Control Manager Reference

Carbon > User Experience

¢

2007-03-26



.

[

Apple Inc.

© 2002, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
Macintosh, and QuickDraw are trademarks of
Apple Inc,, registered in the United States and
other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.



Contents

Control Manager Reference 15

Overview 15

Functions by Task 16
Creating and Removing Controls 16
Embedding Controls 18
Displaying Controls 18
Handling Events in Controls 19
Manipulating Controls 20
Handling Keyboard Focus 21
Accessing Control Settings and Data 21
Manipulating Menus in Controls 23
Manipulating Bevel Buttons 23
Managing Control UPPs 23
Obsolete Functions 25

Functions 27
ActivateControl 27
AdvanceKeyboardFocus 28
AutoEmbedControl 28
ChangeControlPropertyAttributes 29
ClearKeyboardFocus 30
CopyControlTitleAsCFString 30
CountSubControls 31
CreateBevelButtonControl 32
CreateChasingArrowsControl 33
CreateCheckBoxControl 33
CreateCheckGroupBoxControl 34
CreateClockControl 35
CreateDisclosureButtonControl 36
CreateDisclosureTriangleControl 37
CreateEditUnicodeTextControl 38
CreateGroupBoxControl 39
CreatelconControl 40
CreatelmageWellControl 41
CreateListBoxControl 41
CreatelittleArrowsControl 43
CreatePictureControl 44
CreatePlacardControl 45
CreatePopupArrowControl 45
CreatePopupButtonControl 46
CreatePopupGroupBoxControl 47
CreateProgressBarControl 49

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



CONTENTS

CreatePushButtonControl 49
CreatePushButtonWithlconControl 50
CreateRadioButtonControl 51
CreateRadioGroupControl 52
CreateRelevanceBarControl 52
CreateRootControl 53
CreateRoundButtonControl 55
CreateScrollBarControl 55
CreateScrollingTextBoxControl 57
CreateSeparatorControl 58
CreateSliderControl 58
CreateStaticTextControl 60
CreateTabsControl 60
CreateUserPaneControl 62
CreateWindowHeaderControl 62
DeactivateControl 63

DisableControl 64

DisposeControl 64
DisposeControlActionUPP 65
DisposeControlCNTLToCollectionUPP 65
DisposeControlColorUPP 66
DisposeControlEditTextValidationUPP 66
DisposeControlKeyFilterUPP 67
DisposeControlUserPaneActivateUPP 67
DisposeControlUserPaneBackgroundUPP 67
DisposeControlUserPaneDrawUPP 68
DisposeControlUserPaneFocusUPP 68
DisposeControlUserPaneHitTestUPP 68
DisposeControlUserPaneldleUPP 69
DisposeControlUserPaneKeyDownUPP 69
DisposeControlUserPaneTrackingUPP 69
DisposeEditUnicodePostUpdateUPP 70
DragControl 70

Draw1Control 71
DrawControllnCurrentPort 71
DrawControls 72
DumpControlHierarchy 73
EmbedControl 73

EnableControl 75

FindControl 75
FindControlUnderMouse 76
GetBestControlRect 77
GetBevelButtonContentinfo 78
GetBevelButtonMenuHandle 79
GetBevelButtonMenuValue 79
GetControl32BitMaximum 80

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



CONTENTS

GetControl32BitMinimum 80
GetControl32BitValue 81
GetControlAction 82
GetControlBounds 82
GetControlBylID 83
GetControlClickActivation 84
GetControlCommandID 84
GetControlData 85
GetControlDataHandle 86
GetControlDataSize 86
GetControlFeatures 87
GetControlHilite 88
GetControllD 88
GetControlKind 89
GetControlMaximum 90
GetControlMinimum 90
GetControlOwner 91
GetControlPopupMenuHandle 91
GetControlPopupMenulD 92
GetControlProperty 92
GetControlPropertyAttributes 93
GetControlPropertySize 94
GetControlReference 95
GetControlRegion 95
GetControlValue 96
GetControlVariant 97
GetControlViewSize 97
GetlmageWellContentinfo 98
GetIndexedSubControl 98
GetKeyboardFocus 99
GetNewControl 100
GetRootControl 101
GetSuperControl 101
GetTabContentRect 102
HandleControlClick 103
HandleControlContextualMenuClick 104
HandleControlDragReceive 105
HandleControlDragTracking 105
HandleControlSetCursor 106
HideControl 107

HiliteControl 108
InvokeControlActionUPP 109
InvokeControlCNTLToCollectionUPP 109
InvokeControlColorUPP 110
InvokeControlEditTextValidationUPP 111
InvokeControlKeyFilterUPP 111

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



CONTENTS

InvokeControlUserPaneActivateUPP 112
InvokeControlUserPaneBackgroundUPP 113
InvokeControlUserPaneDrawUPP 113
InvokeControlUserPaneFocusUPP 114
InvokeControlUserPaneHitTestUPP 114
InvokeControlUserPaneldleUPP 115
InvokeControlUserPaneKeyDownUPP 115
InvokeControlUserPaneTrackingUPP 116
InvokeEditUnicodePostUpdateUPP 116
IsAutomaticControlDragTrackingEnabledForWindow 117
IsControlActive 117
IsControlDragTrackingEnabled 118
IsControlEnabled 118

IsControlHilited 119

IsControlVisible 119
IsValidControlHandle 120

KillControls 120

MoveControl 121
NewControlActionUPP 122
NewControlCNTLToCollectionUPP 122
NewControlColorUPP 122
NewControlEditTextValidationUPP 123
NewControlKeyFilterUPP 123
NewControlUserPaneActivateUPP 123
NewControlUserPaneBackgroundUPP 124
NewControlUserPaneDrawUPP 124
NewControlUserPaneFocusUPP 124
NewControlUserPaneHitTestUPP 124
NewControlUserPaneldleUPP 125
NewControlUserPaneKeyDownUPP 125
NewControlUserPaneTrackingUPP 125
NewEditUnicodePostUpdateUPP 126
RegisterControlDefinition 126
RemoveControlProperty 127
ReverseKeyboardFocus 127
SendControlMessage 128
SetAutomaticControlDragTrackingEnabledForWindow 129
SetBevelButtonContentinfo 129
SetBevelButtonGraphicAlignment 130
SetBevelButtonMenuValue 131
SetBevelButtonTextAlignment 131
SetBevelButtonTextPlacement 132
SetBevelButtonTransform 132
SetControl32BitMaximum 133
SetControl32BitMinimum 133
SetControl32BitValue 134

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



CONTENTS

SetControlAction 135
SetControlBounds 135
SetControlColorProc 136
SetControlCommandID 137
SetControlData 137
SetControlDataHandle 138
SetControlDragTrackingEnabled 139
SetControlFontStyle 140
SetControllD 140
SetControlMaximum 141
SetControlMinimum 141
SetControlPopupMenuHandle 142
SetControlPopupMenulD 143
SetControlProperty 143
SetControlReference 144
SetControlSupervisor 144
SetControlTitleWithCFString 145
SetControlValue 146
SetControlViewSize 147
SetControlVisibility 147
SetDisclosureTriangleLastValue 148
SetlImageWellContentinfo 149
SetlmageWellTransform 149
SetKeyboardFocus 150
SetTabEnabled 150
SetUpControlBackground 151
SetUpControlTextColor 152
ShowControl 153
SizeControl 154
TestControl 154
TrackControl 155
UpdateControls 156

Callbacks by Task 157
Defining Your Own Action Function 157
Defining Your Own Control Definition Function 157
Defining Your Own Key Filter Function 158
Defining Your Own Text Validation Function 158
Defining Your Own User Pane Functions 158
Miscellaneous 158

Callbacks 159
ControlActionProcPtr 159
ControlCNTLToCollectionProcPtr 160
ControlColorProcPtr 161
ControlDefProcPtr 161
ControlEditTextValidationProcPtr 169
ControlKeyFilterProcPtr 170

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



CONTENTS

ControlUserPaneActivateProcPtr 171
ControlUserPaneBackgroundProcPtr 172
ControlUserPaneDrawProcPtr 174
ControlUserPaneFocusProcPtr 175
ControlUserPaneHitTestProcPtr 176
ControlUserPaneldleProcPtr 176
ControlUserPaneKeyDownProcPtr 177
ControlUserPaneTrackingProcPtr 179
EditUnicodePostUpdateProcPtr 180
Data Types 180
AuxCtlHandle 180
AuxCtIPtr 181
AuxCtlRec 181
ClickActivationResult 181
ControlApplyTextColorRec 181
ControlBackgroundRec 182
ControlBevelButtonBehavior 182
ControlBevelButtonMenuBehavior 183
ControlButtonContentinfo 183
ControlCalcSizeRec 184
ControlCapabilities 184
ControlClickActivationRec 184
ControlContentType 185
ControlContextualMenuClickRec 185
ControlDataAccessRec 185
ControlDefProcMessage 186
ControlDefSpec 186
ControlDefType 186
ControlEditTextSelectionRec 187
ControlFocusPart 187
ControlFontStyleRec 188
ControlGetRegionRec 189
ControlHandle 190
ControllD 190
ControllmageContentinfo 190
ControlKeyDownRec 190
ControlKeyFilterResult 191
ControlKeyScriptBehavior 191
ControlKind 191
ControlNotification 192
ControlNotificationUPP 192
ControlPartCode 192
ControlPopupArrowQOrientation 192
ControlPopupArrowSize 192
ControlPtr 192
ControlRecord 193

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



CONTENTS

ControlRef 193
ControlSetCursorRec 193
ControlSize 194

ControlTabEntry 194
ControlTabinfoRec 194
ControlTabInfoRecV1 195
ControlTemplate 195
ControlTrackingRec 196
ControlVariant 196
DataBrowserCallbacks 197
DataBrowserCustomCallbacks 197
DataBrowserDragFlags 198
DataBrowserListViewColumnDesc 198
DataBrowserListViewHeaderDesc 198
DataBrowserPropertyDesc 199
DataBrowserPropertyFlags 199
DataBrowserPropertyPart 199
DataBrowserPropertyType 199
DataBrowserTableViewColumnDesc 200
DataBrowserTableViewColumnindex 200
DataBrowserTableViewRowlIndex 200
DataBrowserTableViewColumnID 200
DataBrowserViewStyle 200
DBItemProcDataType 201
DBRevealltemDataType 201
DBSetSelectionDataType 201
IndicatorDragConstraint 201
IndicatorDragConstraintHandle 202
PopupPrivateData 202
PopupPrivateDataHandle 202
PopupPrivateDataPtr 202
kHIUserPaneClassID 203

Constants 203

Appearance—compliant Push Button, Radio Button, and Checkbox Control Definition IDs
Asynchronous Arrows Control Definition ID 205

Bevel Button Behavior Constants 205

Bevel Button Control Data Tag Constants 207

Bevel Button Control Definition IDs 209

Bevel Button Graphic Alignment Constants 210

Bevel Button Menu Constant 211

Bevel Button Menu Control Data Tag Constants 212

Bevel Button Text Alignment Constants 213

Bevel Button Text Placement Constants 214

Checkbox and Radio Button AutoToggle Control Definition IDs 215
Checkbox Value Constants 216

Clock Control Data Tag Constants 216

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

203



CONTENTS

Clock Control Definition IDs 217

Clock Value Flag Constants 218

Control Definition Message Constants 219

Control Features Constants 225

Control Focus Part Code Constants 227

Control Font Style and Key Filter Data Tag Constants 228
Control Font Style Flag Constants 229

Control Key Script Behavior Constants 231

Control Part Code Constants 232

Control State Part Code Constants 235

Control Variant Constants 236

Control Bevel Button Menu Placement Constants 237
Control Bevel Thickness Constants 237

Control Clock Type Constants 237

Control Disclosure Triangle Orientation Constants 237
Control Notify Constants 237

Control Push Button Icon Alignment Constants 237
Control Round Button Size Constants 238

Control Slider Orientation Constants 238

Control Tab Direction Constants 238

Control Tab Size Constants 238

Drag Control Constants 238

Drawing Constants 239

Editable Text Control Data Tag Constants 240
Editable Text Control Definition ID Constants 242
Data Browser Error Constants 243

Group Box Control Data Tag Constants 243

Group Box Control Definition ID Constants 244
Icon Control Data Tag Constants 246

Icon Control Definition ID Constants 247

Image Well Control Data Tag Constants 249

Image Well Control Definition ID 250

inLabel 251

inThumb 251
kControlBevelButtonOwnedMenuRefTag 251
Bevel Button Size Constants 251

Control Can Auto Invalidate Constant 251

Control Chasing Arrows Animating Tag Constant 251
Control Collection Tag Constants 252

Control Collection Tag Subcontrols Constant 254
Control Content Type Constants 254

Control Data Browser Tag Constants 255

Control Def Constants 255

Control Def Type Constants 256

Disclosure Triangle Constants 256

Unicode Control Data Tags 256

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



CONTENTS

Control Edit Unicode Text Post Update Proc Tag Constant 258
Control Edit Unicode Text Proc Constants 258
Control Entire Control Constant 258

Control Kind Bevel Button Constant 258

Control Kind Chasing Arrows Constant 258
Control Kind Clock Constant 258

Control Kind Data Browser Constant 258

Control Kind Disclosure Button Constant 258
Control Kind Disclosure Triangle Constant 259
Control Kind Edit Text Constant 259

Control Kind Edit Unicode Text Constant 259
Control Kind Group Box Constants 259

Control Kind Icon Constant 259

Control Kind Image Well Constant 259

Control Kind List Box Constant 259
kControlKindLittleArrows 259

Control Kind Picture Constant 260

Control Kind Placard Constant 260

Control Kind Pop-up Arrow Constant 260

Control Kind Pop-up Button Constant 260
Control Kind Progress Bar Constants 260

Control Kind Push and Radio Button Constants 260
Control Kind Radio Group Constant 260

Control Kind Round Button Constant 261

Control Kind Scroll Bar Constant 261

Control Kind Scrolling Text Box Constant 261
Control Kind Separator Constant 261

Control Kind Signature Apple Constant 261
Control Kind Slider Constant 262

Control Kind Static Text Constant 262

Control Kind Tabs Constant 262

Control Kind User Pane Constant 262

Control Kind Window Header Constant 262
Control Picture Handle Tag Constant 262

Control Pop-up Arrow Orientation Constants 262
Control Pop-up Arrow Size Constants 262

Control Pop-up Button Check Current Tag Constant 263
Control Property Persistent Constant 263

Control Round Button Content and Size Tag Constants 263
Control Scrollbar Shows Arrows Tag Constant 263
Control Size Constants 263

Control Supports New Messages Constant 263
Control Tab Image Content Tag Constant 264
Control Tab Info Version Constants 264

Control Tab Type Constants 264

Control Use Theme Font ID Mask Constant 264

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



CONTENTS

Click Activation Constants 264

Selection Constants 266

Drag Tracking Enter Control Constants 266

Key Filter Result Codes 266

In Control Part Constants 267

Order Constants 267

List Box Control Data Tag Constants 267

List Box Control Definition ID Constants 268

Little Arrows Control Definition ID Constant 269

Little Arrows Control Tag Constant 270

Mac OS 8.5 Bevel Button Control Data Tag Constant 270
Mac OS 8.5 Control Font Style Flag Constant 271

Mac OS 8.5 Editable Text Control Definition ID Constant 271
Mac OS 8.5 Group Box Control Data Tag Constant 272
Mac OS 8.5 Icon Control Data Tag Constants 272

Mac OS 8.5 Pop-up Button Control Data Tag Constants 273
Control Meta Part Code Constants 274

Meta Font Constants 275

Constraint Constants 276

Part Identifier Constants 276

Picture Control Definition ID Constants 277

Placard Control Definition ID Constant 278

Pop-up Menu Title Constants 279

Pop-up Menu Title Justification Constants 280
Pop-up Arrow Control Definition ID Constants 281
Pop-up Button Control Data Tag Constants 283
Pop-up Button Control Definition ID Constants 284
Pop-up Width Constants 286

Pre—Appearance Control Definition ID Constants 286
Progress Bar Control Data Tag Constants 288
Progress Bar Control Definition ID Constants 289
Push Button Control Data Tag Constants 290

Radio Button Value Constants 290

Radio Group Control Definition ID Constant 291

Scroll Bar Control Definition ID Constants 292
Scrolling Text Box Control Data Tag Constants 293
Scrolling Text Box Control Definition ID Constants 294
Separator Line Control Definition ID Constant 295
Slider Control Definition ID Constants 296

Static Text Control Data Tag Constants 297

Static Text Control Definition ID Constant 299

Text Proc Constants 300

Tab Control Data Tag Constants 300

Tab Control Definition IDs 301

Tab Control Info Tag Constant 302

Triangle Control Data Tag Constant 302

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Appendix A

CONTENTS

Triangle Control Definition ID Constants 303

User Item and User Pane Control Data Tag Constants 304
User Pane Control Definition ID Constant 306

useWFont Constants 307

Window Control Definition IDs 307

Window Control Data List Header Tag Constant 308

Result Codes 308

Deprecated Control Manager Functions 313

Deprecated in Mac OS X v104 313

CreateEditTextControl 313
IdleControls 314

Deprecated in Mac OS X v10.5 314

CreateCustomControl 314
DisposeControlDefUPP 315
GetControlTitle 316
HandleControlKey 316
InvokeControlDefUPP 317
NewControl 318
NewControlDefUPP 319
SetControlTitle 320

Document Revision History 323

Index 325

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

13



14

CONTENTS

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Framework: Carbon/Carbon.h

Declared in ControlDefinitions.h
Controls.h
HIButtonViews.h
HIClockView.h

HlContainerViews.h
HIDataBrowser.h
HIDisclosureViews.h
HllmageViews.h
HILittleArrows.h
HIObject.h
HIPopupButton.h
HIProgressViews.h
HIRelevanceBar.h
HIScrollView.h
HISeparator.h
HiSlider.h
HITabbedView.h
HITextViews.h
HIToolboxDebugging.h

Overview

Your application uses the Control Manager to create and manage controls. Controls are onscreen objects
that the user can manipulate with the mouse. By manipulating controls, the user can take an immediate
action or change settings to modify a future action. For example, a scroll bar control allows a user to
immediately change the portion of the document that your application displays, whereas a pop-up menu
control for connection speed might allow the user to change the rate by which your application handles
subsequent data transmissions.

