
Collection Manager Reference
Carbon > Data Management

2003-04-01

Apple Inc.
© 2003 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
and Macintosh are trademarks of Apple Inc.,
registered in the United States and other
countries.

Numbers is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Collection Manager Reference 7

Overview 7
Functions by Task 7

Adding and Replacing Items in a Collection 7
Cloning and Copying Collection Objects 8
Counting Items in a Collection 8
Creating and Disposing of Collection Objects 8
Editing Item Attributes 8
Flattening and Unflattening a Collection 8
Getting and Setting the Default Attributes for a Collection 9
Getting and Setting the Exception Procedure for a Collection 9
Getting Information About a Collection Item 9
Getting Information About Collection Tags 9
Reading Collections From Resource Files 9
Removing Items From a Collection 9
Retrieving the Variable-Length Data From an Item 10
Working With Macintosh Memory Manager Handles 10
Working With Universal Procedure Pointers 10
Retaining And Releasing 11

Functions 11
AddCollectionItem 11
AddCollectionItemHdl 12
CloneCollection 14
CollectionTagExists 14
CopyCollection 15
CountCollectionItems 16
CountCollectionOwners 16
CountCollectionTags 17
CountTaggedCollectionItems 17
DisposeCollection 18
DisposeCollectionExceptionUPP 18
DisposeCollectionFlattenUPP 19
EmptyCollection 19
FlattenCollection 19
FlattenCollectionToHdl 20
FlattenPartialCollection 21
GetCollectionDefaultAttributes 22
GetCollectionExceptionProc 23
GetCollectionItem 24
GetCollectionItemHdl 25
GetCollectionItemInfo 25

3
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

GetCollectionRetainCount 27
GetIndexedCollectionItem 27
GetIndexedCollectionItemHdl 28
GetIndexedCollectionItemInfo 29
GetIndexedCollectionTag 30
GetNewCollection 31
GetTaggedCollectionItem 31
GetTaggedCollectionItemInfo 32
InvokeCollectionExceptionUPP 34
InvokeCollectionFlattenUPP 34
NewCollection 35
NewCollectionExceptionUPP 35
NewCollectionFlattenUPP 36
PurgeCollection 36
PurgeCollectionTag 37
ReleaseCollection 38
RemoveCollectionItem 38
RemoveIndexedCollectionItem 39
ReplaceIndexedCollectionItem 39
ReplaceIndexedCollectionItemHdl 41
RetainCollection 42
SetCollectionDefaultAttributes 42
SetCollectionExceptionProc 43
SetCollectionItemInfo 43
SetIndexedCollectionItemInfo 44
UnflattenCollection 45
UnflattenCollectionFromHdl 46

Callbacks 47
CollectionExceptionProcPtr 47
CollectionFlattenProcPtr 48

Data Types 49
Collection 49
CollectionExceptionUPP 50
CollectionFlattenUPP 50
CollectionTag 50

Constants 51
Attribute Bit Masks 51
Attribute Bit Masks (Old) 51
Attribute Bit Numbers 52
Attribute Bit Numbers (Old) 53
Attributes Masks 54
Attributes Masks (Old) 55
Optional Return Value Constants 56
Optional Return Value Constants (Old) 57

Result Codes 57

4
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Document Revision History 59

Index 61

5
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CONTENTS

6
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Framework: CoreServices/CoreServices.h

Declared in Collections.h

Overview

The Collection Manager implements an abstract data type that allows you to store multiple pieces of related
information. This abstract data type is called a collection object. A collection object, or simply a collection,
is an abstract data type that allows you to store information.

A collection is like an array in that it contains a number of individually accessible items. However, a collection
offers some advantages over an array:

 ■ A collection allows for a variable number of data items. You can add items to a collection or remove
items from a collection during run time, and the Collection Manager automatically resizes the collection.

 ■ A collection allows for variable-size items. Each item in a collection can contain data of any size.

A collection is also similar to a database, in that you can store information and retrieve it using a variety of
search mechanisms.

The internal structure of a collection object is private–you must store information in a collection and retrieve
information from it by providing a Collection Manager function with a reference to the collection. You use
the functions provided by the Collection Manager to

 ■ create and manipulate collection objects

 ■ add information to a collection object

 ■ retrieve information from a collection object

 ■ store a collection object to disk and retrieve a collection object from disk

Carbon fully supports the Collection Manager.

Functions by Task

Adding and Replacing Items in a Collection

AddCollectionItem (page 11)
Adds a new item to a collection or to replace an existing item in a collection.

Overview 7
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

ReplaceIndexedCollectionItem (page 39)
Replaces the variable-length data of an item in a collection given the item’s index.

Cloning and Copying Collection Objects

CloneCollection (page 14)
Clones a collection object—that is, increment its owner count.

CopyCollection (page 15)
Creates a copy of an existing collection.

CountCollectionOwners (page 16)
Determines the number of existing references to a collection object.

Counting Items in a Collection

CountCollectionItems (page 16)
Determines the total number of items in a collection.

CountTaggedCollectionItems (page 17)
Obtains the total number of items in a collection that have a specified collection tag.

Creating and Disposing of Collection Objects

DisposeCollection (page 18)
Disposes of a collection object.

NewCollection (page 35)
Creates a new, empty collection object.

Editing Item Attributes

SetCollectionItemInfo (page 43)
Edits the attributes of a specific collection item given the item’s collection tag and collection ID.

SetIndexedCollectionItemInfo (page 44)
Edits the attributes of a specific collection item given the item’s collection index.

Flattening and Unflattening a Collection

FlattenCollection (page 19)
Converts a collection object into a stream format suitable for storing and unflattening.

FlattenPartialCollection (page 21)
Converts a collection object into a stream format suitable for storage and unflattening.

UnflattenCollection (page 45)
Unflattens a collection that was flattened using the FlattenCollection or
FlattenPartialCollection function.

8 Functions by Task
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Getting and Setting the Default Attributes for a Collection

GetCollectionDefaultAttributes (page 22)
Examines the default attributes of a collection object.

SetCollectionDefaultAttributes (page 42)
Alters the default attributes of a collection object.

Getting and Setting the Exception Procedure for a Collection

GetCollectionExceptionProc (page 23)
Obtains a pointer to the exception procedure installed in a specified collection.

SetCollectionExceptionProc (page 43)
Installs an exception procedure in a collection object.

Getting Information About a Collection Item

GetCollectionItemInfo (page 25)
Obtains information about a specific collection item given the item’s collection tag and collection ID.

GetIndexedCollectionItemInfo (page 29)
Obtains information about a specific collection item given the item’s collection index.

GetTaggedCollectionItemInfo (page 32)
Obtains information about a specific collection item given the item’s collection tag and tag list position.

Getting Information About Collection Tags

CollectionTagExists (page 14)
Determines whether any of the items in a specified collection contain a specified collection tag.

CountCollectionTags (page 17)
Determines the number of distinct collection tags contained by the items of a specified collection.

GetIndexedCollectionTag (page 30)
Examines a specific collection tag contained in a collection.

Reading Collections From Resource Files

GetNewCollection (page 31)
Reads a collection in from a collection ('cltn') resource.

Removing Items From a Collection

EmptyCollection (page 19)
Removes every item in a collection.

Functions by Task 9
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

PurgeCollection (page 36)
Removes all items in a collection whose attributes match a specified pattern.

PurgeCollectionTag (page 37)
Removes all items with a specific collection tag from a collection.

RemoveCollectionItem (page 38)
Removes an item from a collection given the item’s associated collection tag and collection ID.

RemoveIndexedCollectionItem (page 39)
Removes an item from a collection given the item’s index.

Retrieving the Variable-Length Data From an Item

GetCollectionItem (page 24)
Obtains a copy of the variable-length data associated with a collection item given the item’s collection
tag and collection ID.

GetIndexedCollectionItem (page 27)
Obtains a copy of the variable-length data associated with a collection item given the item’s collection
index.

GetTaggedCollectionItem (page 31)
Obtains a copy of the variable-length data associated with a collection item given the item’s collection
tag and tag list position.

Working With Macintosh Memory Manager Handles

AddCollectionItemHdl (page 12)
Adds a new item to a collection or to replace an existing item in a collection, specifying the item’s
variable-length data using a handle rather than a pointer and a data size.

FlattenCollectionToHdl (page 20)
Flattens a collection into a Macintosh Memory Manager handle.

GetCollectionItemHdl (page 25)
Obtains a copy of the variable-length data associated with a collection item given the item’s collection
tag and collection ID.

GetIndexedCollectionItemHdl (page 28)
Copies the variable-length data associated with a collection item into a Macintosh Memory Manager
handle, given the item’s collection index.

ReplaceIndexedCollectionItemHdl (page 41)
Replaces the variable-length data of an item in a collection given the item’s collection index, specifying
the item’s new variable-length data using a handle rather than a pointer and a data size.

UnflattenCollectionFromHdl (page 46)
Unflattens a collection that was flattened using the FlattenCollectionToHdl utility function.

Working With Universal Procedure Pointers

NewCollectionExceptionUPP (page 35)
Creates a new universal procedure pointer (UPP) to an error-handling callback.

10 Functions by Task
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

InvokeCollectionExceptionUPP (page 34)
Calls an error-handling callback.

DisposeCollectionExceptionUPP (page 18)
Disposes of a universal procedure pointer (UPP) to an error-handling callback.

NewCollectionFlattenUPP (page 36)
Creates a new universal procedure pointer (UPP) to a data-flattening callback.

InvokeCollectionFlattenUPP (page 34)
Calls a data-flattening callback.

DisposeCollectionFlattenUPP (page 19)
Disposes of a universal procedure pointer (UPP) to a data-flattening callback.

Retaining And Releasing

RetainCollection (page 42)
Increments the owner count (the number of existing references) for a collection object.

GetCollectionRetainCount (page 27)
Obtains the owner count (the number of existing references) for a collection object.

