
Control Manager Reference
Carbon > User Experience

2007-03-26

Apple Inc.
© 2002, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
Macintosh, and QuickDraw are trademarks of
Apple Inc., registered in the United States and
other countries.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE

ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Control Manager Reference 15

Overview 15
Functions by Task 16

Creating and Removing Controls 16
Embedding Controls 18
Displaying Controls 18
Handling Events in Controls 19
Manipulating Controls 20
Handling Keyboard Focus 21
Accessing Control Settings and Data 21
Manipulating Menus in Controls 23
Manipulating Bevel Buttons 23
Managing Control UPPs 23
Obsolete Functions 25

Functions 27
ActivateControl 27
AdvanceKeyboardFocus 28
AutoEmbedControl 28
ChangeControlPropertyAttributes 29
ClearKeyboardFocus 30
CopyControlTitleAsCFString 30
CountSubControls 31
CreateBevelButtonControl 32
CreateChasingArrowsControl 33
CreateCheckBoxControl 33
CreateCheckGroupBoxControl 34
CreateClockControl 35
CreateDisclosureButtonControl 36
CreateDisclosureTriangleControl 37
CreateEditUnicodeTextControl 38
CreateGroupBoxControl 39
CreateIconControl 40
CreateImageWellControl 41
CreateListBoxControl 41
CreateLittleArrowsControl 43
CreatePictureControl 44
CreatePlacardControl 45
CreatePopupArrowControl 45
CreatePopupButtonControl 46
CreatePopupGroupBoxControl 47
CreateProgressBarControl 49

3
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CreatePushButtonControl 49
CreatePushButtonWithIconControl 50
CreateRadioButtonControl 51
CreateRadioGroupControl 52
CreateRelevanceBarControl 52
CreateRootControl 53
CreateRoundButtonControl 55
CreateScrollBarControl 55
CreateScrollingTextBoxControl 57
CreateSeparatorControl 58
CreateSliderControl 58
CreateStaticTextControl 60
CreateTabsControl 60
CreateUserPaneControl 62
CreateWindowHeaderControl 62
DeactivateControl 63
DisableControl 64
DisposeControl 64
DisposeControlActionUPP 65
DisposeControlCNTLToCollectionUPP 65
DisposeControlColorUPP 66
DisposeControlEditTextValidationUPP 66
DisposeControlKeyFilterUPP 67
DisposeControlUserPaneActivateUPP 67
DisposeControlUserPaneBackgroundUPP 67
DisposeControlUserPaneDrawUPP 68
DisposeControlUserPaneFocusUPP 68
DisposeControlUserPaneHitTestUPP 68
DisposeControlUserPaneIdleUPP 69
DisposeControlUserPaneKeyDownUPP 69
DisposeControlUserPaneTrackingUPP 69
DisposeEditUnicodePostUpdateUPP 70
DragControl 70
Draw1Control 71
DrawControlInCurrentPort 71
DrawControls 72
DumpControlHierarchy 73
EmbedControl 73
EnableControl 75
FindControl 75
FindControlUnderMouse 76
GetBestControlRect 77
GetBevelButtonContentInfo 78
GetBevelButtonMenuHandle 79
GetBevelButtonMenuValue 79
GetControl32BitMaximum 80

4
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

GetControl32BitMinimum 80
GetControl32BitValue 81
GetControlAction 82
GetControlBounds 82
GetControlByID 83
GetControlClickActivation 84
GetControlCommandID 84
GetControlData 85
GetControlDataHandle 86
GetControlDataSize 86
GetControlFeatures 87
GetControlHilite 88
GetControlID 88
GetControlKind 89
GetControlMaximum 90
GetControlMinimum 90
GetControlOwner 91
GetControlPopupMenuHandle 91
GetControlPopupMenuID 92
GetControlProperty 92
GetControlPropertyAttributes 93
GetControlPropertySize 94
GetControlReference 95
GetControlRegion 95
GetControlValue 96
GetControlVariant 97
GetControlViewSize 97
GetImageWellContentInfo 98
GetIndexedSubControl 98
GetKeyboardFocus 99
GetNewControl 100
GetRootControl 101
GetSuperControl 101
GetTabContentRect 102
HandleControlClick 103
HandleControlContextualMenuClick 104
HandleControlDragReceive 105
HandleControlDragTracking 105
HandleControlSetCursor 106
HideControl 107
HiliteControl 108
InvokeControlActionUPP 109
InvokeControlCNTLToCollectionUPP 109
InvokeControlColorUPP 110
InvokeControlEditTextValidationUPP 111
InvokeControlKeyFilterUPP 111

5
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

InvokeControlUserPaneActivateUPP 112
InvokeControlUserPaneBackgroundUPP 113
InvokeControlUserPaneDrawUPP 113
InvokeControlUserPaneFocusUPP 114
InvokeControlUserPaneHitTestUPP 114
InvokeControlUserPaneIdleUPP 115
InvokeControlUserPaneKeyDownUPP 115
InvokeControlUserPaneTrackingUPP 116
InvokeEditUnicodePostUpdateUPP 116
IsAutomaticControlDragTrackingEnabledForWindow 117
IsControlActive 117
IsControlDragTrackingEnabled 118
IsControlEnabled 118
IsControlHilited 119
IsControlVisible 119
IsValidControlHandle 120
KillControls 120
MoveControl 121
NewControlActionUPP 122
NewControlCNTLToCollectionUPP 122
NewControlColorUPP 122
NewControlEditTextValidationUPP 123
NewControlKeyFilterUPP 123
NewControlUserPaneActivateUPP 123
NewControlUserPaneBackgroundUPP 124
NewControlUserPaneDrawUPP 124
NewControlUserPaneFocusUPP 124
NewControlUserPaneHitTestUPP 124
NewControlUserPaneIdleUPP 125
NewControlUserPaneKeyDownUPP 125
NewControlUserPaneTrackingUPP 125
NewEditUnicodePostUpdateUPP 126
RegisterControlDefinition 126
RemoveControlProperty 127
ReverseKeyboardFocus 127
SendControlMessage 128
SetAutomaticControlDragTrackingEnabledForWindow 129
SetBevelButtonContentInfo 129
SetBevelButtonGraphicAlignment 130
SetBevelButtonMenuValue 131
SetBevelButtonTextAlignment 131
SetBevelButtonTextPlacement 132
SetBevelButtonTransform 132
SetControl32BitMaximum 133
SetControl32BitMinimum 133
SetControl32BitValue 134

6
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

SetControlAction 135
SetControlBounds 135
SetControlColorProc 136
SetControlCommandID 137
SetControlData 137
SetControlDataHandle 138
SetControlDragTrackingEnabled 139
SetControlFontStyle 140
SetControlID 140
SetControlMaximum 141
SetControlMinimum 141
SetControlPopupMenuHandle 142
SetControlPopupMenuID 143
SetControlProperty 143
SetControlReference 144
SetControlSupervisor 144
SetControlTitleWithCFString 145
SetControlValue 146
SetControlViewSize 147
SetControlVisibility 147
SetDisclosureTriangleLastValue 148
SetImageWellContentInfo 149
SetImageWellTransform 149
SetKeyboardFocus 150
SetTabEnabled 150
SetUpControlBackground 151
SetUpControlTextColor 152
ShowControl 153
SizeControl 154
TestControl 154
TrackControl 155
UpdateControls 156

Callbacks by Task 157
Defining Your Own Action Function 157
Defining Your Own Control Definition Function 157
Defining Your Own Key Filter Function 158
Defining Your Own Text Validation Function 158
Defining Your Own User Pane Functions 158
Miscellaneous 158

Callbacks 159
ControlActionProcPtr 159
ControlCNTLToCollectionProcPtr 160
ControlColorProcPtr 161
ControlDefProcPtr 161
ControlEditTextValidationProcPtr 169
ControlKeyFilterProcPtr 170

7
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

ControlUserPaneActivateProcPtr 171
ControlUserPaneBackgroundProcPtr 172
ControlUserPaneDrawProcPtr 174
ControlUserPaneFocusProcPtr 175
ControlUserPaneHitTestProcPtr 176
ControlUserPaneIdleProcPtr 176
ControlUserPaneKeyDownProcPtr 177
ControlUserPaneTrackingProcPtr 179
EditUnicodePostUpdateProcPtr 180

Data Types 180
AuxCtlHandle 180
AuxCtlPtr 181
AuxCtlRec 181
ClickActivationResult 181
ControlApplyTextColorRec 181
ControlBackgroundRec 182
ControlBevelButtonBehavior 182
ControlBevelButtonMenuBehavior 183
ControlButtonContentInfo 183
ControlCalcSizeRec 184
ControlCapabilities 184
ControlClickActivationRec 184
ControlContentType 185
ControlContextualMenuClickRec 185
ControlDataAccessRec 185
ControlDefProcMessage 186
ControlDefSpec 186
ControlDefType 186
ControlEditTextSelectionRec 187
ControlFocusPart 187
ControlFontStyleRec 188
ControlGetRegionRec 189
ControlHandle 190
ControlID 190
ControlImageContentInfo 190
ControlKeyDownRec 190
ControlKeyFilterResult 191
ControlKeyScriptBehavior 191
ControlKind 191
ControlNotification 192
ControlNotificationUPP 192
ControlPartCode 192
ControlPopupArrowOrientation 192
ControlPopupArrowSize 192
ControlPtr 192
ControlRecord 193

8
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

ControlRef 193
ControlSetCursorRec 193
ControlSize 194
ControlTabEntry 194
ControlTabInfoRec 194
ControlTabInfoRecV1 195
ControlTemplate 195
ControlTrackingRec 196
ControlVariant 196
DataBrowserCallbacks 197
DataBrowserCustomCallbacks 197
DataBrowserDragFlags 198
DataBrowserListViewColumnDesc 198
DataBrowserListViewHeaderDesc 198
DataBrowserPropertyDesc 199
DataBrowserPropertyFlags 199
DataBrowserPropertyPart 199
DataBrowserPropertyType 199
DataBrowserTableViewColumnDesc 200
DataBrowserTableViewColumnIndex 200
DataBrowserTableViewRowIndex 200
DataBrowserTableViewColumnID 200
DataBrowserViewStyle 200
DBItemProcDataType 201
DBRevealItemDataType 201
DBSetSelectionDataType 201
IndicatorDragConstraint 201
IndicatorDragConstraintHandle 202
PopupPrivateData 202
PopupPrivateDataHandle 202
PopupPrivateDataPtr 202
kHIUserPaneClassID 203

Constants 203
Appearance–compliant Push Button, Radio Button, and Checkbox Control Definition IDs 203
Asynchronous Arrows Control Definition ID 205
Bevel Button Behavior Constants 205
Bevel Button Control Data Tag Constants 207
Bevel Button Control Definition IDs 209
Bevel Button Graphic Alignment Constants 210
Bevel Button Menu Constant 211
Bevel Button Menu Control Data Tag Constants 212
Bevel Button Text Alignment Constants 213
Bevel Button Text Placement Constants 214
Checkbox and Radio Button AutoToggle Control Definition IDs 215
Checkbox Value Constants 216
Clock Control Data Tag Constants 216

9
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Clock Control Definition IDs 217
Clock Value Flag Constants 218
Control Definition Message Constants 219
Control Features Constants 225
Control Focus Part Code Constants 227
Control Font Style and Key Filter Data Tag Constants 228
Control Font Style Flag Constants 229
Control Key Script Behavior Constants 231
Control Part Code Constants 232
Control State Part Code Constants 235
Control Variant Constants 236
Control Bevel Button Menu Placement Constants 237
Control Bevel Thickness Constants 237
Control Clock Type Constants 237
Control Disclosure Triangle Orientation Constants 237
Control Notify Constants 237
Control Push Button Icon Alignment Constants 237
Control Round Button Size Constants 238
Control Slider Orientation Constants 238
Control Tab Direction Constants 238
Control Tab Size Constants 238
Drag Control Constants 238
Drawing Constants 239
Editable Text Control Data Tag Constants 240
Editable Text Control Definition ID Constants 242
Data Browser Error Constants 243
Group Box Control Data Tag Constants 243
Group Box Control Definition ID Constants 244
Icon Control Data Tag Constants 246
Icon Control Definition ID Constants 247
Image Well Control Data Tag Constants 249
Image Well Control Definition ID 250
inLabel 251
inThumb 251
kControlBevelButtonOwnedMenuRefTag 251
Bevel Button Size Constants 251
Control Can Auto Invalidate Constant 251
Control Chasing Arrows Animating Tag Constant 251
Control Collection Tag Constants 252
Control Collection Tag Subcontrols Constant 254
Control Content Type Constants 254
Control Data Browser Tag Constants 255
Control Def Constants 255
Control Def Type Constants 256
Disclosure Triangle Constants 256
Unicode Control Data Tags 256

10
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Control Edit Unicode Text Post Update Proc Tag Constant 258
Control Edit Unicode Text Proc Constants 258
Control Entire Control Constant 258
Control Kind Bevel Button Constant 258
Control Kind Chasing Arrows Constant 258
Control Kind Clock Constant 258
Control Kind Data Browser Constant 258
Control Kind Disclosure Button Constant 258
Control Kind Disclosure Triangle Constant 259
Control Kind Edit Text Constant 259
Control Kind Edit Unicode Text Constant 259
Control Kind Group Box Constants 259
Control Kind Icon Constant 259
Control Kind Image Well Constant 259
Control Kind List Box Constant 259
kControlKindLittleArrows 259
Control Kind Picture Constant 260
Control Kind Placard Constant 260
Control Kind Pop-up Arrow Constant 260
Control Kind Pop-up Button Constant 260
Control Kind Progress Bar Constants 260
Control Kind Push and Radio Button Constants 260
Control Kind Radio Group Constant 260
Control Kind Round Button Constant 261
Control Kind Scroll Bar Constant 261
Control Kind Scrolling Text Box Constant 261
Control Kind Separator Constant 261
Control Kind Signature Apple Constant 261
Control Kind Slider Constant 262
Control Kind Static Text Constant 262
Control Kind Tabs Constant 262
Control Kind User Pane Constant 262
Control Kind Window Header Constant 262
Control Picture Handle Tag Constant 262
Control Pop-up Arrow Orientation Constants 262
Control Pop-up Arrow Size Constants 262
Control Pop-up Button Check Current Tag Constant 263
Control Property Persistent Constant 263
Control Round Button Content and Size Tag Constants 263
Control Scrollbar Shows Arrows Tag Constant 263
Control Size Constants 263
Control Supports New Messages Constant 263
Control Tab Image Content Tag Constant 264
Control Tab Info Version Constants 264
Control Tab Type Constants 264
Control Use Theme Font ID Mask Constant 264

11
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Click Activation Constants 264
Selection Constants 266
Drag Tracking Enter Control Constants 266
Key Filter Result Codes 266
In Control Part Constants 267
Order Constants 267
List Box Control Data Tag Constants 267
List Box Control Definition ID Constants 268
Little Arrows Control Definition ID Constant 269
Little Arrows Control Tag Constant 270
Mac OS 8.5 Bevel Button Control Data Tag Constant 270
Mac OS 8.5 Control Font Style Flag Constant 271
Mac OS 8.5 Editable Text Control Definition ID Constant 271
Mac OS 8.5 Group Box Control Data Tag Constant 272
Mac OS 8.5 Icon Control Data Tag Constants 272
Mac OS 8.5 Pop-up Button Control Data Tag Constants 273
Control Meta Part Code Constants 274
Meta Font Constants 275
Constraint Constants 276
Part Identifier Constants 276
Picture Control Definition ID Constants 277
Placard Control Definition ID Constant 278
Pop-up Menu Title Constants 279
Pop-up Menu Title Justification Constants 280
Pop-up Arrow Control Definition ID Constants 281
Pop-up Button Control Data Tag Constants 283
Pop-up Button Control Definition ID Constants 284
Pop-up Width Constants 286
Pre–Appearance Control Definition ID Constants 286
Progress Bar Control Data Tag Constants 288
Progress Bar Control Definition ID Constants 289
Push Button Control Data Tag Constants 290
Radio Button Value Constants 290
Radio Group Control Definition ID Constant 291
Scroll Bar Control Definition ID Constants 292
Scrolling Text Box Control Data Tag Constants 293
Scrolling Text Box Control Definition ID Constants 294
Separator Line Control Definition ID Constant 295
Slider Control Definition ID Constants 296
Static Text Control Data Tag Constants 297
Static Text Control Definition ID Constant 299
Text Proc Constants 300
Tab Control Data Tag Constants 300
Tab Control Definition IDs 301
Tab Control Info Tag Constant 302
Triangle Control Data Tag Constant 302

12
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Triangle Control Definition ID Constants 303
User Item and User Pane Control Data Tag Constants 304
User Pane Control Definition ID Constant 306
useWFont Constants 307
Window Control Definition IDs 307
Window Control Data List Header Tag Constant 308

Result Codes 308

Appendix A Deprecated Control Manager Functions 313

Deprecated in Mac OS X v10.4 313
CreateEditTextControl 313
IdleControls 314

Deprecated in Mac OS X v10.5 314
CreateCustomControl 314
DisposeControlDefUPP 315
GetControlTitle 316
HandleControlKey 316
InvokeControlDefUPP 317
NewControl 318
NewControlDefUPP 319
SetControlTitle 320

Document Revision History 323

Index 325

13
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

14
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Carbon/Carbon.h

Declared in ControlDefinitions.h
Controls.h
HIButtonViews.h
HIClockView.h
HIContainerViews.h
HIDataBrowser.h
HIDisclosureViews.h
HIImageViews.h
HILittleArrows.h
HIObject.h
HIPopupButton.h
HIProgressViews.h
HIRelevanceBar.h
HIScrollView.h
HISeparator.h
HISlider.h
HITabbedView.h
HITextViews.h
HIToolboxDebugging.h

Overview

Your application uses the Control Manager to create and manage controls. Controls are onscreen objects
that the user can manipulate with the mouse. By manipulating controls, the user can take an immediate
action or change settings to modify a future action. For example, a scroll bar control allows a user to
immediately change the portion of the document that your application displays, whereas a pop-up menu
control for connection speed might allow the user to change the rate by which your application handles
subsequent data transmissions.

Virtually all applications need to implement controls, at least in the form of scroll bars for document windows.
Other standard Mac OS controls include buttons, checkboxes, radio buttons, and pop-up menus. You can
use the Control Manager to create and manage these controls, too.

In Mac OS X v10.2 and later, Control Manager controls may be implemented as HIViews. View-based controls
offer additional flexibility and extensibility for developers. For more information, see the document HIView
Programming Guide.

Overview 15
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Important: Documentation for the data browser control is available separately inDataBrowser Programming
Guide.

Carbon supports most Control Manager functions, with the following changes:

 ■ The C-style, lowercase versions of Control Manager function names are no longer supported. If your
application uses any Control Manager lowercase function names, you must replace them with their
uppercase equivalents.

 ■ Custom control definition procedures (also known as CDEFs), must be compiled as PowerPC-native code,
and can not be stored as resources. See the Carbon Porting Guide for more information.

 ■ Your application must use the functions defined by the Control Manager to create and dispose of Control
Manager data structures. For example, instead of directly creating and disposing of control records,
applications must call the Control Manager functions GetNewControl and DisposeControl.

 ■ With the availability of the Appearance Manager, you should not access the PopupPrivateData structure,
but rather pass the kControlPopupButtonMenuHandleTag tag to GetControlData to obtain its
contents.

 ■ Your application must use Control Manager accessor functions to access Control Manager data structures.

 ■ You are encouraged to adopt the standard Mac OS control definition procedures in your application.
Applications that use the standard control definition procedures inherit the Mac OS human interface
appearance. Applications that use custom control definition procedures will work correctly, but because
custom definition procedures invoke their own drawing routines, Mac OS X can’t draw these applications
with the current appearance.

Functions by Task

Creating and Removing Controls

CreateBevelButtonControl (page 32)
Creates a bevel button control.

CreateChasingArrowsControl (page 33)
Creates a chasing arrows control.

CreateCheckBoxControl (page 33)
Creates a checkbox control.

CreateCheckGroupBoxControl (page 34)
Creates a group box control that has a check box as its title.

CreateClockControl (page 35)
Creates a clock control.

CreateDisclosureButtonControl (page 36)
Creates a new instance of the Disclosure Button Control.

CreateDisclosureTriangleControl (page 37)
Creates a disclosure triangle control.

CreateEditUnicodeTextControl (page 38)
Creates a new edit text control.

16 Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

CreateGroupBoxControl (page 39)
Creates a group box control.

CreateIconControl (page 40)
Creates an icon control.

CreateImageWellControl (page 41)
Creates an image well control.

CreateListBoxControl (page 41)
Creates a list box control.

CreateLittleArrowsControl (page 43)
Creates a little arrows control.

CreatePictureControl (page 44)
Creates a picture control.

CreatePlacardControl (page 45)
Creates a placard control.

CreatePopupArrowControl (page 45)
Creates a pop-up arrow control.

CreatePopupButtonControl (page 46)
Creates a pop-up button control.

CreatePopupGroupBoxControl (page 47)
Creates a group box control that has a pop-up button as its title.

CreateProgressBarControl (page 49)
Creates a progress bar control.

CreatePushButtonControl (page 49)
Creates a push button control.

CreatePushButtonWithIconControl (page 50)
Creates a push button control containing an icon or other graphical content.

CreateRadioButtonControl (page 51)
Creates a radio button control.

CreateRadioGroupControl (page 52)
Creates a radio group control.

CreateRelevanceBarControl (page 52)
Creates a relevance bar control.

CreateRoundButtonControl (page 55)
Creates a new instance of the round button control.

CreateScrollBarControl (page 55)
Creates a scroll bar control.

CreateSeparatorControl (page 58)
Creates a separator control.

CreateSliderControl (page 58)
Creates a slider control.

CreateStaticTextControl (page 60)
Creates a new static text control.

CreateTabsControl (page 60)
Creates a tabs control.

Functions by Task 17
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

CreateUserPaneControl (page 62)
Creates a user pane control.

CreateWindowHeaderControl (page 62)
Creates a window header control.

DisposeControl (page 64)
Decrements a control’s reference count and destroys it if the reference count becomes 0.

GetNewControl (page 100)
Creates a control from a control resource.

KillControls (page 120)
Removes all of the controls from a window that you wish to keep.

RegisterControlDefinition (page 126)
Registers an old-style control definition.

CreateCustomControl (page 314) Deprecated in Mac OS X v10.5
Creates a custom control. (Deprecated. Register your custom subclass of the HIView class and create
an instance of your class using HIObjectCreate.)

Embedding Controls

AutoEmbedControl (page 28)
Automatically embeds a control in the smallest appropriate embedder control.

CountSubControls (page 31)
Obtains the number of embedded controls within a control.

CreateRootControl (page 53)
Creates the root control for a specified window.

DumpControlHierarchy (page 73)
Writes a textual representation of the control hierarchy for a specified window into a file.

EmbedControl (page 73)
Embeds one control inside another.

GetControlOwner (page 91)
Returns the window to which a control is bound.

GetIndexedSubControl (page 98)
Obtains a handle to a specified embedded control.

GetRootControl (page 101)
Obtains a handle to a window’s root control.

GetSuperControl (page 101)
Obtains a handle to an embedder control.

Displaying Controls

DisableControl (page 64)
Disables a control.

Draw1Control (page 71)
Draws a control and any embedded controls that are currently visible in the specified window.

18 Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DrawControlInCurrentPort (page 71)
Draws a control in the current graphics port.

DrawControls (page 72)
Draws all controls currently visible in the specified window.

GetControlViewSize (page 97)
Obtains the size of the content to which a control’s size is proportioned.

IsControlVisible (page 119)
Determines whether a control is visible.

SetControlViewSize (page 147)
Informs the Control Manager of the size of the content to which a control’s size is proportioned.

SetUpControlBackground (page 151)
Applies the proper background color for the given control to the current port.

SetUpControlTextColor (page 152)
Applies the proper text color for the given control to the current port.¬¬

UpdateControls (page 156)
Draws controls in the specified update region of a window.

HideControl (page 107)
Makes a control, and any latent embedded controls, invisible.

ShowControl (page 153)
Makes an invisible control, and any latent embedded controls, visible.

SetControlVisibility (page 147)
Sets the visibility of a control, and any embedded controls, and specifies whether it should be drawn.

Handling Events in Controls

FindControl (page 75)
Obtains the location of a mouse-down event in a control.

FindControlUnderMouse (page 76)
Obtains the location of a mouse-down event in a control.

GetControlAction (page 82)
Returns a pointer to the action function associated with a control structure.

GetControlClickActivation (page 84)
Gets the control’s preferred behavior for responding to particular click.

GetControlCommandID (page 84)
Gets the command ID for a control.

HandleControlClick (page 103)
Responds to cursor movements in a control while the mouse button is down and returns the location
of the next mouse-up event.

HandleControlContextualMenuClick (page 104)
Allows a control to display a contextual menu.

HandleControlDragReceive (page 105)
Tells a control to accept the data from a drag.

HandleControlDragTracking (page 105)
Tells a control to respond visually to a drag.

Functions by Task 19
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

HandleControlSetCursor (page 106)
Requests that a control set the cursor based on the mouse location.

IsAutomaticControlDragTrackingEnabledForWindow (page 117)
Indicates whether automatic drag tracking is enabled for the specified window.

IsControlDragTrackingEnabled (page 118)
Indicates whether a control’s drag track and receive support is enabled.

SetAutomaticControlDragTrackingEnabledForWindow (page 129)
Enables or disables automatic drag tracking for a window.

SetControlAction (page 135)
Sets the action function for a control.

SetControlCommandID (page 137)
Sets the command ID for a control.

SetControlDragTrackingEnabled (page 139)
Sets the drag tracking state for a control.

TestControl (page 154)
Obtains the control part in which a mouse-down event occurred.

HandleControlKey (page 316) Deprecated in Mac OS X v10.5
Sends a keyboard event to a control with keyboard focus. (Deprecated. For HIView-based controls,
send the view a kEventTextInputUnicodeForKeyEvent event.)

Manipulating Controls

ActivateControl (page 27)
Activates a control and any latent embedded controls.

DeactivateControl (page 63)
Deactivates a control and any latent embedded controls.

EnableControl (page 75)
Enables a control.

GetControlRegion (page 95)
Obtains the region corresponding to a given control part.

IsControlActive (page 117)
Returns whether a control is active.

IsControlEnabled (page 118)
Indicates whether a control is enabled.

IsControlHilited (page 119)
Indicates whether or not the control is highlighted.

MoveControl (page 121)
Moves a control within its window.

SizeControl (page 154)
Changes the size of a control’s rectangle.

20 Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Handling Keyboard Focus

AdvanceKeyboardFocus (page 28)
Advances the keyboard focus to the next focusable control in a window.

ClearKeyboardFocus (page 30)
Removes the keyboard focus for the currently focused control in a window.

GetKeyboardFocus (page 99)
Obtains a handle to the control with the current keyboard focus for a specified window.

ReverseKeyboardFocus (page 127)
Returns keyboard focus to the prior focusable control in a window.

SetKeyboardFocus (page 150)
Sets the current keyboard focus to a specified control part for a window.

Accessing Control Settings and Data

ChangeControlPropertyAttributes (page 29)
Changes a property attribute.

CopyControlTitleAsCFString (page 30)
Makes a copy of the control’s title as a Core Foundation string.

GetBestControlRect (page 77)
Obtains a control’s optimal size and text placement.

GetControl32BitMaximum (page 80)
Obtains the maximum setting of a control.

GetControl32BitMinimum (page 80)
Obtains the minimum setting of a control.

GetControl32BitValue (page 81)
Obtains the current setting of a control.

GetControlBounds (page 82)
Gets the bounds of a control.

GetControlByID (page 83)
Finds a control in a window by its unique ID.

GetControlData (page 85)
Obtains control-specific data.

GetControlDataSize (page 86)
Obtains the size of a control’s tagged data.

GetControlHilite (page 88)
Gets the highlight status of a control.

GetControlID (page 88)
Gets the control ID for a control.

GetControlKind (page 89)
Returns the kind of the given control.

GetControlProperty (page 92)
Obtains a piece of data that has been previously associated with a control.

Functions by Task 21
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

GetControlPropertySize (page 94)
Obtains the size of a piece of data that has previously been associated with a control.

GetControlReference (page 95)
Obtains a control’s current reference value.

GetImageWellContentInfo (page 98)
Gets information about the content of an image well.

GetControlPropertyAttributes (page 93)
Gets the property attributes for a control.

GetTabContentRect (page 102)
Gets the content rectangle for a tab.

IsValidControlHandle (page 120)
Reports whether a given handle is a control handle.

RemoveControlProperty (page 127)
Removes a piece of data that has been previously associated with a control.

SetControl32BitMaximum (page 133)
Changes the maximum setting of a control and, if appropriate, redraws it accordingly.

SetControl32BitMinimum (page 133)
Changes the minimum setting of a control and, if appropriate, redraws it accordingly.

SetControl32BitValue (page 134)
Changes the current setting of a control and redraws it accordingly.

SetControlData (page 137)
Sets control-specific data.

SetControlBounds (page 135)
Sets the bounds of a control.

SetControlID (page 140)
Sets a control’s ID.

SetControlTitleWithCFString (page 145)
Sets the title for a control to the specified Core Foundation string.

SetDisclosureTriangleLastValue (page 148)
Sets the last value of a disclosure triangle.

SetImageWellContentInfo (page 149)
Sets the content information for an image well.

SetImageWellTransform (page 149)
Sets an image well transform.

SetTabEnabled (page 150)
Enables and disables a tab control.

SetControlFontStyle (page 140)
Sets the font style for a control.

SetControlProperty (page 143)
Associates data with a control.

SetControlReference (page 144)
Changes a control’s current reference value.

22 Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Manipulating Menus in Controls
The functions described in this section can only be called for pop-up button and pop-up group box controls,
which can support pop-up menus that activate when the user presses the control with the mouse.

GetControlPopupMenuHandle (page 91)
Gets the menu handle for a pop-up control.

GetControlPopupMenuID (page 92)
Gets the menu ID of a pop-up menu.

SetControlPopupMenuHandle (page 142)
Sets the menu handle for a pop-up control.

SetControlPopupMenuID (page 143)
Sets the menu ID for a pop-up control

Manipulating Bevel Buttons
Bevel button controls have additional features that you can or should manipulate to display them properly.
This section describes the functions you can use to manipulate these features.

GetBevelButtonContentInfo (page 78)
Gets the content information for a bevel button.

GetBevelButtonMenuHandle (page 79)
Gets the menu handle for a bevel button.

GetBevelButtonMenuValue (page 79)
Gets the value of a bevel button menu.

SetBevelButtonContentInfo (page 129)
Sets the content information for a bevel button.

SetBevelButtonGraphicAlignment (page 130)
Sets the alignment for a bevel button.

SetBevelButtonMenuValue (page 131)
Sets the value of a bevel button menu.

SetBevelButtonTextAlignment (page 131)
Sets the alignment of the text for a bevel button.

SetBevelButtonTextPlacement (page 132)
Sets the placement for bevel button text.

SetBevelButtonTransform (page 132)
Sets the transform for a bevel button.

Managing Control UPPs

DisposeControlActionUPP (page 65)
Disposes of a control action UPP.

DisposeControlCNTLToCollectionUPP (page 65)
Disposes of a CNLT to collection UPP.

DisposeControlEditTextValidationUPP (page 66)
Disposes of an edit text validation UPP.

Functions by Task 23
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DisposeControlKeyFilterUPP (page 67)
Disposes of a key filter UPP.

DisposeControlUserPaneActivateUPP (page 67)
Disposes of a user pane activate UPP.

DisposeControlUserPaneBackgroundUPP (page 67)
Disposes of a user pane background UPP.

DisposeControlUserPaneDrawUPP (page 68)
Disposes of a user pane draw UPP.

DisposeControlUserPaneFocusUPP (page 68)
Disposes of a user pane focus UPP.

DisposeControlUserPaneHitTestUPP (page 68)
Disposes of a user pane hit test UPP.

DisposeControlUserPaneIdleUPP (page 69)
Disposes of a user pane idle UPP.

DisposeControlUserPaneKeyDownUPP (page 69)
Disposes of a user pane key down UPP.

DisposeControlUserPaneTrackingUPP (page 69)
Disposes of a user pane tracking UPP.

DisposeEditUnicodePostUpdateUPP (page 70)
Disposes of an edit unicode post update UPP.

InvokeControlActionUPP (page 109)
Invokes a control action UPP.

InvokeControlCNTLToCollectionUPP (page 109)
Invokes a control-to-collection UPP.

InvokeControlEditTextValidationUPP (page 111)
Invokes a control edit text validation UPP.

InvokeControlKeyFilterUPP (page 111)
Invokes a control key filter UPP.

InvokeControlUserPaneActivateUPP (page 112)
Invokes a control user pane activate UPP.

InvokeControlUserPaneBackgroundUPP (page 113)
Invokes a user pane background UPP.

InvokeControlUserPaneDrawUPP (page 113)
Invokes a user pane draw UPP.

InvokeControlUserPaneFocusUPP (page 114)
Invokes a user pane focus UPP.

InvokeControlUserPaneHitTestUPP (page 114)
Invokes a user pane hit test UPP.

InvokeControlUserPaneIdleUPP (page 115)
Invokes a user pane idle UPP.

InvokeControlUserPaneKeyDownUPP (page 115)
Invokes a user pane key down UPP.

InvokeControlUserPaneTrackingUPP (page 116)
Invokes a user pane tracking UPP.

24 Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

InvokeEditUnicodePostUpdateUPP (page 116)
Invokes a Unicode post update UPP.

NewControlActionUPP (page 122)
Creates a UPP for a control action callback function.

NewControlCNTLToCollectionUPP (page 122)
Creates a UPP for a control-to-collection callback function.

NewControlEditTextValidationUPP (page 123)
Creates a UPP for a control edit text validation callback function.

NewControlKeyFilterUPP (page 123)

NewControlUserPaneActivateUPP (page 123)

NewControlUserPaneBackgroundUPP (page 124)

NewControlUserPaneDrawUPP (page 124)

NewControlUserPaneFocusUPP (page 124)

NewControlUserPaneHitTestUPP (page 124)

NewControlUserPaneIdleUPP (page 125)

NewControlUserPaneKeyDownUPP (page 125)

NewControlUserPaneTrackingUPP (page 125)

NewEditUnicodePostUpdateUPP (page 126)

DisposeControlDefUPP (page 315) Deprecated in Mac OS X v10.5
Disposes of a control definition UPP. (Deprecated. Use a custom HIView to draw a custom control.)

InvokeControlDefUPP (page 317) Deprecated in Mac OS X v10.5
Invokes a control definition UPP. (Deprecated. Use a custom HIView to draw a custom control.)

NewControlDefUPP (page 319) Deprecated in Mac OS X v10.5
Creates a UPP for a control definition callback function. (Deprecated. Use a custom HIView to draw a
custom control.)

Obsolete Functions
These functions are outdated and are not recommended.

CreateScrollingTextBoxControl (page 57)
Creates a scrolling text box control.

DisposeControlColorUPP (page 66)

Functions by Task 25
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

GetControlFeatures (page 87)
Obtains the features a control supports.

GetControlMaximum (page 90)
Obtains a control’s maximum setting. (Deprecated. Use GetControl32BitMaximum (page 80)
instead.)

GetControlMinimum (page 90)
Obtains a control’s minimum setting. (Deprecated. Use GetControl32BitMinimum (page 80) instead.)

GetControlValue (page 96)
Obtains a control’s current setting. (Deprecated. Use GetControl32BitValue (page 81) instead.)

GetControlVariant (page 97)
Returns the variation code specified in the control definition function for a particular control.
(Deprecated. Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

InvokeControlColorUPP (page 110)

NewControlColorUPP (page 122)

SetControlColorProc (page 136)
Associates a ControlColorUPPwith a given Control, thereby allowing you to bypass the embedding
hierarchy-based color setup of SetUpControlBackground/SetUpControlTextColor and replace
it with your own.

GetControlDataHandle (page 86)
Obtains a handle to control-specific data. (Deprecated. Use custom HIViews instead of custom CDEFs.
See HIView Programming Guide.)

SetControlDataHandle (page 138)
(Deprecated. Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

SetControlMaximum (page 141)
Changes the maximum setting of a control and redraws its indicator or scroll box accordingly.
(Deprecated. Use SetControl32BitMaximum (page 133) instead.)

SetControlMinimum (page 141)
Changes the minimum setting of a control and redraws its indicator or scroll box accordingly.
(Deprecated. Use SetControl32BitMinimum (page 133) instead.)

SetControlSupervisor (page 144)
Routes mouse-down events to the embedder control.

SetControlValue (page 146)
Changes the current setting of a control and redraws it accordingly. (Deprecated. Use
SetControl32BitValue (page 134) instead.)

TrackControl (page 155)
Responds to cursor movements in a control while the mouse button is down. (Deprecated. Use
HandleControlClick (page 103) instead.)

DragControl (page 70)
Draws and moves an outline of a control or its indicator while the user drags it. (Deprecated. Use Drag
Manager functions if you want drag-and-drop support for controls. See Drag Manager Reference.)

HiliteControl (page 108)
Changes the highlighting of a control.

26 Functions by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SendControlMessage (page 128)
Sends a message to a control definition function. (Deprecated. For custom controls, use a custom
HIView instead of a control definition function. See HIView Programming Guide.)

GetControlTitle (page 316) Deprecated in Mac OS X v10.5
Obtains the title of a control. (Deprecated. Use HIViewCopyText or
CopyControlTitleAsCFString (page 30) instead.)

NewControl (page 318) Deprecated in Mac OS X v10.5
Creates a control based on parameter data. (Deprecated. Use the specific control creation function
instead (for example, CreateCheckBoxControl (page 33)).)

SetControlTitle (page 320) Deprecated in Mac OS X v10.5
Changes the title of a control and redraws the control accordingly. (Deprecated. Use HIViewSetText
or SetControlTitleWithCFString (page 145) instead.)

CreateEditTextControl (page 313) Deprecated in Mac OS X v10.4
Creates a new edit text control. (Deprecated. Use CreateEditUnicodeTextControl (page 38)
instead.)

IdleControls (page 314) Deprecated in Mac OS X v10.4
Performs idle event processing. (Deprecated. You should remove all calls to IdleControls because
it uses unnecessary processor time. System-supplied controls do not respond to IdleControls in
Mac OS X.)

Functions

ActivateControl
Activates a control and any latent embedded controls.

OSErr ActivateControl (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to activate. If you pass a window’s root control, ActivateControl activates
all controls in that window. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The ActivateControl function should be called instead of HiliteControl to activate a specified control
and its latent embedded controls.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you activate a latent embedded control whose embedder is deactivated, the
embedded control becomes latent until the embedder is activated. However, if you deactivate a latent
embedded control, it will not be activated when its embedder is activated.

If a control definition function supports activate events, it will receive a kControlMsgActivate message
before redrawing itself in its active state.

Functions 27
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

AdvanceKeyboardFocus
Advances the keyboard focus to the next focusable control in a window.

OSErr AdvanceKeyboardFocus (
 WindowRef inWindow
);

Parameters
inWindow

A pointer to the window for which to advance keyboard focus.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The AdvanceKeyboardFocus function skips over deactivated and hidden controls until it finds the next
focusable control in the window. If it does not find a focusable item, it simply returns.

When AdvanceKeyboardFocus is called, the Control Manager calls your control definition function and
passes kControlMsgFocus in its messageparameter and kControlFocusNextPart in its paramparameter.
In response to this message, your control definition function should change keyboard focus to its next part,
the entire control, or remove keyboard focus from the control, depending upon the circumstances. See
ControlDefProcPtr (page 161) for a discussion of possible responses to this message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

AutoEmbedControl
Automatically embeds a control in the smallest appropriate embedder control.

28 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSErr AutoEmbedControl (
 ControlRef inControl,
 WindowRef inWindow
);

Parameters
inControl

A handle to the control to be embedded.

inWindow
A pointer to the window in which to embed the control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The Dialog Manager uses AutoEmbedControl (page 28) to position dialog items in an embedding hierarchy
based on both visual containment and the item list resource order. As items are added to a dialog box during
creation, controls that already exist in the window will be containers for new controls if they both visually
contain the control and have set the kControlSupportsEmbedding feature bit. For this reason, you should
place the largest embedder controls at the beginning of the item list resource. As an example, the Dialog
Manager would embed radio buttons in a tab control if they visually “fit” inside the tab control, as long as
the tab control was already created in a'DITL' resource and established as an embedder control. For more
information on embedding hierarchies in dialog and alert boxes, see the function EmbedControl (page 73).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ChangeControlPropertyAttributes
Changes a property attribute.

OSStatus ChangeControlPropertyAttributes (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits attributesToSet,
 OptionBits attributesToClear
);

Parameters
control

The control whose property’s attributes you want to change. For a description of this data type, see
ControlRef (page 193).

propertyCreator
An OSType signature, usually the signature of your application. Do not use all lower case signatures,
as these are reserved for use by Apple.

propertyTag
An OSType signature, defined by your application, defining the property whose attributes you want
to change.

Functions 29
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

attributesToSet
A bit field indicating the attributes you want to set for this property.

attributesToClear
A bit field indicating the attributes you want to clear for this property.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
If you have associated control properties with a control (by calling SetControlProperty (page 143), you
can also assign arbitrary attribute bits to the property. You can use these attributes to indicate information
about the property data.

Currently, kControlPropertyPersistent is the only control property attribute that is defined.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ClearKeyboardFocus
Removes the keyboard focus for the currently focused control in a window.

OSErr ClearKeyboardFocus (
 WindowRef inWindow
);

Parameters
inWindow

A pointer to the window in which to clear keyboard focus.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
When the ClearKeyboardFocus function is called, the Control Manager calls your control definition function
and passes kControlMsgFocus in its message parameter and kControlFocusNoPart in its param
parameter. See ControlDefProcPtr (page 161) for a discussion of possible responses to this message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

CopyControlTitleAsCFString
Makes a copy of the control’s title as a Core Foundation string.