Virtually all applications need to implement controls, at least in the form of scroll bars for document windows.
Other standard Mac OS controls include buttons, checkboxes, radio buttons, and pop-up menus. You can
use the Control Manager to create and manage these controls, too.

In Mac OS X v10.2 and later, Control Manager controls may be implemented as HIViews. View-based controls
offer additional flexibility and extensibility for developers. For more information, see the document HiView
Programming Guide.

Overview 15
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Important: Documentation for the data browser control is available separately in Data Browser Programming

Guide.

Carbon supports most Control Manager functions, with the following changes:

The C-style, lowercase versions of Control Manager function names are no longer supported. If your
application uses any Control Manager lowercase function names, you must replace them with their
uppercase equivalents.

Custom control definition procedures (also known as CDEFs), must be compiled as PowerPC-native code,
and can not be stored as resources. See the Carbon Porting Guide for more information.

Your application must use the functions defined by the Control Manager to create and dispose of Control
Manager data structures. For example, instead of directly creating and disposing of control records,
applications must call the Control Manager functions GetNewControl and DisposeControl.

With the availability of the Appearance Manager, you should not access the PopupPrivateData structure,
but rather pass the kControlPopupButtonMenuHandleTag tag to GetControlData to obtain its
contents.

Your application must use Control Manager accessor functions to access Control Manager data structures.

You are encouraged to adopt the standard Mac OS control definition procedures in your application.
Applications that use the standard control definition procedures inherit the Mac OS human interface
appearance. Applications that use custom control definition procedures will work correctly, but because
custom definition procedures invoke their own drawing routines, Mac OS X can't draw these applications

with the current appearance.

Functions by Task

16

Creating and Removing Controls

CreateBevelButtonControl (page 32)
Creates a bevel button control.

CreateChasingArrowsControl (page 33)
Creates a chasing arrows control.

CreateCheckBoxControl (page 33)

Creates a checkbox control.
CreateCheckGroupBoxControl (page 34)

Creates a group box control that has a check box as its title.
CreateClockControl (page 35)

Creates a clock control.

CreateDisclosureButtonControl (page 36)
Creates a new instance of the Disclosure Button Control.

CreateDisclosureTriangleControl (page 37)
Creates a disclosure triangle control.

CreateEditUnicodeTextControl (page 38)
Creates a new edit text control.

Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

CreateGroupBoxControl (page 39)
Creates a group box control.

CreatelconControl (page 40)
Creates an icon control.

CreatelmagelWel1Control (page 41)
Creates an image well control.

CreatelListBoxControl (page41)
Creates a list box control.

CreatelittleArrowsControl (page 43)
Creates a little arrows control.

CreatePictureControl (page 44)
Creates a picture control.

CreatePlacardControl (page 45)
Creates a placard control.

CreatePopupArrowControl (page 45)

Creates a pop-up arrow control.
CreatePopupButtonControl (page 46)

Creates a pop-up button control.
CreatePopupGroupBoxControl (page 47)

Creates a group box control that has a pop-up button as its title.

CreateProgressBarControl (page 49)
Creates a progress bar control.

CreatePushButtonControl (page 49)
Creates a push button control.

CreatePushButtonWithIconControl (page 50)

Creates a push button control containing an icon or other graphical content.

CreateRadioButtonControl (page 51)
Creates a radio button control.

CreateRadioGroupControl (page 52)
Creates a radio group control.

CreateRelevanceBarControl (page 52)
Creates a relevance bar control.

CreateRoundButtonControl (page 55)
Creates a new instance of the round button control.

CreateScrollBarControl (page 55)
Creates a scroll bar control.

CreateSeparatorControl (page 58)
Creates a separator control.

CreateSliderControl (page 58)
Creates a slider control.

CreateStaticTextControl (page 60)
Creates a new static text control.

CreateTabsControl (page 60)
Creates a tabs control.

Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

17



18

Control Manager Reference

CreatelUserPaneControl (page 62)
Creates a user pane control.

CreateWindowHeaderControl (page 62)

Creates a window header control.
DisposeControl (page 64)

Decrements a control’s reference count and destroys it if the reference count becomes 0.
GetNewControl (page 100)

Creates a control from a control resource.
KiTTControls (page 120)

Removes all of the controls from a window that you wish to keep.
RegisterControlDefinition (page 126)

Registers an old-style control definition.

CreateCustomControl (page 314) Deprecated in Mac OS X v10.5
Creates a custom control. (Deprecated. Register your custom subclass of the HIView class and create
an instance of your class using HI0ObjectCreate.)

Embedding Controls

AutoEmbedControl (page 28)
Automatically embeds a control in the smallest appropriate embedder control.

CountSubControls (page 31)

Obtains the number of embedded controls within a control.
CreateRootControl (page 53)

Creates the root control for a specified window.
DumpControlHierarchy (page 73)

Writes a textual representation of the control hierarchy for a specified window into a file.
EmbedControl (page 73)

Embeds one control inside another.
GetControlOwner (page 91)

Returns the window to which a control is bound.
GetIndexedSubControl (page 98)

Obtains a handle to a specified embedded control.
GetRootControl (page 101)

Obtains a handle to a window’s root control.

GetSuperControl (page 101)
Obtains a handle to an embedder control.

Displaying Controls

DisableControl (page 64)
Disables a control.

DrawlControl (page 71)
Draws a control and any embedded controls that are currently visible in the specified window.

Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

DrawControlInCurrentPort (page71)

Draws a control in the current graphics port.
DrawControls (page 72)

Draws all controls currently visible in the specified window.
GetControlViewSize (page 97)

Obtains the size of the content to which a control’s size is proportioned.
IsControlVisible (page 119)

Determines whether a control is visible.
SetControlViewSize (page 147)

Informs the Control Manager of the size of the content to which a control’s size is proportioned.
SetUpControlBackground (page 151)

Applies the proper background color for the given control to the current port.
SetUpControlTextColor (page 152)

Applies the proper text color for the given control to the current port.——
UpdateControls (page 156)

Draws controls in the specified update region of a window.
HideControl (page 107)

Makes a control, and any latent embedded controls, invisible.
ShowControl (page 153)

Makes an invisible control, and any latent embedded controls, visible.

SetControlVisibility (page 147)
Sets the visibility of a control, and any embedded controls, and specifies whether it should be drawn.

Handling Events in Controls

FindControl (page 75)
Obtains the location of a mouse-down event in a control.

FindControlUnderMouse (page 76)

Obtains the location of a mouse-down event in a control.
GetControlAction (page 82)

Returns a pointer to the action function associated with a control structure.
GetControlClickActivation (page 84)

Gets the control’s preferred behavior for responding to particular click.
GetControlCommandID (page 84)

Gets the command ID for a control.

HandleControlClick (page 103)
Responds to cursor movements in a control while the mouse button is down and returns the location
of the next mouse-up event.
HandleControlContextualMenuClick (page 104)
Allows a control to display a contextual menu.
HandleControlDragReceive (page 105)
Tells a control to accept the data from a drag.
HandleControlDragTracking (page 105)
Tells a control to respond visually to a drag.

Functions by Task 19
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

HandleControlSetCursor (page 106)

Requests that a control set the cursor based on the mouse location.
IsAutomaticControlDragTrackingEnabledForWindow (page 117)

Indicates whether automatic drag tracking is enabled for the specified window.
IsControlDragTrackingEnabled (page 118)

Indicates whether a control’s drag track and receive support is enabled.

SetAutomaticControlDragTrackingEnabledForWindow (page 129)
Enables or disables automatic drag tracking for a window.

SetControlAction (page 135)
Sets the action function for a control.
SetControlCommandID (page 137)
Sets the command ID for a control.
SetControlDragTrackingEnabled (page 139)
Sets the drag tracking state for a control.
TestControl (page 154)
Obtains the control part in which a mouse-down event occurred.

HandleControlKey (page 316) Deprecated in Mac OS X v10.5
Sends a keyboard event to a control with keyboard focus. (Deprecated. For HIView-based controls,
send the view a kEventTextInputUnicodeForKeyEvent event.)

Manipulating Controls

ActivateControl (page 27)

Activates a control and any latent embedded controls.
DeactivateControl (page 63)

Deactivates a control and any latent embedded controls.
EnableControl (page 75)

Enables a control.
GetControlRegion (page 95)

Obtains the region corresponding to a given control part.
IsControlActive (page 117)

Returns whether a control is active.
IsControlEnabled (page 118)

Indicates whether a control is enabled.
IsControlHilited (page 119)

Indicates whether or not the control is highlighted.
MoveControl (page 121)

Moves a control within its window.
SizeControl (page 154)

Changes the size of a control’s rectangle.

20 Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Handling Keyboard Focus

AdvanceKeyboardFocus (page 28)
Advances the keyboard focus to the next focusable control in a window.

ClearKeyboardFocus (page 30)
Removes the keyboard focus for the currently focused control in a window.

GetKeyboardFocus (page 99)

Obtains a handle to the control with the current keyboard focus for a specified window.

ReverseKeyboardFocus (page 127)
Returns keyboard focus to the prior focusable control in a window.

SetKeyboardFocus (page 150)
Sets the current keyboard focus to a specified control part for a window.

Accessing Control Settings and Data

ChangeControlPropertyAttributes (page 29)

Changes a property attribute.
CopyControlTitleAsCFString (page 30)

Makes a copy of the control’s title as a Core Foundation string.

GetBestControlRect (page 77)
Obtains a control’s optimal size and text placement.

GetControl32BitMaximum (page 80)

Obtains the maximum setting of a control.
GetControl32BitMinimum (page 80)

Obtains the minimum setting of a control.
GetControl32BitValue (page 81)

Obtains the current setting of a control.
GetControlBounds (page 82)

Gets the bounds of a control.
GetControlByID (page 83)

Finds a control in a window by its unique ID.
GetControlData (page 85)

Obtains control-specific data.
GetControlDataSize (page 86)

Obtains the size of a control’s tagged data.
GetControlHilite (page 88)

Gets the highlight status of a control.
GetControlID (page 88)

Gets the control ID for a control.
GetControlKind (page 89)

Returns the kind of the given control.

GetControlProperty (page 92)
Obtains a piece of data that has been previously associated with a control.

Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

21



22

Control Manager Reference

GetControlPropertySize (page 94)

Obtains the size of a piece of data that has previously been associated with a control.
GetControlReference (page 95)

Obtains a control’s current reference value.

GetImageWellContentInfo (page 98)
Gets information about the content of an image well.

GetControlPropertyAttributes (page 93)
Gets the property attributes for a control.

GetTabContentRect (page 102)
Gets the content rectangle for a tab.

IsValidControlHandle (page 120)

Reports whether a given handle is a control handle.
RemoveControlProperty (page 127)

Removes a piece of data that has been previously associated with a control.
SetControl32BitMaximum (page 133)

Changes the maximum setting of a control and, if appropriate, redraws it accordingly.
SetControl32BitMinimum (page 133)

Changes the minimum setting of a control and, if appropriate, redraws it accordingly.
SetControl32BitValue (page 134)

Changes the current setting of a control and redraws it accordingly.
SetControlData (page 137)

Sets control-specific data.
SetControlBounds (page 135)

Sets the bounds of a control.
SetControlID (page 140)

Sets a control’s ID.
SetControlTitleWithCFString (page 145)

Sets the title for a control to the specified Core Foundation string.
SetDisclosureTrianglelastValue (page 148)

Sets the last value of a disclosure triangle.

SetImageWellContentInfo (page 149)

Sets the content information for an image well.
SetImageWellTransform (page 149)

Sets an image well transform.
SetTabEnabled (page 150)

Enables and disables a tab control.
SetControlFontStyle (page 140)

Sets the font style for a control.
SetControlProperty (page 143)

Associates data with a control.

SetControlReference (page 144)
Changes a control’s current reference value.

Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Manipulating Menus in Controls

The functions described in this section can only be called for pop-up button and pop-up group box controls,
which can support pop-up menus that activate when the user presses the control with the mouse.

GetControlPopupMenuHandle (page 91)
Gets the menu handle for a pop-up control.

GetControlPopupMenulID (page 92)

Gets the menu ID of a pop-up menu.
SetControlPopupMenuHandle (page 142)

Sets the menu handle for a pop-up control.

SetControlPopupMenulD (page 143)
Sets the menu ID for a pop-up control

Manipulating Bevel Buttons

Bevel button controls have additional features that you can or should manipulate to display them properly.
This section describes the functions you can use to manipulate these features.

GetBevelButtonContentInfo (page 78)
Gets the content information for a bevel button.

GetBevelButtonMenuHandle (page 79)

Gets the menu handle for a bevel button.
GetBevelButtonMenuValue (page 79)

Gets the value of a bevel button menu.
SetBevelButtonContentInfo (page 129)

Sets the content information for a bevel button.
SetBevelButtonGraphicAlignment (page 130)

Sets the alignment for a bevel button.
SetBevelButtonMenuValue (page 131)

Sets the value of a bevel button menu.
SetBevelButtonTextAlignment (page 131)

Sets the alignment of the text for a bevel button.
SetBevelButtonTextPlacement (page 132)

Sets the placement for bevel button text.

SetBevelButtonTransform (page 132)
Sets the transform for a bevel button.

Managing Control UPPs

DisposeControlActionUPP (page 65)
Disposes of a control action UPP.

DisposeControlCNTLToCollectionUPP (page 65)
Disposes of a CNLT to collection UPP.

DisposeControlEditTextValidationUPP (page 66)
Disposes of an edit text validation UPP.

Functions by Task 23
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



24

Control Manager Reference

DisposeControlKeyFilterUPP (page 67)
Disposes of a key filter UPP.
DisposeControlUserPaneActivateUPP (page 67)
Disposes of a user pane activate UPP.
DisposeControlUserPaneBackgroundUPP (page 67)
Disposes of a user pane background UPP.
DisposeControlUserPaneDrawUPP (page 68)
Disposes of a user pane draw UPP.
DisposeControlUserPanefFocusUPP (page 68)
Disposes of a user pane focus UPP.
DisposeControlUserPaneHitTestUPP (page 68)
Disposes of a user pane hit test UPP.
DisposeControlUserPaneldleUPP (page 69)
Disposes of a user pane idle UPP.
DisposeControlUserPaneKeyDownUPP (page 69)
Disposes of a user pane key down UPP.
DisposeControlUserPaneTrackingUPP (page 69)
Disposes of a user pane tracking UPP.
DisposetditUnicodePostUpdateUPP (page 70)
Disposes of an edit unicode post update UPP.
InvokeControlActionUPP (page 109)
Invokes a control action UPP.
InvokeControlCNTLToCollectionUPP (page 109)
Invokes a control-to-collection UPP.
InvokeControlEditTextValidationUPP (page 111)
Invokes a control edit text validation UPP.
InvokeControlKeyFilterUPP (page 111)

Invokes a control key filter UPP.
InvokeControlUserPaneActivateUPP (page 112)
Invokes a control user pane activate UPP.

