the following example (for an application that supports both whose tests and marking):

 AEDesc objectSpecifier; // Previously obtained object specifier. AEDesc
 resultToken;
 OSErr myErr;

 myErr = AEResolve (&objectSpecifier,
 kAEIDoWhose + kAEIDoMarking, &resultToken)

AppleScript generates whose clauses from script statements such as the following:

tell application "Finder"
 every file in control panels folder whose file type is "APPL"
end tell

188 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

cInsertionLoc
enum {
 cInsertionLoc = 'insl',
 cInsertionPoint = 'cins',
 cIntlText = 'itxt',
 cIntlWritingCode = 'intl',
 cItem = 'citm',
 cLine = 'clin',
 cLongDateTime = 'ldt ',
 cLongFixed = 'lfxd',
 cLongFixedPoint = 'lfpt',
 cLongFixedRectangle = 'lfrc',
 cLongInteger = 'long',
 cLongPoint = 'lpnt',
 cLongRectangle = 'lrct',
 cMachineLoc = 'mLoc',
 cMenu = 'cmnu',
 cMenuItem = 'cmen',
 cObject = 'cobj',
 cObjectSpecifier = 'obj ',
 cOpenableObject = 'coob',
 cOval = 'covl'
};

cKeystroke
enum {
 cKeystroke = 'kprs',
 pKeystrokeKey = 'kMsg',
 pModifiers = 'kMod',
 pKeyKind = 'kknd',
 eModifiers = 'eMds',
 eOptionDown = 'Kopt',
 eCommandDown = 'Kcmd',
 eControlDown = 'Kctl',
 eShiftDown = 'Ksft',
 eCapsLockDown = 'Kclk',
 eKeyKind = 'ekst',
 eEscapeKey = 0x6B733500,
 eDeleteKey = 0x6B733300,
 eTabKey = 0x6B733000,
 eReturnKey = 0x6B732400,
 eClearKey = 0x6B734700,
 eEnterKey = 0x6B734C00,
 eUpArrowKey = 0x6B737E00,
 eDownArrowKey = 0x6B737D00,
 eLeftArrowKey = 0x6B737B00,
 eRightArrowKey = 0x6B737C00,
 eHelpKey = 0x6B737200,
 eHomeKey = 0x6B737300,
 ePageUpKey = 0x6B737400,
 ePageDownKey = 0x6B737900,
 eForwardDelKey = 0x6B737500,
 eEndKey = 0x6B737700,
 eF1Key = 0x6B737A00,

Constants 189
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 eF2Key = 0x6B737800,
 eF3Key = 0x6B736300,
 eF4Key = 0x6B737600,
 eF5Key = 0x6B736000,
 eF6Key = 0x6B736100,
 eF7Key = 0x6B736200,
 eF8Key = 0x6B736400,
 eF9Key = 0x6B736500,
 eF10Key = 0x6B736D00,
 eF11Key = 0x6B736700,
 eF12Key = 0x6B736F00,
 eF13Key = 0x6B736900,
 eF14Key = 0x6B736B00,
 eF15Key = 0x6B737100
};

Comparison Operator Constants
Specify a comparison operation to perform on two operands.

enum {
 kAEAsk = 'ask ',
 kAEBefore = 'befo',
 kAEBeginning = 'bgng',
 kAEBeginsWith = 'bgwt',
 kAEBeginTransaction = 'begi',
 kAEBold = 'bold',
 kAECaseSensEquals = 'cseq',
 kAECentered = 'cent',
 kAEChangeView = 'view',
 kAEClone = 'clon',
 kAEClose = 'clos',
 kAECondensed = 'cond',
 kAEContains = 'cont',
 kAECopy = 'copy',
 kAECoreSuite = 'core',
 kAECountElements = 'cnte',
 kAECreateElement = 'crel',
 kAECreatePublisher = 'cpub',
 kAECut = 'cut ',
 kAEDelete = 'delo'
};

Constants
kAEBeginsWith

The value of operand1 begins with the value of operand2 (for example, the string "operand" begins
with the string "opera").

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEContains
The value of operand1 contains the value of operand2 (for example, the string "operand" contains
the string "era").

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

190 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAECoreSuite
An Apple event in the Standard Suite.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

Discussion
When you call the CreateCompDescriptor (page 114) function, you pass one of these comparison operators
in the comparisonOperator parameter. The CreateCompDescriptor function creates a comparison
descriptor that specifies how to compare one or more Apple event objects with either another Apple event
object or a descriptor.

The actual comparison of the two operands is performed by the object comparison function provided by
the client application—see OSLCompareProcPtr (page 152). The way a comparison operator is interpreted
is up to each application.

For related information, see “Constants for Object Specifiers, Positions, and Logical and Comparison
Operations” (page 191).

Constants for Object Specifiers, Positions, and Logical and Comparison
Operations
Specify the types of the four keyword-specified descriptors that make up the data in an object specifier, as
well as constants for position, logical operations, and comparison operations.

enum {
 kAEAND = 'AND ',
 kAEOR = 'OR ',
 kAENOT = 'NOT ',
 kAEFirst = 'firs',
 kAELast = 'last',
 kAEMiddle = 'midd',
 kAEAny = 'any ',
 kAEAll = 'all ',
 kAENext = 'next',
 kAEPrevious = 'prev',
 keyAECompOperator = 'relo',
 keyAELogicalTerms = 'term',
 keyAELogicalOperator = 'logc',
 keyAEObject1 = 'obj1',
 keyAEObject2 = 'obj2',
 keyAEDesiredClass = 'want',
 keyAEContainer = 'from',
 keyAEKeyForm = 'form',
 keyAEKeyData = 'seld'
};

Constants
kAEAND

Specifies a logical AND operation.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Constants 191
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAEOR
Specifies a logical OR operation.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAENOT
Specifies a logical NOT operation.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEFirst
The first element in the specified container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAELast
Specifies the last element in the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEMiddle
Specifies the middle element in the container. If an object specifier specifies kAEMiddle and the
number of elements in the container is even, the Apple Event Manager rounds down. For example,
in a range of four words the second word is the “middle” word.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEAny
Specifies a single element chosen at random from the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEAll
Specifies all the elements in the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAENext
Specifies the Apple event object after the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEPrevious
Specifies the Apple event object before the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAECompOperator
Specifies a descriptor of typeType, whose data consists of one of the constant values described in
“Key Form and Descriptor Type Object Specifier Constants” (page 206).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

192 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

keyAELogicalTerms
Specifies a descriptor of type typeAEList containing one or more comparison or logical descriptors.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAELogicalOperator
Specifies a descriptor of type typeEnumerated whose data is one of the logical operators (such as
kAEAND) defined in “Key Form and Descriptor Type Object Specifier Constants” (page 206).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEObject1
Identifies a descriptor for the element that is currently being compared to the object or data specified
by the descriptor for the keyword keyAEObject2. Either object can be described by a descriptor of
type typeObjectSpecifier or typeObjectBeingExamined.

A descriptor of typeObjectBeingExamined acts as a placeholder for each of the successive elements
in a container when the Apple Event Manager tests those elements one at a time.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEObject2
Identifies a descriptor for the element that is currently being compared to the object or data specified
by the descriptor for the keyword keyAEObject1.

The keyword keyAEObject2 can also be used with a descriptor of any other descriptor type whose
data is to be compared to each element in a container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEDesiredClass
A four-character code that identifies the object class of the specified object or objects.

Constants for object class IDs are described in “Key Form and Descriptor Type Object Specifier
Constants” (page 206).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEContainer
Specifies the container for the requested object or objects. The data is an object specifier (or in some
cases a null descriptor).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEKeyForm
A four-character code that identifies the key form for the specified object or objects.

The constants for specifying the key form are described in “Key Form and Descriptor Type Object
Specifier Constants” (page 206).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Constants 193
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

keyAEKeyData
Data or nested descriptors that specify a property, name, position, range, or test, depending on the
key form.

The descriptor types used in object specifiers are described in “Key Form and Descriptor Type Object
Specifier Constants” (page 206).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Discussion
When you call the CreateLogicalDescriptor (page 115) function to create a logical descriptor, you pass
one of the logical operators kAEAND, kAEOR, or kAENOT in the theLogicOperator parameter. The
CreateLogicalDescriptor function creates a logical descriptor that specifies a logical operation to perform
on one or more operands.

The constants kAEFirst, kAELast, kAEMiddle, kAEAny, and kAEAll provide the key data for a
keyword-specified descriptor of key form formAbsolutePosition and descriptor type
typeAbsoluteOrdinal.

The constants kAENext, and kAEPrevious provide the key data for a keyword-specified descriptor of key
form formRelativePosition.

Key form constants and descriptor type constants for object specifiers are defined in “Key Form and Descriptor
Type Object Specifier Constants” (page 206).

The constants keyAELogicalTerms and keyAELogicalOperator define the keyword descriptors for a
logical descriptor. A logical descriptor is a coerced Apple event record of type typeLogicalDescriptor
that specifies a logical expression—that is, an expression that the Apple Event Manager evaluates to either
TRUE or FALSE. You can create a logical descriptor with the CreateLogicalDescriptor (page 115) function.

The data for a logical descriptor consists of two keyword-specified descriptors: the first with descriptor type
keyAELogicalOperator, descriptor type typeEnumerated, and one of the logical operators defined in
“Constants for Object Specifiers, Positions, and Logical and Comparison Operations” (page 191) for its data;
and the second with descriptor type keyAELogicalTerms, descriptor type typeEnumerated, and one or
more comparison or logical descriptors for its data. Comparison constants are described in “Comparison
Operator Constants” (page 190).

The logical expression is constructed from a logical operator (one of the Boolean operators AND, OR, or NOT)
and a list of logical terms to which the operator is applied (where NOT can only be used where the list of
terms is a single-item list). Each logical term in the list can be either another logical descriptor or a comparison
descriptor (described in “Constants for Object Specifiers, Positions, and Logical and Comparison
Operations” (page 191)).

The Apple Event Manager short-circuits its evaluation of a logical expression as soon as one part of the
expression fails a test. For example, if while testing a logical expression such as A AND B AND C the Apple
Event Manager discovers that A AND B is not true, it will evaluate the expression to FALSE without testing C.

The constants keyAECompOperator, keyAEObject1, and keyAEObject2 define the keyword descriptors
for a comparison descriptor. A comparison descriptor is a coerced Apple event record of type
typeCompDescriptor that specifies an Apple event object and either another Apple event object or data
for the Apple Event Manager to compare to the first object. You can create a logical descriptor with the
CreateCompDescriptor (page 114) function.

194 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

The Apple Event Manager can also use the information in a comparison descriptor to compare elements in
a container, one at a time, either to an Apple event object or to data. The data for a comparison descriptor
consists of three keyword-specified descriptors:

 ■ A descriptor with keyword keyAECompOperator, descriptor type typeType, and one of the logical
operators defined in “Comparison Operator Constants” (page 190) for its data.

 ■ A descriptor with keyword keyAEObject1 and either

 ■ descriptor type typeObjectSpecifier and object specifier data to compare, or

 ■ descriptor type typeObjectBeingExamined and a data storage pointer of NULL.

 ■ A descriptor with keyword keyAEObject2 and either

 ■ descriptor type typeObjectSpecifier and object specifier data to compare, or

 ■ descriptor type typeObjectBeingExamined and a data storage pointer of NULL, or

 ■ any other descriptor type and the data to be compared for that descriptor type.

You don’t have to support all the available comparison operators for all Apple event objects for example,
the begins with operator probably doesn’t make sense for objects of type cRectangle. It is up to you to
decide which comparison operators are appropriate for your application to support, and how to interpret
them. If necessary, you can define your own custom comparison operators. If you think you need to do this,
check the Apple Events and Scripting header files to see if existing definitions of comparison operators can
be adapted to the needs of your application.

An object specifier is a coerced Apple event record of descriptor type typeObjectSpecifier whose data
contains consists of four keyword-specified descriptors. The constants keyAEDesiredClass,
keyAEContainer, keyAEKeyForm, and keyAEKeyData specify the keywords for the four descriptor types
that together identify the specified object or objects.

cURL
enum {
 cURL = 'url ',
 cInternetAddress = 'IPAD',
 cHTML = 'html',
 cFTPItem = 'ftp '
};

Constants
cURL

Specifies a Uniform Resource Locator or Uniform Resource ID (URI).

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cInternetAddress
Specifies an Internet or Intranet address for the TCP/IP protocol.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

Constants 195
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

cHTML
Specifies HTML (HyperText Markup Language) format.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cFTPItem
Specifies FTP (File Transfer Protocol) protocol.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cVersion
enum {
 cVersion = 'vers',
 cWindow = 'cwin',
 cWord = 'cwor',
 enumArrows = 'arro',
 enumJustification = 'just',
 enumKeyForm = 'kfrm',
 enumPosition = 'posi',
 enumProtection = 'prtn',
 enumQuality = 'qual',
 enumSaveOptions = 'savo',
 enumStyle = 'styl',
 enumTransferMode = 'tran',
 formUniqueID = 'ID ',
 kAEAbout = 'abou',
 kAEAfter = 'afte',
 kAEAliasSelection = 'sali',
 kAEAllCaps = 'alcp',
 kAEArrowAtEnd = 'aren',
 kAEArrowAtStart = 'arst',
 kAEArrowBothEnds = 'arbo'
};

Constants
formUniqueID

Specifies a value that uniquely identifies an object within its container or across an application.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Data Array Constants
Specify an array type for storing or extracting descriptor lists with the AEPutArray and AEGetArray functions.

196 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 kAEDataArray = 0,
 kAEPackedArray = 1,
 kAEDescArray = 3,
 kAEKeyDescArray = 4
};

Constants
kAEDataArray

Array items consist of data of the same size and same type, and are aligned on word boundaries.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEPackedArray
Array items consist of data of the same size and same type, and are packed without regard for word
boundaries.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEDescArray
Array items consist of descriptors of different descriptor types with data of variable size.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEKeyDescArray
Array items consist of keyword-specified descriptors with different keywords, different descriptor
types, and data of variable size.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
When your application calls the AEPutArray (page 75) function to put information into a descriptor list or
the AEGetArray (page 44) function to get information from a descriptor list, it uses an array to store the
information. The type of array depends on the data for the array, as specified by one of these constants.

Array items in Apple event arrays of type kAEDataArray, kAEPackedArray, or kAEHandleArray must be
factored—that is, contained in a factored descriptor list. For more information, see AEPutArray (page 75).

Descriptor Type Constants
Specify types for descriptors.

Constants 197
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 typeAEList = 'list',
 typeAERecord = 'reco',
 typeAppleEvent = 'aevt',
 typeEventRecord = 'evrc',
 typeTrue = 'true',
 typeFalse = 'fals',
 typeAlias = 'alis',
 typeEnumerated = 'enum',
 typeType = 'type',
 typeAppParameters = 'appa',
 typeProperty = 'prop',
 typeFSS = 'fss ',
 typeFSRef = 'fsrf',
 typeFileURL = 'furl',
 typeKeyword = 'keyw',
 typeSectionH = 'sect',
 typeWildCard = '****',
 typeApplSignature = 'sign',
 typeQDRectangle = 'qdrt',
 typeFixed = 'fixd',
 typeProcessSerialNumber = 'psn ',
 typeApplicationURL = 'aprl',
 typeNull = 'null'
};

Constants
typeAEList

List of descriptors.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeAERecord
List of keyword-specified descriptors.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeAppleEvent
Apple event.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeTrue
TRUE Boolean value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeFalse
FALSE Boolean value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

198 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typeAlias
Alias.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeEnumerated
Enumerated data.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeType
Four-character code for event class or event ID

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeAppParameters
Process Manager launch parameters.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeProperty
Apple event object property.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeFSS
File system specification. Deprecated in Mac OS X. Use file system references (typeFSRef) instead.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeFSRef
File system reference. Use in preference to file system specifications (typeFSS).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeFileURL
A file URL. That is, the associated data consists of the bytes of a UTF-8 encoded URL with a scheme
of "file". This type is appropriate for describing a file that may not yet exist—see Technical Note 2022
for more information.

You can translate between a descriptor of this type and an instance of CFURL by calling
CFURLCreateWithBytes and specifying kCFStringEncodingUTF8 for the encoding. Or, if you
have a CFURLRef, you can call CFURLCreateData to get the data as an instance of CFData (again
specifying an encoding of kCFStringEncodingUTF8), andCFDataGetBytes to get the actual bytes
to insert into a descriptor of this type.

Available in Mac OS X v10.1 and later.

Declared in AEDataModel.h.

typeKeyword
Apple event keyword.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 199
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

http://developer.apple.com/technotes/tn/tn2022.html

typeSectionH
Handle to a section record. (Deprecated.)