30 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CopyControlTitleAsCFString (
 ControlRef inControl,
 CFStringRef *outString
);

Parameters
inControl

The control whose title is to be copied. For a description of this data type, see ControlRef (page 193).

outString
A copy of the control’s title.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

CountSubControls
Obtains the number of embedded controls within a control.

OSErr CountSubControls (
 ControlRef inControl,
 UInt16 *outNumChildren
);

Parameters
inControl

The control whose embedded controls are to be counted. For a description of this data type, see
ControlRef (page 193).

outNumChildren
On input, a pointer to an unsigned 16-bit integer value. On return, the value is set to the number of
embedded subcontrols.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The CountSubControls function is useful for iterating over the control hierarchy. You can use the count
produced to determine how many subcontrols there are and then call GetIndexedSubControl (page 98)
to get each.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Functions 31
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Declared In
Controls.h

CreateBevelButtonControl
Creates a bevel button control.

OSStatus CreateBevelButtonControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 ControlBevelThickness thickness,
 ControlBevelButtonBehavior behavior,
 ControlButtonContentInfoPtr info,
 MenuID menuID,
 ControlBevelButtonMenuBehavior menuBehavior,
 ControlBevelButtonMenuPlacement menuPlacement,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

title
The title of the control.

thickness
The thickness of the button. For possible values, see “Control Bevel Thickness Constants” (page 237).

behavior
The behavior the button is to have. For possible values, see “Bevel Button Behavior Constants” (page
205).

info
A value of type ControlButtonContentInfoPtr for the content information.

menuID
The menu ID. This parameter may be 0 if you don’t have a menu. Icon suite, picture, color icon, and
IconRef are supported on Mac OS X v10.0 through Mac OS X v10.4. Values of type CGImageRef are
supported in Mac OS X v10.4.

menuBehavior
The behavior of the menu. For possible values, see “Bevel Button Menu Constant” (page 211).

menuPlacement
The placement of the menu. For possible values, see “Control Bevel Button Menu Placement
Constants” (page 237).

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

32 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateChasingArrowsControl
Creates a chasing arrows control.

OSStatus CreateChasingArrowsControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
This control automatically animates via an event loop timer.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIProgressViews.h

CreateCheckBoxControl
Creates a checkbox control.

Functions 33
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreateCheckBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 SInt32 initialValue,
 Boolean autoToggle,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the checkbox control. This parameter may be NULL in Mac OS X v10.3
and later.

boundsRect
The bounds of the desired checkbox in the window’s local coordinates.

title
The title of the checkbox.

initialValue
The initial setting of the checkbox. Set to a non-zero value to indicate the checked state.

autoToggle
If set to true, clicking the checkbox will automatically toggle its state (checked or unchecked).

outControl
On return, outControl points to the new checkbox. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateCheckGroupBoxControl
Creates a group box control that has a check box as its title.

34 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreateCheckGroupBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 SInt32 initialValue,
 Boolean primary,
 Boolean autoToggle,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The title of the control. The title is used as the title of the check box.

initialValue
The initial value of the check box.

primary
A Boolean whose value is true to create a primary group box or false to create a secondary group
box.

autoToggle
A Boolean whose value is true to create an auto-toggling check box. Auto-toggling check box titles
are only supported on Mac OS X; this parameter must be false when used with CarbonLib.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

CreateClockControl
Creates a clock control.

Functions 35
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreateClockControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlClockType clockType,
 ControlClockFlags clockFlags,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

clockType
The clock type. For possible values, see “Control Clock Type Constants” (page 237).

clockFlags
Clock options. For possible values, see “Clock Value Flag Constants” (page 218).

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIClockView.h

CreateDisclosureButtonControl
Creates a new instance of the Disclosure Button Control.

OSStatus CreateDisclosureButtonControl (
 WindowRef inWindow,
 const Rect *inBoundsRect,
 SInt32 inValue,
 Boolean inAutoToggles,
 ControlRef *outControl
);

Parameters
inWindow

The WindowRef in which to create the control. This parameter may be NULL in Mac OS X v10.3 and
later.

inBoundsRect
The bounding rectangle for the control in the window’s local coordinates. The height of the control
is fixed and the control will be centered vertically within the rectangle you specify.

36 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

inValue
The initial value; either kControlDisclosureButtonClosed or
kControlDisclosureButtonDisclosed.

inAutoToggles
A Boolean value indicating whether its value should change automatically after tracking the mouse.

outControl
On successful exit, this will contain the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
CreateDisclosureButtonControl is preferred over NewControl (page 318) because it allows you to
specify the exact set of parameters required to create the control without overloading parameter semantics.
The initial minimum of the Disclosure Button will bekControlDisclosureButtonClosed, and the maximum
will be kControlDisclosureButtonDisclosed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIDisclosureViews.h

CreateDisclosureTriangleControl
Creates a disclosure triangle control.

OSStatus CreateDisclosureTriangleControl (
 WindowRef inWindow,
 const Rect *inBoundsRect,
 ControlDisclosureTriangleOrientation inOrientation,
 CFStringRef inTitle,
 SInt32 inInitialValue,
 Boolean inDrawTitle,
 Boolean inAutoToggles,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

inBoundsRect
The desired position, in the window’s local coordinates, for the disclosure triangle.

inOrientation
The direction the disclosure triangle should point when it is “closed.” Passing
kControlDisclosureTrianglePointDefault is only legal as of Mac OS X and CarbonLib 1.5. For
other possible values, see “Control Disclosure Triangle Orientation Constants” (page 237).

inTitle
The title for the disclosure triangle. The title is displayed only if the value of the inDrawTitle
parameter is true. Displaying the title only works on Mac OS X.

Functions 37
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

inInitialValue
The initial state of the disclosure triangle. A value of 0 causes the disclosure triangle to be drawn
initially in the “closed” state, and a value of 1 causes the triangle to be drawn initially in the “open”
state.

inDrawTitle
A Boolean whose value is true if the disclosure triangle should draw its title next to the widget.
Displaying the title only works on Mac OS X.

inAutoToggles
A Boolean whose value is true to enable auto toggling; otherwise, false. When auto toggling is
enabled, the disclosure triangle automatically changes from “open” to “closed” and from “closed” to
“open” when it is clicked.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
A disclosure triangle is a small control that gives the user a way to toggle the visibility of information or other
user interface. When information is in a hidden state, a disclosure triangle is considered “closed” and should
point to the right (or sometimes to the left). When the user clicks it, a disclosure triangle rotates downwards
into the “open” state. The application should respond by revealing the appropriate information or interface.

On Mac OS X, a root control is created for the window if one does not already exist. If a root control exists
for the window, the disclosure triangle control is embedded in it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIDisclosureViews.h

CreateEditUnicodeTextControl
Creates a new edit text control.

OSStatus CreateEditUnicodeTextControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef text,
 Boolean isPassword,
 const ControlFontStyleRec *style,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

38 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

boundsRect
The bounds of the control in the window’s local coordinates.

text
The text of the control. May be NULL.

isPassword
A Boolean indicating whether the field is to be used as a password field. Passing false indicates that
text entered in the field is to be displayed normally. Passing true means that the field is to be used
as a password field; any text typed into the field is displayed as bullets.

style
The control’s font style, size, color, and so on. May be NULL.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
This function is the preferred way of creating edit text controls. Use it instead of the
CreateEditTextControl (page 313) function. The resulting control handles Unicode text and draws its
text using anti-aliasing. Controls created by CreateEditTextControl do not handle Unicode text and are
not drawn with anti-aliasing.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITextViews.h

CreateGroupBoxControl
Creates a group box control.

OSStatus CreateGroupBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 Boolean primary,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

title
The title of the control. This parameter can be NULL if you don’t want the control to have a title.

Functions 39
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

primary
A Boolean whose value is true to create a primary group box or false to create a secondary group
box. Secondary group boxes are intended to be contained within primary group boxes and have a
slightly different appearance.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

CreateIconControl
Creates an icon control.

OSStatus CreateIconControl (
 WindowRef inWindow,
 const Rect *inBoundsRect,
 const ControlButtonContentInfo *inIconContent,
 Boolean inDontTrack,
 ControlRef *outControl
);

Parameters
inWindow

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

inBoundsRect
The bounds of the control in the window’s local coordinates.

inIconContent
The descriptor for the icon you want the control to display. Mac OS X and CarbonLib 1.5 (and beyond)
support all of the icon content types. Prior to CarbonLib 1.5, the only content types that are properly
respected are kControlContentIconSuiteRes, kControlContentCIconRes, and
kControlContentICONRes.

inDontTrack
A Boolean whose value is true to indicate that the control should not be highlighted when it is
clicked; falsemeans that the control should be highlighted and the mouse tracked when the control
is clicked.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

40 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

CreateImageWellControl
Creates an image well control.

OSStatus CreateImageWellControl (
 WindowRef window,
 const Rect *boundsRect,
 const ControlButtonContentInfo *info,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

info
The image that is to be displayed in the image well. The image can be an icon suite, picture, color
icon, or an IconRef in Mac OS X v10.0 and later. It can be also be a CGImageRef in Mac OS X v10.4
and later.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
An image well control is a control that displays an image inside a frame (or “well”). The user can drag other
images onto the well.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

CreateListBoxControl
Creates a list box control.

Functions 41
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreateListBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 Boolean autoSize,
 SInt16 numRows,
 SInt16 numColumns,
 Boolean horizScroll,
 Boolean vertScroll,
 SInt16 cellHeight,
 SInt16 cellWidth,
 Boolean hasGrowSpace,
 const ListDefSpec *listDef,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

autoSize
A Boolean whose value is true to enable auto-sizing; otherwise, false. When auto-sizing is enabled,
the control automatically resizes itself as necessary to ensure that the height of the control is an exact
multiple of the cell height.

numRows
The number of rows the control is to have.

numColumns
The number of columns the control is to have.

horizScroll
A Boolean whose value is true if the control is to have a horizontal scroll bar; otherwise, false.

vertScroll
A Boolean whose value is true if the control is to have a vertical scroll bar; otherwise, false.

cellHeight
The height of cells in the control.

cellWidth
The width of cells in the control.

hasGrowSpace
A Boolean whose value is true to indicate that the control is drawn so that there is room for a size
box; otherwise, false.

listDef
A pointer to the list definition function you want to associate with the new control. This parameter
may be NULL if you want to use the standard list definition function, which only displays text.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

42 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
The list is created with default values, and uses the standard LDEF (0) if you don’t specify a custom list
definition function in the listDef parameter. You can set the LDEF to use by using
kControlListBoxLDEFTag. You can change the list by getting the list handle. To get the list handle, call
GetControlData (page 85) and pass the kControlListBoxListHandletag constant.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ControlDefinitions.h

CreateLittleArrowsControl
Creates a little arrows control.

OSStatus CreateLittleArrowsControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 SInt32 increment,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value the control can have.

maximum
The maximum value the control can have.

increment
The amount to increment each time an arrow is clicked.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
This control implements the little up and down arrows seen in the Date & Time system preferences panel.
To change the value of this control, you need to create a control action proc. The following sample code
creates the control and sets the action proc:

Functions 43
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

CreateLittleArrowsControl(&rect, minimum, maximum, increment, value);
SetControlAction(Arrows, LittleArrowActionProc);

Here is sample code for the action proc:

void LittleArrowActionProc(ControlRef cref, ControlPartCode part) {
 SInt32 val = GetControl32BitValue(cref);
 SInt32 s = 0;
 GetControlData(cref, 0, kControlLittleArrowsIncrementValueTag, sizeof(SInt32),
 &s, nil;
 switch (part) {
 case kControlUpButtonPart:
 SetControl32BitValue(cref, val+s);
 break;
 case kControlDownButtonPart:
 SetControl32BitValue(cref, val-s);
 break;
 };
 };

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HILittleArrows.h

CreatePictureControl
Creates a picture control.

OSStatus CreatePictureControl (
 WindowRef window,
 const Rect *boundsRect,
 const ControlButtonContentInfo *content,
 Boolean dontTrack,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

content
The descriptor for the picture you want the control to display. Only picture content is supported. You
can change the picture by calling SetControlData (page 137) and passing the
kControlPictureHandleTag constant.

dontTrack
A Boolean whose value is true to indicate that the control should not be highlighted when it is
clicked; falsemeans that the control should be highlighted and the mouse tracked when the control
is clicked.

44 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

outControl
On return, the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ControlDefinitions.h

CreatePlacardControl
Creates a placard control.

OSStatus CreatePlacardControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounding box of the control in the window’s local coordinates.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

CreatePopupArrowControl
Creates a pop-up arrow control.

Functions 45
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreatePopupArrowControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlPopupArrowOrientation orientation,
 ControlPopupArrowSize size,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

orientation
The orientation of the control.

size
The size of the control.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIPopupButton.h

CreatePopupButtonControl
Creates a pop-up button control.

OSStatus CreatePopupButtonControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 MenuID menuID,
 Boolean variableWidth,
 SInt16 titleWidth,
 SInt16 titleJustification,
 Style titleStyle,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

46 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

title
The title of the control.

menuID
The ID of a menu that should be used by the control. A menu with this ID should be inserted into the
menubar with InsertMenu(menu, kInsertHierarchicalMenu). You can also pass -12345 to
have the control delay its acquisition of a menu; in this case, you can build the menu and later provide
it to the control with SetControlData and kControlPopupButtonMenuRefTag or
kControlPopupButtonOwnedMenuRefTag.

variableWidth
A Boolean whose value indicates whether the width of the control is allowed to vary according to
the width of the selected menu item text (true), or should remain fixed to the original control bounds
width (false).

titleWidth
The width of the title.

titleJustification
The justification of the title. Use a TextEdit justification constant (teFlushDefault, teCenter,
teFlushRight, or teFlushLeft).

titleStyle
A QuickDraw style bitfield indicating the font style of the title.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIPopupButton.h

CreatePopupGroupBoxControl
Creates a group box control that has a pop-up button as its title.

Functions 47
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreatePopupGroupBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 Boolean primary,
 MenuID menuID,
 Boolean variableWidth,
 SInt16 titleWidth,
 SInt16 titleJustification,
 Style titleStyle,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The title of the control. The title is used as the title of the pop-up button.

primary
A Boolean whose value is true to create a primary group box or false to create a secondary group
box.

menuID
The menu ID of the menu that is to be displayed by the pop-up button. A menu with this ID should
be inserted into the menubar with InsertMenu(menu, kInsertHierarchicalMenu). You can
also pass -12345 to have the control delay its acquisition of a menu; in this case, you can build the
menu and later provide it to the control with SetControlData and
kControlPopupButtonMenuRefTag or kControlPopupButtonOwnedMenuRefTag.

variableWidth
A Boolean whose value is true if the pop-up button is to have a variable-width title or false if the
pop-up button is to have a fixed-width title. Fixed-width titles are only supported by Mac OS X; this
parameter must be true when used with CarbonLib.

titleWidth
The width in pixels of the pop-up button title.

titleJustification
The justification of the pop-up button title. Use a TextEdit justification constant (teFlushDefault,
teCenter, teFlushRight, or teFlushLeft).

titleStyle
The QuickDraw text style of the pop-up button title.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

48 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Declared In
HIContainerViews.h

CreateProgressBarControl
Creates a progress bar control.

OSStatus CreateProgressBarControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 Boolean indeterminate,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value of the control.

maximum
The maximum value of the control.

indeterminate
A Boolean whose value is true if you want the control to display a rotating barber pole effect to
indicate that something is happening (an indeterminate progress bar) or false if you want to display
a determinate progress bar that uses the values of the minimum and maximum parameters to show
progress from minimum to maximum.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIProgressViews.h

CreatePushButtonControl
Creates a push button control.

Functions 49
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreatePushButtonControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The control title. May be NULL.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreatePushButtonWithIconControl
Creates a push button control containing an icon or other graphical content.

OSStatus CreatePushButtonWithIconControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 ControlButtonContentInfo *icon,
 ControlPushButtonIconAlignment iconAlignment,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control, in local coordinates of the window.

title
The control title. May be NULL.

icon
The control graphic content. The value of this parameter can be kControlContentCIconRes in Mac
OS X v10.0 and later. It can also be kControlContentCGImageRef in Mac OS X v10.4 and later.

50 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

iconAlignment
The alignment of the control graphic content.For possible values, see “Control Push Button Icon
Alignment Constants” (page 237).

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateRadioButtonControl
Creates a radio button control.

OSStatus CreateRadioButtonControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 SInt32 initialValue,
 Boolean autoToggle,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The control title. May be NULL.

initialValue
The initial value of the control. Should be 0 (off), 1 (on), or 2 (mixed). The control is automatically
given a minimum value of 0 and a maximum value of 2.

autoToggle
A Boolean whose value indicates whether this control should have auto-toggle behavior. If true, the
control automatically toggles between on and off states when clicked. This parameter should be
false if the control is embedded into a radio group control; in that case, the radio group handles
setting the correct control value in response to a click.

outControl
On return, the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions 51
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateRadioGroupControl
Creates a radio group control.

OSStatus CreateRadioGroupControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
This control implements a radio group. It is an embedding control and can therefore only be used when a
control hierarchy is established for its owning window. You should only embed radio buttons within it. As
radio buttons are embedded into it, the group sets up its value, min, and max to represent the number of
embedded items. The current value of the control is the index of the sub-control that is the current “on”
radio button. To get the current radio button control handle, you can use the Control Manager call
GetIndexedSubControl (page 98), passing in the value of the radio group.

Note that when creating radio buttons for use in a radio group control, you should not use the auto-toggle
version of the radio button. The radio group control handles toggling the radio button values itself; auto-toggle
radio buttons do not work properly in a radio group control on Mac OS 9.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateRelevanceBarControl
Creates a relevance bar control.

52 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreateRelevanceBarControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value of the control.

maximum
The maximum value of the control.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIRelevanceBar.h

CreateRootControl
Creates the root control for a specified window.

OSErr CreateRootControl (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

A pointer to the window in which you wish to create a root control.

outControl
On input, a pointer to a ControlHandle value. On return, the ControlHandle value is set to a
handle to the root control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions 53
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
Establishing an embedding hierarchy can be accomplished in two steps: creating a root control and embedding
controls within it.

To embed controls in a window, you must create a root control for that window. The root control is the
container for all other window controls. You create the root control in one of two ways—by calling the
CreateRootControl function or by setting the appropriate dialog flag. The root control can be retrieved
by calling the function GetRootControl (page 101).

The CreateRootControl function creates the root control for a window if no other controls are present. If
there are any controls in the window prior to calling CreateRootControl, an error is returned and the root
control is not created. Note that the minimum, maximum, and initial settings for a root control are reserved
and should not be changed.

The root control is implemented as a user pane control. You can attach any application-defined user pane
functions to the root control to perform actions such as hit testing, drawing, handling keyboard focus, erasing
to the correct background, and processing idle and keyboard events.

Once you have created a root control, newly created controls will automatically be embedded in the root
control when you call NewControl (page 318) or GetNewControl (page 100). You can specify that a specific
control be embedded into another by calling EmbedControl (page 73).

By acting on an embedder control, you can move, disable, or hide groups of items. For example, you can use
a blank user pane control as the embedder control for all items in a particular “page” of a tab control. After
creating as many user panes as you have tabs, you can hide one and show the next when a tab is clicked.
All the controls embedded in the user pane will be hidden and shown automatically when the user pane is
hidden and shown.

In addition to calling CreateRootControl, you can establish an embedding hierarchy in a dialog box by
either setting the feature bit kDialogFlagsUseControlHierarchy in the extended dialog resource or
passing it in the inFlags parameter of the Dialog Manager function NewFeaturesDialog. An embedding
hierarchy can be created in an alert box by setting the kAlertFlagsUseControlHierarchy bit in the
extended alert resource. It is important to note that a preexisting alert or dialog item will become a control
if it is in an alert or dialog box that now uses an embedding hierarchy.

The embedding hierarchy enforces drawing order by drawing the embedding control before its embedded
controls. Using an embedding hierarchy also enforces orderly hit-testing, since it performs an “inside-out”
hit test to determine the most deeply nested control that is hit by the mouse. An embedding hierarchy is
also necessary for controls to make use of keyboard focus, the default focusing order for which is a linear
progression that uses the order the controls were added to the window. For more details on keyboard focus,
see “Handling Keyboard Focus”.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

54 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

CreateRoundButtonControl
Creates a new instance of the round button control.

OSStatus CreateRoundButtonControl (
 WindowRef inWindow,
 const Rect *inBoundsRect,
 ControlRoundButtonSize inSize,
 ControlButtonContentInfo *inContent,
 ControlRef *outControl
);

Parameters
inWindow

The WindowRef in which to create the control.

inBoundsRect
The bounds of the control in the window’s local coordinates. The height and width of the control are
fixed (specified by the ControlRoundButtonSize parameter) and the control will be centered within
the rectangle you specify.

inSize
The button size; either kControlRoundButtonNormalSize or kControlRoundButtonLargeSize.

inContent
Any optional content displayed in the button. In Mac OS X v10.0 and later, kControlContentIconRef
is supported.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
CreateRoundButtonControl is preferred over NewControl (page 318) because it allows you to specify
the exact set of parameters required to create the control without overloading parameter semantics.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateScrollBarControl
Creates a scroll bar control.

Functions 55
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreateScrollBarControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 SInt32 viewSize,
 Boolean liveTracking,
 ControlActionUPP liveTrackingProc,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value of the control.

maximum
The maximum value of the control.

viewSize
The size of the visible area of the scroll bar content. If this parameter is a non-zero value, this function
creates a proportional scroll bar thumb; a value of 0 causes a non-proportional scroll bar thumb to
be created.

liveTracking
A Boolean indicating whether or not live tracking is enabled for this scroll bar. If set to true and a
valid liveTrackingProc is also passed in, the callback is called repeatedly as the thumb is moved
during tracking. If set to false, a semi-transparent thumb called a “ghost thumb” draws and no live
tracking occurs.

liveTrackingProc
If the value of the liveTracking parameter is true, a ControlActionUPP callback is to be called
as the control live tracks. This callback is called repeatedly as the scroll thumb is moved during tracking.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIScrollView.h

56 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

CreateScrollingTextBoxControl
Creates a scrolling text box control.

OSStatus CreateScrollingTextBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt16 contentResID,
 Boolean autoScroll,
 UInt32 delayBeforeAutoScroll,
 UInt32 delayBetweenAutoScroll,
 UInt16 autoScrollAmount,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

contentResID
The resource ID of ‘TEXT’ and (optionally) ‘style’ resources whose contents are to be displayed.

autoScroll
A Boolean whose value is true to enable automatic scrolling; otherwise, false.

delayBeforeAutoScroll
The number of ticks to wait before scrolling automatically. This parameter is ignored and can be set
to 0 if the value of the autoScroll parameter is false.

delayBetweenAutoScroll
The number of ticks to wait between automatic scrolls. This parameter is ignored and can be set to
0 if the value of the autoScroll parameter is false.

autoScrollAmount
The number of pixels to scroll. This parameter is ignored and can be set to 0 if the value of the
autoScroll parameter is false.

outControl
On return, outControl points to the newly-created control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
This control implements a scrolling box of text that cannot be edited. This is useful for credits in about boxes.

The standard version of this control has a scroll bar, but the autoscrolling variant does not. The autoscrolling
variant needs two pieces of information to work: delay (in ticks) before the scrolling starts, and time (in ticks)
between scrolls. This control scrolls one pixel at a time if created by NewControl (page 318), unless changed
by calling SetControlData (page 137).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ControlDefinitions.h

Functions 57
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

CreateSeparatorControl
Creates a separator control.

OSStatus CreateSeparatorControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The horizontal or vertical orientation of a separator line is determined automatically based on the relative
height and width of its control bounds.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HISeparator.h

CreateSliderControl
Creates a slider control.

OSStatus CreateSliderControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 ControlSliderOrientation orientation,
 UInt16 numTickMarks,
 Boolean liveTracking,
 ControlActionUPP liveTrackingProc,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

58 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value of the control.

maximum
The maximum value of the control.

orientation
The orientation of the control. For possible values, see “Control Slider Orientation Constants” (page
238).

numTickMarks
The number of tick marks the slider control is to have.

liveTracking
A Boolean whose value is true to enable live tracking for the control; otherwise, false.

liveTrackingProc
If the value of the liveTracking parameter is true, a ControlActionUPP callback is to be called
as the control live tracks. This callback is called repeatedly as the slider is moved during tracking.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Mac OS X has a “Scroll to here” option in the General pane of System Preferences that allows users to click
in the page up or page down regions of a slider and have the indicator jump directly to the clicked position,
which alters the value of the slider and moves any associated content appropriately. As long as the mouse
button is held down, the click is treated as though the user clicked the indicator.

If you want the sliders in your application to work with the “Scroll to here” option, you must do the following:

1. Create live-tracking sliders, not sliders that show a “ghost” thumb when you click on it. You can request
live-tracking sliders by passing true in the liveTracking parameter to CreateSliderControl. If
you create sliders with NewControl (page 318), use the kControlSliderLiveFeedback variant.

2. Write an appropriate ControlActionProc and associate it with your slider by calling
SetControlAction (page 135). This allows your application to update its content appropriately when
the live-tracking slider is clicked.

3. When callingHandleControlClick (page 103) or TrackControl (page 155) TrackControl, pass -1 in
the action proc parameter. This is a request for the Control Manager to use the action proc you associated
with your control in step 2. If you rely on the standard window event handler to do your control tracking,
this step is handled for you automatically.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 59
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Declared In
HISlider.h

CreateStaticTextControl
Creates a new static text control.

OSStatus CreateStaticTextControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef text,
 const ControlFontStyleRec *style,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

text
The text of the control. May be NULL.

style
The control’s font style, size, color, and so on. May be NULL.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITextViews.h

CreateTabsControl
Creates a tabs control.

60 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreateTabsControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlTabSize size,
 ControlTabDirection direction,
 UInt16 numTabs,
 const ControlTabEntry *tabArray,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

size
The control tab size. See “Control Tab Size Constants” (page 238) for possible values.

direction
The control tab direction. See “Control Tab Direction Constants” (page 238) for possible
values.

numTabs
The initial number of tabs.

tabArray
Information about each tab. There must be the same number of entries as specified by the numTabs
parameter.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
If you want to customize the accessibility information provided for individual tabs of a tabs control, such as
by handling various kEventClassAccessibility Carbon Events and by calling
HIObjectSetAuxiliaryAccessibilityAttribute, you need to know how to build or interpret
AXUIElement reference that represent individual tabs. The AXUIElement representing an individual tab must
be constructed using the tab control’s ControlRef and the UInt64 identifier of the one-based index of the
tab to which the element refers. A UInt64 identifier of 0 represents the tabs control as a whole. You cannot
interpret or create tab control elements whose identifiers are greater than the count of tabs in the tabs
control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITabbedView.h

Functions 61
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

CreateUserPaneControl
Creates a user pane control.

OSStatus CreateUserPaneControl (
 WindowRef window,
 const Rect *boundsRect,
 UInt32 features,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

features
The user pane features with which the user pane is to be created. For possible constants, see “Control
Features Constants” (page 225).

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
User panes have two primary purposes: to allow easy implementation of a custom control by the developer,
and to provide a generic container for embedding other controls.

In Carbon, with the advent of Carbon-event-based controls, you may find it easier to write a new control
from scratch than to customize a user pane control. The set of callbacks provided by the user pane will not
be extended to support new Control Manager features; instead, you should just write a real control.User
panes do not, by default, support embedding. If you try to embed a control into a user pane, you will get
the errControlIsNotEmbedder. You can make a user pane support embedding by passing the
kControlSupportsEmbedding flag in the features parameter when you create the control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIContainerViews.h

CreateWindowHeaderControl
Creates a window header control.

62 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus CreateWindowHeaderControl (
 WindowRef window,
 const Rect *boundsRect,
 Boolean isListHeader,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

isListHeader
A Boolean whose value is true if the control should have an appropriate appearance to be the header
of a list; otherwise, false.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

DeactivateControl
Deactivates a control and any latent embedded controls.

OSErr DeactivateControl (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to deactivate. If you pass a window’s root control, DeactivateControl
deactivates all controls in that window.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The DeactivateControl function should be called instead of HiliteControl to deactivate a specified
control and its latent embedded controls.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you activate a latent embedded control whose embedder is deactivated, the
embedded control becomes latent until the embedder is activated. However, if you deactivate a latent
embedded control, it will not be activated when its embedder is activated.

Functions 63
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

If a control definition function supports activate events, it will receive a kControlMsgActivate message
before redrawing itself in its inactive state.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

DisableControl
Disables a control.

OSStatus DisableControl (
 ControlRef inControl
);

Parameters
inControl

The control to disable. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

DisposeControl
Decrements a control’s reference count and destroys it if the reference count becomes 0.

void DisposeControl (
 ControlRef theControl
);

Parameters
theControl

The control you want to dispose of. For a description of this data type, see ControlRef (page 193).

64 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
The DisposeControl function reduces the control’s reference count and, if the reference count becomes
0, releases the memory occupied by the control structure and any data structures associated with the control.
Before destroying the control, DisposeControl removes the control (and any embedded controls it may
possess) from the screen and deletes the control from the window’s control list.

To destroy all of the controls from a window you want to keep, use the function KillControls (page 120).
If an embedding hierarchy is present, passing the root control to the DisposeControl function is the
effectively the same as calling KillControls (page 120). In that situation, DisposeControl disposes of
the controls embedded within a control before disposing of the container control.

You should use DisposeControl when you want to retain the window but remove one of its controls. The
Window Manager functions CloseWindow and DisposeWindow automatically remove all controls associated
with the window and release the memory the controls occupy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

DisposeControlActionUPP
Disposes of a control action UPP.

void DisposeControlActionUPP (
 ControlActionUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

DisposeControlCNTLToCollectionUPP
Disposes of a CNLT to collection UPP.

Functions 65
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

void DisposeControlCNTLToCollectionUPP (
 ControlCNTLToCollectionUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

DisposeControlColorUPP

Not recommended

void DisposeControlColorUPP (
 ControlColorUPP userUPP
);

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

DisposeControlEditTextValidationUPP
Disposes of an edit text validation UPP.

void DisposeControlEditTextValidationUPP (
 ControlEditTextValidationUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

66 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DisposeControlKeyFilterUPP
Disposes of a key filter UPP.

void DisposeControlKeyFilterUPP (
 ControlKeyFilterUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

DisposeControlUserPaneActivateUPP
Disposes of a user pane activate UPP.

void DisposeControlUserPaneActivateUPP (
 ControlUserPaneActivateUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneBackgroundUPP
Disposes of a user pane background UPP.

void DisposeControlUserPaneBackgroundUPP (
 ControlUserPaneBackgroundUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

Functions 67
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DisposeControlUserPaneDrawUPP
Disposes of a user pane draw UPP.

void DisposeControlUserPaneDrawUPP (
 ControlUserPaneDrawUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneFocusUPP
Disposes of a user pane focus UPP.

void DisposeControlUserPaneFocusUPP (
 ControlUserPaneFocusUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneHitTestUPP
Disposes of a user pane hit test UPP.

void DisposeControlUserPaneHitTestUPP (
 ControlUserPaneHitTestUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

68 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DisposeControlUserPaneIdleUPP
Disposes of a user pane idle UPP.

void DisposeControlUserPaneIdleUPP (
 ControlUserPaneIdleUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneKeyDownUPP
Disposes of a user pane key down UPP.

void DisposeControlUserPaneKeyDownUPP (
 ControlUserPaneKeyDownUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneTrackingUPP
Disposes of a user pane tracking UPP.

void DisposeControlUserPaneTrackingUPP (
 ControlUserPaneTrackingUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions 69
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DisposeEditUnicodePostUpdateUPP
Disposes of an edit unicode post update UPP.

void DisposeEditUnicodePostUpdateUPP (
 EditUnicodePostUpdateUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

DragControl
Draws and moves an outline of a control or its indicator while the user drags it. (Deprecated. Use Drag
Manager functions if you want drag-and-drop support for controls. See Drag Manager Reference.)

Not recommended

void DragControl (
 ControlRef theControl,
 Point startPoint,
 const Rect *limitRect,
 const Rect *slopRect,
 DragConstraint axis
);

Parameters
theControl

A handle to the control to drag. For a description of this data type, see ControlRef (page 193).

startPoint
The location of the cursor at the time the mouse button was first pressed, in global coordinates. Your
application retrieves this point from the where field of the event structure.

limitRect
A pointer to a rectangle—whose coordinates should normally coincide with or be contained in the
window’s content region—delimiting the area in which the user can drag the control’s outline.

slopRect
A pointer to a rectangle that allows some extra space for the user to move the mouse while still
constraining the control within the rectangle specified in the limitRect parameter.

axis
The axis along which the user may drag the control’s outline. Specify the axis using one of the
following values: noConstraint (no constraint), hAxisOnly (drag along horizontal axis only),
vAxisOnly (drag along vertical axis only).

Discussion
The DragControl function moves a dotted outline of a control, such as a scroll box, around the screen,
following the movements of the cursor until the user releases the mouse button. When the user releases the
mouse button, DragControl moves the control to the new location.

70 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

The function TrackControl (page 155) automatically calls the DragControl function as appropriate; when
you use TrackControl, you don’t need to call DragControl.

Before tracking the cursor, DragControl calls the control definition function. If you define your own control
definition function, you can specify custom dragging behavior.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

Draw1Control
Draws a control and any embedded controls that are currently visible in the specified window.

void Draw1Control (
 ControlRef theControl
);

Parameters
theControl

A handle to the control to draw. For a description of this data type, see ControlRef (page 193).

Discussion
Although you should generally use the functionUpdateControls (page 156) to update controls, you can
use the DrawOneControl function to update a single control. If an embedding hierarchy exists and the
control passed in has embedded controls, DrawOneControl draws the control and embedded controls. If
the root control for a window is passed in, the result is the same as if DrawControls was called.

If you are using compositing mode, you generally do not need to call Draw1Control. If you call
Draw1Control in compositing mode, keep in mind that it draws the specified control as well as all other
controls that intersect the control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

DrawControlInCurrentPort
Draws a control in the current graphics port.

void DrawControlInCurrentPort (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to draw. For a description of this data type, see ControlRef (page 193).

Functions 71
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
Typically, controls are automatically drawn in their owner’s graphics port with the functions
DrawControls (page 72), Draw1Control (page 71), and UpdateControls (page 156).
DrawControlInCurrentPort permits easy offscreen control drawing and printing. All standard system
controls support this function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

DrawControls
Draws all controls currently visible in the specified window.

void DrawControls (
 WindowRef theWindow
);

Parameters
theWindow

A pointer to a window whose controls you want to display.

Discussion
Because the UpdateControls function redraws only those controls that need updating, your application
should generally use it instead of DrawControls when you receive an update event for a window that
contains controls. You should typically call either DrawControls or UpdateControls after calling the
Window Manager function BeginUpdate and before calling EndUpdate.

While the Dialog Manager automatically draws and updates controls in alert boxes and dialog boxes, Window
Manager functions such as SelectWindow, ShowWindow, and BringToFront do not automatically update
the window’s controls.

When the Appearance Manager is not available, the DrawControls function draws all controls currently
visible in the specified window in reverse order of creation; thus, in case of overlapping controls, the control
created first appears frontmost in the window. If you only wish to draw controls in need of update, call
UpdateControls (page 156) instead.

Note that DrawControls generally should not be called if you are using compositing mode.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
HID Config Save
HID Explorer

Declared In
Controls.h

72 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DumpControlHierarchy
Writes a textual representation of the control hierarchy for a specified window into a file.

OSErr DumpControlHierarchy (
 WindowRef inWindow,
 const FSSpec *inDumpFile
);

Parameters
inWindow

A pointer to the window whose control hierarchy you wish to examine.

inDumpFile
A pointer to a file specification in which to place a text description of the window’s control hierarchy.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The DumpControlHierarchy function places a text listing of the current control hierarchy for the window
specified into the specified file, overwriting any existing file. If the specified window does not contain a
control hierarchy, DumpControlHierarchy notes this in the text file. This function is useful for debugging
embedding-related problems.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIToolboxDebugging.h

EmbedControl
Embeds one control inside another.

OSErr EmbedControl (
 ControlRef inControl,
 ControlRef inContainer
);

Parameters
inControl

The control that is to be embedded. For a description of this data type, see ControlRef (page 193).

inContainer
The control in which the control specified by inControl is to be is to embedded. For a description
of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Establishing an embedding hierarchy can be accomplished in two steps: creating a root control and embedding
controls within it.

Functions 73
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

To embed controls in a window, you must create a root control for that window. The root control is the
container for all other window controls. You create the root control in one of two ways—by calling the
CreateRootControl (page 53) function or by setting the appropriate dialog flag. The root control can be
retrieved by calling GetRootControl (page 101).

The root control is implemented as a user pane control. You can attach any application-defined user pane
functions to the root control to perform actions such as hit testing, drawing, handling keyboard focus, erasing
to the correct background, and processing idle and keyboard events.

Once you have created a root control, newly created controls will automatically be embedded in the root
control when you call NewControl (page 318) or GetNewControl (page 100). You can specify that a specific
control be embedded into another by calling EmbedControl.

Note that an embedding hierarchy must be established before your application calls the EmbedControl
function. If the specified control does not support embedding or there is no root control in the owning
window, an error is returned. Prior to Mac OS X, if the control you wish to embed is in a different window
from the embedder control, an error is returned. On Mac OS X, however, you can use EmbedControl to
move a control from one window to another. On Mac OS X v.10.0 and v.10.1, you can move all controls except
for the edit text and unicode edit text controls. Support for the edit text controls is available in Mac OS X
v.10.2 and later.

By acting on an embedder control, you can move, disable, or hide groups of items. For example, you can use
a blank user pane control as the embedder control for all items in a particular “page” of a tab control. After
creating as many user panes as you have tabs, you can hide one and show the next when a tab is clicked.
All the controls embedded in the user pane will be hidden and shown automatically when the user pane is
hidden and shown.

In addition to calling CreateRootControl, you can establish an embedding hierarchy in a dialog box by
either setting the feature bit kDialogFlagsUseControlHierarchy in the extended dialog resource or
passing it in the inFlags parameter of the Dialog Manager function NewFeaturesDialog. An embedding
hierarchy can be created in an alert box by setting the kAlertFlagsUseControlHierarchy bit in the
extended alert resource. It is important to note that a preexisting alert or dialog item will become a control
if it is in an alert or dialog box that now uses an embedding hierarchy.

The embedding hierarchy enforces drawing order by drawing the embedding control before its embedded
controls. Using an embedding hierarchy also enforces orderly hit-testing, since it performs an “inside-out”
hit test to determine the most deeply nested control that is hit by the mouse. An embedding hierarchy is
also necessary for controls to make use of keyboard focus, the default focusing order for which is a linear
progression that uses the order the controls were added to the window. For more details on keyboard focus,
see “Handling Keyboard Focus”.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

74 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

EnableControl
Enables a control.

OSStatus EnableControl (
 ControlRef inControl
);

Parameters
theControl

The control that is to be enabled.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

FindControl
Obtains the location of a mouse-down event in a control.

ControlPartCode FindControl (
 Point testPoint,
 WindowRef theWindow,
 ControlRef *theControl
);

Parameters
testPoint

A point, specified in coordinates local to the window, where the mouse-down event occurred. Before
calling FindControl, use the GlobalToLocal function to convert the point stored in the where
field of the event structure (which describes the location of the mouse-down event) to coordinates
local to the window.

theWindow
A pointer to the window in which the mouse-down event occurred. Pass the window pointer returned
by the FindWindow function.

theControl
A pointer to a control handle. On output, FindControl returns a handle to the control in which the
mouse-down event occurred or NULL if the point was not over a control. For a description of this data
type, see ControlRef (page 193).

Return Value
The control part code of the control in which the mouse-down event occurred; see “Control Meta Part Code
Constants” (page 274), “Control Part Code Constants ” (page 232), and“ Control State Part Code Constants” (page
235). For a description of this data type, see ControlPartCode (page 192).

Functions 75
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
The FindControl function is not recommended when the Appearance Manager is available. When the
Appearance Manager is available, you should call FindControlUnderMouse (page 76) to determine the
location of a mouse-down event in a control. FindControlUnderMouse will return a handle to the control
even if no part was hit and can determine whether a mouse-down event has occurred even if the control is
deactivated, while FindControl does not.

If the Appearance Manager is not available, then, when a mouse-down event occurs, your application can
call FindControl after using the Window Manager function FindWindow to ascertain that a mouse-down
event has occurred in the content region of a window containing controls.

When the user presses the mouse button while the cursor is in a visible, active control, FindControl returns
as its function result a part code identifying the control’s part the function also returns a handle to the control
in the parameter theControl.

If the mouse-down event occurs in an invisible or inactive control, or if it occurs outside a control,
FindControl sets the value referenced through theControl to NULL and returns 0 as its function result.

The FindControl function also returns NULL in the value referenced through the parameter theControl
and 0 as its function result if the window is invisible or if it doesn’t contain the given point. (However,
FindWindow won’t return a window pointer to an invisible window or to one that doesn’t contain the point
where the mouse-down event occurred. As long as you call FindWindow before FindControl, this situation
won’t arise.)

After using FindControl to determine that a mouse-down event has occurred in a control, you typically
call the function TrackControl (page 155) to follow and respond to the cursor movements in that control,
and then to determine in which part of the control the mouse-up event occurs.

The pop-up control definition function does not define part codes for pop-up menus. Instead, your application
should store the handles for your pop-up menus when you create them. Your application should then test
the handles you store against the handles returned by FindControl before responding to users’ choices in
pop-up menus.

The Dialog Manager automatically calls FindControl and TrackControl for mouse-down events inside
controls of alert boxes and dialog boxes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

FindControlUnderMouse
Obtains the location of a mouse-down event in a control.