InvokeControlUserPaneBackgroundUPP (page 113)
Invokes a user pane background UPP.

InvokeControlUserPaneDrawUPP (page 113)
Invokes a user pane draw UPP.

InvokeControlUserPaneFocusUPP (page 114)
Invokes a user pane focus UPP.

InvokeControlUserPaneHitTestUPP (page 114)
Invokes a user pane hit test UPP.

InvokeControlUserPaneldleUPP (page 115)
Invokes a user pane idle UPP.

InvokeControlUserPaneKeyDownUPP (page 115)
Invokes a user pane key down UPP.

InvokeControlUserPaneTrackingUPP (page 116)
Invokes a user pane tracking UPP.

Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

InvokeEditUnicodePostUpdateUPP (page 116)
Invokes a Unicode post update UPP.

NewControlActionUPP (page 122)
Creates a UPP for a control action callback function.

NewControlCNTLToColTlectionUPP (page 122)
Creates a UPP for a control-to-collection callback function.

NewControlEditTextValidationUPP (page 123)
Creates a UPP for a control edit text validation callback function.

NewControlKeyFilterUPP (page 123)
NewControlUserPaneActivateUPP (page 123)
NewControlUserPaneBackgroundUPP (page 124)
NewControlUserPaneDrawUPP (page 124)
NewControlUserPaneFocusUPP (page 124)
NewControlUserPaneHitTestUPP (page 124)
NewControlUserPaneldleUPP (page 125)
NewControlUserPaneKeyDownUPP (page 125)
NewControlUserPaneTrackingUPP (page 125)
NewEditUnicodePostUpdateUPP (page 126)
DisposeControlDefUPP (page 315) Deprecated in Mac OS X v10.5

Disposes of a control definition UPP. (Deprecated. Use a custom HIView to draw a custom control.)

InvokeControlDefUPP (page 317) Deprecated in Mac OS X v10.5
Invokes a control definition UPP. (Deprecated. Use a custom HIView to draw a custom control.)

NewControlDefUPP (page 319) Deprecated in Mac OS X v10.5
Creates a UPP for a control definition callback function. (Deprecated. Use a custom HIView to draw a
custom control.)

Obsolete Functions
These functions are outdated and are not recommended.

CreateScrollingTextBoxControl (page 57)
Creates a scrolling text box control.

DisposeControlColorUPP (page 66)

Functions by Task 25
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



26

Control Manager Reference

GetControlFeatures (page 87)
Obtains the features a control supports.

GetControlMaximum (page 90)
Obtains a control’s maximum setting. (Deprecated. Use GetControl32BitMaximum (page 80)
instead.)

GetControlMinimum (page 90)
Obtains a control’s minimum setting. (Deprecated. Use GetContro132BitMinimum (page 80) instead.)

GetControlValue (page 96)
Obtains a control’s current setting. (Deprecated. Use GetControl32BitValue (page 81) instead.)

GetControlVariant (page 97)
Returns the variation code specified in the control definition function for a particular control.
(Deprecated. Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

InvokeControlColorUPP (page 110)

NewControlColorUPP (page 122)

SetControlColorProc (page 136)
Associatesa ControlColorUPP with a given Control, thereby allowing you to bypass the embedding
hierarchy-based color setup of SetUpControlBackground/SetUpControlTextColor and replace
it with your own.

GetControlDataHandle (page 86)
Obtains a handle to control-specific data. (Deprecated. Use custom HIViews instead of custom CDEFs.
See HIView Programming Guide.)

SetControlDataHandle (page 138)
(Deprecated. Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

SetControlMaximum (page 141)
Changes the maximum setting of a control and redraws its indicator or scroll box accordingly.
(Deprecated. Use SetControl32BitMaximum (page 133) instead.)
SetControlMinimum (page 141)
Changes the minimum setting of a control and redraws its indicator or scroll box accordingly.
(Deprecated. Use SetControl32BitMinimum (page 133) instead.)
SetControlSupervisor (page 144)
Routes mouse-down events to the embedder control.
SetControlValue (page 146)
Changes the current setting of a control and redraws it accordingly. (Deprecated. Use
SetControl32BitValue (page 134) instead.)
TrackControl (page 155)
Responds to cursor movements in a control while the mouse button is down. (Deprecated. Use
HandleControlClick (page 103) instead.)
DragControl (page 70)
Draws and moves an outline of a control or its indicator while the user drags it. (Deprecated. Use Drag
Manager functions if you want drag-and-drop support for controls. See Drag Manager Reference.)
HiliteControl (page 108)
Changes the highlighting of a control.

Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

SendControlMessage (page 128)
Sends a message to a control definition function. (Deprecated. For custom controls, use a custom
HIView instead of a control definition function. See HIView Programming Guide.)

GetControlTitle (page 316) Deprecated in Mac OS X v10.5
Obtains the title of a control. (Deprecated. Use HIViewCopyText or
CopyControlTitleAsCFString (page 30) instead.)

NewControl (page 318) Deprecated in Mac OS X v10.5
Creates a control based on parameter data. (Deprecated. Use the specific control creation function
instead (for example, CreateCheckBoxControl (page 33)).)

SetControlTitle (page 320) Deprecated in Mac OS X v10.5
Changes the title of a control and redraws the control accordingly. (Deprecated. Use HIViewSetText
or SetControlTitleWithCFString (page 145) instead.)

CreateEditTextControl (page 313) Deprecated in Mac OS X v10.4
Creates a new edit text control. (Deprecated. Use CreatetditUnicodeTextControl (page 38)
instead.)

IdleControls (page 314) Deprecated in Mac OS X v10.4

Performs idle event processing. (Deprecated. You should remove all calls to Id1eControls because
it uses unnecessary processor time. System-supplied controls do not respond to Id1eControls in
Mac OS X.)

Functions

ActivateControl

Activates a control and any latent embedded controls.

0SErr ActivateControl (
ControlRef inControl
)

Parameters
inControl

A handle to the control to activate. If you pass a window’s root control, ActivateControl activates
all controls in that window. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The ActivateControl function should be called instead of Hi 1iteControl to activate a specified control
and its latent embedded controls.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you activate a latent embedded control whose embedder is deactivated, the
embedded control becomes latent until the embedder is activated. However, if you deactivate a latent
embedded control, it will not be activated when its embedder is activated.

If a control definition function supports activate events, it will receive a kControlMsgActivate message
before redrawing itself in its active state.

Functions 27
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



28

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

AdvanceKeyboardFocus

Advances the keyboard focus to the next focusable control in a window.

0SErr AdvanceKeyboardFocus (
WindowRef inWindow
)

Parameters
inWindow
A pointer to the window for which to advance keyboard focus.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The AdvanceKeyboardFocus function skips over deactivated and hidden controls until it finds the next
focusable control in the window. If it does not find a focusable item, it simply returns.

When AdvanceKeyboardFocus is called, the Control Manager calls your control definition function and
passes kControlMsgFocus initsmessage parameterand kControlFocusNextPartinits param parameter.
In response to this message, your control definition function should change keyboard focus to its next part,
the entire control, or remove keyboard focus from the control, depending upon the circumstances. See
ControlDefProcPtr (page 161) for a discussion of possible responses to this message.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

AutoEmbedControl

Automatically embeds a control in the smallest appropriate embedder control.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

O0SErr AutoEmbedControl (
ControlRef inControl,
WindowRef inWindow

)

Parameters
inControl
A handle to the control to be embedded.

inWindow
A pointer to the window in which to embed the control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

The Dialog Manager uses AutoEmbedControl (page 28) to position dialog items in an embedding hierarchy
based on both visual containment and the item list resource order. As items are added to a dialog box during
creation, controls that already exist in the window will be containers for new controls if they both visually
contain the control and have set the kControlSupportsEmbedding feature bit. For this reason, you should
place the largest embedder controls at the beginning of the item list resource. As an example, the Dialog
Manager would embed radio buttons in a tab control if they visually “fit” inside the tab control, as long as
the tab control was already created ina'DITL' resource and established as an embedder control. For more
information on embedding hierarchies in dialog and alert boxes, see the function EmbedControl (page 73).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

ChangeControlPropertyAttributes
Changes a property attribute.

0SStatus ChangeControlPropertyAttributes (
ControlRef control,
0SType propertyCreator,
0SType propertyTag,
OptionBits attributesToSet,
OptionBits attributesToClear
);

Parameters

control
The control whose property’s attributes you want to change. For a description of this data type, see
ControlRef (page 193).

propertyCreator

An OSType signature, usually the signature of your application. Do not use all lower case signatures,
as these are reserved for use by Apple.

propertyTag
An OSType signature, defined by your application, defining the property whose attributes you want
to change.

Functions 29

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



30

Control Manager Reference

attributesToSet

A bit field indicating the attributes you want to set for this property.
attributesToClear

A bit field indicating the attributes you want to clear for this property.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

If you have associated control properties with a control (by calling SetControlProperty (page 143), you
can also assign arbitrary attribute bits to the property. You can use these attributes to indicate information
about the property data.

Currently, kControlPropertyPersistent is the only control property attribute that is defined.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

ClearKeyboardFocus

Removes the keyboard focus for the currently focused control in a window.

0SErr ClearKeyboardFocus (
WindowRef inWindow
)

Parameters

inWindow
A pointer to the window in which to clear keyboard focus.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

When the ClearKeyboardFocus function is called, the Control Manager calls your control definition function
and passes kControlMsgFocus inits message parameter and kControlFocusNoPart inits param
parameter. See ControlDefProcPtr (page 161) for a discussion of possible responses to this message.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

CopyControlTitleAsCFString

Makes a copy of the control’s title as a Core Foundation string.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus CopyControlTitleAsCFString (
ControlRef inControl,
CFStringRef *outString

)

Parameters
inControl

The control whose title is to be copied. For a description of this data type, see ControlRef (page 193).
outString

A copy of the control’s title.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

CountSubControls

Obtains the number of embedded controls within a control.

0SErr CountSubControls (
ControlRef inControl,
UIntl6 *outNumChildren
)

Parameters

inControl
The control whose embedded controls are to be counted. For a description of this data type, see
ControlRef (page 193).

outNumChildren
On input, a pointer to an unsigned 16-bit integer value. On return, the value is set to the number of
embedded subcontrols.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

The CountSubControls function is useful for iterating over the control hierarchy. You can use the count
produced to determine how many subcontrols there are and then call Get IndexedSubControl (page 98)
to get each.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Functions 31
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



32

Control Manager Reference

Declared In
Controls.h

CreateBevelButtonControl

Creates a bevel button control.

0SStatus CreateBevelButtonControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef title,
ControlBevelThickness thickness,
ControlBevelButtonBehavior behavior,
ControlButtonContentInfoPtr info,
MenulID menulD,
ControlBevelButtonMenuBehavior menuBehavior,
ControlBevelButtonMenuPlacement menuPlacement,
ControlRef *outControl

)

Parameters

window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

title
The title of the control.

thickness
The thickness of the button. For possible values, see “Control Bevel Thickness Constants” (page 237).

behavior
The behavior the button is to have. For possible values, see “Bevel Button Behavior Constants” (page
205).

info
A value of type ControlButtonContentInfoPtr for the content information.

menulD
The menu ID. This parameter may be 0 if you don’'t have a menu. Icon suite, picture, color icon, and
IconRef are supported on Mac OS X v10.0 through Mac OS X v10.4. Values of type CGImageRef are
supported in Mac OS X v104.

menuBehavior
The behavior of the menu. For possible values, see “Bevel Button Menu Constant” (page 211).

menuPlacement
The placement of the menu. For possible values, see “Control Bevel Button Menu Placement
Constants” (page 237).

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateChasingArrowsControl

Creates a chasing arrows control.

0SStatus CreateChasingArrowsControl (
WindowRef window,
const Rect *boundsRect,
ControlRef *outControl

)

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value

A result code. See “Control Manager Result Codes” (page 308).

Discussion
This control automatically animates via an event loop timer.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIProgressViews.h

CreateCheckBoxControl

Creates a checkbox control.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

33



Control Manager Reference

0SStatus CreateCheckBoxControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef title,
SInt32 initialValue,
Boolean autoToggle,
ControlRef *outControl

)

Parameters
window

The window that is to contain the checkbox control. This parameter may be NULL in Mac OS X v10.3
and later.

boundsRect
The bounds of the desired checkbox in the window’s local coordinates.
title
The title of the checkbox.
initialValue
The initial setting of the checkbox. Set to a non-zero value to indicate the checked state.
autoToggle
If set to true, clicking the checkbox will automatically toggle its state (checked or unchecked).

outControl
On return, outControl points to the new checkbox. For a description of this data type, see
ControlRef (page 193).

Return Value

A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateCheckGroupBoxControl

Creates a group box control that has a check box as its title.

34 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus CreateCheckGroupBoxControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef title,
SInt32 initialValue,
Boolean primary,
Boolean autoToggle,
ControlRef *outControl
);
Parameters
window
The window in which the control is to be placed. This parameter may be NUL L in Mac OS X v10.3 and
later.
boundsRect
The bounds of the control in the window's local coordinates.
title
The title of the control. The title is used as the title of the check box.
initialValue
The initial value of the check box.
primary
A Boolean whose value is true to create a primary group box or false to create a secondary group
box.

autoToggle
A Boolean whose value is true to create an auto-toggling check box. Auto-toggling check box titles
are only supported on Mac OS X; this parameter must be false when used with CarbonLib.

outControl

On return, the new control. For a description of this data type, see ControlRef (page 193).
Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIContainerViews.h

CreateClockControl

Creates a clock control.

Functions 35
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



36

Control Manager Reference

0SStatus CreateClockControl (
WindowRef window,
const Rect *boundsRect,
ControlClockType clockType,
ControlClockFlags clockFlags,
ControlRef *outControl

)

Parameters
window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

clockType
The clock type. For possible values, see “Control Clock Type Constants” (page 237).

clockFlags
Clock options. For possible values, see “Clock Value Flag Constants” (page 218).

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HICTockView.h

CreateDisclosureButtonControl

Creates a new instance of the Disclosure Button Control.

0SStatus CreateDisclosureButtonControl (
WindowRef inWindow,
const Rect *inBoundsRect,
SInt32 inValue,
Boolean inAutoToggles,
ControlRef *outControl
)

Parameters

inWindow
The WindowRef in which to create the control. This parameter may be NULL in Mac OS X v10.3 and
later.

inBoundsRect

The bounding rectangle for the control in the window’s local coordinates. The height of the control
is fixed and the control will be centered vertically within the rectangle you specify.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

inValue
The initial value; either kControlDisclosureButtonClosed or
kControlDisclosureButtonDisclosed.

inAutoToggles
A Boolean value indicating whether its value should change automatically after tracking the mouse.

outControl
On successful exit, this will contain the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

CreateDisclosureButtonControl is preferred over NewControl (page 318) because it allows you to
specify the exact set of parameters required to create the control without overloading parameter semantics.
The initial minimum of the Disclosure Button will be kControlDisclosureButtonClosed, and the maximum
will be kControlDisclosureButtonDisclosed.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIDisclosureViews.h

CreateDisclosureTriangleControl

Creates a disclosure triangle control.

0SStatus CreateDisclosureTriangleControl (
WindowRef inWindow,
const Rect *inBoundsRect,
ControlDisclosureTriangleOrientation inOrientation,
CFStringRef inTitle,
SInt32 inlnitialValue,
Boolean inDrawTitle,
Boolean inAutoToggles,
ControlRef *outControl
)

Parameters
window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

inBoundsRect
The desired position, in the window’s local coordinates, for the disclosure triangle.

inOrientation
The direction the disclosure triangle should point when it is “closed.” Passing
kControlDisclosureTrianglePointDefault isonlylegal as of Mac OS X and CarbonlLib 1.5. For
other possible values, see “Control Disclosure Triangle Orientation Constants” (page 237).

inTitle
The title for the disclosure triangle. The title is displayed only if the value of the inDrawTitle
parameter is true. Displaying the title only works on Mac OS X.