ReleaseCollection (page 38)
Decrements the owner count (the number of existing references) for a collection object.

Functions

AddCollectionItem
Adds a new item to a collection or to replace an existing item in a collection.

OSErr AddCollectionItem (
 Collection c,
 CollectionTag tag,
 SInt32 id,
 SInt32 itemSize,
 const void *itemData
);

Parameters
c

A reference to the collection you want to add the item to. The behavior of this function is undefined
if you do not provide a reference to a valid collection object.

tag
The collection tag you want to associate with the new item.

id
The collection ID you want to associate with the new item.

itemSize
The size in bytes of the item’s variable-length data.

Functions 11
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

itemData
A pointer to the item’s variable-length data.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
The AddCollectionItem function adds an item to the collection referenced by the c parameter. This new
item contains

 ■ the collection tag specified by the tag parameter

 ■ the collection ID specified by the id parameter

 ■ the attributes specified by the default attributes of the c collection

 ■ the variable-length data specified by the itemSize and itemData parameters

This function copies the information pointed to by the itemData parameter into the new item; after calling
this function, you may alter this information or free the memory pointed to by this parameter without affecting
the collection.

If the c collection already contains an item with the same collection tag and collection ID as specified in the
tag and id parameters, this function removes the original item and replaces it with the new one, unless the
existing item is locked. If it is locked, this function returns a collectionItemLockedErr result code.

The itemSize parameter determines how many bytes of information this function copies into the new item.
If you specify 0 for this parameter, or provide NULL for the itemData parameter, this function copies no
information into the variable-length data of the new item, or removes the variable-length data if the item
already exists.

To lock a collection item, use the functions SetCollectionItemInfo (page 43) and
SetIndexedCollectionItemInfo (page 44).

To replace a collection item using the item’s index (rather than the item’s tag and ID), use the
ReplaceIndexedCollectionItem (page 39) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

AddCollectionItemHdl
Adds a new item to a collection or to replace an existing item in a collection, specifying the item’s
variable-length data using a handle rather than a pointer and a data size.

12 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr AddCollectionItemHdl (
 Collection aCollection,
 CollectionTag tag,
 SInt32 id,
 Handle itemData
);

Parameters
aCollection

A reference to the collection you want to add the item to. The behavior of this function is undefined
if you do not provide a reference to a valid collection object.

tag
The collection tag you want to associate with the new item.

id
The collection ID you want to associate with the new item.

itemData
A Macintosh Memory Manager handle to the item’s variable-length data. This function copies the
information referenced by the itemData parameter into the new item; after calling this function, you
may alter this information or free the memory referenced by this parameter without affecting the
collection.

Return Value
A result code. See “Result Codes” (page 57). If the aCollection collection already contains an item with
the same collection tag and collection ID as specified in the tag and id parameters, this function removes
the variable-length data from the original item and replaces it with the new data, unless the existing item is
locked. If it is locked, this function returns a collectionItemLockedErr result code.

Discussion
The AddCollectionItemHdl function adds an item to the collection referenced by the aCollection
parameter. This new item contains:

 ■ the collection tag specified by the tag parameter

 ■ the collection ID specified by the id parameter

 ■ the attributes specified by the default attributes of the aCollection collection

 ■ the variable-length data specified by the itemData parameter

To add or replace a collection item using a pointer (rather than a handle) to the item’s variable-length data,
use the AddCollectionItem (page 11) function.

To replace a collection item using the item’s collection index (rather than the item’s collection tag and
collection ID), use the ReplaceIndexedCollectionItemHdl (page 41) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 13
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

CloneCollection
Clones a collection object—that is, increment its owner count.

Collection CloneCollection (
 Collection c
);

Parameters
c

A reference to the collection object you want to clone. The behavior of this function is undefined if
you do not provide a reference to a valid collection object.

Return Value
A reference to the cloned collection. (This result is effectively a copy of the reference you provide in the c
parameter. See the description of the Collection data type.

Discussion
Typically, you use this function to increment a collection object’s owner count to represent a new reference
to the collection object. For example, if you want two variables in your application to reference a single
collection object, you can use this code to maintain the correct owner count:

firstReference = NewCollection();
secondReference = CloneCollection(firstReference);

Disposing of either reference (using the DisposeCollection function) simply decrements the collection’s
owner count. Disposing of the remaining reference decrements the owner count again and frees the memory
associated with the collection.

To decrement the owner count of a collection object, use the DisposeCollection (page 18) function. To
determine the owner count of an existing collection object, use the CountCollectionOwners (page 16)
function.

To copy a collection object, use the CopyCollection (page 15) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

CollectionTagExists
Determines whether any of the items in a specified collection contain a specified collection tag.

Boolean CollectionTagExists (
 Collection c,
 CollectionTag tag
);

Parameters
c

A reference to the collection object you want to search for a specific collection tag. The behavior of
this function is undefined if you do not provide a reference to a valid collection object.

14 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

tag
The collection tag to search for in the collection.

Return Value
True if the c collection contains any items that contain the specified tag.

Discussion
For information about data types related to collection tags, see CollectionTag (page 50).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

CopyCollection
Creates a copy of an existing collection.

Collection CopyCollection (
 Collection srcCollection,
 Collection dstCollection
);

Parameters
srcCollection

A reference to the collection object you want to copy. The behavior of this function is undefined if
you do not provide a reference to a valid collection object.

dstCollection
A reference to a collection object to contain the copied collection items. You may provide NULL for
this parameter to request that the Collection Manager create a new collection object to hold the
copied information.

Return Value
A reference to the collection object containing the copied information. See the description of the Collection
data type.

Discussion
The CopyCollection function copies all of the information (except the owner count and exception procedure)
from the collection object referenced by the srcCollection parameter into the collection object referenced
by the dstCollection parameter.

If you specify NULL for the dstCollection parameter, this function creates a new collection object to copy
the information into. (This function does not return an error code; it returns NULL if it cannot create a new
collection object.)

To clone a collection object, use the DisposeCollection (page 18) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 15
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

CountCollectionItems
Determines the total number of items in a collection.

SInt32 CountCollectionItems (
 Collection c
);

Parameters
c

A reference to the collection object whose items you want to count. The behavior of this function is
undefined if you do not provide a reference to a valid collection object.

Return Value
The total number of items in the c collection.

Discussion
To count the items in a collection that have a specified collection tag, use the
CountTaggedCollectionItems (page 17) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

CountCollectionOwners
Determines the number of existing references to a collection object.

SInt32 CountCollectionOwners (
 Collection c
);

Parameters
c

The collection object whose owner count you want to determine. The behavior of this function is
undefined if you do not provide a reference to a valid collection object.

Return Value
The owner count of the collection object.

Discussion
To increment the owner count of a collection object, use the CloneCollection (page 14) function. To
decrement the owner count of a collection object, use the DisposeCollection (page 18) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

16 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

CountCollectionTags
Determines the number of distinct collection tags contained by the items of a specified collection.

SInt32 CountCollectionTags (
 Collection c
);

Parameters
c

A reference to the collection object whose collection tags you want to count. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

Return Value
The number of distinct collection tags contained by the items of the c collection.

Discussion
For information about data types related to collection tags, see CollectionTag (page 50).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

CountTaggedCollectionItems
Obtains the total number of items in a collection that have a specified collection tag.

SInt32 CountTaggedCollectionItems (
 Collection c,
 CollectionTag tag
);

Parameters
c

A reference to the collection object whose items you want to count. The behavior of this function is
undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the items you want to count.

Return Value
The total number of items in the c collection whose collection tags match the value specified in the tag
parameter.

Discussion
To count all of the items in a collection, use the CountCollectionItems (page 16) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 17
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

DisposeCollection
Disposes of a collection object.

void DisposeCollection (
 Collection c
);

Parameters
c

A reference to the collection object you want to dispose of. The behavior of this function is undefined
if you do not provide a reference to a valid collection object.

Discussion
The DisposeCollection function decrements the owner count of the collection object referenced by the
c parameter. If the resulting owner count is 0, this function releases the memory occupied by the collection
object, and the collection object reference contained in the c parameter becomes invalid.

To create a new collection object, use the NewCollection (page 35) function.

To increment the owner count of a collection object, use the CloneCollection (page 14) function. To
determine the owner count of an existing collection object, use the CountCollectionOwners (page 16)
function

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

DisposeCollectionExceptionUPP
Disposes of a universal procedure pointer (UPP) to an error-handling callback.

void DisposeCollectionExceptionUPP (
 CollectionExceptionUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback CollectionExceptionProcPtr (page 47) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

18 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

DisposeCollectionFlattenUPP
Disposes of a universal procedure pointer (UPP) to a data-flattening callback.

void DisposeCollectionFlattenUPP (
 CollectionFlattenUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback CollectionFlattenProcPtr (page 48) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

EmptyCollection
Removes every item in a collection.

void EmptyCollection (
 Collection c
);

Parameters
c

A reference to the collection object you want to empty. The behavior of this function is undefined if
you do not provide a reference to a valid collection object.

Discussion
This function removes every item in the collection referenced by the c parameter. This function provides the
fastest mechanism for emptying a collection.

To remove all of the items in a collection whose attributes match a specified pattern, use the
PurgeCollection (page 36) function.

To remove all of the items in a collection with a specified collection tag, use the PurgeCollectionTag (page
37) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

FlattenCollection
Converts a collection object into a stream format suitable for storing and unflattening.

Functions 19
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr FlattenCollection (
 Collection c,
 CollectionFlattenUPP flattenProc,
 void *refCon
);

Parameters
c

A reference to the collection that you want to flatten. The behavior of this function is undefined if
you do not provide a reference to a valid collection object.

flattenProc
A pointer to a callback function you provide to process the flattened stream of bytes.

refCon
A pointer to the reference constant that you want the Collection Manager to pass to your callback
function each time that it calls the callback function. You can use this parameter as a pointer to a
structure containing information your callback function needs to process the blocks of flattened data.