76 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlRef FindControlUnderMouse (
 Point inWhere,
 WindowRef inWindow,
 ControlPartCode *outPart
);

Parameters
inWhere

A point, specified in coordinates local to the window, where the mouse-down event occurred. Before
calling FindControlUnderMouse, use the QuickDraw GlobalToLocal function to convert the point
stored in the where field of the event structure (which describes the location of the mouse-down
event) to coordinates local to the window.

inWindow
A pointer to the window in which the mouse-down event occurred.

outPart
On input, a pointer to a signed 16-bit integer value. On return, the value is set to the part code of the
control part that was selected; see “Control Part Code Constants ” (page 232), “Control Part Code
Constants ” (page 232), and “ Control State Part Code Constants” (page 235).

Return Value
A handle to the control that was selected. If the mouse-down event did not occur over a control part,
FindControlUnderMouse returns NULL. For a description of this data type, see ControlRef (page 193).

Discussion
You should call the FindControlUnderMouse function instead of FindControl (page 75) to determine
whether a mouse-down event occurred in a control, particularly if an embedding hierarchy is present.
FindControlUnderMouse will return a handle to the control even if no part was hit and can determine
whether a mouse-down event has occurred even if the control is deactivated, while FindControl does not.

When a mouse-down event occurs, your application should call FindControlUnderMouse after using the
Window Manager function FindWindow to ascertain that a mouse-down event has occurred in the content
region of a window containing controls.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetBestControlRect
Obtains a control’s optimal size and text placement.

Functions 77
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSErr GetBestControlRect (
 ControlRef inControl,
 Rect *outRect,
 SInt16 *outBaseLineOffset
);

Parameters
inControl

A handle to the control to be examined.

outRect
On input, a pointer to an empty rectangle (0, 0, 0, 0). On return, the rectangle is set to the optimal
size for the control. If the control doesn’t support getting an optimal size rectangle, the control’s
bounding rectangle is passed back.

outBaseLineOffset
On input, a pointer to a signed 16-bit integer value. On return, the value is set to the offset from the
bottom of control to the base of the text (usually a negative value). If the control doesn’t support
optimal sizing or has no text, 0 is passed back.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
You can call the GetBestControlRect function to automatically position and size controls in accordance
with human interface guidelines. This function is particularly helpful in determining the correct placement
of control text whose length is not known until run-time. For example, the StandardAlert function uses
GetBestControlRect to automatically size and position buttons in a newly created alert box.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetBevelButtonContentInfo
Gets the content information for a bevel button.

OSErr GetBevelButtonContentInfo (
 ControlRef inButton,
 ControlButtonContentInfoPtr outContent
);

Parameters
inButton

The control reference for the button to query.

outContent
A value of type ControlButtonContentInfoPtr for the bevel button’s content information.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.

78 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Not available to 64-bit applications.

Declared In
HIButtonViews.h

GetBevelButtonMenuHandle
Gets the menu handle for a bevel button.

OSErr GetBevelButtonMenuHandle (
 ControlRef inButton,
 MenuHandle *outHandle
);

Parameters
inButton

The control reference for the button to query.

outHandle
A pointer to the menu handle.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

GetBevelButtonMenuValue
Gets the value of a bevel button menu.

OSErr GetBevelButtonMenuValue (
 ControlRef inButton,
 MenuItemIndex *outValue
);

Parameters
inButton

The control reference for the button to query.

outValue
A pointer to the value of the bevel button menu.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 79
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Declared In
HIButtonViews.h

GetControl32BitMaximum
Obtains the maximum setting of a control.

SInt32 GetControl32BitMaximum (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose maximum setting you wish to obtain. For a description of this data
type, see ControlRef (page 193).

Return Value
The maximum setting of the control.

Discussion
Your application may use the GetControl32BitMaximum function to obtain a 32-bit value previously set
with the function SetControl32BitMaximum (page 133).

If your application uses a 32-bit control maximum value, it should not attempt to obtain this value by calling
the pre–Mac OS 8.5 function GetControlMaximum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

GetControl32BitMinimum
Obtains the minimum setting of a control.

SInt32 GetControl32BitMinimum (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose minimum setting you wish to obtain. For a description of this data
type, see ControlRef (page 193).

Return Value
The minimum setting of the control.

80 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
Your application may use the GetControl32BitMinimum function to obtain a 32-bit value previously set
with the function SetControl32BitMinimum (page 133).

If your application uses a 32-bit control minimum value, it should not attempt to obtain this value by calling
the pre–Mac OS 8.5 function GetControlMinimum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

GetControl32BitValue
Obtains the current setting of a control.

SInt32 GetControl32BitValue (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose current setting you wish to obtain.

Return Value
The current setting of the control.

Discussion
Your application may use the GetControl32BitValue function to obtain a 32-bit value previously set with
the function SetControl32BitValue (page 134).

If your application uses a 32-bit control value, it should not attempt to obtain this value by calling the pre–Mac
OS 8.5 function GetControlValue because the 16-bit value that is returned does not accurately reflect the
current 32-bit control value.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

Functions 81
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

GetControlAction
Returns a pointer to the action function associated with a control structure.

ControlActionUPP GetControlAction (
 ControlRef theControl
);

Parameters
theControl

A handle to a control.

Return Value
The action function associated with the control. The action function is called by the HandleControlClick
and TrackControl functions if you set the InAction parameter to (ControlActionUPP)-1. See
ControlActionProcPtr (page 159) for an example of an action function.

Discussion
The action function returned by the GetControlAction function defines an action to take in response to
a mouse button being held down while the cursor is in the control. An action function is usually specified in
the InAction parameter of the functions HandleControlClick (page 103) and TrackControl (page 155).
You can use the function SetControlAction (page 135) to change the action function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlBounds
Gets the bounds of a control.

Rect * GetControlBounds (
 ControlRef control,
 Rect *bounds
);

Parameters
control

The control to query. For a description of this data type, see ControlRef (page 193).

bounds
On input, a pointer to a QuickDraw rectangle. On output, the rectangle contains the bounds of the
control in local coordinates.

Return Value
A pointer to the rectangle passed in the bounds parameter.

Discussion
When called in a composited window, this function returns the view’s frame, which is equivalent to calling
HIViewGetFrame.

Availability
Available in Mac OS X v10.0 and later.

82 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Not available to 64-bit applications.

Related Sample Code
CarbonSketch
HID Explorer

Declared In
Controls.h

GetControlByID
Finds a control in a window by its unique ID.

OSStatus GetControlByID (
 WindowRef inWindow,
 const ControlID *inID,
 ControlRef *outControl
);

Parameters
inWindow

The window to query.

inID
The control ID.

outControl
A pointer to a value of type ControlRef that, on output, is filled in with the control reference for
the control specified by inID. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
As of Mac OS X v10.3, this function is superseded by the HIViewFindByID function, which is preferred over
the GetControlByID function. The first parameter to the HIViewFindByID function is a view and not a
window, so you can start the search at any point in the hierarchy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save
HID Explorer
QTCarbonShell

Declared In
Controls.h

Functions 83
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

GetControlClickActivation
Gets the control’s preferred behavior for responding to particular click.

OSStatus GetControlClickActivation (
 ControlRef inControl,
 Point inWhere,
 EventModifiers inModifiers,
 ClickActivationResult *outResult
);

Parameters
inControl
inWhere

The location at which the control was clicked.

inModifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted. .

outResult
A pointer to a value of type ClickActivationResult containing the result. For possible values,
see “Click Activation Constants” (page 264).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Some complex controls, such as Data Browser, require proper sequencing of window activation and click
processing. In some cases, the control might want the window to be left inactive yet still handle the click, or
vice- versa. This function lets a control client ask the control how it wants to behave for a particular click.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlCommandID
Gets the command ID for a control.

OSStatus GetControlCommandID (
 ControlRef inControl,
 UInt32 *outCommandID
);

Parameters
inControl
outCommandID

A pointer to the command ID.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

84 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlData
Obtains control-specific data.

OSErr GetControlData (
 ControlRef inControl,
 ControlPartCode inPart,
 ResType inTagName,
 Size inBufferSize,
 void *inBuffer,
 Size *outActualSize
);

Parameters
inControl

A handle to the control to be examined.

inPart
“Control Meta Part Code Constants” (page 274)The part code of the control part from which data is
to be obtained; see , “Control Part Code Constants ” (page 232), and “ Control State Part Code
Constants” (page 235). Passing kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control. For a description of this data type, see
ControlPartCode (page 192).

inTagName
A constant representing the control-specific data you wish to obtain see the data tag constants in
the “Control Manager Constants” (page 203) section.

inBufferSize
The size (in bytes) of the data pointed to by the inBuffer parameter. For variable-length control
data, pass the value returned in the outMaxSize parameter of GetControlDataSize (page 86) in
the inBufferSize parameter. The number of bytes must match the actual data size.

inBuffer
On input, a pointer to a buffer allocated by your application. On return, the buffer contains a copy of
the control-specific data. If you pass NULL on input, it is equivalent to calling
GetControlDataSize (page 86). The actual size of the control-specific data will be returned in the
outActualSize parameter. For variable-length data, the number of bytes must match the actual
data size.

outActualSize
On input, a pointer to a Size value. On return, the value is set to the actual size of the data. You can
pass NULL if you don’t care about this value.

Return Value
A result code. See “Control Manager Result Codes” (page 308). The result code errDataNotSupported
indicates that the inTagName parameter is not valid.

Functions 85
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
The GetControlData function will only copy the amount of data specified in the inBufferSizeparameter,
but will tell you the actual size of the buffer so you will know if the data was truncated.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonCocoa_PictureCursor
HID Explorer
QTCarbonShell

Declared In
Controls.h

GetControlDataHandle
Obtains a handle to control-specific data. (Deprecated. Use custom HIViews instead of custom CDEFs. See
HIView Programming Guide.)

Handle GetControlDataHandle (
 ControlRef control
);

Return Value
A handle to control-specific data.

Discussion
The control data handle is for control-specific data used by a control’s implementation. The control data
handle is set by calling SetControlDataHandle (page 138).

In general, you should not attempt to interpret the contents of this handle if you did not implement the
control yourself. For controls that are provided by the operating system, the format of the data handle may
change from one release of the operating system to the next.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlDataSize
Obtains the size of a control’s tagged data.

86 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSErr GetControlDataSize (
 ControlRef inControl,
 ControlPartCode inPart,
 ResType inTagName,
 Size *outMaxSize
);

Parameters
inControl

A handle to the control to be examined.For a description of this data type, see ControlRef (page 193).

inPart
The part code of the control part with which the data is associated; see“Control Meta Part Code
Constants” (page 274), “Control Part Code Constants ” (page 232), and “ Control State Part Code
Constants” (page 235). Passing kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control.

inTagName
A constant representing the control-specific data whose size is to be obtained see the data tag
constants in the “Control Manager Constants” (page 203) section.

outMaxSize
On input, a pointer to a Size value. On return, the value is set to the size (in bytes) of the control’s
tagged data. This value should be passed to SetControlData (page 137) and GetControlData (page
85) to allocate a sufficiently large buffer for variable-length data.

Return Value
A result code. See “Control Manager Result Codes” (page 308). The result code errDataNotSupported
indicates that the inTagName parameter is not valid.

Discussion
Pass the value returned in the outMaxSize parameter of GetControlDataSize in the inBufferSize
parameter of SetControlData (page 137) and GetControlData (page 85) to allocate an adequate buffer
for variable-length data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlFeatures
Obtains the features a control supports.

Not recommended

OSErr GetControlFeatures (
 ControlRef inControl,
 UInt32 *outFeatures
);

Parameters
inControl

A handle to the control to be examined. For a description of this data type, see ControlRef (page 193).

Functions 87
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

outFeatures
On input, a pointer to an unsigned 32-bit integer value. On return, the value contains a bit field
specifying the features the control supports. For a list of the features a control may support, see
ControlDefProcPtr (page 161).

Return Value
A result code. See “Control Manager Result Codes” (page 308). The result code errMsgNotSupported indicates
that the control does not support Appearance-compliant features.

Discussion
The GetControlFeatures function obtains the Appearance-compliant features a control definition function
supports, in response to a kControlMsgGetFeatures message.

Carbon Porting Notes

Some feature bits may not be relevant when using Carbon event-based messages.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlHilite
Gets the highlight status of a control.

UInt16 GetControlHilite (
 ControlRef control
);

Parameters
control

The control to query. For a description of this data type, see ControlRef (page 193).

Return Value
Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlID
Gets the control ID for a control.

88 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus GetControlID (
 ControlRef inControl,
 ControlID *outID
);

Parameters
inControl

The control to query. For a description of this data type, see ControlRef (page 193).

outID
A pointer to a value of type ControlID that, on return, contains the control ID of the control specified
by inControl.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlKind
Returns the kind of the given control.

OSStatus GetControlKind (
 ControlRef inControl,
 ControlKind *outControlKind
);

Parameters
inControl

The control to query. For a description of this data type, see ControlRef (page 193).

outControlKind
On successful exit, this will contain the control signature and kind. See ControlDefinitions.h for
the kinds of each system control. For a description of this data type, see ControlKind (page 191).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
GetControlKind allows you to query the kind of any control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Functions 89
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Declared In
Controls.h

GetControlMaximum
Obtains a control’s maximum setting. (Deprecated. Use GetControl32BitMaximum (page 80) instead.)

Not recommended

SInt16 GetControlMaximum (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose maximum value you wish to determine. For a description of this data
type, see ControlRef (page 193).

Return Value
The specified control’s maximum setting.

Discussion
When you create a control, you specify an initial maximum setting either in the control resource or in the
max parameter of the function NewControl (page 318). You can change the maximum setting by using the
function SetControlMaximum (page 141).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlMinimum
Obtains a control’s minimum setting. (Deprecated. Use GetControl32BitMinimum (page 80) instead.)

Not recommended

SInt16 GetControlMinimum (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose minimum value you wish to determine.

Return Value
The specified control’s minimum setting.

90 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
When you create a control, you specify an initial minimum setting either in the control resource or in the
min parameter of the function NewControl (page 318). You can change the minimum setting by using the
function SetControlMinimum (page 141).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlOwner
Returns the window to which a control is bound.

WindowRef GetControlOwner (
 ControlRef control
);

Parameters
control

The control to query. For a description of this data type, see ControlRef (page 193).

Return Value
The window reference to which the control is bound, or NULL if the control is not bound to a window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlPopupMenuHandle
Gets the menu handle for a pop-up control.

MenuRef GetControlPopupMenuHandle (
 ControlRef control
);

Parameters
control

The pop-up control to query.

Return Value
See the Menu Manager documentation for a description of the MenuRef data type.

Functions 91
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

GetControlPopupMenuID
Gets the menu ID of a pop-up menu.

short GetControlPopupMenuID (
 ControlRef control
);

Parameters
control

The pop-up control to query.

Return Value
The menu ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlProperty
Obtains a piece of data that has been previously associated with a control.

OSStatus GetControlProperty (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 ByteCount bufferSize,
 ByteCount *actualSize,
 void *propertyBuffer
);

Parameters
control

A handle to the control whose associated data you wish to obtain.

92 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The ‘macs' property signature is reserved for the system and
should not be used.

propertyTag
The application-defined code identifying the data.

bufferSize
A value specifying the size of the data to be obtained. If the size of the data is unknown, use the
function GetControlPropertySize (page 94) to get the data’s size. If the size specified in the
bufferSize parameter does not match the actual size of the property, GetControlProperty only
retrieves data up to the size specified or up to the actual size of the property, whichever is smaller,
and an error is returned.

actualSize
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the actual size of the
associated data. You may pass NULL for the actualSize parameter if you are not interested in this
information.

propertyBuffer
On input, a pointer to a buffer. On return, this buffer contains a copy of the data that is associated
with the specified control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
You may use the function GetControlProperty to obtain a copy of data previously set by your application
with the function SetControlProperty (page 143).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
HID Calibrator
HID Explorer

Declared In
Controls.h

GetControlPropertyAttributes
Gets the property attributes for a control.

Functions 93
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus GetControlPropertyAttributes (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits *attributes
);

Parameters
control

The control to query. For a description of this data type, see ControlRef (page 193).

propertyCreator
The OSType signature, usually the signature of your application, for the property creator of the
attributes that are to be obtained.

propertyTag
The OSType signature for the property tag for the attributes that are to be obtained.

attributes
A pointer to a value of type UInt32 that, on return, contains the attributes of the control specified
by control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlPropertySize
Obtains the size of a piece of data that has previously been associated with a control.

OSStatus GetControlPropertySize (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 ByteCount *size
);

Parameters
control

A handle to the control whose associated data you wish to examine. For a description of this data
type, see ControlRef (page 193).

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The ‘macs' property signature is reserved for the system and
should not be used.

propertyTag
The application-defined code identifying the data.

94 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

size
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the actual size of the
data.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
If you want to retrieve a piece of associated data with the function GetControlProperty (page 92), you
will typically need to use the GetControlPropertySize function beforehand to determine the size of the
associated data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlReference
Obtains a control’s current reference value.

SRefCon GetControlReference (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose current reference value you wish to determine.

Return Value
The current reference value for the specified control.

Discussion
When you create a control, you specify an initial reference value, either in the control resource or in the
refCon parameter of the function NewControl (page 318). The reference value is stored in the contrlRfCon
field of the control structure. You can use this field for any purpose, and you can use the function
SetControlReference (page 144) to change this value.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlRegion
Obtains the region corresponding to a given control part.

Functions 95
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus GetControlRegion (
 ControlRef inControl,
 ControlPartCode inPart,
 RgnHandle outRegion
);

Parameters
inControl

A handle to the control whose part region you want to obtain.

inPart
A constant identifying the control part for which a region is to be obtained. You may specify the
kControlStructureMetaPart and kControlContentMetaPart control part codes, as well as the
standard control part codes. See “Control Meta Part Code Constants” (page 274), “Control Part Code
Constants ” (page 232), and “ Control State Part Code Constants” (page 235) for descriptions of possible
values.

outRegion
On input, a value of type RgnHandle. On return, GetControlRegion sets the region to contain the
actual dimensions and position of the control part, in local coordinates.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlValue
Obtains a control’s current setting. (Deprecated. Use GetControl32BitValue (page 81) instead.)

Not recommended

SInt16 GetControlValue (
 ControlRef theControl
);

Parameters
theControl

On input, a handle to a control.

Return Value
The current setting of the control.

Discussion
When you create a control, you specify an initial setting either in the control resource or in the value
parameter of the function NewControl (page 318). You can change the setting by calling
SetControlValue (page 146).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

96 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Related Sample Code
BSDLLCTest
CarbonSketch
ictbSample

Declared In
Controls.h

GetControlVariant
Returns the variation code specified in the control definition function for a particular control. (Deprecated.
Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

Not recommended

ControlVariant GetControlVariant (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose variation code you wish to determine.

Return Value
The variation code for the specified control see the control definition IDs in the “Control Manager
Constants” (page 203) section for descriptions of control variation codes. For a description of this data type,
see ControlVariant (page 196).

Discussion
A control definition function can use a variation code to describe variations of the same basic control. For
example, all pop-up arrows share the same basic control definition function, which is stored in a resource of
type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it has
a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Carbon Porting Notes

Use only if you are using message-based custom controls (CDEFs).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlViewSize
Obtains the size of the content to which a control’s size is proportioned.

Functions 97
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SInt32 GetControlViewSize (
 ControlRef theControl
);

Parameters
theControl

A value of type ControlHandle. Pass a handle to the control whose view size you wish to obtain.

Return Value
A value equal to the current size of the content being displayed, expressed in terms of the same units of
measurement as are used for the minimum, maximum, and current settings of the control.

Discussion
Your application should call the GetControlViewSize function to obtain the current view size of a control.
This value is used by the scrollbar control to support proportional scroll boxes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetImageWellContentInfo
Gets information about the content of an image well.

OSErr GetImageWellContentInfo (
 ControlRef inButton,
 ControlButtonContentInfoPtr outContent
);

Parameters
inButton

The control reference to query.

outContent
On return, the value type ControlButtonContentInfoPtr for the control specified by inButton.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

GetIndexedSubControl
Obtains a handle to a specified embedded control.

98 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSErr GetIndexedSubControl (
 ControlRef inControl,
 UInt16 inIndex,
 ControlRef *outSubControl
);

Parameters
inControl

The control from which an embedded control handle is to be obtained. For a description of this data
type, see ControlRef (page 193).

inIndex
A one-based index—an integer between 1 and the value returned in the outNumChildren parameter
of CountSubControls (page 31)—specifying the control you wish to access.

outSubControl
On input, a pointer to a ControlHandle value. On return, the ControlHandle value is set to a
handle to the embedded control.

Return Value
A result code. See “Control Manager Result Codes” (page 308). If the index passed in is invalid, the paramErr
result code is returned.

Discussion
The GetIndexedSubControl function is useful for iterating over the control hierarchy. Also, the value of a
radio group control is the index of its currently selected embedded radio button control. So, passing the
current value of a radio group control into GetIndexedSubControl will give you a handle to the currently
selected radio button control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
Controls.h

GetKeyboardFocus
Obtains a handle to the control with the current keyboard focus for a specified window.

OSErr GetKeyboardFocus (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

A pointer to the window for which to obtain keyboard focus.

outControl
On input, a pointer to a ControlHandle value. On return, the ControlHandle value is set to a
handle to the control that currently has keyboard focus. Produces NULL if no control has focus.

Functions 99
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The GetKeyboardFocus function returns the handle of the control with current keyboard focus within a
specified window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetNewControl
Creates a control from a control resource.

ControlRef GetNewControl (
 SInt16 resourceID,
 WindowRef owningWindow
);

Parameters
resourceID

The resource ID of the control you wish to create.

owningWindow
A pointer to the window in which to place the control.

Return Value
A handle to the control created from the specified control resource. If GetNewControl can’t read the control
resource from the resource file, it returns NULL. For a description of this data type, see ControlRef (page 193).

Discussion
The GetNewControl function creates a control structure from the information in the specified control
resource, adds the control structure to the control list for the specified window, and returns as its function
result a handle to the control. You use this handle when referring to the control in most other Control Manager
functions. After making a copy of the control resource, GetNewControl releases the memory occupied by
the original control resource before returning.

The control resource specifies the rectangle for the control, its initial setting, its visibility state, its maximum
and minimum settings, its control definition ID, a reference value, and its title (if any). After you use
GetNewControl to create the control, you can change the control characteristics with other Control Manager
functions.

If the control resource specifies that the control should be visible, the Control Manager draws the control. If
the control resource specifies that the control should initially be invisible, you can use the function
ShowControl (page 153) to make the control visible.

When an embedding hierarchy is established within a window, GetNewControl automatically embeds the
newly created control in the root control of the owning window.

Availability
Available in Mac OS X v10.0 and later.

100 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Not available to 64-bit applications.

Declared In
Controls.h

GetRootControl
Obtains a handle to a window’s root control.

OSErr GetRootControl (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

A pointer to the window to be examined.

outControl
Pass a pointer to a ControlHandle value. On return, the ControlHandle value is set to a handle
to the root control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
You can call GetRootControl to determine whether or not a root control (and therefore an embedding
hierarchy) exists within a specified window. Once you have the root control’s handle, you can pass it to
functions such asDisposeControl (page 64),ActivateControl (page 27),andDeactivateControl (page
63) to apply specified actions to the entire embedding hierarchy.

Note that the minimum, maximum, and initial settings for a root control are reserved and should not be
changed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

GetSuperControl
Obtains a handle to an embedder control.

Functions 101
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSErr GetSuperControl (
 ControlRef inControl,
 ControlRef *outParent
);

Parameters
inControl

A handle to an embedded control. For a description of this data type, see ControlRef (page 193).

outParent
A pointer to a ControlHandle value. On return, the ControlHandle value is set to a handle to the
embedder control. For a description of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The GetSuperControl function gets a handle to the parent control of the control passed in.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

GetTabContentRect
Gets the content rectangle for a tab.

OSErr GetTabContentRect (
 ControlRef inTabControl,
 Rect *outContentRect
);

Parameters
inTabControl

The tab control reference to query.

outContentRect
On return, the value of this parameter is a pointer to the content rectangle for the tab specified by
inTabControl.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITabbedView.h

102 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

HandleControlClick
Responds to cursor movements in a control while the mouse button is down and returns the location of the
next mouse-up event.

ControlPartCode HandleControlClick (
 ControlRef inControl,
 Point inWhere,
 EventModifiers inModifiers,
 ControlActionUPP inAction
);

Parameters
inControl

A handle to the control in which the mouse-down event occurred. Pass the control handle returned
by FindControl or FindControlUnderMouse.

inWhere
A point, specified in local coordinates, where the mouse-down event occurred. Supply the same point
you passed to FindControl or FindControlUnderMouse.

inModifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

inAction
A universal procedure pointer to an action function defining what action your application takes while
the user holds down the mouse button. See ControlActionProcPtr (page 159) for a description
of such an action function. The value of the inAction parameter can be a valid procPtr, NULL, or
-1. A value of -1 indicates that the control should either perform auto tracking, or if it is incapable of
doing so, do nothing (like NULL). For custom controls, what you pass in this parameter depends on
how you define the control. If the part index is greater than 128, the pointer must be of type
DragGrayRegionUPP unless the control supports live feedback, in which case it should be a
ControlActionUPP.

Return Value
Returns a value of type ControlPartCode identifying the control’s part see “Control Meta Part Code
Constants” (page 274), “Control Part Code Constants ” (page 232), and“ Control State Part Code Constants” (page
235). For a description of this data type, see ControlPartCode (page 192).

Discussion
Call the HandleControlClick function after a call to FindControl (page 75) or
FindControlUnderMouse (page 76). The HandleControlClick function should be called instead of
TrackControl (page 155) to follow the user’s cursor movements in a control and provide visual feedback
until the user releases the mouse button. Unlike TrackControl, HandleControlClick allows modifier
keys to be passed in so that the control may use these if the control (such as a list box or editable text field)
is set up to handle its own tracking.

The visual feedback given by HandleControlClick depends on the control part in which the mouse-down
event occurs. When highlighting is appropriate, for example, HandleControlClick highlights the control
part (and removes the highlighting when the user releases the mouse button). When the user holds down
the mouse button while the cursor is in an indicator (such as the scroll box of a scroll bar) and moves the
mouse, HandleControlClick responds by dragging a dotted outline or a ghost image of the indicator. If
the user releases the mouse button when the cursor is in an indicator such as the scroll box,
HandleControlClick calls the control definition function to reposition the indicator.

Functions 103
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

While the user holds down the mouse button with the cursor in one of the standard controls,
HandleControlClick performs the following actions, depending on the value you pass in the parameter
inAction.

 ■ If you pass NULL in the inAction parameter, HandleControlClick uses no action function and
therefore performs no additional actions beyond highlighting the control or dragging the indicator. This
is appropriate for push buttons, checkboxes, radio buttons, and the scroll box of a scroll bar.

 ■ If you pass a pointer to an action function in the inAction parameter, it must define some action that
your application repeats as long as the user holds down the mouse button. This is appropriate for the
scroll arrows and gray areas of a scroll bar.

 ■ If you pass (ControlActionUPP)-1L in the inAction parameter, HandleControlClick calls the
control action function associated with the control. This is appropriate when you are tracking the cursor
in a pop-up menu. You can call GetControlAction (page 82) to get a pointer to the control action
function that is associated with the control, and you can call SetControlAction (page 135) to set the
control action function that is associated with the control.

For 'CDEF' resources that implement custom dragging, you usually call HandleControlClick, which
returns 0 regardless of the user’s changes of the control setting. To avoid this, you should use another method
to determine whether the user has changed the control setting, for instance, comparing the control’s value
before and after your call to HandleControlClick.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

HandleControlContextualMenuClick
Allows a control to display a contextual menu.

OSStatus HandleControlContextualMenuClick (
 ControlRef inControl,
 Point inWhere,
 Boolean *menuDisplayed
);

Parameters
inControl
inWhere

The location that was clicked.

menuDisplayed
Pointer to a Boolean whose value is true if the control displayed a contextual menu; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

104 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HandleControlDragReceive
Tells a control to accept the data from a drag.

OSStatus HandleControlDragReceive (
 ControlRef inControl,
 DragReference inDrag
);

Parameters
inControl
inDrag

The drag reference that was dropped on the control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Call this function when the user drops a drag on a control in your window to give the control an opportunity
to take any interesting data from the drag. Before calling this function, you must call
SetControlDragTrackingEnabled (page 139) to enable drag and drop support for the control.Note that
this function should not be called in a composited window. Instead, the
SetAutomaticControlDragTrackingEnabledForWindowAPI should be used to enable automatic control
drag tracking.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HandleControlDragTracking
Tells a control to respond visually to a drag.

Functions 105
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus HandleControlDragTracking (
 ControlRef inControl,
 DragTrackingMessage inMessage,
 DragReference inDrag,
 Boolean *outLikesDrag
);

Parameters
inControl
inMessage

A drag message indicating the state of the drag above the control. The meaning of the value you
pass in must be relative to the control, not the whole window. For when the drag first enters the
control, you should pass kDragTrackingEnterControl. While the drag stays within the control,
pass kDragTrackingInControl. When the drag leaves the control, pass
kDragTrackingLeaveControl.

inDrag
The drag reference that is over the control.

outLikesDrag
On output, a pointer to a Boolean whose value is true if the control can accept the data in the drag
reference or false if the control cannot accept the data. If the value is false,there is no need to call
HandleControlDragReceive (page 105) when the user drops the dragged object onto the control
because the control cannot accept the data.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Call this function when a drag is above a control in your window and you want to give that control a chance
to draw appropriately in response to the drag. Before calling this function, you must call
SetControlDragTrackingEnabled (page 139) to enable drag and drop support for the control.Note that
this function should not be called in a composited window. Instead, the
SetAutomaticControlDragTrackingEnabledForWindowAPI should be used to enable automatic control
drag tracking.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HandleControlSetCursor
Requests that a control set the cursor based on the mouse location.

106 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus HandleControlSetCursor (
 ControlRef control,
 Point localPoint,
 EventModifiers modifiers,
 Boolean *cursorWasSet
);

Parameters
inControl

.

localPoint
The location of the mouse.

modifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

cursorWasSet
Out output, a pointer to a Boolean whose value is true if the cursor was set; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HideControl
Makes a control, and any latent embedded controls, invisible.

void HideControl (
 ControlRef theControl
);

Parameters
theControl

A handle to the control to hide.

Discussion
The HideControl function makes the specified control invisible. This can be useful, for example, before
adjusting a control’s size and location. It also adds the control’s rectangle to the window’s update region, so
that anything else that was previously obscured by the control will reappear on the screen. If the control is
already invisible, HideControl has no effect.

When hiding groups of controls, the state of an embedded control that is hidden or deactivated is preserved
so that when the embedder control is shown or activated, the embedded control appears in the same state
as the embedder. If the specified control has embedded controls, HideControl makes the embedded
controls invisible as well.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you call HideControl on a latent embedded control, it would not be displayed
the next time ShowControl (page 153) was called on its embedder control.

Functions 107
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

To make the control visible again, call ShowControl (page 153).

You can also call SetControlVisibility (page 147) to hide or show a control without causing it to redraw.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HiliteControl
Changes the highlighting of a control.

Not recommended

void HiliteControl (
 ControlRef theControl,
 ControlPartCode hiliteState
);

Parameters
theControl

A handle to the control. For a description of this data type, see ControlRef (page 193).

hiliteState
A value from 0 to 255 that specifies the highlighting state of the control. The value of 0 signifies an
active control with no highlighting. A value from 1 through 253 signifies a part code designating the
part of the (active) control to highlight. Values 254 and 255 signify that the control is to be made
disabled or inactive, respectively, and drawn accordingly. For a description of part code constants,
see “Control Part Code Constants ” (page 232), “Control Part Code Constants ” (page 232), and “ Control
State Part Code Constants” (page 235).

Discussion
If the Appearance Manager is available, you should call the functions ActivateControl (page 27) and
DeactivateControl (page 63) instead of HiliteControl to activate or deactivate a control. This is
important if the control is in an embedding hierarchy, since calling these functions will ensure that any latent
embedded controls will be activated and deactivated correctly.

If the Appearance Manager is not available, then when you need to make a control inactive (such as when
its window is not frontmost) or in any other way change the highlighting of a control, you can use the
HiliteControl function.

The HiliteControl function calls the control definition function to redraw the control with the highlighting
specified in the hiliteState parameter. The HiliteControl function uses the value in this parameter to
change the value of the contrlHilite field of the control structure.

Except for scroll bars, which you should hide using HideControl (page 107), you should use HiliteControl
to make all controls inactive when their windows are not frontmost. The function TrackControl (page 155)
automatically uses the HiliteControl function as appropriate; when you use TrackControl, you don’t
need to call HiliteControl.

108 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Carbon Porting Notes

If you are activating or deactivating a control, you should use ActivateControl or DeactivateControl
instead. Otherwise okay to use.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlActionUPP
Invokes a control action UPP.

void InvokeControlActionUPP (
 ControlRef theControl,
 ControlPartCode partCode,
 ControlActionUPP userUPP
);

Parameters
theControl

The control for which the control action UPP is to be invoked. For a description of this data type, see
ControlRef (page 193).

partCode
The part code for which the control action UPP is to be invoked. For possible values, see “Control
Meta Part Code Constants” (page 274), “Control Part Code Constants ” (page 232), and “ Control State
Part Code Constants” (page 235).

userUPP
The UPP that is to be invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

InvokeControlCNTLToCollectionUPP
Invokes a control-to-collection UPP.

Functions 109
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus InvokeControlCNTLToCollectionUPP (
 const Rect *bounds,
 SInt16 value,
 Boolean visible,
 SInt16 max,
 SInt16 min,
 SInt16 procID,
 SRefCon refCon,
 ConstStr255Param title,
 Collection collection,
 ControlCNTLToCollectionUPP userUPP
);

Parameters
bounds

The bounds of the control.

value
The value of the control.

visible
A Boolean whose value is true if the control is visible; otherwise, false.

max
The maximum value of the control.

min
The minimum value of the control.

procID
The proc ID.

refCon
The refcon.

title
The title of the control.

collection
The collection.

userUPP
The UPP that is to be invoked.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlColorUPP

Not recommended

110 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSStatus InvokeControlColorUPP (
 ControlRef inControl,
 SInt16 inMessage,
 SInt16 inDrawDepth,
 Boolean inDrawInColor,
 ControlColorUPP userUPP
);

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlEditTextValidationUPP
Invokes a control edit text validation UPP.

void InvokeControlEditTextValidationUPP (
 ControlRef control,
 ControlEditTextValidationUPP userUPP
);

Parameters
theControl

The control. For a description of this data type, see ControlRef (page 193).

userUPP
The UPP that is to be invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

InvokeControlKeyFilterUPP
Invokes a control key filter UPP.

Functions 111
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlKeyFilterResult InvokeControlKeyFilterUPP (
 ControlRef theControl,
 SInt16 *keyCode,
 SInt16 *charCode,
 EventModifiers *modifiers,
 ControlKeyFilterUPP userUPP
);

Parameters
theControl

The control. For a description of this data type, see ControlRef (page 193).

keyCode
The key code.

charCode
The character code.

modifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted. .

userUPP
The UPP that is to be invoked.

Return Value
For a description of this data type, see ControlKeyFilterResult (page 191).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

InvokeControlUserPaneActivateUPP
Invokes a control user pane activate UPP.

void InvokeControlUserPaneActivateUPP (
 ControlRef control,
 Boolean activating,
 ControlUserPaneActivateUPP userUPP
);

Parameters
control

The control.

activating
A Boolean whose value is true if the user pane is being activated; otherwise, false.

userUPP
The UPP that is to be invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

112 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

InvokeControlUserPaneBackgroundUPP
Invokes a user pane background UPP.

void InvokeControlUserPaneBackgroundUPP (
 ControlRef control,
 ControlBackgroundPtr info,
 ControlUserPaneBackgroundUPP userUPP
);

Parameters
control

The control.

info
A pointer to information such as the depth and type of the drawing device. For a description of the
ControlBackgroundPtr data type, see ControlBackgroundRec (page 182).

userUPP
The UPP that is to be activated.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

InvokeControlUserPaneDrawUPP
Invokes a user pane draw UPP.

void InvokeControlUserPaneDrawUPP (
 ControlRef control,
 ControlPartCode part,
 ControlUserPaneDrawUPP userUPP
);

Parameters
control

The control.

userUPP
The part.

userUPP
The UPP that is to be activated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions 113
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

InvokeControlUserPaneFocusUPP
Invokes a user pane focus UPP.

ControlPartCode InvokeControlUserPaneFocusUPP (
 ControlRef control,
 ControlFocusPart action,
 ControlUserPaneFocusUPP userUPP
);

Parameters
control

The control.

action
The action.

userUPP
The UPP that is to be activated.

Return Value
For a description of this data type, see ControlPartCode (page 192).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeControlUserPaneHitTestUPP
Invokes a user pane hit test UPP.

ControlPartCode InvokeControlUserPaneHitTestUPP (
 ControlRef control,
 Point where,
 ControlUserPaneHitTestUPP userUPP
);

Parameters
control

The control.

where
The location.

userUPP
The UPP that is to be activated.

Return Value
See ControlPartCode (page 192) for a description of the ControlPartCode data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

114 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

InvokeControlUserPaneIdleUPP
Invokes a user pane idle UPP.

void InvokeControlUserPaneIdleUPP (
 ControlRef control,
 ControlUserPaneIdleUPP userUPP
);

Parameters
control

The control.

userUPP
The UPP that is to be activated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeControlUserPaneKeyDownUPP
Invokes a user pane key down UPP.

ControlPartCode InvokeControlUserPaneKeyDownUPP (
 ControlRef control,
 SInt16 keyCode,
 SInt16 charCode,
 SInt16 modifiers,
 ControlUserPaneKeyDownUPP userUPP
);

Parameters
control

The control.

keyCode
The key code.

charCode
The character code.

modifiers
The modifiers.

userUPP
The UPP that is to be activated.

Return Value
For a description of this data type, see ControlPartCode (page 192).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions 115
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

InvokeControlUserPaneTrackingUPP
Invokes a user pane tracking UPP.

ControlPartCode InvokeControlUserPaneTrackingUPP (
 ControlRef control,
 Point startPt,
 ControlActionUPP actionProc,
 ControlUserPaneTrackingUPP userUPP
);

Parameters
control

The control.

startPt
The starting point.

actionProc
The action proc.

userUPP
The UPP that is to be activated.

Return Value
For a description of this data type, see ControlPartCode (page 192).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeEditUnicodePostUpdateUPP
Invokes a Unicode post update UPP.

Boolean InvokeEditUnicodePostUpdateUPP (
 UniCharArrayHandle uniText,
 UniCharCount uniTextLength,
 UniCharArrayOffset iStartOffset,
 UniCharArrayOffset iEndOffset,
 void *refcon,
 EditUnicodePostUpdateUPP userUPP
);

Parameters
uniText

The UPP that is to be activated.

uniTextLength
The length of text in Unitext parameter.

iStartOffset
The starting offset.

iEndOffset
The ending offset.

116 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

refcon
The refcon.

userUPP
The UPP that is to be activated.

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

IsAutomaticControlDragTrackingEnabledForWindow
Indicates whether automatic drag tracking is enabled for the specified window.

OSStatus IsAutomaticControlDragTrackingEnabledForWindow (
 WindowRef inWindow,
 Boolean *outTracks
);

Parameters
inWindow
outTracks

On output, a pointer to a Boolean whose value is true if the Control Manager’s automatic drag
tracking is enabled for the window; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
For more information on automatic drag tracking, see
SetAutomaticControlDragTrackingEnabledForWindow (page 129).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsControlActive
Returns whether a control is active.

Boolean IsControlActive (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to be examined.

Functions 117
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Return Value
A Boolean whose value is true if the control is active; otherwise, false.

Discussion
If you wish to determine whether a control is active, you should call IsControlActive instead of testing
the contrlHilite field of the control structure.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsControlDragTrackingEnabled
Indicates whether a control’s drag track and receive support is enabled.

OSStatus IsControlDragTrackingEnabled (
 ControlRef inControl,
 Boolean *outTracks
);

Parameters
inControl

.

outTracks
On output, a pointer to a Boolean whose value is true if automatic drag tracking and receive support
is enabled for the control; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Call this function to determine whether drag and drop support is enabled for a control. Some controls don’t
support drag and drop; these controls don’t track or receive drags even if the outTracks parameter indicates
a value of true.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsControlEnabled
Indicates whether a control is enabled.

118 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Boolean IsControlEnabled (
 ControlRef inControl
);

Parameters
inControl

The control that is to be queried.

Return Value
A Boolean whose value is true if the control is enabled; otherwise, false.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsControlHilited
Indicates whether or not the control is highlighted.

Boolean IsControlHilited (
 ControlRef control
);

Parameters
control

The control that is to be queried.

Return Value
A Boolean whose value is true if the control is highlighted; otherwise, false.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsControlVisible
Determines whether a control is visible.

Boolean IsControlVisible (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to be examined.

Return Value
If true, the control is visible. If false, the control is hidden.

Functions 119
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
If you want to determine whether a control is visible, call IsControlVisible. Note that this function
indicates the actual user visibility; if the control is marked visible, but its owning window or view is hidden,
isControlVisible returns false. (In compositing mode, if a window is hidden, its root view is also marked
as hidden. Similarly, any subviews of a hidden view are considered hidden.) A control’s latent visibility (its
visibility ignoring the visibility of its parents) can be determined by calling the HIView function
HIViewIsLatentlyVisible.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsValidControlHandle
Reports whether a given handle is a control handle.

Boolean IsValidControlHandle (
 ControlRef theControl
);

Parameters
theControl

A value of type ControlHandle. Pass the handle to be examined.

Return Value
true if the specified handle is a valid control handle; otherwise, false.

Discussion
The IsValidControlHandle function confirms whether a given handle is a valid control handle, but it does
not check the validity of the data contained in the control itself.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

KillControls
Removes all of the controls from a window that you wish to keep.

void KillControls (
 WindowRef theWindow
);

Parameters
theWindow

A pointer to the window whose controls you wish to remove.