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeWildCard
Matches any type.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeApplSignature
Application signature.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeProcessSerialNumber
A process serial number. See also AEAddressDesc (page 167).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeApplicationURL
For specifying an application by URL. See Discussion section below for important information.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeNull
A null data storage pointer. When resolving an object specifier, an object with a null storage pointer
specifies the default container at the top of the container hierarchy.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
The constants described here specify the data type for a descriptor and show the kind of data stored in a
descriptor with that type.

Descriptors are the building blocks used by the Apple Event Manager to construct Apple event attributes
and parameters. A descriptor is a data structure of type AEDesc (page 162), which consists of data storage
and a descriptor type that identifies the type of the data. A descriptor type is defined by the data type
DescType (page 176). AppleScript defines descriptor type constants for a wide variety of common data types.
For additional types, see “Numeric Descriptor Type Constants” (page 213) and “Other Descriptor Type
Constants” (page 217). For a complete listing, including data types such as units of length, weight, and volume,
see the Apple Event Manager and Open Scripting Architecture header files.

For the constant typeApplicationURL, the data that specifies the application URL takes the following
format:

eppc://[username[:password]@]host/AppName[[?uid=#]&[pid=#]]

As indicated by this format:

 ■ username is optional. If present, an '@' must appear before the host name. password is optional. If
present, username is not optional, and the password must be separated from the username by a ':'
and must precede the '@'. AppName is not optional; if it contains non-UTF-8 characters or white space,
it must be URL-encoded (for example, My%20Application).

200 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 ■ uid and pid are optional. If pid is present, uid and AppName are ignored and the event is delivered
only to applications with the given process id. If uid is present, events are directed to the application
name owned by the given user id.

The following are examples of valid URLs:

eppc://Steve%20Zellers:wombat@grrr.apple.com/Microsoft%20Word
eppc://Steve%20Zellers:wombat@grrr.apple.com/Microsoft%20Word?pid=1284

The availability of user identifiers provides enhanced Apple event support for Fast User Switching. Such
identifiers make it possible to send Apple events to applications running in any session, if the uids of the
processes match. 'root' (or uid 0) processes are allowed to send Apple events to any process in any
session. Non-root processes can only target applications that match their uid.

eScheme
enum {
 eScheme = 'esch',
 eurlHTTP = 'http',
 eurlHTTPS = 'htps',
 eurlFTP = 'ftp ',
 eurlMail = 'mail',
 eurlFile = 'file',
 eurlGopher = 'gphr',
 eurlTelnet = 'tlnt',
 eurlNews = 'news',
 eurlSNews = 'snws',
 eurlNNTP = 'nntp',
 eurlMessage = 'mess',
 eurlMailbox = 'mbox',
 eurlMulti = 'mult',
 eurlLaunch = 'laun',
 eurlAFP = 'afp ',
 eurlAT = 'at ',
 eurlEPPC = 'eppc',
 eurlRTSP = 'rtsp',
 eurlIMAP = 'imap',
 eurlNFS = 'unfs',
 eurlPOP = 'upop',
 eurlLDAP = 'uldp',
 eurlUnknown = 'url?'
};

Event Class Constants
Specify the event class for an Apple event.

Constants 201
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 kCoreEventClass = 'aevt'
};

Constants
kCoreEventClass

An Apple event sent by the Mac OS; applications that present a graphical interface to the user should
be able to any events sent by the Mac OS that apply to the application.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Discussion
Apple events are identified by their event class and event ID attributes, each of which specifies an arbitrary
four-character code. The event class appears in the message field of the event record for an Apple event.
For example, certain Apple events that are sent by the Mac OS have the value 'aevt' in the message fields
of their event records. This value can be represented with the constant kCoreEventClass.

Groups of related Apple events are known as suites. For example, the common events that most applications
support are grouped in the Standard Suite. The Standard Suite includes the events of the Core suite (open
application , reopen, open contents, open documents, print documents, and quit), as well as
such events as count, delete, and make. Suites may use a common event class, but doing so is not required,
and does not result in any special treatment by AppleScript or the Apple Event Manager.

AppleScript defines suites that provide terminology for Text, Database, Macintosh Connectivity, and other
types of related operations. The terms defined in the AppleScript suite itself make up the largest suite. These
terms are global to AppleScript, and are available to your application, even if your 'aete' resource doesn’t
explicitly include them.

Event Handler Flags
enum {
 kAEDoNotIgnoreHandler = 0x00000000,
 kAEIgnoreAppPhacHandler = 0x00000001,
 kAEIgnoreAppEventHandler = 0x00000002,
 kAEIgnoreSysPhacHandler = 0x00000004,
 kAEIgnoreSysEventHandler = 0x00000008,
 kAEIngoreBuiltInEventHandler = 0x00000010,
 kAEDontDisposeOnResume = 0x80000000
};

Event ID Constants
Specify the event ID for an Apple event.

202 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 kAEOpenApplication = 'oapp',
 kAEReopenApplication = 'rapp',
 kAEOpenDocuments = 'odoc',
 kAEPrintDocuments = 'pdoc',
 kAEOpenContents = 'ocon',
 kAEQuitApplication = 'quit',
 kAEAnswer = 'ansr',
 kAEApplicationDied = 'obit',
 kAEShowPreferences = 'pref'
};

Constants
kAEOpenApplication

Event that launches an application.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEReopenApplication
Event that reopens an application. Sent, for example, when your application is running and a user
clicks your application icon in the Dock.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEOpenDocuments
Event that provides an application with a list of documents to open. Sent, for example, when a selects
one or more documents for your application in the Finder and double-clicks them.

See also the constant keyAESearchText in the enum “keyAEPropData” (page 235).

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEPrintDocuments
Event that provides an application with a list of documents to print.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEOpenContents
Event that provides an application with dragged content, such as text or an image. Sent, for example,
when a user drags an image file onto your application’s icon in the Dock. The application can use the
content as desired—for example, if no document is currently open, it might open a new document
and insert the provided text or image.

For more information, see “Handling Apple Events Sent by the Mac OS” in “Responding to Apple
Events” in Apple Events Programming Guide.

Available in Mac OS X v10.4 and later.

Declared in AppleEvents.h.

kAEQuitApplication
Event that causes the application to quit.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Constants 203
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAEAnswer
Event that is a reply Apple event.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEApplicationDied
Event sent by the Process Manager to an application that launched another application when the
launched application quits or terminates.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEShowPreferences
Event sent by the Mac OS X to a process when the user chooses the Preferences item for that process.

Carbon applications that handle the Preferences command can install an Apple event handler for this
event, but they more commonly install a Carbon event handler for kEventCommandProcess and
check for the kHICommandPreferences command ID.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Discussion
Apple events are identified by their event class and event ID attributes. The event ID is the attribute that
identifies the particular Apple event within its event class. In conjunction with the event class, the event ID
uniquely identifies the Apple event and communicates what action the Apple event should perform. The
event ID appears in the where field of the event record for an Apple event. For example, an event with ID
kAEOpenApplication and class kCoreEventClass is an event sent by the Mac OS that launches an
application.

Only a small number of event IDs are shown here. For a more complete listing, see the Apple Event Manager
and Open Scripting Architecture header files.

Event Source Constants
Identify how an Apple event was delivered.

enum {
 kAEUnknownSource = 0,
 kAEDirectCall = 1,
 kAESameProcess = 2,
 kAELocalProcess = 3,
 kAERemoteProcess = 4
};

Constants
kAEUnknownSource

The source of the Apple event is unknown.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAEDirectCall
The source of the Apple event is a direct call that bypassed the PPC Toolbox.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

204 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAESameProcess
The source of the Apple event is the same application that received the event (the target application
and the source application are the same).

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAELocalProcess
The source application is another process on the same computer as the target application.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

kAERemoteProcess
The source application is a process on a remote computer on the network.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Discussion
For an example of how you might use these constants with the AEGetAttributePtr (page 46) function,
see the data type AEEventSource (page 170).

Declared In
AppleEvents.h

Factoring Constants
enum {
 kAEDescListFactorNone = 0,
 kAEDescListFactorType = 4,
 kAEDescListFactorTypeAndSize = 8
};

Discussion
These constants have no effect in Mac OS X v10.2 and later.

ID Constants for the AECreateAppleEvent Function
Specify values for the ID parameters of the AECreateAppleEvent function.

enum {
 kAutoGenerateReturnID = -1,
 kAnyTransactionID = 0
};

Constants
kAutoGenerateReturnID

If you pass this value for the returnID parameter of the AECreateAppleEvent (page 32) function,
the Apple Event Manager assigns to the created Apple event a return ID that is unique to the current
session.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 205
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAnyTransactionID
You pass this value for the transactionID parameter of the AECreateAppleEvent (page 32)
function if the Apple event is not one of a series of interdependent Apple events.

A transaction is a sequence of Apple events that are sent back and forth between the client and server
applications, beginning with the client’s initial request for a service. All Apple events that are part of
a transaction must have the same transaction ID.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
You use these constants with the AECreateAppleEvent (page 32) function.

Key Form and Descriptor Type Object Specifier Constants
Specify possible values for the keyAEKeyForm field of an object specifier, as well as descriptor types used
in resolving object specifiers.

enum {
 formAbsolutePosition = 'indx',
 formRelativePosition = 'rele',
 formTest = 'test',
 formRange = 'rang',
 formPropertyID = 'prop',
 formName = 'name',
 typeObjectSpecifier = 'obj ',
 typeObjectBeingExamined = 'exmn',
 typeCurrentContainer = 'ccnt',
 typeToken = 'toke',
 typeRelativeDescriptor = 'rel ',
 typeAbsoluteOrdinal = 'abso',
 typeIndexDescriptor = 'inde',
 typeRangeDescriptor = 'rang',
 typeLogicalDescriptor = 'logi',
 typeCompDescriptor = 'cmpd',
 typeOSLTokenList = 'ostl'
};

Constants
formAbsolutePosition

An integer or other constant indicating the position of one or more elements in relation to the
beginning or end of their container. The key data consists of an integer that specifies either an offset
or an ordinal position.

For descriptor type typeAbsoluteOrdinal, the data consists of one of the constants kAEFirst,
kAEMiddle, kAELast, kAEAny, or kAEAll, which are described in AEDisposeToken (page 41).

For other descriptor types, the data can be coerced to either a positive integer, indicating the offset
of the requested element from the beginning of the container, or a negative integer, indicating its
offset from the end of the container.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

206 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

formRelativePosition
Specifies an element position either immediately before or immediately after a container, not inside
it. The key data is specified by a descriptor of type typeEnumerated whose data consists of one of
the constants kAENext and kAEPrevious, which are described in AEDisposeToken (page 41).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

formTest
Specifies a test. The key data is specified by either a comparison descriptor or a logical descriptor.

The Apple Event Manager internally translates object specifiers of key form formTest into object
specifiers of key form formWhose to optimize resolution of object specifiers. This involves collapsing
the key form and key data from two object specifiers in a container hierarchy into one object specifier
with the key form formWhose.

See also AEDisposeToken (page 41), “Constants for Object Specifiers, Positions, and Logical and
Comparison Operations” (page 191), CreateCompDescriptor (page 114), and
CreateLogicalDescriptor (page 115).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

formRange
Specifies a group of elements between two other elements. The key data is specified by a range
descriptor, which is a coerced Apple event record of type typeRangeDescriptor that identifies two
Apple event objects marking the beginning and end of a range of elements.

The data for a range descriptor consists of two keyword-specified descriptors with the keywords
keyAERangeStart and keyAERangeStop.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

formPropertyID
Specifies the property ID for an element’s property.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

formName
Specifies the Apple event object by name.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeObjectSpecifier
Specifies a descriptor used with the keyAEContainer keyword in a keyword-specified descriptor.
The key data for the descriptor is an object specifier.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeObjectBeingExamined
Specifies a descriptor that acts as a placeholder for each of the successive elements in a container
when the Apple Event Manager tests those elements one at a time. The descriptor has a null data
storage pointer. This descriptor type is used only with formTest.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Constants 207
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typeCurrentContainer
Specifies a container for an element that demarcates one boundary in a range. The descriptor has a
null data storage pointer. This descriptor type is used only with formRange.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeToken
Specifies a descriptor whose data storage pointer refers to a structure of type AEDisposeToken (page
41).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeRelativeDescriptor
Specifies a descriptor whose data consists of one of the constants kAENext or kAEPrevious, which
are described in AEDisposeToken (page 41). Used with formRelativePosition.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeAbsoluteOrdinal
Specifies a descriptor whose data consists of one of the constants kAEFirst, kAEMiddle, kAELast,
kAEAny, or kAEAll, which are described in AEDisposeToken (page 41). Used with
formAbsolutePosition.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeIndexDescriptor
Specifies a descriptor whose data indicates an indexed position within a range of values.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeRangeDescriptor
Specifies a range descriptor that identifies two Apple event objects marking the beginning and end
of a range of elements. The data for a range descriptor consists of two keyword-specified descriptors
with the keywords keyAERangeStart and keyAERangeStop, respectively, which specify the first
Apple event object in the desired range and the last Apple event object in the desired range.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeLogicalDescriptor
Specifies a logical descriptor. Data is one of the constants described in AEDisposeToken (page 41).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

typeCompDescriptor
Specifies a comparison descriptor. Data is one of the constants described in AEDisposeToken (page
41).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

208 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typeOSLTokenList
Specifies a descriptor whose data consists of a list of tokens. (Token is defined in
AEDisposeToken (page 41).)

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Discussion
The constants in this enum that begin with “form” specify the key form for an object specifier. The key form
indicates how key data should be interpreted. Key form is one of the keyword-specified descriptors described
in “Constants for Object Specifiers, Positions, and Logical and Comparison Operations” (page 191).

The constants in this enum that begin with “type” specify descriptor types used in resolving object specifiers.
An object specifier is a coerced Apple event record of descriptor type typeObjectSpecifier whose data
consists of the four keyword-specified descriptors described in “Constants for Object Specifiers, Positions,
and Logical and Comparison Operations” (page 191). One of those four keyword-specified descriptors has
the type keyAEKeyData. This descriptor can contain data or nested descriptors specified by any of the
descriptor type constants defined here (or by types defined by your application).

Keyword Attribute Constants
Specify keyword values for Apple event attributes.

enum {
 keyTransactionIDAttr = 'tran',
 keyReturnIDAttr = 'rtid',
 keyEventClassAttr = 'evcl',
 keyEventIDAttr = 'evid',
 keyAddressAttr = 'addr',
 keyOptionalKeywordAttr = 'optk',
 keyTimeoutAttr = 'timo',
 keyInteractLevelAttr = 'inte',
 keyEventSourceAttr = 'esrc',
 keyMissedKeywordAttr = 'miss',
 keyOriginalAddressAttr = 'from',
 keyAcceptTimeoutAttr = 'actm',
 keyReplyRequestedAttr = 'repq'
};

Constants
keyTransactionIDAttr

Transaction ID identifying a series of Apple events that are part of one transaction.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyReturnIDAttr
Return ID for a reply Apple event.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyEventClassAttr
Event class of an Apple event. See AEAddressDesc (page 167).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 209
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

keyEventIDAttr
Event ID of an Apple event. See AEAddressDesc (page 167).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyAddressAttr
Address of a target or client application. See also AEAddressDesc (page 167).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyOptionalKeywordAttr
List of keywords for parameters of an Apple event that should be treated as optional by the target
application.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyTimeoutAttr
Length of time, in ticks, that the client will wait for a reply or a result from the server.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyInteractLevelAttr
Settings for when to allow the Apple Event Manager to bring a server application to the foreground,
if necessary, to interact with the user. See AEAddressDesc (page 167). (Read only.)

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyEventSourceAttr
Nature of the source application. (Read only.)

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyMissedKeywordAttr
Keyword for first required parameter remaining in an Apple event. (Read only.)

After extracting all known Apple event parameters from an event, your handler should check whether
the keyMissedKeywordAttr attribute exists. If so, your handler has not retrieved all the parameters
that the source application considered to be required, and it should return an error.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyOriginalAddressAttr
Address of original source of Apple event if the event has been forwarded (available only in version
1.01 or later versions of the Apple Event Manager). See also AEAddressDesc (page 167).

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

keyReplyRequestedAttr
A Boolean value indicating whether the Apple event expects to be replied to.

Available in Mac OS X v10.3 and later.

Declared in AEDataModel.h.

210 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Discussion
These constants are keyword constants for Apple event attributes. An Apple event consists of attributes
(which identify the Apple event and denote its task) and, often, parameters (which contain information to
be used by the target application). An Apple event attribute is a descriptor that identifies the event class,
event ID, target application, or some other characteristic of the Apple event. Taken together, the attributes
of an Apple event denote the task to be performed on any data specified in the Apple event’s parameters.