Return Value
A result code. See “Result Codes” (page 57). This function can return any error returned by the callback
function.

Discussion
You could, for example, use this function to copy a collection onto the Clipboard so that it could be pasted
into another application.

The FlattenCollection function flattens into a stream of bytes the collection you specify with the c
parameter. As this function flattens the collection, it repeatedly calls the callback function you specify using
the flattenProc parameter. Each time it calls this function, it provides the callback function with a pointer
to a block of memory containing flattened data. It continues to call this function until it has flattened the
entire collection. Your callback function can process the flattened data in a number of ways: it could copy
the flattened data into a handle-based block of memory, it could write the flattened data to disk, and so on.

When flattening the c collection, this function includes only the collection items whose persistence attribute
is set.

To create a flattened collection that includes only those collection items whose attributes match a specified
pattern, use the FlattenPartialCollection (page 21) function.

To unflatten a flattened collection, use the UnflattenCollection (page 45) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

FlattenCollectionToHdl
Flattens a collection into a Macintosh Memory Manager handle.

20 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr FlattenCollectionToHdl (
 Collection aCollection,
 Handle flattened
);

Parameters
aCollection

The collection that you want to flatten into a handle. The behavior of this function is undefined if you
do not provide a reference to a valid collection object.

flattened
A handle to contain the flattened data. You must provide a valid Macintosh Memory Manager handle
in this parameter. You may specify a handle of size 0; this function resizes the handle as necessary to
hold the flattened data.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
This function flattens the collection referenced by the aCollection parameter into a block of memory
referenced by the handle you provide in the flattened parameter.

To flatten a collection directly to disk, use the FlattenCollection (page 19) function.

To unflatten a collection from a block of memory referenced by a handle, use the
UnflattenCollectionFromHdl (page 46) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

FlattenPartialCollection
Converts a collection object into a stream format suitable for storage and unflattening.

OSErr FlattenPartialCollection (
 Collection c,
 CollectionFlattenUPP flattenProc,
 void *refCon,
 SInt32 whichAttributes,
 SInt32 matchingAttributes
);

Parameters
c

The collection that you want to flatten. The behavior of this function is undefined if you do not provide
a reference to a valid collection object.

flattenProc
A pointer to a function to write data.

Functions 21
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

refCon
A reference constant that you want the Collection Manager to pass to your flatten function each time
it calls the flatten function. You can use this parameter as a pointer to a structure containing information
your callback function needs to process the blocks of flattened data.

whichAttributes
A mask indicating which attributes you want to test.

matchingAttributes
An SInt32 word containing the attribute values you want to match.

Return Value
A result code. See “Result Codes” (page 57). This function can return any error returned by the callback
function.

Discussion
With this function, you can include in the flattened collection only those items whose attributes match a
specified pattern.

The FlattenPartialCollection function flattens into a stream of bytes the collection you specify with
the c parameter. It includes only the collection items whose attributes specified by the whichAttributes
parameter match the values specified by the matchingAttributes parameter.

As this function flattens the collection, it repeatedly calls the callback function you specify using the
flattenProc parameter. Each time it calls this function, it provides the callback function with a pointer to
a block of memory containing flattened data. It continues to call this function until it has flattened the entire
collection. Your callback function can process the flattened data in a number of ways: it could copy the
flattened data into a handle-based block of memory, it could write the flattened data to disk, and so on.

When flattening the c collection, this function includes only the collection items whose persistence attribute
is set, regardless of the values you provide in the whichAttributes and matchingAttributes parameters.

To create a flattened collection that includes every item in a collection, use the FlattenCollection (page
19) function.

To unflatten a flattened collection, use the UnflattenCollection (page 45) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetCollectionDefaultAttributes
Examines the default attributes of a collection object.

22 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

SInt32 GetCollectionDefaultAttributes (
 Collection c
);

Parameters
c

A reference to the collection object whose default attributes you want to determine. The behavior of
this function is undefined if you do not provide a reference to a valid collection object.

Return Value
An SInt32 word containing the bit flags that make up the collection’s default attributes.

Discussion
To change the attributes of a collection object, use the SetCollectionDefaultAttributes (page 42)
function.

To examine the attributes of a specific item in a collection, use GetCollectionItemInfo (page 25),
GetIndexedCollectionItemInfo (page 29), and GetTaggedCollectionItemInfo (page 32)

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetCollectionExceptionProc
Obtains a pointer to the exception procedure installed in a specified collection.

CollectionExceptionUPP GetCollectionExceptionProc (
 Collection c
);

Parameters
c

A reference to the collection object whose exception procedure you want to determine. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

Return Value
A pointer to the exception procedure installed in the c collection object. See the description of the
CollectionExceptionUPP data type.

Discussion
To install a new exception procedure in a collection object, use the SetCollectionExceptionProc (page
43) function.

For more information about exception procedures, see CollectionExceptionProcPtr (page 47).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 23
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

GetCollectionItem
Obtains a copy of the variable-length data associated with a collection item given the item’s collection tag
and collection ID.

OSErr GetCollectionItem (
 Collection c,
 CollectionTag tag,
 SInt32 id,
 SInt32 *itemSize,
 void *itemData
);

Parameters
c

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item whose data you want to retrieve.

id
The collection ID associated with the item whose data you want to retrieve.

itemSize
A pointer to an SInt32 value indicating the number of bytes of data you want returned in the
itemData parameter. On return, this value indicates the size in bytes of the variable-length data
associated with the specified item. You may specify the constant dontWantSize for this parameter
to indicate that you want to copy all the specified item’s variable-length data and you do not want
to determine the size of this data. You may specify a value for the itemSize parameter that is greater
than the actual number of bytes in the specified item’s variable-length data however, this function
never returns in the itemData parameter more data than contained in the specified item’s
variable-length data.

itemData
A pointer to a block of memory to contain the item’s data. On return, this memory contains a copy
of the data associated with the specified item. You may specify the constant dontWantData for this
parameter if you do not want a copy of the item’s data.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
If you do not know the size of the item you want to retrieve, you typically call this function twice. The first
time you provide a pointer in the itemSize parameter to determine the size of the specified item’s data
and you specify dontWantData for the itemData parameter. Then you allocate a memory block large enough
to hold a copy of the item’s data. Then you call the function a second time. This time you specify the constant
dontWantSize for the itemSize parameter and provide a pointer to the allocated memory block for the
itemData parameter. The function then copies the data into the allocated block of memory.

To retrieve the data associated with a collection item given its collection index (rather than its collection tag
and ID), use the GetIndexedCollectionItem (page 27) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

24 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Declared In
Collections.h

GetCollectionItemHdl
Obtains a copy of the variable-length data associated with a collection item given the item’s collection tag
and collection ID.

OSErr GetCollectionItemHdl (
 Collection aCollection,
 CollectionTag tag,
 SInt32 id,
 Handle itemData
);

Parameters
aCollection

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item whose data you want to retrieve.

id
The collection ID associated with the item whose data you want to retrieve.

itemData
A handle to a block of memory to contain the item’s data. On return, this memory contains a copy of
the data associated with the specified item. You must provide a valid Macintosh Memory Manager
handle for this function to copy the data into.You may specify the constant dontWantData for this
parameter if you do not want a copy of the item’s data.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
You specify a collection object using the aCollection parameter and you specify an item in that collection
using the tag and id parameters.

To retrieve the data associated with a collection item into a block of memory referenced by a pointer (rather
than a handle), use the GetCollectionItem (page 24) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetCollectionItemInfo
Obtains information about a specific collection item given the item’s collection tag and collection ID.

Functions 25
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr GetCollectionItemInfo (
 Collection c,
 CollectionTag tag,
 SInt32 id,
 SInt32 *index,
 SInt32 *itemSize,
 SInt32 *attributes
);

Parameters
c

A reference to the collection object containing the item you want to obtain information about. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item you want to obtain information about.

id
The collection ID associated with the item you want to obtain information about.

index
On return, this value represents the collection index of the specified item. You may specify the constant
dontWantIndex for this parameter if you do not want to determine the specified item’s collection
index.

itemSize
On return, this value indicates the size in bytes of the variable-length data associated with the specified
item. You may specify the constant dontWantSize for this parameter to indicate that you do not
want to determine the size of this data.

attributes
On return, this value contains a copy of the attributes associated with the specified item. You may
specify the constant dontWantAttributes for this parameter if you do not want a copy of the item’s
attributes.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
This function returns information in the index, itemSize, and attributes parameters:

 ■ If you provide a pointer in the index parameter, the function uses this parameter to return the collection
index of the specified item. Once you have determined an item’s collection index, you can use it to
specify the item when calling Collection Manager functions, rather than using the item’s collection tag
and collection ID. Specifying collection items using their collection index, rather than using the item’s
collection tag and collection ID, generally results in improved performance.

 ■ If you provide a pointer in the itemSize parameter, the function uses this parameter to return the size
in bytes of the variable-length data associated with the specified collection item.

 ■ If you provide a pointer in the attributes parameter, the function uses this parameter to return a copy
of the attributes associated with the specified collection item.

To obtain information about a collection item using the collection index to specify the item, use the
GetIndexedCollectionItemInfo (page 29) function.

To obtain information about a collection item using the tag and whichItem parameters to specify the item,
use the GetTaggedCollectionItemInfo (page 32) function.

26 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetCollectionRetainCount
Obtains the owner count (the number of existing references) for a collection object.

ItemCount GetCollectionRetainCount (
 Collection c
);

Parameters
c

Discussion
This function performs the same operation as CountCollectionOwners (page 16), but follows the preferred
naming conventions for Carbon and Core Foundation functions.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.1 and later.

Declared In
Collections.h

GetIndexedCollectionItem
Obtains a copy of the variable-length data associated with a collection item given the item’s collection index.

OSErr GetIndexedCollectionItem (
 Collection c,
 SInt32 index,
 SInt32 *itemSize,
 void *itemData
);

Parameters
c

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item whose data you want to retrieve.

