
Component Manager Reference
Carbon > Runtime Architecture

2006-07-17

Apple Inc.
© 2001, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
MPW, and QuickTime are trademarks of Apple
Inc., registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

AIX is a trademark of IBM Corp., registered in
the U.S. and other countries, and is being used
under license.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Component Manager Reference 7

Overview 7
Functions by Task 7

Finding Components 7
Opening and Closing Components 8
Getting Information About Components 8
Retrieving Component Errors 8
Calling Component Functions 8
Accessing the Thread Safety Mode 9
Creating and Managing Universal Procedure Pointers 9
Registering Components 10
Dispatching to Component Functions 10
Managing Component Connections 10
Setting Component Errors 11
Working With Component Reference Constants 11
Accessing a Component’s Resource File 11
Calling Other Components 11
Capturing Components 11
Changing the Default Search Order 12

Functions 12
CallComponentCanDo 12
CallComponentClose 12
CallComponentDispatch 13
CallComponentFunction 13
CallComponentFunctionWithStorage 14
CallComponentFunctionWithStorageProcInfo 15
CallComponentGetMPWorkFunction 15
CallComponentGetPublicResource 16
CallComponentOpen 16
CallComponentRegister 16
CallComponentTarget 17
CallComponentUnregister 17
CallComponentVersion 18
CaptureComponent 18
CloseComponent 19
CloseComponentResFile 19
CountComponentInstances 20
CountComponents 20
CSGetComponentsThreadMode 21
CSSetComponentsThreadMode 21
DelegateComponentCall 22

3
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

DisposeComponentFunctionUPP 23
DisposeComponentMPWorkFunctionUPP 23
DisposeComponentRoutineUPP 23
DisposeGetMissingComponentResourceUPP 24
FindNextComponent 24
GetComponentIconSuite 25
GetComponentIndString 26
GetComponentInfo 26
GetComponentInstanceError 27
GetComponentInstanceStorage 28
GetComponentListModSeed 28
GetComponentPublicIndString 29
GetComponentPublicResource 29
GetComponentPublicResourceList 30
GetComponentRefcon 30
GetComponentResource 31
GetComponentTypeModSeed 31
InvokeComponentMPWorkFunctionUPP 32
InvokeComponentRoutineUPP 32
InvokeGetMissingComponentResourceUPP 33
NewComponentFunctionUPP 33
NewComponentMPWorkFunctionUPP 34
NewComponentRoutineUPP 34
NewGetMissingComponentResourceUPP 34
OpenAComponent 35
OpenAComponentResFile 35
OpenADefaultComponent 36
OpenComponent 36
OpenComponentResFile 37
OpenDefaultComponent 38
RegisterComponent 38
RegisterComponentFileRef 40
RegisterComponentFileRefEntries 40
RegisterComponentResource 41
RegisterComponentResourceFile 42
ResolveComponentAlias 42
SetComponentInstanceError 43
SetComponentInstanceStorage 43
SetComponentRefcon 44
SetDefaultComponent 45
UncaptureComponent 45
UnregisterComponent 46

Callbacks 46
ComponentMPWorkFunctionProcPtr 46
ComponentRoutineProcPtr 47
GetMissingComponentResourceProcPtr 48

4
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Data Types 49
ComponentAliasResource 49
ComponentDependencyArray 50
ComponentDescription 50
ComponentFunctionUPP 52
ComponentInstanceRecord 52
ComponentMPWorkFunctionHeaderRecord 53
ComponentMPWorkFunctionUPP 53
ComponentParameters 54
ComponentPlatformInfo 54
ComponentPlatformInfoArray 55
ComponentRecord 55
ComponentResource 55
ComponentResourceExtension 56
ComponentResult 57
ComponentRoutineUPP 57
ExtComponentResource 58
GetMissingComponentResourceUPP 58
RegisteredComponentInstanceRecord 59
RegisteredComponentRecord 59
ResourceSpec 59

Constants 60
cmpAliasNoFlags 60
cmpIsMissing 60
Component Resource Extension Flags 61
CSComponentsThreadMode 62
kAnyComponentType 62
kAppleManufacturer 63
mpWorkFlagDoWork 63
platform68k 64
platformIRIXmips 65
Register Component Resource flags 66
Request Codes 67
Set Default Component Flags 68

Result Codes 69
Gestalt Constants 70

Appendix A Deprecated Component Manager Functions 71

Deprecated in Mac OS X v10.5 71
ComponentFunctionImplemented 71
ComponentSetTarget 71
GetComponentVersion 72
RegisterComponentFile 73
RegisterComponentFileEntries 73

5
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Document Revision History 75

Index 77

6
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Framework: CoreServices/CoreServices.h

Declared in Components.h

Overview

You can use the Component Manager to allow your application to find and utilize various software objects
(components) at run time. You can create your own components, and you can use the Component Manager
to help manage your components. A component is a piece of code that provides a defined set of services to
one or more clients. Applications, system extensions, as well as other components can use the services of a
component. A component typically provides a specific type of service to its clients. For example, a component
might provide image compression or image decompression capabilities; an application could call such a
component, providing the image to compress, and the component could perform the desired operation and
return the compressed image to the application. The Component Manager provides access to components
and manages them by, for example, keeping track of the currently available components and routing requests
to the appropriate component.

Functions by Task

Finding Components

CountComponents (page 20)
Returns the number of registered components that meet the selection criteria specified by your
application.

FindNextComponent (page 24)
Returns the component identifier for the next registered component that meets the selection criteria
specified by your application.

GetComponentListModSeed (page 28)
Allows your application to determine if the list of registered components has changed.

GetComponentTypeModSeed (page 31)

ResolveComponentAlias (page 42)

Overview 7
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Opening and Closing Components

OpenAComponent (page 35)

OpenADefaultComponent (page 36)

OpenComponent (page 36)
Opens a connection to the component with the component identifier specified by your application.

OpenDefaultComponent (page 38)
Opens a connection to a registered component of the component type and subtype specified by
your application.

CloseComponent (page 19)
Terminates your application’s connection to a component.

Getting Information About Components

GetComponentIconSuite (page 25)
Returns a handle to a component’s icon suite to your application.

GetComponentInfo (page 26)
Returns to your application the registration information for a component.

GetComponentPublicIndString (page 29)

GetComponentPublicResource (page 29)

GetComponentPublicResourceList (page 30)

ComponentFunctionImplemented (page 71) Deprecated in Mac OS X v10.5
Allows your application to determine whether a component supports a specified request.

GetComponentVersion (page 72) Deprecated in Mac OS X v10.5
Returns the version number of a component to your application.

Retrieving Component Errors

GetComponentInstanceError (page 27)
Returns to your application the last error generated by a specific connection to a component.

Calling Component Functions

CallComponentOpen (page 16)

CallComponentClose (page 12)

8 Functions by Task
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

CallComponentCanDo (page 12)

CallComponentVersion (page 18)

CallComponentRegister (page 16)

CallComponentTarget (page 17)

CallComponentUnregister (page 17)

CallComponentDispatch (page 13)

CallComponentGetMPWorkFunction (page 15)

CallComponentGetPublicResource (page 16)

Accessing the Thread Safety Mode

CSSetComponentsThreadMode (page 21)
Sets whether or not using thread-unsafe components is allowed in the current thread.

CSGetComponentsThreadMode (page 21)
Indicates whether using thread-unsafe components is allowed in the current thread.

Creating and Managing Universal Procedure Pointers

NewComponentRoutineUPP (page 34)
Creates a new universal procedure pointer (UPP) to a component routine callback function.

InvokeComponentRoutineUPP (page 32)
Calls your component routine callback function

DisposeComponentRoutineUPP (page 23)
Disposes of the universal procedure pointer (UPP) to a component routine callback function.

NewComponentFunctionUPP (page 33)

DisposeComponentFunctionUPP (page 23)

NewComponentMPWorkFunctionUPP (page 34)

InvokeComponentMPWorkFunctionUPP (page 32)

DisposeComponentMPWorkFunctionUPP (page 23)

Functions by Task 9
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

NewGetMissingComponentResourceUPP (page 34)

InvokeGetMissingComponentResourceUPP (page 33)

DisposeGetMissingComponentResourceUPP (page 24)

Registering Components

RegisterComponent (page 38)
Registers a component stored in memory.

RegisterComponentResource (page 41)
Registers a component stored in a resource file.

RegisterComponentResourceFile (page 42)
Registers all component resources in the given resource file.

UnregisterComponent (page 46)
Removes a component from the Component Manager’s registration list.

RegisterComponentFileRef (page 40)

RegisterComponentFileRefEntries (page 40)

RegisterComponentFile (page 73) Deprecated in Mac OS X v10.5

RegisterComponentFileEntries (page 73) Deprecated in Mac OS X v10.5

Dispatching to Component Functions

CallComponentFunction (page 13)
Invokes the specified function of your component.

CallComponentFunctionWithStorage (page 14)
Invokes the specified function of your component.

CallComponentFunctionWithStorageProcInfo (page 15)

Managing Component Connections

CountComponentInstances (page 20)
Determines the number of open connections being managed by a specified component.

GetComponentInstanceStorage (page 28)
Allows your component to retrieve a handle to the memory associated with a connection.

SetComponentInstanceStorage (page 43)
Allows your component to associate memory with a connection.

10 Functions by Task
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

ComponentSetTarget (page 71) Deprecated in Mac OS X v10.5
Calls a component’s target request function and informs a component that it has been targeted by
another component.

Setting Component Errors

SetComponentInstanceError (page 43)
Passes error information to the Component Manager which sets the current error value for the
appropriate connection.

Working With Component Reference Constants

GetComponentRefcon (page 30)
Retrieves the value of the reference constant for your component.

SetComponentRefcon (page 44)
Sets the reference constant for your component.

Accessing a Component’s Resource File

OpenAComponentResFile (page 35)

OpenComponentResFile (page 37)
Allows your component to gain access to its resource file.

CloseComponentResFile (page 19)
Closes the resource file that your component opened previously with the OpenComponentResFile
function.

GetComponentResource (page 31)

GetComponentIndString (page 26)

Calling Other Components

DelegateComponentCall (page 22)
Allows your component to pass on a request to a specified component.

Capturing Components

CaptureComponent (page 18)
Allows your component to capture another component.

UncaptureComponent (page 45)
Allows your component to uncapture a previously captured component.

Functions by Task 11
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Changing the Default Search Order

SetDefaultComponent (page 45)
Changes the search order for registered components.

Functions

CallComponentCanDo

ComponentResult CallComponentCanDo (
 ComponentInstance ci,
 SInt16 ftnNumber
);

Parameters
ci

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentClose

ComponentResult CallComponentClose (
 ComponentInstance ci,
 ComponentInstance self
);

Parameters
ci
self

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

12 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

CallComponentDispatch

ComponentResult CallComponentDispatch (
 ComponentParameters *cp
);

Parameters
cp

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentFunction
Invokes the specified function of your component.