Keywords are arbitrary names used by the Apple Event Manager to keep track of various descriptors. Your
application cannot examine the contents of an Apple event directly. Instead, you call Apple Event Manager
routines such as those described in “Getting Data or Descriptors From Apple Events and Apple Event
Records” (page 18) to request attributes and parameters by keyword.

See also “Keyword Parameter Constants” (page 211).

Version Notes
The constant keyReplyRequestedAttr was added in Mac OS X version 10.3.

Keyword Parameter Constants
Specify keyword values for Apple event parameters, as well as information for the AEManagerInfo function
to retrieve. Some common key word values are shown here.

enum {
 keyDirectObject = '----',
 keyErrorNumber = 'errn',
 keyErrorString = 'errs',
 keyProcessSerialNumber = 'psn ',
 keyPreDispatch = 'phac',
 keySelectProc = 'selh',
 keyAERecorderCount = 'recr',
 keyAEVersion = 'vers'
};

Constants
keyDirectObject

Direct parameter. Usually specifies the data to be acted upon by the target application.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyErrorNumber
Error number. Often used to extract error information from a reply Apple event.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyErrorString
Error string. Often used to extract error information from a reply Apple event to display to the user.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyProcessSerialNumber
Process serial number. See also AEManagerInfo (page 70).

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Constants 211
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

keyPreDispatch
A predispatch handler (an Apple event handler that the Apple Event Manager calls immediately before
it dispatches an Apple event). See also “Managing Special Handler Dispatch Tables” (page 20).

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keySelectProc
You pass this value in the functionClass parameter of the AEManagerInfo (page 70) function to
disable the Object Support Library. Disabling the Object Support Library is not recommended.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyAERecorderCount
Used with the keyword parameter of the AEManagerInfo (page 70) function. If you pass this value,
on return, the result parameter supplies the number of processes that are currently recording Apple
events.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

keyAEVersion
Used with the keyword parameter of the AEManagerInfo (page 70) function. If you pass this value,
on return, the result parameter supplies version information for the Apple Event Manager, in
NumVersion format.

Available in Mac OS X v10.0 and later.

Declared in AppleEvents.h.

Discussion
These constants are keyword constants for Apple event parameters. An Apple event consists of attributes
(which identify the Apple event and denote its task) and, often, parameters (which contain information to
be used by the target application). Taken together, the attributes of an Apple event denote the task to be
performed on any data specified in the Apple event’s parameters.

Keywords are arbitrary names used by the Apple Event Manager to keep track of various descriptors. Your
application cannot examine the contents of an Apple event directly. Instead, you call Apple Event Manager
routines such as those described in “Getting Data or Descriptors From Apple Events and Apple Event
Records” (page 18) to request attributes and parameters by keyword.

See also “Keyword Attribute Constants” (page 209).

Launch Apple Event Constants
In a kAEOpenApplication event, specify information about how the receiving application was launched.

212 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 keyAELaunchedAsLogInItem = 'lgit',
 keyAELaunchedAsServiceItem = 'svit'
};

Constants
keyAELaunchedAsLogInItem

If present in a kAEOpenApplication event, the receiving application was launched as a login item
and should only perform actions suitable to that environment—for example, it probably shouldn't
open an untitled document.

Available in Mac OS X v10.5 and later.

Declared in AERegistry.h.

keyAELaunchedAsServiceItem
If present in a kAEOpenApplication event, the receiving application was launched as a service item
and should only perform actions suitable to that environment—for example, it probably shouldn't
open an untitled document.

Available in Mac OS X v10.5 and later.

Declared in AERegistry.h.

Special Considerations

Although these constants were not publicly defined in Mac OS X version 10.4, corresponding information
was provided in kAEOpenApplicationApple events sent by that version of the OS. Therefore your application,
running on Mac OS X version 10.4 or later, can examine the open application Apple event to determine if
the application was launched as a login item or a service item. However, for version 10.4, you will have to
define these constants in your own code file.

You check for a keyAEPropData parameter of the kAEOpenApplication Apple event, with a data value
that matches keyAELaunchedAsLogInItem or keyAELaunchedAsServiceItem.

Declared In
AERegistry.h

Numeric Descriptor Type Constants
Specify types for numeric descriptors.

Constants 213
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 typeSInt16 = 'shor',
 typeUInt16 = 'ushr',
 typeSInt32 = 'long',
 typeUInt32 = 'magn',
 typeSInt64 = 'comp',
 typeUInt64 = 'ucom',
 typeIEEE32BitFloatingPoint = 'sing',
 typeIEEE64BitFloatingPoint = 'doub',
 type128BitFloatingPoint = 'ldbl',
 typeDecimalStruct = 'decm'
};

Constants
typeSInt16

16-bit signed integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeUInt16
16-bit unsigned integer.

Available in Mac OS X v10.5 and later.

Declared in AEDataModel.h.

typeSInt32
32-bit signed integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeUInt32
32-bit unsigned integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeSInt64
64-bit signed integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeUInt64
64-bit unsigned integer.

Available in Mac OS X v10.5 and later.

Declared in AEDataModel.h.

typeIEEE32BitFloatingPoint
32-bit floating point value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeIEEE64BitFloatingPoint
64-bit floating point value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

214 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

type128BitFloatingPoint
128-bit floating point value.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeDecimalStruct
Decimal.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
The constants described here specify the data type for a descriptor and show the kind of numeric data stored
in a descriptor with that type. These constants are preferred over their older equivalents described in
“typeSMInt” (page 248).

Descriptors are the building blocks used by the Apple Event Manager to construct Apple event attributes
and parameters. A descriptor is a data structure of type AEDesc (page 162), which consists of data storage
and a descriptor type that identifies the type of the data. A descriptor type is defined by the data type
DescType (page 176).

AppleScript defines descriptor type constants for a wide variety of common data types. For additional types,
see “Descriptor Type Constants” (page 197) and “Other Descriptor Type Constants” (page 217). For a complete
listing, including data types such as units of length, weight, and volume, see the Apple Event Manager and
Open Scripting Architecture header files.

Declared In
AEDataModel.h

Object Class ID Constants
Specify the object class for an Apple event object.

Constants 215
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 cParagraph = 'cpar',
 cPICT = 'PICT',
 cPixel = 'cpxl',
 cPixelMap = 'cpix',
 cPolygon = 'cpgn',
 cProperty = 'prop',
 cQDPoint = 'QDpt',
 cQDRectangle = 'qdrt',
 cRectangle = 'crec',
 cRGBColor = 'cRGB',
 cRotation = 'trot',
 cRoundedRectangle = 'crrc',
 cRow = 'crow',
 cSelection = 'csel',
 cShortInteger = 'shor',
 cTable = 'ctbl',
 cText = 'ctxt',
 cTextFlow = 'cflo',
 cTextStyles = 'tsty',
 cType = 'type'
};

Constants
cParagraph

A paragraph of text.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cPICT
A PICT format figure.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cProperty
A property of any object class.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

cRGBColor
An RGB color value.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

Discussion
The object class of an Apple event object is identified by an object class ID. For example, the object class for
an object specifier that specifies an RGB color value is the four-character code 'cRGB', which can be
represented by the constant cRGBColor.

AppleScript defines constants for a wide variety of common object classes, though only a small number are
shown here. For a more complete listing, see the Apple Event Manager and Open Scripting Architecture
header files.

216 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Other Descriptor Type Constants
Specify types for Boolean and character descriptors.

enum {
 typeBoolean = 'bool',
 typeChar = 'TEXT'
};

Constants
typeBoolean

Boolean value—single byte with value 0 or 1.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeChar
Unterminated string of system script characters.

See the Version Notes section below for important information.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
The constants described here specify the data type for a descriptor and show the kind of data stored in a
descriptor with that type.

Descriptors are the building blocks used by the Apple Event Manager to construct Apple event attributes
and parameters. A descriptor is a data structure of type AEDesc (page 162), which consists of data storage
and a descriptor type that identifies the type of the data. A descriptor type is defined by the data type
DescType (page 176).

AppleScript defines descriptor type constants for a wide variety of common data types. For additional types,
see “Descriptor Type Constants” (page 197) and “Numeric Descriptor Type Constants” (page 213). For a complete
listing, including data types such as units of length, weight, and volume, see the Apple Event Manager and
Open Scripting Architecture header files.

Version Notes
On Mac OS X typeChar type is deprecated in favor of typeUTF8Text or
typeUTF16ExternalRepresentation. For more information, see
typeUTF16ExternalRepresentation (page 251).

Priority Constants for the AESend Function (Deprecated in Mac OS X)
Specify a value for the sendPriority parameter of the AESend function. (Deprecated. Not used in Mac OS
X.)

Constants 217
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 kAENormalPriority = 0x00000000,
 kAEHighPriority = 0x00000001
};

Constants
kAENormalPriority

The Apple Event Manager posts the event at the end of the event queue of the server process and
the server processes the Apple event as soon as it has the opportunity.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kAEHighPriority
The Apple Event Manager posts the event at the beginning of the event queue of the server process.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
For related information, see the AESend (page 92) function and “AESendMode” (page 182).

Version Notes
The sendPriority parameter of the AESend function is deprecated in Mac OS X.

Remote Process Dictionary Keys
Used to extract information from dictionaries with entries that describe remote processes.

 extern const CFStringRef kAERemoteProcessURLKey;
 extern const CFStringRef kAERemoteProcessNameKey;
 extern const CFStringRef kAERemoteProcessUserIDKey;
 extern const CFStringRef kAERemoteProcessProcessIDKey;

Constants
kAERemoteProcessURLKey

Use this key to obtain the full URL to the remote process, as a CFURLRef.

Available in Mac OS X v10.3 and later.

Declared in AppleEvents.h.

kAERemoteProcessNameKey
Use this key to obtain the visible name of the remote process, in the localization supplied by the
server, as a CFStringRef.

Available in Mac OS X v10.3 and later.

Declared in AppleEvents.h.

kAERemoteProcessUserIDKey
Use this key to obtain the user ID of the remote process, if available; if so, returned as a CFNumberRef.

Available in Mac OS X v10.3 and later.

Declared in AppleEvents.h.

218 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAERemoteProcessProcessIDKey
Use this key to obtain the process ID of the remote process, if available; if so, returned as a
CFNumberRef.

Available in Mac OS X v10.3 and later.

Declared in AppleEvents.h.

Declared In
AppleEvents.h

Resume Event Dispatch Constants
Specify event dispatching information to the AEResumeTheCurrentEvent function.

enum {
 kAENoDispatch = 0,
 kAEUseStandardDispatch = 0xFFFFFFFF
};

Constants
kAENoDispatch

Tells the Apple Event Manager that the Apple event has been completely processed and need not
be dispatched.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

kAEUseStandardDispatch
Tells the Apple Event Manager to dispatch the resumed event using the standard dispatching scheme
it uses for other Apple events.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

Discussion
You call the AEResumeTheCurrentEvent (page 90) function to inform the Apple Event Manager that your
application wants to resume the handling of a previously suspended Apple event or that it has completed
the handling of the Apple event. You pass one of the constants described here in the dispatcher parameter
to provide dispatching information to the Apple Event Manager. You can also pass a handler universal
procedure pointer.

Special Handler Callback Constants
Specify an object callback function to install, get, or remove from the special handler dispatch table.

Constants 219
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 keyAERangeStart = 'star',
 keyAERangeStop = 'stop',
 keyDisposeTokenProc = 'xtok',
 keyAECompareProc = 'cmpr',
 keyAECountProc = 'cont',
 keyAEMarkTokenProc = 'mkid',
 keyAEMarkProc = 'mark',
 keyAEAdjustMarksProc = 'adjm',
 keyAEGetErrDescProc = 'indc'
};

Constants
keyAERangeStart

Specifies the first Apple event object in a desired range.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAERangeStop
Specifies the last Apple event object in the desired range.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyDisposeTokenProc
Token disposal function. See OSLDisposeTokenProcPtr (page 155).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAECompareProc
Object-comparison function. See OSLCompareProcPtr (page 152).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAECountProc
Object-counting function. See OSLCountProcPtr (page 154).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEMarkTokenProc
Mark token function. See OSLGetMarkTokenProcPtr (page 158).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEMarkProc
Object-marking function. See OSLMarkProcPtr (page 160).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

keyAEAdjustMarksProc
Mark-adjusting function. See OSLAdjustMarksProcPtr (page 151).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

220 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

keyAEGetErrDescProc
Get error descriptor callback function. See OSLGetErrDescProcPtr (page 157).

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

Discussion
You use these constants with the AEInstallSpecialHandler (page 68), AEGetSpecialHandler (page
62), or AERemoveSpecialHandler (page 87) functions.

Timeout Constants
Specify a timeout value.

enum {
 kAEDefaultTimeout = -1,
 kNoTimeOut = -2
};

Constants
kAEDefaultTimeout

The timeout value is determined by the Apple Event Manager. The default timeout value is about
one minute.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

kNoTimeOut
Your application is willing to wait indefinitely. Most commonly, you instead provide a timeout value
(in ticks) that will provide a reasonable amount of time for the current operation.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
Your application can use these constants when it calls the AEInteractWithUser (page 69) function, or it
can supply the specific amount of time (in ticks) that your handler is willing to wait for a response from the
user. You can also use the constants with the AESend (page 92) function.

User Interaction Level Constants
Specify to the AESetInteractionAllowed function the conditions under which your application is willing
to interact with the user.

Constants 221
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 kAEInteractWithSelf = 0,
 kAEInteractWithLocal = 1,
 kAEInteractWithAll = 2
};

Constants
kAEInteractWithSelf

Indicates that the server application may interact with the user in response to an Apple event only
when the client application and server application are the same—that is, only when your application
is sending the Apple event to itself.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

kAEInteractWithLocal
Indicates that your server application may interact with the user in response to an Apple event only
if the client application is on the same computer as the server application. This is the default value if
your application has not called the AESetInteractionAllowed (page 95) function to set the
interaction level explicitly.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

kAEInteractWithAll
Indicates that your server application may interact with the user in response to an Apple event sent
from any client application on any computer.

Available in Mac OS X v10.0 and later.

Declared in AEInteraction.h.

Discussion
If your application does not set the user interaction level by calling the AESetInteractionAllowed (page
95) function, the Apple Event Manager uses kAEInteractWithLocal as the default value.

Declared In
AERegistry.h

222 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Whose Test Constants
enum {
 typeWhoseDescriptor = 'whos',
 formWhose = 'whos',
 typeWhoseRange = 'wrng',
 keyAEWhoseRangeStart = 'wstr',
 keyAEWhoseRangeStop = 'wstp',
 keyAEIndex = 'kidx',
 keyAETest = 'ktst'
};

Constants
formWhose

Specifies a container of one or more objects and a test to perform on the objects.

The key data for formWhose is specified by a whose descriptor, which is a coerced Apple event record
of descriptor type typeWhoseDescriptor. The data for a whose descriptor consists of two
keyword-specified descriptors with the keywords keyAEIndex and keyAETest.

See also the description for formTest.

Available in Mac OS X v10.0 and later.

Declared in AEObjects.h.

kAEDoObjectsExist
enum {
 kAEDoObjectsExist = 'doex',
 kAEDoScript = 'dosc',
 kAEDrag = 'drag',
 kAEDuplicateSelection = 'sdup',
 kAEEditGraphic = 'edit',
 kAEEmptyTrash = 'empt',
 kAEEnd = 'end ',
 kAEEndsWith = 'ends',
 kAEEndTransaction = 'endt',
 kAEEquals = '= ',
 kAEExpanded = 'pexp',
 kAEFast = 'fast',
 kAEFinderEvents = 'FNDR',
 kAEFormulaProtect = 'fpro',
 kAEFullyJustified = 'full',
 kAEGetClassInfo = 'qobj',
 kAEGetData = 'getd',
 kAEGetDataSize = 'dsiz',
 kAEGetEventInfo = 'gtei',
 kAEGetInfoSelection = 'sinf'
};

Constants
kAEEndsWith

The value of operand1 ends with the value of operand2 (for example, the string "operand" ends
with the string "and").