Functions 27
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

itemSize
A pointer to an SInt32 value indicating the number of bytes of data you want returned in the
itemData parameter. On return, this value indicates the size in bytes of the variable-length data
associated with the specified item. You may specify the constant dontWantSize for this parameter
to indicate that you want to copy all of the specified item’s variable-length data and you do not want
to determine the size of this data. You may specify a value for the itemSize parameter that is greater
than the actual number of bytes in the specified item’s variable-length data however, this function
never returns in the itemData parameter more data than contained in the specified item’s
variable-length data.

itemData
A pointer to a block of memory to contain the item’s data. On return, this memory contains a copy
of the data associated with the specified item. You may specify the constant dontWantData for this
parameter if you do not want a copy of the item’s data.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
If you do not know the size of the item you want to retrieve, you typically call this function twice. The first
time you provide a pointer in the itemSize parameter to determine the size of the specified item’s data
and you specify the constant dontWantData for the itemData parameter. Then you allocate a memory
block large enough to hold a copy of the item’s data. Then you call the function a second time. This time
you specify the constant dontWantSize for the itemSize parameter and provide a pointer to the allocated
memory block for the itemData parameter. The function then copies the data into the allocated block of
memory.

To retrieve the data associated with a collection item given its collection tag and ID (rather than its collection
index), use the GetCollectionItem (page 24) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetIndexedCollectionItemHdl
Copies the variable-length data associated with a collection item into a Macintosh Memory Manager handle,
given the item’s collection index.

OSErr GetIndexedCollectionItemHdl (
 Collection aCollection,
 SInt32 index,
 Handle itemData
);

Parameters
aCollection

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item whose data you want to retrieve.

28 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

itemData
A handle to a block of memory to contain the item’s data. On return, this memory contains a copy of
the data associated with the specified item.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
To retrieve the data associated with a collection item into a block of memory referenced by a pointer (rather
than a handle), use the GetCollectionItem (page 24) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetIndexedCollectionItemInfo
Obtains information about a specific collection item given the item’s collection index.

OSErr GetIndexedCollectionItemInfo (
 Collection c,
 SInt32 index,
 CollectionTag *tag,
 SInt32 *id,
 SInt32 *itemSize,
 SInt32 *attributes
);

Parameters
c

A reference to the collection object containing the item you want to obtain information about. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item you want to obtain information about.

tag
A pointer to a collection tag. On return, the collection tag associated with the specified item. You may
specify the constant dontWantTag for this parameter if you do not want to determine the specified
item’s collection tag.

id
A pointer to an SInt32 value. On return, the collection ID associated with the specified item. You
may specify the constant dontWantId for this parameter if you do not want to determine the specified
item’s collection ID.

itemSize
A pointer to an SInt32 value. On return, this value indicates the size in bytes of the data associated
with the specified item. You may specify the constant dontWantSize for this parameter if you do
not want to determine the specified item’s data size.

Functions 29
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

attributes
A pointer to an SInt32 value. On return, this value contains a copy of the attributes associated with
the specified item. You may specify the constant dontWantAttributes for this parameter if you do
not want a copy of the item’s attributes.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
To obtain information about a collection item using the collection tag and collection ID to specify the item,
use the GetCollectionItemInfo (page 25) function.

To obtain information about a collection item using the collection tag and tag list position to specify the
item, use the GetTaggedCollectionItemInfo (page 32) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetIndexedCollectionTag
Examines a specific collection tag contained in a collection.

OSErr GetIndexedCollectionTag (
 Collection c,
 SInt32 tagIndex,
 CollectionTag *tag
);

Parameters
c

The collection from which to obtain a specific collection tag. The behavior of this function is undefined
if you do not provide a reference to a valid collection object.

tagIndex
The position of the desired collection tag in the c collection’s list of distinct collection tags.

tag
A pointer to a collection tag. On return, the collection tag that lies at the specified position in the list
of distinct collection tags contained in the c collection.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
Each collection object contains a number of distinct collection tags. By sequentially incrementing the value
of the tagIndex parameter from 1 to the result of the CountCollectionTags (page 17) function, you can
use this function to determine every collection tag contained in a collection.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

30 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Declared In
Collections.h

GetNewCollection
Reads a collection in from a collection ('cltn') resource.

Collection GetNewCollection (
 SInt16 collectionID
);

Parameters
collectionID

The resource ID associated with the collection resource from which you want to create the new
collection object.

Return Value
A reference to the new collection object. If this function does not find a collection resource with the specified
resource ID, it returns NULL as the function result. See the description of the Collection data type.

Discussion
This function searches the current resource file path for a collection ('cltn') resource with the resource ID
specified by the collectionID parameter. If it finds such a resource, this function creates a new collection
object, initializes it with the information stored in the resource, and returns a reference to it as the function
result.

You can use the MemError and ResError functions to check for other errors after calling this function.

For information about collection resources, see ‘cltn’.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetTaggedCollectionItem
Obtains a copy of the variable-length data associated with a collection item given the item’s collection tag
and tag list position.

OSErr GetTaggedCollectionItem (
 Collection c,
 CollectionTag tag,
 SInt32 whichItem,
 SInt32 *itemSize,
 void *itemData
);

Parameters
c

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

Functions 31
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

tag
The collection tag associated with the item whose data you want to retrieve.

whichItem
The tag list position associated with the specific item.

itemSize
A pointer to an SInt32 value indicating the number of bytes of data you want returned in the
itemData parameter. On return, this value indicates the size in bytes of the variable-length data
associated with the specified item. You may specify the constant dontWantSize for this parameter
to indicate that you want to copy all of the specified item’s variable-length data and you do not want
to determine the size of this data.

itemData
A pointer to a block of memory to contain the item’s data. On return, this memory contains a copy
of the data associated with the specified item. You may specify the constant dontWantData for this
parameter if you do not want a copy of the item’s data.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
Remember that a tag list position is the sequential index that determines an item given a specific collection
tag. For example:

 ■ A whichItem value of 1 indicates the first item with the specified tag.

 ■ A whichItem value of 2 indicates the second item with the specified tag.

By sequentially incrementing the whichItem parameter, you can use this function to step through all of the
items in a collection without knowing their collection IDs.

If you do not know the size of the item you want to retrieve, you typically call this function twice. The first
time you provide a pointer in the itemSize parameter to determine the size of the specified item’s data
and you specify the constant dontWantData for the itemData parameter. Then you allocate a memory
block large enough to hold a copy of the item’s data. Then you call the function a second time. This time
you specify the constant dontWantSize for the itemSize parameter and provide a pointer to the allocated
memory block for the itemData parameter. The function then copies the data into the allocated block of
memory.

To retrieve the data associated with a collection item given its collection tag and ID, use the
GetCollectionItem (page 24) function.

To retrieve the data associated with a collection item given its collection index, use the
GetIndexedCollectionItem (page 27) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetTaggedCollectionItemInfo
Obtains information about a specific collection item given the item’s collection tag and tag list position.

32 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr GetTaggedCollectionItemInfo (
 Collection c,
 CollectionTag tag,
 SInt32 whichItem,
 SInt32 *id,
 SInt32 *index,
 SInt32 *itemSize,
 SInt32 *attributes
);

Parameters
c

A reference to the collection object containing the item you want to obtain information about. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item you want to obtain information about.

whichItem
The tag list position of the item you want to obtain information about.

id
A pointer to an SInt32 value. On return, this value represents the collection ID associated with the
specified item. You may specify the constant dontWantId for this parameter if you do not want to
determine the specified item’s collection ID.

index
A pointer to an SInt32 value. On return, this value represents the collection index of the specified
item. You may specify the constant dontWantIndex for this parameter if you do not want to determine
the specified item’s collection index.

itemSize
A pointer to an SInt32 value. On return, this value indicates the size in bytes of the data associated
with the specified item. You may specify the constant dontWantSize for this parameter if you do
not want to determine the specified item’s data size.

attributes
A pointer. On return, this value contains a copy of the attributes associated with the specified item.
You may specify the constant dontWantAttributes for this parameter if you do not want a copy
of the item’s attributes.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
Remember that a collection tag and a tag list position uniquely identify a collection item. The tag list position
indicates where the collection item would lie in a list made up of all the collection items with the same
collection tag. For example:

 ■ A whichItem value of 1 indicates the first item with the specified tag.

 ■ A whichItem value of 2 indicates the second item with the specified tag.

By sequentially incrementing the whichItem parameter, you can use this function to step through all of the
items in a collection that share a collection tag without knowing their collection IDs.

To obtain information about a collection item using the collection tag and collection ID to specify the item,
use the GetCollectionItemInfo (page 25) function.

Functions 33
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

To obtain information about a collection item using the collection index to specify the item, use the
GetIndexedCollectionItemInfo (page 29) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

InvokeCollectionExceptionUPP
Calls an error-handling callback.

OSErr InvokeCollectionExceptionUPP (
 Collection c,
 OSErr status,
 CollectionExceptionUPP userUPP
);

Discussion
You should not need to use the function InvokeCollectionExceptionUPP, as the system calls your
error-handling callback function for you. See the callback CollectionExceptionProcPtr (page 47) for
more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

InvokeCollectionFlattenUPP
Calls a data-flattening callback.

OSErr InvokeCollectionFlattenUPP (
 SInt32 size,
 void *data,
 void *refCon,
 CollectionFlattenUPP userUPP
);

Discussion
You should not need to use the function InvokeCollectionFlattenUPP, as the system calls your
data-flattening callback function for you. See the callback CollectionFlattenProcPtr (page 48) for more
information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

34 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Declared In
Collections.h

NewCollection
Creates a new, empty collection object.

Collection NewCollection (
 void
);

Return Value
A reference to the newly created collection object. The new collection contains no items and has an owner
count of 1. The NewCollection function does not return an error code; it returns NULL if it cannot create
a new collection object. See the description of the Collection data type.