120 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
The KillControls function disposes of all controls associated with the specified window. To remove just
one control, use DisposeControl (page 64). If an embedding hierarchy is present, KillControls disposes
of the controls embedded within a control before disposing of the container control.

You should use KillControls when you wish to retain the window but dispose of its controls. The Window
Manager functions CloseWindow and DisposeWindow automatically remove all controls associated with
the window and release the memory the controls occupy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

MoveControl
Moves a control within its window.

void MoveControl (
 ControlRef theControl,
 SInt16 h,
 SInt16 v
);

Parameters
theControl

A handle to the control you wish to move.

h
The horizontal coordinate (local to the control’s window) of the new location of the upper-left corner
of the control’s rectangle.

v
The vertical coordinate (local to the control’s window) of the new location of the upper-left corner of
the control’s rectangle.

Discussion
The MoveControl function moves the control to the new location specified by the h and v parameters,
using them to change the rectangle specified in the contrlRect field of the control structure. When the
control is visible, MoveControl first hides it and then redraws it at its new location.

For example, if the user resizes a document window that contains a scroll bar, your application can use
MoveControl to move the scroll bar to its new location.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

Functions 121
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

NewControlActionUPP
Creates a UPP for a control action callback function.

ControlActionUPP NewControlActionUPP (
 ControlActionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your control action callback function. See ControlActionProcPtr (page 159) for
information about defining this function.

Return Value
A UPP to your control action callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

NewControlCNTLToCollectionUPP
Creates a UPP for a control-to-collection callback function.

ControlCNTLToCollectionUPP NewControlCNTLToCollectionUPP (
 ControlCNTLToCollectionProcPtr userRoutine
);

Return Value
A UPP to your control-to-collection callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

NewControlColorUPP

Not recommended

ControlColorUPP NewControlColorUPP (
 ControlColorProcPtr userRoutine
);

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.

122 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Not available to 64-bit applications.

Declared In
Controls.h

NewControlEditTextValidationUPP
Creates a UPP for a control edit text validation callback function.

ControlEditTextValidationUPP NewControlEditTextValidationUPP (
 ControlEditTextValidationProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

NewControlKeyFilterUPP
ControlKeyFilterUPP NewControlKeyFilterUPP (
 ControlKeyFilterProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

NewControlUserPaneActivateUPP
ControlUserPaneActivateUPP NewControlUserPaneActivateUPP (
 ControlUserPaneActivateProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions 123
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

NewControlUserPaneBackgroundUPP
ControlUserPaneBackgroundUPP NewControlUserPaneBackgroundUPP (
 ControlUserPaneBackgroundProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

NewControlUserPaneDrawUPP
ControlUserPaneDrawUPP NewControlUserPaneDrawUPP (
 ControlUserPaneDrawProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

NewControlUserPaneFocusUPP
ControlUserPaneFocusUPP NewControlUserPaneFocusUPP (
 ControlUserPaneFocusProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

NewControlUserPaneHitTestUPP
ControlUserPaneHitTestUPP NewControlUserPaneHitTestUPP (
 ControlUserPaneHitTestProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

124 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Declared In
HIContainerViews.h

NewControlUserPaneIdleUPP
ControlUserPaneIdleUPP NewControlUserPaneIdleUPP (
 ControlUserPaneIdleProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

NewControlUserPaneKeyDownUPP
ControlUserPaneKeyDownUPP NewControlUserPaneKeyDownUPP (
 ControlUserPaneKeyDownProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

NewControlUserPaneTrackingUPP
ControlUserPaneTrackingUPP NewControlUserPaneTrackingUPP (
 ControlUserPaneTrackingProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions 125
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

NewEditUnicodePostUpdateUPP
EditUnicodePostUpdateUPP NewEditUnicodePostUpdateUPP (
 EditUnicodePostUpdateProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

RegisterControlDefinition
Registers an old-style control definition.

OSStatus RegisterControlDefinition (
 SInt16 inCDEFResID,
 const ControlDefSpec *inControlDef,
 ControlCNTLToCollectionUPP inConversionProc
);

Parameters
CDEFResID

The virtual resource ID you want to assign to the control definition.

def
A pointer to the control definition function you want to register. Pass NULL if you want to unregister
a given CDEF proc ID.

conversionProc
A UPP to a callback function to place initialization data (such as the bounds, min and max values, and
so on) into a collection.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Mac OS X does not allow you to store custom control definitions in resources. However, some older functions
such as GetNewControl (page 100) expect a resource ID when creating controls. To work around this, you
can use RegisterControlDefinition to register “virtual” resource IDs for your control definition functions.

Since custom control definitions receive initialization data as a collection in the param parameter, you must
provide a callback to properly package this information. See “Control Collection Tag Constants” (page 252)
for a list of tags you can apply to the collection. If you do not supply a conversion callback, the Control
Manager sends an empty collection to your control definition.

To unregister a control definition, pass NULL in the inDefSpec parameter for a given CDEF proc ID.

In Mac OS X v10.2 and later, you should consider reimplementing your custom control code using custom
HIViews. See Introducing HIView for more information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

126 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Declared In
Controls.h

RemoveControlProperty
Removes a piece of data that has been previously associated with a control.

OSStatus RemoveControlProperty (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag
);

Parameters
control

A handle to the control whose associated data you wish to remove.

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The ’macs' property signature is reserved for the system and
should not be used.

propertyTag
The application-defined code identifying the associated data.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Your application may dissociate data it has previously set with the SetControlProperty (page 143) function
by calling the RemoveControlProperty function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ReverseKeyboardFocus
Returns keyboard focus to the prior focusable control in a window.

OSErr ReverseKeyboardFocus (
 WindowRef inWindow
);

Parameters
inWindow

A pointer to the window for which to reverse keyboard focus.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions 127
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
The ReverseKeyboardFocus function reverses the progression of keyboard focus, skipping over deactivated
and hidden controls until it finds the previous control to receive keyboard focus in the window.

When ReverseKeyboardFocus is called, the Control Manager calls your control definition function and
passes kControlMsgFocus in its messageparameter and kControlFocusPrevPart in its paramparameter.
In response to this message, your control definition function should change keyboard focus to its previous
part, the entire control, or remove keyboard focus from the control, depending upon the circumstances. See
ControlDefProcPtr (page 161) for a discussion of possible responses to this message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SendControlMessage
Sends a message to a control definition function. (Deprecated. For custom controls, use a custom HIView
instead of a control definition function. See HIView Programming Guide.)

Not recommended

SInt32 SendControlMessage (
 ControlRef inControl,
 SInt16 inMessage,
 void *inParam
);

Parameters
inControl

A handle to the control that is to receive a low-level message. For a description of this data type, see
ControlRef (page 193).

inMessage
A bit field representing the message(s) you wish to send; see ControlDefProcPtr (page 161).

inParam
The message-dependent data passed in the param parameter of the control definition function.

Return Value
Varying data, depending upon the message sent in the inMessage parameter.

Discussion
Your application does not normally need to call the SendControlMessage function. If you have a special
need to call a control definition function directly, call SendControlMessage to access and manipulate the
control’s attributes.

Before calling SendControlMessage, you should determine whether the control supports the specific
message you wish to send by calling GetControlFeatures (page 87) and examining the feature bit field
returned. If there are no feature bits returned that correspond to the message you wish to send (for messages
0 through 12), you can assume that all system controls support that message.

128 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Carbon Porting Notes

Don’t send messages to standard system control definitions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetAutomaticControlDragTrackingEnabledForWindow
Enables or disables automatic drag tracking for a window.

OSStatus SetAutomaticControlDragTrackingEnabledForWindow (
 WindowRef inWindow,
 Boolean inTracks
);

Parameters
inWindow
inTracks

A Boolean whose value is true to enable the Control Manager’s automatic drag tracking support or
false to disable automatic drag tracking support.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
By default, your application is responsible for installing drag tracking and receive handlers on a given window.
The Control Manager, however, has support for automatically tracking and receiving drags over controls that
you can enable by calling this function with the inTracks parameter set to true.

The Control Manager automatic drag tracking detects the control the drag is over and calls
HandleControlDragTracking (page 105) and HandleControlDragReceive (page 105) appropriately. By
default, the Control Manager’s automatic drag tracking is disabled.

Earlier versions of system software enabled automatic drag tracking by default, but as of Mac OS X v10.1.3,
Mac OS 9.2, and CarbonLib 1.4, you must call this function to enable automatic drag tracking.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
Controls.h

SetBevelButtonContentInfo
Sets the content information for a bevel button.

Functions 129
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSErr SetBevelButtonContentInfo (
 ControlRef inButton,
 ControlButtonContentInfoPtr inContent
);

Parameters
inButton

The control reference for the bevel button whose content information is to be set.

inContent
A value of type ControlButtonContentInfoPtr for the content information that is to be set.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

SetBevelButtonGraphicAlignment
Sets the alignment for a bevel button.

OSErr SetBevelButtonGraphicAlignment (
 ControlRef inButton,
 ControlButtonGraphicAlignment inAlign,
 SInt16 inHOffset,
 SInt16 inVOffset
);

Parameters
inButton

The control reference for the bevel button that is to be aligned.

inAlign
The alignment that is to be set. For possible values, see “Bevel Button Graphic Alignment
Constants” (page 210).

inHOffset
The horizontal offset, in pixels, that is to be applied to the alignment specified by the inAlign
parameter.

inVOffset
The vertical offset, in pixels, that is to be applied to the alignment specified by the inAlign parameter.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

130 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SetBevelButtonMenuValue
Sets the value of a bevel button menu.

OSErr SetBevelButtonMenuValue (
 ControlRef inButton,
 MenuItemIndex inValue
);

Parameters
inButton

The control reference for the bevel button whose menu value is to be set.

inValue
The value that is to be set.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

SetBevelButtonTextAlignment
Sets the alignment of the text for a bevel button.

OSErr SetBevelButtonTextAlignment (
 ControlRef inButton,
 ControlButtonTextAlignment inAlign,
 SInt16 inHOffset
);

Parameters
inButton

The control reference for the bevel button whose text is to be aligned.

inAlign
The alignment that is to be set. For possible values, see“Bevel Button Text Alignment Constants ” (page
213).

inHOffset
The horizontal offset, in pixels, that is to be applied to the alignment specified by the inAlign
parameter.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

Functions 131
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SetBevelButtonTextPlacement
Sets the placement for bevel button text.

OSErr SetBevelButtonTextPlacement (
 ControlRef inButton,
 ControlButtonTextPlacement inWhere
);

Parameters
inButton

The control reference for the bevel button whose text is to be placed.

inWhere
The placement that is to be set. For possible values, see “Bevel Button Text Placement Constants
” (page 214).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

SetBevelButtonTransform
Sets the transform for a bevel button.

OSErr SetBevelButtonTransform (
 ControlRef inButton,
 IconTransformType transform
);

Parameters
inButton

The control reference for the bevel button whose text is to be placed.

transform
The transform that is to be set. For possible values, see the IconTransformType enumeration
described in the Icon Services and Utilities Reference.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

132 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SetControl32BitMaximum
Changes the maximum setting of a control and, if appropriate, redraws it accordingly.

void SetControl32BitMaximum (
 ControlRef theControl,
 SInt32 newMaximum
);

Parameters
theControl

A handle to the control whose maximum setting you wish to change. For a description of this data
type, see ControlRef (page 193).

newMaximum
The new maximum setting of the control. In general, to avoid unpredictable behavior, do not set the
maximum control value lower than the current minimum value.

Discussion
Your application may use the SetControl32BitMaximum function to set a 32-bit value as the maximum
setting for a control.

If your application uses a 32-bit control maximum value, it should not attempt to obtain this value by calling
the pre–Mac OS 8.5 function GetControlMaximum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value. Instead, use the function GetControl32BitMaximum (page
80).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

SetControl32BitMinimum
Changes the minimum setting of a control and, if appropriate, redraws it accordingly.

void SetControl32BitMinimum (
 ControlRef theControl,
 SInt32 newMinimum
);

Parameters
theControl

A handle to the control whose minimum setting you wish to change. For a description of this data
type, see ControlRef (page 193).

newMinimum
A value specifying the new minimum setting of the control. In general, to avoid unpredictable behavior,
do not set the minimum control value higher than the current maximum value.

Functions 133
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
Your application may use the SetControl32BitMinimum function to set a 32-bit value as the minimum
setting for a control.

If your application uses a 32-bit control minimum value, it should not attempt to obtain this value by calling
the pre–Mac OS 8.5 function GetControlMinimum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value. Instead, use the function GetControl32BitMinimum (page
80).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

SetControl32BitValue
Changes the current setting of a control and redraws it accordingly.

void SetControl32BitValue (
 ControlRef theControl,
 SInt32 newValue
);

Parameters
theControl

A handle to the control whose current setting you wish to change. For a description of this data type,
see ControlRef (page 193).

newValue
A value specifying the new setting of the control. If the specified value is less than the minimum
setting for the control, SetControl32BitValue sets the current setting of the control to its minimum
setting. If the specified value is greater than the maximum setting, SetControl32BitValue sets
the control to its maximum.

Discussion
Your application may use the SetControl32BitValue function to set a 32-bit value as the current setting
for a control.

If your application uses a 32-bit control value, it should not attempt to obtain this value by calling the pre–Mac
OS 8.5 function GetControlValue because the 16-bit value that is returned does not accurately reflect the
current 32-bit control value. Instead, use the function GetControl32BitValue (page 81).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

134 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

HID Calibrator
HID Explorer
QTCarbonShell

Declared In
Controls.h

SetControlAction
Sets the action function for a control.

void SetControlAction (
 ControlRef theControl,
 ControlActionUPP actionProc
);

Parameters
theControl

A handle to the control whose action function is to be changed.

actionProc
A universal procedure pointer to an action function defining what action your application takes while
the user holds down the mouse button. See ControlActionProcPtr (page 159) for a description
of an action function.

Discussion
The SetControlAction function associates the action function specified by actionProc with the control
specified by theControl. If the cursor is in the specified control, the HandleControlClick (page 103) and
TrackControl (page 155) functions call the specified action function when the user holds down the mouse
button. You must provide the action function, and it must define some action to perform repeatedly as long
as the user holds down the mouse button. HandleControlUnderClick and TrackControl always highlight
and drag the control as appropriate.

SetControlAction should be used to set the application-defined action function for providing live feedback
for standard system scroll bar controls.

Note that the action function associated with a control is used by TrackControl only if you set the action
function to TrackControl to Pointer(–1). Also, an action function can be specified in the actionProc
parameter to TrackControl, so you don’t have to call SetControlAction to change it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlBounds
Sets the bounds of a control.

Functions 135
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

void SetControlBounds (
 ControlRef control,
 const Rect *bounds
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

SetControlColorProc
Associates a ControlColorUPP with a given Control, thereby allowing you to bypass the embedding
hierarchy-based color setup of SetUpControlBackground/SetUpControlTextColor and replace it with
your own.

Not recommended

OSStatus SetControlColorProc (
 ControlRef inControl,
 ControlColorUPP inProc
);

Parameters
inControl

The ControlRef with whom the color proc should be associated. For a description of this data type,
see ControlRef (page 193).

inProc
The color proc to associate with the ControlRef. If you pass NULL, the ControlRefwill be dissociated
from any previously installed color proc. For a description of the ControlColorUPP data type,

Return Value
A result code. See “Control Manager Result Codes” (page 308). An OSStatus code indicating success or failure.
The most likely error is a controlHandleInvalidErr resulting from a bad ControlRef.

Discussion
Before an embedded Control can erase, it calls SetUpControlBackground (page 151) to have its background
color set up by any parent controls. Similarly, any Control that draws text calls SetUpControlTextColor (page
152) to have the appropriate text color set up. This allows certain controls (such as tabs and placards) to offer
special backgrounds and text colors for any child controls. By default, the set up functions only move up the
Control Manager embedding hierarchy looking for a parent which has a special background.

This is fine in a plain vanilla embedding case, but many application frameworks find it troublesome; if there
are interesting views between two controls in the embedding hierarchy, the framework needs to be in charge
of the background and text colors, otherwise drawing defects will occur.

You can only associate a single color proc with a given ControlRef.

136 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlCommandID
Sets the command ID for a control.

OSStatus SetControlCommandID (
 ControlRef inControl,
 UInt32 inCommandID
);

Parameters
inControl

The control to set.

inCommandID
The command ID that is to be set.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlData
Sets control-specific data.

OSErr SetControlData (
 ControlRef inControl,
 ControlPartCode inPart,
 ResType inTagName,
 Size inSize,
 const void *inData
);

Parameters
inControl

A handle to the control for which data is to be set.

Functions 137
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

inPart
The part code of the control part for which data is to be set; see “Control Meta Part Code
Constants” (page 274), “Control Part Code Constants ” (page 232), and “ Control State Part Code
Constants” (page 235). Passing kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control.

inTagName
A constant representing the control-specific data you wish to set see the data tag constants in the
“Control Manager Constants” (page 203) section.

inSize
The size (in bytes) of the data pointed to by the inData parameter. For variable-length control data,
pass the value returned in the outMaxSize parameter of GetControlDataSize (page 86) in the
inSize parameter. The number of bytes must match the actual data size.

inData
A pointer to a buffer allocated by your application. This buffer contains the data that you are sending
to the control. After calling SetControlData, your application is responsible for disposing of this
buffer, if necessary, as information is copied by control.

Return Value
A result code. See “Control Manager Result Codes” (page 308). The result code errDataNotSupported
indicates that the inTagName parameter is not valid.

Discussion
The SetControlData function sets control-specific data represented by the value in the inTagName
parameter to the data pointed to by the inData parameter. SetControlData could be used, for example,
to switch a progress indicator from a determinate to indeterminate state. For a list of the control attributes
that can be set, see the data tag constants in the “Control Manager Constants” (page 203) section.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save
HID Explorer
QTCarbonShell

Declared In
Controls.h

SetControlDataHandle
(Deprecated. Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

Not recommended

138 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

void SetControlDataHandle (
 ControlRef control,
 Handle dataHandle
);

Carbon Porting Notes

Only useful for message-based custom controls (CDEFs).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlDragTrackingEnabled
Sets the drag tracking state for a control.

OSStatus SetControlDragTrackingEnabled (
 ControlRef inControl,
 Boolean inTracks
);

Parameters
inControl

The control for which the drag tracking state is to be set.

inTracks
A Boolean whose value is true if you want the control to track and receive drags or false if want
to disable support for drag and drop.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Call this function to enable a control’s support for drag and drop. If you don’t enable drag and drop support,
the control won’t track drags.

Some controls don’t support drag and drop; these controls won’t track or receive drags even if you call this
function with the inTracks parameter set to true.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
Controls.h

Functions 139
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SetControlFontStyle
Sets the font style for a control.

OSErr SetControlFontStyle (
 ControlRef inControl,
 const ControlFontStyleRec *inStyle
);

Parameters
inControl

A handle to the control whose font style is to be set. For a description of this data type, see
ControlRef (page 193).

inStyle
A pointer to a ControlFontStyleRec (page 188) structure. If the flags field is cleared, the control
uses the system font unless the control variant kControlUsesOwningWindowsFontVariant has
been specified (control uses window font).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The SetControlFontStyle function sets the font style for a given control. To specify the font for controls
in a dialog box, it is generally easier to use the dialog font table resource. SetControlFontStyle allows
you to override a control’s default font (system or window font, depending upon whether the control variant
kControlUsesOwningWindowsFontVariant has been specified). Once you have set a control’s font with
this function, you can cause the control to revert to its default font by passing a control font style structure
with a cleared flags field in the inStyle parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

SetControlID
Sets a control’s ID.

OSStatus SetControlID (
 ControlRef inControl,
 const ControlID *inID
);

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

140 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Related Sample Code
HID Calibrator

Declared In
Controls.h

SetControlMaximum
Changes the maximum setting of a control and redraws its indicator or scroll box accordingly. (Deprecated.
Use SetControl32BitMaximum (page 133) instead.)

Not recommended

void SetControlMaximum (
 ControlRef theControl,
 SInt16 newMaximum
);

Parameters
theControl

A handle to the control whose maximum setting you wish to change.

newMaximum
The new maximum setting.

Discussion
The SetControlMaximum function changes the maximum value of a control to the value specified by the
newMaximum parameter and redraws its indicator or scroll box to reflect its new range.

When you set the maximum setting of a scroll bar equal to its minimum setting, the control definition function
makes the scroll bar inactive. When you make the maximum setting exceed the minimum, the control
definition function makes the scroll bar active again.

When you create a control, you specify an initial maximum setting either in the control resource or in the
max parameter of the function NewControl (page 318). To determine a control’s current maximum setting,
use the function GetControlMaximum (page 90).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Explorer

Declared In
Controls.h

SetControlMinimum
Changes the minimum setting of a control and redraws its indicator or scroll box accordingly. (Deprecated.
Use SetControl32BitMinimum (page 133) instead.)

Functions 141
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Not recommended

void SetControlMinimum (
 ControlRef theControl,
 SInt16 newMinimum
);

Parameters
theControl

A handle to the control whose minimum setting you wish to change. For a description of this data
type, see ControlRef (page 193).

newMinimum
The new minimum setting.

Discussion
The SetControlMinimum function changes the control’s minimum value to the value specified by the
newMinimum parameter and redraws its indicator or scroll box to reflect its new range.

When you create a control, you specify an initial minimum setting either in the control resource or in the
min parameter of the NewControl (page 318) function. To obtain a control’s current minimum setting, use
the function GetControlMinimum (page 90).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

SetControlPopupMenuHandle
Sets the menu handle for a pop-up control.

void SetControlPopupMenuHandle (
 ControlRef control,
 MenuRef popupMenu
);

Parameters
control

The pop-up control.

popupMenu
The menu handle to set.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

142 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SetControlPopupMenuID
Sets the menu ID for a pop-up control

void SetControlPopupMenuID (
 ControlRef control,
 short menuID
);

Parameters
control

The pop-up control.

menuID
The menu ID to set.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlProperty
Associates data with a control.

OSStatus SetControlProperty (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 ByteCount propertySize,
 const void *propertyData
);

Parameters
control

A handle to the control with which you wish to associate data. For a description of this data type, see
ControlRef (page 193).

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The 'macs' property signature is reserved for the system and
should not be used.

propertyTag
A value identifying the data. You define the tag your application uses to identify the data.

propertySize
A value specifying the size of the data.

propertyData
On input, a pointer to data of any type. Pass a pointer to a buffer containing the data to be associated;
this buffer should be at least as large as the value specified in the propertySize parameter.

Functions 143
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
Your application may use the SetControlProperty function to associate any type of data with a control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
HID Calibrator
HID Explorer

Declared In
Controls.h

SetControlReference
Changes a control’s current reference value.

void SetControlReference (
 ControlRef theControl,
 SRefCon data
);

Parameters
theControl

A handle to the control whose reference value you want to change. For a description of this data
type, see ControlRef (page 193).

data
The new reference value for the control.

Discussion
The SetControlReference function sets the control’s reference value to the value you specify in the data
parameter.

When you create a control, you specify an initial reference value, either in the control resource or in the
refCon parameter of the function NewControl (page 318). Call GetControlReference (page 95) to obtain
the current value. You can use this value for any purpose.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlSupervisor
Routes mouse-down events to the embedder control.

144 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Not recommended

OSErr SetControlSupervisor (
 ControlRef inControl,
 ControlRef inBoss
);

Parameters
inControl

A handle to an embedded control. For a description of this data type, see ControlRef (page 193).

inBoss
A handle to the embedder control to which mouse-down events are to be routed. For a description
of this data type, see ControlRef (page 193).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
The SetControlSupervisor function allows an embedder control to respond to mouse-down events
occurring in its embedded controls.

An example of a standard control that uses this function is the radio group control. Mouse-down events in
the embedded controls of a radio group are intercepted by the group control. (The embedded controls in
this case must support radio behavior if a mouse-down event occurs in an embedded control within a radio
group control that does not support radio behavior, the control tracks normally and the group is not involved.)
The group handles all interactions and switches the embedded control’s value on and off. If the value of the
radio group changes, TrackControl (page 155) or HandleControlClick (page 103) will return the
kControlRadioGroupPart part code. If the user tracks off the radio button or clicks the current radio
button, kControlNoPart is returned.

Carbon Porting Notes

If you are using the Carbon Event Manager, send the event to the next higher control in the containment
hierarchy instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlTitleWithCFString
Sets the title for a control to the specified Core Foundation string.

OSStatus SetControlTitleWithCFString (
 ControlRef inControl,
 CFStringRef inString
);

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Functions 145
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
HID Explorer

Declared In
Controls.h

SetControlValue
Changes the current setting of a control and redraws it accordingly. (Deprecated. Use
SetControl32BitValue (page 134) instead.)

Not recommended

void SetControlValue (
 ControlRef theControl,
 SInt16 newValue
);

Parameters
theControl

A handle to the control whose current setting you wish to change. For a description of this data type,
see ControlRef (page 193).

newValue
The new setting for the control.

Discussion
For controls whose values the user can set, you can use the SetControlValue function to change the value
to the specified value and redraw the control to reflect the new setting. For checkboxes and radio buttons,
the value 1 fills the control with the appropriate mark, and 0 removes the mark. For Mac OS 8 checkboxes
and radio buttons, 2 represents a mixed state; see “Checkbox Value Constants” (page 216) and “Radio Button
Value Constants” (page 290). For scroll bars, SetControlValue redraws the scroll box where appropriate.

If the specified value is less than the minimum setting for the control, SetControlValue sets the control
to its minimum setting; if the value is greater than the maximum setting, SetControlValue sets the control
to its maximum.

When you create a control, you specify an initial setting either in the control resource or in the value
parameter of the function NewControl (page 318). To determine a control’s current setting before changing
it in response to a user’s click in that control, use the function GetControlValue (page 96).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save

146 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

HID Explorer
ictbSample

Declared In
Controls.h

SetControlViewSize
Informs the Control Manager of the size of the content to which a control’s size is proportioned.

void SetControlViewSize (
 ControlRef theControl,
 SInt32 newViewSize
);

Parameters
theControl

A handle to the control whose view size is to be set. For a description of this data type, see
ControlRef (page 193).

newViewSize
A value specifying the size of the content being displayed. This value should be expressed in terms
of the same units of measurement as are used for the minimum, maximum, and current settings of
the control.

Discussion
Your application should call the SetControlViewSize function to support proportional scroll boxes. If the
user selects the systemwide Appearance preference for proportional scroll boxes and your application doesn’t
call SetControlViewSize, it will still have the traditional square scroll boxes.

To support a proportional scroll box, simply pass the size of the view area—in terms of whatever units the
scroll bar uses—to SetControlViewSize. The system automatically handles resizing the scroll box, once
your application supplies this information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlVisibility
Sets the visibility of a control, and any embedded controls, and specifies whether it should be drawn.

OSErr SetControlVisibility (
 ControlRef inControl,
 Boolean inIsVisible,
 Boolean inDoDraw
);

Parameters
inControl

A handle to the control whose visibility is to be set.

Functions 147
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

inIsVisible
A Boolean value indicating whether the control is visible or invisible. If you set this value to true, the
control will be visible. If false, the control will be invisible. If you wish to show a control (and latent
embedded subcontrols) but do not want to cause screen drawing, pass true for this parameter and
false in the inDoDraw parameter.

inDoDraw
A Boolean value indicating whether the control should be drawn or erased. If true, the control’s
display on the screen should be updated (drawn or erased) based on the value passed in the
inIsVisible parameter. If false, the display will not be updated.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
You should call the SetControlVisibility function instead of setting the contrlVis field of the control
structure to set the visibility of a control and specify whether it will be drawn. If the control has embedded
controls, SetControlVisibility allows you to set their visibility and specify whether or not they will be
drawn. If you wish to show a control but do not want it to be drawn onscreen, pass true in the inIsVisible
parameter and false in the inDoDraw parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetDisclosureTriangleLastValue
Sets the last value of a disclosure triangle.

OSErr SetDisclosureTriangleLastValue (
 HIViewRef inDisclosureTriangle,
 SInt16 inValue
);

Parameters
inDisclosureTriangle

The control reference for the disclosure triangle whose last value is to be set.

inValue
The value to set. For possible values, see “Disclosure Triangle Constants” (page 256).

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIDisclosureViews.h

148 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SetImageWellContentInfo
Sets the content information for an image well.

OSErr SetImageWellContentInfo (
 ControlRef inButton,
 ControlButtonContentInfoPtr inContent
);

Parameters
inButton

The control reference for the image well whose content information is to be set.

inContent
The content to set.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

SetImageWellTransform
Sets an image well transform.

OSErr SetImageWellTransform (
 ControlRef inButton,
 IconTransformType inTransform
);

Parameters
inButton

The control reference for the image well.

inTransform
The transform to set. For possible values, see the IconTransformType enumeration described in
the Icon Services and Utilities Reference.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
An transform is a visual appearance modification that is to be made when drawing the control’s content.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

Functions 149
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SetKeyboardFocus
Sets the current keyboard focus to a specified control part for a window.

OSErr SetKeyboardFocus (
 WindowRef inWindow,
 ControlRef inControl,
 ControlFocusPart inPart
);

Parameters
inWindow

A pointer to the window containing the control that is to receive keyboard focus.

inControl
A handle to the control that is to receive keyboard focus.

inPart
A part code specifying the part of a control to receive keyboard focus. To clear a control’s keyboard
focus, pass kControlFocusNoPart. For a description of this data type, see ControlFocusPart (page
187)

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Discussion
A control with keyboard focus receives keyboard events. The Dialog Manager tests to see which control has
keyboard focus when a keyboard event is processed and sends the event to that control. If no control has
keyboard focus, the keyboard event is discarded. A control retains keyboard focus if it is hidden or deactivated.

Keyboard focus is only available if an embedding hierarchy has been established in the focusable control’s
window. The default focusing order is based on the order in which controls are added to the window. For
more details on embedding hierarchies, see EmbedControl (page 73).

The SetKeyboardFocus function sets the keyboard focus to a specified control part. The control to receive
keyboard focus can be deactivated or invisible. This permits you to set the focus for an item in a dialog box
before the dialog box is displayed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

SetTabEnabled
Enables and disables a tab control.

150 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

OSErr SetTabEnabled (
 ControlRef inTabControl,
 SInt16 inTabToHilite,
 Boolean inEnabled
);

Parameters
inTabControl

The control reference for the tab.

inTabToHilite
The tab to highlight.

inEnabled
A Boolean whose value is true if the tab is to be enabled or false to disable the tab.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITabbedView.h

SetUpControlBackground
Applies the proper background color for the given control to the current port.

OSErr SetUpControlBackground (
 ControlRef inControl,
 SInt16 inDepth,
 Boolean inIsColorDevice
);

Parameters
inControl

The ControlRef that wants to erase. For a description of this data type, see ControlRef (page 193).

inDepth
A short integer indicating the color depth of the device onto which drawing will take place.On Mac
OS X, this parameter is ignored; you should always pass 32.

inIsColorDevice
A Boolean indicating whether the draw device is a color device. On Mac OS X, this parameter is ignored;
you should always pass true.

Return Value
A result code. See “Control Manager Result Codes” (page 308). An OSStatus code indicating success or failure.
The most likely error is a controlHandleInvalidErr, resulting from a bad ControlRef. Any non-noErr
result indicates that the color set up failed, and that the caller should probably give up its attempt to draw.

Discussion
An embedding-savvy control which erases before drawing must ensure that its background color properly
matches the body color of any parent controls on top of which it draws. This routine asks the Control Manager
to determine and apply the proper background color to the current port.

Functions 151
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

If a ControlColorProc callback has been provided for the given control, the callback will be called to set up
the background color. If no proc exists, or if the proc returns a value other than noErr, the Control Manager
ascends the parent chain for the given control looking for a control which has a special background (see the
kControlHasSpecialBackground feature bit). The first such parent is asked to set up the background
color (see the kControlMsgSetUpBackground message). If no such parent exists, the Control Manager
applies any ThemeBrush which has been associated with the owning window (see
SetThemeWindowBackground).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetUpControlTextColor
Applies the proper text color for the given control to the current port.¬¬

OSErr SetUpControlTextColor (
 ControlRef inControl,
 SInt16 inDepth,
 Boolean inIsColorDevice
);

Parameters
inControl

The ControlRef that wants to draw text.

inDepth
A short integer indicating the color depth of the device onto which drawing will take place. On Mac
OS X, this parameter is ignored; you should always pass 32.

inIsColorDevice
A Boolean indicating whether the draw device is a color device. On Mac OS X, this parameter is ignored;
you should always pass true.

Return Value
A result code. See “Control Manager Result Codes” (page 308). An OSStatus code indicating success or failure.
The most likely error is a controlHandleInvalidErr, resulting from a bad ControlRef. Any non-noErr
result indicates that the color set up failed, and that the caller should probably give up its attempt to draw.

Discussion
An embedding-savvy control which draws text must ensure that its text color properly contrasts the
background on which it draws. This routine asks the Control Manager to determine and apply the proper
text color to the current port.

If a ControlColorProc has been provided for the given control, the proc will be called to set up the text color.
If no proc exists, or if the proc returns a value other than noErr, the Control Manager ascends the parent
chain for the given control looking for a control which has a special background (see the
kControlHasSpecialBackground feature bit). The first such parent is asked to set up the text color (see
the kControlMsgApplyTextColor message). If no such parent exists, the Control Manager chooses a text
color which contrasts any ThemeBrush which has been associated with the owning window (see
SetThemeWindowBackground).

152 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ShowControl
Makes an invisible control, and any latent embedded controls, visible.

void ShowControl (
 ControlRef theControl
);

Parameters
theControl

A handle to the control to make visible. For a description of this data type, see ControlRef (page 193).

Discussion
If the specified control is invisible, the ShowControl function makes it visible and immediately draws the
control within its window without using your window’s standard updating mechanism. Note that the
ShowControl function draws the control in its window, but the control can still be completely or partially
obscured by overlapping windows or other objects. If the control is already visible, ShowControl has no
effect.

When showing groups of controls, the state of an embedded control that is hidden or deactivated is preserved,
so that when the embedder control is shown or activated, the embedded control appears in the same state
as the embedder. If the specified control has embedded controls, ShowControl makes the embedded
controls visible as well.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you call ShowControl on a latent embedded control whose embedder is
disabled, the embedded control will remain invisible until its embedder control is enabled.

You can make a control invisible in several ways:

 ■ Specifying its invisibility in the control resource.

 ■ Passing a value of false in the visible parameter of NewControl (page 318).

 ■ Calling HideControl (page 107).

 ■ Calling SetControlVisibility (page 147).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

Functions 153
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

SizeControl
Changes the size of a control’s rectangle.

void SizeControl (
 ControlRef theControl,
 SInt16 w,
 SInt16 h
);

Parameters
theControl

A handle to the control you wish to resize.

w
The new width, in pixels, of the resized control.

h
The new height, in pixels, of the resized control.

Discussion
The SizeControl function changes the rectangle specified in the contrlRect field of the control structure.
The lower-right corner of the rectangle is adjusted so that it has the width and height specified by the w and
h parameters the position of the upper-left corner is not changed. If the control is currently visible, it’s first
hidden and then redrawn in its new size. The SizeControl function will change the window’s update region.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

TestControl
Obtains the control part in which a mouse-down event occurred.

ControlPartCode TestControl (
 ControlRef theControl,
 Point testPoint
);

Parameters
theControl

A handle to the control in which the mouse-down event occurred.

testPoint
The point, in a window’s local coordinates, where the mouse-down event occurred.

Return Value
The part code of the control part, or 0 if the point is outside the control; see “Control Meta Part Code
Constants” (page 274), “Control Part Code Constants ” (page 232), and“ Control State Part Code Constants” (page
235). If the control is invisible or inactive, TestControl returns 0. For a description of this data type, see
ControlPartCode (page 192).

154 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
The TestControl function is called by the FindControl (page 75) and TrackControl (page 155) functions;
your application does not normally call it.

When the control specified by the parameter theControl is visible and active, TestControl tests which
part of the control contains the point specified by the parameter testPoint.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

TrackControl
Responds to cursor movements in a control while the mouse button is down. (Deprecated. Use
HandleControlClick (page 103) instead.)

Not recommended

ControlPartCode TrackControl (
 ControlRef theControl,
 Point startPoint,
 ControlActionUPP actionProc
);

Parameters
theControl

A handle to the control in which a mouse-down event occurred. For a description of this data type,
see ControlRef (page 193).

startPoint
A point, specified in coordinates local to the window, where the mouse-down event occurred.

actionProc
A pointer to an action function defining the action your application takes while the user holds down
the mouse button. The value of the actionProc parameter can be a valid procPtr, NULL, or -1. A
value of -1 indicates that the control should either perform auto tracking, or if it is incapable of doing
so, do nothing (like NULL). See ControlActionProcPtr (page 159) for information about an action
function to specify in this parameter.

Return Value
If the user releases the mouse button while the cursor is inside a control part, TrackControl returns a value
of type ControlPartCodeidentifying the control part in which the mouse-up event occurs; see “Control
Meta Part Code Constants” (page 274), “Control Part Code Constants ” (page 232), and“ Control State Part
Code Constants” (page 235). TrackControl returns 0 if the user releases the mouse button while the cursor
is outside the control part. If the user releases the mouse button when the cursor is in an indicator such as
a scroll box, TrackControl calls the control’s control definition function to reposition the indicator. For a
description of this data type, see ControlPartCode (page 192).

Functions 155
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
When the Appearance Manager is available, you should typically call HandleControlClick (page 103)
instead of TrackControl to follow the user’s cursor movements in a control and provide visual feedback
until the user releases the mouse button. Unlike the TrackControl function, HandleControlClick also
accepts modifier key information so that the control may take into account the current modifier key state if
the control is set up to handle its own tracking.

If the Appearance Manager is not available, you can use the TrackControl function to follow the user’s
cursor movements in a control and provide visual feedback until the user releases the mouse button. The
visual feedback given by TrackControl depends on the control part in which the mouse-down event occurs.
When highlighting is appropriate, for example, TrackControl highlights the control part (and removes the
highlighting when the user releases the mouse button). When the user holds down the mouse button while
the cursor is in an indicator (such as the scroll box of a scroll bar) and moves the mouse, TrackControl
responds by dragging a dotted outline of the indicator.

While the user holds down the mouse button with the cursor in one of the standard controls, TrackControl
performs the following actions, depending on the value you pass in the parameter actionProc. (For other
controls, what you pass in this parameter depends on how you define the control.)

 ■ If you pass NULL in the actionProc parameter, TrackControl uses no action function and therefore
performs no additional actions beyond highlighting the control or dragging the indicator. This is
appropriate for buttons, checkboxes, radio buttons, and the scroll box of a scroll bar.

 ■ If you pass a pointer to an action function in the actionProc parameter, you must provide the function,
and it must define some action that your application repeats as long as the user holds down the mouse
button. This is appropriate for the scroll arrows and gray areas of a scroll bar.

 ■ If you pass Pointer(–1) in the actionProc parameter, TrackControl looks in the contrlAction
field of the control structure for a pointer to the control’s action function. This is appropriate when you
are tracking the cursor in a pop-up menu. (You can use the GetControlAction function to determine
the value of this field, and you can use the SetControlAction function to change this value.) If the
contrlAction field of the control structure contains a function pointer, TrackControl uses the action
function it points to; if the field of the control structure also contains the value Pointer(–1),
TrackControl calls the control’s control definition function to perform the necessary action you may
wish to do this if you define your own control definition function for a custom control. If the field of the
control structure contains the value NULL, TrackControl performs no action.

Note that when you need to handle events in alert and dialog boxes, Dialog Manager functions automatically
call FindControl and TrackControl.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

UpdateControls
Draws controls in the specified update region of a window.

156 Functions
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

void UpdateControls (
 WindowRef inWindow,
 RgnHandle inUpdateRegion
);

Parameters
theWindow

On input, a pointer to the window containing the controls to update.

updateRegion
On input, a handle to the update region of the specified window.

Discussion
The UpdateControls function, which should not be called in a compositing window, draws only those
controls in the specified window that need updating. This function is faster than the DrawControls (page
72) function, which draws all of the controls in a window. By contrast, UpdateControls draws only those
controls in the update region.

Your application should call UpdateControls upon receiving an update event for a window that contains
controls. While the Dialog Manager handles update events for controls in alert boxes and dialog boxes,
Window Manager functions such as SelectWindow, ShowWindow, and BringToFront do not automatically
call UpdateControls to display the window’s controls.

In response to an update event, you normally call UpdateControls after using the Window Manager function
BeginUpdate and before using the Window Manager functionEndUpdate. You should set theupdateRegion
parameter to the visible region of the window’s port, as specified in the port’s visRgn field. Note that if your
application draws parts of a control outside of its rectangle, UpdateControls might not redraw it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

Callbacks by Task

Defining Your Own Action Function

ControlActionProcPtr (page 159)
Defines actions to be performed repeatedly in response to a mouse-down event in a control part.

Defining Your Own Control Definition Function

ControlDefProcPtr (page 161)
If you wish to define new, nonstandard controls for your application, you must write a control definition
function and either register it with the system using RegisterControlDefinition (page 126) or
create it directly using CreateCustomControl (page 314).

Callbacks by Task 157
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Defining Your Own Key Filter Function

ControlKeyFilterProcPtr (page 170)
The key filter function allows for the interception and possible changing of keystrokes destined for a
control.

Defining Your Own Text Validation Function

ControlEditTextValidationProcPtr (page 169)
Ensures that the content of an editable text control is valid.

Defining Your Own User Pane Functions

ControlUserPaneActivateProcPtr (page 171)
Handles activate and deactivate event processing.

ControlUserPaneBackgroundProcPtr (page 172)
Sets the background color or pattern for user panes that support embedding.

ControlUserPaneDrawProcPtr (page 174)
Draws the content of your user pane control in the rectangle of user pane control.

ControlUserPaneFocusProcPtr (page 175)
Handles keyboard focus.

ControlUserPaneHitTestProcPtr (page 176)
Returns the part code of the control that the point was in when the mouse-down event occurred.