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

Constants 223
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAEEquals
The value of operand1 is equal to the value of operand2

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEFinderEvents
An event that the Finder accepts.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEDebugPOSTHeader
enum {
 kAEDebugPOSTHeader = 0x01,
 kAEDebugReplyHeader = 0x02,
 kAEDebugXMLRequest = 0x04,
 kAEDebugXMLResponse = 0x08,
 kAEDebugXMLDebugAll = 0xFFFFFFFF
};

kAEGetPrivilegeSelection
enum {
 kAEGetPrivilegeSelection = 'sprv',
 kAEGetSuiteInfo = 'gtsi',
 kAEGreaterThan = '> ',
 kAEGreaterThanEquals = '>= ',
 kAEGrow = 'grow',
 kAEHidden = 'hidn',
 kAEHiQuality = 'hiqu',
 kAEImageGraphic = 'imgr',
 kAEIsUniform = 'isun',
 kAEItalic = 'ital',
 kAELeftJustified = 'left',
 kAELessThan = '< ',
 kAELessThanEquals = '<= ',
 kAELowercase = 'lowc',
 kAEMakeObjectsVisible = 'mvis',
 kAEMiscStandards = 'misc',
 kAEModifiable = 'modf',
 kAEMove = 'move',
 kAENo = 'no ',
 kAENoArrow = 'arno'
};

Constants
kAEGreaterThan

The value of operand1 is greater than the value of operand2.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

224 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAEGreaterThanEquals
The value of operand1 is greater than or equal to the value of operand2.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAELessThanEquals
The value of operand1 is less than or equal to the value of operand2.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

kAEHandleArray
enum {
 kAEHandleArray = 2
};

Constants
kAEHandleArray

Array items consist of handles to data of the same type and possibly variable size.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 225
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAEInfo
enum {
 kAEInfo = 11,
 kAEMain = 0,
 kAESharing = 13
};

kAEInternetSuite
enum {
 kAEInternetSuite = 'gurl',
 kAEISWebStarSuite = 'WWW'
};

kAEISGetURL
enum {
 kAEISGetURL = 'gurl',
 KAEISHandleCGI = 'sdoc'
};

kAEISHTTPSearchArgs
enum {
 kAEISHTTPSearchArgs = 'kfor',
 kAEISPostArgs = 'post',
 kAEISMethod = 'meth',
 kAEISClientAddress = 'addr',
 kAEISUserName = 'user',
 kAEISPassword = 'pass',
 kAEISFromUser = 'frmu',
 kAEISServerName = 'svnm',
 kAEISServerPort = 'svpt',
 kAEISScriptName = 'scnm',
 kAEISContentType = 'ctyp',
 kAEISReferrer = 'refr',
 kAEISUserAgent = 'Agnt',
 kAEISAction = 'Kact',
 kAEISActionPath = 'Kapt',
 kAEISClientIP = 'Kcip',
 kAEISFullRequest = 'Kfrq'
};

kAELogOut
enum {
 kAELogOut = 'logo',
 kAEReallyLogOut = 'rlgo',
 kAEShowRestartDialog = 'rrst',
 kAEShowShutdownDialog = 'rsdn'

226 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

};

kAEMenuClass
enum {
 kAEMenuClass = 'menu',
 kAEMenuSelect = 'mhit',
 kAEMouseDown = 'mdwn',
 kAEMouseDownInBack = 'mdbk',
 kAEKeyDown = 'kdwn',
 kAEResized = 'rsiz',
 kAEPromise = 'prom'
};

kAEMouseClass
enum {
 kAEMouseClass = 'mous',
 kAEDown = 'down',
 kAEUp = 'up ',
 kAEMoved = 'move',
 kAEStoppedMoving = 'stop',
 kAEWindowClass = 'wind',
 kAEUpdate = 'updt',
 kAEActivate = 'actv',
 kAEDeactivate = 'dact',
 kAECommandClass = 'cmnd',
 kAEKeyClass = 'keyc',
 kAERawKey = 'rkey',
 kAEVirtualKey = 'keyc',
 kAENavigationKey = 'nave',
 kAEAutoDown = 'auto',
 kAEApplicationClass = 'appl',
 kAESuspend = 'susp',
 kAEResume = 'rsme',
 kAEDiskEvent = 'disk',
 kAENullEvent = 'null',
 kAEWakeUpEvent = 'wake',
 kAEScrapEvent = 'scrp',
 kAEHighLevel = 'high'
};

kAENonmodifiable
enum {
 kAENonmodifiable = 'nmod',
 kAEOpen = 'odoc',
 kAEOpenSelection = 'sope',
 kAEOutline = 'outl',
 kAEPageSetup = 'pgsu',
 kAEPaste = 'past',
 kAEPlain = 'plan',
 kAEPrint = 'pdoc',

Constants 227
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 kAEPrintSelection = 'spri',
 kAEPrintWindow = 'pwin',
 kAEPutAwaySelection = 'sput',
 kAEQDAddOver = 'addo',
 kAEQDAddPin = 'addp',
 kAEQDAdMax = 'admx',
 kAEQDAdMin = 'admn',
 kAEQDBic = 'bic ',
 kAEQDBlend = 'blnd',
 kAEQDCopy = 'cpy ',
 kAEQDNotBic = 'nbic',
 kAEQDNotCopy = 'ncpy'
};

kAEQDNotOr
enum {
 kAEQDNotOr = 'ntor',
 kAEQDNotXor = 'nxor',
 kAEQDOr = 'or ',
 kAEQDSubOver = 'subo',
 kAEQDSubPin = 'subp',
 kAEQDSupplementalSuite = 'qdsp',
 kAEQDXor = 'xor ',
 kAEQuickdrawSuite = 'qdrw',
 kAEQuitAll = 'quia',
 kAERedo = 'redo',
 kAERegular = 'regl',
 kAEReplace = 'rplc',
 kAERequiredSuite = 'reqd',
 kAERestart = 'rest',
 kAERevealSelection = 'srev',
 kAERevert = 'rvrt',
 kAERightJustified = 'rght',
 kAESave = 'save',
 kAESelect = 'slct',
 kAESetData = 'setd'
};

kAESetPosition
enum {
 kAESetPosition = 'posn',
 kAEShadow = 'shad',
 kAEShowClipboard = 'shcl',
 kAEShutDown = 'shut',
 kAESleep = 'slep',
 kAESmallCaps = 'smcp',
 kAESpecialClassProperties = 'c@#!',
 kAEStrikethrough = 'strk',
 kAESubscript = 'sbsc',
 kAESuperscript = 'spsc',
 kAETableSuite = 'tbls',
 kAETextSuite = 'TEXT',
 kAETransactionTerminated = 'ttrm',

228 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 kAEUnderline = 'undl',
 kAEUndo = 'undo',
 kAEWholeWordEquals = 'wweq',
 kAEYes = 'yes ',
 kAEZoom = 'zoom'
};

kAESocks4Protocol
enum {
 kAESocks4Protocol = 4,
 kAESocks5Protocol = 5
};

kAEUseHTTPProxyAttr
Web Services Proxy support—these constants should be added as attributes of the event that is being sent
(not as part of the direct object).

enum {
 kAEUseHTTPProxyAttr = 'xupr',
 kAEHTTPProxyPortAttr = 'xhtp',
 kAEHTTPProxyHostAttr = 'xhth'
};

Constants
kAEUseHTTPProxyAttr

A value of type typeBoolean. Specifies whether to manually specify the proxy host and port. Defaults
to true.

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

kAEHTTPProxyPortAttr
A value of type typeSInt32.

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

kAEHTTPProxyHostAttr
A value of type typeChar or typeUTF8Text.

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

Constants 229
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kAEUserTerminology
enum {
 kAEUserTerminology = 'aeut',
 kAETerminologyExtension = 'aete',
 kAEScriptingSizeResource = 'scsz',
 kAEOSAXSizeResource = 'osiz'
};

kAEUseSocksAttr
enum {
 kAEUseSocksAttr = 'xscs',
 kAESocksProxyAttr = 'xsok',
 kAESocksHostAttr = 'xshs',
 kAESocksPortAttr = 'xshp',
 kAESocksUserAttr = 'xshu',
 kAESocksPasswordAttr = 'xshw'
};

kAEUTHasReturningParam
enum {
 kAEUTHasReturningParam = 31,
 kAEUTOptional = 15,
 kAEUTlistOfItems = 14,
 kAEUTEnumerated = 13,
 kAEUTReadWrite = 12,
 kAEUTChangesState = 12,
 kAEUTTightBindingFunction = 12,
 kAEUTEnumsAreTypes = 11,
 kAEUTEnumListIsExclusive = 10,
 kAEUTReplyIsReference = 9,
 kAEUTDirectParamIsReference = 9,
 kAEUTParamIsReference = 9,
 kAEUTPropertyIsReference = 9,
 kAEUTNotDirectParamIsTarget = 8,
 kAEUTParamIsTarget = 8,
 kAEUTApostrophe = 3,
 kAEUTFeminine = 2,
 kAEUTMasculine = 1,
 kAEUTPlural = 0
};

kAEZoomIn
enum {
 kAEZoomIn = 7,
 kAEZoomOut = 8
};

230 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kBySmallIcon
enum {
 kBySmallIcon = 0,
 kByIconView = 1,
 kByNameView = 2,
 kByDateView = 3,
 kBySizeView = 4,
 kByKindView = 5,
 kByCommentView = 6,
 kByLabelView = 7,
 kByVersionView = 8
};

kCaretPosition
enum {
 kCaretPosition = 1,
 kRawText = 2,
 kSelectedRawText = 3,
 kConvertedText = 4,
 kSelectedConvertedText = 5,
 kBlockFillText = 6,
 kOutlineText = 7,
 kSelectedText = 8
};

Version Notes
Starting in Mac OS X v10.4, use the constants defined in “kTSMHiliteCaretPosition” (page 240) in place of these
constants.

Constants 231
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kConnSuite
enum {
 kConnSuite = 'macc',
 cDevSpec = 'cdev',
 cAddressSpec = 'cadr',
 cADBAddress = 'cadb',
 cAppleTalkAddress = 'cat ',
 cBusAddress = 'cbus',
 cEthernetAddress = 'cen ',
 cFireWireAddress = 'cfw ',
 cIPAddress = 'cip ',
 cLocalTalkAddress = 'clt ',
 cSCSIAddress = 'cscs',
 cTokenRingAddress = 'ctok',
 cUSBAddress = 'cusb',
 pDeviceType = 'pdvt',
 pDeviceAddress = 'pdva',
 pConduit = 'pcon',
 pProtocol = 'pprt',
 pATMachine = 'patm',
 pATZone = 'patz',
 pATType = 'patt',
 pDottedDecimal = 'pipd',
 pDNS = 'pdns',
 pPort = 'ppor',
 pNetwork = 'pnet',
 pNode = 'pnod',
 pSocket = 'psoc',
 pSCSIBus = 'pscb',
 pSCSILUN = 'pslu',
 eDeviceType = 'edvt',
 eAddressSpec = 'eads',
 eConduit = 'econ',
 eProtocol = 'epro',
 eADB = 'eadb',
 eAnalogAudio = 'epau',
 eAppleTalk = 'epat',
 eAudioLineIn = 'ecai',
 eAudioLineOut = 'ecal',
 eAudioOut = 'ecao',
 eBus = 'ebus',
 eCDROM = 'ecd ',
 eCommSlot = 'eccm',
 eDigitalAudio = 'epda',
 eDisplay = 'edds',
 eDVD = 'edvd',
 eEthernet = 'ecen',
 eFireWire = 'ecfw',
 eFloppy = 'efd ',
 eHD = 'ehd ',
 eInfrared = 'ecir',
 eIP = 'epip',
 eIrDA = 'epir',
 eIRTalk = 'epit',
 eKeyboard = 'ekbd',
 eLCD = 'edlc',
 eLocalTalk = 'eclt',

232 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 eMacIP = 'epmi',
 eMacVideo = 'epmv',
 eMicrophone = 'ecmi',
 eModemPort = 'ecmp',
 eModemPrinterPort = 'empp',
 eModem = 'edmm',
 eMonitorOut = 'ecmn',
 eMouse = 'emou',
 eNuBusCard = 'ednb',
 eNuBus = 'enub',
 ePCcard = 'ecpc',
 ePCIbus = 'ecpi',
 ePCIcard = 'edpi',
 ePDSslot = 'ecpd',
 ePDScard = 'epds',
 ePointingDevice = 'edpd',
 ePostScript = 'epps',
 ePPP = 'eppp',
 ePrinterPort = 'ecpp',
 ePrinter = 'edpr',
 eSvideo = 'epsv',
 eSCSI = 'ecsc',
 eSerial = 'epsr',
 eSpeakers = 'edsp',
 eStorageDevice = 'edst',
 eSVGA = 'epsg',
 eTokenRing = 'etok',
 eTrackball = 'etrk',
 eTrackpad = 'edtp',
 eUSB = 'ecus',
 eVideoIn = 'ecvi',
 eVideoMonitor = 'edvm',
 eVideoOut = 'ecvo'
};

keyAEAngle
enum {
 keyAEAngle = 'kang',
 keyAEArcAngle = 'parc'
};

keyAEBaseAddr
enum {
 keyAEBaseAddr = 'badd',
 keyAEBestType = 'pbst',
 keyAEBgndColor = 'kbcl',
 keyAEBgndPattern = 'kbpt',
 keyAEBounds = 'pbnd',
 keyAECellList = 'kclt',
 keyAEClassID = 'clID',
 keyAEColor = 'colr',
 keyAEColorTable = 'cltb',
 keyAECurveHeight = 'kchd',

Constants 233
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 keyAECurveWidth = 'kcwd',
 keyAEDashStyle = 'pdst',
 keyAEData = 'data',
 keyAEDefaultType = 'deft',
 keyAEDefinitionRect = 'pdrt',
 keyAEDescType = 'dstp',
 keyAEDestination = 'dest',
 keyAEDoAntiAlias = 'anta',
 keyAEDoDithered = 'gdit',
 keyAEDoRotate = 'kdrt'
};

keyAEDoScale
enum {
 keyAEDoScale = 'ksca',
 keyAEDoTranslate = 'ktra',
 keyAEEditionFileLoc = 'eloc',
 keyAEElements = 'elms',
 keyAEEndPoint = 'pend',
 keyAEEventClass = 'evcl',
 keyAEEventID = 'evti',
 keyAEFile = 'kfil',
 keyAEFileType = 'fltp',
 keyAEFillColor = 'flcl',
 keyAEFillPattern = 'flpt',
 keyAEFlipHorizontal = 'kfho',
 keyAEFlipVertical = 'kfvt',
 keyAEFont = 'font',
 keyAEFormula = 'pfor',
 keyAEGraphicObjects = 'gobs',
 keyAEID = 'ID ',
 keyAEImageQuality = 'gqua',
 keyAEInsertHere = 'insh',
 keyAEKeyForms = 'keyf'
};

keyAEHiliteRange
enum {
 keyAEHiliteRange = 'hrng',
 keyAEPinRange = 'pnrg',
 keyAEClauseOffsets = 'clau',
 keyAEOffset = 'ofst',
 keyAEPoint = 'gpos',
 keyAELeftSide = 'klef',
 keyAERegionClass = 'rgnc',
 keyAEDragging = 'bool'
};

keyAEKeyword
enum {

234 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 keyAEKeyword = 'kywd',
 keyAELevel = 'levl',
 keyAELineArrow = 'arro',
 keyAEName = 'pnam',
 keyAENewElementLoc = 'pnel',
 keyAEObject = 'kobj',
 keyAEObjectClass = 'kocl',
 keyAEOffStyles = 'ofst',
 keyAEOnStyles = 'onst',
 keyAEParameters = 'prms',
 keyAEParamFlags = 'pmfg',
 keyAEPenColor = 'ppcl',
 keyAEPenPattern = 'pppa',
 keyAEPenWidth = 'ppwd',
 keyAEPixelDepth = 'pdpt',
 keyAEPixMapMinus = 'kpmm',
 keyAEPMTable = 'kpmt',
 keyAEPointList = 'ptlt',
 keyAEPointSize = 'ptsz',
 keyAEPosition = 'kpos'
};

keyAELeadingEdge
enum {
 keyAELeadingEdge = 'klef'
};

keyAEPropData
enum {
 keyAEPropData = 'prdt',
 keyAEProperties = 'qpro',
 keyAEProperty = 'kprp',
 keyAEPropFlags = 'prfg',
 keyAEPropID = 'prop',
 keyAEProtection = 'ppro',
 keyAERenderAs = 'kren',
 keyAERequestedType = 'rtyp',
 keyAEResult = '----',
 keyAEResultInfo = 'rsin',
 keyAERotation = 'prot',
 keyAERotPoint = 'krtp',
 keyAERowList = 'krls',
 keyAESaveOptions = 'savo',
 keyAEScale = 'pscl',
 keyAEScriptTag = 'psct',
 keyAESearchText = 'stxt',
 keyAEShowWhere = 'show',
 keyAEStartAngle = 'pang',
 keyAEStartPoint = 'pstp',
 keyAEStyles = 'ksty'
};

Constants

Constants 235
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

keyAESearchText
Identifies an optional parameter to the open documents Apple event, described in “Event ID
Constants” (page 202). The parameter contains the search text from the Spotlight search that identified
the documents to be opened. The application should make a reasonable effort to display an occurrence
of the search text in each opened document—for example by scrolling the text into view.