Functions 37
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



38

Control Manager Reference

inInitialValue
The initial state of the disclosure triangle. A value of 0 causes the disclosure triangle to be drawn
initially in the “closed” state, and a value of 1 causes the triangle to be drawn initially in the “open”
state.

inDrawTitle
A Boolean whose value is true if the disclosure triangle should draw its title next to the widget.
Displaying the title only works on Mac OS X.

inAutoToggles
A Boolean whose value is true to enable auto toggling; otherwise, false. When auto toggling is
enabled, the disclosure triangle automatically changes from “open” to “closed” and from “closed” to
“open” when it is clicked.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

A disclosure triangle is a small control that gives the user a way to toggle the visibility of information or other
user interface. When information is in a hidden state, a disclosure triangle is considered “closed” and should
point to the right (or sometimes to the left). When the user clicks it, a disclosure triangle rotates downwards
into the “open” state. The application should respond by revealing the appropriate information or interface.

On Mac OS X, a root control is created for the window if one does not already exist. If a root control exists
for the window, the disclosure triangle control is embedded in it.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIDisclosureViews.h

CreateEditUnicodeTextControl

Creates a new edit text control.

0SStatus CreateEditUnicodeTextControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef text,
Boolean isPassword,
const ControlFontStyleRec *style,
ControlRef *outControl

)

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

boundsRect
The bounds of the control in the window’s local coordinates.

text
The text of the control. May be NULL.

isPassword
A Boolean indicating whether the field is to be used as a password field. Passing fa1se indicates that
text entered in the field is to be displayed normally. Passing true means that the field is to be used
as a password field; any text typed into the field is displayed as bullets.

style
The control’s font style, size, color, and so on. May be NULL.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

This function is the preferred way of creating edit text controls. Use it instead of the
CreateEditTextControl (page 313) function. The resulting control handles Unicode text and draws its
text using anti-aliasing. Controls created by CreatetditTextControl do not handle Unicode text and are
not drawn with anti-aliasing.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HITextViews.h

CreateGroupBoxControl

Creates a group box control.

0SStatus CreateGroupBoxControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef title,
Boolean primary,
ControlRef *outControl

)

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.
boundsRect

The bounds of the desired control in the window’s local coordinates.

title
The title of the control. This parameter can be NULL if you don't want the control to have a title.

Functions 39
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



40

Control Manager Reference

primary
A Boolean whose value is true to create a primary group box or false to create a secondary group
box. Secondary group boxes are intended to be contained within primary group boxes and have a
slightly different appearance.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIContainerViews.h

CreatelconControl

Creates an icon control.

0SStatus CreatelconControl (
WindowRef inWindow,
const Rect *inBoundsRect,
const ControlButtonContentInfo *inlIconContent,
Boolean inDontTrack,
ControlRef *outControl
)

Parameters

inWindow
The window in which the control is to be placed. This parameter may be NUL L in Mac OS X v10.3 and
later.

inBoundsRect
The bounds of the control in the window’s local coordinates.

inlconContent
The descriptor for the icon you want the control to display. Mac OS X and CarbonLib 1.5 (and beyond)
support all of the icon content types. Prior to CarbonLib 1.5, the only content types that are properly
respected are kControlContentIconSuiteRes, kControlContentCIconRes, and
kControlContentICONRes.

inDontTrack
A Boolean whose value is true to indicate that the control should not be highlighted when it is
clicked; false means that the control should be highlighted and the mouse tracked when the control
is clicked.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIImageViews.h

CreatelmageWellControl

Creates an image well control.

0SStatus CreatelmageWellControl (
WindowRef window,
const Rect *boundsRect,
const ControlButtonContentInfo *info,
ControlRef *outControl
)
Parameters
window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.
boundsRect
The bounds of the control in the window’s local coordinates.
info
The image that is to be displayed in the image well. The image can be an icon suite, picture, color
icon, or an IconRef in Mac OS X v10.0 and later. It can be also be a CGImageRef in Mac OS X v10.4
and later.
outControl

On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
An image well control is a control that displays an image inside a frame (or “well”). The user can drag other
images onto the well.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIImageViews.h

CreateListBoxControl

Creates a list box control.

Functions 1
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



42

Control Manager Reference

0SStatus CreatelListBoxControl (
WindowRef window,
const Rect *boundsRect,
Boolean autoSize,
SIntl6 numRows,
SIntl6 numColumns,
Boolean horizScroll,
Boolean vertScroll,
SIntl6 cellHeight,
SIntl6e cellWidth,
Boolean hasGrowSpace,
const ListDefSpec *TistDef,
ControlRef *outControl

)

Parameters

window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

autoSize
A Boolean whose value is true to enable auto-sizing; otherwise, false. When auto-sizing is enabled,
the control automatically resizes itself as necessary to ensure that the height of the control is an exact
multiple of the cell height.

numRows
The number of rows the control is to have.
numColumns
The number of columns the control is to have.
horizScroll
A Boolean whose value is true if the control is to have a horizontal scroll bar; otherwise, false.
vertScroll
A Boolean whose value is true if the control is to have a vertical scroll bar; otherwise, false.
cellHeight
The height of cells in the control.
cellWidth
The width of cells in the control.
hasGrowSpace
A Boolean whose value is true to indicate that the control is drawn so that there is room for a size
box; otherwise, false.
listDef
A pointer to the list definition function you want to associate with the new control. This parameter
may be NULL if you want to use the standard list definition function, which only displays text.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Discussion

The list is created with default values, and uses the standard LDEF (0) if you don't specify a custom list
definition function in the 11stDef parameter. You can set the LDEF to use by using
kControllListBoxLDEFTag. You can change the list by getting the list handle. To get the list handle, call
GetControlData (page 85) and pass the kControlListBoxListHandletag constant.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
ControlDefinitions.h

CreateLittleArrowsControl

Creates a little arrows control.

0SStatus CreatelLittleArrowsControl (
WindowRef window,
const Rect *boundsRect,
SInt32 value,
SInt32 minimum,
SInt32 maximum,
SInt32 increment,
ControlRef *outControl
)

Parameters
window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.
minimum
The minimum value the control can have.

maximum
The maximum value the control can have.

increment
The amount to increment each time an arrow is clicked.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

This control implements the little up and down arrows seen in the Date & Time system preferences panel.
To change the value of this control, you need to create a control action proc. The following sample code
creates the control and sets the action proc:

Functions 43
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



44

Control Manager Reference

CreatelLittleArrowsControl (&rect, minimum, maximum, increment, value);
SetControlAction(Arrows, LittleArrowActionProc);

Here is sample code for the action proc:

void LittleArrowActionProc(ControlRef cref, ControlPartCode part) {
SInt32 val = GetControl32BitValue(cref);
SInt32 s = 0;
GetControlData(cref, 0, kControlLittleArrowsIncrementValueTag, sizeof(SInt32),
&s, nil;
switch (part) {
case kControlUpButtonPart:
SetControl32BitValue(cref, val+s);
break;
case kControlDownButtonPart:
SetControl32BitValue(cref, val-s);
break;
b
b

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HILittleArrows.h

CreatePictureControl

Creates a picture control.

0SStatus CreatePictureControl (
WindowRef window,
const Rect *boundsRect,
const ControlButtonContentInfo *content,
Boolean dontTrack,
ControlRef *outControl
)

Parameters

window
The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

content
The descriptor for the picture you want the control to display. Only picture content is supported. You
can change the picture by calling SetControlData (page 137) and passing the
kControlPictureHandleTag constant.

dontTrack
A Boolean whose value is true to indicate that the control should not be highlighted when it is

clicked; false means that the control should be highlighted and the mouse tracked when the control
is clicked.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

outControl
On return, the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
ControlDefinitions.h

CreatePlacardControl

Creates a placard control.

0SStatus CreatePlacardControl (
WindowRef window,
const Rect *boundsRect,
ControlRef *outControl

)

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounding box of the control in the window's local coordinates.

outControl

On return, the new control. For a description of this data type, see ControlRef (page 193).
Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIContainerViews.h

CreatePopupArrowControl

Creates a pop-up arrow control.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

45



46

Control Manager Reference

0SStatus CreatePopupArrowControl (
WindowRef window,
const Rect *boundsRect,
ControlPopupArrowOrientation orientation,
ControlPopupArrowSize size,
ControlRef *outControl

);

Parameters
window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

orientation
The orientation of the control.
size
The size of the control.
outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIPopupButton.h

CreatePopupButtonControl

Creates a pop-up button control.

0SStatus CreatePopupButtonControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef title,
MenulID menulD,
Boolean variableWidth,
SIntl6 titleWidth,
SIntl6 titledustification,
Style titleStyle,
ControlRef *outControl

)

Parameters

window
The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

title
The title of the control.

menulD
The ID of a menu that should be used by the control. A menu with this ID should be inserted into the
menubar with ITnsertMenu(menu, kInsertHierarchicalMenu). You can also pass -12345 to
have the control delay its acquisition of a menu; in this case, you can build the menu and later provide
it to the control with SetControlData and kControlPopupButtonMenuRefTag or
kControlPopupButtonOwnedMenuRefTag.

variableWidth
A Boolean whose value indicates whether the width of the control is allowed to vary according to
the width of the selected menu item text (t rue), or should remain fixed to the original control bounds
width (false).

titleWidth
The width of the title.

titledustification
The justification of the title. Use a TextEdit justification constant (teFlushDefault, teCenter,
teFlushRight,or teFTushlLeft).

titleStyle
A QuickDraw style bitfield indicating the font style of the title.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIPopupButton.h

CreatePopupGroupBoxControl

Creates a group box control that has a pop-up button as its title.

Functions 47
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



48

Control Manager Reference

0SStatus CreatePopupGroupBoxControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef title,
Boolean primary,
MenulID menulD,
Boolean variableWidth,
SIntl6e titleWidth,
SIntl6 titledJustification,
Style titleStyle,
ControlRef *outControl

)

Parameters

window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The title of the control. The title is used as the title of the pop-up button.

primary
A Boolean whose value is true to create a primary group box or false to create a secondary group
box.

menulD
The menu ID of the menu that is to be displayed by the pop-up button. A menu with this ID should
be inserted into the menubar with InsertMenu(menu, klInsertHierarchicalMenu). You can
also pass - 12345 to have the control delay its acquisition of a menu; in this case, you can build the
menu and later provide it to the control with SetControlData and
kControlPopupButtonMenuRefTagor kControlPopupButtonOwnedMenuRefTag.

variableWidth
A Boolean whose value is true if the pop-up button is to have a variable-width title or false if the
pop-up button is to have a fixed-width title. Fixed-width titles are only supported by Mac OS X; this
parameter must be true when used with CarbonlLib.

titleWidth
The width in pixels of the pop-up button title.

titledustification
The justification of the pop-up button title. Use a TextEdit justification constant (teFlushDefault,
teCenter, teFTushRight,or teFlushlLeft).

titleStyle
The QuickDraw text style of the pop-up button title.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Declared In
HIContainerViews.h

CreateProgressBarControl

Creates a progress bar control.

0SStatus CreateProgressBarControl (
WindowRef window,
const Rect *boundsRect,
SInt32 value,
SInt32 minimum,
SInt32 maximum,
Boolean indeterminate,
ControlRef *outControl
)s
Parameters
window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.
boundsRect
The bounds of the control in the window’s local coordinates.
value
The initial value of the control.
minimum
The minimum value of the control.
maximum
The maximum value of the control.
indeterminate
A Boolean whose value is true if you want the control to display a rotating barber pole effect to
indicate that something is happening (an indeterminate progress bar) or false if you want to display
a determinate progress bar that uses the values of the minimum and maximum parameters to show
progress from minimum to maximum.
outControl

On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIProgressViews.h

CreatePushButtonControl

Creates a push button control.

Functions 49
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



50

Control Manager Reference

0SStatus CreatePushButtonControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef title,
ControlRef *outControl

)

Parameters

window
The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The control title. May be NULL.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreatePushButtonWithlconControl

Creates a push button control containing an icon or other graphical content.

0SStatus CreatePushButtonWithIconControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef title,
ControlButtonContentInfo *icon,
ControlPushButtonIconAlignment iconAlignment,
ControlRef *outControl

)

Parameters
window
The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.
boundsRect
The bounds of the control, in local coordinates of the window.
title
The control title. May be NULL.
icon
The control graphic content. The value of this parameter can be kControlContentCIconRes in Mac
0OS X v10.0 and later. It can also be kControlContentCGImageRef in Mac OS X v10.4 and later.
Functions

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

iconAlignment
The alignment of the control graphic content.For possible values, see “Control Push Button Icon
Alignment Constants” (page 237).

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateRadioButtonControl

Creates a radio button control.

0SStatus CreateRadioButtonControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef title,
SInt32 initialValue,
Boolean autoToggle,
ControlRef *outControl

)

Parameters

window
The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The control title. May be NULL.

initialValue
The initial value of the control. Should be 0 (off), 1 (on), or 2 (mixed). The control is automatically
given a minimum value of 0 and a maximum value of 2.

autoToggle
A Boolean whose value indicates whether this control should have auto-toggle behavior. If true, the
control automatically toggles between on and off states when clicked. This parameter should be
false if the control is embedded into a radio group control; in that case, the radio group handles
setting the correct control value in response to a click.

outControl
On return, the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions 51
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



52

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateRadioGroupControl

Creates a radio group control.

0SStatus CreateRadioGroupControl (
WindowRef window,
const Rect *boundsRect,
ControlRef *outControl

)

Parameters
window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

This control implements a radio group. It is an embedding control and can therefore only be used when a
control hierarchy is established for its owning window. You should only embed radio buttons within it. As
radio buttons are embedded into it, the group sets up its value, min, and max to represent the number of
embedded items. The current value of the control is the index of the sub-control that is the current “on”
radio button. To get the current radio button control handle, you can use the Control Manager call
GetIndexedSubControl (page 98), passing in the value of the radio group.

Note that when creating radio buttons for use in a radio group control, you should not use the auto-toggle
version of the radio button. The radio group control handles toggling the radio button values itself; auto-toggle
radio buttons do not work properly in a radio group control on Mac OS 9.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateRelevanceBarControl

Creates a relevance bar control.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus CreateRelevanceBarControl (
WindowRef window,
const Rect *boundsRect,
SInt32 value,
SInt32 minimum,
SInt32 maximum,
ControlRef *outControl
)

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.
boundsRect

The bounds of the control in the window’s local coordinates.
value

The initial value of the control.
minimum

The minimum value of the control.
maximum

The maximum value of the control.

outControl

On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIRelevanceBar.h

CreateRootControl

Creates the root control for a specified window.

0SErr CreateRootControl (
WindowRef inWindow,
ControlRef *outControl
)

Parameters
inWindow
A pointer to the window in which you wish to create a root control.

outControl

On input, a pointer to a ControlHand1e value. On return, the ControlHand1e value is set to a
handle to the root control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions 53
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



54

Control Manager Reference

Discussion
Establishing an embedding hierarchy can be accomplished in two steps: creating a root control and embedding
controls within it.

To embed controls in a window, you must create a root control for that window. The root control is the
container for all other window controls. You create the root control in one of two ways—by calling the
CreateRootControl function or by setting the appropriate dialog flag. The root control can be retrieved
by calling the function GetRootControl (page 101).

The CreateRootControl function creates the root control for a window if no other controls are present. If
there are any controls in the window prior to calling CreateRootControl, an error is returned and the root
control is not created. Note that the minimum, maximum, and initial settings for a root control are reserved
and should not be changed.

The root control is implemented as a user pane control. You can attach any application-defined user pane
functions to the root control to perform actions such as hit testing, drawing, handling keyboard focus, erasing
to the correct background, and processing idle and keyboard events.

Once you have created a root control, newly created controls will automatically be embedded in the root
control when you call NewControl (page 318) or GetNewControl (page 100). You can specify that a specific
control be embedded into another by calling EmbedControl (page 73).

By acting on an embedder control, you can move, disable, or hide groups of items. For example, you can use
a blank user pane control as the embedder control for all items in a particular “page” of a tab control. After
creating as many user panes as you have tabs, you can hide one and show the next when a tab is clicked.
All the controls embedded in the user pane will be hidden and shown automatically when the user pane is
hidden and shown.

In addition to calling CreateRootControl, you can establish an embedding hierarchy in a dialog box by
either setting the feature bit kDialogFlagsUseControlHierarchy in the extended dialog resource or
passing it in the inF1ags parameter of the Dialog Manager function NewFeaturesDialog. An embedding
hierarchy can be created in an alert box by setting the kATertFlagsUseControlHierarchy bitin the
extended alert resource. It is important to note that a preexisting alert or dialog item will become a control
if it is in an alert or dialog box that now uses an embedding hierarchy.