ComponentResult CallComponentFunction (
 ComponentParameters *params,
 ComponentFunctionUPP func
);

Parameters
params

A pointer to the ComponentDescription (page 50) structure that your component received from
the Component Manager. These are the parameters originally provided by the application that called
your component.

func
A universal procedure pointer to the component function that is to handle the request. The Component
Manager calls the function referred to by the func parameter, using Pascal calling conventions, with
the parameters that were originally provided by the application that called your component. The
function referred to by this parameter must return a function result of type ComponentResult
indicating the success or failure of the operation. See the ComponentRoutineProcPtr (page 47)
callback for more information on component functions.

Return Value
The value that is returned by the function referred to by the func parameter. Your component should use
this value to set the current error for this connection. You can use the SetComponentInstanceError (page
43) function to set the current error.

Discussion
When an application requests service from your component, your component receives a component
parameters structure containing the parameters that the application provided when it called your component.
Your component can use this structure to access the parameters directly. Alternatively, you can use either
this function or CallComponentFunctionWithStorage (page 14) to extract those parameters and pass
them to a subroutine of your component. By taking advantage of these functions, you can simplify the
structure of your component code.

Functions 13
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

If your component subroutine does not need global data, your component should use this function. If your
component subroutine requires memory in which to store global data for the component, your component
must use CallComponentFunctionWithStorage.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentFunctionWithStorage
Invokes the specified function of your component.

ComponentResult CallComponentFunctionWithStorage (
 Handle storage,
 ComponentParameters *params,
 ComponentFunctionUPP func
);

Parameters
storage

A handle to the memory associated with the current connection. The Component Manager provides
this handle to your component along with the request.

params
A pointer to the ComponentParameters (page 54) structure that your component received from
the Component Manager. These are the parameters originally provided by the application that called
your component.

func
A universal procedure pointer to the component function that is to handle the request. The Component
Manager calls the function referred to by the func parameter, using Pascal calling conventions, with
the parameters that were originally provided by the application that called your component. These
parameters are preceded by a handle to the memory associated with the current connection. The
function referred to by the func parameter must return a function result of type ComponentResult
indicating the success or failure of the operation. See the ComponentRoutineProcPtr (page 47)
callback for more information on component functions.

Return Value
The value that is returned by the function referred to by the func parameter. Your component should use
this value to set the current error for this connection. Use the SetComponentInstanceError (page 43)
function to set the current error for a connection.

Discussion
When an application requests service from your component, your component receives a component
parameters structure containing the parameters that the application provided when it called your component.
Your component can use this structure to access the parameters directly. Alternatively, you can use either
the CallComponentFunction (page 13) function or this function to extract those parameters and pass
them to a subroutine of your component. By taking advantage of these functions, you can simplify the
structure of your component code.

14 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

If your component subroutine requires a handle to the memory associated with the connection, you must
use this function. You allocate the memory for a given connection each time your component is opened.
You inform the Component Manager that a connection has memory associated with it by calling the
SetComponentInstanceError (page 43) function.

Subroutines of a component that don’t need global data should use CallComponentFunction instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentFunctionWithStorageProcInfo

ComponentResult CallComponentFunctionWithStorageProcInfo (
 Handle storage,
 ComponentParameters *params,
 ProcPtr func,
 ProcInfoType funcProcInfo
);

Parameters
storage
params
funcProcInfo

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentGetMPWorkFunction

ComponentResult CallComponentGetMPWorkFunction (
 ComponentInstance ci,
 ComponentMPWorkFunctionUPP *workFunction,
 void **refCon
);

Parameters
ci
workFunction

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 15
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

CallComponentGetPublicResource

ComponentResult CallComponentGetPublicResource (
 ComponentInstance ci,
 OSType resourceType,
 SInt16 resourceID,
 Handle *resource
);

Parameters
ci
resourceType
resource

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentOpen

ComponentResult CallComponentOpen (
 ComponentInstance ci,
 ComponentInstance self
);

Parameters
ci
self

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentRegister

ComponentResult CallComponentRegister (
 ComponentInstance ci
);

Parameters
ci

Return Value
See the description of the ComponentResult data type.

16 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentTarget

ComponentResult CallComponentTarget (
 ComponentInstance ci,
 ComponentInstance target
);

Parameters
ci
target

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentUnregister

ComponentResult CallComponentUnregister (
 ComponentInstance ci
);

Parameters
ci

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 17
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

CallComponentVersion

ComponentResult CallComponentVersion (
 ComponentInstance ci
);

Parameters
ci

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CaptureComponent
Allows your component to capture another component.

Component CaptureComponent (
 Component capturedComponent,
 Component capturingComponent
);

Parameters
capturedComponent

The component to be captured. Your component can obtain this identifier from the
FindNextComponent (page 24) function or from the component registration functions. You can use
a component instance here, but you must coerce the data type appropriately.

capturingComponent
Your component. Note that you can use the component instance (appropriately coerced) that your
component received in its open request in this parameter.

Return Value
A new component identifier. Your component can use this new identifier to refer to the captured component.
For example, your component can open the captured component by providing this identifier to the
OpenComponent (page 36) structure. Your component must provide this identifier to the
UncaptureComponent (page 45) function to specify the component to be restored to the search list. If the
component you wish to capture is already captured, the component identifier is set to NULL. See the
description of the Component data type.

Discussion
Typically, your component captures another component when you want to override all or some of the features
provided by a component or to provide new features. For example, a component called NewMath might
capture a component called OldMath. Suppose the NewMath component provides a new function,
DoExponent. Whenever NewMath gets an exponent request, it can handle the request itself. For all other
requests, NewMath might call the OldMath component to perform the request.

After capturing a component, your component might choose to target a particular instance of the captured
component.

18 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

In response to this function, the Component Manager removes the specified component from the list of
available components. As a result, applications cannot retrieve information about the captured component
or gain access to it. Current clients of the captured component are not affected by this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CloseComponent
Terminates your application’s connection to a component.

OSErr CloseComponent (
 ComponentInstance aComponentInstance
);

Parameters
aComponentInstance

The connection you wish to close. Your application obtains the component instance from the
OpenComponent (page 36) function or the OpenDefaultComponent (page 38) function. You can
use a component identifier here, but you must coerce the data type appropriately.

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Discussion
This function closes only a single connection. If your application has several connections to a single component,
you must call it once for each connection.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
Components.h

CloseComponentResFile
Closes the resource file that your component opened previously with the OpenComponentResFile function.

OSErr CloseComponentResFile (
 ResFileRefNum refnum
);

Parameters
refnum

The reference number that identifies the resource file to be closed. Your component obtains this
value from the OpenComponentResFile (page 37) function. Your component must close any open
resource files before returning to the calling application.

Functions 19
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CountComponentInstances
Determines the number of open connections being managed by a specified component.

long CountComponentInstances (
 Component aComponent
);

Parameters
aComponent

The component for which you want a count of open connections. You can use a component instance
here, but you must coerce the data type appropriately.

Return Value
The number of open connections for the specified component.

Discussion
This function can be useful if you want to restrict the number of connections for your component or if your
component needs to perform special processing based on the number of open connections.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
Components.h

CountComponents
Returns the number of registered components that meet the selection criteria specified by your application.

20 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

long CountComponents (
 ComponentDescription *looking
);

Parameters
looking

A pointer to a ComponentDescription (page 50) structure. Your application specifies the criteria
for the component search in the fields of this structure.

The Component Manager ignores fields in the component description structure that are set to 0. For
example, if you set all the fields to 0, the Component Manager returns the number of components
registered in the system. Similarly, if you set all fields to 0 except for the componentManufacturer
field, the Component Manager returns the number of registered components supplied by the
manufacturer you specify.

Return Value
The number of components that meet the specified search criteria.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CSGetComponentsThreadMode
Indicates whether using thread-unsafe components is allowed in the current thread.

CSComponentsThreadMode CSGetComponentsThreadMode (
 void
);

Return Value
A flag that indicates whether using thread-unsafe components is allowed in the current thread.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Components.h

CSSetComponentsThreadMode
Sets whether or not using thread-unsafe components is allowed in the current thread.

void CSSetComponentsThreadMode (
 CSComponentsThreadMode mode
);

Parameters
mode

A flag that determines whether the current thread is restricted to calling components that are
thread-safe. You should set this flag to kCSAcceptThreadSafeComponentsOnlyMode whenever
you want the current thread to call only components that are thread-safe.

Functions 21
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Discussion
Core Services maintains a component thread-mode flag for each thread in the current process. The default
value of this flag is kCSAcceptAllComponentsMode, which means the thread can call any component
regardless of whether the component is thread-safe. Applications and other high-level code that call
component-based APIs (such as QuickTime) from preemptive threads should call this function from their
thread beforehand and pass in the value kCSAcceptThreadSafeComponentsOnlyMode.

A thread’s component thread-mode flag can safely retain its default value only if the thread is the main thread
or if it participates in cooperative locking, such as Carbon Thread Manager-style cooperative threads and
application threads that perform their own private locking.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Components.h

DelegateComponentCall
Allows your component to pass on a request to a specified component.

ComponentResult DelegateComponentCall (
 ComponentParameters *originalParams,
 ComponentInstance ci
);

Parameters
originalParams

A pointer to the ComponentParameters (page 54) structure provided to your component by the
Component Manager.

ci
The component instance that is to process the request. The Component Manager provides a component
instance to your component when it opens a connection to another component with the
OpenComponent (page 36) or OpenDefaultComponent (page 38) function. You must specify a
component instance; this function does not accept a component identifier.

Return Value
The component result returned by the specified component.

Discussion
Your component may supplement its capabilities by using the services of another component to directly
satisfy application requests using this function. For example, you might want to create two similar components
that provide different levels of service to applications. Rather than completely implementing both components,
you could design one to rely on the capabilities of the other. In this manner, you have to implement only
that portion of the more capable component that provides additional services.

You may also invoke the services of another component using the standard mechanisms used by applications.
The Component Manager then passes the requests to the appropriate component, and your component
receives the results of those requests.

Your component must open a connection to the component to which the requests are to be passed. Your
component must close that connection when it has finished using the services of the other component.

22 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Your component should never use this function with open or close requests from the Component
Manager—always use theOpenComponent andCloseComponent (page 19) functions to manage connections
with other components.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

DisposeComponentFunctionUPP

void DisposeComponentFunctionUPP (
 ComponentFunctionUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

DisposeComponentMPWorkFunctionUPP

void DisposeComponentMPWorkFunctionUPP (
 ComponentMPWorkFunctionUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

DisposeComponentRoutineUPP
Disposes of the universal procedure pointer (UPP) to a component routine callback function.

void DisposeComponentRoutineUPP (
 ComponentRoutineUPP userUPP
);

Parameters
userUPP

Discussion
See the ComponentRoutineProcPtr (page 47) callback for more information.