For more information, see “Handling Apple Events Sent by the Mac OS” in “Responding to Apple
Events” in Apple Events Programming Guide.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

Version Notes
The constant keyAESearchText is available starting in Mac OS X v10.4.

236 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

keyAESuiteID
enum {
 keyAESuiteID = 'suit',
 keyAEText = 'ktxt',
 keyAETextColor = 'ptxc',
 keyAETextFont = 'ptxf',
 keyAETextPointSize = 'ptps',
 keyAETextStyles = 'txst',
 keyAETextLineHeight = 'ktlh',
 keyAETextLineAscent = 'ktas',
 keyAETheText = 'thtx',
 keyAETransferMode = 'pptm',
 keyAETranslation = 'ptrs',
 keyAETryAsStructGraf = 'toog',
 keyAEUniformStyles = 'ustl',
 keyAEUpdateOn = 'pupd',
 keyAEUserTerm = 'utrm',
 keyAEWindow = 'wndw',
 keyAEWritingCode = 'wrcd'
};

keyMenuID
enum {
 keyMenuID = 'mid ',
 keyMenuItem = 'mitm',
 keyCloseAllWindows = 'caw ',
 keyOriginalBounds = 'obnd',
 keyNewBounds = 'nbnd',
 keyLocalWhere = 'lwhr'
};

keyMiscellaneous
enum {
 keyMiscellaneous = 'fmsc',
 keySelection = 'fsel',
 keyWindow = 'kwnd',
 keyWhen = 'when',
 keyWhere = 'wher',
 keyModifiers = 'mods',
 keyKey = 'key ',
 keyKeyCode = 'code',
 keyKeyboard = 'keyb',
 keyDriveNumber = 'drv#',
 keyErrorCode = 'err#',
 keyHighLevelClass = 'hcls',
 keyHighLevelID = 'hid '
};

keyReplyPortAttr

Constants 237
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 keyReplyPortAttr = 'repp'
};

keySOAPStructureMetaData
enum {
 keySOAPStructureMetaData = '/smd',
 keySOAPSMDNamespace = 'ssns',
 keySOAPSMDNamespaceURI = 'ssnu',
 keySOAPSMDType = 'sstp'
};

keyUserNameAttr
enum {
 keyUserNameAttr = 'unam',
 keyUserPasswordAttr = 'pass',
 keyDisableAuthenticationAttr = 'auth',
 keyXMLDebuggingAttr = 'xdbg',
 kAERPCClass = 'rpc ',
 kAEXMLRPCScheme = 'RPC2',
 kAESOAPScheme = 'SOAP',
 kAESharedScriptHandler = 'wscp',
 keyRPCMethodName = 'meth',
 keyRPCMethodParam = 'parm',
 keyRPCMethodParamOrder = '/ord',
 keyAEPOSTHeaderData = 'phed',
 keyAEReplyHeaderData = 'rhed',
 keyAEXMLRequestData = 'xreq',
 keyAEXMLReplyData = 'xrep',
 keyAdditionalHTTPHeaders = 'ahed',
 keySOAPAction = 'sact',
 keySOAPMethodNameSpace = 'mspc',
 keySOAPMethodNameSpaceURI = 'mspu',
 keySOAPSchemaVersion = 'ssch'
};

kFAServerApp
enum {
 kFAServerApp = 'ssrv',
 kDoFolderActionEvent = 'fola',
 kFolderActionCode = 'actn',
 kFolderOpenedEvent = 'fopn',
 kFolderClosedEvent = 'fclo',
 kFolderWindowMovedEvent = 'fsiz',
 kFolderItemsAddedEvent = 'fget',
 kFolderItemsRemovedEvent = 'flos',
 kItemList = 'flst',
 kNewSizeParameter = 'fnsz',
 kFASuiteCode = 'faco',
 kFAAttachCommand = 'atfa',

238 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 kFARemoveCommand = 'rmfa',
 kFAEditCommand = 'edfa',
 kFAFileParam = 'faal',
 kFAIndexParam = 'indx'
};

kLaunchToGetTerminology
enum {
 kLaunchToGetTerminology = 0x8000,
 kDontFindAppBySignature = 0x4000,
 kAlwaysSendSubject = 0x2000
};

kNextBody
enum {
 kNextBody = 1,
 kPreviousBody = 2
};

kOSIZDontOpenResourceFile
enum {
 kOSIZDontOpenResourceFile = 15,
 kOSIZdontAcceptRemoteEvents = 14,
 kOSIZOpenWithReadPermission = 13,
 kOSIZCodeInSharedLibraries = 11
};

kReadExtensionTermsMask
enum {
 kReadExtensionTermsMask = 0x8000
};

kSOAP1999Schema
enum {
 kSOAP1999Schema = 'ss99',
 kSOAP2001Schema = 'ss01'
};

kTextServiceClass
enum {
 kTextServiceClass = 'tsvc',
 kUpdateActiveInputArea = 'updt',

Constants 239
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 kShowHideInputWindow = 'shiw',
 kPos2Offset = 'p2st',
 kOffset2Pos = 'st2p',
 kUnicodeNotFromInputMethod = 'unim',
 kGetSelectedText = 'gtxt',
 keyAETSMDocumentRefcon = 'refc',
 keyAEServerInstance = 'srvi',
 keyAETheData = 'kdat',
 keyAEFixLength = 'fixl',
 keyAEUpdateRange = 'udng',
 keyAECurrentPoint = 'cpos',
 keyAEBufferSize = 'buff',
 keyAEMoveView = 'mvvw',
 keyAENextBody = 'nxbd',
 keyAETSMScriptTag = 'sclg',
 keyAETSMTextFont = 'ktxf',
 keyAETSMTextFMFont = 'ktxm',
 keyAETSMTextPointSize = 'ktps',
 keyAETSMEventRecord = 'tevt',
 keyAETSMEventRef = 'tevr',
 keyAETextServiceEncoding = 'tsen',
 keyAETextServiceMacEncoding = 'tmen',
 keyAETSMGlyphInfoArray = 'tgia',
 typeTextRange = 'txrn',
 typeComponentInstance = 'cmpi',
 typeOffsetArray = 'ofay',
 typeTextRangeArray = 'tray',
 typeLowLevelEventRecord = 'evtr',
 typeGlyphInfoArray = 'glia',
 typeEventRef = 'evrf',
 typeText = 'TEXT'
};

kTSMHiliteCaretPosition
Specify text highlighting information.

enum {
 kTSMHiliteCaretPosition = 1,
 kTSMHiliteRawText = 2,
 kTSMHiliteSelectedRawText = 3,
 kTSMHiliteConvertedText = 4,
 kTSMHiliteSelectedConvertedText = 5,
 kTSMHiliteBlockFillText = 6,
 kTSMHiliteOutlineText = 7,
 kTSMHiliteSelectedText = 8,
 kTSMHiliteNoHilite = 9
};

Constants
kTSMHiliteCaretPosition

Specifies caret position.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

240 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kTSMHiliteRawText
Specifies range of raw text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteSelectedRawText
Specifies range of selected raw text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteConvertedText
Specifies range of converted text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteSelectedConvertedText
Specifies range of selected converted text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteBlockFillText
Specifies block fill highlight style.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteOutlineText
Specifies outline highlight style.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteSelectedText
Specifies selected highlight style.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

kTSMHiliteNoHilite
Specifies range of non-highlighted text.

Available in Mac OS X v10.4 and later.

Declared in AERegistry.h.

Version Notes
This enumeration is available starting in Mac OS X v10.4. Use these constants in place of the constants defined
in “kCaretPosition” (page 231).

Constants 241
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

kTSMOutsideOfBody
enum {
 kTSMOutsideOfBody = 1,
 kTSMInsideOfBody = 2,
 kTSMInsideOfActiveInputArea = 3
};

pArcAngle
enum {
 pArcAngle = 'parc',
 pBackgroundColor = 'pbcl',
 pBackgroundPattern = 'pbpt',
 pBestType = 'pbst',
 pBounds = 'pbnd',
 pClass = 'pcls',
 pClipboard = 'pcli',
 pColor = 'colr',
 pColorTable = 'cltb',
 pContents = 'pcnt',
 pCornerCurveHeight = 'pchd',
 pCornerCurveWidth = 'pcwd',
 pDashStyle = 'pdst',
 pDefaultType = 'deft',
 pDefinitionRect = 'pdrt',
 pEnabled = 'enbl',
 pEndPoint = 'pend',
 pFillColor = 'flcl',
 pFillPattern = 'flpt',
 pFont = 'font'
};

pFormula
enum {
 pFormula = 'pfor',
 pGraphicObjects = 'gobs',
 pHasCloseBox = 'hclb',
 pHasTitleBar = 'ptit',
 pID = 'ID ',
 pIndex = 'pidx',
 pInsertionLoc = 'pins',
 pIsFloating = 'isfl',
 pIsFrontProcess = 'pisf',
 pIsModal = 'pmod',
 pIsModified = 'imod',
 pIsResizable = 'prsz',
 pIsStationeryPad = 'pspd',
 pIsZoomable = 'iszm',
 pIsZoomed = 'pzum',
 pItemNumber = 'itmn',
 pJustification = 'pjst',
 pLineArrow = 'arro',
 pMenuID = 'mnid',

242 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

 pName = 'pnam'
};

pNewElementLoc
enum {
 pNewElementLoc = 'pnel',
 pPenColor = 'ppcl',
 pPenPattern = 'pppa',
 pPenWidth = 'ppwd',
 pPixelDepth = 'pdpt',
 pPointList = 'ptlt',
 pPointSize = 'ptsz',
 pProtection = 'ppro',
 pRotation = 'prot',
 pScale = 'pscl',
 pScript = 'scpt',
 pScriptTag = 'psct',
 pSelected = 'selc',
 pSelection = 'sele',
 pStartAngle = 'pang',
 pStartPoint = 'pstp',
 pTextColor = 'ptxc',
 pTextFont = 'ptxf',
 pTextItemDelimiters = 'txdl',
 pTextPointSize = 'ptps'
};

pScheme
enum {
 pScheme = 'pusc',
 pHost = 'HOST',
 pPath = 'FTPc',
 pUserName = 'RAun',
 pUserPassword = 'RApw',
 pDNSForm = 'pDNS',
 pURL = 'pURL',
 pTextEncoding = 'ptxe',
 pFTPKind = 'kind'
};

pTextStyles
enum {
 pTextStyles = 'txst',
 pTransferMode = 'pptm',
 pTranslation = 'ptrs',
 pUniformStyles = 'ustl',
 pUpdateOn = 'pupd',
 pUserSelection = 'pusl',
 pVersion = 'vers',
 pVisible = 'pvis'

Constants 243
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

};

typeAEText
enum {
 typeAEText = 'tTXT',
 typeArc = 'carc',
 typeBest = 'best',
 typeCell = 'ccel',
 typeClassInfo = 'gcli',
 typeColorTable = 'clrt',
 typeColumn = 'ccol',
 typeDashStyle = 'tdas',
 typeData = 'tdta',
 typeDrawingArea = 'cdrw',
 typeElemInfo = 'elin',
 typeEnumeration = 'enum',
 typeEPS = 'EPS ',
 typeEventInfo = 'evin'
};

typeApplicationBundleID
For specifying a target application by bundle ID.

enum {
 typeApplicationBundleID = 'bund'
};

Constants
typeApplicationBundleID

Indicates a descriptor containing UTF-8 characters that specify the bundle ID of an application. Bundle
IDs should be constructed similarly to "com.company.directorylocation.ApplicationName".

Available in Mac OS X v10.3 and later.

Declared in AEDataModel.h.

Discussion
This address mode is preferred for targeting specific applications. For example, you should target the Finder
by sending an event whose target address descriptor uses the bundle ID "com.apple.finder" rather than
the application signature 'MACS'.

244 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typeFinderWindow
enum {
 typeFinderWindow = 'fwin',
 typeFixedPoint = 'fpnt',
 typeFixedRectangle = 'frct',
 typeGraphicLine = 'glin',
 typeGraphicText = 'cgtx',
 typeGroupedGraphic = 'cpic',
 typeInsertionLoc = 'insl',
 typeIntlText = 'itxt',
 typeIntlWritingCode = 'intl',
 typeLongDateTime = 'ldt ',
 typeISO8601DateTime = 'isot',
 typeLongFixed = 'lfxd',
 typeLongFixedPoint = 'lfpt',
 typeLongFixedRectangle = 'lfrc',
 typeLongPoint = 'lpnt',
 typeLongRectangle = 'lrct',
 typeMachineLoc = 'mLoc',
 typeOval = 'covl',
 typeParamInfo = 'pmin',
 typePict = 'PICT'
};

Constants
typeIntlText

For important information, see the Version Notes section of the “typeUnicodeText” (page 251)
enum.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

typeHIMenu
enum {
 typeHIMenu = 'mobj',
 typeHIWindow = 'wobj'
};

typeKernelProcessID
For specifying an application by UNIX process ID.

Constants 245
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 typeKernelProcessID = 'kpid'
};

Constants
typeKernelProcessID

Indicates a descriptor containing a UNIX process ID. A process ID is similar to a PSN (processor serial
number) but does not require a Process Manager connection. It is analogous to a 32-bit unsigned
integer.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
You might use this constant in a situation where you have access to the PID for a process but don’t have a
Process Manager connection. Your code for creating the descriptor might look like the following:

pid_t pid = findTheAppPid(); // User supplied routine to get PID. // Now create
 a descriptor with it: AECreateDesc(typeKernelProcessID, &pid, sizeof(pid),
&desc);

typeMachPort
For specifying a Mach port.

enum {
 typeMachPort = 'port'
};

Constants
typeMachPort

Indicates a descriptor that specifies a Mach port.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Discussion
You might use this constant as part of sending an Apple event to an arbitrary Mach port. Your code for
creating the descriptor might look like the following:

mach_port_t port = lookupPortForTarget(); // User routine to get port.
// Now create a descriptor with it:
AECreateDesc(typeMachPort, &port, sizeof(port), &desc);

Actually sending an Apple event to a Mach port is an advanced technique and is not documented here.

246 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typeMeters
enum {
 typeMeters = 'metr',
 typeInches = 'inch',
 typeFeet = 'feet',
 typeYards = 'yard',
 typeMiles = 'mile',
 typeKilometers = 'kmtr',
 typeCentimeters = 'cmtr',
 typeSquareMeters = 'sqrm',
 typeSquareFeet = 'sqft',
 typeSquareYards = 'sqyd',
 typeSquareMiles = 'sqmi',
 typeSquareKilometers = 'sqkm',
 typeLiters = 'litr',
 typeQuarts = 'qrts',
 typeGallons = 'galn',
 typeCubicMeters = 'cmet',
 typeCubicFeet = 'cfet',
 typeCubicInches = 'cuin',
 typeCubicCentimeter = 'ccmt',
 typeCubicYards = 'cyrd',
 typeKilograms = 'kgrm',
 typeGrams = 'gram',
 typeOunces = 'ozs ',
 typePounds = 'lbs ',
 typeDegreesC = 'degc',
 typeDegreesF = 'degf',
 typeDegreesK = 'degk'
};

typePixelMap
enum {
 typePixelMap = 'cpix',
 typePixMapMinus = 'tpmm',
 typePolygon = 'cpgn',
 typePropInfo = 'pinf',
 typePtr = 'ptr ',
 typeQDPoint = 'QDpt',
 typeQDRegion = 'Qrgn',
 typeRectangle = 'crec',
 typeRGB16 = 'tr16',
 typeRGB96 = 'tr96',
 typeRGBColor = 'cRGB',
 typeRotation = 'trot',
 typeRoundedRectangle = 'crrc',
 typeRow = 'crow',
 typeScrapStyles = 'styl',
 typeScript = 'scpt',
 typeStyledText = 'STXT',
 typeSuiteInfo = 'suin',
 typeTable = 'ctbl',
 typeTextStyles = 'tsty'
};

Constants 247
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

Constants
typeStyledText

Text that includes style information.

Styled text is stored as a record, in which the styles have the key 'ksty' and the plain text is has the
key 'ktxt'. You can use this information to extract plain text from styled text without coercion.

However, getting rid of the style information, with or without coercion, may corrupt the text, since
the styles imply what encoding to use. In fact, use of typeText and typeStyledText are not
recommended, starting with Mac OS X, because they are not safe with international characters—you
should use one of the Unicode text types instead.

For important information, see the Version Notes section of the “typeUnicodeText” (page 251)
enum.

Available in Mac OS X v10.0 and later.