The embedding hierarchy enforces drawing order by drawing the embedding control before its embedded
controls. Using an embedding hierarchy also enforces orderly hit-testing, since it performs an “inside-out”
hit test to determine the most deeply nested control that is hit by the mouse. An embedding hierarchy is
also necessary for controls to make use of keyboard focus, the default focusing order for which is a linear
progression that uses the order the controls were added to the window. For more details on keyboard focus,
see “Handling Keyboard Focus’

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

CreateRoundButtonControl

Creates a new instance of the round button control.

0SStatus CreateRoundButtonControl (
WindowRef inWindow,
const Rect *inBoundsRect,
ControlRoundButtonSize inSize,
ControlButtonContentInfo *inContent,
ControlRef *outControl

)

Parameters
inWindow
The WindowRef in which to create the control.

inBoundsRect
The bounds of the control in the window’s local coordinates. The height and width of the control are
fixed (specified by the ControlRoundButtonSize parameter) and the control will be centered within
the rectangle you specify.
inSize
The button size; either kControlRoundButtonNormalSizeorkControlRoundButtonlLargeSize.
inContent
Any optional content displayed in the button. In Mac OS X v10.0 and later, kControlContentIconRef
is supported.
outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
CreateRoundButtonControl is preferred over NewControl (page 318) because it allows you to specify
the exact set of parameters required to create the control without overloading parameter semantics.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateScrollBarControl

Creates a scroll bar control.

Functions 55
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



56

Control Manager Reference

0SStatus CreateScrollBarControl (
WindowRef window,
const Rect *boundsRect,
SInt32 value,
SInt32 minimum,
SInt32 maximum,
SInt32 viewSize,
Boolean TiveTracking,
ControlActionUPP TiveTrackingProc,
ControlRef *outControl

)

Parameters

window
The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

value

The initial value of the control.
minimum

The minimum value of the control.

maximum
The maximum value of the control.

viewSize
The size of the visible area of the scroll bar content. If this parameter is a non-zero value, this function
creates a proportional scroll bar thumb; a value of 0 causes a non-proportional scroll bar thumb to
be created.

liveTracking
A Boolean indicating whether or not live tracking is enabled for this scroll bar. If set to true and a
valid 1iveTrackingProc is also passed in, the callback is called repeatedly as the thumb is moved
during tracking. If set to false, a semi-transparent thumb called a “ghost thumb” draws and no live
tracking occurs.

liveTrackingProc
If the value of the TiveTracking parameteris true,a ControlActionUPP callback is to be called
as the control live tracks. This callback is called repeatedly as the scroll thumb is moved during tracking.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIScrollView.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

CreateScrollingTextBoxControl

Creates a scrolling text box control.

0SStatus CreateScrollingTextBoxControl (
WindowRef window,
const Rect *boundsRect,
SIntl6 contentResID,
Boolean autoScroll,
UInt32 delayBeforeAutoScroll,
UInt32 delayBetweenAutoScroll,
UIntl6 autoScrollAmount,
ControlRef *outControl
)

Parameters
window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

contentResID
The resource ID of ‘TEXT’ and (optionally) ‘style’ resources whose contents are to be displayed.

autoScroll
A Boolean whose value is true to enable automatic scrolling; otherwise, false.

delayBeforeAutoScroll
The number of ticks to wait before scrolling automatically. This parameter is ignored and can be set
to 0 if the value of the autoScrol1 parameteris false.

delayBetweenAutoScroll
The number of ticks to wait between automatic scrolls. This parameter is ignored and can be set to
0 if the value of the autoScrol1 parameteris false.

autoScrollAmount
The number of pixels to scroll. This parameter is ignored and can be set to 0 if the value of the
autoScroll parameteris false.

outControl
On return, outControl points to the newly-created control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
This control implements a scrolling box of text that cannot be edited. This is useful for credits in about boxes.

The standard version of this control has a scroll bar, but the autoscrolling variant does not. The autoscrolling
variant needs two pieces of information to work: delay (in ticks) before the scrolling starts, and time (in ticks)
between scrolls. This control scrolls one pixel at a time if created by NewControl (page 318), unless changed
by calling SetControlData (page 137).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
ControlDefinitions.h

Functions 57
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

CreateSeparatorControl

Creates a separator control.

0SStatus CreateSeparatorControl (
WindowRef window,
const Rect *boundsRect,
ControlRef *outControl

)

Parameters

window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The horizontal or vertical orientation of a separator line is determined automatically based on the relative
height and width of its control bounds.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HISeparator.h

CreateSliderControl

Creates a slider control.

0SStatus CreateSliderControl (
WindowRef window,
const Rect *boundsRect,
SInt32 value,
SInt32 minimum,
SInt32 maximum,
ControlSliderOrientation orientation,
UIntl6 numTickMarks,
Boolean TiveTracking,
ControlActionUPP TiveTrackingProc,
ControlRef *outControl

)

Parameters
window
The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

boundsRect
The bounds of the control in the window’s local coordinates.

value

The initial value of the control.
minimum

The minimum value of the control.

maximum
The maximum value of the control.

orientation
The orientation of the control. For possible values, see “Control Slider Orientation Constants” (page
238).

numTickMarks
The number of tick marks the slider control is to have.

livelracking
A Boolean whose value is true to enable live tracking for the control; otherwise, false.

liveTrackingProc
If the value of the TiveTracking parameteris true,a ControlActionUPP callback is to be called
as the control live tracks. This callback is called repeatedly as the slider is moved during tracking.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

Mac OS X has a “Scroll to here” option in the General pane of System Preferences that allows users to click
in the page up or page down regions of a slider and have the indicator jump directly to the clicked position,
which alters the value of the slider and moves any associated content appropriately. As long as the mouse
button is held down, the click is treated as though the user clicked the indicator.

If you want the sliders in your application to work with the “Scroll to here” option, you must do the following:

1. Create live-tracking sliders, not sliders that show a “ghost” thumb when you click on it. You can request
live-tracking sliders by passing true in the TiveTracking parameterto CreateSliderControl.If
you create sliders with NewControl (page 318), use the kControlSliderLiveFeedback variant.

2. Write an appropriate ControlActionProc and associate it with your slider by calling
SetControlAction (page 135). This allows your application to update its content appropriately when
the live-tracking slider is clicked.

3. When callingHandleControlClick (page 103) or TrackControl (page 155) TrackControl, pass -1 in
the action proc parameter. This is a request for the Control Manager to use the action proc you associated
with your control in step 2. If you rely on the standard window event handler to do your control tracking,
this step is handled for you automatically.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Functions 59
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Declared In
HISTider.h

CreateStaticTextControl

Creates a new static text control.

0SStatus CreateStaticTextControl (
WindowRef window,
const Rect *boundsRect,
CFStringRef text,
const ControlFontStyleRec *style,
ControlRef *outControl

)

Parameters

window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

text
The text of the control. May be NULL.

style
The control’s font style, size, color, and so on. May be NULL.

outControl

On return, the new control. For a description of this data type, see ControlRef (page 193).
Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HITextViews.h

CreateTabsControl

Creates a tabs control.

60 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus CreateTabsControl (
WindowRef window,
const Rect *boundsRect,
ControlTabSize size,
ControlTabDirection direction,
UIntl6 numTabs,
const ControlTabEntry *tabArray,
ControlRef *outControl

)

Parameters
window

The window in which the control is to be placed. This parameter may be NUL L in Mac OS X v10.3 and
later.

boundsRect

The bounds of the control in the window’s local coordinates.
size

The control tab size. See “Control Tab Size Constants” (page 238) for possible values.
direction

The control tab direction. See “Control Tab Direction Constants” (page 238) for possible
values.

numTabs
The initial number of tabs.

tabArray
Information about each tab. There must be the same number of entries as specified by the numTabs
parameter.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

If you want to customize the accessibility information provided for individual tabs of a tabs control, such as
by handling various kEventClassAccessibility Carbon Events and by calling
HIObjectSetAuxiliaryAccessibilityAttribute, you need to know how to build or interpret
AXUIElement reference that represent individual tabs. The AXUIElement representing an individual tab must
be constructed using the tab control’s ControlRef and the UInt64 identifier of the one-based index of the
tab to which the element refers. A UInt64 identifier of 0 represents the tabs control as a whole. You cannot
interpret or create tab control elements whose identifiers are greater than the count of tabs in the tabs
control.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HITabbedView.h

Functions 61
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



62

Control Manager Reference

CreateUserPaneControl

Creates a user pane control.

0SStatus CreateUserPaneControl (
WindowRef window,
const Rect *boundsRect,
UInt32 features,
ControlRef *outControl

)

Parameters

window
The window in which the control is to be placed. This parameter may be NUL L in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

features

The user pane features with which the user pane is to be created. For possible constants, see “Control
Features Constants” (page 225).

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
User panes have two primary purposes: to allow easy implementation of a custom control by the developer,
and to provide a generic container for embedding other controls.

In Carbon, with the advent of Carbon-event-based controls, you may find it easier to write a new control
from scratch than to customize a user pane control. The set of callbacks provided by the user pane will not
be extended to support new Control Manager features; instead, you should just write a real control.User
panes do not, by default, support embedding. If you try to embed a control into a user pane, you will get
the errControlIsNotEmbedder. You can make a user pane support embedding by passing the
kControlSupportsEmbedding flag in the features parameter when you create the control.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIContainerViews.h

CreateWindowHeaderControl

Creates a window header control.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus CreateWindowHeaderControl (
WindowRef window,
const Rect *boundsRect,
Boolean isListHeader,
ControlRef *outControl
)

Parameters

window
The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

isListHeader
A Boolean whose value is t rue if the control should have an appropriate appearance to be the header
of a list; otherwise, false.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIContainerViews.h

DeactivateControl

Deactivates a control and any latent embedded controls.

O0SErr DeactivateControl (
ControlRef inControl
)

Parameters
inControl

A handle to the control to deactivate. If you pass a window’s root control, DeactivateControl
deactivates all controls in that window.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The DeactivateControl function should be called instead of Hi1iteControl to deactivate a specified
control and its latent embedded controls.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you activate a latent embedded control whose embedder is deactivated, the
embedded control becomes latent until the embedder is activated. However, if you deactivate a latent
embedded control, it will not be activated when its embedder is activated.

Functions 63
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



64

Control Manager Reference

If a control definition function supports activate events, it will receive a kControlMsgActivate message
before redrawing itself in its inactive state.

Availability

Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

DisableControl

Disables a control.

0SStatus DisableControl (
ControlRef inControl
)
Parameters
inControl
The control to disable. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

DisposeControl
Decrements a control’s reference count and destroys it if the reference count becomes 0.
void DisposeControl (
ControlRef theControl
);
Parameters

theControl
The control you want to dispose of. For a description of this data type, see ControlRef (page 193).

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Discussion

The DisposeControl function reduces the control’s reference count and, if the reference count becomes
0, releases the memory occupied by the control structure and any data structures associated with the control.
Before destroying the control, DisposeControl removes the control (and any embedded controls it may
possess) from the screen and deletes the control from the window’s control list.

To destroy all of the controls from a window you want to keep, use the function Ki11Controls (page 120).
If an embedding hierarchy is present, passing the root control to the DisposeControl function is the
effectively the same as calling Ki11Controls (page 120). In that situation, DisposeControl disposes of
the controls embedded within a control before disposing of the container control.

You should use DisposeControl when you want to retain the window but remove one of its controls. The
Window Manager functions C1oseWindowand Disposelindow automatically remove all controls associated
with the window and release the memory the controls occupy.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

DisposeControlActionUPP
Disposes of a control action UPP.
void DisposeControlActionUPP (

ControlActionUPP userUPP
)

Parameters
userUpPp
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

DisposeControlCNTLToCollectionUPP
Disposes of a CNLT to collection UPP.

Functions 65
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



66

Control Manager Reference

void DisposeControlCNTLToCollectionUPP (
ControlCNTLToCollectionUPP userUPP

)

Parameters

userUPpP
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

DisposeControlColorUPP
Not recommended

void DisposeControlColorUPP (
ControlColorUPP userUPP

)

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

DisposeControlEditTextValidationUPP

Disposes of an edit text validation UPP.

void DisposeControlEditTextValidationUPP (
ControlEditTextValidationUPP userUPP
)

Parameters
userUpPpP
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

DisposeControlKeyFilterUPP
Disposes of a key filter UPP.

void DisposeControlKeyFilterUPP (
ControlKeyFilterUPP userUPP
)
Parameters
userUpPP
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

DisposeControlUserPaneActivateUPP

Disposes of a user pane activate UPP.

void DisposeControlUserPaneActivateUPP (
ControlUserPaneActivateUPP userUPP
);
Parameters
userUPpP
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneBackgroundUPP

Disposes of a user pane background UPP.

void DisposeControlUserPaneBackgroundUPP (
ControlUserPaneBackgroundUPP userUPP
)

Parameters

userUpPp
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIContainerViews.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

67



68

Control Manager Reference

DisposeControlUserPaneDrawUPP

Disposes of a user pane draw UPP.

void DisposeControlUserPaneDrawUPP (
ControlUserPaneDrawUPP userUPP
)
Parameters
userUpp
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneFocusUPP

Disposes of a user pane focus UPP.

void DisposeControlUserPaneFocusUPP (
ControlUserPaneFocusUPP userUPP
);

Parameters

userUPpP
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneHitTestUPP

Disposes of a user pane hit test UPP.

void DisposeControlUserPaneHitTestUPP (
ControlUserPaneHitTestUPP userUPP
)

Parameters
userypp
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

DisposeControlUserPaneldleUPP

Disposes of a user pane idle UPP.

void DisposeControlUserPaneldleUPP (
ControlUserPaneldleUPP userUPP
)
Parameters
userUpp
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneKeyDownUPP

Disposes of a user pane key down UPP.

void DisposeControlUserPaneKeyDownUPP (
ControlUserPaneKeyDownUPP userUPP
);

Parameters

userUPpP
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneTrackingUPP

Disposes of a user pane tracking UPP.

void DisposeControlUserPaneTrackingUPP (
ControlUserPaneTrackingUPP userUPP
)

Parameters
userypp
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

69



70

Control Manager Reference

DisposeEditUnicodePostUpdateUPP

Disposes of an edit unicode post update UPP.

void DisposeEditUnicodePostUpdateUPP (
EditUnicodePostUpdateUPP userUPP
)

Parameters
userUpPP
The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

DragControl

Draws and moves an outline of a control or its indicator while the user drags it. (Deprecated. Use Drag
Manager functions if you want drag-and-drop support for controls. See Drag Manager Reference.)

Not recommended

void DragControl (
ControlRef theControl,
Point startPoint,
const Rect *TimitRect,
const Rect *slopRect,
DragConstraint axis

)

Parameters

theControl
A handle to the control to drag. For a description of this data type, see ControlRef (page 193).

startPoint

The location of the cursor at the time the mouse button was first pressed, in global coordinates. Your
application retrieves this point from the where field of the event structure.

limitRect

A pointer to a rectangle—whose coordinates should normally coincide with or be contained in the
window’s content region—delimiting the area in which the user can drag the control’s outline.

slopRect

A pointer to a rectangle that allows some extra space for the user to move the mouse while still
constraining the control within the rectangle specified in the 1imitRect parameter.

axis
The axis along which the user may drag the control’s outline. Specify the axis using one of the

following values: noConstraint (no constraint), hAxisOnly (drag along horizontal axis only),
vAxisOnly (drag along vertical axis only).

Discussion

The DragControl function moves a dotted outline of a control, such as a scroll box, around the screen,
following the movements of the cursor until the user releases the mouse button. When the user releases the
mouse button, DragControl moves the control to the new location.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

The function TrackControl (page 155) automatically calls the DragControl function as appropriate; when
you use TrackControl, you don't need to call DragControl.

Before tracking the cursor, DragControl calls the control definition function. If you define your own control
definition function, you can specify custom dragging behavior.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

Draw1Control

Draws a control and any embedded controls that are currently visible in the specified window.

void DrawlControl (
ControlRef theControl
)

Parameters
theControl

A handle to the control to draw. For a description of this data type, see ControlRef (page 193).
Discussion
Although you should generally use the functionUpdateControls (page 156) to update controls, you can
use the DrawOneControl function to update a single control. If an embedding hierarchy exists and the
control passed in has embedded controls, DrawOneControl draws the control and embedded controls. If
the root control for a window is passed in, the result is the same as if DrawControls was called.

If you are using compositing mode, you generally do not need to call DrawlControl. If you call
DrawlControl in compositing mode, keep in mind that it draws the specified control as well as all other
controls that intersect the control.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

DrawControlinCurrentPort

Draws a control in the current graphics port.

void DrawControlInCurrentPort (
ControlRef inControl

)

Parameters

inControl
A handle to the control to draw. For a description of this data type, see ControlRef (page 193).