Functions 23
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

DisposeGetMissingComponentResourceUPP

void DisposeGetMissingComponentResourceUPP (
 GetMissingComponentResourceUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

FindNextComponent
Returns the component identifier for the next registered component that meets the selection criteria specified
by your application.

Component FindNextComponent (
 Component aComponent,
 ComponentDescription *looking
);

Parameters
aComponent

The starting point for the search. Set this field to 0 to start the search at the beginning of the
component list. If you are continuing a search, you can specify a component identifier previously
returned by this function. The function then searches the remaining components.

looking
A pointer to a ComponentDescription (page 50) structure. Your application specifies the criteria
for the component search in the fields of this structure.

The Component Manager ignores fields in the component description structure that are set to 0. For
example, if you set all the fields to 0, all components meet the search criteria. In this case, your
application can retrieve information about all of the components that are registered in the system
by repeatedly calling FindNextComponent and GetComponentInfo (page 26) until the search is
complete. Similarly, if you set all fields to 0 except for the componentManufacturer field, the
Component Manager searches all registered components for a component supplied by the
manufacturer you specify. Note that this function does not modify the contents of the component
description structure you supply. To retrieve detailed information about a component, you need to
use the GetComponentInfo (page 26) function to get the component description structure for each
returned component.

24 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Return Value
The component identifier of a component that meets the search criteria or 0 when there are no more matching
components. Your application can use the component identifier returned by this function to get more
information about the component, using GetComponentInfo, or to open the component, using either the
OpenDefaultComponent (page 38) function or the OpenComponent (page 36) function. See the description
of the Component data type.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX
WhackedTV

Declared In
Components.h

GetComponentIconSuite
Returns a handle to a component’s icon suite to your application.

OSErr GetComponentIconSuite (
 Component aComponent,
 Handle *iconSuite
);

Parameters
aComponent

The component whose icon suite you wish to obtain. Your application obtains a component identifier
from the FindNextComponent (page 24) function. If your application registers a component, it can
also obtain a component identifier from the RegisterComponent (page 38) or
RegisterComponentResource (page 41) function. You can use a component instance here, but
you must coerce the data type appropriately.

iconSuite
On return, a pointer to a handle for the component’s icon suite or, if the component has not provided
an icon suite, NULL. A component provides the resource ID of its icon family to the Component
Manager in the optional extensions to the component resource. Your application is responsible for
disposing of the returned icon suite handle.

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Components.h

Functions 25
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

GetComponentIndString

OSErr GetComponentIndString (
 Component aComponent,
 Str255 theString,
 SInt16 strListID,
 SInt16 index
);

Parameters
aComponent
theString

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
Components.h

GetComponentInfo
Returns to your application the registration information for a component.

OSErr GetComponentInfo (
 Component aComponent,
 ComponentDescription *cd,
 Handle componentName,
 Handle componentInfo,
 Handle componentIcon
);

Parameters
aComponent

The component about which you wish to obtain information. Your application obtains a component
identifier from the FindNextComponent (page 24) function. If your application registers a component,
it can also obtain a component identifier from the RegisterComponent (page 38) or
RegisterComponentResource (page 41) function.

You may supply a component instance rather than a component identifier to this function, but you
must coerce the data type appropriately. Your application can obtain a component instance from the
OpenComponent (page 36) or OpenDefaultComponent (page 38) functions.

cd
A pointer to a ComponentDescription (page 50) structure. The function returns information about
the specified component in this structure.

componentName
On return, a handle to the component’s name. If the component does not have a name, an empty
handle. Set this field to NULL if you do not want to receive the component’s name.

26 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

componentInfo
On return, a handle to the component’s information string. If the component does not have an
information string, an empty handle. Set this field to NULL if you do not want to receive the
component’s information string.

componentIcon
On return, a handle to the component’s icon. If the component does not have an icon, an empty
handle. Set this field to NULL if you do not want to receive the component’s icon. To get a handle to
the component’s icon suite, if it provides one, use the GetComponentIconSuite (page 25) function.

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Discussion
For information on registering components, see “Registering Components”.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
Components.h

GetComponentInstanceError
Returns to your application the last error generated by a specific connection to a component.

OSErr GetComponentInstanceError (
 ComponentInstance aComponentInstance
);

Parameters
aComponentInstance

The component instance from which you want error information. Your application obtains the
component instance from the OpenDefaultComponent (page 38) function or the
OpenComponent (page 36) function. You can use a component identifier here, but you must coerce
the data type appropriately.

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Discussion
Some component functions return error information as their function result. Other component functions set
an error code that your application can retrieve using this function. Refer to the documentation supplied
with the component for information on how that particular component handles errors.

Once you have retrieved an error code, the Component Manager clears the error code for the connection. If
you want to retain that error value, you should save it in your application’s local storage.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 27
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

GetComponentInstanceStorage
Allows your component to retrieve a handle to the memory associated with a connection.

Handle GetComponentInstanceStorage (
 ComponentInstance aComponentInstance
);

Parameters
aComponentInstance

The connection for which to retrieve the associated memory. The Component Manager provides a
component instance to your component when the connection is opened. You can use a component
identifier here, but you must coerce the data type appropriately.

Return Value
A handle to the memory associated with the specified connection.

Discussion
Typically, your component does not need to use this function, because the Component Manager provides
this handle to your component each time the client application requests service from this connection.

Your component tells the Component Manager about the memory associated with a connection by calling
the SetComponentInstanceStorage (page 43) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentListModSeed
Allows your application to determine if the list of registered components has changed.

SInt32 GetComponentListModSeed (
 void
);

Parameters
Return Value
The component registration seed number. Each time the Component Manager registers or unregisters a
component it generates a new, unique seed number. By comparing the return value to values previously
returned by this function, you can determine whether the list has changed. Your application may use this
information to rebuild its internal component lists or to trigger other activity that is necessary whenever new
components are available.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

28 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

GetComponentPublicIndString

OSErr GetComponentPublicIndString (
 Component aComponent,
 Str255 theString,
 SInt16 strListID,
 SInt16 index
);

Parameters
aComponent
theString

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentPublicResource

OSErr GetComponentPublicResource (
 Component aComponent,
 OSType resourceType,
 SInt16 resourceID,
 Handle *theResource
);

Parameters
aComponent
resourceType
theResource

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 29
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

GetComponentPublicResourceList

OSErr GetComponentPublicResourceList (
 OSType resourceType,
 SInt16 resourceID,
 SInt32 flags,
 ComponentDescription *cd,
 GetMissingComponentResourceUPP missingProc,
 void *refCon,
 void *atomContainerPtr
);

Parameters
resourceType
cd
missingProc

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentRefcon
Retrieves the value of the reference constant for your component.

long GetComponentRefcon (
 Component aComponent
);

Parameters
aComponent

The component whose reference constant you wish to get. You can use a component instance here,
but you must coerce the data type appropriately.

Return Value
The reference constant for the specified component.

Discussion
There is one reference constant for each component, regardless of the number of connections to that
component. When your component is registered, the Component Manager sets this reference constant to
0.

The reference constant is a 4-byte value that your component can use in any way you decide. For example,
you might use the reference constant to store the address of a data structure that is shared by all connections
maintained by your component. You should allocate shared structures in the system heap. Your component
should deallocate the structure when its last connection is closed or when it is unregistered.

Availability
Available in Mac OS X v10.0 and later.

30 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Declared In
Components.h

GetComponentResource

OSErr GetComponentResource (
 Component aComponent,
 OSType resType,
 SInt16 resID,
 Handle *theResource
);

Parameters
aComponent
resType
theResource

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentTypeModSeed

SInt32 GetComponentTypeModSeed (
 OSType componentType
);

Parameters
componentType

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 31
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

InvokeComponentMPWorkFunctionUPP

ComponentResult InvokeComponentMPWorkFunctionUPP (
 void *globalRefCon,
 ComponentMPWorkFunctionHeaderRecordPtr header,
 ComponentMPWorkFunctionUPP userUPP
);

Parameters
header
userUPP

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

InvokeComponentRoutineUPP
Calls your component routine callback function

ComponentResult InvokeComponentRoutineUPP (
 ComponentParameters *cp,
 Handle componentStorage,
 ComponentRoutineUPP userUPP
);

Parameters
cp
componentStorage
userUPP

Return Value
See the description of the ComponentResult data type.

Discussion
See the ComponentRoutineProcPtr (page 47) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

32 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

InvokeGetMissingComponentResourceUPP

OSErr InvokeGetMissingComponentResourceUPP (
 Component c,
 OSType resType,
 SInt16 resID,
 void *refCon,
 Handle *resource,
 GetMissingComponentResourceUPP userUPP
);

Parameters
c
resType
resource
userUPP

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

NewComponentFunctionUPP

ComponentFunctionUPP NewComponentFunctionUPP (
 ProcPtr userRoutine,
 ProcInfoType procInfo
);

Parameters
procInfo

Return Value
See the description of the ComponentFunctionUPP data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 33
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

NewComponentMPWorkFunctionUPP

ComponentMPWorkFunctionUPP NewComponentMPWorkFunctionUPP (
 ComponentMPWorkFunctionProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ComponentMPWorkFunctionUPP data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

NewComponentRoutineUPP
Creates a new universal procedure pointer (UPP) to a component routine callback function.

ComponentRoutineUPP NewComponentRoutineUPP (
 ComponentRoutineProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ComponentRoutineUPP data type.

Discussion
See the ComponentRoutineProcPtr (page 47) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

NewGetMissingComponentResourceUPP

GetMissingComponentResourceUPP NewGetMissingComponentResourceUPP (
 GetMissingComponentResourceProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the GetMissingComponentResourceUPP data type.

Availability
Available in Mac OS X v10.0 and later.

34 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Declared In
Components.h

OpenAComponent

OSErr OpenAComponent (
 Component aComponent,
 ComponentInstance *ci
);

Parameters
aComponent
ci

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

OpenAComponentResFile

OSErr OpenAComponentResFile (
 Component aComponent,
 ResFileRefNum *resRef
);

Parameters
aComponent

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 35
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

OpenADefaultComponent

OSErr OpenADefaultComponent (
 OSType componentType,
 OSType componentSubType,
 ComponentInstance *ci
);

Parameters
componentType
componentSubType
ci

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
Components.h

OpenComponent
Opens a connection to the component with the component identifier specified by your application.

ComponentInstance OpenComponent (
 Component aComponent
);

Parameters
aComponent

The component you wish to open. Your application obtains this identifier from the
FindNextComponent (page 24) function. If your application registers a component, it can also obtain
a component identifier from theRegisterComponent function or theRegisterComponentResource
function.

Return Value
A component instance which identifies your application’s connection to the component. You must supply
this component instance whenever you call the functions provided by the component. When you close the
component, you must also supply this component instance to the CloseComponent (page 19) function.