Discussion
The NewCollection function allocates memory for a new collection object, initializes it, and returns a
reference to it.

To create a copy of an existing collection object, use the CopyCollection (page 15) function.

Special Considerations

You are responsible for disposing of collection objects that you create with this function when you no longer
need them. To dispose of a collection object, use the DisposeCollection (page 18) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

NewCollectionExceptionUPP
Creates a new universal procedure pointer (UPP) to an error-handling callback.

CollectionExceptionUPP NewCollectionExceptionUPP (
 CollectionExceptionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your error-handling callback.

Return Value
On return, a UPP to the error-handling callback. See the description of the CollectionExceptionUPP data
type.

Discussion
See the callback CollectionExceptionProcPtr (page 47) for more information.

Availability
Available in CarbonLib 1.0 and later.

Functions 35
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Available in Mac OS X 10.0 and later.

Declared In
Collections.h

NewCollectionFlattenUPP
Creates a new universal procedure pointer (UPP) to a data-flattening callback.

CollectionFlattenUPP NewCollectionFlattenUPP (
 CollectionFlattenProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your data-flattening callback.

Return Value
On return, a UPP to the data-flattening callback. See the description of the CollectionFlattenUPP data
type.

Discussion
See the callback CollectionFlattenProcPtr (page 48) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

PurgeCollection
Removes all items in a collection whose attributes match a specified pattern.

void PurgeCollection (
 Collection c,
 SInt32 whichAttributes,
 SInt32 matchingAttributes
);

Parameters
c

A reference to the collection object containing the items you want to remove. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

whichAttributes
A mask indicating which attributes you want to test. You should set the bits of the parameter that
correspond to the attributes you want to test.

matchingAttributes
An SInt32 word containing the values of the attributes you want to match.

36 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Discussion
The PurgeCollection function removes from the c collection any items whose attributes match the criteria
you specify in the whichAttributes and matchingAttributes parameters.

This function compares the specified attributes of each item in the c collection with the corresponding
attributes in the matchingAttributes parameter. If the values of all the specified attributes match, the
function removes the item. To avoid purging locked items, you should clear the lock attribute in the
whichAttributes and matchingAttributes parameters.

To remove all of the items in a collection with a specified collection tag, use the PurgeCollectionTag (page
37) function.

To remove every item in a collection, use the EmptyCollection (page 19) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

PurgeCollectionTag
Removes all items with a specific collection tag from a collection.

void PurgeCollectionTag (
 Collection c,
 CollectionTag tag
);

Parameters
c

A reference to the collection object containing the items you want to remove. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the items to remove.

Discussion
The PurgeCollectionTag function removes from the c collection all items whose collection tag matches
the value of the tag parameter. This function removes locked and unlocked items.

To remove all of the items in a collection whose attributes match a specified pattern, use the
PurgeCollection (page 36) function.

To remove every item in a collection, use the EmptyCollection (page 19) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 37
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

ReleaseCollection
Decrements the owner count (the number of existing references) for a collection object.

OSStatus ReleaseCollection (
 Collection c
);

Parameters
c

Return Value
A result code. See “Result Codes” (page 57).

Discussion
This function performs the same operation as DisposeCollection (page 18), but follows the preferred
naming conventions for Carbon and Core Foundation functions.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.1 and later.

Declared In
Collections.h

RemoveCollectionItem
Removes an item from a collection given the item’s associated collection tag and collection ID.

OSErr RemoveCollectionItem (
 Collection c,
 CollectionTag tag,
 SInt32 id
);

Parameters
c

A reference to the collection object from which you want to remove the item. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item you want to remove.

id
The collection ID associated with the item you want to remove.

Return Value
A result code. See “Result Codes” (page 57). If the c collection does not contain an item whose collection
tag and collection ID match the values in the tag and id parameters, this function returns a
collectionItemNotFoundErr result code.

Discussion
The RemoveCollectionItem function removes the item specified by the tag and id parameters from the
collection referenced by the c parameter. This function removes the specified item even if its lock attribute
is set.

38 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

To remove a collection item using the item’s index (rather than the item’s tag and ID), use the
RemoveIndexedCollectionItem (page 39) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

RemoveIndexedCollectionItem
Removes an item from a collection given the item’s index.

OSErr RemoveIndexedCollectionItem (
 Collection c,
 SInt32 index
);

Parameters
c

A reference to the collection object from which you want to remove the item. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

index
The collection index of the item you want to remove.

Return Value
A result code. See “Result Codes” (page 57). If the c collection does not contain an item whose collection
index matches the values in the index parameter, this function returns a collectionIndexRangeErr result
code.

Discussion
The RemoveIndexedCollectionItem function removes the item specified by the index parameter from
the collection referenced by the c parameter. This function removes the specified item even if its lock attribute
is set.

To remove a collection item using the item’s tag and ID (rather than the item’s index), use the
RemoveCollectionItem (page 38) function.

To replace an item in a collection, use the function ReplaceIndexedCollectionItem (page 39).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

ReplaceIndexedCollectionItem
Replaces the variable-length data of an item in a collection given the item’s index.

Functions 39
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr ReplaceIndexedCollectionItem (
 Collection c,
 SInt32 index,
 SInt32 itemSize,
 const void *itemData
);

Parameters
c

A reference to the collection containing the item you want to replace. The behavior of this function
is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item to replace.

itemSize
The item’s size. The itemSize parameter determines how many bytes of information this function
copies into the new item. If you specify 0 for this parameter, or provide NULL for the itemData
parameter, this function copies no information into the variable-length data of the new item, or
removes the variable-length data if the item already exists.

itemData
A pointer to the item’s data. This function copies the information pointed to by the itemData
parameter into the new item; after calling this function, you may alter this information or free the
memory pointed to by this parameter without affecting the collection.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
You specify which item to replace using the index parameter. If the c collection does not contain an item
whose collection index matches the value of the index parameter, this function returns a
collectionIndexRangeErr result code.

If the c collection does contain an item with the specified index, this function replaces that item with a new
item (if the existing item is not locked—if it is, this function returns a collectionItemLockedErr result
code). The new item contains

 ■ the same collection tag as the original item

 ■ the same collection ID as the original item

 ■ the same attributes as the original item

 ■ the variable-length data specified by the itemSize and itemData parameters

To lock a collection item, use the functions SetCollectionItemInfo (page 43) and
SetIndexedCollectionItemInfo (page 44).

To replace a collection item using the item’s tag and ID (rather than the item’s index), use the
AddCollectionItem (page 11) function.

To remove an item from a collection, use the functions RemoveCollectionItem (page 38),
RemoveIndexedCollectionItem (page 39), PurgeCollection (page 36), PurgeCollectionTag (page
37), and EmptyCollection (page 19).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.

40 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Available in Mac OS X 10.0 and later.

Declared In
Collections.h

ReplaceIndexedCollectionItemHdl
Replaces the variable-length data of an item in a collection given the item’s collection index, specifying the
item’s new variable-length data using a handle rather than a pointer and a data size.

OSErr ReplaceIndexedCollectionItemHdl (
 Collection aCollection,
 SInt32 index,
 Handle itemData
);

Parameters
aCollection

A reference to the collection containing the item you want to replace. The behavior of this function
is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item you want to replace.

itemData
A Macintosh Memory Manager handle to the new variable-length data. This function copies the
information referenced by the itemData parameter into the collection item; after calling this function,
you may alter this information or free the memory referenced by this parameter without affecting
the collection.

Return Value
A result code. See “Result Codes” (page 57). If the aCollection collection does not contain an item whose
collection index matches the value of the index parameter, this function returns a
collectionIndexRangeErr result code.

Discussion
If the aCollection collection does contain an item with the specified index, this function replaces the data
in that item with new data (if the existing item is not locked—if it is, this function returns a
collectionItemLockedErr result code). The resulting item contains

 ■ the same collection tag as the original item

 ■ the same collection ID as the original item

 ■ the same attributes as the original item

 ■ the variable-length data specified by the itemData parameter

To replace a collection item using a pointer (rather than a handle) to the item’s variable-length data, use the
ReplaceIndexedCollectionItem (page 39) function.

To replace a collection item using the item’s collection tag and collection ID (rather than the item’s collection
index), use the AddCollectionItemHdl (page 12) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.

Functions 41
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Available in Mac OS X 10.0 and later.

Declared In
Collections.h

RetainCollection
Increments the owner count (the number of existing references) for a collection object.

OSStatus RetainCollection (
 Collection c
);

Parameters
c

Return Value
A result code. See “Result Codes” (page 57).

Discussion
This function performs the same operation as CloneCollection (page 14), but follows the preferred naming
conventions for Carbon and Core Foundation functions.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.1 and later.

Declared In
Collections.h

SetCollectionDefaultAttributes
Alters the default attributes of a collection object.

void SetCollectionDefaultAttributes (
 Collection c,
 SInt32 whichAttributes,
 SInt32 newAttributes
);

Parameters
c

A reference to the collection object whose default attributes you want to alter. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

whichAttributes
A mask indicating which bit flags in the c collection’s default attributes you want to alter. For every
bit in the whichAttributes parameter, this function takes one of two actions:

 ■ If the bit is set, this function copies the value of the corresponding bit from the newAttributes
parameter into the corresponding bit of the default attributes of the c collection.

 ■ If the bit is not set, the corresponding bit of the c collection’s default attributes remains unchanged.

42 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

newAttributes
The new values for the bit flags.

Discussion
To examine the attributes of a collection object, use the GetCollectionDefaultAttributes (page 22)
function.

To change the attributes of a specific item in a collection, use the functions SetCollectionItemInfo (page
43) and SetIndexedCollectionItemInfo (page 44).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

SetCollectionExceptionProc
Installs an exception procedure in a collection object.

void SetCollectionExceptionProc (
 Collection c,
 CollectionExceptionUPP exceptionProc
);

Parameters
c

A reference to the collection object whose exception procedure you want to change. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

exceptionProc
A pointer to the new exception procedure.