Functions 71
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



72

Control Manager Reference

Discussion

Typically, controls are automatically drawn in their owner’s graphics port with the functions
DrawControls (page 72), DrawlControl (page 71), and UpdateControls (page 156).
DrawControlInCurrentPort permits easy offscreen control drawing and printing. All standard system
controls support this function.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

DrawControls

Draws all controls currently visible in the specified window.

void DrawControls (
WindowRef theWindow
)

Parameters
theWindow

A pointer to a window whose controls you want to display.
Discussion
Because the UpdateControls function redraws only those controls that need updating, your application
should generally use it instead of DrawControls when you receive an update event for a window that
contains controls. You should typically call either DrawControls or UpdateControls after calling the
Window Manager function BeginUpdate and before calling EndUpdate.

While the Dialog Manager automatically draws and updates controls in alert boxes and dialog boxes, Window
Manager functions such as SelectWindow, ShowWindow,and BringToFront do not automatically update
the window’s controls.

When the Appearance Manager is not available, the DrawControls function draws all controls currently
visible in the specified window in reverse order of creation; thus, in case of overlapping controls, the control
created first appears frontmost in the window. If you only wish to draw controls in need of update, call
UpdateControls (page 156) instead.

Note that DrawControls generally should not be called if you are using compositing mode.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
CarbonSketch

HID Config Save
HID Explorer

Declared In
Controls.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

DumpControlHierarchy

Writes a textual representation of the control hierarchy for a specified window into a file.

O0SErr DumpControlHierarchy (
WindowRef inWindow,
const FSSpec *inDumpFile

)s

Parameters
inWindow
A pointer to the window whose control hierarchy you wish to examine.
inDumpFile
A pointer to a file specification in which to place a text description of the window’s control hierarchy.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

The DumpControlHierarchy function places a text listing of the current control hierarchy for the window
specified into the specified file, overwriting any existing file. If the specified window does not contain a
control hierarchy, DumpControlHierarchy notes this in the text file. This function is useful for debugging
embedding-related problems.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIToolboxDebugging.h

EmbedControl

Embeds one control inside another.

O0SErr EmbedControl (
ControlRef inControl,
ControlRef inContainer

)

Parameters

inControl
The control that is to be embedded. For a description of this data type, see ControlRef (page 193).

inContainer
The control in which the control specified by inControl is to be is to embedded. For a description
of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Establishing an embedding hierarchy can be accomplished in two steps: creating a root control and embedding
controls within it.

Functions 73
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



74

Control Manager Reference

To embed controls in a window, you must create a root control for that window. The root control is the
container for all other window controls. You create the root control in one of two ways—by calling the
CreateRootControl (page 53) function or by setting the appropriate dialog flag. The root control can be
retrieved by calling GetRootControl (page 101).

The root control is implemented as a user pane control. You can attach any application-defined user pane
functions to the root control to perform actions such as hit testing, drawing, handling keyboard focus, erasing
to the correct background, and processing idle and keyboard events.

Once you have created a root control, newly created controls will automatically be embedded in the root
control when you call NewControl (page 318) or GetNewControl (page 100). You can specify that a specific
control be embedded into another by calling EmbedControl.

Note that an embedding hierarchy must be established before your application calls the EmbedControl
function. If the specified control does not support embedding or there is no root control in the owning
window, an error is returned. Prior to Mac OS X, if the control you wish to embed is in a different window
from the embedder control, an error is returned. On Mac OS X, however, you can use EmbedControl to
move a control from one window to another. On Mac OS X v.10.0 and v.10.1, you can move all controls except
for the edit text and unicode edit text controls. Support for the edit text controls is available in Mac OS X
v.10.2 and later.

By acting on an embedder control, you can move, disable, or hide groups of items. For example, you can use
a blank user pane control as the embedder control for all items in a particular “page” of a tab control. After
creating as many user panes as you have tabs, you can hide one and show the next when a tab is clicked.
All the controls embedded in the user pane will be hidden and shown automatically when the user pane is
hidden and shown.

In addition to calling CreateRootControl, you can establish an embedding hierarchy in a dialog box by
either setting the feature bit kDialogFlagsUseControlHierarchy in the extended dialog resource or
passing itin the inF1ags parameter of the Dialog Manager function NewFeaturesDialog. An embedding
hierarchy can be created in an alert box by setting the kAlertFlagsUseControlHierarchy bitin the
extended alert resource. It is important to note that a preexisting alert or dialog item will become a control
if it is in an alert or dialog box that now uses an embedding hierarchy.

The embedding hierarchy enforces drawing order by drawing the embedding control before its embedded
controls. Using an embedding hierarchy also enforces orderly hit-testing, since it performs an “inside-out”
hit test to determine the most deeply nested control that is hit by the mouse. An embedding hierarchy is
also necessary for controls to make use of keyboard focus, the default focusing order for which is a linear
progression that uses the order the controls were added to the window. For more details on keyboard focus,
see “"Handling Keyboard Focus”

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

EnableControl

Enables a control.

0SStatus EnableControl (
ControlRef inControl
)

Parameters
theControl
The control that is to be enabled.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

FindControl

Obtains the location of a mouse-down event in a control.

ControlPartCode FindControl (
Point testPoint,
WindowRef theWindow,
ControlRef *theControl

)

Parameters

testPoint
A point, specified in coordinates local to the window, where the mouse-down event occurred. Before
calling FindControl, use the GlobalTolocal function to convert the point stored in the where
field of the event structure (which describes the location of the mouse-down event) to coordinates
local to the window.

thelWindow

A pointer to the window in which the mouse-down event occurred. Pass the window pointer returned
by the FindWindow function.

theControl
A pointer to a control handle. On output, FindControl returns a handle to the control in which the
mouse-down event occurred or NULL if the point was not over a control. For a description of this data
type, see ControlRef (page 193).

Return Value

The control part code of the control in which the mouse-down event occurred; see “Control Meta Part Code
Constants” (page 274), “Control Part Code Constants ” (page 232), and” Control State Part Code Constants” (page
235). For a description of this data type, see ControlPartCode (page 192).

Functions 75
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Discussion

The FindControl function is not recommended when the Appearance Manager is available. When the
Appearance Manager is available, you should call FindControlUnderMouse (page 76) to determine the
location of a mouse-down event in a control. FindControlUnderMouse will return a handle to the control
even if no part was hit and can determine whether a mouse-down event has occurred even if the control is
deactivated, while FindControl does not.

If the Appearance Manager is not available, then, when a mouse-down event occurs, your application can
call FindControl after using the Window Manager function FindWindow to ascertain that a mouse-down
event has occurred in the content region of a window containing controls.

When the user presses the mouse button while the cursor is in a visible, active control, FindControl returns
as its function result a part code identifying the control’s part the function also returns a handle to the control
in the parameter theControl.

If the mouse-down event occurs in an invisible or inactive control, or if it occurs outside a control,
FindControl sets the value referenced through theControl to NULL and returns 0 as its function result.

The FindControl function also returns NULL in the value referenced through the parameter theControl
and 0 as its function result if the window is invisible or if it doesn’t contain the given point. (However,
FindWindow won't return a window pointer to an invisible window or to one that doesn’t contain the point
where the mouse-down event occurred. As long as you call FindWindow before FindControl, this situation
won't arise.)

After using FindControl to determine that a mouse-down event has occurred in a control, you typically
call the function TrackControl (page 155) to follow and respond to the cursor movements in that control,
and then to determine in which part of the control the mouse-up event occurs.

The pop-up control definition function does not define part codes for pop-up menus. Instead, your application
should store the handles for your pop-up menus when you create them. Your application should then test
the handles you store against the handles returned by FindControl before responding to users’ choices in
pop-up menus.

The Dialog Manager automatically calls FindControl and TrackControl for mouse-down events inside
controls of alert boxes and dialog boxes.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

FindControlUnderMouse

Obtains the location of a mouse-down event in a control.

76 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

ControlRef FindControlUnderMouse (
Point inWhere,
WindowRef inWindow,
ControlPartCode *outPart

)

Parameters

inWhere
A point, specified in coordinates local to the window, where the mouse-down event occurred. Before
calling FindControlUnderMouse, use the QuickDraw G1obalTolocal function to convert the point
stored in the where field of the event structure (which describes the location of the mouse-down
event) to coordinates local to the window.

inWindow
A pointer to the window in which the mouse-down event occurred.

outPart
On input, a pointer to a signed 16-bit integer value. On return, the value is set to the part code of the
control part that was selected; see “Control Part Code Constants ” (page 232), “Control Part Code
Constants ” (page 232), and “ Control State Part Code Constants” (page 235).

Return Value
A handle to the control that was selected. If the mouse-down event did not occur over a control part,
FindControlUnderMouse returns NULL. For a description of this data type, see ControlRef (page 193).

Discussion

You should call the FindControlUnderMouse function instead of FindControl (page 75) to determine
whether a mouse-down event occurred in a control, particularly if an embedding hierarchy is present.
FindControlUnderMouse will return a handle to the control even if no part was hit and can determine
whether a mouse-down event has occurred even if the control is deactivated, while FindControl does not.

When a mouse-down event occurs, your application should call FindControlUnderMouse after using the
Window Manager function FindWindow to ascertain that a mouse-down event has occurred in the content
region of a window containing controls.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetBestControlRect

Obtains a control’s optimal size and text placement.

Functions 77
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



78

Control Manager Reference

0SErr GetBestControlRect (
ControlRef inControl,
Rect *outRect,
SIntl6 *outBaselineOffset
)

Parameters
inControl
A handle to the control to be examined.

outRect
On input, a pointer to an empty rectangle (0, 0, 0, 0). On return, the rectangle is set to the optimal
size for the control. If the control doesn’t support getting an optimal size rectangle, the control’s
bounding rectangle is passed back.

outBaselineOffset
On input, a pointer to a signed 16-bit integer value. On return, the value is set to the offset from the
bottom of control to the base of the text (usually a negative value). If the control doesn’t support
optimal sizing or has no text, 0 is passed back.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

You can call the GetBestControlRect function to automatically position and size controls in accordance
with human interface guidelines. This function is particularly helpful in determining the correct placement
of control text whose length is not known until run-time. For example, the StandardAlert function uses
GetBestControlRect to automatically size and position buttons in a newly created alert box.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetBevelButtonContentinfo

Gets the content information for a bevel button.

0SErr GetBevelButtonContentInfo (
ControlRef inButton,
ControlButtonContentInfoPtr outContent
)

Parameters
inButton
The control reference for the button to query.
outContent
A value of type ControlButtonContentInfoPtr for the bevel button’s content information.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Not available to 64-bit applications.

Declared In
HIButtonViews.h

GetBevelButtonMenuHandle

Gets the menu handle for a bevel button.

0SErr GetBevelButtonMenuHandle (
ControlRef inButton,
MenuHandle *outHandle
)
Parameters
inButton
The control reference for the button to query.
outHandle
A pointer to the menu handle.

Return Value

A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIButtonViews.h

GetBevelButtonMenuValue

Gets the value of a bevel button menu.

0SErr GetBevelButtonMenuValue (
ControlRef inButton,
MenultemIndex *outValue

)

Parameters

inButton
The control reference for the button to query.

outValue
A pointer to the value of the bevel button menu.

Return Value

A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

79



80

Control Manager Reference

Declared In
HIButtonViews.h

GetControl32BitMaximum

Obtains the maximum setting of a control.

SInt32 GetControl32BitMaximum (
ControlRef theControl
)

Parameters

theControl
A handle to the control whose maximum setting you wish to obtain. For a description of this data
type, see ControlRef (page 193).

Return Value
The maximum setting of the control.

Discussion
Your application may use the GetContro132B1itMaximum function to obtain a 32-bit value previously set
with the function SetContro132B1itMaximum (page 133).

If your application uses a 32-bit control maximum value, it should not attempt to obtain this value by calling
the pre-Mac OS 8.5 function GetControlMaximum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
HID Calibrator

HID Explorer

Declared In
Controls.h

GetControl32BitMinimum

Obtains the minimum setting of a control.

SInt32 GetControl32BitMinimum (
ControlRef theControl
)

Parameters

theControl

A handle to the control whose minimum setting you wish to obtain. For a description of this data
type, see ControlRef (page 193).

Return Value
The minimum setting of the control.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Discussion
Your application may use the GetContro132B1itMinimum function to obtain a 32-bit value previously set
with the function SetControl132BitMinimum (page 133).

If your application uses a 32-bit control minimum value, it should not attempt to obtain this value by calling
the pre-Mac OS 8.5 function GetControlMinimum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
HID Calibrator

HID Explorer

Declared In
Controls.h

GetControl32BitValue

Obtains the current setting of a control.

SInt32 GetControl32BitValue (
ControlRef theControl
)

Parameters
theControl
A handle to the control whose current setting you wish to obtain.

Return Value
The current setting of the control.

Discussion
Your application may use the GetContro132BitValue function to obtain a 32-bit value previously set with
the function SetContro132BitValue (page 134).

If your application uses a 32-bit control value, it should not attempt to obtain this value by calling the pre-Mac
0S 8.5 function GetControlValue because the 16-bit value that is returned does not accurately reflect the
current 32-bit control value.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
HID Calibrator

HID Explorer

Declared In
Controls.h

Functions 81
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



82

Control Manager Reference

GetControlAction

Returns a pointer to the action function associated with a control structure.

ControlActionUPP GetControlAction (
ControlRef theControl
)

Parameters

theControl

A handle to a control.
Return Value
The action function associated with the control. The action function is called by the Hand1eControlClick
and TrackControl functions if you set the InAction parameterto (ControlActionUPP)-1.See
ControlActionProcPtr (page 159) for an example of an action function.

Discussion

The action function returned by the GetControlAction function defines an action to take in response to
a mouse button being held down while the cursor is in the control. An action function is usually specified in
the InAction parameter of the functions HandleControlC1ick (page 103)and TrackControl (page 155).
You can use the function SetControlAction (page 135) to change the action function.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlBounds

Gets the bounds of a control.

Rect * GetControlBounds (
ControlRef control,
Rect *bounds

)

Parameters
control
The control to query. For a description of this data type, see ControlRef (page 193).

bounds

On input, a pointer to a QuickDraw rectangle. On output, the rectangle contains the bounds of the
control in local coordinates.

Return Value
A pointer to the rectangle passed in the bounds parameter.

Discussion
When called in a composited window, this function returns the view’s frame, which is equivalent to calling
HIViewGetFrame.

Availability
Available in Mac OS X v10.0 and later.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Not available to 64-bit applications.

Related Sample Code
CarbonSketch

HID Explorer

Declared In
Controls.h

GetControlByID

Finds a control in a window by its unique ID.

0SStatus GetControlByID (
WindowRef inWindow,
const ControlID *inlID,
ControlRef *outControl
)

Parameters
inWindow
The window to query.
inID
The control ID.
outControl
A pointer to a value of type ControlRef that, on output, is filled in with the control reference for
the control specified by inID. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

As of Mac OS X v10.3, this function is superseded by the HIViewFindByID function, which is preferred over
the GetControlByID function. The first parameter to the HIViewFindByID function is a view and not a
window, so you can start the search at any point in the hierarchy.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

CarbonSketch
HID Config Save
HID Explorer
QTCarbonShell

Declared In
Controls.h

Functions 83
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



84

Control Manager Reference

GetControlClickActivation

Gets the control’s preferred behavior for responding to particular click.

0SStatus GetControlClickActivation (
ControlRef inControl,
Point inWhere,
EventModifiers inModifiers,
ClickActivationResult *outResult
)

Parameters
inControl
inWhere
The location at which the control was clicked.

inModifiers
Information from the modi fiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted. .

outResult
A pointer to a value of type C1ickActivationResult containing the result. For possible values,
see “Click Activation Constants” (page 264).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

Some complex controls, such as Data Browser, require proper sequencing of window activation and click
processing. In some cases, the control might want the window to be left inactive yet still handle the click, or
vice- versa. This function lets a control client ask the control how it wants to behave for a particular click.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlCommandID

Gets the command ID for a control.

0SStatus GetControlCommandID (
ControlRef inControl,
UInt32 *outCommandID

)

Parameters
inControl

outCommandID
A pointer to the command ID.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlData

Obtains control-specific data.