If it cannot open the specified component, the function returns NULL.

See the description of the ComponentInstance data type.

Discussion
Your application must open a component before it can call any component functions. To use this function,
you must already have obtained a component identifier. Alternatively, you can use the
OpenDefaultComponent (page 38) function to open a component without calling FindNextComponent.

36 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Note that your application may maintain several connections to a single component, or it may have
connections to several components at the same time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
Components.h

OpenComponentResFile
Allows your component to gain access to its resource file.

ResFileRefNum OpenComponentResFile (
 Component aComponent
);

Parameters
aComponent

The component whose resource file you wish to open. Applications that register components may
obtain this identifier from the RegisterComponentResource (page 41) function. You can use a
component instance here, but you must coerce the data type appropriately.

Return Value
A reference number that your component can use to read data from the appropriate resource file. If the
specified component does not have an associated resource file or if the Component Manager cannot open
the resource file, the function returns 0 or a negative number.

Discussion
This function opens the resource file with read-only permission. The Component Manager adds the resource
file to the current resource chain. Your component must close the resource file with the
CloseComponentResFile (page 19) function before returning to the calling application. Note that there
is only one resource file associated with a component.

Your component can use FSpOpenResFile or equivalent Resource Manager functions to open other resource
files, but you must use this function to open your component’s resource file.

If you store your component in a component resource but register the component with the
RegisterComponent (page 38) function, rather than with the RegisterComponentResource or
RegisterComponentResourceFile function, your component cannot access its resource file with this
function.

Note that when working with resources, your component should always first save the current resource file,
perform any resource operations, then restore the current resource file to its previous value before returning.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 37
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

OpenDefaultComponent
Opens a connection to a registered component of the component type and subtype specified by your
application.

ComponentInstance OpenDefaultComponent (
 OSType componentType,
 OSType componentSubType
);

Parameters
componentType

The type of the component. All components of a particular type support a common set of interface
functions. Use this parameter to search for components of a given type.

componentSubType
The subtype of the component. Different subtypes of a component type may support additional
features or provide interfaces that extend beyond the standard functions for a given component type.
For example, the subtype of an image compressor component indicates the compression algorithm
employed by the compressor.

Your application can use the componentSubType parameter to perform a more specific lookup
operation than is possible using only the componentType parameter. For example, you may want
your application to use only components of a certain component type ('draw') that also have a
specific subtype ('oval'). Set this parameter to 0 to select a component with any subtype value.

Return Value
A component instance that identifies the connection opened to the component which matches your search
criteria. You must supply this component instance whenever you call the functions provided by the component.
When you close the component, you must also supply this component instance to the CloseComponent (page
19) function.

If more than one component in the list of registered components meets the search criteria, the function
opens the first one that it finds in its list. If it cannot open the specified component, it returns NULL.

See the description of the ComponentInstance data type.

Discussion
Your application must open a component before it can call any component functions. This function searches
for a component by type and subtype. You do not have to supply a component description structure or call
the FindNextComponent (page 24) function to use this function. If you want to exert more control over
the selection process, you can use the FindNextComponent and OpenComponent (page 36) functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

RegisterComponent
Registers a component stored in memory.

38 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Component RegisterComponent (
 ComponentDescription *cd,
 ComponentRoutineUPP componentEntryPoint,
 SInt16 global,
 Handle componentName,
 Handle componentInfo,
 Handle componentIcon
);

Parameters
cd

A pointer to a ComponentDescription (page 50) structure that describes the component to be
registered. You must correctly fill in the fields of this structure before calling this function. When
applications search for components using the FindNextComponent (page 24) function, the
Component Manager compares the attributes you specify here with those specified by the application.
If the attributes match, the Component Manager returns the component identifier to the application.

componentEntryPoint
A universal procedure pointer (UPP) to your component’s main entry point. The function referred to
by this parameter receives all requests for the component. See the ComponentRoutineProcPtr (page
47) callback for more information on creating a component function.

global
A set of flags that control the scope of component registration. See Register Component Resource
flags (page 66) for a description of the flags.

componentName
A handle to the component’s name. Set this parameter to NULL if you do not want to assign a name
to the component.

componentInfo
A handle to the component’s information string. Set this parameter to NULL if you do not want to
assign an information string to the component.

componentIcon
A handle to the component’s icon (a 32-by-32 pixel black-and-white icon). Set this parameter to NULL
if you do not want to supply an icon for this component. Note that this icon is not used by the Finder
you supply an icon only so that other components or applications can display your component’s icon
if needed.

Return Value
The unique component identifier assigned to the component by the Component Manager or, if it cannot
register the component, NULL. See the description of the Component data type.

Discussion
Before a component can be used by an application, the component must be registered with the Component
Manager. Applications can then find and open the component using the standard Component Manager
functions.

Components you register with the RegisterComponent function must be in memory when you call this
function. If you want to register a component that is stored in the resource fork of a file, use the
RegisterComponentResource (page 41) function. Use the RegisterComponentResourceFile (page
42) function to register all components in the resource fork of a file. The Component Manager automatically
registers component resources stored in files with file types of 'thng' that are stored in the Extensions
folder. See “Resources” for more information on component resource files.

Functions 39
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Note that a component residing in your application heap remains registered until your application unregisters
it or quits. When an application quits, the Component Manager automatically closes any component
connections to that application. In addition, if the application has registered components that reside in its
heap space, the Component Manager automatically unregisters those components. A component residing
in the system heap and registered by your application remains registered until your application unregisters
it or until the computer is shut down.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

RegisterComponentFileRef

OSErr RegisterComponentFileRef (
 const FSRef *ref,
 SInt16 global
);

Parameters
ref

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

RegisterComponentFileRefEntries

OSErr RegisterComponentFileRefEntries (
 const FSRef *ref,
 SInt16 global,
 const ComponentDescription *toRegister,
 UInt32 registerCount
);

Parameters
ref
toRegister
registerCount

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

40 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Declared In
Components.h

RegisterComponentResource
Registers a component stored in a resource file.

Component RegisterComponentResource (
 ComponentResourceHandle cr,
 SInt16 global
);

Parameters
cr

A handle to a component resource that describes the component to be registered. The component
resource contains all the information required to register the component. Components you register
with this function must be stored in a resource file as a component resource. The Component Manager
automatically registers component resources stored in files with file types of 'thng' that are stored
in the Extensions folder. See “Resources” for more information on component resource files.

global
A set of flags that controls the scope of component registration. See Register Component Resource
flags (page 66) for a description of the flags.

Return Value
The unique component identifier assigned to the component by the Component Manager, or NULL if the
function could not register the component. See the description of the Component data type.

Discussion
Before a component can be used by an application, the component must be registered with the Component
Manager. Applications can then find and open the component using the standard Component Manager
functions.

If you want to register a component that is in memory, use the RegisterComponent (page 38) function.

This function does not actually load the code specified by the component resource into memory. Rather, the
Component Manager loads the component code the first time an application opens the component. If the
code is not in the same file as the component resource or if the Component Manager cannot find the file,
the open request fails.

Note that a component registered locally by your application remains registered until your application
unregisters it or quits. When an application quits, the Component Manager automatically closes any component
connections to that application. In addition, if the application has registered components that reside in its
heap space, the Component Manager automatically unregisters those components. A component registered
globally by your application remains registered until your application unregisters it or until the computer is
shut down.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 41
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

RegisterComponentResourceFile
Registers all component resources in the given resource file.

SInt32 RegisterComponentResourceFile (
 SInt16 resRefNum,
 SInt16 global
);

Parameters
resRefNum

The reference number of the resource file containing the components to register.

global
A set of flags that control the scope of the registration of the components in the resource file. See
Register Component Resource flags (page 66) for a description of the flags.

Return Value
The number of components registered, if all components in the specified resource file are successfully
registered. If one or more of the components in the resource file could not be registered, or if the specified
file reference number is invalid, a negative function result.

Discussion
Before a component can be used by an application, the component must be registered with the Component
Manager. The Component Manager automatically registers component resources stored in files with file
types of 'thng' that are stored in the Extensions folder. For a description of the format and content of
component resources, see “Resources”.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ResolveComponentAlias

Component ResolveComponentAlias (
 Component aComponent
);

Parameters
aComponent

Return Value
See the description of the Component data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

42 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

SetComponentInstanceError
Passes error information to the Component Manager which sets the current error value for the appropriate
connection.

void SetComponentInstanceError (
 ComponentInstance aComponentInstance,
 OSErr theError
);

Parameters
aComponentInstance

The connection for which to set the error. The Component Manager provides a component instance
to your component when the connection is opened. The Component Manager also provides a
component instance to your component as the first parameter in the params field of the parameters
structure.

theError
The new value for the current error.

Discussion
In general, your component returns error information in its function result a nonzero function result indicates
an error occurred, and a function result of 0 indicates the request was successful. However, some requests
require that your component return other information as its function result. In these cases, your component
can use this function to report its latest error state to the Component Manager. You can also use this function
at any time during your component’s execution to report an error.

Applications retrieve this error information by calling the GetComponentInstanceError (page 27) function.
The documentation for your component should specify how the component indicates errors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

SetComponentInstanceStorage
Allows your component to associate memory with a connection.

void SetComponentInstanceStorage (
 ComponentInstance aComponentInstance,
 Handle theStorage
);

Parameters
aComponentInstance

The connection to associate with the allocated memory. The Component Manager provides a
component instance to your component when the connection is opened. You can use a component
identifier here, but you must coerce the data type appropriately.

theStorage
A handle to the memory that your component has allocated for the connection. Your component
must allocate this memory in the current heap. The Component Manager saves this handle and
provides it to your component, along with other parameters, in subsequent requests to this connection.

Functions 43
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Discussion
When an application or component opens a connection to your component, the Component Manager sends
your component an open request. In response to this open request, your component should set up an
environment to service the connection. Typically, your component should allocate some memory for the
connection. Your component can then use that memory to maintain state information appropriate to the
connection.

Your component should dispose of any allocated memory for the connection only in response to the close
request. Note that whenever an open request fails, the Component Manager always issues the close request.
Furthermore, the value stored with this function is always passed to the close request, so it must be valid or
NULL. If the open request tries to dispose of its allocated memory before returning, it should call this function
again with a NULL handle to keep the Component Manager from passing an invalid handle to the close
request.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
Components.h

SetComponentRefcon
Sets the reference constant for your component.

void SetComponentRefcon (
 Component aComponent,
 long theRefcon
);

Parameters
aComponent

The component whose reference constant you wish to set. You can use a component instance here,
but you must coerce the data type appropriately.

theRefcon
The reference constant value that you want to set for your component. Your component can retrieve
the reference constant using the GetComponentRefcon (page 30) function.

Discussion
There is one reference constant for each component, regardless of the number of connections to that
component. When your component is registered, the Component Manager sets this reference constant to
0.