Declared in AERegistry.h.

typeReplyPortAttr
enum {
 typeReplyPortAttr = 'repp'
};

typeSessionID
enum {
 typeSessionID = 'ssid',
 typeTargetID = 'targ',
 typeDispatcherID = 'dspt'
};

Constants
typeSessionID

Session reference number.

typeTargetID
Target ID descriptor. Target IDs are not supported in Mac OS X.

typeSMInt
Where possible, you should use the constants defined in “Numeric Descriptor Type Constants” (page 213),
rather than those defined here.

248 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

enum {
 typeSMInt = 'shor',
 typeShortInteger = 'shor',
 typeInteger = 'long',
 typeLongInteger = 'long',
 typeMagnitude = 'magn',
 typeComp = 'comp',
 typeSMFloat = 'sing',
 typeShortFloat = 'sing',
 typeFloat = 'doub',
 typeLongFloat = 'doub',
 typeExtended = 'exte'
};

Constants
typeSMInt

16-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeShortInteger
16-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeInteger
32-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeLongInteger
32-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeMagnitude
Unsigned 32-bit integer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeComp
Standard Apple Numerics Environment (SANE) comparison operator.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

Constants 249
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typeSMFloat
SANE single.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeShortFloat
SANE single.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeFloat
SANE double.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeLongFloat
SANE double.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

typeExtended
SANE extended.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in AEDataModel.h.

250 Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typeTIFF
enum {
 typeTIFF = 'TIFF',
 typeVersion = 'vers'
};

typeUnicodeText
enum {
 typeUTF16ExternalRepresentation = 'ut16',
 typeUnicodeText = 'utxt',
 typeStyledUnicodeText = 'sutx',
 typeUTF8Text = 'utf8',
 typeEncodedString = 'encs',
 typeCString = 'cstr',
 typePString = 'pstr'
};

Constants
typeUTF16ExternalRepresentation

Unicode text in 16-bit external representation with byte-order-mark (BOM).

Guarantees that either there is a BOM or the data is in UTF-16BE.

Available in Mac OS X v10.4 and later.

Declared in AEDataModel.h.

typeUnicodeText
Unicode text. Native byte ordering, optional BOM.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeStyledUnicodeText
Styled Unicode text. Not implemented.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeUTF8Text
8-bit Unicode (UTF-8 encoding).

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

typeEncodedString
Styled Unicode text. Not implemented.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

typeCString
C string—Mac OS Roman characters followed by a NULL byte. Deprecated.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Constants 251
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

typePString
Pascal string—unsigned length byte followed by Mac OS Roman characters. Deprecated.

Available in Mac OS X v10.0 and later.

Declared in AEDataModel.h.

Version Notes
In Mac OS X version 10.4, you should use typeUTF16ExternalRepresentation or typeUTF8Text to
represent text. In earlier versions of Mac OS X, the recommended text type is typeUnicodeText. All of the
other constants in this enum are deprecated due to their lack of explicit encoding or byte order definition.

The implicitly encoded text types, typeText, typeCString, and typePString, are all deprecated in Mac
OS X, because they are incapable of representing international characters and may be reinterpreted in
unpredictable ways. Additionally, typeCString and typePString do not support the full range of text
coercions, and will be removed entirely in a future release. typeStyledText and typeIntlText, while
they have explicit encodings, are not recommended, since they are incapable of representing Unicode-only
characters, such as Hungarian, Arabic, or Thai.

Result Codes

Because the Apple Event Manager uses the services of the Event Manager, the functions described in this
document may return Event Manager result codes in addition to the Apple Event Manager result codes listed
here. Less commonly, an Apple Event Manager function may return other result codes, including some of
those found in the CarbonCore header file MacErrors.h.

For result codes for the AEBuild-related functions, see “AEBuild Error Codes” (page 179).

DescriptionValueResult Code

Client hasn’t set 'SIZE' resource to indicate awareness
of high-level events

-903noPortErr

Available in Mac OS X v10.0 and later.

Server hasn’t set 'SIZE' resource to indicate awareness
of high-level events, or else is not present

-906destPortErr

Available in Mac OS X v10.0 and later.

The kAEDontReconnect flag in the sendMode
parameter was set and the server quit, then restarted

-917sessClosedErr

Available in Mac OS X v10.0 and later.

Data could not be coerced to the requested descriptor
type

-1700errAECoercionFail

Available in Mac OS X v10.0 and later.

Descriptor was not found-1701errAEDescNotFound

Available in Mac OS X v10.0 and later.

Data in an Apple event could not be read-1702errAECorruptData

Available in Mac OS X v10.0 and later.

252 Result Codes
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

DescriptionValueResult Code

Wrong descriptor type-1703errAEWrongDataType

Available in Mac OS X v10.0 and later.

Not a valid descriptor-1704errAENotAEDesc

Available in Mac OS X v10.0 and later.

Operation involving a list item failed-1705errAEBadListItem

Available in Mac OS X v10.0 and later.

Need a newer version of the Apple Event Manager-1706errAENewerVersion

Available in Mac OS X v10.0 and later.

The event is not in AppleEvent format.-1707errAENotAppleEvent

Available in Mac OS X v10.0 and later.

Event wasn’t handled by an Apple event handler-1708errAEEventNotHandled

Available in Mac OS X v10.0 and later.

AEResetTimer was passed an invalid reply-1709errAEReplyNotValid

Available in Mac OS X v10.0 and later.

Invalid sending mode was passed-1710errAEUnknownSendMode

Available in Mac OS X v10.0 and later.

User canceled out of wait loop for reply or receipt-1711errAEWaitCanceled

Available in Mac OS X v10.0 and later.

Apple event timed out-1712errAETimeout

Available in Mac OS X v10.0 and later.

No user interaction allowed-1713errAENoUserInteraction

Available in Mac OS X v10.0 and later.

Wrong keyword for a special function-1714errAENotASpecialFunction

Available in Mac OS X v10.0 and later.

A required parameter was not accessed.-1715errAEParamMissed

Available in Mac OS X v10.0 and later.

Unknown Apple event address type-1716errAEUnknownAddressType

Available in Mac OS X v10.0 and later.

No handler found for an Apple event-1717errAEHandlerNotFound

Available in Mac OS X v10.0 and later.

Result Codes 253
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

DescriptionValueResult Code

Reply has not yet arrived-1718errAEReplyNotArrived

Available in Mac OS X v10.0 and later.

Not a valid list index-1719errAEIllegalIndex

Available in Mac OS X v10.0 and later.

The range is not valid because it is impossible for a range
to include the first and last objects that were specified;
an example is a range in which the offset of the first
object is greater than the offset of the last object

-1720errAEImpossibleRange

Available in Mac OS X v10.0 and later.

The number of operands provided for the kAENOT logical
operator is not 1

-1721errAEWrongNumberArgs

Available in Mac OS X v10.0 and later.

There is no object accessor function for the specified
object class and container type

-1723errAEAccessorNotFound

Available in Mac OS X v10.0 and later.

The logical operator in a logical descriptor is not kAEAND,
kAEOR, or kAENOT

-1725errAENoSuchLogical

Available in Mac OS X v10.0 and later.

The descriptor in a test key is neither a comparison
descriptor nor a logical descriptor

-1726errAEBadTestKey

Available in Mac OS X v10.0 and later.

The objSpecifier parameter of AEResolve is not an
object specifier

–1727errAENotAnObjectSpec

Runtime resolution of an object failed.-1728errAENoSuchObject

Available in Mac OS X v10.0 and later.

An object-counting function returned a negative result-1729errAENegativeCount

Available in Mac OS X v10.0 and later.

The container for an Apple event object is specified by
an empty list

-1730errAEEmptyListContainer

Available in Mac OS X v10.0 and later.

The object type isn’t recognized-1731errAEUnknownObjectType

Available in Mac OS X v10.0 and later.

Recording is already on-1732errAERecordingIsAlreadyOn

Available in Mac OS X v10.0 and later.

254 Result Codes
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

DescriptionValueResult Code

Break out of all levels of AEReceive to the topmost (1.1
or greater)

-1733errAEReceiveTerminate

Available in Mac OS X v10.0 and later.

Break out of lowest level only of AEReceive (1.1 or
greater)

-1734errAEReceiveEscapeCurrent

Available in Mac OS X v10.0 and later.

Event has been filtered and should not be propagated
(1.1 or greater)

-1735errAEEventFiltered

Available in Mac OS X v10.0 and later.

Attempt to install handler in table for identical class and
ID (1.1 or greater)

-1736errAEDuplicateHandler

Available in Mac OS X v10.0 and later.

Nesting violation while streaming-1737errAEStreamBadNesting

Available in Mac OS X v10.0 and later.

Attempt to convert a stream that has already been
converted

-1738errAEStreamAlreadyConverted

Available in Mac OS X v10.0 and later.

Attempt to perform an invalid operation on a null
descriptor

-1739errAEDescIsNull

Available in Mac OS X v10.0 and later.

AEBuildDesc and related functions detected a syntax
error

-1740errAEBuildSyntaxError

Available in Mac OS X v10.0 and later.

Buffer for AEFlattenDesc too small-1741errAEBufferTooSmall

Available in Mac OS X v10.0 and later.

Can’t both consider and ignore <attribute>.-2720errASCantConsiderAndIgnore

Available in Mac OS X v10.0 and later.

Can’t perform operation on text longer than 32K bytes.-2721errASCantCompareMoreThan32k

Available in Mac OS X v10.0 and later.

Tell statements are nested too deeply.-2760errASTerminologyNestingTooDeep

Available in Mac OS X v10.0 and later.

<name> is illegal as a formal parameter.-2761errASIllegalFormalParameter

Available in Mac OS X v10.0 and later.

Result Codes 255
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

DescriptionValueResult Code

<name> is not a parameter name for the event <event>.-2762errASParameterNotForEvent

Available in Mac OS X v10.0 and later.

No result was returned for some argument of this
expression.

-2763errASNoResultReturned

Available in Mac OS X v10.0 and later.

Apple event handler failed.-10000errAEEventFailed

Available in Mac OS X v10.0 and later.

A descriptor type mismatch occurred.-10001errAETypeError

Available in Mac OS X v10.0 and later.

Invalid key form.-10002errAEBadKeyForm

Available in Mac OS X v10.0 and later.

Can't set <object or data> to <object or data>. Access
not allowed.

-10003errAENotModifiable

Available in Mac OS X v10.0 and later.

A privilege violation occurred.-10004errAEPrivilegeError

Available in Mac OS X v10.0 and later.

The read operation was not allowed.-10005errAEReadDenied

Available in Mac OS X v10.0 and later.

Can't set <object or data> to <object or data>.-10006errAEWriteDenied

Available in Mac OS X v10.0 and later.

The index of the event is too large to be valid.-10007errAEIndexTooLarge

Available in Mac OS X v10.0 and later.

The specified object is a property, not an element.-10008errAENotAnElement

Available in Mac OS X v10.0 and later.

Can’t supply the requested descriptor type for the data.-10009errAECantSupplyType

Available in Mac OS X v10.0 and later.

The Apple event handler can’t handle objects of this
class.

-10010errAECantHandleClass

Available in Mac OS X v10.0 and later.

Couldn’t handle this command because it wasn’t part
of the current transaction.

-10011errAEInTransaction

Available in Mac OS X v10.0 and later.

256 Result Codes
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

DescriptionValueResult Code

The transaction to which this command belonged isn’t
a valid transaction.

-10012errAENoSuchTransaction

Available in Mac OS X v10.0 and later.

There is no user selection.-10013errAENoUserSelection

Available in Mac OS X v10.0 and later.

Handler only handles single objects.-10014errAENotASingleObject

Available in Mac OS X v10.0 and later.

Can’t undo the previous Apple event or user action.-10015errAECantUndo

Available in Mac OS X v10.0 and later.

Enumerated value in SetData is not allowed for this
property

-10023errAENotAnEnumMember

Available in Mac OS X v10.0 and later.

In make new, duplicate, etc. class can't be an element
of container

-10024errAECantPutThatThere

Available in Mac OS X v10.0 and later.

Illegal combination of properties settings for SetData,
make new, or duplicate

-10025errAEPropertiesClash

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Apple Event Manager selectors
defined in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.

Gestalt Constants 257
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

258 Gestalt Constants
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Apple Event Manager Reference

This table describes the changes to Apple Event Manager Reference.

NotesDate

Added and modified function and constant descriptions.2007-07-13

These functions now have descriptions: AEPutKeyDesc (page 78),
AEPutKeyPtr (page 79), AEDeleteKeyDesc (page 39), AEGetKeyDesc (page
52), AEGetKeyPtr (page 53), and AESizeOfKeyDesc (page 99).

These constants now have descriptions: keyAELaunchedAsLogInItem and
keyAELaunchedAsServiceItem in “Launch Apple Event
Constants” (page 212); and typeUInt16 and typeUInt64 in “Numeric
Descriptor Type Constants” (page 213).

In “Descriptor Type Constants” (page 197), clarified description for typeFileURL
and added note to Discussion section about working with Fast User Switching.

Added Version Notes section to AEResetTimer (page 88), noting that prior to
Mac OS X version 10.3, calling that function did not reset the timeout value.

In the Discussion sections for AEGetDescData (page 48) and
AEGetDescDataSize (page 50), noted that you can only use these functions
with value descriptors created by AECreateDesc (page 33).

For the functions in “Suspending and Resuming Apple Event Handling” (page
23), noted that they should be called only on the main thread.

Added Special Considerations section for the function AESendMessage (page
94), describing a potential bug and providing a link to a sample code
work-around.

Added information to “Introduction to Apple Event Manager Reference” (page
13) about thread safety, about forcing a connection to the window server, and
about the location of the AE framework (now a subframework of the CoreServices
framework). Also added a link to AppleScript Terminology and Apple Event Codes
Reference.

Noted that AEFlattenDesc and AEUnflattenDesc require no developer steps with
respect to the endianness of the serialized data.

2006-09-05

Revised descriptions for AESuspendTheCurrentEvent and
AEResumeTheCurrentEvent.

2005-08-11

Added missing constant descriptions and fixed minor bugs.2005-07-07

259
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Added enumeration “kTSMHiliteCaretPosition” (page 240), and noted that starting
in Mac OS X version 10.4, you should use constants from that enumeration,
rather than from “kCaretPosition” (page 231).

In “Descriptor Type Constants” (page 197), added note that a descriptor of type
typeFileURL doesn't represent a CFURL, it represents a C-string-style file path.

Updated to cover a small number of changes for Mac OS X v10.4 and fix minor
bugs.

2005-04-29

Added documentation for the constants in the enum
“typeUnicodeText” (page 251), including the new constants
typeUTF16ExternalRepresentation and typeUTF8Text. See important
information in the Version Notes section.

Added documentation for the constant kAEOpenContents in the section “Event
ID Constants” (page 202). This constant is new in Mac OS X v10.4.

Added documentation for the constant keyAESearchText in the enum
“keyAEPropData” (page 235). This constant is new in Mac OS X v10.4.

For a number of functions and data types, added links to related information
in new document Apple Events Programming Guide.

Added missing descriptions for the constants typeFSRef and typeFileURL
in the section “Descriptor Type Constants” (page 197).

Filled in missing descriptions for some constants in “Apple Event Manager Result
Codes” (page 252).

Added documentation for the constantkeyReplyRequestedAttr in the section
“Keyword Attribute Constants” (page 209).

Made minor changes to introductory text in “Apple Event Manager
Functions” (page 24).

Added Version Notes sections to AEBuildAppleEvent (page 24)and
AEBuildDesc (page 26), noting that prior to Mac OS X version 10.3, these
functions would fail if you supplied a data parameter with size greater than
32767 bytes.

Added Description section for “typeApplicationBundleID” (page 244).

Deleted duplicate definition of constant typeApplicationURL, leaving only
the one in “Descriptor Type Constants” (page 197).

Noted that the functions AEGetParamDesc (page 59) and
AEGetParamPtr (page 60) work with Apple event records (type
AERecord (page 173)), as well as with Apple events (type AppleEvent (page
175)).

Reduced use of the word “record,” which often appeared gratuitously with data
structures that were converted from Pascal record types long ago.

260
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

In the function call example in the description of the AEEventSource (page
170) typedef, changed the call to use sizeof (AEEventSource).

2004-01-19

Added note on use of pointer-based and descriptor-based coercion handlers
to AECoercePtr (page 30). This information applies to Mac OS X version 10.2
and later.

2003-12-19

Added a missing “&” to the function call example in the description of the
AEEventSource (page 170) typedef.

Added callback, constant, data type, and function descriptions for obtaining a
list of remote processes with the remote process resolver mechanism.