OSErr GetControlData (

ControlRef inControl,
ControlPartCode inPart,
ResType inTagName,
Size inBufferSize,
void *inBuffer,
Size *outActualSize

)

Parameters
inControl
A handle to the control to be examined.

inPart
“Control Meta Part Code Constants” (page 274)The part code of the control part from which data is
to be obtained; see, “Control Part Code Constants ” (page 232), and “ Control State Part Code
Constants” (page 235). Passing kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control. For a description of this data type, see
ControlPartCode (page 192).

inTagName

A constant representing the control-specific data you wish to obtain see the data tag constants in
the “Control Manager Constants” (page 203) section.

inBufferSize
The size (in bytes) of the data pointed to by the inBuffer parameter. For variable-length control
data, pass the value returned in the outMaxSize parameter of GetControlDataSize (page 86) in
the inBufferSize parameter. The number of bytes must match the actual data size.

inBuffer
On input, a pointer to a buffer allocated by your application. On return, the buffer contains a copy of
the control-specific data. If you pass NULL on input, it is equivalent to calling
GetControlDataSize (page 86). The actual size of the control-specific data will be returned in the
outActualSize parameter. For variable-length data, the number of bytes must match the actual
data size.

outActualSize
On input, a pointer to a Size value. On return, the value is set to the actual size of the data. You can
pass NULL if you don't care about this value.

Return Value

A result code. See “Control Manager Result Codes” (page 308). The result code errDataNotSupported
indicates that the inTagName parameter is not valid.

Functions 85
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



86

Control Manager Reference

Discussion
The GetControlData function will only copy the amount of data specified in the inBuf ferSize parameter,
but will tell you the actual size of the buffer so you will know if the data was truncated.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

CarbonCocoa_PictureCursor
HID Explorer
QTCarbonShell

Declared In
Controls.h

GetControlDataHandle

Obtains a handle to control-specific data. (Deprecated. Use custom HIViews instead of custom CDEFs. See
HIView Programming Guide.)

Handle GetControlDataHandle (
ControlRef control
)

Return Value
A handle to control-specific data.

Discussion
The control data handle is for control-specific data used by a control’s implementation. The control data
handle is set by calling SetControlDataHandle (page 138).

In general, you should not attempt to interpret the contents of this handle if you did not implement the
control yourself. For controls that are provided by the operating system, the format of the data handle may
change from one release of the operating system to the next.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlDataSize

Obtains the size of a control’s tagged data.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

O0SErr GetControlDataSize (
ControlRef inControl,
ControlPartCode inPart,
ResType inTagName,
Size *outMaxSize

)

Parameters
inControl
A handle to the control to be examined.For a description of this data type, see ControlRef (page 193).

inPart
The part code of the control part with which the data is associated; see“Control Meta Part Code
Constants” (page 274), “Control Part Code Constants ” (page 232), and “ Control State Part Code
Constants” (page 235). Passing kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control.

inTagName
A constant representing the control-specific data whose size is to be obtained see the data tag
constants in the “Control Manager Constants” (page 203) section.

outMaxSize
On input, a pointer to a Size value. On return, the value is set to the size (in bytes) of the control’s
tagged data. This value should be passed to SetControlData (page 137)and GetControlData (page
85) to allocate a sufficiently large buffer for variable-length data.

Return Value
A result code. See “Control Manager Result Codes” (page 308). The result code errDataNotSupported
indicates that the inTagName parameter is not valid.

Discussion

Pass the value returned in the outMaxSize parameter of GetControlDataSize inthe inBufferSize
parameter of SetControlData (page 137) and GetControlData (page 85) to allocate an adequate buffer
for variable-length data.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlFeatures

Obtains the features a control supports.
Not recommended

0SErr GetControlFeatures (
ControlRef inControl,
UInt32 *outFeatures

)

Parameters
inControl
A handle to the control to be examined. For a description of this data type, see ControlRef (page 193).

Functions 87
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

outFeatures
On input, a pointer to an unsigned 32-bit integer value. On return, the value contains a bit field
specifying the features the control supports. For a list of the features a control may support, see
ControlDefProcPtr (page 161).

Return Value
A result code. See “Control Manager Result Codes” (page 308). The result code errMsgNotSupported indicates
that the control does not support Appearance-compliant features.

Discussion
The GetControlFeatures function obtains the Appearance-compliant features a control definition function
supports, in response to a kControlMsgGetFeatures message.

Carbon Porting Notes
Some feature bits may not be relevant when using Carbon event-based messages.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlHilite
Gets the highlight status of a control.

UIntle GetControlHilite (
ControlRef control
)
Parameters
control
The control to query. For a description of this data type, see ControlRef (page 193).
Return Value

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControllD

Gets the control ID for a control.

88 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus GetControlID (
ControlRef inControl,
ControlID *outlID

)

Parameters
inControl
The control to query. For a description of this data type, see ControlRef (page 193).

outlD

A pointer to a value of type Contro11D that, on return, contains the control ID of the control specified
by inControl.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlKind

Returns the kind of the given control.

0SStatus GetControlKind (
ControlRef inControl,
ControlKind *outControlKind
)

Parameters
inControl

The control to query. For a description of this data type, see ControlRef (page 193).
outControlKind

On successful exit, this will contain the control signature and kind. See ControlDefinitions.h for
the kinds of each system control. For a description of this data type, see ControlKind (page 191).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
GetControlKind allows you to query the kind of any control.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Functions 89
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



920

Control Manager Reference

Declared In
Controls.h

GetControlMaximum

Obtains a control’s maximum setting. (Deprecated. Use GetControl132BitMaximum (page 80) instead.)
Not recommended

SIntl6 GetControlMaximum (
ControlRef theControl
)

Parameters
theControl

A handle to the control whose maximum value you wish to determine. For a description of this data
type, see ControlRef (page 193).

Return Value
The specified control’s maximum setting.

Discussion

When you create a control, you specify an initial maximum setting either in the control resource or in the
max parameter of the function NewControl (page 318). You can change the maximum setting by using the
function SetControlMaximum (page 141).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlMinimum

Obtains a control’s minimum setting. (Deprecated. Use GetControl32BitMinimum (page 80) instead.)
Not recommended

SIntl6e GetControlIMinimum (
ControlRef theControl
)

Parameters

theControl
A handle to the control whose minimum value you wish to determine.

Return Value
The specified control’s minimum setting.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Discussion

When you create a control, you specify an initial minimum setting either in the control resource or in the
min parameter of the function NewControl (page 318). You can change the minimum setting by using the
function SetControlMinimum (page 141).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlOwner

Returns the window to which a control is bound.

WindowRef GetControlOwner (
ControlRef control
)s
Parameters
control
The control to query. For a description of this data type, see ControlRef (page 193).

Return Value
The window reference to which the control is bound, or NULL if the control is not bound to a window.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlPopupMenuHandle

Gets the menu handle for a pop-up control.

MenuRef GetControlPopupMenuHandle (
ControlRef control
)

Parameters

control
The pop-up control to query.

Return Value
See the Menu Manager documentation for a description of the MenuRe f data type.

Functions 91
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

GetControlPopupMenulD

Gets the menu ID of a pop-up menu.

short GetControlPopupMenulD (
ControlRef control
)s

Parameters
control
The pop-up control to query.

Return Value
The menu ID.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlProperty

Obtains a piece of data that has been previously associated with a control.

0SStatus GetControlProperty (
ControlRef control,
0SType propertyCreator,
0SType propertyTag,
ByteCount bufferSize,
ByteCount *actualSize,
void *propertyBuffer

)

Parameters
control
A handle to the control whose associated data you wish to obtain.

92 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The ‘macs' property signature is reserved for the system and
should not be used.

propertyTlag
The application-defined code identifying the data.

bufferSize
A value specifying the size of the data to be obtained. If the size of the data is unknown, use the
function GetControlPropertySize (page 94) to get the data’s size. If the size specified in the
bufferSize parameter does not match the actual size of the property, GetControlProperty only
retrieves data up to the size specified or up to the actual size of the property, whichever is smaller,
and an error is returned.

actualSize
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the actual size of the
associated data. You may pass NULL for the actualSize parameter if you are not interested in this
information.

propertyBuffer
On input, a pointer to a buffer. On return, this buffer contains a copy of the data that is associated
with the specified control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
You may use the function GetControlProperty to obtain a copy of data previously set by your application
with the function SetControlProperty (page 143).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor

HID Calibrator
HID Explorer

Declared In
Controls.h

GetControlPropertyAttributes

Gets the property attributes for a control.

Functions 93
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



94

Control Manager Reference

0SStatus GetControlPropertyAttributes (
ControlRef control,
0SType propertyCreator,
0SType propertyTag,
OptionBits *attributes
)s

Parameters
control
The control to query. For a description of this data type, see ControlRef (page 193).

propertyCreator

The OSType signature, usually the signature of your application, for the property creator of the
attributes that are to be obtained.

propertylag
The OSType signature for the property tag for the attributes that are to be obtained.

attributes
A pointer to a value of type UInt32 that, on return, contains the attributes of the control specified
by control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlPropertySize

Obtains the size of a piece of data that has previously been associated with a control.

0SStatus GetControlPropertySize (
ControlRef control,
0SType propertyCreator,
0SType propertyTag,
ByteCount *size

)s

Parameters
control

A handle to the control whose associated data you wish to examine. For a description of this data
type, see ControlRef (page 193).

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The ‘macs' property signature is reserved for the system and
should not be used.

propertyTag
The application-defined code identifying the data.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

size
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the actual size of the
data.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

If you want to retrieve a piece of associated data with the function GetControlProperty (page 92), you
will typically need to use the GetControlPropertySize function beforehand to determine the size of the
associated data.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlReference

Obtains a control’s current reference value.

SRefCon GetControlReference (
ControlRef theControl
)

Parameters
theControl
A handle to the control whose current reference value you wish to determine.

Return Value
The current reference value for the specified control.

Discussion

When you create a control, you specify an initial reference value, either in the control resource or in the
refCon parameter of the function NewControl (page 318). The reference value is stored in the contr1RfCon
field of the control structure. You can use this field for any purpose, and you can use the function
SetControlReference (page 144) to change this value.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlRegion

Obtains the region corresponding to a given control part.

Functions 95
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



96

Control Manager Reference

0SStatus GetControlRegion (
ControlRef inControl,
ControlPartCode inPart,
RgnHandle outRegion

)

Parameters
inControl
A handle to the control whose part region you want to obtain.

inPart
A constant identifying the control part for which a region is to be obtained. You may specify the
kControlStructureMetaPartandkControlContentMetaPart control part codes, as well as the
standard control part codes. See “Control Meta Part Code Constants” (page 274), “Control Part Code
Constants ” (page 232), and “ Control State Part Code Constants” (page 235) for descriptions of possible
values.

outRegion
On input, a value of type RgnHand1e. On return, GetControlRegion sets the region to contain the
actual dimensions and position of the control part, in local coordinates.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlValue
Obtains a control’s current setting. (Deprecated. Use GetControl132BitValue (page 81) instead.)

Not recommended

SIntl6 GetControlValue (
ControlRef theControl
)

Parameters
theControl
On input, a handle to a control.

Return Value
The current setting of the control.

Discussion

When you create a control, you specify an initial setting either in the control resource or in the value
parameter of the function NewControl (page 318). You can change the setting by calling
SetControlValue (page 146).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Related Sample Code
BSDLLCTest

CarbonSketch
ictbSample

Declared In
Controls.h

GetControlVariant

Returns the variation code specified in the control definition function for a particular control. (Deprecated.
Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

Not recommended

ControlVariant GetControlVariant (
ControlRef theControl
)

Parameters
theControl
A handle to the control whose variation code you wish to determine.

Return Value

The variation code for the specified control see the control definition IDs in the “Control Manager
Constants” (page 203) section for descriptions of control variation codes. For a description of this data type,
see ControlVariant (page 196).

Discussion

A control definition function can use a variation code to describe variations of the same basic control. For
example, all pop-up arrows share the same basic control definition function, which is stored in a resource of
type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it has
a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Carbon Porting Notes

Use only if you are using message-based custom controls (CDEFs).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetControlViewSize

Obtains the size of the content to which a control’s size is proportioned.

Functions 97
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



98

Control Manager Reference

SInt32 GetControlViewSize (
ControlRef theControl
)

Parameters
theControl
A value of type ControlHand1e. Pass a handle to the control whose view size you wish to obtain.

Return Value
A value equal to the current size of the content being displayed, expressed in terms of the same units of
measurement as are used for the minimum, maximum, and current settings of the control.

Discussion
Your application should call the GetControlViewS1ize function to obtain the current view size of a control.
This value is used by the scrollbar control to support proportional scroll boxes.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetlmageWellContentinfo

Gets information about the content of an image well.

0SErr GetImageWellContentInfo (
ControlRef inButton,
ControlButtonContentInfoPtr outContent

)

Parameters

inButton
The control reference to query.

outContent

On return, the value type ControlButtonContentInfoPtr for the control specified by inButton.
Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HIImageViews.h

GetindexedSubControl

Obtains a handle to a specified embedded control.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SErr GetIndexedSubControl (
ControlRef inControl,
UIntl6 inIndex,
ControlRef *outSubControl
)

Parameters

inControl
The control from which an embedded control handle is to be obtained. For a description of this data
type, see ControlRef (page 193).

inlndex

A one-based index—an integer between 1 and the value returned in the outNumCh1i1dren parameter
of CountSubControls (page 31)—specifying the control you wish to access.

outSubControl
On input, a pointer to a ControlHand1e value. On return, the ControlHand1e value is set to a
handle to the embedded control.
Return Value
A result code. See “Control Manager Result Codes” (page 308). If the index passed in is invalid, the paramErr
result code is returned.

Discussion

The GetIndexedSubControl function is useful for iterating over the control hierarchy. Also, the value of a
radio group control is the index of its currently selected embedded radio button control. So, passing the
current value of a radio group control into Get IndexedSubControl will give you a handle to the currently
selected radio button control.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
Controls.h

GetKeyboardFocus

Obtains a handle to the control with the current keyboard focus for a specified window.

0SErr GetKeyboardFocus (
WindowRef inWindow,
ControlRef *outControl
)

Parameters
inWindow
A pointer to the window for which to obtain keyboard focus.

outControl
On input, a pointer to a ControlHand1e value. On return, the ControlHand1e value is set to a
handle to the control that currently has keyboard focus. Produces NUL L if no control has focus.

Functions 929
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



100

Control Manager Reference

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The GetKeyboardFocus function returns the handle of the control with current keyboard focus within a
specified window.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

GetNewControl

Creates a control from a control resource.

ControlRef GetNewControl (
SIntl6 resourcelD,
WindowRef owningWindow

)

Parameters

resourcelD
The resource ID of the control you wish to create.

owningWindow
A pointer to the window in which to place the control.

Return Value
A handle to the control created from the specified control resource. If GetNewControl can't read the control
resource from the resource file, it returns NULL. For a description of this data type, see ControlRef (page 193).

Discussion

The GetNewControl function creates a control structure from the information in the specified control
resource, adds the control structure to the control list for the specified window, and returns as its function
result a handle to the control. You use this handle when referring to the control in most other Control Manager
functions. After making a copy of the control resource, GetNewControl releases the memory occupied by
the original control resource before returning.

The control resource specifies the rectangle for the control, its initial setting, its visibility state, its maximum
and minimum settings, its control definition ID, a reference value, and its title (if any). After you use
GetNewControl to create the control, you can change the control characteristics with other Control Manager
functions.

If the control resource specifies that the control should be visible, the Control Manager draws the control. If
the control resource specifies that the control should initially be invisible, you can use the function
ShowControl (page 153) to make the control visible.

When an embedding hierarchy is established within a window, GetNewControl automatically embeds the
newly created control in the root control of the owning window.

Availability
Available in Mac OS X v10.0 and later.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Not available to 64-bit applications.

Declared In
Controls.h

GetRootControl

Obtains a handle to a window’s root control.

0SErr GetRootControl (
WindowRef inWindow,
ControlRef *outControl
)

Parameters
inWindow

A pointer to the window to be examined.

outControl

Pass a pointer to a ControlHand1e value. On return, the ControlHand1e value is set to a handle

to the root control.
Return Value

A result code. See “Control Manager Result Codes” (page 308).

Discussion

You can call GetRootControl to determine whether or not a root control (and therefore an embedding

hierarchy) exists within a specified window. Once you have the root control’s handle, you can pass it to

functionssuchas DisposeControl (page64), ActivateControl (page27),and DeactivateControl (page

63) to apply specified actions to the entire embedding hierarchy.

Note that the minimum, maximum, and initial settings for a root control are reserved and should not be

changed.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

GetSuperControl

Obtains a handle to an embedder control.