The reference constant is a 4-byte value that your component can use in any way you decide. For example,
you might use the reference constant to store the address of a data structure that is shared by all connections
maintained by your component. You should allocate shared structures in the system heap. Your component
should deallocate the structure when its last connection is closed or when it is unregistered.

Availability
Available in Mac OS X v10.0 and later.

44 Functions
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Declared In
Components.h

SetDefaultComponent
Changes the search order for registered components.

OSErr SetDefaultComponent (
 Component aComponent,
 SInt16 flags
);

Parameters
aComponent

The component which you wish moved to the front of the search chain. The order of the search chain
influences which component the Component Manager selects in response to an application’s use of
the OpenDefaultComponent (page 38) and FindNextComponent (page 24) functions. You can
use a component instance here, but you must coerce the data type appropriately.

flags
A value specifying the control information governing the operation. The value of this parameter
controls which component description fields the Component Manager examines during the reorder
operation. Set the appropriate flags to 1 to define the fields that are examined during the reorder
operation. See Set Default Component Flags (page 68) for a description of the values you can use
here.

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Discussion
Note that this function changes the search order for all applications. As a result, you should use this function
carefully.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

UncaptureComponent
Allows your component to uncapture a previously captured component.

OSErr UncaptureComponent (
 Component aComponent
);

Parameters
aComponent

The component to be uncaptured. Your component obtains this identifier from the
CaptureComponent (page 18) function. You can use a component instance here, but you must
coerce the data type appropriately.

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Functions 45
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Discussion
This function restores the specified component to the list of available components. Applications can then
access the component and retrieve information about the component using Component Manager functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

UnregisterComponent
Removes a component from the Component Manager’s registration list.

OSErr UnregisterComponent (
 Component aComponent
);

Parameters
aComponent

The component to be removed. Applications that register components may obtain this identifier from
the RegisterComponent (page 38) or RegisterComponentResource (page 41) functions. The
component must not be in use by any applications or components. You can use a component instance
here, but you must coerce the data type appropriately.

Return Value
A result code. See “Component Manager Result Codes” (page 69). If there are open connections to the
component, returns a validInstancesExist error.

Discussion
Most components are registered at startup and remain registered until the computer is shut down. However,
you may want to provide some services temporarily. In that case you dispose of the component that provides
the temporary service by using this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Callbacks

ComponentMPWorkFunctionProcPtr

typedef ComponentResult (*ComponentMPWorkFunctionProcPtr) (
 void * globalRefCon,
 ComponentMPWorkFunctionHeaderRecordPtr header
);

If you name your function MyComponentMPWorkFunctionProc, you would declare it like this:

ComponentResult MyComponentMPWorkFunctionProc (

46 Callbacks
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

 void * globalRefCon,
 ComponentMPWorkFunctionHeaderRecordPtr header
);

Parameters
header

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentRoutineProcPtr
Defines a pointer to your component callback function, which serves as the main entry point into your
component and performs the component’s services.

typedef ComponentResult (*ComponentRoutineProcPtr) (
 ComponentParameters * cp,
 Handle componentStorage
);

If you name your function MyComponentRoutineProc, you would declare it like this:

ComponentResult ComponentRoutineProcPtr (
 ComponentParameters * cp,
 Handle componentStorage
);

Parameters
cp

A ComponentParameters (page 54) structure. The what field of the component parameters structure
indicates the action your component should perform. The parameters that the client invoked your
function with are contained in the params field of the component parameters structure. Your
component can use the CallComponentFunction (page 13) or
CallComponentFunctionWithStorage (page 14) function to extract the parameters from this
structure.

componentStorage
A handle to any memory that your component has associated with the connection. Typically, upon
receiving an open request, your component allocates memory and uses the
SetComponentInstanceStorage (page 43) function to associate the allocated memory with the
component connection.

Return Value
Your component should return a value of type ComponentResult. If your component does not return error
information as its function result, it should indicate errors using the SetComponentInstanceError (page
43) function. See the description of the ComponentResult data type.

Callbacks 47
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Discussion
You pass a pointer to your component callback function to the Component Manager when you register your
component. The Component Manager can then call your component when another application or component
requests its services. When your component receives a request, it should perform the action specified in the
what field of the component parameters structure.

The pointer which you pass to the Component Manager should be a universal procedure pointer (UPP). The
definition of the UPP data type for your component function is as follows:

typedef (ComponentRoutineProcPtr) ComponentRoutineUPP;

Before using your component function, you must first create a UPP for your callback function, using the
NewComponentRoutineUPP (page 34) function, as shown here:

ComponentRoutineUPP MyComponentRoutineUPP;
MyComponentRoutineUPP =
NewComponentRoutineUPP(&MyComponentRoutineProc)

You then pass MyComponentRoutineUPP to the Component Manager when you register your component.
The Component Manager will call your function each time your component receives a request. If you wish
to call your component function yourself, you can use the InvokeComponentRoutineUPP (page 32) function.

result = InvokeComponentRoutineUPP &myParams, myStorage,
MyComponentRoutineUPP)

When you are finished with your component callback function, you should dispose of the universal procedure
pointer associated with it, using the DisposeComponentRoutineUPP (page 23) function.

DisposeComponentRoutineUPP(MyComponentRoutineUPP);

To provide a component, you define a component function and supply the appropriate registration
information. You store your component function in a code resource and typically store your component’s
registration information as resources in a component file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetMissingComponentResourceProcPtr

typedef OSErr (*GetMissingComponentResourceProcPtr) (
 Component c,
 OSType resType,
 short resID,
 void * refCon,
 Handle * resource
);

If you name your function MyGetMissingComponentResourceProc, you would declare it like this:

OSErr GetMissingComponentResourceProcPtr (
 Component c,
 OSType resType,

48 Callbacks
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

 short resID,
 void * refCon,
 Handle * resource
);

Parameters
c
resType
resource

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Data Types

ComponentAliasResource

struct ComponentAliasResource {
 ComponentResource cr;
 ComponentDescription aliasCD;
};
typedef struct ComponentAliasResource ComponentAliasResource;

Fields
cr
aliasCD

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Data Types 49
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

ComponentDependencyArray

struct ComponentDependencyArray {
 SInt32 count;
 ComponentDescription descArray[1];
};

Fields
count
descArray

ComponentDescription

struct ComponentDescription {
 OSType componentType;
 OSType componentSubType;
 OSType componentManufacturer;
 unsigned long componentFlags;
 unsigned long componentFlagsMask;
};
typedef struct ComponentDescription ComponentDescription;

Fields
componentType

A four-character code that identifies the type of component. All components of a particular type must
support a common set of interface functions. For example, drawing components all have a component
type of 'draw'.

If you are developing an application which uses components, you can use this field to search for
components of a given type by specifying the component type in this field of the component
description structure you supply to the FindNextComponent (page 24) function or the
CountComponents (page 20) function. A value of 0 operates as a wildcard.

If you are developing a component, it must support all of the standard functions for the component
type specified by this field. Type codes with all lowercase characters are reserved for definition by
Apple. You can define your own component type code as long as you register it with Apple’s
Component Registry Group.

componentSubType
A four-character code that identifies the subtype of the component. Different subtypes of a component
type may support additional features or provide interfaces that extend beyond the standard functions
for a given component type. For example, the subtype of drawing components indicates the type of
object the component draws. Drawing components that draw ovals have a subtype of 'oval'.

If you are developing an application which uses components, you can use the componentSubType
field to perform a more specific lookup operation than is possible using only the componentType
field. By specifying particular values for both fields in the component description structure that you
supply to the FindNextComponent or CountComponents function, your application retrieves
information about only those components that meet both of these search criteria. A value of 0 operates
as a wildcard.

If you are developing a component, you may use this field to indicate more specific information about
the capabilities of the component. There are no restrictions on the content you assign to this field. If
no additional information is appropriate for your component type, you may set thecomponentSubType
field to 0.

50 Data Types
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

componentManufacturer
A four-character code that identifies the manufacturer of the component. This field allows for further
differentiation between individual components. For example, components made by a specific
manufacturer may support an extended feature set. Components provided by Apple use a manufacturer
value of 'appl'.

If you are developing an application which uses components, you can use this field to find components
from a certain manufacturer. Specify the appropriate manufacturer code in this field of the component
description structure you supply to the FindNextComponent or CountComponents function. A value
of 0 operates as a wildcard.

If you are developing a component, you obtain your manufacturer code, which can be the same as
your application signature, from Apple’s Component Registry Group.

componentFlags
A 32-bit field that provides additional information about a particular component.

The high-order 8 bits are reserved for definition by the Component Manager. If you are developing
an application, you should usually set these bits to 0.

The low-order 24 bits are specific to each component type. These flags can be used to indicate the
presence of features or capabilities in a given component.

If you are developing an application which uses components, you can use these flags to further narrow
the search criteria applied by the FindNextComponent or CountComponents function. If you use
the componentFlags field in a component search, you use the componentFlagsMask field to
indicate which flags are to be considered in the search.

If you are developing a component, you can use these flags to indicate any special capabilities or
features of your component. You may use all 24 bits, as appropriate to its component type. You must
set all unused bits to 0.

componentFlagsMask
A 32-bit field that indicates which flags in the componentFlags field are relevant to a particular
component search operation.

If you are developing an application which uses components, your application should set each bit
which corresponds to a flag in the componentFlags field that is to be considered as a search criterion
by the FindNextComponent or CountComponents function to 1. The Component Manager considers
only these flags during the search. You specify the desired flag value (either 0 or 1) in the
componentFlags field.

For example, to look for a component with a specific control flag that is set to 0, set the appropriate
bit in the ComponentFlags field to 0 and the same bit in the ComponentFlagsMask field to 1. To
look for a component with a specific control flag that is set to 1, set the bit in the ComponentFlags
field to 1 and the same bit in the ComponentFlagsMask field to 1. To ignore a flag, set the bit in the
ComponentFlagsMask field to 0.

If you are developing a component, your component must set the componentFlagsMask field in its
component description structure to 0.

Discussion
The ComponentDescription structure identifies the characteristics of a component, including the type of
services offered by the component and its manufacturer.

Applications and components use component description structures in different ways. An application that
uses components specifies the selection criteria for a component in a component description structure. The
functions FindNextComponent (page 24) , CountComponents (page 20) , and GetComponentInfo (page
26) all use the component description structure to specify the criteria for their search.

Data Types 51
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

A component uses the component description structure to specify its registration information and capabilities
and identify itself to the Component Manager. If your component is stored in a component resource, the
information in the component description structure must be part of that resource. See the description of the
component ‘thng’ resource. If you have developed an application that registers your component, that
application must supply a component description structure to the RegisterComponent (page 38) function.
See “Registering Components” for information about registering components.