2003-08-06

Added descriptions for these functions:
AECreateRemoteProcessResolver (page 36),
AEDisposeRemoteProcessResolver (page 40),
AERemoteProcessResolverGetProcesses (page 82),
AERemoteProcessResolverScheduleWithRunLoop (page 83)

Added description for this callback:
AERemoteProcessResolverCallback (page 148)

Added descriptions for these data types:
AERemoteProcessResolverContext (page 163),
AERemoteProcessResolverRef (page 173)

Added descriptions for these constants: kAERemoteProcessURLKey (page 218),
kAERemoteProcessNameKey (page 218),kAERemoteProcessUserIDKey (page
218), kAERemoteProcessProcessIDKey (page 219),
typeApplicationURL (page 200), “typeKernelProcessID” (page 245),
“typeMachPort” (page 246)

Added thread safety information for many Apple Event Manager functions.

Reordered some constants that were not in alphabetical order.

Updated formatting.2003-02-01

261
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

262
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

AEAddressDesc data type 167
AEArrayData structure 161
AEArrayDataPointer data type 167
AEArrayType data type 168
AEBuild Error Codes 179
AEBuildAppleEvent function 24
AEBuildDesc function 26
AEBuildError structure 162
AEBuildParameters function 27
aeBuildSyntaxBadData constant 181
aeBuildSyntaxBadDesc constant 181
aeBuildSyntaxBadEOF constant 180
aeBuildSyntaxBadHex constant 181
aeBuildSyntaxBadNegative constant 180
aeBuildSyntaxBadToken constant 180
aeBuildSyntaxCoercedList constant 182
aeBuildSyntaxMissingQuote constant 180
aeBuildSyntaxNoCloseBrace constant 181
aeBuildSyntaxNoCloseBracket constant 181
aeBuildSyntaxNoCloseHex constant 181
aeBuildSyntaxNoCloseParen constant 181
aeBuildSyntaxNoCloseString constant 181
aeBuildSyntaxNoColon constant 182
aeBuildSyntaxNoEOF constant 180
aeBuildSyntaxNoErr constant 180
aeBuildSyntaxNoKey constant 182
aeBuildSyntaxOddHex constant 181
aeBuildSyntaxUncoercedDoubleAt constant 182
aeBuildSyntaxUncoercedHex constant 181
AECallObjectAccessor function 28
AECheckIsRecord function 29
AECoerceDesc function 29
AECoerceDescProcPtr callback 140
AECoerceDescUPP data type 168
AECoercePtr function 30
AECoercePtrProcPtr callback 141
AECoercePtrUPP data type 168
AECoercionHandlerUPP data type 168
AECountItems function 31

AECreateAppleEvent function 32
AECreateDesc function 33
AECreateDescFromExternalPtr function 34
AECreateList function 35
AECreateRemoteProcessResolver function 36
AEDataStorage data type 169
AEDataStorageType data type 169
AEDecodeMessage function 37
AEDeleteItem function 38
AEDeleteKeyDesc function 39
AEDeleteParam function 39
AEDesc structure 162
AEDescList data type 169
AEDisposeDesc function 40
AEDisposeExternalProcPtr callback 143
AEDisposeExternalUPP data type 171
AEDisposeRemoteProcessResolver function 40
AEDisposeToken function 41
AEDuplicateDesc function 42
AEEventClass data type 171
AEEventHandlerProcPtr callback 144
AEEventHandlerUPP data type 171
AEEventID data type 172
AEEventSource data type 170
AEFilterProcPtr callback 146
AEFilterUPP data type 172
AEFlattenDesc function 42
AEGetArray function 44
AEGetAttributeDesc function 45
AEGetAttributePtr function 46
AEGetCoercionHandler function 47
AEGetDescData function 48
AEGetDescDataRange function 49
AEGetDescDataSize function 50
AEGetEventHandler function 51
AEGetInteractionAllowed function 52
AEGetKeyDesc function 52
AEGetKeyPtr function 53
AEGetNthDesc function 55
AEGetNthPtr function 56
AEGetObjectAccessor function 57
AEGetParamDesc function 59

263
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

Index

AEGetParamPtr function 60
AEGetRegisteredMachPort function 61
AEGetSpecialHandler function 62
AEGetTheCurrentEvent function 63
AEIdleProcPtr callback 147
AEIdleUPP data type 172
AEInitializeDesc function 64
AEInstallCoercionHandler function 64
AEInstallEventHandler function 65
AEInstallObjectAccessor function 67
AEInstallSpecialHandler function 68
AEInteractAllowed data type 179
AEInteractWithUser function 69
AEKeyDesc structure 163
AEKeyword data type 172
AEManagerInfo function 70
AEObjectInit function 71
AEPrintDescToHandle function 72
AEProcessAppleEvent function 73
AEProcessMessage function 74
AEPutArray function 75
AEPutAttributeDesc function 76
AEPutAttributePtr function 77
AEPutDesc function 77
AEPutKeyDesc function 78
AEPutKeyPtr function 79
AEPutParamDesc function 80
AEPutParamPtr function 80
AEPutPtr function 81
AERecord data type 173
AERemoteProcessResolverCallback callback 148
AERemoteProcessResolverContext structure 163
AERemoteProcessResolverGetProcesses function

82
AERemoteProcessResolverRef data type 173
AERemoteProcessResolverScheduleWithRunLoop

function 83
AERemoveCoercionHandler function 84
AERemoveEventHandler function 85
AERemoveObjectAccessor function 86
AERemoveSpecialHandler function 87
AEReplaceDescData function 88
AEResetTimer function 88
AEResolve function 89
AEResumeTheCurrentEvent function 90
AEReturnID data type 174
AESend function 92
AESendMessage function 94
AESendMode 182
AESendOptions data type 174
AESendPriority data type 174
AESetInteractionAllowed function 95
AESetObjectCallbacks function 96

AESetTheCurrentEvent function 97
AESizeOfAttribute function 98
AESizeOfFlattenedDesc function 99
AESizeOfKeyDesc function 99
AESizeOfNthItem function 100
AESizeOfParam function 101
AEStreamClose function 101
AEStreamCloseDesc function 102
AEStreamCloseList function 102
AEStreamCloseRecord function 103
AEStreamCreateEvent function 103
AEStreamOpen function 105
AEStreamOpenDesc function 105
AEStreamOpenEvent function 106
AEStreamOpenKeyDesc function 106
AEStreamOpenList function 107
AEStreamOpenRecord function 107
AEStreamOptionalParam function 108
AEStreamRef data type 174
AEStreamSetRecordType function 109
AEStreamWriteAEDesc function 109
AEStreamWriteData function 110
AEStreamWriteDesc function 110
AEStreamWriteKey function 111
AEStreamWriteKeyDesc function 112
AESuspendTheCurrentEvent function 113
AETransactionID data type 175
AEUnflattenDesc function 114
Apple Event Recording Event ID Constants 186
AppleEvent data type 175

C

cAEList 187
Callback Constants for the AEResolve Function 187
ccntTokenRecord structure 164
cFTPItem constant 196
cHTML constant 196
cInsertionLoc 189
cInternetAddress constant 195
cKeystroke 189
Comparison Operator Constants 190
Constants for Object Specifiers, Positions, and Logical and

Comparison Operations 191
cParagraph constant 216
cPICT constant 216
cProperty constant 216
CreateCompDescriptor function 114
CreateLogicalDescriptor function 115
CreateObjSpecifier function 116
CreateOffsetDescriptor function 117
CreateRangeDescriptor function 118

264
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

INDEX

cRGBColor constant 216
cURL 195
cURL constant 195
cVersion 196

D

Data Array Constants 196
Descriptor Type Constants 197
DescType data type 176
destPortErr constant 252
DisposeAECoerceDescUPP function 119
DisposeAECoercePtrUPP function 119
DisposeAEDisposeExternalUPP function 119
DisposeAEEventHandlerUPP function 120
DisposeAEFilterUPP function 120
DisposeAEIdleUPP function 120
DisposeOSLAccessorUPP function 120
DisposeOSLAdjustMarksUPP function 121
DisposeOSLCompareUPP function 121
DisposeOSLCountUPP function 121
DisposeOSLDisposeTokenUPP function 122
DisposeOSLGetErrDescUPP function 122
DisposeOSLGetMarkTokenUPP function 122
DisposeOSLMarkUPP function 123

E

errAEAccessorNotFound constant 254
errAEBadKeyForm constant 256
errAEBadListItem constant 253
errAEBadTestKey constant 254
errAEBufferTooSmall constant 255
errAEBuildSyntaxError constant 255
errAECantHandleClass constant 256
errAECantPutThatThere constant 257
errAECantSupplyType constant 256
errAECantUndo constant 257
errAECoercionFail constant 252
errAECorruptData constant 252
errAEDescIsNull constant 255
errAEDescNotFound constant 252
errAEDuplicateHandler constant 255
errAEEmptyListContainer constant 254
errAEEventFailed constant 256
errAEEventFiltered constant 255
errAEEventNotHandled constant 253
errAEHandlerNotFound constant 253
errAEIllegalIndex constant 254
errAEImpossibleRange constant 254

errAEIndexTooLarge constant 256
errAEInTransaction constant 256
errAENegativeCount constant 254
errAENewerVersion constant 253
errAENoSuchLogical constant 254
errAENoSuchObject constant 254
errAENoSuchTransaction constant 257
errAENotAEDesc constant 253
errAENotAnElement constant 256
errAENotAnEnumMember constant 257
errAENotAnObjectSpec constant 254
errAENotAppleEvent constant 253
errAENotASingleObject constant 257
errAENotASpecialFunction constant 253
errAENotModifiable constant 256
errAENoUserInteraction constant 253
errAENoUserSelection constant 257
errAEParamMissed constant 253
errAEPrivilegeError constant 256
errAEPropertiesClash constant 257
errAEReadDenied constant 256
errAEReceiveEscapeCurrent constant 255
errAEReceiveTerminate constant 255
errAERecordingIsAlreadyOn constant 254
errAEReplyNotArrived constant 254
errAEReplyNotValid constant 253
errAEStreamAlreadyConverted constant 255
errAEStreamBadNesting constant 255
errAETimeout constant 253
errAETypeError constant 256
errAEUnknownAddressType constant 253
errAEUnknownObjectType constant 254
errAEUnknownSendMode constant 253
errAEWaitCanceled constant 253
errAEWriteDenied constant 256
errAEWrongDataType constant 253
errAEWrongNumberArgs constant 254
errASCantCompareMoreThan32k constant 255
errASCantConsiderAndIgnore constant 255
errASIllegalFormalParameter constant 255
errASNoResultReturned constant 256
errASParameterNotForEvent constant 256
errASTerminologyNestingTooDeep constant 255
eScheme 201
Event Class Constants 201
Event Handler Flags 202
Event ID Constants 202
Event Source Constants 204

F

Factoring Constants 205

265
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

INDEX

formAbsolutePosition constant 206
formName constant 207
formPropertyID constant 207
formRange constant 207
formRelativePosition constant 207
formTest constant 207
formUniqueID constant 196
formWhose constant 223

I

ID Constants for the AECreateAppleEvent Function 205
IntlText structure 165
InvokeAECoerceDescUPP function 123
InvokeAECoercePtrUPP function 124
InvokeAEDisposeExternalUPP function 124
InvokeAEEventHandlerUPP function 125
InvokeAEFilterUPP function 125
InvokeAEIdleUPP function 125
InvokeOSLAccessorUPP function 126
InvokeOSLAdjustMarksUPP function 126
InvokeOSLCompareUPP function 127
InvokeOSLCountUPP function 127
InvokeOSLDisposeTokenUPP function 128
InvokeOSLGetErrDescUPP function 128
InvokeOSLGetMarkTokenUPP function 129
InvokeOSLMarkUPP function 129

K

kAEAll constant 192
kAEAlwaysInteract constant 184
kAEAND constant 191
kAEAnswer constant 204
kAEAny constant 192
kAEApplicationDied constant 204
kAEBeginsWith constant 190
kAECanInteract constant 184
kAECanSwitchLayer constant 184
kAEContains constant 190
kAECoreSuite constant 191
kAEDataArray constant 197
kAEDebugPOSTHeader 224
kAEDefaultTimeout constant 221
kAEDescArray constant 197
kAEDirectCall constant 204
kAEDontExecute constant 184
kAEDontReconnect constant 183
kAEDontRecord constant 184
kAEDoObjectsExist 223

kAEEndsWith constant 223
kAEEquals constant 224
kAEFinderEvents constant 224
kAEFirst constant 192
kAEGetPrivilegeSelection 224
kAEGreaterThan constant 224
kAEGreaterThanEquals constant 225
kAEHandleArray 225
kAEHandleArray constant 225
kAEHighPriority constant 218
kAEHTTPProxyHostAttr constant 229
kAEHTTPProxyPortAttr constant 229
kAEIDoMarking constant 188
kAEIDoMinimum constant 188
kAEIDoWhose constant 188
kAEInfo 226
kAEInteractWithAll constant 222
kAEInteractWithLocal constant 222
kAEInteractWithSelf constant 222
kAEInternetSuite 226
kAEISGetURL 226
kAEISHTTPSearchArgs 226
kAEKeyDescArray constant 197
kAELast constant 192
kAELessThanEquals constant 225
kAELocalProcess constant 205
kAELogOut 226
kAEMenuClass 227
kAEMiddle constant 192
kAEMouseClass 227
kAENeverInteract constant 183
kAENext constant 192
kAENoDispatch constant 219
kAENonmodifiable 227
kAENoReply constant 182
kAENormalPriority constant 218
kAENOT constant 192
kAENotifyRecording constant 187
kAENotifyStartRecording constant 187
kAENotifyStopRecording constant 187
kAEOpenApplication constant 203
kAEOpenContents constant 203
kAEOpenDocuments constant 203
kAEOR constant 192
kAEPackedArray constant 197
kAEPrevious constant 192
kAEPrintDocuments constant 203
kAEProcessNonReplyEvents constant 184
kAEQDNotOr 228
kAEQueueReply constant 183
kAEQuitApplication constant 203
kAERemoteProcess constant 205
kAERemoteProcessNameKey constant 218

266
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

INDEX

kAERemoteProcessProcessIDKey constant 219
kAERemoteProcessURLKey constant 218
kAERemoteProcessUserIDKey constant 218
kAEReopenApplication constant 203
kAESameProcess constant 205
kAESetPosition 228
kAEShowPreferences constant 204
kAESocks4Protocol 229
kAEStartRecording constant 186
kAEStopRecording constant 186
kAEUnknownSource constant 204
kAEUseHTTPProxyAttr 229
kAEUseHTTPProxyAttr constant 229
kAEUserTerminology 230
kAEUseSocksAttr 230
kAEUseStandardDispatch constant 219
kAEUTHasReturningParam 230
kAEWaitReply constant 183
kAEWantReceipt constant 183
kAEZoomIn 230
kAnyTransactionID constant 206
kAutoGenerateReturnID constant 205
kBySmallIcon 230
kCaretPosition 231
kConnSuite 232
kCoreEventClass constant 202
Key Form and Descriptor Type Object Specifier Constants

206
keyAddressAttr constant 210
keyAEAdjustMarksProc constant 220
keyAEAngle 233
keyAEBaseAddr 233
keyAECompareProc constant 220
keyAECompOperator constant 192
keyAEContainer constant 193
keyAECountProc constant 220
keyAEDesiredClass constant 193
keyAEDoScale 234
keyAEGetErrDescProc constant 221
keyAEHiliteRange 234
keyAEKeyData constant 194
keyAEKeyForm constant 193
keyAEKeyword 234
keyAELaunchedAsLogInItem constant 213
keyAELaunchedAsServiceItem constant 213
keyAELeadingEdge 235
keyAELogicalOperator constant 193
keyAELogicalTerms constant 193
keyAEMarkProc constant 220
keyAEMarkTokenProc constant 220
keyAEObject1 constant 193
keyAEObject2 constant 193
keyAEPropData 235

keyAERangeStart constant 220
keyAERangeStop constant 220
keyAERecorderCount constant 212
keyAESearchText constant 236
keyAESuiteID 237
keyAEVersion constant 212
keyDirectObject constant 211
keyDisposeTokenProc constant 220
keyErrorNumber constant 211
keyErrorString constant 211
keyEventClassAttr constant 209
keyEventIDAttr constant 210
keyEventSourceAttr constant 210
keyInteractLevelAttr constant 210
keyMenuID 237
keyMiscellaneous 237
keyMissedKeywordAttr constant 210
keyOptionalKeywordAttr constant 210
keyOriginalAddressAttr constant 210
keyPreDispatch constant 212
keyProcessSerialNumber constant 211
keyReplyPortAttr 237
keyReplyRequestedAttr constant 210
keyReturnIDAttr constant 209
keySelectProc constant 212
keySOAPStructureMetaData 238
keyTimeoutAttr constant 210
keyTransactionIDAttr constant 209
keyUserNameAttr 238
Keyword Attribute Constants 209
Keyword Parameter Constants 211
kFAServerApp 238
kLaunchToGetTerminology 239
kNextBody 239
kNoTimeOut constant 221
kOSIZDontOpenResourceFile 239
kReadExtensionTermsMask 239
kSOAP1999Schema 239
kTextServiceClass 239
kTSMHiliteBlockFillText constant 241
kTSMHiliteCaretPosition 240
kTSMHiliteCaretPosition constant 240
kTSMHiliteConvertedText constant 241
kTSMHiliteNoHilite constant 241
kTSMHiliteOutlineText constant 241
kTSMHiliteRawText constant 241
kTSMHiliteSelectedConvertedText constant 241
kTSMHiliteSelectedRawText constant 241
kTSMHiliteSelectedText constant 241
kTSMOutsideOfBody 242