Discussion
The SetCollectionExceptionProc function copies the function pointer from the exceptionProc
parameter into the collection object referenced by the c parameter.

To obtain a pointer to an existing exception procedure in a collection object, use the
GetCollectionExceptionProc (page 23) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

SetCollectionItemInfo
Edits the attributes of a specific collection item given the item’s collection tag and collection ID.

Functions 43
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr SetCollectionItemInfo (
 Collection c,
 CollectionTag tag,
 SInt32 id,
 SInt32 whichAttributes,
 SInt32 newAttributes
);

Parameters
c

A reference to the collection object containing the item whose attributes you want to edit. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item whose attributes you want to edit.

id
The collection ID associated with the item whose attributes you want to edit.

whichAttributes
A mask indicating which attributes you want to edit.

newAttributes
An SInt32 word containing the new settings for the attributes.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
This function copies bit values from the newAttributes parameter to the attributes associated with the
specified item.

This function uses the whichAttributes parameter to determine which bits to copy. For every bit in the
whichAttributes parameter, this function takes one of two actions:

 ■ If the bit is set, this function copies the value of the corresponding bit from the newAttributes parameter
into the corresponding bit of the attributes associated with the specified item.

 ■ If the bit is not set, the corresponding bit of the specified item’s attributes remains unchanged.

The whichAttributes parameter allows you to change the values of specific bits in the specified item’s
attributes without affecting the values of other bits.

To obtain information about a collection item using the collection index to specify the item, use the
SetIndexedCollectionItemInfo (page 44) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

SetIndexedCollectionItemInfo
Edits the attributes of a specific collection item given the item’s collection index.

44 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr SetIndexedCollectionItemInfo (
 Collection c,
 SInt32 index,
 SInt32 whichAttributes,
 SInt32 newAttributes
);

Parameters
c

A reference to the collection object containing the item whose attributes you want to edit. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

index
The collection index of the item whose attributes you want to edit.

whichAttributes
A mask indicating which attributes you want to edit.

newAttributes
An SInt32 word containing the new settings for the attributes.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
The SetIndexedCollectionItemInfo function copies bit values from the newAttributes parameter to
the attributes associated with the specified item.

This function uses the whichAttributes parameter to determine which bits to copy. For every bit in the
whichAttributes parameter, this function takes one of two actions:

 ■ If the bit is set, this function copies the value of the corresponding bit from the newAttributes parameter
into the corresponding bit of the attributes associated with the specified item.

 ■ If the bit is not set, the corresponding bit of the specified item’s attributes remains unchanged.

The whichAttributes parameter allows you to change the values of specific bits in the specified item’s
attributes without affecting the values of other bits.

To edit the attributes of collection item using the collection tag and collection ID (rather than the collection
index) to specify the item, use the SetCollectionItemInfo (page 43) function.

To examine the attributes of a collection item, use the functions GetCollectionItemInfo (page 25),
GetIndexedCollectionItemInfo (page 29), and GetTaggedCollectionItemInfo (page 32).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

UnflattenCollection
Unflattens a collection that was flattened using the FlattenCollection or FlattenPartialCollection
function.

Functions 45
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr UnflattenCollection (
 Collection c,
 CollectionFlattenUPP flattenProc,
 void *refCon
);

Parameters
c

A reference to the collection object you want to create from the flattened data. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

flattenProc
A pointer to a function to read in flattened data.

refCon
A reference constant that you want the Collection Manager to pass to your callback function each
time it calls the callback function. You can use this parameter as a pointer to a structure containing
information your callback function needs when reading the blocks of flattened data.

Return Value
A result code. See “Result Codes” (page 57). This function can return any error returned by the callback
function.

Discussion
The UnflattenCollection function unflattens a stream of bytes into the collection object you specify
with the c parameter.

As this function unflattens the collection, it repeatedly calls the callback function you specify using the
flattenProc parameter. Each time it calls this function, it provides the callback function with a pointer to
a block of memory and a requested size. The callback function is responsible for reading the next set of bytes
from the flattened byte stream and copying the data into the block of memory.

The Collection Manager continues to call your callback function, requesting more of the flattened stream of
bytes each time, until it has unflattened the entire collection. Your callback function can read the flattened
data from any source you choose: it could read the flattened data from a handle-based block of memory, it
could read the flattened data from disk, and so on.

To create a flattened collection that includes only those collection items whose attributes match a specified
pattern, use the FlattenPartialCollection (page 21) function.

To create a flattened collection that includes every item in a collection, use the FlattenCollection (page
19) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

UnflattenCollectionFromHdl
Unflattens a collection that was flattened using the FlattenCollectionToHdl utility function.

46 Functions
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

OSErr UnflattenCollectionFromHdl (
 Collection aCollection,
 Handle flattened
);

Parameters
aCollection

A reference to a collection object in which to store the unflattened information. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

flattened
A handle to the data that was previously flattened. You must provide a valid Macintosh Memory
Manager handle in this parameter.

Return Value
A result code. See “Result Codes” (page 57).

Discussion
To unflatten a collection directly from disk, use the UnflattenCollection (page 45) function.

To flatten a collection to a block of memory referenced by a handle, use the FlattenCollectionToHdl (page
20) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Callbacks

CollectionExceptionProcPtr
Defines a pointer to an error handling callback function that handles errors that occur when operating on a
collection object.

typedef OSErr (*CollectionExceptionProcPtr) (Collection c, OSErr status);

If you name your function MyCollectionExceptionProc, you would declare it like this:

OSErr MyCollectionExceptionProc (
 Collection c,
 OSErr status
);

Parameters
c

A reference to the collection object for which the error occurred.

status
The result code associated with the error that occurred.

Callbacks 47
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Return Value
A result code. See “Result Codes” (page 57).

Discussion
You create this function to install in a collection object using the SetCollectionExceptionProc (page
43) function. Subsequently, whenever the Collection Manager is operating on that collection object and an
error occurs, the Collection Manager calls this function, sending it a reference to the collection for which the
error occurred and the result code associated with the error. You can use this information to handle the error
appropriately for your application.

You can use an exception procedure to respond to an error in a number of ways:

 ■ You can change the error from one result code to another by returning as the function result the new
result code.

 ■ You can handle the error and return the noErr error code, which indicates that the Collection Manager
should return control to the place in your application that generated the error, as if no error had occurred.

 ■ You can use the ANSI C functions setjmp and longjmp to jump out of the exception procedure into
code to handle the error.

To install an exception procedure in a collection object, use the SetCollectionExceptionProc (page 43)
function.

To obtain a pointer to an existing exception procedure in a collection object, use the
GetCollectionExceptionProc (page 23) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

CollectionFlattenProcPtr
Defines a pointer to a flattening callback function that reads or writes flattened collection data.

typedef OSErr (*CollectionFlattenProcPtr)
(
 SInt32 size,
 void * data,
 void * refCon
);

If you name your function MyCollectionFlattenProc, you would declare it like this:

OSErr MyCollectionFlattenProc (
 SInt32 size,
 void * data,
 void * refCon
);

48 Callbacks
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Parameters
size

The size of the block of flattened data to read or write.Your function should read or copy the requested
number of bytes of flattened data into the block of memory pointed to by the data parameter.

data
A pointer to the block of flattened data. When flattening, this pointer points to the data your callback
function should write. When unflattening, your callback function should read flattened data into the
memory pointed to by this parameter.

refCon
A value you provide to the FlattenCollection function or UnflattenCollection function that
the Collection Manager passes on to your callback function. You can use this parameter as a pointer
to a structure containing relevant state information you need when reading or writing the flattened
data.

Return Value
A result code. See “Result Codes” (page 57). If the execution of this function results in any fatal error, you
should return the error code back to the Collection Manager as the function result. If the function executes
successfully, you should return the noErr error code as the function result.

Discussion
You create this function to pass to the FlattenCollection (page 19), FlattenPartialCollection (page
21), and UnflattenCollection (page 45) functions when flattening or unflattening a collection.

As the Collection Manager is flattening a collection, it repeatedly calls this callback function to process
sequential blocks of flattened data. Each time it calls this function, it provides a pointer to the current block
of flattened data in the data parameter and the size of the current block in the size parameter. You can
process this data in a number of ways: appending it to a handle-based block of memory, writing it to disk,
and so on.

When unflattening a collection, the Collection Manager repeatedly calls this function to obtain blocks of
flattened data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

Data Types

Collection
Defines defines a reference to an opaque type that your compiler can type-check.

typedef struct OpaqueCollection * Collection;

Discussion
The Collection Manager provides you with access to a collection object through a Collection reference.
The Collection type defines a reference type that your compiler can type-check; it does not define a pointer
to a publicly defined data structure. The contents of the collection object are private; you must use the
Collection Manager functions to manipulate collection objects.