The ComponentDescription data type defines the component description structure. Note that the valid
values of fields in the component description structure are determined by the component type specification.
For example, all image compressor components must use the componentSubType field to specify the
compression algorithm used by the compressor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentFunctionUPP

typedef UniversalProcPtr ComponentFunctionUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentInstanceRecord

struct ComponentInstanceRecord {
 long data[1];
};
typedef struct ComponentInstanceRecord ComponentInstanceRecord;
typedef ComponentInstanceRecord * ComponentInstance;

Fields
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

52 Data Types
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

ComponentMPWorkFunctionHeaderRecord

struct ComponentMPWorkFunctionHeaderRecord {
 UInt32 headerSize;
 UInt32 recordSize;
 UInt32 workFlags;
 UInt16 processorCount;
 UInt8 unused;
 UInt8 isRunning;
};
typedef struct ComponentMPWorkFunctionHeaderRecord
ComponentMPWorkFunctionHeaderRecord;
typedef ComponentMPWorkFunctionHeaderRecord *
ComponentMPWorkFunctionHeaderRecordPtr;

Fields
headerSize
recordSize
workFlags
processorCount
unused
isRunning

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentMPWorkFunctionUPP

typedef ComponentMPWorkFunctionProcPtr ComponentMPWorkFunctionUPP;

Discussion
For more information, see the description of the ComponentMPWorkFunctionUPP callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Data Types 53
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

ComponentParameters

struct ComponentParameters {
 UInt8 flags;
 UInt8 paramSize;
 short what;
 long params[1];
};
typedef struct ComponentParameters ComponentParameters;

Fields
flags

Reserved for use by Apple.

paramSize
Specifies the number of bytes of parameter data for this request. The actual parameters are stored in
the params field.

what
Specifies the type of request. Component designers define the meaning of positive values and assign
them to requests that are supported by components of a given type. Negative values are reserved
for definition by Apple. See “Result Codes” for Apple-defined request code values.

params
An array that contains the parameters specified by the application that called your component. You
can use the CallComponentRoutine or CallComponentRoutineWithStorage function to convert
this array into a Pascal-style invocation of a subroutine in your component.

Discussion
The Component Manager uses the component parameters structure to pass information to your component
about a request from an application. Functions which use this data type are CallComponentFunction (page
13) , CallComponentFunctionWithStorage (page 14) , and DelegateComponentCall (page 22).The
information in this structure completely defines the request. Your component services the request as
appropriate.

The ComponentParameters data type defines the component parameters structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentPlatformInfo

struct ComponentPlatformInfo {
 long componentFlags;
 ResourceSpec component;
 short platformType;
};
typedef struct ComponentPlatformInfo ComponentPlatformInfo;

Fields
component

Availability
Available in Mac OS X v10.0 and later.

54 Data Types
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Declared In
Components.h

ComponentPlatformInfoArray

struct ComponentPlatformInfoArray {
 long count;
 ComponentPlatformInfo platformArray[1];
};
typedef struct ComponentPlatformInfoArray ComponentPlatformInfoArray;

Fields
platformArray

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentRecord

struct ComponentRecord {
 long data[1];
};
typedef struct ComponentRecord ComponentRecord;
typedef ComponentRecord * Component;

Fields
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentResource

struct ComponentResource {
 ComponentDescription cd;
 ResourceSpec component;
 ResourceSpec componentName;
 ResourceSpec componentInfo;
 ResourceSpec componentIcon;
};
typedef struct ComponentResource ComponentResource;
typedef ComponentResource * ComponentResourcePtr;

Fields
cd

A ComponentDescription (page 50) structure that specifies the characteristics of the component.

Data Types 55
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

component
A resource specification structure that specifies the type and ID of the component code resource. The
resType field of the resource specification structure may contain any value. The component’s main
entry point must be at offset 0 in the resource.

componentName
A resource specification structure that specifies the resource type and ID for the name of the
component. This is a Pascal string. Typically, the name is stored in a resource of type 'STR '.

componentInfo
A resource specification structure that specifies the resource type and ID for the information string
that describes the component. This is a Pascal string. Typically, the information string is stored in a
resource of type 'STR '. You might use the information stored in this resource in a Get Info dialog
box.

componentIcon
A resource specification structure that specifies the resource type and ID for the icon for a component.
Component icons are stored as 32-by-32 bit maps. Typically, the icon is stored in a resource of type
'ICON'. Note that this icon is not used by the Finder you supply an icon only so that other components
or applications can display your component’s icon in a dialog box if needed.

Discussion
The ComponentResource data type defines the structure of a component resource. You can also optionally
append to the end of this structure the information defined by the ComponentResourceExtension (page
56) data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentResourceExtension

struct ComponentResourceExtension {
 long componentVersion;
 long componentRegisterFlags;
 short componentIconFamily;
};
typedef struct ComponentResourceExtension ComponentResourceExtension;

Fields
componentVersion

The version number of the component. If you specify the componentDoAutoVersion flag in
componentRegisterFlags, the Component Manager must obtain the version number of your
component when your component is registered. Either you can provide a version number in your
component’s resource, or you can specify a value of 0 for its version number. If you specify 0, the
Component Manager sends your component a version request to get the version number of your
component.

componentRegisterFlags
A set of flags containing additional registration information. See Component Resource Extension
Flags (page 61) for the flag values.

56 Data Types
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

componentIconFamily
The resource ID of an icon family. You can provide an icon family in addition to the icon provided in
the componentIcon field. Note that members of this icon family are not used by the Finder you
supply an icon family only so that other components or applications can display your component’s
icon in a dialog box if needed.

Discussion
You can optionally include in your component resource the information defined by the
ComponentResourceExtension data type:

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentResult

typedef long ComponentResult;

Discussion

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentRoutineUPP

typedef ComponentRoutineProcPtr ComponentRoutineUPP;

Discussion
For more information, see the description of the ComponentRoutineUPP callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Data Types 57
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

ExtComponentResource

struct ExtComponentResource {
 ComponentDescription cd;
 ResourceSpec component;
 ResourceSpec componentName;
 ResourceSpec componentInfo;
 ResourceSpec componentIcon;
 long componentVersion;
 long componentRegisterFlags;
 short componentIconFamily;
 long count;
 ComponentPlatformInfo platformArray[1];
};
typedef struct ExtComponentResource ExtComponentResource;
typedef ExtComponentResource * ExtComponentResourcePtr;

Fields
cd
component
componentName
componentInfo
componentIcon
platformArray

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetMissingComponentResourceUPP

typedef GetMissingComponentResourceProcPtr GetMissingComponentResourceUPP;

Discussion
For more information, see the description of the GetMissingComponentResourceUPP callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

58 Data Types
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

RegisteredComponentInstanceRecord

struct RegisteredComponentInstanceRecord {
 long data[1];
};
typedef struct RegisteredComponentInstanceRecord RegisteredComponentInstanceRecord;
typedef RegisteredComponentInstanceRecord * RegisteredComponentInstanceRecordPtr;

Fields
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

RegisteredComponentRecord

struct RegisteredComponentRecord {
 long data[1];
};
typedef struct RegisteredComponentRecord RegisteredComponentRecord;
typedef RegisteredComponentRecord * RegisteredComponentRecordPtr;

Fields
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ResourceSpec

struct ResourceSpec {
 OSType resType;
 short resID;
};
typedef struct ResourceSpec ResourceSpec;

Fields
resType

The type of the resource.

resID
The ID of the resource.

Discussion
The ComponentResource (page 55) structure uses the resource specification structure, defined by the
ResourceSpec data type, to describe the component’s code, name, information string, or icon. The resources
specified by the resource specification structures must reside in the same resource file as the component
resource itself.

Data Types 59
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Constants

cmpAliasNoFlags

enum {
 cmpAliasNoFlags = 0,
 cmpAliasOnlyThisFile = 1
};

Constants
cmpAliasNoFlags

Available in Mac OS X v10.0 and later.

Declared in Components.h.

cmpAliasOnlyThisFile
Available in Mac OS X v10.0 and later.

Declared in Components.h.

cmpIsMissing

enum {
 cmpThreadSafe = 1L << 28,
 cmpIsMissing = 1L << 29,
 cmpWantsRegisterMessage = 1L << 31
};

Constants
cmpThreadSafe

Available in Mac OS X v10.3 and later.

Declared in Components.h.

cmpIsMissing
Available in Mac OS X v10.0 and later.

Declared in Components.h.

cmpWantsRegisterMessage
The setting of the cmpWantsRegisterMessage bit determines whether the Component Manager
calls this component during registration. Set this bit to 1 if your component should be called when
it is registered; otherwise, set this bit to 0.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

60 Constants
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Discussion
These values are used by the componentFlags field of the ComponentDescription (page 50) structure
to provide additional information about a component.

Component Resource Extension Flags

enum {
 componentDoAutoVersion = (1 << 0),
 componentWantsUnregister = (1 << 1),
 componentAutoVersionIncludeFlags = (1 << 2),
 componentHasMultiplePlatforms = (1 << 3),
 componentLoadResident = (1 << 4)
};

Constants
componentDoAutoVersion

Specify this flag if you want the Component Manager to resolve conflicts between different versions
of the same component. If you specify this flag, the Component Manager registers your component
only if there is no later version available. If an older version is already registered, the Component
Manager unregisters it. If a newer version of the same component is registered after yours, the
Component Manager automatically unregisters your component. You can use this automatic version
control feature to make sure that the most recent version of your component is registered, regardless
of the number of versions that are installed

Available in Mac OS X v10.0 and later.

Declared in Components.h.

componentWantsUnregister
Specify this flag if you want your component to receive an unregister request when it is unregistered.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

componentAutoVersionIncludeFlags
Specify this flag if you want the Component Manager to include the componentFlags field of the
component description structure when it searches for identical components in the process of
performing automatic version control for your component. If you do not specify this flag, the
Component Manager searches only the componentType, componentSubType, and
componentManufacturer fields.

Note that the setting of the componentAutoVersionIncludeFlags flag affects automatic version
control only and does not affect the search operations performed by FindNextComponent and
CountComponents.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

componentHasMultiplePlatforms
Available in Mac OS X v10.0 and later.

Declared in Components.h.

componentLoadResident
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Constants 61
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Discussion
These values are used in the ComponentResourceExtension (page 56) structure to specify additional
information about component registration.

CSComponentsThreadMode

typedef UInt32 CSComponentsThreadMode;
enum {
 kCSAcceptAllComponentsMode = 0,
 kCSAcceptThreadSafeComponentsOnlyMode = 1
};

Constants
kCSAcceptAllComponentsMode

Available in Mac OS X v10.3 and later.

Declared in Components.h.

kCSAcceptThreadSafeComponentsOnlyMode
Available in Mac OS X v10.3 and later.