ControlUserPaneIdleProcPtr (page 176)
Performs idle processing.

ControlUserPaneKeyDownProcPtr (page 177)
Handles keyboard event processing.

ControlUserPaneTrackingProcPtr (page 179)
Tracks a control while the user holds down the mouse button.

Miscellaneous

ControlCNTLToCollectionProcPtr (page 160)

ControlColorProcPtr (page 161)

EditUnicodePostUpdateProcPtr (page 180)

158 Callbacks by Task
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Callbacks

ControlActionProcPtr
Defines actions to be performed repeatedly in response to a mouse-down event in a control part.

typedef void (*ControlActionProcPtr) (
 ControlRef theControl,
 ControlPartCode partCode
);

If you name your function MyControlActionProc, you would declare it like this:

void MyControlActionProc (
 ControlRef theControl,
 ControlPartCode partCode
);

Parameters
theControl

The control in which the mouse-down event occurred. For a description of this data type, see
ControlRef (page 193).

partCode
The control part in which the mouse-down event occurred; see “Control Meta Part Code
Constants” (page 274), “Control Part Code Constants ” (page 232), and “ Control State Part Code
Constants” (page 235). When the cursor is still in the control part where the mouse-down event first
occurred, this parameter contains that control’s part code. When the user drags the cursor outside
the original control part, this parameter contains 0.

Discussion
The Control Manager defines the data type ControlActionUPP to identify the universal procedure pointer
for this application-defined callback function. To provide a pointer to your callback, you can use the function
NewControlActionUPP (page 122). You can do so with code similar to the following:

ControlActionUPP myActionUPP;
myActionUPP = NewControlActionUPP (MyControlActionCallback);

When a mouse-down event occurs in a control, HandleControlClick (page 103) and TrackControl (page
155) respond as is appropriate, typically by highlighting the control or dragging the indicator as long as the
user holds down the mouse button. You can define other actions to be performed repeatedly during this
interval. To do so, define your own action function and point to it in the actionProc parameter of the
TrackControl function or the inAction parameter of HandleControlClick. This is the only way to
specify actions in response to all mouse-down events in a control or indicator.

When your action function is called for a control part, the action function is passed a handle to the control
and the control’s part code. The action function should then respond as is appropriate. MyActionProc is an
example of such an action function. The only exception to this is for indicators that don’t support live feedback.

If the mouse-down event occurs in an indicator of a control that does not support live feedback, your action
function should take no parameters, because the user may move the cursor outside the indicator while
dragging it.

Callbacks 159
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

As an alternative to passing a pointer to your action function in a parameter to TrackControl, you can use
the function SetControlAction (page 135) to store a pointer to the action function in the contrlAction
field in the control structure. When you pass Pointer(–1) instead of a function pointer to TrackControl,
TrackControl uses the action function pointed to in the control structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlCNTLToCollectionProcPtr
typedef OSStatus (*ControlCNTLToCollectionProcPtr) (
 const Rect * bounds,
 SInt16 value,
 Boolean visible,
 SInt16 max,
 SInt16 min,
 SInt16 procID,
 SInt32 refCon,
 ConstStr255Param title,
 Collection collection
);

If you name your function MyControlCNTLToCollectionProc, you would declare it like this:

OSStatus ControlCNTLToCollectionProcPtr (
 const Rect * bounds,
 SInt16 value,
 Boolean visible,
 SInt16 max,
 SInt16 min,
 SInt16 procID,
 SInt32 refCon,
 ConstStr255Param title,
 Collection collection
);

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

160 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlColorProcPtr
typedef OSStatus (*ControlColorProcPtr) (
 ControlRef inControl,
 SInt16 inMessage,
 SInt16 inDrawDepth,
 Boolean inDrawInColor
);

If you name your function MyControlColorProc, you would declare it like this:

OSStatus ControlColorProcPtr (
 ControlRef inControl,
 SInt16 inMessage,
 SInt16 inDrawDepth,
 Boolean inDrawInColor
);

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDefProcPtr
If you wish to define new, nonstandard controls for your application, you must write a control definition
function and either register it with the system using RegisterControlDefinition (page 126) or create it
directly using CreateCustomControl (page 314).

typedef SInt32 (*ControlDefProcPtr) (
 SInt16 varCode,
 ControlRef theControl,
 ControlDefProcMessage message,
 SInt32 param
);

If you name your function MyControlDefProc, you would declare it like this:

SInt32 MyControlDefProc (
 SInt16 varCode,
 ControlRef theControl,
 ControlDefProcMessage message,
 SInt32 param
);

Parameters
varCode

The control’s variation code.

Callbacks 161
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

theControl
A handle to the control that the operation will affect.

message
A code for the task to be performed. See “Control Definition Message Constants” (page 219) for a
description of the constants which you can use here. The subsections that follow explain each of
these tasks in detail. For a description of this data type, see ControlDefProcMessage (page 186).

param
Data associated with the task specified by the message parameter. If the task requires no data, this
parameter is ignored.

Return Value
The function results that your control definition function returns depend on the value that the Control
Manager passes in the message parameter.

Discussion
Note that Carbon does not allow you to store custom control definitions in a 'CDEF' resource file as you
could in preCarbon systems.

The Control Manager defines the data type ControlDefUPP to identify the universal procedure pointer for
this application-defined callback function. To provide a pointer to your callback, you can use the function
NewControlDefUPP (page 319). You can do so with code similar to the following:

ControlDefUPP myControlDefUPP;
myControlDefUPP = NewControlDefUPP (MyControlDefCallback);

A control definition function determines how a control generally looks and behaves. Various Control Manager
functions call a control definition function whenever they need to perform a control-dependent action, such
as drawing the control on the screen. In addition to standard control definition functions, defined by the
system, you can make your own custom control definition functions.

When various Control Manager functions need to perform a type-dependent action on the control, they call
the control definition function and pass it the variation code for its type as a parameter. You can define your
own variation codes; this allows you to use one custom definition to handle several variations of the same
general control.

To define your own type of control, you write a control definition function, compile it as a resource of type
'CDEF', and store it in your resource file. Whenever you create a control, you specify a control definition ID,
which the Control Manager uses to determine the control definition function. The control definition ID is an
integer that contains the resource ID of the control definition function in its upper 12 bits and a variation
code in its lower 4 bits. Thus, for a given resource ID and variation code

control definition ID = (16 x resource ID) + variation code

For example, buttons, checkboxes, and radio buttons all use the standard control definition function with
resource ID 0. Because they have variation codes of 0, 1, and 2, respectively, their respective control definition
IDs are 0, 1, and 2. See the control definition IDs in the “Control Manager Constants” section for more details.

The Control Manager calls the Resource Manager to access a control definition function with the given
resource ID. The Resource Manager reads a control definition function into memory and returns a handle to
it. The Control Manager stores this handle in the contrlDefProc field of the control structure.

The Control Manager calls your control definition function under various circumstances; the Control Manager
uses the message parameter to inform your control definition function what action it must perform. The
data that the Control Manager passes in the param parameter, the action that your control definition function

162 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

must undertake, and the function results that your control definition function returns all depend on the value
that the Control Manager passes in the message parameter. The rest of this section describes how to respond
to the various values that the Control Manager passes in the message parameter.

Drawing the Control or Its Part

When the Control Manager passes the value drawCntl in the message parameter, your control definition
function should respond by drawing the indicator or the entire control.

The Control Manager passes one of the drawing constants described in ReverseKeyboardFocus (page 127)
in the low word of the param parameter to specify whether the user is drawing an indicator or the whole
control. The high-order word of the param parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter.

With the exception of part code 128, which is reserved for future use and should not be used, any other value
indicates a part code for the control.

If the specified control is visible, your control definition function should draw the control (or the part specified
in the param parameter) within the control’s rectangle. If the control is invisible (that is, if its contrlVis
field is set to 0), your control definition function does nothing.

When drawing the control or its part, take into account the current values of its contrlHilite and
contrlValue fields in the control structure.

If the part code for your control’s indicator is passed in param, assume that the indicator hasn’t moved the
Control Manager, for example, may be calling your control definition function so that you may simply highlight
the indicator. However, when your application calls ClearKeyboardFocus (page 30),
SetKeyboardFocus (page 150), and “Control Meta Part Code Constants” (page 274), they in turn may call
your control definition function with the drawCntl message to redraw the indicator. Since these functions
have no way of determining what part code you chose for your indicator, they all pass 129 in param, meaning
that you should move your indicator. Your control definition function must detect this part code as a special
case and remove the indicator from its former location before drawing it. If your control has more than one
indicator, you should interpret 129 to mean all indicators.

When sent the message drawCntl, your control definition function should return 0 as its function result.

Testing Where the Mouse-Down Event Occurs

When the Control Manager passes the value for the testCntl constant in the message parameter, your
control definition function should respond by determining whether a specified point is in a visible control.

The Control Manager passes a point (in local coordinates) in the param parameter. The point’s vertical
coordinate is contained in the high-order word of the long integer, and horizontal coordinate is contained
in the low-order word.

Your control definition function should return the part code of the part that contains the specified point; it
should return 0 if the point is outside the control or if the control is inactive.

Calculating the Control and Indicator Regions on 24-Bit Systems

When the Control Manager passes the value for the calcCRgns constant in the message parameter,
your control definition function should calculate the region passed in the param parameter for the specified
control or its indicator.

Callbacks 163
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

The Control Manager passes a QuickDraw region handle in the param parameter. If the high-order bit of
param is set, the region requested is that of the control’s indicator otherwise, the region requested is that
of the entire control. Your control definition function should clear the high bit of the region handle before
calculating the region.

When passed this message, your control definition function should always return 0, and it should express
the region in the local coordinate system of the control’s window.

Note that the calcCRgns message will never be sent to any system running on 32-bit mode and is therefore
obsolete in Mac OS 7.6 and later. On Mac OS 7.6 and later, the calcCntlRgn and calcThumbRgn messages
are sent instead.

Calculating the Control and Indicator Regions on 32-Bit Systems

When the Control Manager passes the values for the calcCntlRgn or calcThumbRgn constants in the
message parameter, your control definition function should calculate the region for the specified control or
its indicator using the QuickDraw region handle passed in the param parameter.

If the Control Manager passes the value for the calcThumbRgn constant in the message parameter, calculate
the region occupied by the indicator. If the Control Manager passes the value for the calcCntlRgn constant
in the message parameter, calculate the region for the entire control.

When passed this message, your control definition function should always return 0, and it should express
the region in the local coordinate system of the control’s window.

Performing Additional Control Initialization

After initializing fields of a control structure as appropriate when creating a new control, the Control Manager
passes initCntl in the message parameter to give your control definition function the opportunity to
perform any type-specific initialization you may require. For example, the standard control definition function
for scroll bars allocates space for a region to hold the scroll box and stores the region handle in the
contrlData field of the new control structure.

When passed the value for the initCntl constant in the message parameter, your control definition function
should ignore the param parameter and return 0 as a function result.

Performing Additional Control Disposal Actions

The function DisposeControl (page 64) passes dispCntl in the message parameter to give your control
definition function the opportunity to carry out any additional actions when disposing of a control. For
example, the standard definition function for scroll bars releases the memory occupied by the scroll box
region, whose handle is kept in the contrlData field of the control structure.

When passed the value for the dispCntl constant in the message parameter, your control definition function
should ignore the param parameter and return 0 as a function result.

Dragging the Control or Its Indicator

When a mouse-up event occurs in the indicator of a control, the “ Control State Part Code Constants” (page
235) or ControlKeyDownRec (page 190) functions call your control definition function and pass posCntl in
the message parameter. In this case, the Control Manager passes a point (in coordinates local to the control’s
window) in the param parameter that specifies the vertical and horizontal offset, in pixels, by which your
control definition function should move the indicator from its current position. Typically, this is the offset

164 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

between the points where the cursor was when the user pressed and released the mouse button while
dragging the indicator. The point’s vertical offset is contained in the high-order word of the param parameter,
and its horizontal offset is contained in the low-order word.

Your definition function should calculate the control’s new setting based on the given offset and then, to
reflect the new setting, redraw the control and update the contrlValue field in the control structure. Your
control definition function should ignore the param parameter and return 0 as a function result.

Calculating Parameters for Dragging the Indicator

When the Control Manager passes the value for thumbCntl in the message parameter, your control definition
function should respond by calculating values analogous to the limitRect, slopRect, and axis parameters
of DragControl that constrain how the indicator is dragged. On entry, the fields limitRect.top and
limitRect.left contain the point where the mouse-down event first occurred.

The Control Manager passes a pointer to a structure of type IndicatorDragConstraint in the param
parameter. Your definition function should store the appropriate values into the fields of the structure pointed
to by the param parameter; they’re analogous to the similarly named parameters of the Window Manager
function DragGrayRgn.

Performing Custom Dragging

When the Control Manager passes the value for the dragCntl constant in the message parameter, the param
parameter typically contains a custom dragging constant with one of the values described in “Drag Control
Constants” to specify whether the user is dragging an indicator or the whole control.

When the Appearance Manager is present, the message kControlMsgHandleTracking should be sent
instead of dragCntl to handle any custom tracking; see “Performing Custom Tracking” below.

If you want to use the Control Manager’s default method of dragging, which is to call DragControl to drag
the control or the Window Manager function DragGrayRgn to drag its indicator, return 0 as the function
result for your control definition function.

If your control definition function returns a non-zero value, your control definition function (not the Control
Manager) must drag the specified control (or its indicator) to follow the cursor until the user releases the
mouse button. If the user drags the entire control, your definition function should use the function
MoveControl to reposition the control to its new location after the user releases the mouse button. If the
user drags the indicator, your definition function must calculate the control’s new setting (based on the pixel
offset between the points where the cursor was when the user pressed and released the mouse button while
dragging the indicator) and then, to reflect the new setting, redraw the control and update the contrlValue
field in the control structure. Note that, in this case, the functions HandleControlClick and TrackControl
return 0 whether or not the user changes the indicator’s position. Thus, you must determine whether the
user has changed the control’s setting by another method, for instance, by comparing the control’s value
before and after the call to HandleControlClick.

Executing an Action Function

The only way to specify actions in response to all mouse-down events in a control or its indicator is to define
your own control definition function that specifies an action function. When you create the control, your
control definition function must first respond to the initCntl message by storing (ControlDefUPP)-1L in
the contrlAction field of the control structure. (The Control Manager sends the initCntl message to
your control definition function after initializing the fields of a new control structure.) Then, when your
application passes (ControlActionUPP)-1L in the actionProc n passes (ControlActionUPP)-1L in the actionProc
parameter of HandleControlClick or TrackControl, HandleControlClick calls your control definition

Callbacks 165
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

function with the autoTrack message. The Control Manager passes the part code of the part where the
mouse-down event occurs in the param parameter. Your control definition function should then use this
information to respond as an action function would.

Note that for the autoTrack message, the high-order word of the param parameter may contain undefined
data; therefore, evaluate only the low-order word of this parameter.

If the mouse-down event occurs in an indicator of a control that supports live feedback, your action function
should take two parameters (a handle to the control and the part code of the control where the mouse-down
event first occurred). This action function is the same one you would use to define actions to be performed
in control part codes in respotrolActionProcPtr"> ControlActionProcPtr.

If the mouse-down event occurs in an indicator of a control that does not support live feedback, your action
function should take no parameters, because the user may move the cursor outside the indicator while
dragging it.

Specifying Whether Appearance-Compliant Messages Are Supported

If your control definition function supports Appearance-compliant messages, it should return
kControlSupportsNewMessages as a function result when the Control Manager passes
kControlMsgTestNewMsgSupport in the message parameter.

Specifying Which Appearance-Compliant Messages Are Supported

If your control definition function supports Appearance-compliant messages, it should return a bit field of
the features it supports in response to the kControlMsgGetFeatures message. Your control definition
function should ignore the param parameter.

Drawing a Ghost Image of the Indicator

If your control definition function supports indicator ghosting, it should return kControlSupportsGhosting
as one of the feature bits in response to a kControlMsgGetFeatures message. If this bit is set and the
control indicator is being tracked, the Control Manager calls your control definition function and passes
kControlMsgDrawGhost in the message parameter. A handle to the region where the ghost should be
drawn will be passed in the param parameter.

Your control definition function should respond by redrawing the control with the ghosted indicator at the
specified location and should return 0 as its function result.

Note that the ghost indicator should always be drawn before the actual indicator so that it appears underneath
the actual indicator.

Calculating the Optimal Control Rectangle

If your control definition function supports calculating the optimal dimensions of the control rectangle, it
should return kControlSupportsCalcBestRect as one of the feature bits in response to the
kControlMsgGetFeatures message. If this bit is set and GetBestControlRect is called, the Control
Manager will call your control definition function and pass kControlMsgCalcBestRect in the message
parameter. The Control Manager passes a pointer to a control size calculation structure, ControlCalcSizeRec,
in the param parameter.

Your control definition function should respond by calculating the width and height of the optimal control
rectangle and adjusting the rectangle by setting the height and width fields of the control size calculation
structure to the appropriate values. If your control definition function displays text, it should pass in the offset
from the bottom of control to the base of the text in the baseLine field of the structure. Your control

166 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

definition function should return the offset value stored in the structure’s in the baseLine field of the
structure. Your control definition function should return the offset value stored in the structure’s baseLine
field.

Performing Custom Tracking

If your control definition function supports custom tracking, it should return kControlHandlesTracking
as one of the feature bits in response to a kControlMsgGetFeatures message. If this bit is set and a
mouse-down event occurs in your control, TrackControl or HandleControlClick calls your control
definition function and passes kControlMsgHandlesTracking in the message parameter. The Control
Manager passes a pointer to a control tracking structure, ControlTrackingRec, in the param parameter.
Your control definition function should respond appropriately and return the part code that was hit, or
kControlNoPart if the mouse-down event occurred outside the control; see “Control Meta Part Code
Constants” (page 274) “Control Part Code Constants ” (page 232) and “ Control State Part Code Constants” (page
235).

Handling Keyboard Focus

If your control definition function can change its keyboard focus, it should set kControlSupportsFocus
and kControlGetsFocusOnClick as feature bits in response to a kControlMsgGetFeatures message.
If these bits are set and the AdvanceKeyboardFocus, ReverseKeyboardFocus, ClearKeyboardFocus,
or SetKeyboardFocus function is called, the Control Manager calls your control definition function and
passes kControlMsgFocus in the message parameter.

The Control Manager passes one of the control focus part code constants described in “Control Meta Part
Code Constants” (page 274).

If the Control Manager passes in a part code, your control definition function should focus on the specified
part code. Your function can interpret this in any way it wishes.

Your control definition function should return the control focus part code or actual control part that was
focused on. Return kControlFocusNoPart if your control does not accept focus or has just relinquished
it. Return a non-zero part code to indicate that your control received keyboard focus. Your control definition
function is responsible for maintaining which part is focused.

Handling Keyboard Events

If your control definition function can handle keyboard events, it should return kControlSupportsFocus
—every control that supports keyboard focus must also be able to handle keyboard events—as one of the
feature bits in response to a kControlMsgGetFeatures message. If this bit is set, the Control Manager will
pass kControlMsgKeyDown in the message parameter. The Control Manager passes a pointer to a control
key down structure, ControlKeyDownRec, in the param parameter. Your control definition function should
respond by processing the keyboard event as appropriate and return 0 as the function result.

Performing Idle Processing

If your control definition function can perform idle processing, it should return kControlWantsIdle as one
of the feature bits in response to a kControlMsgGetFeaturesmessage. If this bit is set and IdleControls
is called for the window your control is in, the Control Manager will pass kControlMsgIdle in the message
parameter. Your control definition function should ignore the param parameter and respond appropriately.
For example, indeterminate progress indicators and asynchronous arrows use idle time to perform their
animation.

Your control definition function should return 0 as the function result.

Callbacks 167
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Getting and Setting Control-Specific Data

If your control definition function supports getting and setting control-specific data, it should return
kControlSupportsDataAccess as one of its features bits in response to the kControlMsgGetFeatures
message. If this bit is set, the Control Manager will call your control definition function and pass
kControlMsgSetData in the message parameter when ControlDataAccessRec, in the param parameter.
Your definition function should respond by filling out the structure and returning an operating system status
message as the function result.

Handling Activate and Deactivate Events

If your control definition function wants to be informed whenever it is being activated or deactivated, it
should return kControlWantsActivate as one of the feature bits in response to the
kControlMsgGetFeatures message. If this bit is set and your control definition function is being activated
or deactivated, the Control Manager calls it and passes kControlMsgActivate in the message parameter.
The Control Manager passes a 0 or 1 in the param parameter. A value of 0 indicates that the control is being
deactivated; 1 indicates that it is being activated.

Your control definition function should respond by performing any special processing before the user pane
becomes activated or deactivated, such as deactivating its TEHandle or ListHandle if it is about to be
deactivated.

Your control definition function should return 0 as the function result.

Setting a Control’s Background Color or Pattern

If your control definition function supports embedding and draws its own background, it should return
kControlHasSpecialBackground as one of the feature bits in response to the kControlMsgGetFeatures
message. If this bit is set and an embedding hierarchy of controls is being drawn in your control, the Control
Manager passes kControlMsgSetUpBackground in the message parameter of your control definition
function. The Control Manager passes a pointer to a filled-in control background structure,
ControlBackgroundRec, in the param parameter. Your control definition function should respond by
setting its background color or pattern to whatever is appropriate given the bit depth and device type passed
in. Your control definition function should return 0 as the function result.

Supporting Live Feedback

If your control definition function supports live feedback while tracking the indicator, it should return
kControlSupportsLiveFeedback as one of the feature bits in response to the kControlMsgGetFeatures
message. If this bit is set, the Control Manager will call your control definition function when it tracks the
indicator and pass kControlMsgCalcValueFromPos in the message parameter. The Control Manager
passes a handle to the indicator region being dragged in the param parameter.

Your control definition function should respond by calculating its value and drawing the control based on
the new indicator region passed in. Your control definition function should not recalculate its indicator
position. After the user is done dragging the indicator, your control definition function will be called with a
posCntl message at which time you can recalculate the position of the indicator. Not recalculating the
indicator position each time your control definition function is called creates a smooth dragging experience
for the user.

Your control definition function should return 0 as the function result.

Being Informed When Subcontrols Are Added or Removed

168 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

If your control definition function wishes to be informed when subcontrols are added or removed, it should
return kControlSupportsEmbedding as one of the feature bits in response to the
kControlMsgGetFeatures message. If this bit is set, the Control Manager passes
ControlMsgSubControlAdded in the message parameter immediately after a subcontrol is added, or it
passes kControlMsgSubControlRemoved just before a subcontrol is removed.

Being Informed When Subcontrols Are Added or Removed

If your control definition function wishes to be informed when subcontrols are added or removed, it should
return kControlSupportsEmbedding as one of the feature bits in response to the
kControlMsgGetFeatures message. If this bit is set, the Control Manager passes
ControlMsgSubControlAdded in the message parameter immediately after a subcontrol is added, or it
passes kControlMsgSubControlRemoved just before a subcontrol is removed from your embedder control.
A handle to the control being added or removed from the embedding hierarchy is passed in the param
parameter. Your control definition function should respond appropriately and return 0 as the function result.

Typically, a control definition function only supports this message if it wants to do extra processing in response
to changes in its embedded controls. Radio groups use these messages to perform necessary processing for
handling embedded controls. For example, if a currently selected radio button is deleted, the group can
adjust itself accordingly.

Carbon Porting Notes

Moving forward, you should consider using Carbon Event-based custom controls rather than those based
on CDEF messages. See Handling CarbonWindows and Controls for more information about creating Carbon
event-based controls.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlEditTextValidationProcPtr
Ensures that the content of an editable text control is valid.

typedef void (*ControlEditTextValidationProcPtr) (
 ControlRef control
);

If you name your function MyControlEditTextValidationProc, you would declare it like this:

void MyControlEditTextValidationProc (
 ControlRef control
);

Parameters
control

A handle to the control containing the editable text to be validated. For a description of this data
type, see ControlRef (page 193).

Callbacks 169
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
Your application typically uses a MyControlEditTextValidationCallback function in conjunction with
a key filter function to ensure that editable text is valid in cases such as a cut, paste, or clear, where a key
filter cannot be called. Use the kControlEditTextValidationProcTag control data tag constant,
described in “Editable Text Control Data Tag Constants” (page 240), with the functions SetControlData
and GetControlData to set or retrieve a MyControlEditTextValidationCallback function.

Note that if you are using the inline input editable text control variant, the Control Manager will not call your
MyControlEditTextValidationCallback function during inline input. Instead, you may install your own
Text Services Manager TSMTEPostUpdateUPP callback function to validate text during inline input, or your
application can validate the input itself, immediately prior to using the text.

The Control Manager defines the data type ControlEditTextValidationUPP to identify the universal
procedure pointer for this application-defined callback function. To provide a pointer to your callback, you
can use the function NewControlEditTextValidationUPP (page 123). You can do so with code similar to
the following:

ControlEditTextValidationUPP myControlEditTextValidationUPP;
myControlEditTextValidationUPP = NewControlEditTextValidationUPP
(MyControlEditTextValidationCallback);

You can then pass myControlEditTextValidationUPP in the inData parameter of SetControlData.
When you no longer need the universal procedure pointer, you should remove it using the
DisposeRoutineDescriptor function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

ControlKeyFilterProcPtr
The key filter function allows for the interception and possible changing of keystrokes destined for a control.

typedef ControlKeyFilterResult (*ControlKeyFilterProcPtr) (
 ControlRef theControl,
 SInt16 * keyCode,
 SInt16 * charCode,
 EventModifiers * modifiers
);

If you name your function MyControlKeyFilterProc, you would declare it like this:

ControlKeyFilterResult MyControlKeyFilterProc (
 ControlRef theControl,
 SInt16 * keyCode,
 SInt16 * charCode,
 EventModifiers * modifiers
);

Parameters
theControl

A handle to the control in which the key-down event occurred.

170 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

keyCode
The virtual key code derived from the event structure. This value represents the key pressed or released
by the user. It is always the same for a specific physical key on a particular keyboard regardless of
which modifier keys were also pressed.

charCode
A particular character derived from the event structure. This value depends on the virtual key code,
the state of the modifier keys, and the current 'KCHR' resource. Because this filter provides
WorldScript-encoded text in its parameters, it provides no meaningful information for key events
generated when a Unicode keyboard layout or input method is active; these layouts and input methods
generate Unicode text that often cannot be translated into any WorldScript encoding.

modifiers
The constant in the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

Return Value
Returns a value indicating whether or not it allowed or blocked keystrokes; see “Key Filter Result Codes” (page
266). For a description of this data type, see ControlKeyFilterResult (page 191).

Discussion
Controls that support text input (such as editable text and list box controls) can attach a key filter function
to filter key strokes and modify them on return.

Important: On Mac OS X, you should avoid using this filter, or at most, use the filter as an indication that
the text is changing but do not depend on the charCode parameter to the filter. Use a
kEventTextInputUnicodeForKeyEvent Carbon event handler as a replacement for the ControlKeyFilter
callback; on Mac OS X v10.4 and later, you can also use a kEventTextShouldChangeInRange or
kEventTextDidChange event handler.

The Control Manager defines the data type ControlKeyFilterUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlKeyFilterUPP (page 123). You can do so with code similar to the following:

ControlKeyFilterUPP myControlKeyFilterUPP;
myControlKeyFilterUPP = NewControlKeyFilterUPP (MyControlKeyFilterCallback);

Your key filter function can intercept and change keystrokes destined for a control. Your key filter function
can change the keystroke, leave it alone, or block your control definition function from receiving it. For
example, an editable text control can use a key filter function to allow only numeric values to be input in its
field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlUserPaneActivateProcPtr
Handles activate and deactivate event processing.

Callbacks 171
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

typedef void (*ControlUserPaneActivateProcPtr) (
 ControlRef control,
 Boolean activating
);

If you name your function MyControlUserPaneActivateProc, you would declare it like this:

void MyControlUserPaneActivateProc (
 ControlRef control,
 Boolean activating
);

Parameters
control

A handle to the control in which the activate event occurred.

activating
If true, the control is being activated. If false, the control is being deactivated.

Discussion
The Control Manager defines the data type UserPaneActivateUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneActivateUPP (page 123). You can do so with code similar to the following:

ControlUserPaneActivateUPP myControlUserPaneActivateUPP;
myControlUserPaneActivateUPP = NewControlUserPaneActivateUPP
(MyControlUserPaneActivateCallback);

Your MyControlUserPaneActivateCallback function should perform any special processing before the
user pane becomes activated or deactivated. For example, it should deactivate its TEHandle or ListHandle
if the user pane is about to be deactivated.

This function is called only if you’ve set the kControlWantsActivate feature bit on creation of the user
pane control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 137) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see
the “Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneActivateCallback, pass kControlUserPaneActivateProcTag in the tagName
parameter of SetControlData (page 137).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

ControlUserPaneBackgroundProcPtr
Sets the background color or pattern for user panes that support embedding.

172 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

typedef void (*ControlUserPaneBackgroundProcPtr) (
 ControlRef control,
 ControlBackgroundPtr info
);

If you name your function MyControlUserPaneBackgroundProc, you would declare it like this:

void MyControlUserPaneBackgroundProc (
 ControlRef control,
 ControlBackgroundPtr info
);

Parameters
control

A handle to the control for which the background color or pattern is to be set.

info
A pointer to information such as the depth and type of the drawing device. For a description of the
ControlBackgroundPtr data type, see ControlBackgroundRec (page 182).

Discussion
The Control Manager defines the data type ControlUserPaneBackgroundUPP to identify the universal
procedure pointer for this application-defined callback function. To provide a pointer to your callback, you
can use the function NewControlUserPaneBackgroundUPP (page 124). You can do so with code similar to
the following:

ControlUserPaneBackgroundUPP myControlUserPaneBackgroundUPP;
myControlUserPaneBackgroundUPP = NewControlUserPaneBackgroundUPP
(MyControlUserPaneBackgroundCallback);

Your MyControlUserPaneBackgroundCallback function should set the user pane background color or
pattern to whatever is appropriate given the bit depth and device type passed in. Your
MyControlUserPaneBackgroundCallback function is called to set up the background color. This ensures
that when an embedded control calls EraseRgn or EraseRect, the background is erased to the correct
color or pattern.

This function is called only if there is a control embedded in the user pane and if you’ve set the
kControlHasSpecialBackground and kControlSupportsEmbedding feature bits on creation of the
user pane control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 137) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneBackgroundCallback, passkControlUserPaneBackgroundProcTag in thetagName
parameter of SetControlData (page 137).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

Callbacks 173
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlUserPaneDrawProcPtr
Draws the content of your user pane control in the rectangle of user pane control.

typedef void (*ControlUserPaneDrawProcPtr) (
 ControlRef control,
 SInt16 part
);

If you name your function MyControlUserPaneDrawProc, you would declare it like this:

void MyControlUserPaneDrawProc (
 ControlRef control,
 SInt16 part
);

Parameters
control

A handle to the user pane control in which you wish drawing to occur. For a description of this data
type, see ControlRef (page 193).

part
The part code of the control you should draw. If 0, draw the entire control.

Discussion
The Control Manager defines the data type ControlUserPaneDrawUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneDrawUPP (page 124). You can do so with code similar to the following:

ControlUserPaneDrawUPP myControlUserPaneDrawUPP;
myControlUserPaneDrawUPP = NewControlUserPaneDrawUPP
(MyControlUserPaneDrawCallback);

Application-defined user pane functions provide you with the ability to create a custom theme-compliant
control without writing your own control definition function. A user pane is a general purpose stub control;
it can be used as the root control for a window, as well as providing a way to hook in application-defined
functions such as those described below. When the Appearance Manager is available, user panes should be
used in dialog boxes instead of user items.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 137) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see
the “Control Manager Constants” section.

For example, to set a user pane draw function, pass the constant kControlUserPaneDrawProcTag in the
tagName parameter of SetControlData (page 137).The Control Manager then draws the control using a
universal procedure pointer to your user pane draw function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

174 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlUserPaneFocusProcPtr
Handles keyboard focus.

typedef ControlPartCode (*ControlUserPaneFocusProcPtr) (
 ControlRef control,
 ControlFocusPart action
);

If you name your function MyControlUserPaneFocusProc, you would declare it like this:

ControlPartCode MyControlUserPaneFocusProc (
 ControlRef control,
 ControlFocusPart action
);

Parameters
control

A handle to the control that is to adjust its focus.

action
The part code of the user pane to receive keyboard focus; see ControlDefProcPtr (page 161).

Return Value
The part of the user pane actually focused. The constant kControlFocusNoPart is returned if the user pane
has lost the focus or cannot be focused. For a description of this data type, see ControlPartCode (page 192).

Discussion
The Control Manager defines the data type ControlUserPaneFocusUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneFocusUPP (page 124). You can do so with code similar to the following:

ControlUserPaneFocusUPP myControlUserPaneFocusUPP;
myControlUserPaneFocusUPP = NewControlUserPaneFocusUPP
(MyControlUserPaneFocusCallback);

Your MyControlUserPaneFocusCallback function is called in response to a change in keyboard focus. It
should respond by changing keyboard focus based on the part code passed in the action parameter. This
function is called only if you’ve set the kControlSupportsFocus feature bit on creation of the user pane
control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 137) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneFocusCallback, pass kControlUserPaneFocusProcTag in the tagNameparameter
of SetControlData (page 137).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Callbacks 175
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlUserPaneHitTestProcPtr
Returns the part code of the control that the point was in when the mouse-down event occurred.

typedef ControlPartCode (*ControlUserPaneHitTestProcPtr) (
 ControlRef control,
 Point where
);

If you name your function MyControlUserPaneHitTestProc, you would declare it like this:

ControlPartCode MyControlUserPaneHitTestProc (
 ControlRef control,
 Point where
);

Parameters
control

A handle to the control in which the mouse-down event occurred. For a description of this data type,
see ControlRef (page 193).

where
The point, in a window’s local coordinates, where the mouse-down event occurred.

Return Value
The part code of the control where the mouse-down event occurred. If the point was not over a control, your
function should return kControlNoPart. For a description of this data type, see ControlPartCode (page
192).

Discussion
The Control Manager defines the data typeControlUserPaneHitTestUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneHitTestUPP (page 124). You can do so with code similar to the following:

ControlUserPaneHitTestUPP myControlUserPaneHitTestUPP;
myControlUserPaneHitTestUPP = NewControlUserPaneHitTestUPP
(MyControlUserPaneHitTestCallback);

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 137) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneHitTestCallback, pass kControlUserPaneHitTestProcTag in the tagName
parameter of SetControlData.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

ControlUserPaneIdleProcPtr
Performs idle processing.

176 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

typedef void (*ControlUserPaneIdleProcPtr) (
 ControlRef control
);

If you name your function MyControlUserPaneIdleProc, you would declare it like this:

void MyControlUserPaneIdleProc (
 ControlRef control
);

Parameters
control

A handle to the control for which you wish to perform idle processing. For a description of this data
type, see ControlRef (page 193).

Discussion
The Control Manager defines the data type ControlUserPaneIdleUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneIdleUPP (page 125). You can do so with code similar to the following:

ControlUserPaneIdleUPP myControlUserPaneIdleUPP;
myControlUserPaneIdleUPP = NewControlUserPaneIdleUPP
(MyControlUserPaneIdleCallback);

This function is called only if you’ve set the kControlWantsIdle feature bit on creation of the user pane
control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 137) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneIdleCallback, pass kControlUserPaneIdleProcTag in the tagName parameter
of SetControlData (page 137).

Availability
This function is available with Appearance Manager 1.0 and later.

Declared In
HIContainerViews.h

ControlUserPaneKeyDownProcPtr
Handles keyboard event processing.

typedef ControlPartCode (*ControlUserPaneKeyDownProcPtr) (
 ControlRef control,
 SInt16 keyCode,
 SInt16 charCode,
 SInt16 modifiers
);

If you name your function MyControlUserPaneKeyDownProc, you would declare it like this:

ControlPartCode MyControlUserPaneKeyDownProc (
 ControlRef control,

Callbacks 177
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

 SInt16 keyCode,
 SInt16 charCode,
 SInt16 modifiers
);

Parameters
control

A handle to the control in which the keyboard event occurred. For a description of this data type, see
ControlRef (page 193).

keyCode
The virtual key code derived from event structure. This value represents the key pressed or released
by the user. It is always the same for a specific physical key on a particular keyboard regardless of
which modifier keys were also pressed.

charCode
A particular character derived from the event structure. This value depends on the virtual key code,
the state of the modifier keys, and the current 'KCHR' resource.

modifiers
The constant in the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

Return Value
The part code of the control where the keyboard event occurred. If the keyboard event did not occur in a
control, your function should return kControlNoPart. For a description of this data type, see
ControlPartCode (page 192).

Discussion
The Control Manager defines the data type UserPaneKeyDownUPP to identify the universal procedure pointer
for this application-defined callback function. To provide a pointer to your callback, you can use the function
NewControlUserPaneKeyDownUPP (page 125). You can do so with code similar to the following:

ControlUserPaneKeyDownUPP myControlUserPaneKeyDownUPP;
myControlUserPaneKeyDownUPP = NewControlUserPaneKeyDownUPP
(MyControlUserPaneKeyDownCallback);

Your MyControlUserPaneKeyDownCallback function should handle the key pressed or released by the
user and return the part code of the control where the keyboard event occurred. This function is called only
if you’ve set the kControlSupportsFocus feature bit on creation of the user pane control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 137) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneKeyDownCallback, pass kControlUserPaneKeyDownProcTag in the tagName
parameter of SetControlData (page 137).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

178 Callbacks
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlUserPaneTrackingProcPtr
Tracks a control while the user holds down the mouse button.

typedef ControlPartCode (*ControlUserPaneTrackingProcPtr) (
 ControlRef control,
 Point startPt,
 ControlActionUPP actionProc
);

If you name your function MyControlUserPaneTrackingProc, you would declare it like this:

ControlPartCode MyControlUserPaneTrackingProc (
 ControlRef control,
 Point startPt,
 ControlActionUPP actionProc
);

Parameters
control

A handle to the control in which the mouse-down event occurred. For a description of this data type,
see ControlRef (page 193).

startPt
The location of the cursor at the time the mouse button was first pressed, in local coordinates. Your
application retrieves this point from the where field of the event structure.

actionProc
A pointer to an action function defining what action your application takes while the user holds down
the mouse button. The value of the actionProc parameter can be a valid procPtr, NULL, or -1. A
value of -1 indicates that the control should either perform auto tracking, or if it is incapable of doing
so, do nothing (like NULL). For a description of this data type, see ControlActionProcPtr (page 159).

Return Value
The part code of the control part that was tracked. If tracking was unsuccessful, kControlNoPartCode is
returned. For a description of this data type, see ControlPartCode (page 192).

Discussion
The Control Manager defines the data type ControlUserPaneTrackingUPP to identify the universal
procedure pointer for this application-defined callback function. To provide a pointer to your callback, you
can use the function NewControlUserPaneTrackingUPP (page 125). You can do so with code similar to
the following:

ControlUserPaneTrackingUPP myControlUserPaneTrackingUPP;
myControlUserPaneTrackingUPP = NewControlUserPaneTrackingUPP
(MyControlUserPaneTrackingCallback);

Your MyControlUserPaneTrackingCallback function should track the control by repeatedly calling the
action function specified in the actionProc parameter until the mouse button is released. When the mouse
button is released, your function should return the part code of the control part that was tracked. This function
is called only if you’ve set the kControlHandlesTracking feature bit on creation of the user pane control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 137) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the

Callbacks 179
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneTrackingCallback, pass kControlUserPaneTrackingProcTag in the tagName
parameter of SetControlData (page 137).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

EditUnicodePostUpdateProcPtr
typedef Boolean (*EditUnicodePostUpdateProcPtr) (
 UniCharArrayHandle uniText,
 UniCharCount uniTextLength,
 UniCharArrayOffset iStartOffset,
 UniCharArrayOffset iEndOffset,
 void * refcon
);

If you name your function MyEditUnicodePostUpdateProc, you would declare it like this:

Boolean EditUnicodePostUpdateProcPtr (
 UniCharArrayHandle uniText,
 UniCharCount uniTextLength,
 UniCharArrayOffset iStartOffset,
 UniCharArrayOffset iEndOffset,
 void * refcon
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

Data Types

AuxCtlHandle
typedef AuxCtlPtr* AuxCtlHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

180 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

AuxCtlPtr
typedef AuxCtlRec* AuxCtlPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

AuxCtlRec
struct AuxCtlRec {
 Handle acNext;
 ControlRef acOwner;
 CCTabHandle acCTable;
 SInt16 acFlags;
 SInt32 acReserved;
 SInt32 acRefCon;
};
typedef AuxCtlRec AuxCtlRec;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ClickActivationResult
typedef UInt32 ClickActivationResult;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlApplyTextColorRec
struct ControlApplyTextColorRec {
 SInt16 depth;
 Boolean colorDevice;
 Boolean active;
};
typedef struct ControlApplyTextColorRec ControlApplyTextColorRec;
typedef ControlApplyTextColorRec * ControlApplyTextColorPtr;

Fields
depth

The Control Manager sets this field to specify the bit depth (in pixels) of the current graphics port.

Data Types 181
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

colorDevice
The Control Manager passes a value of true if you are drawing on a color device; otherwise, false.

active
The Control Manager passes a value of true to specify a color suitable for active text; otherwise,
false.

Discussion
If you implement a custom control definition function, when the Control Manager passes the message
kControlMsgApplyTextColor in your control definition function’s message parameter, it also passes a
pointer to a structure of type ControlApplyTextColorRec in the param parameter. The Control Manager
sets the ControlApplyTextColorRec structure to contain data describing the current drawing environment,
and your control definition function is responsible for using that data to apply the proper text color to the
current graphics port.