267
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

INDEX

L

Launch Apple Event Constants 212

N

NewAECoerceDescUPP function 130
NewAECoercePtrUPP function 130
NewAEDisposeExternalUPP function 130
NewAEEventHandlerUPP function 131
NewAEFilterUPP function 131
NewAEIdleUPP function 131
NewOSLAccessorUPP function 132
NewOSLAdjustMarksUPP function 132
NewOSLCompareUPP function 133
NewOSLCountUPP function 133
NewOSLDisposeTokenUPP function 133
NewOSLGetErrDescUPP function 134
NewOSLGetMarkTokenUPP function 134
NewOSLMarkUPP function 134
noPortErr constant 252
Numeric Descriptor Type Constants 213

O

Object Class ID Constants 215
OffsetArray structure 165
OffsetArrayHandle data type 176
OSLAccessorProcPtr callback 149
OSLAccessorUPP data type 176
OSLAdjustMarksProcPtr callback 151
OSLAdjustMarksUPP data type 177
OSLCompareProcPtr callback 152
OSLCompareUPP data type 177
OSLCountProcPtr callback 154
OSLCountUPP data type 177
OSLDisposeTokenProcPtr callback 155
OSLDisposeTokenUPP data type 177
OSLGetErrDescProcPtr callback 157
OSLGetErrDescUPP data type 178
OSLGetMarkTokenProcPtr callback 158
OSLGetMarkTokenUPP data type 178
OSLMarkProcPtr callback 160
OSLMarkUPP data type 178
Other Descriptor Type Constants 217

P

pArcAngle 242
pFormula 242
pNewElementLoc 243
Priority Constants for the AESend Function (Deprecated

in Mac OS X) 217
pScheme 243
pTextStyles 243

R

Remote Process Dictionary Keys 218
Resume Event Dispatch Constants 219

S

sessClosedErr constant 252
Special Handler Callback Constants 219

T

TextRange structure 166
TextRangeArray structure 166
Timeout Constants 221
TScriptingSizeResource structure 166
type128BitFloatingPoint constant 215
typeAbsoluteOrdinal constant 208
typeAEList constant 198
typeAERecord constant 198
typeAEText 244
typeAlias constant 199
typeAppleEvent constant 198
typeApplicationBundleID 244
typeApplicationBundleID constant 244
typeApplicationURL constant 200
typeApplSignature constant 200
typeAppParameters constant 199
typeBoolean constant 217
typeChar constant 217
typeComp constant 249
typeCompDescriptor constant 208
typeCString constant 251
typeCurrentContainer constant 208
typeDecimalStruct constant 215
typeEncodedString constant 251
typeEnumerated constant 199
typeExtended constant 250

268
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

INDEX

typeFalse constant 198
typeFileURL constant 199
typeFinderWindow 245
typeFloat constant 250
typeFSRef constant 199
typeFSS constant 199
typeHIMenu 245
typeIEEE32BitFloatingPoint constant 214
typeIEEE64BitFloatingPoint constant 214
typeIndexDescriptor constant 208
typeInteger constant 249
typeIntlText constant 245
typeKernelProcessID 245
typeKernelProcessID constant 246
typeKeyword constant 199
typeLogicalDescriptor constant 208
typeLongFloat constant 250
typeLongInteger constant 249
typeMachPort 246
typeMachPort constant 246
typeMagnitude constant 249
typeMeters 247
typeNull constant 200
typeObjectBeingExamined constant 207
typeObjectSpecifier constant 207
typeOSLTokenList constant 209
typePixelMap 247
typeProcessSerialNumber constant 200
typeProperty constant 199
typePString constant 252
typeRangeDescriptor constant 208
typeRelativeDescriptor constant 208
typeReplyPortAttr 248
typeSectionH constant 200
typeSessionID 248
typeSessionID constant 248
typeShortFloat constant 250
typeShortInteger constant 249
typeSInt16 constant 214
typeSInt32 constant 214
typeSInt64 constant 214
typeSMFloat constant 250
typeSMInt 248
typeSMInt constant 249
typeStyledText constant 248
typeStyledUnicodeText constant 251
typeTargetID constant 248
typeTIFF 251
typeToken constant 208
typeTrue constant 198
typeType constant 199
typeUInt16 constant 214
typeUInt32 constant 214

typeUInt64 constant 214
typeUnicodeText 251
typeUnicodeText constant 251
typeUTF16ExternalRepresentation constant 251
typeUTF8Text constant 251
typeWildCard constant 200

U

User Interaction Level Constants 221

V

vAEBuildAppleEvent function 135
vAEBuildDesc function 136
vAEBuildParameters function 137

W

Whose Test Constants 223
WritingCode structure 167

269
2007-07-13 | © 1993, 2007 Apple Inc. All Rights Reserved.

INDEX

	Apple Event Manager Reference
	Contents
	Apple Event Manager Reference
	Overview
	Functions by Task
	Adding Items to Descriptor Lists
	Adding Parameters and Attributes to Apple Events and Apple Event Records
	Coercing Descriptor Types
	Counting the Items in Descriptor Lists
	Creating an Apple Event
	Creating and Duplicating Descriptors
	Creating, Calling, and Deleting Universal Procedure Pointers
	Creating Descriptor Lists and Apple Event Records
	Creating Object Specifiers
	Deallocating Memory for Descriptors
	Deallocating Memory for Tokens
	Deleting Descriptors
	Dispatching Apple Events
	Getting, Calling, and Removing Object Accessor Functions
	Getting Data or Descriptors From Apple Events and Apple Event Records
	Getting Information About the Apple Event Manager
	Getting Items From Descriptor Lists
	Getting the Sizes and Descriptor Types of Descriptors
	Initializing the Object Support Library
	Locating Processes on Remote Computers
	Managing Apple Event Dispatch Tables
	Managing Coercion Handler Dispatch Tables
	Managing Special Handler Dispatch Tables
	Operating On Descriptor Data
	Requesting More Time to Respond to Apple Events
	Requesting User Interaction
	Resolving Object Specifiers
	Sending an Apple Event
	Creating Apple Event Structures in Memory
	Creating Apple Event Structures Using Streams
	Working With Lower Level Apple Event Functions
	Serializing Apple Event Data
	Suspending and Resuming Apple Event Handling
	Miscellaneous

	Functions
	AEBuildAppleEvent
	AEBuildDesc
	AEBuildParameters
	AECallObjectAccessor
	AECheckIsRecord
	AECoerceDesc
	AECoercePtr
	AECountItems
	AECreateAppleEvent
	AECreateDesc
	AECreateDescFromExternalPtr
	AECreateList
	AECreateRemoteProcessResolver
	AEDecodeMessage
	AEDeleteItem
	AEDeleteKeyDesc
	AEDeleteParam
	AEDisposeDesc
	AEDisposeRemoteProcessResolver
	AEDisposeToken
	AEDuplicateDesc
	AEFlattenDesc
	AEGetArray
	AEGetAttributeDesc
	AEGetAttributePtr
	AEGetCoercionHandler
	AEGetDescData
	AEGetDescDataRange
	AEGetDescDataSize
	AEGetEventHandler
	AEGetInteractionAllowed
	AEGetKeyDesc
	AEGetKeyPtr
	AEGetNthDesc
	AEGetNthPtr
	AEGetObjectAccessor
	AEGetParamDesc
	AEGetParamPtr
	AEGetRegisteredMachPort
	AEGetSpecialHandler
	AEGetTheCurrentEvent
	AEInitializeDesc
	AEInstallCoercionHandler
	AEInstallEventHandler
	AEInstallObjectAccessor
	AEInstallSpecialHandler
	AEInteractWithUser
	AEManagerInfo
	AEObjectInit
	AEPrintDescToHandle
	AEProcessAppleEvent
	AEProcessMessage
	AEPutArray
	AEPutAttributeDesc
	AEPutAttributePtr
	AEPutDesc
	AEPutKeyDesc
	AEPutKeyPtr
	AEPutParamDesc
	AEPutParamPtr
	AEPutPtr
	AERemoteProcessResolverGetProcesses
	AERemoteProcessResolverScheduleWithRunLoop
	AERemoveCoercionHandler
	AERemoveEventHandler
	AERemoveObjectAccessor
	AERemoveSpecialHandler
	AEReplaceDescData
	AEResetTimer
	AEResolve
	AEResumeTheCurrentEvent
	AESend
	AESendMessage
	AESetInteractionAllowed
	AESetObjectCallbacks
	AESetTheCurrentEvent
	AESizeOfAttribute
	AESizeOfFlattenedDesc
	AESizeOfKeyDesc
	AESizeOfNthItem
	AESizeOfParam
	AEStreamClose
	AEStreamCloseDesc
	AEStreamCloseList
	AEStreamCloseRecord
	AEStreamCreateEvent
	AEStreamOpen
	AEStreamOpenDesc
	AEStreamOpenEvent
	AEStreamOpenKeyDesc
	AEStreamOpenList
	AEStreamOpenRecord
	AEStreamOptionalParam
	AEStreamSetRecordType
	AEStreamWriteAEDesc
	AEStreamWriteData
	AEStreamWriteDesc
	AEStreamWriteKey
	AEStreamWriteKeyDesc
	AESuspendTheCurrentEvent
	AEUnflattenDesc
	CreateCompDescriptor
	CreateLogicalDescriptor
	CreateObjSpecifier
	CreateOffsetDescriptor
	CreateRangeDescriptor
	DisposeAECoerceDescUPP
	DisposeAECoercePtrUPP
	DisposeAEDisposeExternalUPP
	DisposeAEEventHandlerUPP
	DisposeAEFilterUPP
	DisposeAEIdleUPP
	DisposeOSLAccessorUPP
	DisposeOSLAdjustMarksUPP
	DisposeOSLCompareUPP
	DisposeOSLCountUPP
	DisposeOSLDisposeTokenUPP
	DisposeOSLGetErrDescUPP
	DisposeOSLGetMarkTokenUPP
	DisposeOSLMarkUPP
	InvokeAECoerceDescUPP
	InvokeAECoercePtrUPP
	InvokeAEDisposeExternalUPP
	InvokeAEEventHandlerUPP
	InvokeAEFilterUPP
	InvokeAEIdleUPP
	InvokeOSLAccessorUPP
	InvokeOSLAdjustMarksUPP
	InvokeOSLCompareUPP
	InvokeOSLCountUPP
	InvokeOSLDisposeTokenUPP
	InvokeOSLGetErrDescUPP
	InvokeOSLGetMarkTokenUPP
	InvokeOSLMarkUPP
	NewAECoerceDescUPP
	NewAECoercePtrUPP
	NewAEDisposeExternalUPP
	NewAEEventHandlerUPP
	NewAEFilterUPP
	NewAEIdleUPP
	NewOSLAccessorUPP
	NewOSLAdjustMarksUPP
	NewOSLCompareUPP
	NewOSLCountUPP
	NewOSLDisposeTokenUPP
	NewOSLGetErrDescUPP
	NewOSLGetMarkTokenUPP
	NewOSLMarkUPP
	vAEBuildAppleEvent
	vAEBuildDesc
	vAEBuildParameters

	Callbacks by Task
	Callbacks When Resolving Remote Processes
	Callbacks When Creating Apple Events
	Callbacks When Sending Apple Events
	Coercing Apple Event Data Callbacks
	Handling Apple Events Callbacks
	Object Accessor Callbacks
	Object Callback Functions

	Callbacks
	AECoerceDescProcPtr
	AECoercePtrProcPtr
	AEDisposeExternalProcPtr
	AEEventHandlerProcPtr
	AEFilterProcPtr
	AEIdleProcPtr
	AERemoteProcessResolverCallback
	OSLAccessorProcPtr
	OSLAdjustMarksProcPtr
	OSLCompareProcPtr
	OSLCountProcPtr
	OSLDisposeTokenProcPtr
	OSLGetErrDescProcPtr
	OSLGetMarkTokenProcPtr
	OSLMarkProcPtr

	Data Types
	AEArrayData
	AEBuildError
	AEDesc
	AEKeyDesc
	AERemoteProcessResolverContext
	ccntTokenRecord
	IntlText
	OffsetArray
	TextRange
	TextRangeArray
	TScriptingSizeResource
	WritingCode
	AEAddressDesc
	AEArrayDataPointer
	AEArrayType
	AECoerceDescUPP
	AECoercePtrUPP
	AECoercionHandlerUPP
	AEDataStorage
	AEDataStorageType
	AEDescList
	AEEventSource
	AEDisposeExternalUPP
	AEEventClass
	AEEventHandlerUPP
	AEEventID
	AEFilterUPP
	AEIdleUPP
	AEKeyword
	AERecord
	AERemoteProcessResolverRef
	AEReturnID
	AESendOptions
	AESendPriority
	AEStreamRef
	AETransactionID
	AppleEvent
	DescType
	OffsetArrayHandle
	OSLAccessorUPP
	OSLAdjustMarksUPP
	OSLCompareUPP
	OSLCountUPP
	OSLDisposeTokenUPP
	OSLGetErrDescUPP
	OSLGetMarkTokenUPP
	OSLMarkUPP
	AEInteractAllowed

	Constants
	AEBuild Error Codes
	AESendMode
	Apple Event Recording Event ID Constants
	cAEList
	Callback Constants for the AEResolve Function
	cInsertionLoc
	cKeystroke
	Comparison Operator Constants
	Constants for Object Specifiers, Positions, and Logical and Comparison Operations
	cURL
	cVersion
	Data Array Constants
	Descriptor Type Constants
	eScheme
	Event Class Constants
	Event Handler Flags
	Event ID Constants
	Event Source Constants
	Factoring Constants
	ID Constants for the AECreateAppleEvent Function
	Key Form and Descriptor Type Object Specifier Constants
	Keyword Attribute Constants
	Keyword Parameter Constants
	Launch Apple Event Constants
	Numeric Descriptor Type Constants
	Object Class ID Constants
	Other Descriptor Type Constants
	Priority Constants for the AESend Function (Deprecated in Mac OS X)
	Remote Process Dictionary Keys
	Resume Event Dispatch Constants
	Special Handler Callback Constants
	Timeout Constants
	User Interaction Level Constants
	Whose Test Constants
	kAEDoObjectsExist
	kAEDebugPOSTHeader
	kAEGetPrivilegeSelection
	kAEHandleArray
	kAEInfo
	kAEInternetSuite
	kAEISGetURL
	kAEISHTTPSearchArgs
	kAELogOut
	kAEMenuClass
	kAEMouseClass
	kAENonmodifiable
	kAEQDNotOr
	kAESetPosition
	kAESocks4Protocol
	kAEUseHTTPProxyAttr
	kAEUserTerminology
	kAEUseSocksAttr
	kAEUTHasReturningParam
	kAEZoomIn
	kBySmallIcon
	kCaretPosition
	kConnSuite
	keyAEAngle
	keyAEBaseAddr
	keyAEDoScale
	keyAEHiliteRange
	keyAEKeyword
	keyAELeadingEdge
	keyAEPropData
	keyAESuiteID
	keyMenuID
	keyMiscellaneous
	keyReplyPortAttr
	keySOAPStructureMetaData
	keyUserNameAttr
	kFAServerApp
	kLaunchToGetTerminology
	kNextBody
	kOSIZDontOpenResourceFile
	kReadExtensionTermsMask
	kSOAP1999Schema
	kTextServiceClass
	kTSMHiliteCaretPosition
	kTSMOutsideOfBody
	pArcAngle
	pFormula
	pNewElementLoc
	pScheme
	pTextStyles
	typeAEText
	typeApplicationBundleID
	typeFinderWindow
	typeHIMenu
	typeKernelProcessID
	typeMachPort
	typeMeters
	typePixelMap
	typeReplyPortAttr
	typeSessionID
	typeSMInt
	typeTIFF
	typeUnicodeText

	Result Codes
	Gestalt Constants

	Revision History
	Index
	A
	C
	D
	E
	F
	I
	K
	L
	N
	O
	P
	R
	S
	T
	U
	V
	W