Declared in Components.h.

kAnyComponentType

enum {
 kAnyComponentType = 0,
 kAnyComponentSubType = 0,
 kAnyComponentManufacturer = 0,
 kAnyComponentFlagsMask = 0
};

Constants
kAnyComponentType

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kAnyComponentSubType
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kAnyComponentManufacturer
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kAnyComponentFlagsMask
Available in Mac OS X v10.0 and later.

Declared in Components.h.

62 Constants
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

kAppleManufacturer

enum {
 kAppleManufacturer = 'appl',
 kComponentResourceType = 'thng',
 kComponentAliasResourceType = 'thga'
};

Constants
kAppleManufacturer

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentResourceType
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentAliasResourceType
Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagDoWork

enum {
 mpWorkFlagDoWork = (1 << 0),
 mpWorkFlagDoCompletion = (1 << 1),
 mpWorkFlagCopyWorkBlock = (1 << 2),
 mpWorkFlagDontBlock = (1 << 3),
 mpWorkFlagGetProcessorCount = (1 << 4),
 mpWorkFlagGetIsRunning = (1 << 6)
};

Constants
mpWorkFlagDoWork

Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagDoCompletion
Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagCopyWorkBlock
Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagDontBlock
Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagGetProcessorCount
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Constants 63
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

mpWorkFlagGetIsRunning
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platform68k

enum {
 platform68k = 1,
 platformPowerPC = 2,
 platformInterpreted = 3,
 platformWin32 = 4,
 platformPowerPCNativeEntryPoint = 5,
 platformIA32NativeEntryPoint = 6
};

Constants
platform68k

Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformPowerPC
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformInterpreted
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformWin32
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformPowerPCNativeEntryPoint
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformIA32NativeEntryPoint
Available in Mac OS X v10.3 and later.

Declared in Components.h.

64 Constants
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Discussion

platformIRIXmips

enum {
 platformIRIXmips = 1000,
 platformSunOSsparc = 1100,
 platformSunOSintel = 1101,
 platformLinuxppc = 1200,
 platformLinuxintel = 1201,
 platformAIXppc = 1300,
 platformNeXTIntel = 1400,
 platformNeXTppc = 1401,
 platformNeXTsparc = 1402,
 platformNeXT68k = 1403,
 platformMacOSx86 = 1500
};

Constants
platformIRIXmips

Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformSunOSsparc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformSunOSintel
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformLinuxppc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformLinuxintel
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformAIXppc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformNeXTIntel
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformNeXTppc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformNeXTsparc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Constants 65
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

platformNeXT68k
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformMacOSx86
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Register Component Resource flags

enum {
 registerComponentGlobal = 1,
 registerComponentNoDuplicates = 2,
 registerComponentAfterExisting = 4,
 registerComponentAliasesOnly = 8
};

Constants
registerComponentGlobal

Specify this flag to indicate that this component should be made available to other applications and
clients as well as the one performing the registration. If you do not specify this flag, the component
is available for use only by the registering application or component (that is, the component is local
to the A5 world of the registering program).

Available in Mac OS X v10.0 and later.

Declared in Components.h.

registerComponentNoDuplicates
Specify this flag to indicate that if a component with identical characteristics to the one being registered
already exists, then the new one should not be registered (RegisterComponent returns 0 in this
situation). If you do not specify this flag, the component is registered even if a component with
identical characteristics to the one being registered already exists.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

registerComponentAfterExisting
Specify this flag to indicate that this component should be registered after all other components with
the same component type. Usually components are registered before others with identical descriptions;
specifying this flag overrides that behavior.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

registerComponentAliasesOnly
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Discussion
The functions RegisterComponent (page 38) , RegisterComponentResource (page 41) , and
RegisterComponentResourceFile (page 42) use these flags in the global parameter.

66 Constants
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Request Codes

enum {
 kComponentOpenSelect = -1,
 kComponentCloseSelect = -2,
 kComponentCanDoSelect = -3,
 kComponentVersionSelect = -4,
 kComponentRegisterSelect = -5,
 kComponentTargetSelect = -6,
 kComponentUnregisterSelect = -7,
 kComponentGetMPWorkFunctionSelect = -8,
 kComponentExecuteWiredActionSelect = -9,
 kComponentGetPublicResourceSelect = -10
};

Constants
kComponentOpenSelect

A request to open a connection. Your component must respond to this request code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentCloseSelect
A request to close a connection. Your component must respond to this request code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentCanDoSelect
A request to determine whether your component supports a particular request. Your component
must respond to this request code

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentVersionSelect
A request to return your component’s version number. Your component must respond to this request
code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentRegisterSelect
A request to determine whether your component can operate in the current environment. Your
component may or may not respond to this request code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentTargetSelect
A request to call another component whenever your component would call itself. Your component
may or may not respond to this request code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

Constants 67
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

kComponentUnregisterSelect
A request to perform any operations necessary as a result of your component being unregistered.
Your component may or may not respond to this request code

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentGetMPWorkFunctionSelect
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentExecuteWiredActionSelect
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentGetPublicResourceSelect
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Discussion
These values are used in the ComponentParameters (page 54) structure to specify the type of a request
to a component. Apple has defined these request codes:

Set Default Component Flags

enum {
 defaultComponentIdentical = 0,
 defaultComponentAnyFlags = 1,
 defaultComponentAnyManufacturer = 2,
 defaultComponentAnySubType = 4,
 defaultComponentAnyFlagsAnyManufacturer = (defaultComponentAnyFlags +
defaultComponentAnyManufacturer),
 defaultComponentAnyFlagsAnyManufacturerAnySubType = (defaultComponentAnyFlags
 + defaultComponentAnyManufacturer + defaultComponentAnySubType)
};

Constants
defaultComponentIdentical

The Component Manager places the component specified in the call to SetDefaultComponent in
front of all other components that have the same component description.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

defaultComponentAnyFlags
The Component Manager ignores the value of the componentFlags field during the reorder operation.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

defaultComponentAnyManufacturer
The Component Manager ignores the value of the componentManufacturer field during the reorder
operation.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

68 Constants
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

defaultComponentAnySubType
The Component Manager ignores the value of the componentSubType field during the reorder
operation.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

defaultComponentAnyFlagsAnyManufacturer
Available in Mac OS X v10.0 and later.

Declared in Components.h.

defaultComponentAnyFlagsAnyManufacturerAnySubType
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Discussion
The SetDefaultComponent (page 45) function uses these values in the flags parameter to control which
component description fields the Component Manager examines during the reorder operation.

Result Codes

The result codes defined by the Component Manager are listed below.

DescriptionValueResult Code

Invalid component ID.-3000invalidComponentID

Available in Mac OS X v10.0 and later.

This component has open connections.-3001validInstancesExist

Available in Mac OS X v10.0 and later.

This component has not been captured.-3002componentNotCaptured

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-3003componentDontRegister

Available in Mac OS X v10.0 and later.-3004unresolvedComponentDLLErr

Available in Mac OS X v10.0 and later.-3005retryComponentRegistrationErr

Component does not support the specified request
code.

0x80008002badComponentSelector

Available in Mac OS X v10.0 and later.

Invalid component passed to Component Manager.0x80008001badComponentInstance

Available in Mac OS X v10.0 and later.

Result Codes 69
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

Gestalt Constants

You can check for version and feature availability information by using the Component Manager selectors
defined in the Gestalt Manager. For more information, see Gestalt Manager Reference.

70 Gestalt Constants
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Component Manager Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.5

ComponentFunctionImplemented
Allows your application to determine whether a component supports a specified request. (Deprecated in
Mac OS X v10.5.)

ComponentResult ComponentFunctionImplemented (
 ComponentInstance ci,
 SInt16 ftnNumber
);

Parameters
ci

The component instance of which you wish to make a request. Your application obtains the component
instance from the OpenDefaultComponent (page 38) function or the OpenComponent (page 36)
function. You can use a component identifier here, but you must coerce the data type appropriately.

ftnNumber
A request code value. See the documentation supplied with the component for request code values.

Return Value
Indicates whether the component supports the specified request. You can interpret this number as if it were
a Boolean value. If the returned value is TRUE, the component supports the specified request. If the returned
value is FALSE, the component does not support the request. Your application can use this function to
determine a component’s capabilities.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Components.h

ComponentSetTarget
Calls a component’s target request function and informs a component that it has been targeted by another
component. (Deprecated in Mac OS X v10.5.)

Deprecated in Mac OS X v10.5 71
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated Component Manager Functions

ComponentResult ComponentSetTarget (
 ComponentInstance ci,
 ComponentInstance target
);

Parameters
ci

The component instance to which to send a target request (the component that has been targeted).
You can use a component identifier here, but you must coerce the data type appropriately.

target
The component instance issuing the target request.

Return Value
The value that the targeted component instance returns in response to the target request, or
badComponentSelector if the targeted component does not support the target request.

Discussion
Your component can target a component instance without capturing the component or your component
can first capture the component and then target a specific instance of the component.

You should not target a component instance if the component does not support the target request. Before
calling this function, you should issue a can do request to the component instance you want to target to
verify that the component supports the target request. After receiving a target request, the targeted
component instance should call the component instance that targeted it whenever the targeted component
instance would normally call one of its defined functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Components.h

GetComponentVersion
Returns the version number of a component to your application. (Deprecated in Mac OS X v10.5.)

ComponentResult GetComponentVersion (
 ComponentInstance ci
);

Parameters
ci

The component instance from which you want to retrieve version information. Your application
obtains the component instance from the OpenDefaultComponent (page 38) function or the
OpenComponent (page 36) function.

Return Value
The version number of the component you specify. The high-order 16 bits represent the major version, and
the low-order 16 bits represent the minor version. The major version specifies the component specification
level the minor version specifies a particular implementation’s version number.

Availability
Available in Mac OS X v10.0 and later.

72 Deprecated in Mac OS X v10.5
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated Component Manager Functions

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Components.h

RegisterComponentFile
(Deprecated in Mac OS X v10.5.)

OSErr RegisterComponentFile (
 const FSSpec *spec,
 short global
);

Parameters
spec

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Components.h

RegisterComponentFileEntries
(Deprecated in Mac OS X v10.5.)

OSErr RegisterComponentFileEntries (
 const FSSpec *spec,
 short global,
 const ComponentDescription *toRegister,
 UInt32 registerCount
);

Parameters
spec
toRegister
registerCount

Return Value
A result code. See “Component Manager Result Codes” (page 69).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Deprecated in Mac OS X v10.5 73
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated Component Manager Functions

Declared In
Components.h

74 Deprecated in Mac OS X v10.5
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Deprecated Component Manager Functions

This table describes the changes to Component Manager Reference.