Data Types 49
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

CollectionExceptionUPP
Defines a universal procedure pointer to an error-handling callback.

typedef CollectionExceptionProcPtr CollectionExceptionUPP;

Discussion
For more information, see the description of the CollectionExceptionProcPtr (page 47) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

CollectionFlattenUPP
Defines a universal procedure pointer to a data-flattening callback.

typedef CollectionFlattenProcPtr CollectionFlattenUPP;

Discussion
For more information, see the description of the CollectionFlattenProcPtr (page 48)callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

CollectionTag
Defines a data type for a collection tag.

typedef FourCharCode CollectionTag;

Discussion
Each item in a collection is uniquely identified by its collection tag and its collection ID. The collection tag is
a four-character identifier, similar to the identifiers used for resources.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

50 Data Types
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

Constants

Attribute Bit Masks
Used to test or set a particular collection item attribute.

enum {
 kCollectionUser0Mask = 1L << kCollectionUser0Bit,
 kCollectionUser1Mask = 1L << kCollectionUser1Bit,
 kCollectionUser2Mask = 1L << kCollectionUser2Bit,
 kCollectionUser3Mask = 1L << kCollectionUser3Bit,
 kCollectionUser4Mask = 1L << kCollectionUser4Bit,
 kCollectionUser5Mask = 1L << kCollectionUser5Bit,
 kCollectionUser6Mask = 1L << kCollectionUser6Bit,
 kCollectionUser7Mask = 1L << kCollectionUser7Bit,
 kCollectionUser8Mask = 1L << kCollectionUser8Bit,
 kCollectionUser9Mask = 1L << kCollectionUser9Bit,
 kCollectionUser10Mask = 1L << kCollectionUser10Bit,
 kCollectionUser11Mask = 1L << kCollectionUser11Bit,
 kCollectionUser12Mask = 1L << kCollectionUser12Bit,
 kCollectionUser13Mask = 1L << kCollectionUser13Bit,
 kCollectionUser14Mask = 1L << kCollectionUser14Bit,
 kCollectionUser15Mask = 1L << kCollectionUser15Bit,
 kCollectionReserved0Mask = 1L << kCollectionReserved0Bit,
 kCollectionReserved1Mask = 1L << kCollectionReserved1Bit,
 kCollectionReserved2Mask = 1L << kCollectionReserved2Bit,
 kCollectionReserved3Mask = 1L << kCollectionReserved3Bit,
 kCollectionReserved4Mask = 1L << kCollectionReserved4Bit,
 kCollectionReserved5Mask = 1L << kCollectionReserved5Bit,
 kCollectionReserved6Mask = 1L << kCollectionReserved6Bit,
 kCollectionReserved7Mask = 1L << kCollectionReserved7Bit,
 kCollectionReserved8Mask = 1L << kCollectionReserved8Bit,
 kCollectionReserved9Mask = 1L << kCollectionReserved9Bit,
 kCollectionReserved10Mask = 1L << kCollectionReserved10Bit,
 kCollectionReserved11Mask = 1L << kCollectionReserved11Bit,
 kCollectionReserved12Mask = 1L << kCollectionReserved12Bit,
 kCollectionReserved13Mask = 1L << kCollectionReserved13Bit,
 kCollectionPersistenceMask = 1L << kCollectionPersistenceBit,
 kCollectionLockMask = 1L << kCollectionLockBit
};

Discussion
Using the attribute bit numbers, the Collection Manager provides convenient attribute masks for each of the
attributes. You can use these attribute masks when testing or setting a particular collection item attribute.

Attribute Bit Masks (Old)
Used to test or set a particular collection item attribute.

Constants 51
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

enum {
 collectionUser0Mask = kCollectionUser0Mask,
 collectionUser1Mask = kCollectionUser1Mask,
 collectionUser2Mask = kCollectionUser2Mask,
 collectionUser3Mask = kCollectionUser3Mask,
 collectionUser4Mask = kCollectionUser4Mask,
 collectionUser5Mask = kCollectionUser5Mask,
 collectionUser6Mask = kCollectionUser6Mask,
 collectionUser7Mask = kCollectionUser7Mask,
 collectionUser8Mask = kCollectionUser8Mask,
 collectionUser9Mask = kCollectionUser9Mask,
 collectionUser10Mask = kCollectionUser10Mask,
 collectionUser11Mask = kCollectionUser11Mask,
 collectionUser12Mask = kCollectionUser12Mask,
 collectionUser13Mask = kCollectionUser13Mask,
 collectionUser14Mask = kCollectionUser14Mask,
 collectionUser15Mask = kCollectionUser15Mask,
 collectionReserved0Mask = kCollectionReserved0Mask,
 collectionReserved1Mask = kCollectionReserved1Mask,
 collectionReserved2Mask = kCollectionReserved2Mask,
 collectionReserved3Mask = kCollectionReserved3Mask,
 collectionReserved4Mask = kCollectionReserved4Mask,
 collectionReserved5Mask = kCollectionReserved5Mask,
 collectionReserved6Mask = kCollectionReserved6Mask,
 collectionReserved7Mask = kCollectionReserved7Mask,
 collectionReserved8Mask = kCollectionReserved8Mask,
 collectionReserved9Mask = kCollectionReserved9Mask,
 collectionReserved10Mask = kCollectionReserved10Mask,
 collectionReserved11Mask = kCollectionReserved11Mask,
 collectionReserved12Mask = kCollectionReserved12Mask,
 collectionReserved13Mask = kCollectionReserved13Mask,
 collectionPersistenceMask = kCollectionPersistenceMask,
 collectionLockMask = kCollectionLockMask
};

Discussion
Using the attribute bit numbers, the Collection Manager provides convenient attribute masks for each of the
attributes. You can use these attribute masks when testing or setting a particular collection item attribute.

Attribute Bit Numbers
Provides constant names for each of the bits in a collection item attributes.

52 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

enum {
 kCollectionUser0Bit = 0,
 kCollectionUser1Bit = 1,
 kCollectionUser2Bit = 2,
 kCollectionUser3Bit = 3,
 kCollectionUser4Bit = 4,
 kCollectionUser5Bit = 5,
 kCollectionUser6Bit = 6,
 kCollectionUser7Bit = 7,
 kCollectionUser8Bit = 8,
 kCollectionUser9Bit = 9,
 kCollectionUser10Bit = 10,
 kCollectionUser11Bit = 11,
 kCollectionUser12Bit = 12,
 kCollectionUser13Bit = 13,
 kCollectionUser14Bit = 14,
 kCollectionUser15Bit = 15,
 kCollectionReserved0Bit = 16,
 kCollectionReserved1Bit = 17,
 kCollectionReserved2Bit = 18,
 kCollectionReserved3Bit = 19,
 kCollectionReserved4Bit = 20,
 kCollectionReserved5Bit = 21,
 kCollectionReserved6Bit = 22,
 kCollectionReserved7Bit = 23,
 kCollectionReserved8Bit = 24,
 kCollectionReserved9Bit = 25,
 kCollectionReserved10Bit = 26,
 kCollectionReserved11Bit = 27,
 kCollectionReserved12Bit = 28,
 kCollectionReserved13Bit = 29,
 kCollectionPersistenceBit = 30,
 kCollectionLockBit = 31
};

Discussion
The Collection Manager provides the attribute bit numbers enumeration to provide constant names for each
of the bits in a collection item’s attributes.

The lower 16 bits of the attributes property of a collection item represent the user-defined attributes. You
can use these attributes for any purpose suitable to your application.

The upper 16 bits are reserved for use by Apple Computer, Inc. Currently, the 2 high bits are defined: bit 30
represents the persistence attribute and bit 31 represents the lock attribute.

Attribute Bit Numbers (Old)
Provides constant names for each of the bits in a collection item attributes.

Constants 53
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

enum {
 collectionUser0Bit = kCollectionUser0Bit,
 collectionUser1Bit = kCollectionUser1Bit,
 collectionUser2Bit = kCollectionUser2Bit,
 collectionUser3Bit = kCollectionUser3Bit,
 collectionUser4Bit = kCollectionUser4Bit,
 collectionUser5Bit = kCollectionUser5Bit,
 collectionUser6Bit = kCollectionUser6Bit,
 collectionUser7Bit = kCollectionUser7Bit,
 collectionUser8Bit = kCollectionUser8Bit,
 collectionUser9Bit = kCollectionUser9Bit,
 collectionUser10Bit = kCollectionUser10Bit,
 collectionUser11Bit = kCollectionUser11Bit,
 collectionUser12Bit = kCollectionUser12Bit,
 collectionUser13Bit = kCollectionUser13Bit,
 collectionUser14Bit = kCollectionUser14Bit,
 collectionUser15Bit = kCollectionUser15Bit,
 collectionReserved0Bit = kCollectionReserved0Bit,
 collectionReserved1Bit = kCollectionReserved1Bit,
 collectionReserved2Bit = kCollectionReserved2Bit,
 collectionReserved3Bit = kCollectionReserved3Bit,
 collectionReserved4Bit = kCollectionReserved4Bit,
 collectionReserved5Bit = kCollectionReserved5Bit,
 collectionReserved6Bit = kCollectionReserved6Bit,
 collectionReserved7Bit = kCollectionReserved7Bit,
 collectionReserved8Bit = kCollectionReserved8Bit,
 collectionReserved9Bit = kCollectionReserved9Bit,
 collectionReserved10Bit = kCollectionReserved10Bit,
 collectionReserved11Bit = kCollectionReserved11Bit,
 collectionReserved12Bit = kCollectionReserved12Bit,
 collectionReserved13Bit = kCollectionReserved13Bit,
 collectionPersistenceBit = kCollectionPersistenceBit,
 collectionLockBit = kCollectionLockBit
};

Discussion
The Collection Manager provides the attribute bit numbers enumeration to provide constant names for each
of the bits in a collection item’s attributes.

The lower 16 bits of the attributes property of a collection item represent the user-defined attributes. You
can use these attributes for any purpose suitable to your application.

The upper 16 bits are reserved for use by Apple Computer, Inc. Currently, the 2 high bits are defined: bit 30
represents the persistence attribute and bit 31 represents the lock attribute.

Attributes Masks
Used to specify attributes for any of the attribute-related Collection Manager functions.

54 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

enum {
 kCollectionNoAttributes = 0x00000000,
 kCollectionAllAttributes = 0xFFFFFFFF,
 kCollectionUserAttributes = 0x0000FFFF,
 kCollectionDefaultAttributes = 0x40000000
};

Constants
kCollectionNoAttributes

Specifies a mask in which all collection attributes are clear. You might use this constant when clearing
all the attributes of an item or when testing whether all of an item’s attributes are clear.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

kCollectionAllAttributes
Specifies a mask in which all collection attributes are set. You might use this constant as a mask to
indicate that you want to edit or test every attribute of an item, or you might use it to set every
attribute of an item.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

kCollectionUserAttributes
Specifies a mask in which the user attributes are set and the reserved attributes are clear. You might
use this constant as a mask to indicate that you want to edit or test only the user attributes of an
item, or you might use it to set every user attribute of an item.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

kCollectionDefaultAttributes
Specifies a mask in which the persistent attribute is set and all other attributes are clear. You might
use this constant when testing to see if an item’s attributes have been edited.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

Discussion
The Collection Manager provides four convenient attributes masks that you can use when specifying attributes
for any of the attribute-related Collection Manager functions. You can also use the attribute bit masks as
masks for individual attributes.