See “Control Definition Message Constants” (page 219) for more details on thekControlMsgApplyTextColor
message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlBackgroundRec
struct ControlBackgroundRec {
 SInt16 depth;
 Boolean colorDevice;
};
typedef struct ControlBackgroundRec ControlBackgroundRec;
typedef ControlBackgroundRec * ControlBackgroundPtr;

Fields
depth

A signed 16-bit integer indicating the bit depth (in pixels) of the current graphics port.

colorDevice
A Boolean value. If true, you are drawing on a color device. If false, you are drawing on a
monochrome device.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlBevelButtonBehavior
typedef UInt16 ControlBevelButtonBehavior;

Availability
Available in Mac OS X v10.0 and later.

182 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Declared In
HIButtonViews.h

ControlBevelButtonMenuBehavior
typedef UInt16 ControlBevelButtonMenuBehavior;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIButtonViews.h

ControlButtonContentInfo
struct ControlButtonContentInfo {
 ControlContentType contentType
 union {
 SInt16 resID;
 CIconHandle cIconHandle;
 Handle iconSuite;
 IconRef iconRef;
 PicHandle picture;
 Handle ICONHandle;
 CGImageRef imageRef;
 } u;
};
typedef struct ControlButtonContentInfo ControlButtonContentInfo;
typedef ControlButtonContentInfo ControlImageContentInfo;

Fields
contentType

Specifies the bevel button or image well content type and whether the content is text-only,
resource-based, or handle-based; see “Control Content Type Constants” (page 254) for possible values.
The value specified in the contentType field determines which of the other fields in the structure
are used. For a description of this data type, see ControlContentType (page 185).

u
If the content type specified in the contentType field is kControlContentIconSuiteRes,
kControlContentCIconRes, or kControlContentPictRes, this field contains the resource ID of
a picture, color icon, or icon suite resource. If the contentType field is kControlContentCGImageRef,
this field contains a CGImageRef.

Discussion
You can use the ControlButtonContentInfo structure to specify the content for a bevel button or image
well. Values of type ControlButtonContentInfo are set via SetControlData (page 137) and obtained
from GetControlData (page 85), in conjunction with the kControlBevelButtonContentTag and
kControlImageWellContentTag constants; see “Bevel Button Control Data Tag Constants” (page 207) and
“Image Well Control Data Tag Constants” (page 249).

Version Notes
The ControlButtonContentInfo type is available with Appearance Manager 1.0 and later.

Data Types 183
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlCalcSizeRec
struct ControlCalcSizeRec {
 SInt16 height;
 SInt16 width;
 SInt16 baseLine;
};
typedef struct ControlCalcSizeRec ControlCalcSizeRec;
typedef ControlCalcSizeRec * ControlCalcSizePtr;

Fields
height

The optimal height (in pixels) of the control’s bounding rectangle.

width
The optimal width (in pixels) of the control’s bounding rectangle.

baseLine
The offset from the bottom of the control to the base of the text. This value is generally negative.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlCapabilities
typedef UInt32 ControlCapabilities;

ControlClickActivationRec
struct ControlClickActivationRec {
 Point localPoint;
 EventModifiers modifiers;
 ClickActivationResult result;
};
typedef struct ControlClickActivationRec ControlClickActivationRec;
typedef ControlClickActivationRec * ControlClickActivationPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

184 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlContentType
typedef SInt16 ControlContentType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlContextualMenuClickRec
struct ControlContextualMenuClickRec {
 Point localPoint;
 Boolean menuDisplayed;
};
typedef struct ControlContextualMenuClickRec ControlContextualMenuClickRec;
typedef ControlContextualMenuClickRec * ControlContextualMenuClickPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDataAccessRec
struct ControlDataAccessRec {
 ResType tag;
 ResType part;
 Size size;
 Ptr dataPtr;
};
typedef struct ControlDataAccessRec ControlDataAccessRec;
typedef ControlDataAccessRec * ControlDataAccessPtr;

Fields
tag

A constant representing a piece of data that is passed in (in response to a kControlMsgSetData
message) or returned (in response to a kControlMsgGetData message); see “Scrolling Text Box
Control Data Tag Constants” (page 293) for a description of these constants. The control definition
function should return errDataNotSupported if the value in the tag parameter is unknown or
invalid.

part
The part of the control that this data should be applied to. If the information is not tied to a specific
part of the control or the control has no parts, pass 0.

size
On entry, the size of the buffer pointed to by the dataPtrfield. In response to a kControlMsgGetData
message, this field should be adjusted to reflect the actual size of the data that the control is
maintaining. If the size of the buffer being passed in is smaller than the actual size of the data, the
control definition function should return errDataSizeMismatch.

Data Types 185
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

dataPtr
A pointer to a buffer to read or write the information requested. In response to a
kControlMsgGetData message, this field could be NULL, indicating that you wish to return the size
of the data in the size field.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDefProcMessage
typedef SInt16 ControlDefProcMessage;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDefSpec
struct ControlDefSpec {
 ControlDefType defType
 union {
 ControlDefUPP defProc;
 void * classRef;
 } u;
};
typedef struct ControlDefSpec ControlDefSpec;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDefType
typedef UInt32 ControlDefType;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

186 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlEditTextSelectionRec
struct ControlEditTextSelectionRec {
 SInt16 selStart;
 SInt16 selEnd;
};
typedef struct ControlEditTextSelectionRec ControlEditTextSelectionRec;
typedef ControlEditTextSelectionRec * ControlEditTextSelectionPtr;

Fields
selStart

The start of the editable text selection.

selEnd
The end of the editable text selection.

Discussion
You can use the ControlEditTextSelectionRec type to specify a selection range in an editable text
control. You pass a pointer to the editable text selection structure to GetControlData (page 85) and
SetControlData (page 137) to access and set the current selection range in an editable text control.

Version Notes
The ControlEditTextSelectionRec type is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

ControlFocusPart
typedef SInt16 ControlFocusPart;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

Data Types 187
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlFontStyleRec
struct ControlFontStyleRec {
 SInt16 flags;
 SInt16 font;
 SInt16 size;
 SInt16 style;
 SInt16 mode;
 SInt16 just;
 RGBColor foreColor;
 RGBColor backColor;
};
typedef struct ControlFontStyleRec ControlFontStyleRec;
typedef ControlFontStyleRec * ControlFontStylePtr;

Fields
flags

A value specifying which fields of the structure should be applied to the control; see “Mac OS 8.5
Control Font Style Flag Constant” (page 271) and “Control Font Style Flag Constants” (page 229). If
none of the flags in the flags field of the structure are set, the control uses the system font unless
the control variant kControlUsesOwningWindowsFontVariant has been specified, in which case
the control uses the window font.

font
If the kControlUseFontMask bit is set, then this field contains a value specifying the ID of the font
family to use. If this bit is not set, then the system default font is used. A meta font constant can be
specified instead; see “Meta Font Constants” (page 275).

size
If the kControlUseSizeMask bit is set, then this field contains a value specifying the point size of
the text. If the kControlAddSizeMask bit is set, this value will represent the size to add to the current
point size of the text. A meta font constant can be specified instead; see “Meta Font Constants” (page
275).

style
If the kControlUseFaceMask bit is set, then this field contains a value specifying which styles to
apply to the text. If all bits are clear, the plain font style is used. The bit numbers and the styles they
represent are bold (0), italic (1), underline (2), outline (3), shadow (4), condensed (5), and extended
(6).

mode
If the kControlUseModeMask bit is set, then this field contains a value specifying how characters
are drawn in the bit image. See Inside Macintosh: Imaging With QuickDraw for a discussion of transfer
modes.

just
If the kControlUseJustMask bit is set, then this field contains a value specifying text justification.
Possible values are teFlushDefault (0), teCenter (1), teFlushRight (-1), and teFlushLeft (-2).

foreColor
If the kControlUseForeColorMask bit is set, then this field contains an RGB color value to use when
drawing the text.

backColor
If the kControlUseBackColorMask bit is set, then this field contains an RGB color value to use when
drawing the background behind the text. In certain text modes, background color is ignored.

188 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
You can use the ControlFontStyleRec type to specify a control’s font. You pass a pointer to the control
font style structure in the inStyle parameter of SetControlFontStyle (page 140) to specify a control’s
font. If none of the flags in the flags field of the structure are set, the control uses the system font unless
the control variant kControlUsesOwningWindowsFontVariant has been specified, in which case the
control uses the window font. The ControlFontStyleRec type is available with Appearance Manager 1.0
and later.

Note that if you wish to specify the font for controls in a dialog box, you should use a dialog font table
resource, which is automatically read in by the Dialog Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlGetRegionRec
struct ControlGetRegionRec {
 RgnHandle region;
 ControlPartCode part;
};
typedef struct ControlGetRegionRec ControlGetRegionRec;
typedef ControlGetRegionRec * ControlGetRegionPtr;

Fields
region

A value allocated by the Control Manager. Your control definition function should set this field to the
region that contains the control part specified in the part field.

part
The Control Manager passes a constant identifying the control part for which a region is to be obtained.
For descriptions of possible values, see “Control Part Code Constants ” (page 232), “Control Part Code
Constants ” (page 232), and “ Control State Part Code Constants” (page 235). For a description of this
data type, see ControlPartCode (page 192).

Discussion
If you implement a custom control definition function, when the Control Manager passes the message
kControlMsgGetRegion in your control definition function’s message parameter, it also passes a pointer
to a structure of type ControlGetRegionRec in the param parameter. Your control definition function is
responsible for setting the region field of the ControlGetRegionRec structure to the region that contains
the control part which the Control Manager specifies in the part field.

See “Control Definition Message Constants” (page 219) for more details on the kControlMsgGetRegion
message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

Data Types 189
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlHandle
typedef ControlRef ControlHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIObject.h

ControlID
struct ControlID {
 OSType signature;
 SInt32 id;
};
typedef struct ControlID ControlID;
typedef ControlID HIViewID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlImageContentInfo
typedef ControlButtonContentInfo ControlImageContentInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlKeyDownRec
struct ControlKeyDownRec {
 EventModifiers modifiers;
 SInt16 keyCode;
 SInt16 charCode;
};
typedef struct ControlKeyDownRec ControlKeyDownRec;
typedef ControlKeyDownRec * ControlKeyDownPtr;

Fields
modifiers

The constant in the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

190 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

keyCode
The virtual key code derived from the event structure. This value represents the key pressed or released
by the user. It is always the same for a specific physical key on a particular keyboard regardless of
which modifier keys were also pressed.

charCode
A particular character derived from the event structure. This value depends on the virtual key code,
the state of the modifier keys, and the current 'KCHR' resource.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlKeyFilterResult
typedef SInt16 ControlKeyFilterResult;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlKeyScriptBehavior
typedef UInt32 ControlKeyScriptBehavior;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlKind
struct ControlKind {
 OSType signature;
 OSType kind;
};
typedef struct ControlKind ControlKind;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

Data Types 191
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlNotification
typedef UInt32 ControlNotification;

ControlNotificationUPP
typedef ControlNotificationProcPtr ControlNotificationUPP;

ControlPartCode
typedef SInt16 ControlPartCode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlPopupArrowOrientation
typedef UInt16 ControlPopupArrowOrientation;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIPopupButton.h

ControlPopupArrowSize
typedef UInt16 ControlPopupArrowSize;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIPopupButton.h

ControlPtr
typedef ControlRecord* ControlPtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Controls.h

192 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlRecord
struct ControlRecord {
 ControlRef nextControl;
 WindowRef contrlOwner;
 Rect contrlRect;
 UInt8 contrlVis;
 UInt8 contrlHilite;
 SInt16 contrlValue;
 SInt16 contrlMin;
 SInt16 contrlMax;
 Handle contrlDefProc;
 Handle contrlData;
 ControlActionUPP contrlAction;
 SInt32 contrlRfCon;
 Str255 contrlTitle;
};
typedef ControlRecord ControlRecord;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlRef
Defines an opaque type that represents a control.

typedef struct OpaqueControlRef * ControlRef;

Discussion
A control is a user interface object that gives feedback or otherwise facilitates user interaction. The ControlRef
type is an opaque type used to describe a control’s properties. You can obtain and change the values in a
control by calling specific control accessor functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIObject.h

ControlSetCursorRec
struct ControlSetCursorRec {
 Point localPoint;
 EventModifiers modifiers;
 Boolean cursorWasSet;
};
typedef struct ControlSetCursorRec ControlSetCursorRec;
typedef ControlSetCursorRec * ControlSetCursorPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Data Types 193
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Declared In
Controls.h

ControlSize
typedef UInt16 ControlSize;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlTabEntry
struct ControlTabEntry {
 ControlButtonContentInfo * icon;
 CFStringRef name;
 Boolean enabled;
};
typedef struct ControlTabEntry ControlTabEntry;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITabbedView.h

ControlTabInfoRec
struct ControlTabInfoRec {
 SInt16 version;
 SInt16 iconSuiteID;
 Str255 name;
};
typedef struct ControlTabInfoRec ControlTabInfoRec;

Fields
version

The version of the tab information structure. The only currently available version value is 0.

iconSuiteID
The ID of an icon suite to use for the tab label. If the specified ID is not found, no icon is displayed for
the tab label. Pass 0 for no icon.

name
The title to be used for the tab label.

Discussion
You can use the ControlTabInfoRec type to specify the icon and title for a tab control. If you are not
creating a tab control with a 'tab#' resource, you can call SetControlMaximum to set the number of tabs
in a tab control. Then use the functions SetControlData (page 137) and GetControlData (page 85) with
the ControlTabInfoRec structure to access information for an individual tab in a tab control.

194 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Version Notes
The ControlTabInfoRec type is available with Appearance Manager 1.0.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITabbedView.h

ControlTabInfoRecV1
struct ControlTabInfoRecV1 {
 SInt16 version;
 SInt16 iconSuiteID;
 CFStringRef name;
};
typedef struct ControlTabInfoRecV1 ControlTabInfoRecV1;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITabbedView.h

ControlTemplate
struct ControlTemplate {
 Rect controlRect;
 SInt16 controlValue;
 Boolean controlVisible;
 UInt8 fill;
 SInt16 controlMaximum;
 SInt16 controlMinimum;
 SInt16 controlDefProcID;
 SInt32 controlReference;
 Str255 controlTitle;
};
typedef struct ControlTemplate ControlTemplate;
typedef ControlTemplate * ControlTemplatePtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

Data Types 195
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

ControlTrackingRec
struct ControlTrackingRec {
 Point startPt;
 EventModifiers modifiers;
 ControlActionUPP action;
};
typedef struct ControlTrackingRec ControlTrackingRec;
typedef ControlTrackingRec * ControlTrackingPtr;

Fields
startPt

The location of the cursor at the time the mouse button was first pressed, in local coordinates. Your
application retrieves this point from the where field of the event structure.

modifiers
The constant in the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

action
A pointer to an action function defining what action your application takes while the user holds down
the mouse button. The value of the actionProc parameter can be a valid procPtr, NULL, or -1. A
value of -1 indicates that the control should either perform auto tracking, or if it is incapable of doing
so, do nothing (like NULL). See ControlActionProcPtr (page 159) for more information about the
action function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlVariant
typedef SInt16 ControlVariant;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

196 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DataBrowserCallbacks
struct DataBrowserCallbacks {
 UInt32 version
 union {
 struct {
 DataBrowserItemDataUPP itemDataCallback;
 DataBrowserItemCompareUPP itemCompareCallback;
 DataBrowserItemNotificationUPP itemNotificationCallback;
 DataBrowserAddDragItemUPP addDragItemCallback;
 DataBrowserAcceptDragUPP acceptDragCallback;
 DataBrowserReceiveDragUPP receiveDragCallback;
 DataBrowserPostProcessDragUPP postProcessDragCallback;
 DataBrowserItemHelpContentUPP itemHelpContentCallback;
 DataBrowserGetContextualMenuUPP getContextualMenuCallback;
 DataBrowserSelectContextualMenuUPP selectContextualMenuCallback;
 } v1;
 } u;
};
typedef struct DataBrowserCallbacks DataBrowserCallbacks;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserCustomCallbacks
struct DataBrowserCustomCallbacks {
 UInt32 version
 union {
 struct {
 DataBrowserDrawItemUPP drawItemCallback;
 DataBrowserEditItemUPP editTextCallback;
 DataBrowserHitTestUPP hitTestCallback;
 DataBrowserTrackingUPP trackingCallback;
 DataBrowserItemDragRgnUPP dragRegionCallback;
 DataBrowserItemAcceptDragUPP acceptDragCallback;
 DataBrowserItemReceiveDragUPP receiveDragCallback;
 } v1;
 } u;
};
typedef struct DataBrowserCustomCallbacks DataBrowserCustomCallbacks;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

Data Types 197
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DataBrowserDragFlags
typedef DataBrowserDragFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserListViewColumnDesc
struct DataBrowserListViewColumnDesc {
 DataBrowserTableViewColumnDesc propertyDesc;
 DataBrowserListViewHeaderDesc headerBtnDesc;
};
typedef struct DataBrowserListViewColumnDesc DataBrowserListViewColumnDesc;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserListViewHeaderDesc
struct DataBrowserListViewHeaderDesc {
 UInt32 version;
 UInt16 minimumWidth;
 UInt16 maximumWidth;
 SInt16 titleOffset;
 CFStringRef titleString;
 DataBrowserSortOrder initialOrder;
 ControlFontStyleRec btnFontStyle;
 ControlButtonContentInfo btnContentInfo;
};
typedef struct DataBrowserListViewHeaderDesc DataBrowserListViewHeaderDesc;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

198 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DataBrowserPropertyDesc
struct DataBrowserPropertyDesc {
 DataBrowserPropertyID propertyID;
 DataBrowserPropertyType propertyType;
 DataBrowserPropertyFlags propertyFlags;
};
typedef struct DataBrowserPropertyDesc DataBrowserPropertyDesc;
typedef DataBrowserPropertyDesc DataBrowserTableViewColumnDesc;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserPropertyFlags
typedef DataBrowserPropertyFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserPropertyPart
typedef OSType DataBrowserPropertyPart;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserPropertyType
typedef OSType DataBrowserPropertyType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

Data Types 199
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DataBrowserTableViewColumnDesc
typedef DataBrowserPropertyDesc DataBrowserTableViewColumnDesc;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserTableViewColumnIndex
typedef UInt32 DataBrowserTableViewColumnIndex;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserTableViewRowIndex
typedef UInt32 DataBrowserTableViewRowIndex;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserTableViewColumnID
typedef DataBrowserPropertyID DataBrowserTableViewColumnID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserViewStyle
typedef OSType DataBrowserViewStyle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

200 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DBItemProcDataType
typedef void* DBItemProcDataType;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.0.

Declared In
ControlDefinitions.h

DBRevealItemDataType
typedef DataBrowserRevealOptions DBRevealItemDataType;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.0.

Declared In
ControlDefinitions.h

DBSetSelectionDataType
typedef const DataBrowserItemID* DBSetSelectionDataType;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.0.

Declared In
ControlDefinitions.h

IndicatorDragConstraint
struct IndicatorDragConstraint {
 Rect limitRect;
 Rect slopRect;
 DragConstraint axis;
};
typedef struct IndicatorDragConstraint IndicatorDragConstraint;
typedef IndicatorDragConstraint * IndicatorDragConstraintPtr;

Fields
limitRect

A pointer to a rectangle—whose coordinates should normally coincide with or be contained in the
window’s content region—delimiting the area in which the user can drag the control’s outline.

slopRect
A pointer to a rectangle that allows some extra space for the user to move the mouse while still
constraining the control within the rectangle specified in the limitRect parameter.

axis
The axis along which the user may drag the control’s outline see “Part Identifier Constants” (page
276).

Data Types 201
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

IndicatorDragConstraintHandle
typedef IndicatorDragConstraintPtr* IndicatorDragConstraintHandle;

PopupPrivateData
struct PopupPrivateData {
 MenuRef mHandle;
 SInt16 mID;
};
typedef PopupPrivateData PopupPrivateData;

Discussion
Use of this structure is not recommended. When the Appearance Manager is available, you should pass the
value kControlPopupButtonMenuHandleTag in the tagName parameter of the GetControlData (page
85) function to get the menu handle of a button, and the menu handle and the menu ID of the menu
associated with a pop-up menu.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
ControlDefinitions.h

PopupPrivateDataHandle
typedef PopupPrivateDataPtr* PopupPrivateDataHandle;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
ControlDefinitions.h

PopupPrivateDataPtr
typedef PopupPrivateData* PopupPrivateDataPtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
ControlDefinitions.h

202 Data Types
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kHIUserPaneClassID
Defines the HIObject class ID for the HIUserPane class.

#define kHIUserPaneClassID CFSTR("com.apple.HIUserPane");

Availability
Available in Mac OS X v10.4 and later.

Constants

Appearance–compliant Push Button, Radio Button, and Checkbox Control
Definition IDs
enum {
 kControlPushButtonProc = 368,
 kControlCheckBoxProc = 369,
 kControlRadioButtonProc = 370,
 kControlPushButLeftIconProc = 374,
 kControlPushButRightIconProc = 375
};

Constants
kControlPushButtonProc

Resource ID: 23

Appearance-compliant push button.This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlCheckBoxProc
Resource ID: 23

Appearance-compliant checkbox. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlRadioButtonProc
Resource ID: 23

Appearance-compliant radio button. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Constants 203
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlPushButLeftIconProc
Resource ID: 23

Appearance-compliant push button with a color icon to the left of the control title. (This direction is
reversed when the system justification is right to left). The contrlMax field of the control structure
for this control contains the resource ID of the 'cicn' resource drawn in the pushbutton. This control
definition is new with the Appearance Manager and is not supported unless the Appearance Manager
is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlPushButRightIconProc
Resource ID: 23

Appearance-compliant push button with a color icon to right of control title. (This direction is reversed
when the system justification is right to left). The contrlMax field of the control structure for this
control contains the resource ID of the 'cicn' resource drawn in the pushbutton. This control
definition is new with the Appearance Manager and is not supported unless the Appearance Manager
is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see “Defining Your Own
Control Definition Function”.

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

If your application contains code that uses the older, pre-Appearance control definition IDs or their constants,
your application can use the Appearance Manager to map the old IDs to those for the new, updated controls
introduced by the Appearance Manager. In particular, the control definition IDs for pre-Appearance checkboxes,
buttons, scroll bars, radio buttons, and pop-up menus will be automatically mapped to Appearance-compliant
equivalents.

204 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Asynchronous Arrows Control Definition ID
enum {
 kControlChasingArrowsProc = 112
};

Constants
kControlChasingArrowsProc

Resource ID: 7

Asynchronous arrows. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIProgressViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Bevel Button Behavior Constants
enum {
 kControlBehaviorPushbutton = 0,
 kControlBehaviorToggles = 0x0100,
 kControlBehaviorSticky = 0x0200,
 kControlBehaviorSingleValueMenu = 0,
 kControlBehaviorMultiValueMenu = 0x4000,
 kControlBehaviorOffsetContents = 0x8000
};

Constants
kControlBehaviorPushbutton

Push button (momentary) behavior. The bevel button pops up after being clicked.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Constants 205
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlBehaviorToggles
Toggle behavior. The bevel button toggles state automatically when clicked.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBehaviorSticky
Sticky behavior. Once clicked, the bevel button stays down until your application sets the control’s
value to 0. This behavior is useful in tool palettes and radio groups.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBehaviorMultiValueMenu
If this bit is set, the menus are multi-valued. The bevel button does not maintain the menu value as
it normally would (requiring that only one item is selected at a time). This allows the user to toggle
entries in a menu and have multiple items checked. In this mode, the menu value accessed with the
kControlMenuLastValueTag will return the value of the last menu item selected.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBehaviorOffsetContents
Bevel button contents are offset (one pixel down and to the right) when button is pressed.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can pass the bevel button behavior constants in the high byte of the minimumValue parameter of
NewControl (page 318) to create a bevel button with a specific behavior.

You can pass the bevel button menu constant, kControlBehaviorMultiValueMenu, in the high byte of
the minimumValue parameter of NewControl (page 318) to create a bevel button with a menu of a certain
behavior. Bevel buttons with menus have two values: the value of the button and the value of the menu.
You can specify the direction of the pop-up menu arrow (down or right) by using the
kControlBevelButtonMenuOnRight bevel button variant.

The bevel button behavior constants and the bevel button menu constant are available with Appearance
Manager 1.0 and later.

206 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Bevel Button Control Data Tag Constants
enum {
 kControlBevelButtonContentTag = 'cont',
 kControlBevelButtonTransformTag = 'tran',
 kControlBevelButtonTextAlignTag = 'tali',
 kControlBevelButtonTextOffsetTag = 'toff',
 kControlBevelButtonGraphicAlignTag = 'gali',
 kControlBevelButtonGraphicOffsetTag = 'goff',
 kControlBevelButtonTextPlaceTag = 'tplc',
 kControlBevelButtonMenuValueTag = 'mval',
 kControlBevelButtonMenuHandleTag = 'mhnd',
 kControlBevelButtonMenuRefTag = 'mhnd',
 kControlBevelButtonCenterPopupGlyphTag = 'pglc',
 kControlBevelButtonIsMultiValueMenuTag = 'mult'
};

Constants
kControlBevelButtonContentTag

Gets or sets a bevel button’s content type for drawing see “Bevel Button Menu Constant” (page 211).

Data type returned or set: ControlButtonContentInfostructure

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonTransformTag
Gets or sets a transform that is added to the standard transform of a bevel button

Data type returned or set: IconTransformType

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonTextAlignTag
Gets or sets the alignment of text in a bevel button; see “Bevel Button Menu Constant” (page 211).

Data type returned or set: ControlButtonTextAlignment

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonTextOffsetTag
Gets or sets the number of pixels that text is offset in a bevel button from the button’s left or right
edge this is used with left, right, or system justification, but it is ignored when the text is center aligned.

Data type returned or set: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonGraphicAlignTag
Gets or sets the alignment of graphics in a bevel button in relation to any text the button may contain;
see “Bevel Button Menu Constant” (page 211).

Data type returned or set: ControlButtonGraphicAlignment

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Constants 207
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlBevelButtonGraphicOffsetTag
Gets or sets the horizontal and vertical amounts that a graphic element contained in a bevel button
is offset from the button’s edges this value is ignored when the graphic is specified to be center
aligned on the button. Note that offset values should not be used for bevel buttons with content of
type kControlContentIconRef, because IconRef based icons may change with a theme switch;
see “Bevel Button Menu Constant” (page 211).

Data type returned or set: point

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonTextPlaceTag
Gets or sets the placement of a bevel button’s text see “Bevel Button Menu Constant” (page 211).

Data type returned or set: ControlButtonTextPlacement

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonMenuValueTag
Gets the menu value for a bevel button with an attached menu; see “Bevel Button Menu
Constant” (page 211).

Data type returned: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonMenuHandleTag
Gets or sets the menu handle for a bevel button with an attached menu. To set a non-resource-based
menu for a bevel button, you must pass in a non-zero value in the initialValue parameter of the
NewControl function, then call the SetControlData function with the
kControlBevelButtonMenuHandleTag constant and the return value from a call to the NewMenu
function.

Data type returned: MenuHandle

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonCenterPopupGlyphTag
Gets or sets the position of the pop-up arrow in a bevel button when a pop-up menu is attached.

Data type returned or set: Boolean; if true, glyph is vertically centered on the right; if false, glyph
is on the bottom right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonMultiValueMenuTag
Gets or sets whether the associated menu is a multi-value menu. Available in Mac OS X v10.3 and
later.

Data type returned or set: Boolean; if true, the menu can have multiple selections; otherwise, false.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to

208 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Bevel Button Control Definition IDs
enum {
 kControlBevelButtonSmallBevelProc = 32,
 kControlBevelButtonNormalBevelProc = 33,
 kControlBevelButtonLargeBevelProc = 34
};

Constants
kControlBevelButtonSmallBevelProc

Resource ID: 2

Bevel button with a small bevel.

kControlBevelButtonSmallBevelProc + kControlBevelButtonMenuOnRight

Resource ID: 2 Control Definition ID: 4

Small bevel button with a pop-up menu. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonNormalBevelProc
Resource ID: 2

Bevel button with a normal bevel. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonLargeBevelProc
Resource ID: 2

Bevel button with a large bevel. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

Constants 209
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Bevel Button Graphic Alignment Constants
typedef SInt16 ControlButtonGraphicAlignment;
enum {
 kControlBevelButtonAlignSysDirection = -1,
 kControlBevelButtonAlignCenter = 0,
 kControlBevelButtonAlignLeft = 1,
 kControlBevelButtonAlignRight = 2,
 kControlBevelButtonAlignTop = 3,
 kControlBevelButtonAlignBottom = 4,
 kControlBevelButtonAlignTopLeft = 5,
 kControlBevelButtonAlignBottomLeft = 6,
 kControlBevelButtonAlignTopRight = 7,
 kControlBevelButtonAlignBottomRight = 8
};

Constants
kControlBevelButtonAlignSysDirection

Bevel button graphic is aligned according to the system default script direction (only left or right).

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignCenter
Bevel button graphic is aligned center.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignLeft
Bevel button graphic is aligned left.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignRight
Bevel button graphic is aligned right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

210 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlBevelButtonAlignTop
Bevel button graphic is aligned top.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignBottom
Bevel button graphic is aligned bottom.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTopLeft
Bevel button graphic is aligned top left.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignBottomLeft
Bevel button graphic is aligned bottom left.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTopRight
Bevel button graphic is aligned top right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignBottomRight
Bevel button graphic is aligned bottom right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can use the ControlButtonGraphicAlignment constants to specify the alignment of icons and
pictures in bevel buttons. These constants are passed in the inData parameter of SetControlData (page
137) and returned by GetControlData (page 85).

Version Notes
The ControlButtonGraphicAlignment constants are available with Appearance Manager 1.0 and later.

Bevel Button Menu Constant
enum {
 kControlBehaviorCommandMenu = 0x2000
};

Constants
kControlBehaviorCommandMenu

If this bit is set, the menu contains commands, not choices, and should not be marked with a
checkmark. If this bit is set, it overrides the kControlBehaviorMultiValueMenu bit. This constant
is only available with Appearance 1.0.1 and later.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Constants 211
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
You can pass one or more bevel button menu constants in the high byte of the minimumValue parameter
of NewControl (page 318) to create a bevel button with a menu of a certain behavior. Bevel buttons with
menus have two values: the value of the button and the value of the menu. You can specify the direction of
the pop-up menu arrow (down or right) by using the kControlBevelButtonMenuOnRight bevel button
variant.

Bevel Button Menu Control Data Tag Constants
enum {
 kControlBevelButtonLastMenuTag = 'lmnu',
 kControlBevelButtonMenuDelayTag = 'mdly'
};

Constants
kControlBevelButtonLastMenuTag

Gets the menu ID of the last menu selected in the submenu or main menu. Available with Appearance
Manager 1.0.1 and later.

Data type returned: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonMenuDelayTag
Gets or sets the delay (in number of ticks) before the menu is displayed. Available with Appearance
Manager 1.0.1 and later.

Data type returned or set: SInt32

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

212 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Bevel Button Text Alignment Constants
typedef SInt16 ControlButtonTextAlignment;
enum {
 kControlBevelButtonAlignTextSysDirection = teFlushDefault,
 kControlBevelButtonAlignTextCenter = teCenter,
 kControlBevelButtonAlignTextFlushRight = teFlushRight,
 kControlBevelButtonAlignTextFlushLeft = teFlushLeft
};

Constants
kControlBevelButtonAlignTextSysDirection

Bevel button text is aligned according to the current script direction (left or right).

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTextCenter
Bevel button text is aligned center.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTextFlushRight
Bevel button text is aligned flush right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTextFlushLeft
Bevel button text is aligned flush left.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can use the ControlButtonTextAlignment constants to specify the alignment of text in a bevel
button. These constants are passed in the inData parameter of SetControlData (page 137) and returned
by GetControlData (page 85).

Version Notes
The ControlButtonTextAlignment constants are available with Appearance Manager 1.0 and later.

Constants 213
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Bevel Button Text Placement Constants
typedef SInt16 ControlButtonTextPlacement;
enum {
 kControlBevelButtonPlaceSysDirection = -1,
 kControlBevelButtonPlaceNormally = 0,
 kControlBevelButtonPlaceToRightOfGraphic = 1,
 kControlBevelButtonPlaceToLeftOfGraphic = 2,
 kControlBevelButtonPlaceBelowGraphic = 3,
 kControlBevelButtonPlaceAboveGraphic = 4
};

Constants
kControlBevelButtonPlaceSysDirection

Bevel button text is placed according to the system default script direction.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceNormally
Bevel button text is centered.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceToRightOfGraphic
Bevel button text is placed to the right of the graphic.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceToLeftOfGraphic
Bevel button text is placed to the left of the graphic.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceBelowGraphic
Bevel button text is placed below the graphic.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceAboveGraphic
Bevel button text is placed above the graphic.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can use the ControlButtonTextPlacement constants to specify the placement of text in a bevel
button, in relation to an icon or picture. These constants are passed in the inData parameter of
SetControlData (page 137) and returned by GetControlData (page 85). They can be used in conjunction
with bevel button text and graphic alignment constants to create, for example, a button where the graphic
and text are left justified with the text below the graphic.

Version Notes
The ControlButtonTextPlacement constants are available with Appearance Manager 1.0 and later.

214 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Checkbox and Radio Button AutoToggle Control Definition IDs
enum {
 kControlCheckBoxAutoToggleProc = 371,
 kControlRadioButtonAutoToggleProc = 372
};

Constants
kControlCheckBoxAutoToggleProc

Identifies a checkbox control ('CDEF' resource ID 23) that automatically changes among its various
states (on, off, mixed) in response to user actions. Your application must only call the function
GetControl32BitValue (page 81) to get the checkbox’s new state—there is no need to manually
change the control’s value after tracking successfully.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlRadioButtonAutoToggleProc
Identifies a radio button control ('CDEF' resource ID 23) that automatically changes among its various
states (on, off, mixed) in response to user actions. Your application must only call the function
GetControl32BitValue (page 81) to get the radio button’s new state—there is no need to manually
change the control’s value after tracking successfully.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
The Mac OS 8.5 Control Manager defines these new control definition IDs.

When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs. These constants, and
their associated IDs, are not supported unless the Appearance Manager is available.

Constants 215
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Checkbox Value Constants
enum {
 kControlCheckBoxUncheckedValue = 0,
 kControlCheckBoxCheckedValue = 1,
 kControlCheckBoxMixedValue = 2
};

Constants
kControlCheckBoxUncheckedValue

The checkbox is unchecked.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlCheckBoxCheckedValue
The checkbox is checked.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlCheckBoxMixedValue
Mixed value. Indicates that a setting is on for some elements in a selection and off for others. This
state only applies to standard Appearance-compliant checkboxes.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
The checkbox value constants specify the value of a standard checkbox control and are passed in the newValue
parameter of SetControlValue (page 146) and are returned by GetControlValue (page 96) .

Version Notes
The checkbox value constants are changed with Appearance Manager 1.0 to support mixed-value checkboxes.

Clock Control Data Tag Constants
enum {
 kControlClockLongDateTag = 'date',
 kControlClockFontStyleTag = kControlFontStyleTag,
 kControlClockAnimatingTag = 'anim'
};

Constants
kControlClockLongDateTag

Gets or sets the clock control’s time or date.

Data type returned or set: LongDateRec structure. Note that depending on the variant of clock control
specified, some of the fields in the longDateRec structure may not be valid. For example, if the
control variant displays only a non-live user-adjustable date, the hour and minute fields are not valid
and will contain garbage.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

216 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Clock Control Definition IDs
enum {
 kControlClockTimeProc = 240,
 kControlClockTimeSecondsProc = 241,
 kControlClockDateProc = 242,
 kControlClockMonthYearProc = 243
};

Constants
kControlClockTimeProc

Resource ID: 15

Clock control displaying hour/minutes. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

kControlClockTimeSecondsProc
Resource ID: 15

Clock control displaying hours/minutes/seconds. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

kControlClockDateProc
Resource ID: 15

Clock control displaying date/month/year. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

Constants 217
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlClockMonthYearProc
Resource ID: 15

Clock control displaying month/year. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Clock Value Flag Constants
typedef UInt32 ControlClockFlags;
enum {
 kControlClockFlagStandard = 0,
 kControlClockNoFlags = 0,
 kControlClockFlagDisplayOnly = 1,
 kControlClockIsDisplayOnly = 1,
 kControlClockFlagLive = 2,
 kControlClockIsLive = 2
};

Constants
kControlClockNoFlags

Indicates that clock is editable but does not display the current “live” time.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

kControlClockIsDisplayOnly
When only this bit is set, the clock is not editable. When this bit and the kControlClockIsLive bit
is set, the clock automatically updates on idle (clock will have the current time).

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

218 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlClockIsLive
When only this bit is set, the clock automatically updates on idle and any changes to the clock affect
the system clock. When this bit and the kControlClockIsDisplayOnly bit is set, the clock
automatically updates on idle (clock will have the current time), but is not editable.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

Discussion
You can use the clock value flag constants to specify behaviors for a clock control. You can pass one or more
of these mask constants into the control ('CNTL') resource or in the initialValue parameter of
NewControl (page 318). Note that the standard clock control is editable and supports keyboard focus. Also,
the little arrows that allow manipulation of the date and time are part of the control, not a separate embedded
little arrows control. The clock value flag constants are available with Appearance Manager 1.0 and later.

Control Definition Message Constants
The Control Manager passes constants of type ControlDefProcMessage to Indicate the action your control
definition function must perform.

Constants 219
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

enum {
 drawCntl = 0,
 testCntl = 1,
 calcCRgns = 2,
 initCntl = 3,
 dispCntl = 4,
 posCntl = 5,
 thumbCntl = 6,
 dragCntl = 7,
 autoTrack = 8,
 calcCntlRgn = 10,
 calcThumbRgn = 11,
 drawThumbOutline = 12,
 kControlMsgDrawGhost = 13,
 kControlMsgCalcBestRect = 14,
 kControlMsgHandleTracking = 15,
 kControlMsgFocus = 16,
 kControlMsgKeyDown = 17,
 kControlMsgIdle = 18,
 kControlMsgGetFeatures = 19,
 kControlMsgSetData = 20,
 kControlMsgGetData = 21,
 kControlMsgActivate = 22,
 kControlMsgSetUpBackground = 23,
 kControlMsgCalcValueFromPos = 26,
 kControlMsgTestNewMsgSupport = 27,
 kControlMsgSubValueChanged = 25,
 kControlMsgSubControlAdded = 28,
 kControlMsgSubControlRemoved = 29,
 kControlMsgApplyTextColor = 30,
 kControlMsgGetRegion = 31,
 kControlMsgFlatten = 32,
 kControlMsgSetCursor = 33,
 kControlMsgDragEnter = 38,
 kControlMsgDragLeave = 39,
 kControlMsgDragWithin = 40,
 kControlMsgDragReceive = 41,
 kControlMsgDisplayDebugInfo = 46,
 kControlMsgContextualMenuClick = 47,
 kControlMsgGetClickActivation = 48
};

Constants
drawCntl

Draw the entire control or part of a control.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

testCntl
Test where the mouse has been pressed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

220 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

calcCRgns
Calculate the region for the control or the indicator in 24-bit systems. This message is obsolete in Mac
OS 7.6 and later.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

initCntl
Perform additional control initialization.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

dispCntl
Perform additional control disposal actions.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

posCntl
Move and update the indicator setting.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

thumbCntl
Calculate the parameters for dragging the indicator.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

dragCntl
Perform customized dragging (of the control or its indicator).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

autoTrack
Execute the specified action function.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

calcCntlRgn
Calculate the control region in 32-bit systems.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Constants 221
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

calcThumbRgn
Calculate the indicator region in 32-bit systems.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgDrawGhost
Draw a ghost image of the indicator.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgCalcBestRect
Calculate the optimal control rectangle.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgHandleTracking
Perform custom tracking.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgFocus
Handle keyboard focus.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgKeyDown
Handle keyboard events.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgIdle
Perform idle processing.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgGetFeatures
Specify which Appearance-compliant messages are supported.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

222 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlMsgSetData
Set control-specific data.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgGetData
Get control-specific data.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgActivate
Handle activate and deactivate events.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgSetUpBackground
Set the control’s background color or pattern (only available if the control supports embedding).

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgCalcValueFromPos
Support live feedback while dragging the indicator and calculate the control value based on the new
indicator region.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgTestNewMsgSupport
Specify whether Appearance-compliant messages are supported.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgSubValueChanged
Be informed that the value of a subcontrol embedded in the control has changed; this message is
useful for radio groups.

Available with Appearance 1.0.1 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgSubControlAdded
Be informed that a subcontrol has been embedded in the control.

Available with Appearance 1.0.1 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Constants 223
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlMsgSubControlRemoved
Be informed that a subcontrol is about to be removed from the control.

Available with Appearance 1.0.1 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgApplyTextColor
Set the foreground color to be consistent with the current drawing environment and suitable for
display against the background color or pattern. To indicate that your control definition function
supports this message, set the kControlHasSpecialBackground feature bit. When this message
is sent, the Control Manager passes a pointer to a structure of type ControlGetRegionRec (page
189) in your control definition function’s param parameter. The Control Manager sets the
ControlApplyTextColorRec structure to contain data describing the current drawing environment.
Your control definition function is responsible for using this data to apply a text color which is
consistent with the current theme and optimally readable on the control’s background. Your control
definition function should return 0 as the function result.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgGetRegion
Obtain the region occupied by the specified control part. To indicate that your control definition
function supports this message, set the kControlSupportsGetRegion feature bit. When this
message is sent, the Control Manager passes a pointer to a structure of type
ControlGetRegionRec (page 189) in your control definition function’s param parameter. Your control
definition function is responsible for setting the region field of the ControlGetRegionRec structure
to the region that contains the control part which the Control Manager specifies in the part field.
Your control definition function return a result code of type OSStatus as the function result.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Discussion
The Control Manager may pass these constants in the message parameter of your control definition function
to specify the actions that your function must perform. For more information, see ControlDefProcPtr (page
161).