NotesDate

Updated for Mac OS X v10.5. Added descriptions of thread safety mode functions.2006-07-17

Updated formatting and linking.2003-02-14

75
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

76
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

B

badComponentInstance constant 69
badComponentSelector constant 69

C

CallComponentCanDo function 12
CallComponentClose function 12
CallComponentDispatch function 13
CallComponentFunction function 13
CallComponentFunctionWithStorage function 14
CallComponentFunctionWithStorageProcInfo

function 15
CallComponentGetMPWorkFunction function 15
CallComponentGetPublicResource function 16
CallComponentOpen function 16
CallComponentRegister function 16
CallComponentTarget function 17
CallComponentUnregister function 17
CallComponentVersion function 18
CaptureComponent function 18
CloseComponent function 19
CloseComponentResFile function 19
cmpAliasNoFlags 60
cmpAliasNoFlags constant 60
cmpAliasOnlyThisFile constant 60
cmpIsMissing 60
cmpIsMissing constant 60
cmpThreadSafe constant 60
cmpWantsRegisterMessage constant 60
Component Resource Extension Flags 61
ComponentAliasResource structure 49
componentAutoVersionIncludeFlags constant 61
ComponentDependencyArray structure 50
ComponentDescription structure 50
componentDoAutoVersion constant 61
componentDontRegister constant 69
ComponentFunctionImplemented function (Deprecated

in Mac OS X v10.5) 71

ComponentFunctionUPP data type 52
componentHasMultiplePlatforms constant 61
ComponentInstanceRecord structure 52
componentLoadResident constant 61
ComponentMPWorkFunctionHeaderRecord structure

53
ComponentMPWorkFunctionProcPtr callback 46
ComponentMPWorkFunctionUPP data type 53
componentNotCaptured constant 69
ComponentParameters structure 54
ComponentPlatformInfo structure 54
ComponentPlatformInfoArray structure 55
ComponentRecord structure 55
ComponentResource structure 55
ComponentResourceExtension structure 56
ComponentResult data type 57
ComponentRoutineProcPtr callback 47
ComponentRoutineUPP data type 57
ComponentSetTarget function (Deprecated in Mac OS

X v10.5) 71
componentWantsUnregister constant 61
CountComponentInstances function 20
CountComponents function 20
CSComponentsThreadMode 62
CSGetComponentsThreadMode function 21
CSSetComponentsThreadMode function 21

D

defaultComponentAnyFlags constant 68
defaultComponentAnyFlagsAnyManufacturer

constant 69
defaultComponentAnyFlagsAnyManufacturerAnySubType

constant 69
defaultComponentAnyManufacturer constant 68
defaultComponentAnySubType constant 69
defaultComponentIdentical constant 68
DelegateComponentCall function 22
DisposeComponentFunctionUPP function 23
DisposeComponentMPWorkFunctionUPP function 23
DisposeComponentRoutineUPP function 23

77
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

Index

DisposeGetMissingComponentResourceUPP function
24

E

ExtComponentResource structure 58

F

FindNextComponent function 24

G

GetComponentIconSuite function 25
GetComponentIndString function 26
GetComponentInfo function 26
GetComponentInstanceError function 27
GetComponentInstanceStorage function 28
GetComponentListModSeed function 28
GetComponentPublicIndString function 29
GetComponentPublicResource function 29
GetComponentPublicResourceList function 30
GetComponentRefcon function 30
GetComponentResource function 31
GetComponentTypeModSeed function 31
GetComponentVersion function (Deprecated in Mac OS

X v10.5) 72
GetMissingComponentResourceProcPtr callback 48
GetMissingComponentResourceUPP data type 58

I

invalidComponentID constant 69
InvokeComponentMPWorkFunctionUPP function 32
InvokeComponentRoutineUPP function 32
InvokeGetMissingComponentResourceUPP function

33

K

kAnyComponentFlagsMask constant 62
kAnyComponentManufacturer constant 62
kAnyComponentSubType constant 62
kAnyComponentType 62
kAnyComponentType constant 62

kAppleManufacturer 63
kAppleManufacturer constant 63
kComponentAliasResourceType constant 63
kComponentCanDoSelect constant 67
kComponentCloseSelect constant 67
kComponentExecuteWiredActionSelect constant 68
kComponentGetMPWorkFunctionSelect constant 68
kComponentGetPublicResourceSelect constant 68
kComponentOpenSelect constant 67
kComponentRegisterSelect constant 67
kComponentResourceType constant 63
kComponentTargetSelect constant 67
kComponentUnregisterSelect constant 68
kComponentVersionSelect constant 67
kCSAcceptAllComponentsMode constant 62
kCSAcceptThreadSafeComponentsOnlyMode constant

62

M

mpWorkFlagCopyWorkBlock constant 63
mpWorkFlagDoCompletion constant 63
mpWorkFlagDontBlock constant 63
mpWorkFlagDoWork 63
mpWorkFlagDoWork constant 63
mpWorkFlagGetIsRunning constant 64
mpWorkFlagGetProcessorCount constant 63

N

NewComponentFunctionUPP function 33
NewComponentMPWorkFunctionUPP function 34
NewComponentRoutineUPP function 34
NewGetMissingComponentResourceUPP function 34

O

OpenAComponent function 35
OpenAComponentResFile function 35
OpenADefaultComponent function 36
OpenComponent function 36
OpenComponentResFile function 37
OpenDefaultComponent function 38

P

platform68k 64

78
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

platform68k constant 64
platformAIXppc constant 65
platformIA32NativeEntryPoint constant 64
platformInterpreted constant 64
platformIRIXmips 65
platformIRIXmips constant 65
platformLinuxintel constant 65
platformLinuxppc constant 65
platformMacOSx86 constant 66
platformNeXT68k constant 66
platformNeXTIntel constant 65
platformNeXTppc constant 65
platformNeXTsparc constant 65
platformPowerPC constant 64
platformPowerPCNativeEntryPoint constant 64
platformSunOSintel constant 65
platformSunOSsparc constant 65
platformWin32 constant 64

R

Register Component Resource flags 66
RegisterComponent function 38
registerComponentAfterExisting constant 66
registerComponentAliasesOnly constant 66
RegisterComponentFile function (Deprecated in Mac

OS X v10.5) 73
RegisterComponentFileEntries function (Deprecated

in Mac OS X v10.5) 73
RegisterComponentFileRef function 40
RegisterComponentFileRefEntries function 40
registerComponentGlobal constant 66
registerComponentNoDuplicates constant 66
RegisterComponentResource function 41
RegisterComponentResourceFile function 42
RegisteredComponentInstanceRecord structure 59
RegisteredComponentRecord structure 59
Request Codes 67
ResolveComponentAlias function 42
ResourceSpec structure 59
retryComponentRegistrationErr constant 69

S

Set Default Component Flags 68
SetComponentInstanceError function 43
SetComponentInstanceStorage function 43
SetComponentRefcon function 44
SetDefaultComponent function 45

U

UncaptureComponent function 45
UnregisterComponent function 46
unresolvedComponentDLLErr constant 69

V

validInstancesExist constant 69

79
2006-07-17 | © 2001, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

	Component Manager Reference
	Contents
	Component Manager Reference
	Overview
	Functions by Task
	Finding Components
	Opening and Closing Components
	Getting Information About Components
	Retrieving Component Errors
	Calling Component Functions
	Accessing the Thread Safety Mode
	Creating and Managing Universal Procedure Pointers
	Registering Components
	Dispatching to Component Functions
	Managing Component Connections
	Setting Component Errors
	Working With Component Reference Constants
	Accessing a Component’s Resource File
	Calling Other Components
	Capturing Components
	Changing the Default Search Order

	Functions
	CallComponentCanDo
	CallComponentClose
	CallComponentDispatch
	CallComponentFunction
	CallComponentFunctionWithStorage
	CallComponentFunctionWithStorageProcInfo
	CallComponentGetMPWorkFunction
	CallComponentGetPublicResource
	CallComponentOpen
	CallComponentRegister
	CallComponentTarget
	CallComponentUnregister
	CallComponentVersion
	CaptureComponent
	CloseComponent
	CloseComponentResFile
	CountComponentInstances
	CountComponents
	CSGetComponentsThreadMode
	CSSetComponentsThreadMode
	DelegateComponentCall
	DisposeComponentFunctionUPP
	DisposeComponentMPWorkFunctionUPP
	DisposeComponentRoutineUPP
	DisposeGetMissingComponentResourceUPP
	FindNextComponent
	GetComponentIconSuite
	GetComponentIndString
	GetComponentInfo
	GetComponentInstanceError
	GetComponentInstanceStorage
	GetComponentListModSeed
	GetComponentPublicIndString
	GetComponentPublicResource
	GetComponentPublicResourceList
	GetComponentRefcon
	GetComponentResource
	GetComponentTypeModSeed
	InvokeComponentMPWorkFunctionUPP
	InvokeComponentRoutineUPP
	InvokeGetMissingComponentResourceUPP
	NewComponentFunctionUPP
	NewComponentMPWorkFunctionUPP
	NewComponentRoutineUPP
	NewGetMissingComponentResourceUPP
	OpenAComponent
	OpenAComponentResFile
	OpenADefaultComponent
	OpenComponent
	OpenComponentResFile
	OpenDefaultComponent
	RegisterComponent
	RegisterComponentFileRef
	RegisterComponentFileRefEntries
	RegisterComponentResource
	RegisterComponentResourceFile
	ResolveComponentAlias
	SetComponentInstanceError
	SetComponentInstanceStorage
	SetComponentRefcon
	SetDefaultComponent
	UncaptureComponent
	UnregisterComponent

	Callbacks
	ComponentMPWorkFunctionProcPtr
	ComponentRoutineProcPtr
	GetMissingComponentResourceProcPtr

	Data Types
	ComponentAliasResource
	ComponentDependencyArray
	ComponentDescription
	ComponentFunctionUPP
	ComponentInstanceRecord
	ComponentMPWorkFunctionHeaderRecord
	ComponentMPWorkFunctionUPP
	ComponentParameters
	ComponentPlatformInfo
	ComponentPlatformInfoArray
	ComponentRecord
	ComponentResource
	ComponentResourceExtension
	ComponentResult
	ComponentRoutineUPP
	ExtComponentResource
	GetMissingComponentResourceUPP
	RegisteredComponentInstanceRecord
	RegisteredComponentRecord
	ResourceSpec

	Constants
	cmpAliasNoFlags
	cmpIsMissing
	Component Resource Extension Flags
	CSComponentsThreadMode
	kAnyComponentType
	kAppleManufacturer
	mpWorkFlagDoWork
	platform68k
	platformIRIXmips
	Register Component Resource flags
	Request Codes
	Set Default Component Flags

	Result Codes
	Gestalt Constants

	Appendix A: Deprecated Component Manager Functions
	Deprecated in Mac OS X v10.5
	ComponentFunctionImplemented
	ComponentSetTarget
	GetComponentVersion
	RegisterComponentFile
	RegisterComponentFileEntries

	Revision History
	Index
	B
	C
	D
	E
	F
	G
	I
	K
	M
	N
	O
	P
	R
	S
	U
	V