Attributes Masks (Old)
Used to specify attributes for any of the attribute-related Collection Manager functions.

Constants 55
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

enum {
 noCollectionAttributes = kCollectionNoAttributes,
 allCollectionAttributes = kCollectionAllAttributes,
 userCollectionAttributes = kCollectionUserAttributes,
 defaultCollectionAttributes = kCollectionDefaultAttributes
};

Constants
noCollectionAttributes

Specifies a mask in which all collection attributes are clear. You might use this constant when clearing
all the attributes of an item or when testing whether all of an item’s attributes are clear.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

allCollectionAttributes
Specifies a mask in which all collection attributes are set. You might use this constant as a mask to
indicate that you want to edit or test every attribute of an item, or you might use it to set every
attribute of an item.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

userCollectionAttributes
Specifies a mask in which the user attributes are set and the reserved attributes are clear. You might
use this constant as a mask to indicate that you want to edit or test only the user attributes of an
item, or you might use it to set every user attribute of an item.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

defaultCollectionAttributes
Specifies a mask in which the persistent attribute is set and all other attributes are clear. You might
use this constant when testing to see if an item’s attributes have been edited.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

Discussion
The Collection Manager provides four convenient attributes masks that you can use when specifying attributes
for any of the attribute-related Collection Manager functions. You can also use the attribute bit masks as
masks for individual attributes.

Optional Return Value Constants
Used to specify that you do not want a particular piece of information.

56 Constants
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

enum {
 kCollectionDontWantTag = 0,
 kCollectionDontWantId = 0,
 kCollectionDontWantSize = 0,
 kCollectionDontWantAttributes = 0,
 kCollectionDontWantIndex = 0,
 kCollectionDontWantData = 0
};

Discussion
Many of the Collection Manager functions return multiple pieces of information. For most of these functions,
you can specify that you do not want a specific piece of information to be returned by specifying NULL for
the corresponding parameter when calling the function.

The Collection Manager provides the optional return value constants to make your code easier to read when
specifying that you are not interested in obtaining certain types of information. You can use these enumeration
constants in place of the more generic constant NULLwhen specifying that you do not want to receive certain
optional return values from a function.

Optional Return Value Constants (Old)
Used to specify that you do not want a particular piece of information.

enum {
 dontWantTag = kCollectionDontWantTag,
 dontWantId = kCollectionDontWantId,
 dontWantSize = kCollectionDontWantSize,
 dontWantAttributes = kCollectionDontWantAttributes,
 dontWantIndex = kCollectionDontWantIndex,
 dontWantData = kCollectionDontWantData
};

Discussion
Many of the Collection Manager functions return multiple pieces of information. For most of these functions,
you can specify that you do not want a specific piece of information to be returned by specifying NULL for
the corresponding parameter when calling the function.

The Collection Manager provides the optional return value constants to make your code easier to read when
specifying that you are not interested in obtaining certain types of information. You can use these enumeration
constants in place of the more generic constant NULLwhen specifying that you do not want to receive certain
optional return values from a function.

Result Codes

The most common result codes returned by the Collection Manager are listed in the table below.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-5750collectionItemLockedErr

Available in Mac OS X v10.0 and later.-5751collectionItemNotFoundErr

Result Codes 57
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-5752collectionIndexRangeErr

Available in Mac OS X v10.0 and later.-5753collectionVersionErr

58 Result Codes
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Collection Manager Reference

This table describes the changes to Collection Manager Reference.

NotesDate

Added documentation for functions that work with universal procedure pointers.2003-04-01

Added abstracts for data types and constants.

Updated formatting.2003-02-01

Grouped new functions

Last version of this document.2001-07-01

59
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

60
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

AddCollectionItem function 11
AddCollectionItemHdl function 12
allCollectionAttributes constant 56
Attribute Bit Masks 51
Attribute Bit Masks (Old) 51
Attribute Bit Numbers 52
Attribute Bit Numbers (Old) 53
Attributes Masks 54
Attributes Masks (Old) 55

C

CloneCollection function 14
Collection data type 49
CollectionExceptionProcPtr callback 47
CollectionExceptionUPP data type 50
CollectionFlattenProcPtr callback 48
CollectionFlattenUPP data type 50
collectionIndexRangeErr constant 58
collectionItemLockedErr constant 57
collectionItemNotFoundErr constant 57
CollectionTag data type 50
CollectionTagExists function 14
collectionVersionErr constant 58
CopyCollection function 15
CountCollectionItems function 16
CountCollectionOwners function 16
CountCollectionTags function 17
CountTaggedCollectionItems function 17

D

defaultCollectionAttributes constant 56
DisposeCollection function 18
DisposeCollectionExceptionUPP function 18
DisposeCollectionFlattenUPP function 19

E

EmptyCollection function 19

F

FlattenCollection function 19
FlattenCollectionToHdl function 20
FlattenPartialCollection function 21

G

GetCollectionDefaultAttributes function 22
GetCollectionExceptionProc function 23
GetCollectionItem function 24
GetCollectionItemHdl function 25
GetCollectionItemInfo function 25
GetCollectionRetainCount function 27
GetIndexedCollectionItem function 27
GetIndexedCollectionItemHdl function 28
GetIndexedCollectionItemInfo function 29
GetIndexedCollectionTag function 30
GetNewCollection function 31
GetTaggedCollectionItem function 31
GetTaggedCollectionItemInfo function 32

I

InvokeCollectionExceptionUPP function 34
InvokeCollectionFlattenUPP function 34

K

kCollectionAllAttributes constant 55
kCollectionDefaultAttributes constant 55
kCollectionNoAttributes constant 55

61
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

Index

kCollectionUserAttributes constant 55

N

NewCollection function 35
NewCollectionExceptionUPP function 35
NewCollectionFlattenUPP function 36
noCollectionAttributes constant 56

O

Optional Return Value Constants 56
Optional Return Value Constants (Old) 57

P

PurgeCollection function 36
PurgeCollectionTag function 37

R

ReleaseCollection function 38
RemoveCollectionItem function 38
RemoveIndexedCollectionItem function 39
ReplaceIndexedCollectionItem function 39
ReplaceIndexedCollectionItemHdl function 41
RetainCollection function 42

S

SetCollectionDefaultAttributes function 42
SetCollectionExceptionProc function 43
SetCollectionItemInfo function 43
SetIndexedCollectionItemInfo function 44

U

UnflattenCollection function 45
UnflattenCollectionFromHdl function 46
userCollectionAttributes constant 56

62
2003-04-01 | © 2003 Apple Computer, Inc. All Rights Reserved.

INDEX

	Collection Manager Reference
	Contents
	Collection Manager Reference
	Overview
	Functions by Task
	Adding and Replacing Items in a Collection
	Cloning and Copying Collection Objects
	Counting Items in a Collection
	Creating and Disposing of Collection Objects
	Editing Item Attributes
	Flattening and Unflattening a Collection
	Getting and Setting the Default Attributes for a Collection
	Getting and Setting the Exception Procedure for a Collection
	Getting Information About a Collection Item
	Getting Information About Collection Tags
	Reading Collections From Resource Files
	Removing Items From a Collection
	Retrieving the Variable-Length Data From an Item
	Working With Macintosh Memory Manager Handles
	Working With Universal Procedure Pointers
	Retaining And Releasing

	Functions
	AddCollectionItem
	AddCollectionItemHdl
	CloneCollection
	CollectionTagExists
	CopyCollection
	CountCollectionItems
	CountCollectionOwners
	CountCollectionTags
	CountTaggedCollectionItems
	DisposeCollection
	DisposeCollectionExceptionUPP
	DisposeCollectionFlattenUPP
	EmptyCollection
	FlattenCollection
	FlattenCollectionToHdl
	FlattenPartialCollection
	GetCollectionDefaultAttributes
	GetCollectionExceptionProc
	GetCollectionItem
	GetCollectionItemHdl
	GetCollectionItemInfo
	GetCollectionRetainCount
	GetIndexedCollectionItem
	GetIndexedCollectionItemHdl
	GetIndexedCollectionItemInfo
	GetIndexedCollectionTag
	GetNewCollection
	GetTaggedCollectionItem
	GetTaggedCollectionItemInfo
	InvokeCollectionExceptionUPP
	InvokeCollectionFlattenUPP
	NewCollection
	NewCollectionExceptionUPP
	NewCollectionFlattenUPP
	PurgeCollection
	PurgeCollectionTag
	ReleaseCollection
	RemoveCollectionItem
	RemoveIndexedCollectionItem
	ReplaceIndexedCollectionItem
	ReplaceIndexedCollectionItemHdl
	RetainCollection
	SetCollectionDefaultAttributes
	SetCollectionExceptionProc
	SetCollectionItemInfo
	SetIndexedCollectionItemInfo
	UnflattenCollection
	UnflattenCollectionFromHdl

	Callbacks
	CollectionExceptionProcPtr
	CollectionFlattenProcPtr

	Data Types
	Collection
	CollectionExceptionUPP
	CollectionFlattenUPP
	CollectionTag

	Constants
	Attribute Bit Masks
	Attribute Bit Masks (Old)
	Attribute Bit Numbers
	Attribute Bit Numbers (Old)
	Attributes Masks
	Attributes Masks (Old)
	Optional Return Value Constants
	Optional Return Value Constants (Old)

	Result Codes

	Revision History
	Index
	A
	C
	D
	E
	F
	G
	I
	K
	N
	O
	P
	R
	S
	U