224 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Features Constants
enum {
 kControlSupportsGhosting = 1 << 0,
 kControlSupportsEmbedding = 1 << 1,
 kControlSupportsFocus = 1 << 2,
 kControlWantsIdle = 1 << 3,
 kControlWantsActivate = 1 << 4,
 kControlHandlesTracking = 1 << 5,
 kControlSupportsDataAccess = 1 << 6,
 kControlHasSpecialBackground = 1 << 7,
 kControlGetsFocusOnClick = 1 << 8,
 kControlSupportsCalcBestRect = 1 << 9,
 kControlSupportsLiveFeedback = 1 << 10,
 kControlHasRadioBehavior = 1 << 11,
 kControlSupportsDragAndDrop = 1 << 12,
 kControlAutoToggles = 1 << 14,
 kControlSupportsGetRegion = 1 << 17,
 kControlSupportsFlattening = 1 << 19,
 kControlSupportsSetCursor = 1 << 20,
 kControlSupportsContextualMenus = 1 << 21,
 kControlSupportsClickActivation = 1 << 22,
 kControlIdlesWithTimer = 1 << 23
};

Constants
kControlSupportsGhosting

If this bit (bit 0) is set, the control definition function supports the kControlMsgDrawGhostmessage.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsEmbedding
If this bit (bit 1) is set, the control definition function supports the kControlMsgSubControlAdded
and kControlMsgSubControlRemovedmessages.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsFocus
If this bit (bit 2) is set, the control definition function supports the kControlMsgKeyDown message.
If this bit and the kControlGetsFocusOnClick bit are set, the control definition function supports
the kControlMsgFocus message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlWantsIdle
If this bit (bit 3) is set, the control definition function supports the kControlMsgIdle message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlWantsActivate
If this bit (bit 4) is set, the control definition function supports the kControlMsgActivate message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Constants 225
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlHandlesTracking
If this bit (bit 5) is set, the control definition function supports the kControlMsgHandleTracking
message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsDataAccess
If this bit (bit 6) is set, the control definition function supports the kControlMsgGetData and
kControlMsgSetData messages.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlHasSpecialBackground
If this bit (bit 7) is set, the control definition function supports the kControlMsgSetUpBackground
message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlGetsFocusOnClick
If this bit (bit 8) and the kControlSupportsFocus bit are set, the control definition function supports
the kControlMsgFocus message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsCalcBestRect
If this bit (bit 9) is set, the control definition function supports the kControlMsgCalcBestRect
message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsLiveFeedback
If this bit (bit 10) is set, the control definition function supports the kControlMsgCalcValueFromPos
message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlHasRadioBehavior
If this bit (bit 11) is set, the control definition function supports radio button behavior and can be
embedded in a radio group control. This constant is available with Appearance 1.0.1 and later.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlAutoToggles
If the bit specified by this mask is set, the control definition function supports automatically changing
among various states (on, off, mixed) in response to user actions.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

226 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlSupportsGetRegion
If the bit specified by this mask is set, the control definition function supports the
kControlMsgGetRegion message, described in “Control Definition Message Constants” (page 219).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
If your control definition function supports Appearance-compliant messages, it should return a bit field of
the features it supports, composed of one or more of these bits.

Control Focus Part Code Constants
enum {
 kControlFocusNoPart = 0,
 kControlFocusNextPart = -1,
 kControlFocusPrevPart = -2
};

Constants
kControlFocusNoPart

Your control definition function should relinquish its focus and return kControlFocusNoPart. It
might respond by deactivating its text edit handle and erasing its focus ring. If the control is at the
end of its subparts, it should return kControlFocusNoPart. This tells the focusing mechanism to
jump to the next control that supports focus.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlFocusNextPart
Your control definition function should change keyboard focus to its next part, the entire control, or
remove keyboard focus from the control, depending upon the circumstances.

For multiple part controls that already had keyboard focus, the next part of the control would receive
keyboard focus when kControlFocusNextPart was passed in the param parameter. For example,
a clock control with keyboard focus would change its focus to the left-most element of the control
(the month field).

For single-part controls that did not have keyboard focus and are now receiving it, the entire control
would receive keyboard focus when kControlFocusNextPartwas passed in the param parameter.

For single-part controls that already had keyboard focus and are now losing it, the entire control
would lose keyboard focus.

If you are passed kControlFocusNextPart and have run out of parts, return kControlFocusNoPart
to indicate that the user tabbed past the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Constants 227
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlFocusPrevPart
Your control definition function should change keyboard focus to its previous part, the entire control,
or remove keyboard focus from the control, depending upon the circumstances.

For multiple part controls that already had keyboard focus, the previous part of the control would
receive keyboard focus when kControlFocusPrevPart was passed in the param parameter. For
example, a clock control with keyboard focus would change its focus to the right-most element of
the control (the year field).

For single-part controls that did not have keyboard focus and are now receiving it, the entire control
would receive keyboard focus when kControlFocusNextPartwas passed in the param parameter.

For single-part controls that already had keyboard focus and are now losing it, the entire control
would lose keyboard focus.

If you are passed kControlFocusPrevPart and have run out of parts, return kControlFocusNoPart
to indicate that the user tabbed past the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Control Font Style and Key Filter Data Tag Constants
enum {
 kControlFontStyleTag = 'font',
 kControlKeyFilterTag = 'fltr',
 kControlKindTag = 'kind',
 kControlSizeTag = 'size'
};

Constants
kControlFontStyleTag

Sent with a pointer to a ControlKind record to be filled in. Only valid for GetControlData.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlKeyFilterTag
Gets or sets the key filter function for controls that handle filtered input (includes editable text and
list box).

Data type returned or set: ControlKeyFilterUPP

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data (e.g., text in an editable text control). These constants can
also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

228 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Control Font Style Flag Constants
enum {
 kControlUseFontMask = 0x0001,
 kControlUseFaceMask = 0x0002,
 kControlUseSizeMask = 0x0004,
 kControlUseForeColorMask = 0x0008,
 kControlUseBackColorMask = 0x0010,
 kControlUseModeMask = 0x0020,
 kControlUseJustMask = 0x0040,
 kControlUseAllMask = 0x00FF,
 kControlAddFontSizeMask = 0x0100
};

Constants
kControlUseFontMask

If the kControlUseFontMask flag is set (bit 0), the font field of the control font style structure is
applied to the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseFaceMask
If the kControlUseFaceMask flag is set (bit 1), the style field of the control font style structure is
applied to the control. This flag is ignored if you specify a meta font value; see “Meta Font
Constants” (page 275).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseSizeMask
If the kControlUseSizeMask flag is set (bit 2), the size field of the control font style structure is
applied to the control. This flag is ignored if you specify a meta font value; see “Meta Font
Constants” (page 275).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseForeColorMask
If the kControlUseForeColorMask flag is set (bit 3), the foreColor field of the control font style
structure is applied to the control. This flag only applies to static text controls.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Constants 229
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlUseBackColorMask
If the kControlUseBackColorMask flag is set (bit 4), the backColor field of the control font style
structure is applied to the control. This flag only applies to static text controls.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseModeMask
If the kControlUseModeMask flag is set (bit 5), the text mode specified in the mode field of the control
font style structure is applied to the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseJustMask
If the kControlUseJustMask flag is set (bit 6), the just field of the control font style structure is
applied to the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseAllMask
If kControlUseAllMask is used, all flags in this mask will be set except
kControlUseAddFontSizeMask.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlAddFontSizeMask
If the kControlUseAddFontSizeMask flag is set (bit 8), the Dialog Manager will add a specified font
size to the size field of the control font style structure. This flag is ignored if you specify a meta font
value; see “Meta Font Constants” (page 275).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
You can pass one or more control font style flag constants in the flags field of the control font style structure
to specify the field(s) of the structure that should be applied to the control; see ControlFontStyleRec (page
188). If none of the flags are set, the control uses the system font unless a control variant specifies use of a
window font.

Version Notes
These control font style flag constants are available with Appearance Manager 1.0 and later.

230 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Key Script Behavior Constants
enum {
 kControlKeyScriptBehaviorAllowAnyScript = 'any ',
 kControlKeyScriptBehaviorPrefersRoman = 'prmn',
 kControlKeyScriptBehaviorRequiresRoman = 'rrmn'
};

Constants
kControlKeyScriptBehaviorAllowAnyScript

Does not change the current keyboard and allows the user to change the keyboard at will. This is the
default for non-password fields.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlKeyScriptBehaviorPrefersRoman
Changes the current keyboard to Roman whenever the editable text field receives focus but allows
the user to change the keyboard at will. This is the default for password fields.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlKeyScriptBehaviorRequiresRoman
Changes the current keyboard to Roman whenever the editable text field receives focus and does
not allow the user to change the keyboard.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
With the Mac OS 8.5 Control Manager, you can use these constants of type ControlKeyScriptBehavior
to specify the kind of behavior to be used in an editable text control with respect to changing and locking
the keyboard menu as the field is focused. The ControlKeyScriptBehavior constants are set and retrieved
with the kControlEditTextKeyScriptBehaviorTag control data tag constant; for details on
kControlEditTextKeyScriptBehaviorTag, see “Editable Text Control Data Tag Constants” (page 240).

Constants 231
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Part Code Constants
enum {
 kControlLabelPart = 1,
 kControlMenuPart = 2,
 kControlTrianglePart = 4,
 kControlEditTextPart = 5,
 kControlPicturePart = 6,
 kControlIconPart = 7,
 kControlClockPart = 8,
 kControlListBoxPart = 24,
 kControlListBoxDoubleClickPart = 25,
 kControlImageWellPart = 26,
 kControlRadioGroupPart = 27,
 kControlButtonPart = 10,
 kControlCheckBoxPart = 11,
 kControlRadioButtonPart = 11,
 kControlUpButtonPart = 20,
 kControlDownButtonPart = 21,
 kControlPageUpPart = 22,
 kControlPageDownPart = 23,
 kControlClockHourDayPart = 9,
 kControlClockMinuteMonthPart = 10,
 kControlClockSecondYearPart = 11,
 kControlClockAMPMPart = 12,
 kControlDataBrowserPart = 24,
 kControlDataBrowserDraggedPart = 25
};

Constants
kControlLabelPart

Identifies the label of a pop-up menu control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlMenuPart
Identifies the menu of a pop-up menu control. For bevel buttons with a menu attached, this part
code specifies a menu item of the bevel button.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlTrianglePart
Identifies a disclosure triangle control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextPart
Identifies an editable text control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlPicturePart
Identifies a picture control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

232 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlIconPart
Identifies an icon control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlClockPart
Identifies a clock control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlListBoxPart
Identifies a list box control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlListBoxDoubleClickPart
Identifies a double-click in a list box control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlImageWellPart
Identifies an image well control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlRadioGroupPart
Identifies a radio group control.

Available with Appearance Manager 1.0.2 and later.

Declared in ControlDefinitions.h.

kControlButtonPart
Identifies either a push button or bevel button control. For bevel buttons with a menu attached, this
part code specifies the button but not the attached menu.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlCheckBoxPart
Identifies a checkbox control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlRadioButtonPart
Identifies a radio button control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlUpButtonPart
Identifies the up button of a scroll bar control (the arrow at the top or the left).

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Constants 233
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlDownButtonPart
Identifies the down button of a scroll bar control (the arrow at the right or the bottom).

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlPageUpPart
Identifies the page-up part of a scroll bar control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlPageDownPart
Identifies the page-down part of a scroll bar control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlClockHourDayPart
Identifies the part of a clock control that contains the hour or the day. The Mac OS 8.5 Control Manager
defines this new control part code constant.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlClockMinuteMonthPart
Identifies the part of a clock control that contains the minute or the month. The Mac OS 8.5 Control
Manager defines this new control part code constant.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlClockSecondYearPart
Identifies the part of a clock control that contains the second or the year. The Mac OS 8.5 Control
Manager defines this new control part code constant.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlClockAMPMPart
Identifies the part of a clock control that contains the AM/PM information. The Mac OS 8.5 Control
Manager defines this new control part code constant.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
Constants of type ControlPartCode identify specific parts of controls.

Part codes are meaningful only within the scope of a single control definition function. For example, the
standard tab control uses part codes 1...N, where N is the number of tabs, even though those numbers do
collide with part codes defined for use with other control definition functions. Therefore, when you wish to
specify part codes for the tab control for use with the function SetControlData, for example, you should
use a part code corresponding to a 1-based index of the tab whose data you wish to set. In other words, the
first tab is part code 1, the second tab is part code 2, and so on.

234 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control State Part Code Constants
enum {
 kControlNoPart = 0,
 kControlIndicatorPart = 129,
 kControlDisabledPart = 254,
 kControlInactivePart = 255
};

Constants
kControlNoPart

Identifies no specific control part. This value unhighlights any highlighted part of the control when
passed to the HiliteControl function. For events in bevel buttons with an attached menu, this
part code indicates that either the mouse was released outside the bevel button and menu or that
the button was disabled.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlIndicatorPart
Identifies the scroll box of a scroll bar control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlDisabledPart
Used with HiliteControl (page 108)to disable the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlInactivePart
Used with HiliteControl (page 108) to make the control inactive.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
Constants of type ControlPartCode identify specific parts of controls.

Part codes are meaningful only within the scope of a single control definition function. For example, the
standard tab control uses part codes 1...N, where N is the number of tabs, even though those numbers do
collide with part codes defined for use with other control definition functions. Therefore, when you wish to
specify part codes for the tab control for use with the function SetControlData, for example, you should
use a part code corresponding to a 1-based index of the tab whose data you wish to set. In other words, the
first tab is part code 1, the second tab is part code 2, and so on.

Note that if you wish to create part codes for a custom control definition function, you may assign values
anywhere within the ranges 1–128 and 130–253. Note also that the function FindControl does not typically
return the kControlDisabledPart or kControlInactivePart part codes and never returns them with
standard controls.

Constants 235
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Variant Constants
enum {
 kControlNoVariant = 0,
 kControlUsesOwningWindowsFontVariant = 1 << 3
};

Constants
kControlNoVariant

Specifies no change to the standard control resource.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUsesOwningWindowsFontVariant
Specifies that the control use the window font for any control text.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
You can use the control variant constants with any of the standard control resource IDs to specify additional
features of a control.

Version Notes
The control variant constants are changed with Appearance Manager 1.0 to support the additional control
types available with the Appearance Manager.

236 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Bevel Button Menu Placement Constants
typedef UInt16 ControlBevelButtonMenuPlacement;
enum {
 kControlBevelButtonMenuOnBottom = 0,
 kControlBevelButtonMenuOnRight = (1 << 2)
};

Control Bevel Thickness Constants
typedef UInt16 ControlBevelThickness;
enum {
 kControlBevelButtonSmallBevel = 0,
 kControlBevelButtonNormalBevel = 1,
 kControlBevelButtonLargeBevel = 2
};

Control Clock Type Constants
typedef UInt16 ControlClockType;
enum {
 kControlClockTypeHourMinute = 0,
 kControlClockTypeHourMinuteSecond = 1,
 kControlClockTypeMonthDayYear = 2,
 kControlClockTypeMonthYear = 3
};

Control Disclosure Triangle Orientation Constants
typedef UInt16 ControlDisclosureTriangleOrientation;
enum {
 kControlDisclosureTrianglePointDefault = 0,
 kControlDisclosureTrianglePointRight = 1,
 kControlDisclosureTrianglePointLeft = 2
};

Control Notify Constants
enum {
 controlNotifyNothing = 'nada',
 controlNotifyClick = 'clik',
 controlNotifyFocus = 'focu',
 controlNotifyKey = 'key '
};

Control Push Button Icon Alignment Constants
typedef UInt16 ControlPushButtonIconAlignment;
enum {
 kControlPushButtonIconOnLeft = 6,

Constants 237
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

 kControlPushButtonIconOnRight = 7
};

Control Round Button Size Constants
typedef SInt16 ControlRoundButtonSize;
enum {
 kControlRoundButtonNormalSize = kControlSizeNormal,
 kControlRoundButtonLargeSize = kControlSizeLarge
};

Control Slider Orientation Constants
typedef UInt16 ControlSliderOrientation;
enum {
 kControlSliderPointsDownOrRight = 0,
 kControlSliderPointsUpOrLeft = 1,
 kControlSliderDoesNotPoint = 2
};

Control Tab Direction Constants
typedef UInt16 ControlTabDirection;
enum {
 kControlTabDirectionNorth = 0,
 kControlTabDirectionSouth = 1,
 kControlTabDirectionEast = 2,
 kControlTabDirectionWest = 3
};

Control Tab Size Constants
typedef UInt16 ControlTabSize;
enum {
 kControlTabSizeLarge = kControlSizeNormal,
 kControlTabSizeSmall = kControlSizeSmall
};

Drag Control Constants
Specify whether the user is dragging an indicator or the whole control.

238 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

enum {
 kDragControlEntireControl = 0,
 kDragControlIndicator = 1
};

Constants
kDragControlEntireControl

Dragging the entire control.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kDragControlIndicator
Dragging the indicator.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Drawing Constants
enum {
 kDrawControlEntireControl = 0,
 kDrawControlIndicatorOnly = 129
};

Constants
kDrawControlEntireControl

Draw the entire control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kDrawControlIndicatorOnly
Draw the indicator only.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
The Control Manager passes one of these drawing constants in the low word of the param parameter to
specify whether the user is drawing an indicator or the whole control. The high-order word of the param
parameter may contain undefined data; therefore, evaluate only the low-order word of this parameter.

Constants 239
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Editable Text Control Data Tag Constants
enum {
 kControlEditTextStyleTag = kControlFontStyleTag,
 kControlEditTextTextTag = 'text',
 kControlEditTextTEHandleTag = 'than',
 kControlEditTextKeyFilterTag = kControlKeyFilterTag,
 kControlEditTextSelectionTag = 'sele',
 kControlEditTextPasswordTag = 'pass'
};
enum {
 kControlEditTextKeyScriptBehaviorTag = 'kscr',
 kControlEditTextLockedTag = 'lock',
 kControlEditTextFixedTextTag = 'ftxt',
 kControlEditTextValidationProcTag = 'vali',
 kControlEditTextInlinePreUpdateProcTag = 'prup',
 kControlEditTextInlinePostUpdateProcTag = 'poup'
};
enum {
 kControlEditTextCFStringTag = 'cfst',
 kControlEditTextPasswordCFStringTag = 'pwcf'
};

Constants
kControlEditTextTextTag

Gets or sets text in an editable text control.

Data type returned or set: character buffer

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextTEHandleTag
Gets a handle to a text edit structure.

Data type returned: TEHandle

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextSelectionTag
Gets or sets the selection in an editable text control.

Data type returned or set: ControlEditTextSelectionRec structure

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextKeyScriptBehaviorTag
Gets or sets the kind of behavior to be used in an editable text control with respect to changing and
locking the keyboard menu as the field is focused.

Data type retrieved or set: ControlKeyScriptBehavior. The default for password fields is
kControlKeyScriptBehaviorPrefersRoman. The default for non-password fields is
kControlKeyScriptBehaviorAllowAnyScript. See
ControlEditTextValidationProcPtr (page 169) for descriptions of possible values.

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

240 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlEditTextLockedTag
Gets or sets whether the text in an editable text control is currently editable.

Data type retrieved or set: Boolean; if true, the text is locked and cannot be edited; if false, the
text is editable.

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextFixedTextTag
Gets or sets inline input text in an editable text control, after confirming any text in the active input
area with the Text Services Manager function FixTSMDocument.

Data type retrieved or set: character buffer

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextValidationProcTag
Gets or sets a universal procedure pointer to a callback function such as that described in
ControlEditTextValidationProcPtr (page 169), which can be used to validate editable text after
an operation that changes the text, such as inline text entry, a cut, or paste.

Data type retrieved or set: ControlEditTextValidationUPP

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextInlinePreUpdateProcTag
Gets or sets a universal procedure pointer to a Text Services Manager pre-update callback function.

Data type retrieved or set: TSMTEPreUpdateUPP

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextInlinePostUpdateProcTag
Gets or sets a universal procedure pointer to a Text Services Manager post-update callback function.

Data type retrieved or set: TSMTEPostUpdateUPP

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextCFStringTag
Retrieves the contents of the edit text field as a CFString.

Data type retrieved: CFStringRef. You must release the string when you no longer need it.

Available in CarbonLib 1.5 and Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

Constants 241
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlEditTextPasswordCFStringTag
Extract the content of the edit text field if it is a password field.

Data type retrieved: CFStringRef. You must release the string when you no longer need it.

Available in CarbonLib 1.5 and Mac OS X v10.0 and later.

Available in Mac OS X v10.1 and later.

Declared in HITextViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data (e.g., text in an editable text control). These constants can
also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Editable Text Control Definition ID Constants
enum {
 kControlEditTextProc = 272,
 kControlEditTextPasswordProc = 274
};

Constants
kControlEditTextProc

Resource ID: 17

Editable text field for windows. This control maintains its own text handle (TEHandle).

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextPasswordProc
Resource ID: 17

Editable text field for passwords. This control is supported by the Script Manager. Password text can
be accessed via the kEditTextPasswordTag constant; see “Editable Text Control Data Tag
Constants” (page 240).

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

242 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Data Browser Error Constants
enum {
 errDataBrowserNotConfigured = -4970,
 errDataBrowserItemNotFound = -4971,
 errDataBrowserItemNotAdded = -4975,
 errDataBrowserPropertyNotFound = -4972,
 errDataBrowserInvalidPropertyPart = -4973,
 errDataBrowserInvalidPropertyData = -4974,
 errDataBrowserPropertyNotSupported = -4979
};

Group Box Control Data Tag Constants
enum {
 kControlGroupBoxMenuHandleTag = 'mhan',
 kControlGroupBoxMenuRefTag = 'mhan',
 kControlGroupBoxFontStyleTag = kControlFontStyleTag,
 kControlGroupBoxFrameRectTag = 'frec'
};

Constants
kControlGroupBoxMenuHandleTag

Gets the menu handle of a group box.

Data type returned: MenuHandle

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Constants 243
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlGroupBoxFrameRectTag
Gets the full rectangle that content is drawn in. This is slightly different from the content region
because the full rectangle includes the frame drawn around the content. Available in Mac OS X v10.3
and later.

Data type returned: Rect

Available in Mac OS X v10.3 and later.

Declared in HIContainerViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Group Box Control Definition ID Constants
enum {
 kControlGroupBoxTextTitleProc = 160,
 kControlGroupBoxCheckBoxProc = 161,
 kControlGroupBoxPopupButtonProc = 162,
 kControlGroupBoxSecondaryTextTitleProc = 164,
 kControlGroupBoxSecondaryCheckBoxProc = 165,
 kControlGroupBoxSecondaryPopupButtonProc = 166
};

Constants
kControlGroupBoxTextTitleProc

Resource ID: 10

Primary group box with text title. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlGroupBoxCheckBoxProc
Resource ID: 10

Primary group box with checkbox title. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

244 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlGroupBoxPopupButtonProc
Resource ID: 10

Primary group box with pop-up button title. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlGroupBoxSecondaryTextTitleProc
Resource ID: 10

Secondary group box with text title. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlGroupBoxSecondaryCheckBoxProc
Resource ID: 10

Secondary group box with checkbox title. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlGroupBoxSecondaryPopupButtonProc
Resource ID: 10

Secondary group box with pop-up button title. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 245
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Icon Control Data Tag Constants
enum {
 kControlIconTransformTag = 'trfm',
 kControlIconAlignmentTag = 'algn'
};

Constants
kControlIconTransformTag

Gets or sets a transform that is added to the standard transform of an icon see “Icon Utilities.”

Data type returned or set: IconTransformType

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlIconAlignmentTag
Gets or sets an icon’s position (centered, left, right).

Data type returned or set: IconAlignmentType

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

246 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Icon Control Definition ID Constants
enum {
 kControlIconProc = 320,
 kControlIconNoTrackProc = 321,
 kControlIconSuiteProc = 322,
 kControlIconSuiteNoTrackProc = 323
};
enum {
 kControlIconRefProc = 324,
 kControlIconRefNoTrackProc = 325
};

Constants
kControlIconProc

Resource ID: 20

Icon control. This control definition is new with the Appearance Manager and is not supported unless
the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlIconNoTrackProc
Resource ID: 20

Non-tracking icon. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlIconSuiteProc
Resource ID: 20

Icon suite. This control definition is new with the Appearance Manager and is not supported unless
the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlIconSuiteNoTrackProc
Resource ID: 20

Non-tracking icon suite. This control definition is new with the Appearance Manager and is not
supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Constants 247
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlIconRefProc
Identifies the variant of the icon control ('CDEF' resource ID 20) that supports all standard types of
icon-based content. Note that you do not supply content for this control upon its creation with a call
to the NewControl function. Rather, after the control’s creation you can set or change its content at
any time by passing the SetControlData function the kControlIconContentTag control data
tag constant and a ControlButtonContentInfo structure containing any of the allowable data
types. Supported data types for this icon control variant are specified with the following
ControlContentType values: kControlContentIconSuiteRes, kControlContentCIconRes
(uses a black-and-white 'ICON' resource if the color resource isn’t available),
kControlContentIconSuiteHandle, kControlContentCIconHandle, and
kControlContentIconRef. Note, too, that if you supply the kControlContentIconRef value,
you must first use Icon Services functions to register your resources and generate IconRef values.
See the ControlButtonContentInfo (page 183) data type and “Control Content Type
Constants” (page 254) for more information.

Declared in HIImageViews.h.

Available in Mac OS 8.5 and later.

kControlIconRefNoTrackProc
Identifies the non-tracking variant of the icon control ('CDEF' resource ID 20) that supports all
standard types of icon-based content. This control immediately returns kControlIconPart as the
part code hit without tracking. Note that you do not supply content for this control upon its creation
with a call to the NewControl function. Rather, after the control’s creation you can set or change its
content at any time by passing the SetControlData function the kControlIconContentTag
control data tag constant and a ControlButtonContentInfo structure containing any of the
allowable data types. Supported data types for this icon control variant are specified with the following
ControlContentType values: kControlContentIconSuiteRes, kControlContentCIconRes
(uses a black-and-white 'ICON' resource if the color resource isn’t available),
kControlContentIconSuiteHandle, kControlContentCIconHandle, and
kControlContentIconRef. Note, too, that if you supply the kControlContentIconRef value,
you must first use Icon Services functions to register your resources and generate IconRef values.
See the ControlButtonContentInfo (page 183) data type and “Control Content Type
Constants” (page 254) for more information.

Declared in HIImageViews.h.

Available in Mac OS 8.5 and later.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

248 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Image Well Control Data Tag Constants
enum {
 kControlImageWellContentTag = 'cont',
 kControlImageWellTransformTag = 'tran',
 kControlImageWellIsDragDestinationTag = 'drag'
};

Constants
kControlImageWellContentTag

Gets or sets the content for an image well; see ControlButtonContentInfo (page 183).

Data type returned or set: ControlButtonContentInfo structure

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlImageWellTransformTag
Gets or sets a transform that is added to the standard transform of an image well.

Data type returned or set: IconTransformType

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Constants 249
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Image Well Control Definition ID
enum {
 kControlImageWellProc = 176
};

Constants
kControlImageWellProc

Resource ID: 11

Image well. This control behaves as a palette-type object: it can be selected by clicking, and clicking
on another object should change the keyboard focus. If the keyboard focus is removed, your application
should then set the value to 0 to remove the checked border.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

250 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

inLabel
enum {
 inLabel = kControlLabelPart,
 inMenu = kControlMenuPart,
 inTriangle = kControlTrianglePart,
 inButton = kControlButtonPart,
 inCheckBox = kControlCheckBoxPart,
 inUpButton = kControlUpButtonPart,
 inDownButton = kControlDownButtonPart,
 inPageUp = kControlPageUpPart,
 inPageDown = kControlPageDownPart
};

inThumb
enum {
 inThumb = kControlIndicatorPart,
 kNoHiliteControlPart = kControlNoPart,
 kInIndicatorControlPart = kControlIndicatorPart,
 kReservedControlPart = kControlDisabledPart,
 kControlInactiveControlPart = kControlInactivePart
};

kControlBevelButtonOwnedMenuRefTag
enum {
 kControlBevelButtonOwnedMenuRefTag = 'omrf',
 kControlBevelButtonKindTag = 'bebk'
};

Bevel Button Size Constants
enum {
 kControlBevelButtonSmallBevelVariant = 0,
 kControlBevelButtonNormalBevelVariant = (1 << 0),
 kControlBevelButtonLargeBevelVariant = (1 << 1),
 kControlBevelButtonMenuOnRightVariant = (1 << 2)
};

Control Can Auto Invalidate Constant
enum {
 kControlCanAutoInvalidate = 1
};

Control Chasing Arrows Animating Tag Constant
enum {
 kControlChasingArrowsAnimatingTag = 'anim'

Constants 251
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

};

Control Collection Tag Constants
Specify initial control values passed in a collection.

enum {
 kControlCollectionTagBounds = 'boun',
 kControlCollectionTagValue = 'valu',
 kControlCollectionTagMinimum = 'min ',
 kControlCollectionTagMaximum = 'max ',
 kControlCollectionTagViewSize = 'view',
 kControlCollectionTagVisibility = 'visi',
 kControlCollectionTagRefCon = 'refc',
 kControlCollectionTagTitle = 'titl',
 kControlCollectionTagUnicodeTitle = 'uttl',
 kControlCollectionTagIDSignature = 'idsi',
 kControlCollectionTagIDID = 'idid',
 kControlCollectionTagCommand = 'cmd ',
 kControlCollectionTagVarCode = 'varc'
};

Constants
kControlCollectionTagBounds

A value of type Rect that contains the bounding rectangle of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagValue
A value of type SInt32 that contains the value of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagMinimum
A value of type SInt32 that contains the minimum value of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagMaximum
A value of type SInt32 that contains the maximum value of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagViewSize
A value of type SInt32 that contains the view size of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

252 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlCollectionTagVisibility
A Boolean that contains the visible state of the control. This tag is only interpreted on CarbonLib
versions through 1.5.x and Mac OS X v10.0.x. This tag is not interpreted on CarbonLib 1.6 and later
nor on Mac OS X v10.1 and later; use of this tag is not recommended.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagRefCon
A value of type SInt32 that contains the refcon for the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagTitle
A character array of arbitrary size that contains the title of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagUnicodeTitle
A character array of arbitrary size that contains the title of the control as received via
CFStringCreateExternalRepresentation.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagIDSignature
An OSType that contains the ControlID signature for the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagIDID
A value of type SInt32 that contains the ControlID ID for the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagCommand
A value of type UInt32 that contains the command.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagVarCode
A value of type SInt16 that contains the variant for the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
These standard tags are used in the initial data collection that is passed in the param parameter to the
initCntl message and in the kEventParamInitCollection parameter to the
kEventControlInitialize event (Carbon only).

All tags at ID 0 in a control’s collection are reserved for Control Manager use. Custom control definitions
should use other IDs.

Most of these tags are interpreted when you call CreateCustomControl (page 314). The Control Manager
puts the value in the right place before it calls the control definition with the initialization message.

Constants 253
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Collection Tag Subcontrols Constant
enum {
 kControlCollectionTagSubControls = 'subc'
};

Control Content Type Constants
enum {
 kControlContentTextOnly = 0,
 kControlNoContent = 0,
 kControlContentIconSuiteRes = 1,
 kControlContentCIconRes = 2,
 kControlContentPictRes = 3,
 kControlContentICONRes = 4,
 kControlContentIconSuiteHandle = 129,
 kControlContentCIconHandle = 130,
 kControlContentPictHandle = 131,
 kControlContentIconRef = 132,
 kControlContentICON = 133
};

Constants
kControlContentTextOnly

Content type is text. This constant is passed in the contentType field of the
ControlButtonContentInfo structure if the content is text only. The variation code
kControlUsesOwningWindowsFontVariant applies when text content is used.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentIconSuiteRes
Content type uses an icon suite resource ID. The resource ID of the icon suite resource you wish to
display should be in the resID field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentCIconRes
Content type is a color icon resource ID. The resource ID of the color icon resource you wish to display
should be in the resID field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentPictRes
Content type is a picture resource ID. The resource ID of the picture resource you wish to display
should be in the resID field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentIconSuiteHandle
Content type is an icon suite handle. The handle of the icon suite you wish to display should be in
the iconSuite field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

254 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlContentCIconHandle
Content type uses a color icon handle. The handle of the color icon you wish to display should be in
the cIconHandle field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentPictHandle
Content type uses a picture handle. The handle of the picture you wish to display should be in the
picture field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentIconRef
Content type is IconRef. An IconRef value for the icon you wish to display should be provided in
the iconRef field of the ControlButtonContentInfo structure. Note that the
kControlBevelButtonGraphicOffsetTag control data tag constant should not be used with
IconRef based bevel button content, because IconRef based icons may change with a theme
switch; see “Bevel Button Control Data Tag Constants” (page 207). Supported with Mac OS 8.5 and
later.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Control Data Browser Tag Constants
enum {
 kControlDataBrowserIncludesFrameAndFocusTag = 'brdr',
 kControlDataBrowserKeyFilterTag = kControlEditTextKeyFilterTag,
 kControlDataBrowserEditTextKeyFilterTag = kControlDataBrowserKeyFilterTag,
 kControlDataBrowserEditTextValidationProcTag = kControlEditTextValidationProcTag
};

Control Def Constants
enum {
 kControlDefProcPtr = 0,
 kControlDefObjectClass = 1
};

Constants
kControlDefProcPtr

Indicates raw, proc-ptr based access.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlDefObjectClass
Indicates event-based definition (Mac OS X only).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Constants 255
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Def Type Constants
enum {
 kControlDefProcType = 'CDEF',
 kControlTemplateResourceType = 'CNTL',
 kControlColorTableResourceType = 'cctb',
 kControlDefProcResourceType = 'CDEF'
};

Disclosure Triangle Constants
enum {
 kControlDisclosureButtonClosed = 0,
 kControlDisclosureButtonDisclosed = 1
};

Constants
kControlDisclosureButtonClosed

The control will be drawn suggesting a closed state.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

kControlDisclosureButtonDisclosed
The control will be drawn suggesting a disclosed state.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

Unicode Control Data Tags
Specify data tags used with Unicode edit text controls.

enum {
 kControlEditTextSingleLineTag = 'sglc',
 kControlEditTextInsertTextBufferTag = 'intx',
 kControlEditTextInsertCFStringRefTag = 'incf',
 kControlEditUnicodeTextPostUpdateProcTag = 'upup'
};

Constants
kControlEditTextSingleLineTag

Indicates whether the control should always be single line.

Data to set or get is type Boolean.

Available in Mac OS X v10.2 and later.

Declared in HITextViews.h.

kControlEditTextInsertTextBufferTag
Gets or sets the control’s text as WorldScript encoded text. Available in Mac OS X v10.3 and later.

Data to get or set is an array of char types.

Available in Mac OS X v10.3 and later.

Declared in HITextViews.h.

256 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlEditTextInsertCFStringRefTag
Gets or sets the control’s text as a CFString. Available in Mac OS X v10.3 and later.

Data to get or set is type CFStringRef. If obtaining the string, be sure to release it after you are done
with it.

Available in Mac OS X v10.3 and later.

Declared in HITextViews.h.

kControlEditUnicodeTextPostUpdateProcTag
Gets or sets the post-update callback function.

Data to get or set is type UnicodePostUpdateUPP.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

Discussion
You use these tags in conjunction with GetControlData (page 85) and SetControlData (page 137) on
Unicode edit text controls.

Constants 257
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Edit Unicode Text Post Update Proc Tag Constant
enum {
 kControlEditUnicodeTextPostUpdateProcTag = 'upup'
};

Control Edit Unicode Text Proc Constants
enum {
 kControlEditUnicodeTextProc = 912,
 kControlEditUnicodeTextPasswordProc = 914
};

Control Entire Control Constant
enum {
 kControlEntireControl = 0
};

Control Kind Bevel Button Constant
enum {
 kControlKindBevelButton = 'bevl'
};

Control Kind Chasing Arrows Constant
enum {
 kControlKindChasingArrows = 'carr'
};

Control Kind Clock Constant
enum {
 kControlKindClock = 'clck'
};

Control Kind Data Browser Constant
enum {
 kControlKindDataBrowser = 'datb'
};

Control Kind Disclosure Button Constant
enum {

258 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

 kControlKindDisclosureButton = 'disb'
};

Control Kind Disclosure Triangle Constant
enum {
 kControlKindDisclosureTriangle = 'dist'
};

Control Kind Edit Text Constant
enum {
 kControlKindEditText = 'etxt'
};

Control Kind Edit Unicode Text Constant
enum {
 kControlKindEditUnicodeText = 'eutx'
};

Control Kind Group Box Constants
enum {
 kControlKindGroupBox = 'grpb',
 kControlKindCheckGroupBox = 'cgrp',
 kControlKindPopupGroupBox = 'pgrp'
};

Control Kind Icon Constant
enum {
 kControlKindIcon = 'icon'
};

Control Kind Image Well Constant
enum {
 kControlKindImageWell = 'well'
};

Control Kind List Box Constant
enum {
 kControlKindListBox = 'lbox'
};

Constants 259
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlKindLittleArrows
enum {
 kControlKindLittleArrows = 'larr'
};

Control Kind Picture Constant
enum {
 kControlKindPicture = 'pict'
};

Control Kind Placard Constant
enum {
 kControlKindPlacard = 'plac'
};

Control Kind Pop-up Arrow Constant
enum {
 kControlKindPopupArrow = 'parr'
};

Control Kind Pop-up Button Constant
enum {
 kControlKindPopupButton = 'popb'
};

Control Kind Progress Bar Constants
enum {
 kControlKindProgressBar = 'prgb',
 kControlKindRelevanceBar = 'relb'
};

Control Kind Push and Radio Button Constants
enum {
 kControlKindPushButton = 'push',
 kControlKindPushIconButton = 'picn',
 kControlKindRadioButton = 'rdio',
 kControlKindCheckBox = 'cbox'
};

260 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Kind Radio Group Constant
enum {
 kControlKindRadioGroup = 'rgrp'
};

Control Kind Round Button Constant
enum {
 kControlKindRoundButton = 'rndb'
};

Control Kind Scroll Bar Constant
enum {
 kControlKindScrollBar = 'sbar'
};

Control Kind Scrolling Text Box Constant
enum {
 kControlKindScrollingTextBox = 'stbx'
};

Control Kind Separator Constant
enum {
 kControlKindSeparator = 'sepa'
};

Control Kind Signature Apple Constant
enum {
 kControlKindSignatureApple = 'appl'
};

Constants
kControlKindSignatureApple

Signature of all system controls.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Constants 261
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Kind Slider Constant
enum {
 kControlKindSlider = 'sldr'
};

Control Kind Static Text Constant
enum {
 kControlKindStaticText = 'stxt'
};

Control Kind Tabs Constant
enum {
 kControlKindTabs = 'tabs'
};

Control Kind User Pane Constant
enum {
 kControlKindUserPane = 'upan'
};

Control Kind Window Header Constant
enum {
 kControlKindWindowHeader = 'whed'
};

Control Picture Handle Tag Constant
enum {
 kControlPictureHandleTag = 'pich'
};

Control Pop-up Arrow Orientation Constants
enum {
 kControlPopupArrowOrientationEast = 0,
 kControlPopupArrowOrientationWest = 1,
 kControlPopupArrowOrientationNorth = 2,
 kControlPopupArrowOrientationSouth = 3
};

Control Pop-up Arrow Size Constants

262 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

enum {
 kControlPopupArrowSizeNormal = 0,
 kControlPopupArrowSizeSmall = 1
};

Control Pop-up Button Check Current Tag Constant
enum {
 kControlPopupButtonCheckCurrentTag = 'chck'
};

Control Property Persistent Constant
enum {
 kControlPropertyPersistent = 0x00000001
};

Control Round Button Content and Size Tag Constants
enum {
 kControlRoundButtonContentTag = 'cont',
 kControlRoundButtonSizeTag = kControlSizeTag
};

Control Scrollbar Shows Arrows Tag Constant
enum {
 kControlScrollBarShowsArrowsTag = 'arro'
};

Control Size Constants
enum {
 kControlSizeNormal = 0,
 kControlSizeSmall = 1,
 kControlSizeLarge = 2,
 kControlSizeAuto = 0xFFFF
};

Control Supports New Messages Constant
enum {
 kControlSupportsNewMessages = ' ok '
};

Constants

Constants 263
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlSupportsNewMessages
The control definition function supports new messages introduced with Mac OS 8 and the Appearance
Manager.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Discussion
If your control definition function supports Appearance-compliant messages, it should return
kControlSupportsNewMessages as a function result when the Control Manager passes
kControlMsgTestNewMsgSupport in the message parameter.

Control Tab Image Content Tag Constant
enum {
 kControlTabImageContentTag = 'cont'
};

Control Tab Info Version Constants
enum {
 kControlTabInfoVersionZero = 0,
 kControlTabInfoVersionOne = 1
};

Control Tab Type Constants
enum {
 kControlTabListResType = 'tab#',
 kControlListDescResType = 'ldes'
};

Control Use Theme Font ID Mask Constant
enum {
 kControlUseThemeFontIDMask = 0x0080
};

Click Activation Constants
Specify constants that indicate the way a control prefers to respond to a click.

264 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

enum {
 kDoNotActivateAndIgnoreClick = 0,
 kDoNotActivateAndHandleClick = 1,
 kActivateAndIgnoreClick = 2,
 kActivateAndHandleClick = 3
};
typedef UInt32 ClickActivationResult;

Constants
kDoNotActivateAndIgnoreClick

Indicates that the click should be ignored and that the window should not be activated. This constant
is defined for completeness and is rarely used.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kDoNotActivateAndHandleClick
Indicates that the control should handle the click while the window is still in the background.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kActivateAndIgnoreClick
Indicates that control doesn’t want to respond directly to the click, but window should still be brought
forward.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kActivateAndHandleClick
Indicates that the control wants to respond to the click, but only after the window has been activated.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
These constants are used by GetControlClickActivation (page 84).