Functions

2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

101



102

Control Manager Reference

O0SErr GetSuperControl (
ControlRef inControl,
ControlRef *outParent

)

Parameters
inControl

A handle to an embedded control. For a description of this data type, see ControlRef (page 193).
outParent

A pointer toa ControlHand1e value. On return, the ControlHand1e value is set to a handle to the
embedder control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The GetSuperControl function gets a handle to the parent control of the control passed in.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

GetTabContentRect

Gets the content rectangle for a tab.

OSErr GetTabContentRect (
ControlRef inTabControl,
Rect *outContentRect

)

Parameters
inTabControl
The tab control reference to query.

outContentRect
On return, the value of this parameter is a pointer to the content rectangle for the tab specified by
inTabControl.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
HITabbedView.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

HandleControlClick

Responds to cursor movements in a control while the mouse button is down and returns the location of the
next mouse-up event.

ControlPartCode HandleControlClick (
ControlRef inControl,
Point inWhere,
EventModifiers inModifiers,
ControlActionUPP inAction

)

Parameters
inControl

A handle to the control in which the mouse-down event occurred. Pass the control handle returned
by FindControl or FindControlUnderMouse.

inWhere
A point, specified in local coordinates, where the mouse-down event occurred. Supply the same point
you passed to FindControl or FindControlUnderMouse.

inModifiers
Information from the modi fiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

inAction
A universal procedure pointer to an action function defining what action your application takes while
the user holds down the mouse button. See ControlActionProcPtr (page 159) for a description
of such an action function. The value of the inAction parameter can be a valid procPtr, NULL, or
-1. A value of -1 indicates that the control should either perform auto tracking, or if it is incapable of
doing so, do nothing (like NULL). For custom controls, what you pass in this parameter depends on
how you define the control. If the part index is greater than 128, the pointer must be of type
DragGrayRegionUPP unless the control supports live feedback, in which case it should be a
ControlActionUPP.

Return Value

Returns a value of type ControlPartCode identifying the control’s part see “Control Meta Part Code
Constants” (page 274), “Control Part Code Constants ” (page 232), and” Control State Part Code Constants” (page
235). For a description of this data type, see ControlPartCode (page 192).

Discussion

Call the HandleControl1C1ick function after a call to FindControl (page 75) or
FindControlUnderMouse (page 76). The HandleControl1C1ick function should be called instead of
TrackControl (page 155) to follow the user’s cursor movements in a control and provide visual feedback
until the user releases the mouse button. Unlike TrackControl, HandleControl1C1ick allows modifier
keys to be passed in so that the control may use these if the control (such as a list box or editable text field)
is set up to handle its own tracking.

The visual feedback given by Hand1eContro1C11ck depends on the control part in which the mouse-down
event occurs. When highlighting is appropriate, for example, Hand1eContro1C11ck highlights the control
part (and removes the highlighting when the user releases the mouse button). When the user holds down
the mouse button while the cursor is in an indicator (such as the scroll box of a scroll bar) and moves the
mouse, Hand1eControl1C1ick responds by dragging a dotted outline or a ghost image of the indicator. If
the user releases the mouse button when the cursor is in an indicator such as the scroll box,
HandleControlC1ick calls the control definition function to reposition the indicator.

Functions 103
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



104

Control Manager Reference

While the user holds down the mouse button with the cursor in one of the standard controls,
HandleControlC1ick performs the following actions, depending on the value you pass in the parameter
inAction.

For

If you pass NULL in the inAction parameter, Hand1eControlC11ck uses no action function and
therefore performs no additional actions beyond highlighting the control or dragging the indicator. This
is appropriate for push buttons, checkboxes, radio buttons, and the scroll box of a scroll bar.

If you pass a pointer to an action function in the inAction parameter, it must define some action that
your application repeats as long as the user holds down the mouse button. This is appropriate for the
scroll arrows and gray areas of a scroll bar.

If you pass (ControlActionUPP)-1L inthe inAction parameter, HandleControlC1lick calls the
control action function associated with the control. This is appropriate when you are tracking the cursor
in a pop-up menu. You can call GetControlAction (page 82) to get a pointer to the control action
function that is associated with the control, and you can call SetControlAction (page 135) to set the
control action function that is associated with the control.

"CDEF ' resources that implement custom dragging, you usually call Hand1eContro1C1ick, which

returns 0 regardless of the user’s changes of the control setting. To avoid this, you should use another method
to determine whether the user has changed the control setting, for instance, comparing the control’s value
before and after your call to Hand1eControlC1ick.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

HandleControlContextualMenuClick

Allows a control to display a contextual menu.

0SStatus HandleControlContextualMenuClick (

)

ControlRef inControl,

Point inWhere,

Boolean *menuDisplayed

Parameters

inControl
inWhere

The location that was clicked.

menuDisplayed

Pointer to a Boolean whose value is true if the control displayed a contextual menu; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

HandleControlDragReceive

Tells a control to accept the data from a drag.

0SStatus HandleControlDragReceive (
ControlRef inControl,
DragReference inDrag

)

Parameters
inControl
inDrag
The drag reference that was dropped on the control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

Call this function when the user drops a drag on a control in your window to give the control an opportunity
to take any interesting data from the drag. Before calling this function, you must call
SetControlDragTrackingEnabled (page 139) to enable drag and drop support for the control.Note that
this function should not be called in a composited window. Instead, the
SetAutomaticControlDragTrackingEnabledForWindow APIshould be used to enable automatic control
drag tracking.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

HandleControlDragTracking

Tells a control to respond visually to a drag.

Functions 105
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus HandleControlDragTracking (
ControlRef inControl,
DragTrackingMessage inMessage,
DragReference inDrag,
Boolean *outlLikesDrag

)

Parameters

inControl

inMessage
A drag message indicating the state of the drag above the control. The meaning of the value you
pass in must be relative to the control, not the whole window. For when the drag first enters the
control, you should pass kDragTrackingEnterControl. While the drag stays within the control,
pass kDragTrackingInControl. When the drag leaves the control, pass
kDragTrackinglLeaveControl.

inDrag
The drag reference that is over the control.

outlLikesDrag
On output, a pointer to a Boolean whose value is t rue if the control can accept the data in the drag
reference or false if the control cannot accept the data. If the value is fa1se,there is no need to call
HandleControlDragReceive (page 105) when the user drops the dragged object onto the control
because the control cannot accept the data.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion

Call this function when a drag is above a control in your window and you want to give that control a chance
to draw appropriately in response to the drag. Before calling this function, you must call
SetControlDragTrackingEnabled (page 139) to enable drag and drop support for the control.Note that
this function should not be called in a composited window. Instead, the
SetAutomaticControlDragTrackingEnabledForWindow APIshould be used to enable automatic control
drag tracking.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

HandleControlSetCursor

Requests that a control set the cursor based on the mouse location.

106 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus HandleControlSetCursor (
ControlRef control,
Point TocalPoint,
EventModifiers modifiers,
Boolean *cursorWasSet

)

Parameters
inControl

localPoint
The location of the mouse.

modifiers
Information from the modi fiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

cursoriWasSet
Out output, a pointer to a Boolean whose value is true if the cursor was set; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

HideControl

Makes a control, and any latent embedded controls, invisible.

void HideControl (
ControlRef theControl
)

Parameters
theControl
A handle to the control to hide.

Discussion

The HideControl function makes the specified control invisible. This can be useful, for example, before
adjusting a control’s size and location. It also adds the control’s rectangle to the window’s update region, so
that anything else that was previously obscured by the control will reappear on the screen. If the control is
already invisible, HideControl has no effect.

When hiding groups of controls, the state of an embedded control that is hidden or deactivated is preserved
so that when the embedder control is shown or activated, the embedded control appears in the same state
as the embedder. If the specified control has embedded controls, HideControl makes the embedded
controls invisible as well.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you callHideControl on alatent embedded control, it would not be displayed
the next time ShowControl (page 153) was called on its embedder control.

Functions 107
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



108

Control Manager Reference

To make the control visible again, call ShowControl (page 153).
Youcanalsocall SetControlVisibility (page 147)to hide or show a control without causing it to redraw.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

HiliteControl
Changes the highlighting of a control.

Not recommended

void HiliteControl (
ControlRef theControl,
ControlPartCode hiliteState
)

Parameters
theControl
A handle to the control. For a description of this data type, see ControlRef (page 193).

hiliteState
A value from 0 to 255 that specifies the highlighting state of the control. The value of 0 signifies an
active control with no highlighting. A value from 1 through 253 signifies a part code designating the
part of the (active) control to highlight. Values 254 and 255 signify that the control is to be made
disabled or inactive, respectively, and drawn accordingly. For a description of part code constants,
see “Control Part Code Constants ” (page 232), “Control Part Code Constants” (page 232), and “ Control
State Part Code Constants” (page 235).

Discussion

If the Appearance Manager is available, you should call the functions ActivateControl (page 27) and
DeactivateControl (page 63)instead of HiliteControl to activate or deactivate a control. This is
important if the control is in an embedding hierarchy, since calling these functions will ensure that any latent
embedded controls will be activated and deactivated correctly.

If the Appearance Manager is not available, then when you need to make a control inactive (such as when
its window is not frontmost) or in any other way change the highlighting of a control, you can use the
HiTiteControl function.

TheHiliteControl function calls the control definition function to redraw the control with the highlighting
specified inthe hiliteState parameter. The Hi1iteControl function uses the value in this parameter to
change the value of the contr1H1i 11 te field of the control structure.

Except for scroll bars, which you should hide using HideControl (page 107), you should use Hi1iteControl
to make all controls inactive when their windows are not frontmost. The function TrackControl (page 155)
automatically uses the Hi1iteControl function as appropriate; when you use TrackControl, you don't

need to call HiTiteControl.

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

Carbon Porting Notes

If you are activating or deactivating a control, you should use ActivateControl or DeactivateControl
instead. Otherwise okay to use.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlActionUPP

Invokes a control action UPP.

void InvokeControlActionUPP (
ControlRef theControl,
ControlPartCode partCode,
ControlActionUPP userUPP
)

Parameters

theControl
The control for which the control action UPP is to be invoked. For a description of this data type, see
ControlRef (page 193).

partCode
The part code for which the control action UPP is to be invoked. For possible values, see “Control

Meta Part Code Constants” (page 274), “Control Part Code Constants ” (page 232), and “ Control State
Part Code Constants” (page 235).

userUpPpP

The UPP that is to be invoked.
Availability
Available in Mac OS X v10.0 and later.
Declared In
Controls.h

InvokeControlCNTLToCollectionUPP

Invokes a control-to-collection UPP.

Functions 109
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus InvokeControlCNTLToCollectionUPP (
const Rect *bounds,
SIntl6 value,
Boolean visible,
SIntl6 max,
SIntl6 min,
SIntlé proclD,
SRefCon refCon,
ConstStr255Param title,
Collection collection,
ControlCNTLToCollectionUPP userUPP
)

Parameters

bounds
The bounds of the control.

value
The value of the control.

visible
A Boolean whose value is true if the control is visible; otherwise, false.

max
The maximum value of the control.

The minimum value of the control.

proclD
The proc ID.

refCon
The refcon.

title
The title of the control.

collection
The collection.

userUpPpP
The UPP that is to be invoked.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlColorUPP

Not recommended

110 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

0SStatus InvokeControlColorUPP (
ControlRef inControl,
SIntl6 inMessage,
SIntl6 inDrawDepth,
Boolean inDrawInColor,
ControlColorUPP userUPP

)

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlEditTextValidationUPP

Invokes a control edit text validation UPP.

void InvokeControlEditTextValidationUPP (
ControlRef control,
ControlEditTextValidationUPP userUPP
)
Parameters
theControl
The control. For a description of this data type, see ControlRef (page 193).
userUpp
The UPP that is to be invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

InvokeControlKeyFilterUPP

Invokes a control key filter UPP.

Functions m
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



112

Control Manager Reference

ControlKeyFilterResult InvokeControlKeyFilterUPP (
ControlRef theControl,
SIntl6 *keyCode,
SIntl6 *charCode,
EventModifiers *modifiers,
ControlKeyFilterUPP userUPP
);
Parameters
theControl
The control. For a description of this data type, see ControlRef (page 193).
keyCode
The key code.
charCode
The character code.
modifiers
Information from the modi fiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted. .
userUPpP
The UPP that is to be invoked.

Return Value
For a description of this data type, see ControlKeyFilterResult (page 191).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

InvokeControlUserPaneActivateUPP

Invokes a control user pane activate UPP.

void InvokeControlUserPaneActivateUPP (
ControlRef control,
Boolean activating,
ControlUserPaneActivateUPP userUPP
)

Parameters
control
The control.
activating
A Boolean whose value is true if the user pane is being activated; otherwise, false.
userUpPp
The UPP that is to be invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

InvokeControlUserPaneBackgroundUPP

Invokes a user pane background UPP.

void InvokeControlUserPaneBackgroundUPP (
ControlRef control,
ControlBackgroundPtr info,
ControlUserPaneBackgroundUPP userUPP
)s
Parameters
control
The control.
info
A pointer to information such as the depth and type of the drawing device. For a description of the
ControlBackgroundPtr data type, see ControlBackgroundRec (page 182).
userUpPp
The UPP that is to be activated.
Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

InvokeControlUserPaneDrawUPP

Invokes a user pane draw UPP.

void InvokeControlUserPaneDrawUPP (
ControlRef control,
ControlPartCode part,
ControlUserPaneDrawUPP userUPP
)

Parameters
control
The control.
userUPpP
The part.
userUpPp
The UPP that is to be activated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions 113
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

InvokeControlUserPaneFocusUPP

Invokes a user pane focus UPP.

ControlPartCode InvokeControlUserPaneFocusUPP (
ControlRef control,
ControlFocusPart action,
ControlUserPaneFocusUPP userUPP

)

Parameters

control

The control.
action
The action.
userUpp
The UPP that is to be activated.

Return Value
For a description of this data type, see ControlPartCode (page 192).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeControlUserPaneHitTestUPP

Invokes a user pane hit test UPP.

ControlPartCode InvokeControlUserPaneHitTestUPP (
ControlRef control,
Point where,
ControlUserPaneHitTestUPP userUPP

)

Parameters
control
The control.
where
The location.
userUPpP
The UPP that is to be activated.

Return Value
See ControlPartCode (page 192) for a description of the ControlPartCode data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

14 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

InvokeControlUserPaneldleUPP

Invokes a user pane idle UPP.

void InvokeControlUserPaneldleUPP (
ControlRef control,
ControlUserPaneldleUPP userUPP
)

Parameters
control
The control.

userUpPpP
The UPP that is to be activated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeControlUserPaneKeyDownUPP

Invokes a user pane key down UPP.

ControlPartCode InvokeControlUserPaneKeyDownUPP (
ControlRef control,
SIntl6 keyCode,
SIntl6 charCode,
SIntl6 modifiers,
ControlUserPaneKeyDownUPP userUPP
)

Parameters
control

The control.
keyCode

The key code.
charCode

The character code.
modifiers

The modifiers.
userUpPpP

The UPP that is to be activated.

Return Value
For a description of this data type, see ControlPartCode (page 192).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions 115
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

InvokeControlUserPaneTrackingUPP

Invokes a user pane tracking UPP.

ControlPartCode InvokeControlUserPaneTrackingUPP (
ControlRef control,
Point startPt,
ControlActionUPP actionProc,
ControlUserPaneTrackingUPP userUPP

)

Parameters
control
The control.
StartPt
The starting point.
actionProc
The action proc.
userUpPpP
The UPP that is to be activated.

Return Value
For a description of this data type, see ControlPartCode (page 192).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeEditUnicodePostUpdateUPP
Invokes a Unicode post update UPP.

Boolean InvokeEditUnicodePostUpdateUPP (
UniCharArrayHandle uniText,
UniCharCount uniTextlLength,
UniCharArrayOffset iStartOffset,
UniCharArrayOffset iEndOffset,
void *refcon,
EditUnicodePostUpdateUPP userUPP

)

Parameters
uniText

The UPP that is to be activated.
uniTextlength

The length of text in Unitext parameter.
iStartOffset

The starting offset.

TEndOffset
The ending offset.

116 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.



Control Manager Reference

refcon

The refcon.
userUpPp

The UPP that is to be activated.
Return Value

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

IsAutomaticControlDragTrackingEnabledForWindow

Indicates whether automatic drag tracking is enabled for the specified window.

0SStatus IsAutomaticControlDragTrackingEnabledForWindow (
WindowRef inWindow,
Boolean *outTracks

)

Parameters

inWindow

outTracks
On output, a pointer to a Boolean whose value is true if the Control Manager’s automatic drag
tracking is enabled for the window; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 308)