Constants 265
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Selection Constants
enum {
 kDragSelect = 1,
 kSelectOnlyOne = 2,
 kResetSelection = 4,
 kCmdTogglesSelection = 8,
 kNoDisjointSelection = 16,
 kAlwaysExtendSelection = 32
};

Drag Tracking Enter Control Constants
enum {
 kDragTrackingEnterControl = 2,
 kDragTrackingInControl = 3,
 kDragTrackingLeaveControl = 4
};

Key Filter Result Codes
enum {
 kControlKeyFilterBlockKey = 0,
 kControlKeyFilterPassKey = 1
};

Constants
kControlKeyFilterBlockKey

The keystroke is blocked and not received by the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlKeyFilterPassKey
The keystroke is filtered and received by the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
Your key filter function returns these constants to specify whether or not a keystroke is filtered or blocked.

266 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

In Control Part Constants
enum {
 kInLabelControlPart = kControlLabelPart,
 kInMenuControlPart = kControlMenuPart,
 kInTriangleControlPart = kControlTrianglePart,
 kInButtonControlPart = kControlButtonPart,
 kInCheckBoxControlPart = kControlCheckBoxPart,
 kInUpButtonControlPart = kControlUpButtonPart,
 kInDownButtonControlPart = kControlDownButtonPart,
 kInPageUpControlPart = kControlPageUpPart,
 kInPageDownControlPart = kControlPageDownPart
};

Order Constants
enum {
 kOrderUndefined = 0,
 kOrderIncreasing = 1,
 kOrderDecreasing = 2
};

List Box Control Data Tag Constants
enum {
 kControlListBoxListHandleTag = 'lhan',
 kControlListBoxKeyFilterTag = kControlKeyFilterTag,
 kControlListBoxFontStyleTag = kControlFontStyleTag
};
enum {
 kControlListBoxDoubleClickTag = 'dblc',
 kControlListBoxLDEFTag = 'ldef'
};

Constants
kControlListBoxListHandleTag

Gets a handle to a list box.

Data type returned: ListHandle

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlListBoxDoubleClickTag
Checks to see whether the most recent click in a list box was a double click. Available with Appearance
1.0.1 and later.

Data type returned: Boolean; if true, the last click was a double click; if false, not.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Constants 267
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlListBoxLDEFTag
Sets the 'LDEF' resource to be used to draw a list box’s contents this is useful for creating a list box
without an 'ldes' resource. Available with Appearance 1.0.1 and later.

Data type set: SInt16

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

List Box Control Definition ID Constants
enum {
 kControlListBoxProc = 352,
 kControlListBoxAutoSizeProc = 353
};

Constants
kControlListBoxProc

Resource ID: 21

List box. This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlListBoxAutoSizeProc
Resource ID: 21

Autosizing list box. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

268 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Little Arrows Control Definition ID Constant
enum {
 kControlLittleArrowsProc = 96
};

Constants
kControlLittleArrowsProc

Resource ID: 6

Little arrows. This control definition is new with the Appearance Manager and is not supported unless
the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HILittleArrows.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 269
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Little Arrows Control Tag Constant
enum {
 kControlLittleArrowsIncrementValueTag = 'incr'
};

Constants
kControlLittleArrowsIncrementValueTag

Gets or sets the increment value of the control. Currently, the little arrows control does not use the
increment value because the control does not change the value itself. You must use an action proc
to change the value. Available in Mac OS X v10.3 and later.

Data type retrieved: SInt32

Available in Mac OS X v10.3 and later.

Declared in HILittleArrows.h.

Mac OS 8.5 Bevel Button Control Data Tag Constant
enum {
 kControlBevelButtonScaleIconTag = 'scal'
};

Constants
kControlBevelButtonScaleIconTag

Gets or sets whether, when the proper icon size is unavailable, an icon should be scaled for use with
a given bevel button. This tag is only for use with icon suites or the IconRef data type.

Data type retrieved or set: Boolean. If true, indicates that if an icon of the ideal size isn’t available,
a larger or smaller icon should be scaled to the ideal size. If false, no scaling should occur; instead,
a smaller icon should be drawn or a larger icon clipped. Default is false.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
The Mac OS 8.5 Control Manager defines this new control data tag constant. This constant is passed in the
inTagName parameters of the functions SetControlData and GetControlData to specify the piece of
data in a control that you wish to set or get. You can also pass this constant in the inTagName parameter of
the function GetControlDataSize if you wish to determine the size of variable-length control data. This
constant can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The description here shows the data type
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

270 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Mac OS 8.5 Control Font Style Flag Constant
enum {
 kControlAddToMetaFontMask = 0x0200
};

Constants
kControlAddToMetaFontMask

If the bit specified by this mask is set, the control may use a meta-font while also adding other attributes
to the font. If the bit specified by this mask is not set, but a meta-font is specified for the control, any
additional attributes set for the font are ignored.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
With the Mac OS 8.5 Control Manager, you can pass this new control font style flag constant in the flags
field of the ControlFontStyleRec structure to specify the fields of the structure that should be applied to
the control. For more on control font style flag constants, see “Control Font Style Flag Constants” (page 229)
and the ControlFontStyleRec (page 188) structure.

Mac OS 8.5 Editable Text Control Definition ID Constant
enum {
 kControlEditTextInlineInputProc = 276
};

Constants
kControlEditTextInlineInputProc

Identifies the inline input variant of the editable text control ('CDEF' resource ID 17), which supports
2-byte script systems. This variant cannot be combined with the password variant of the editable text
box.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
The Mac OS 8.5 Control Manager defines this new control definition ID.

When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

Constants 271
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID. This of these constant,
and its associated ID, is not supported unless the Appearance Manager is available.

Mac OS 8.5 Group Box Control Data Tag Constant
enum {
 kControlGroupBoxTitleRectTag = 'trec'
};

Constants
kControlGroupBoxTitleRectTag

Gets the rectangle that contains the title of a group box (and any associated control, such as a checkbox
or other button).

Data type retrieved: Rect

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
The Mac OS 8.5 Control Manager defines this new control data tag constant. This constant is passed in the
inTagName parameters of the functions SetControlData and GetControlData to specify the piece of
data in a control that you wish to set or get. You can also pass this constant in the inTagName parameter of
the function GetControlDataSize if you wish to determine the size of variable-length control data. This
constant can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The description here shows the data type
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Mac OS 8.5 Icon Control Data Tag Constants
enum {
 kControlIconResourceIDTag = 'ires',
 kControlIconContentTag = 'cont'
};

Constants
kControlIconResourceIDTag

Gets or sets the resource ID of the icon to use.

Data type retrieved or set: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

272 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlIconContentTag
Gets or sets the type of content to be used in an icon control.

Data type retrieved or set: ControlButtonContentInfo (page 183).

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Discussion
The Mac OS 8.5 Control Manager defines these new control data tag constants. These constants are passed
in the inTagName parameters of the functions SetControlData and GetControlData to specify the piece
of data in a control that you wish to set or get. You can also pass these constants in the inTagName parameter
of the function GetControlDataSize if you wish to determine the size of variable-length control data.
These constants can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The descriptions here show the data types
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Mac OS 8.5 Pop-up Button Control Data Tag Constants
enum {
 kControlPopupButtonExtraHeightTag = 'exht',
 kControlPopupButtonOwnedMenuRefTag = 'omrf'
};

Constants
kControlPopupButtonExtraHeightTag

Gets or sets the amount of extra vertical white space in a pop-up menu button.

Data type set or retrieved: SInt16; default is 0.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopUpButtonOwnedMenuRefTag
Sets the menu to be displayed by the popup button control. This tag operates identically to
kControlPopupButtonMenuRefTag, except that the popup button takes ownership of the specified
menu. If the popup button is disposed, or a new menu is specified, the popup button control will
automatically release the menu.

Data type set or retrieved: MenuRef

Discussion
The Mac OS 8.5 Control Manager defines this new control data tag constant. This constant is passed in the
inTagName parameters of the functions SetControlData and GetControlData to specify the piece of
data in a control that you wish to set or get. You can also pass this constant in the inTagName parameter of
the function GetControlDataSize if you wish to determine the size of variable-length control data. This
constant can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The description here shows the data type
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Constants 273
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Control Meta Part Code Constants
enum {
 kControlStructureMetaPart = -1,
 kControlContentMetaPart = -2,
 kControlOpaqueMetaPart = -3,
 kControlClickableMetaPart = -4
};

Constants
kControlStructureMetaPart

The entire area that the control will draw into. This area may extend beyond the bounds of the control
(for example, if the control draws a focus ring outside of its bounds). You may return a superset of
the drawn area if this is computationally easier to construct. This area is used to determine the area
of a window that should be invalidated and redrawn when a control is invalidated. It is not necessary
for a control to return a shape that precisely describes the structure area; for example, a control whose
structure is an oval may simply return the oval's bounding rectangle. The default handler for the
kEventControlGetPartRegion event returns the control's bounds when this part is requested.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentMetaPart
The area of the control in which embedded controls should be positioned. This part is only defined
for controls that can contain other controls (for example, the group box). This area is largely
informational and is not used by the Control Manager itself. The default handler for the
kEventControlGetPartRegion event returns errInvalidPartCodewhen this part is requested.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlOpaqueMetaPart
The area of the control that, when drawn, is filled with opaque pixels. You may also return a subset
of the opaque area if this is computationally easier to construct. If a control is contained in a composited
window, the Control Manager will use this area to optimize drawing of other controls that intersect
this area; controls that are entirely contained within the opaque area, and that are z-ordered underneath
this control, will not be drawn at all, since any drawing would be completely overwritten by this
control. The default handler for the kEventControlGetPartRegion event returns an empty area
when this part is requested.

Available in Mac OS X v10.3 and later.

Declared in Controls.h.

kControlClickableMetaPart
The area of the control that causes a mouse event to be captured by that control. If a mouse event
falls inside the control bounds but outside of this area, then the Control Manager will allow the event
to pass through the control to the next control behind it in z-order. This area is used to determine
which parts of a window should allow async window dragging when clicked (the draggable area is
computed by subtracting the clickable areas of controls in the window from the window's total area).
You can also customize the clickable area of a control if you want the control to have an effectively
transparent area (for example, a control that draws multiple tabs might want clicks in the space
between the tabs to fall through to the next control rather than be captured by the tab-drawing
control). The default handler for the kEventControlGetPartRegion event returns the control's
bounds when this part is requested.

Available in Mac OS X v10.3 and later.

Declared in Controls.h.

274 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
An application that needs the structure and content regions of a control can call GetControlRegion (page
95) and specify these meta-parts. A custom HIView that needs to specialize its opaque and clickable regions
can provide a kEventControlGetPartRegion event handler that checks for these meta-parts and return
an appropriate region (or HIShape).

Meta Font Constants
enum {
 kControlFontBigSystemFont = -1,
 kControlFontSmallSystemFont = -2,
 kControlFontSmallBoldSystemFont = -3,
 kControlFontViewSystemFont = -4
};

Constants
kControlFontBigSystemFont

Use the system font.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlFontSmallSystemFont
Use the small system font.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlFontSmallBoldSystemFont
Use the small emphasized system font (emphasis applied correctly for locale).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
You can use the meta font constants in the font field of the structure ControlFontStyleRec (page 188)
and the Font ID field of a dialog font table resource to specify the style, size, and font family of the control
font. You should use these meta font constants whenever possible because the system font can change,
depending upon the current theme. If none of these constants are specified, the control uses the system
font unless directed to use a window font by a control variant.

Version Notes
The meta font constants are available with Appearance Manager 1.0 and later.

Constants 275
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Constraint Constants
enum {
 noConstraint = kNoConstraint,
 hAxisOnly = 1,
 vAxisOnly = 2
};

Part Identifier Constants
enum {
 cFrameColor = 0,
 cBodyColor = 1,
 cTextColor = 2,
 cThumbColor = 3,
 kNumberCtlCTabEntries = 4
};

Constants
cFrameColor

Produces foreground color for scroll arrows and gray area.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

cBodyColor
Produces color of the scroll box.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

cTextColor
Produces text color for scroll bars. Currently unused.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

cThumbColor
Reserved.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
The part identifier constants are not recommended with the Appearance Manager. When the Appearance
Manager is available and you are using standard controls, part identifier constants are ignored and the colors
are determined by the current theme. If you are creating your own control definition function, you can still
use these constants in the partIdentifier field of a control color table structure to draw a control using
colors other than the system default and to identify the part of a control that a color affects.

When the Appearance Manager is not present, you can use these constants in the partIdentifier field
of a control color table resource 'cctb’ and the partIdentifier field of a control color table structure to
identify the part of the control that the color affects.

Note that the colors you specify in the color table are blended to produce the colors that are actually used.

276 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Picture Control Definition ID Constants
enum {
 kControlPictureProc = 304,
 kControlPictureNoTrackProc = 305
};

Constants
kControlPictureProc

Resource ID: 19

Picture control. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlPictureNoTrackProc
Resource ID: 19

Non-tracking picture. Immediately returns kControlPicturePart as the part code hit without
tracking.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 277
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Placard Control Definition ID Constant
enum {
 kControlPlacardProc = 224
};

Constants
kControlPlacardProc

Resource ID: 14

Placard. This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

278 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Pop-up Menu Title Constants
enum {
 popupTitleBold = 1 << 8,
 popupTitleItalic = 1 << 9,
 popupTitleUnderline = 1 << 10,
 popupTitleOutline = 1 << 11,
 popupTitleShadow = 1 << 12,
 popupTitleCondense = 1 << 13,
 popupTitleExtend = 1 << 14,
 popupTitleNoStyle = 1 << 15
};

Constants
popupTitleBold

Draw title in bold font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleItalic
Draw title in italic font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleUnderline
Draw title in underline font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleOutline
Draw title in outline font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleShadow
Draw title in shadow font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleCondense
Draw title in condensed text font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleExtend
Draw title in extended text font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleNoStyle
Draw title in plain text font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Constants 279
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Discussion
When you define a pop-up menu control in a control resource, you can use one or more of these constants
in the initial setting field to specify where and how to draw the pop-up menu control title.

Pop-up Menu Title Justification Constants
enum {
 popupTitleLeftJust = 0x00000000,
 popupTitleCenterJust = 0x00000001,
 popupTitleRightJust = 0x000000FF
};

Constants
popupTitleLeftJust

Place title to the left of the pop-up box.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleCenterJust
Center title over the pop-up box.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleRightJust
Place title to the right of the pop-up box.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Discussion
When you define a pop-up menu control in a control resource, you can use one or more of these constants
in the initial setting field to specify where and how to draw the pop-up menu control title.

280 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Pop-up Arrow Control Definition ID Constants
enum {
 kControlPopupArrowEastProc = 192,
 kControlPopupArrowWestProc = 193,
 kControlPopupArrowNorthProc = 194,
 kControlPopupArrowSouthProc = 195,
 kControlPopupArrowSmallEastProc = 196,
 kControlPopupArrowSmallWestProc = 197,
 kControlPopupArrowSmallNorthProc = 198,
 kControlPopupArrowSmallSouthProc = 199
};

Constants
kControlPopupArrowEastProc

Resource ID: 12

Large, right-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowWestProc
Resource ID: 12

Large, left-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowNorthProc
Resource ID: 12

Large, up-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowSouthProc
Resource ID: 12

Large, down-facing pop-up arrow. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowSmallEastProc
Resource ID: 12

Small, right-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Constants 281
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlPopupArrowSmallWestProc
Resource ID: 12

Small, left-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowSmallNorthProc
Resource ID: 12

Small, up-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowSmallSouthProc
Resource ID: 12

Small, down-facing pop-up arrow. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

282 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Pop-up Button Control Data Tag Constants
enum {
 kControlPopupButtonMenuHandleTag = 'mhan',
 kControlPopupButtonMenuRefTag = 'mhan',
 kControlPopupButtonMenuIDTag = 'mnid'
};

Constants
kControlPopupButtonMenuHandleTag

Gets or sets the menu handle for a popup button. Available with Appearance Manager 1.0.1 and later.

Data type returned or set: MenuHandle

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupButtonMenuRefTag
Gets or sets the menu reference assigned to a popup button. If setting the menu reference, the popup
button does not own the menu, so you must dispose of it yourself. To allow the popup button to take
ownership of the menu, use the kControlPopupButtonOwnedMenuRefTag tag (defined in “Mac
OS 8.5 Pop-up Button Control Data Tag Constants” (page 273)) instead.

Data type returned or set: MenuRef

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupButtonMenuIDTag
Gets or sets the menu ID for a popup button. Available with Appearance Manager 1.0.1 and later.

Data type returned or set: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Constants 283
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Pop-up Button Control Definition ID Constants
enum {
 kControlPopupButtonProc = 400,
 kControlPopupFixedWidthVariant = 1 << 0,
 kControlPopupVariableWidthVariant = 1 << 1,
 kControlPopupUseAddResMenuVariant = 1 << 2,
 kControlPopupUseWFontVariant = kControlUsesOwningWindowsFontVariant
};

Constants
kControlPopupButtonProc

Resource ID: 25

Appearance-compliant standard pop-up menu. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupFixedWidthVariant
(+ kControlPopupButtonProc)

Resource ID: 25

Appearance-compliant fixed-width pop-up menu. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupVariableWidthVariant
(+ kControlPopupButtonProc)

Resource ID: 25

Appearance-compliant variable-width pop-up menu. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupUseAddResMenuVariant
(+ kControlPopupButtonProc)

Resource ID: 25

Appearance-compliant pop-up menu with a value of type ResType in the contrlRfCon field of the
control structure. The Menu Manager adds resources of this type to the menu.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

284 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlPopupUseWFontVariant
(+ kControlPopupButtonProc)

Resource ID: 25

Appearance-compliant pop-up menu with control title in window font. This control definition is new
with the Appearance Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 285
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Pop-up Width Constants
enum {
 popupFixedWidth = 1 << 0,
 popupVariableWidth = 1 << 1,
 popupUseAddResMenu = 1 << 2,
 popupUseWFont = 1 << 3
};

Pre–Appearance Control Definition ID Constants
enum {
 pushButProc = 0,
 checkBoxProc = 1,
 radioButProc = 2,
 scrollBarProc = 16,
 popupMenuProc = 1008
};

Constants
pushButProc

Resource ID: 0

Pre-Appearance push button.

pushButProc + kControlUsesOwningWindowsFontVariant:

Resource ID: 0

Pre-Appearance push button with its text in the window font.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

checkBoxProc
Resource ID: 0

Pre-Appearance checkbox.

checkBoxProc + kControlUsesOwningWindowsFontVariant:

Resource ID: 0

Pre-Appearance checkbox with a control title in the window font.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

radioButProc
Resource ID: 0

Pre-Appearance radio button.

radioButProc + kControlUsesOwningWindowsFontVariant:

Resource ID: 0

Pre-Appearance radio button with a title in the window font.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

286 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

scrollBarProc
Resource ID: 0

Pre-Appearance scroll bar.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

popupMenuProc
Resource ID: 63

Pre-Appearance standard pop-up menu.

popupMenuProc + popupFixedWidth:

Resource ID: 63; Control Definition ID: 1009

Pre-Appearance, fixed-width pop-up menu.

popupMenuProc + popupVariableWidth

Resource ID: 63; Control Definition ID: 1010

Pre-Appearance, variable-width pop-up menu.

popupMenuProc + popupUseAddResMenu

Resource ID: 63; Control Definition ID: 1012

Pre-Appearance pop-up menu with a value of type ResType in the contrlRfCon field of the control
structure. The Menu Manager adds resources of this type to the menu.

popupMenuProc + popupUseWFont

Resource ID: 63; Control Definition ID: 1016

Pre-Appearance pop-up menu with a control title in the window font.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see “Defining Your Own
Control Definition Function”.

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 287
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

If your application contains code that uses the older, pre-Appearance control definition IDs or their constants,
your application can use the Appearance Manager to map the old IDs to those for the new, updated controls
introduced by the Appearance Manager. In particular, the control definition IDs for pre-Appearance checkboxes,
buttons, scroll bars, radio buttons, and pop-up menus will be automatically mapped to Appearance-compliant
equivalents.

Progress Bar Control Data Tag Constants
enum {
 kControlProgressBarIndeterminateTag = 'inde',
 kControlProgressBarAnimatingTag = 'anim'
};

Constants
kControlProgressBarIndeterminateTag

Gets or sets whether a progress indicator is determinate or indeterminate.

Data type returned or set: Boolean; if true, switches to an indeterminate progress indicator; if false,
switches to an determinate progress indicator.

Available in Mac OS X v10.0 and later.

Declared in HIProgressViews.h.

Discussion
You can use this control data tag constant to set or obtain data that is associated with a control. This constant
is passed in the inTagName parameters of SetControlData (page 137) and GetControlData (page 85)
to specify the piece of data in a control that you wish to set or get. You can also pass this constant in the
inTagNameparameter of GetControlDataSize (page 86) if you wish to determine the size of variable-length
control data. This constant can also be used by custom control definition functions that return the feature
bit kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the description of this control data tag constant lists the data type for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
This control data tag constant is available with Appearance Manager 1.0 and later.

288 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Progress Bar Control Definition ID Constants
enum {
 kControlProgressBarProc = 80,
 kControlRelevanceBarProc = 81
};

Constants
kControlProgressBarProc

Resource ID: 5

Progress indicator. To make the control determinate or indeterminate, set the
kControlProgressBarIndeterminateTag constant; see “Progress Bar Control Data Tag
Constants” (page 288). Progress indicators are only horizontal in orientation; vertical progress indicators
are not currently supported.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIProgressViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 289
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Push Button Control Data Tag Constants
enum {
 kControlPushButtonDefaultTag = 'dflt',
 kControlPushButtonCancelTag = 'cncl'
};

Constants
kControlPushButtonDefaultTag

Tells Appearance-compliant button whether to draw a default ring, or returns whether the Appearance
Manager draws a default ring for the button.

Data type returned or set: Boolean

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlPushButtonCancelTag
Gets or sets whether a given push button in a dialog or alert should be drawn with the theme-specific
adornments for a Cancel button.

Data type retrieved or set: Boolean; default is false.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
The Mac OS 8.5 Control Manager defines this new control data tag constant. This constant is passed in the
inTagName parameters of the functions SetControlData and GetControlData to specify the piece of
data in a control that you wish to set or get. You can also pass this constant in the inTagName parameter of
the function GetControlDataSize if you wish to determine the size of variable-length control data. This
constant can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The description here shows the data type
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Radio Button Value Constants
enum {
 kControlRadioButtonUncheckedValue = 0,
 kControlRadioButtonCheckedValue = 1,
 kControlRadioButtonMixedValue = 2
};

Constants
kControlRadioButtonUncheckedValue

The radio button is unselected.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlRadioButtonCheckedValue
The radio button is selected.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

290 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlRadioButtonMixedValue
Mixed value. Indicates that a setting is on for some elements in a selection and off for others. This
state only applies to standard Appearance-compliant radio buttons.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
These constants specify the value of a standard radio button control and are passed in the newValue
parameter of SetControlValue (page 146) and are returned by GetControlValue (page 96).

Version Notes
The radio button value constants are changed with Appearance Manager 1.0 to support mixed-value radio
buttons.

Radio Group Control Definition ID Constant
enum {
 kControlRadioGroupProc = 416
};

Constants
kControlRadioGroupProc

Resource ID: 26

Radio group. Embedder control for controls that have set the feature bitkControlHasRadioBehavior.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 291
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Scroll Bar Control Definition ID Constants
enum {
 kControlScrollBarProc = 384,
 kControlScrollBarLiveProc = 386
};

Constants
kControlScrollBarProc

Resource ID: 24

Appearance-compliant scroll bar. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIScrollView.h.

kControlScrollBarLiveProc
Resource ID: 24

Appearance-compliant scroll bar with live feedback. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIScrollView.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

292 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Scrolling Text Box Control Data Tag Constants
enum {
 kControlScrollTextBoxDelayBeforeAutoScrollTag = 'stdl',
 kControlScrollTextBoxDelayBetweenAutoScrollTag = 'scdl',
 kControlScrollTextBoxAutoScrollAmountTag = 'samt',
 kControlScrollTextBoxContentsTag = 'tres',
 kControlScrollTextBoxAnimatingTag = 'anim'
};

Constants
kControlScrollTextBoxDelayBeforeAutoScrollTag

Gets or sets the number of ticks to delay before the initial scrolling of an auto-scrolling text box control
begins.

Data type retrieved or set: UInt32

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlScrollTextBoxDelayBetweenAutoScrollTag
Gets or sets the number of ticks to delay between each unit of scrolling, for an auto-scrolling text box
control. (The unit of scrolling for the auto-scrolling text box control is one pixel at a time, unless your
application changes this value by calling the SetControlData function.)

Data type retrieved or set: UInt32

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlScrollTextBoxAutoScrollAmountTag
Gets or sets the number of pixels by which an auto-scrolling text box control scrolls; default is 1.

Data type retrieved or set: UInt16

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlScrollTextBoxContentsTag
Sets the ID of a 'TEXT' resource—and, optionally, a 'styl' resource—to be used as the content in
a scrolling or auto-scrolling text box control.

Data type set: SInt16

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
The Mac OS 8.5 Control Manager defines these new control data tag constants. These constants are passed
in the inTagName parameters of the functions SetControlData and GetControlData to specify the piece
of data in a control that you wish to set or get. You can also pass these constants in the inTagName parameter
of the function GetControlDataSize if you wish to determine the size of variable-length control data.
These constants can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The descriptions here show the data types
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Constants 293
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Scrolling Text Box Control Definition ID Constants
enum {
 kControlScrollTextBoxProc = 432,
 kControlScrollTextBoxAutoScrollProc = 433
};

Constants
kControlScrollTextBoxProc

Identifies the standard variant of the scrolling text box ('CDEF' resource ID 27), which contains a
scroll bar. Your application can use the kControlScrollTextBoxProc ID to create a scrolling box
of non-editable text, such as is used for an “About” box. You must pass the NewControl function the
ID of a 'TEXT' resource—and, optionally, a 'styl' resource—to be used for the initial value of the
control. The minimum and maximum values are reserved for the kControlScrollTextBoxProc
variant and should be set to 0.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlScrollTextBoxAutoScrollProc
Identifies the auto-scrolling variant of the scrolling text box ('CDEF' resource ID 27); this variant does
not contain a scroll bar. Your application can use the kControlScrollTextBoxAutoScrollProc
ID to create a scrolling box of non-editable text, such as is used for an “About” box. You must pass
the NewControl function the ID of a 'TEXT' resource—and, optionally, a 'styl' resource—to be
used for the initial value of the control. For the minimum value of the control, pass a value equal to
the delay, in ticks, before the control begins scrolling this delay will also be used between when
scrolling completes and when it begins again. For the maximum value of the control, pass a value
equal to the delay, in ticks, between each unit of scrolling. The unit of scrolling for the auto-scrolling
text box control is one pixel at a time, unless your application changes this value by calling the
SetControlData function. Note that in order to advance the content of the text box—that is, to
scroll the content—you must call the IdleControls function on a periodic basis, such as whenever
you receive a null event.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
The Mac OS 8.5 Control Manager defines these new control definition IDs.

When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

294 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Your application can use the constants listed here in place of control definition IDs. These constants, and
their associated IDs, are not supported unless the Appearance Manager is available.

Separator Line Control Definition ID Constant
enum {
 kControlSeparatorLineProc = 144
};

Constants
kControlSeparatorLineProc

Resource ID: 9

Separator line.

Available in Mac OS X v10.0 and later.

Declared in HISeparator.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 295
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Slider Control Definition ID Constants
enum {
 kControlSliderProc = 48,
 kControlSliderLiveFeedback = (1 << 0),
 kControlSliderHasTickMarks = (1 << 1),
 kControlSliderReverseDirection = (1 << 2),
 kControlSliderNonDirectional = (1 << 3)
};

Constants
kControlSliderProc

Resource ID: 3

Slider. Your application calls the function SetControlAction (page 135) to set the last value for the
control. This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

kControlSliderLiveFeedback
(+ kControlSliderProc)

Resource ID: 3

Slider with live feedback. The value of the control is updated automatically by the Control Manager
before your action function is called. If no application-defined action function is supplied, the slider
draws an outline of the indicator as the user moves it. This control definition is new with the
Appearance Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

kControlSliderHasTickMarks
(+ kControlSliderProc)

Resource ID: 3

Slider with tick marks. The control rectangle must be large enough to include the tick marks. This
control definition is new with the Appearance Manager and is not supported unless the Appearance
Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

kControlSliderReverseDirection
(+ kControlSliderProc)

Resource ID: 3

Slider with a directional indicator. The indicator is positioned perpendicularly to the slider; that is, if
the slider is horizontal, the indicator points up, and if the slider is vertical, the indicator points left.
This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

296 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlSliderNonDirectional
(+ kControlSliderProc)

Resource ID: 3

Slider with a rectangular, non-directional indicator. This variant overrides the
kSliderReverseDirection and kSliderHasTickMarks variants. This control definition is new
with the Appearance Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Static Text Control Data Tag Constants
enum {
 kControlStaticTextStyleTag = kControlFontStyleTag,
 kControlStaticTextTextTag = 'text',
 kControlStaticTextTextHeightTag = 'thei',
 kControlStaticTextTruncTag = 'trun',
 kControlStaticTextCFStringTag = 'cfst',
 kControlStaticTextIsMultilineTag = 'stim'
};

Constants
kControlStaticTextTextTag

Gets or sets text in a static text control.

Data type returned or set: character buffer.

Declared in HITextViews.h.

Available with Appearance Manager 1.0 and later.

Constants 297
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlStaticTextTextHeightTag
Gets the height of text in a static text control. Available with Appearance Manager 1.0 and later.

Data type returned or set:SInt16

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlStaticTextTruncTag
Gets or sets the control’s text truncation style. Truncation will not occur unless
kControlStaticTextIsMultilineTag is set to false.

Data type returned or set: TruncCode. The value truncEnd indicates that characters are truncated
off the end of the string; the value truncMiddle indicates that characters are truncated from the
middle of the string. Default is a value of -1, which indicates that no truncation occurs and the text
is wrapped instead.

Available with Appearance Manager 1.1 (Mac OS 8.5) and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlStaticTextCFStringTag
Gets or sets the control’s current text. When setting the text, the control retains the string, so you
may release the string after calling SetControlData. If the string you set is mutable, the control will
make a copy of the string, so any changes to the string after calling SetControlData will not affect
the control. When retrieving the text, the control retains the string before returning it to you, so you
must release the string after you are done with it.

Data type returned or set: CFStringRef

Available in CarbonLib 1.5 and later, and Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlStaticTextIsMultilineTag
Gets or sets a flag specifying whether the control draws its text in multiple lines if the text is too wide
for the control bounds. If false, the control always draws the text in a single line.

Data type returned or set: Boolean

Declared in HITextViews.h.

Available in Mac OS X v10.1 and later.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

298 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Static Text Control Definition ID Constant
enum {
 kControlStaticTextProc = 288
};

Constants
kControlStaticTextProc

Resource ID: 18

Static text field. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 299
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Text Proc Constants
enum {
 staticTextProc = 256,
 editTextProc = 272,
 iconProc = 288,
 userItemProc = 304,
 pictItemProc = 320
};

Tab Control Data Tag Constants
enum {
 kControlTabContentRectTag = 'rect',
 kControlTabEnabledFlagTag = 'enab',
 kControlTabFontStyleTag = kControlFontStyleTag
};

Constants
kControlTabContentRectTag

Gets the content rectangle of a tab control.

Data type returned: Rect

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

kControlTabEnabledFlagTag
Enables or disables a single tab in a tab control.

Data type returned or set: Boolean; if true, enabled; if false, disabled.

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

300 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Tab Control Definition IDs
enum {
 kControlTabLargeProc = 128,
 kControlTabSmallProc = 129,
 kControlTabLargeNorthProc = 128,
 kControlTabSmallNorthProc = 129,
 kControlTabLargeSouthProc = 130,
 kControlTabSmallSouthProc = 131,
 kControlTabLargeEastProc = 132,
 kControlTabSmallEastProc = 133,
 kControlTabLargeWestProc = 134,
 kControlTabSmallWestProc = 135
};

Constants
kControlTabLargeProc

Resource ID: 8

Normal tab control. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

kControlTabSmallProc
Resource ID: none

Small tab control. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 301
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

Tab Control Info Tag Constant
enum {
 kControlTabInfoTag = 'tabi'
};

Constants
kControlTabInfoTag

Gets or sets information for a tab in a tab control; see ControlTabInfoRec (page 194).

Data type returned or set: ControlTabInfoRec.

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

Discussion
You can use this control data tag constant to set or obtain data that is associated with a control. This constant
is passed in the inTagName parameters of SetControlData (page 137) and GetControlData (page 85)
to specify the piece of data in a control that you wish to set or get. You can also pass this constant in the
inTagNameparameter of GetControlDataSize (page 86) if you wish to determine the size of variable-length
control data. This constant can also be used by custom control definition functions that return the feature
bit kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the description of this control data tag constant lists the data type for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
This control data tag constant is available with Appearance Manager 1.0.1 and later.

Triangle Control Data Tag Constant
enum {
 kControlTriangleLastValueTag = 'last'
};

Constants
kControlTriangleLastValueTag

Gets or sets the last value of a disclosure triangle. Used primarily for setting up a disclosure triangle
properly when using the auto-toggle variant.

Data type returned or set: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

Discussion
You can use this control data tag constant to set or obtain data that is associated with a control. This constant
is passed in the inTagName parameters of SetControlData (page 137) and GetControlData (page 85)
to specify the piece of data in a control that you wish to set or get. You can also pass this constant in the
inTagNameparameter of GetControlDataSize (page 86) if you wish to determine the size of variable-length
control data. This constant can also be used by custom control definition functions that return the feature
bit kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

302 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the description of this control data tag constant lists the data type for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
This control data tag constant is available with Appearance Manager 1.0 and later.

Triangle Control Definition ID Constants
enum {
 kControlTriangleProc = 64,
 kControlTriangleLeftFacingProc = 65,
 kControlTriangleAutoToggleProc = 66,
 kControlTriangleLeftFacingAutoToggleProc = 67
};

Constants
kControlTriangleProc

Resource ID: 4

Disclosure triangle. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

kControlTriangleLeftFacingProc
Resource ID: 4

Left-facing disclosure triangle. This control definition is new with the Appearance Manager and is not
supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

kControlTriangleAutoToggleProc
Resource ID: 4

Auto-tracking disclosure triangle. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

kControlTriangleLeftFacingAutoToggleProc
Resource ID: 4

Left-facing, auto-tracking disclosure triangle. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

Constants 303
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

User Item and User Pane Control Data Tag Constants
enum {
 kControlUserItemDrawProcTag = 'uidp',
 kControlUserPaneDrawProcTag = 'draw',
 kControlUserPaneHitTestProcTag = 'hitt',
 kControlUserPaneTrackingProcTag = 'trak',
 kControlUserPaneIdleProcTag = 'idle',
 kControlUserPaneKeyDownProcTag = 'keyd',
 kControlUserPaneActivateProcTag = 'acti',
 kControlUserPaneFocusProcTag = 'foci',
 kControlUserPaneBackgroundProcTag = 'back'
};

Constants
kControlUserItemDrawProcTag

Gets or sets an application-defined item drawing function. If an embedding hierarchy is established,
a user pane drawing function should be used instead of an item drawing function.

Data type returned or set: UserItemUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneDrawProcTag
Gets or sets a user pane drawing function; see ControlUserPaneBackgroundProcPtr (page 172).
Indicates that the Control Manager needs to draw a control.

Data type returned or set: ControlUserPaneDrawingUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneHitTestProcTag
Gets or sets a user pane hit-testing function. Indicates that the Control Manager needs to determine
if a control part was hit; see ControlUserPaneBackgroundProcPtr (page 172).

Data type returned or set: ControlUserPaneHitTestUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

304 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlUserPaneTrackingProcTag
Gets or sets a user pane tracking function, which will be called when a control definition function
returns the kControlHandlesTracking feature bit in response to a kControlMsgGetFeatures
message. Indicates that a user pane handles its own tracking; see
ControlUserPaneBackgroundProcPtr (page 172).

Data type returned or set: ControlUserPaneTrackingUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneIdleProcTag
Gets or sets a user pane idle function, which will be called when a control definition function returns
the kControlWantsIdle feature bit in response to a kControlMsgGetFeaturesmessage. Indicates
that a user pane performs idle processing; see ControlUserPaneBackgroundProcPtr (page 172).

Data type returned or set: ControlUserPaneIdleUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneKeyDownProcTag
Gets or sets a user pane key down function, which will be called when a control definition function
returns the kControlSupportsFocus feature bit in response to a kControlMsgGetFeatures
message. Indicates that a user pane performs keyboard event processing; see
ControlUserPaneBackgroundProcPtr (page 172).

Data type returned or set: ControlUserPaneKeyDownUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneActivateProcTag
Gets or sets a user pane activate function, which will be called when a control definition function
returns the kControlWantsActivatefeature bit in response to a kControlMsgGetFeatures
message. Indicates that a user pane wants to be informed of activate and deactivate events; see
ControlUserPaneBackgroundProcPtr (page 172).

Data type returned or set: ControlUserPaneActivateUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneFocusProcTag
Gets or sets a user pane keyboard focus function, which will be called when a control definition
function returns the kControlSupportsFocus feature bit in response to a
kControlMsgGetFeatures message. Indicates that a user pane handles keyboard focus; see
ControlUserPaneBackgroundProcPtr (page 172).

Data type returned or set: ControlUserPaneFocusUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Constants 305
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

kControlUserPaneBackgroundProcTag
Gets or sets a user pane background function, which will be called when a control definition function
returns the kControlHasSpecialBackgroundand kControlSupportsEmbeddingfeature bits in
response to a kControlMsgGetFeaturesmessage. Indicates that a user pane can set its background
color or pattern; see ControlUserPaneBackgroundProcPtr (page 172).

Data type returned or set: ControlUserPaneBackgroundUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 137) and
GetControlData (page 85) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 86) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

User Pane Control Definition ID Constant
enum {
 kControlUserPaneProc = 256
};

Constants
kControlUserPaneProc

Resource ID: 16

User pane. This control definition is new with the Appearance Manager and is not supported unless
the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

306 Constants
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

useWFont Constants
enum {
 useWFont = kControlUsesOwningWindowsFontVariant
};

Window Control Definition IDs
enum {
 kControlWindowHeaderProc = 336,
 kControlWindowListViewHeaderProc = 337
};

Constants
kControlWindowHeaderProc

Resource ID: 21

Window header. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlWindowListViewHeaderProc
Resource ID: 21

Window list view header. This control definition is new with the Appearance Manager and is not
supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

Constants 307
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 161).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Window Control Data List Header Tag Constant
enum {
 kControlWindowHeaderIsListHeaderTag = 'islh'
};

Constants
kControlWindowHeaderIsListHeaderTag

Set to true if the control is to draw as a list header. Available in Mac OS X v10.3 and later.

Data type returned or set: Boolean

Available in Mac OS X v10.3 and later.

Declared in HIContainerViews.h.

Result Codes

The table below lists the result codes returned by Control Manager functions.

DescriptionValueResult Code

You calledSetControlProperty,GetControlProperty,
or a similar function with an illegal property creator
OSType.

-5603controlPropertyInvalid

Available in Mac OS X v10.0 and later.

The property tag and creator combination does not exist
for the specified control.

-5604controlPropertyNotFoundErr

Available in Mac OS X v10.0 and later.

308 Result Codes
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DescriptionValueResult Code

In general, this return value means a control, window, or
menu definition does not support the message/event that
underlies an API call. For example, if you call
GetControlFeatures on a control whose control
definition function doesn’t support “new messages” (the
new group of CDEF messages that came into existence
with the Appearance Manager on Mac OS 8),
GetControlFeatures will return this error.

-30580errMessageNotSupported

Available in Mac OS X v10.0 and later.

Returned from GetControlData and SetControlData
if the control doesn’t support the tag name and/or part
code that is passed in. It can also be returned from other
functions that are essentially wrappers around
GetControlData and SetControlData (such as
SetControlFontStyle).

-30581errDataNotSupported

Available in Mac OS X v10.0 and later.

The control you passed to a focusing function (such as
SetKeyboardFocus) doesn’t support focus. On Mac OS
X, you’re likely to receive errCouldntSetFocus or
eventNotHandledErr i instead.

-30582errControlDoesntSupportFocus

Available in Mac OS X v10.0 and later.

The specified window does not support focus.-30583errWindowDoesntSupportFocus

Available in Mac OS X v10.0 and later.

This is a variant of (and serves the same purpose as)
controlHandleInvalidErr. Various Control Manager
functions return this error if one of the specified controls
is NULL or otherwise invalid.

-30584errUnknownControl

Available in Mac OS X v10.0 and later.

The focus couldn’t be set to a given control or advanced
through a hierarchy of controls. This could be because the
control doesn’t support focusing, the control isn’t currently
embedded in a window, or you are attempting to advance
focus in a window that contains no focusable controls.

-30585errCouldntSetFocus

Available in Mac OS X v10.0 and later.

No root control exists. Some examples of when you might
receive this error include: 1) You called GetRootControl
before anyone called CreateRootControl for a given
non-compositing window. 2) You called a Control Manager
function (such as ClearKeyboardFocus or
AutoEmbedControl) that can only do its work if there’s
a root control in the window, yet there’s no root control.

-30586errNoRootControl

Available in Mac OS X v10.0 and later.

Result Codes 309
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DescriptionValueResult Code

Returned by CreateRootControl if a root control already
exists for the specified control.

-30587errRootAlreadyExists

Available in Mac OS X v10.0 and later.

The ControlPartCode you passed to a Control Manager
function is out of range, invalid, or otherwise unsupported.
For example, GetControlRegion returns
errInvalidPartCode if you pass kControlNoPart.

-30588errInvalidPartCode

Available in Mac OS X v10.0 and later.

You called CreateRootControl after creating one or
more non-root controls in a window, which is illegal; if you
want an embedding hierarchy on a given window, you
must call CreateRootControl before creating any other
controls for a given window.This is never returned on Mac
OS X, because a root control is created automatically (if it
doesn’t already exist) the first time any nonroot control is
created in a window.

-30589errControlsAlreadyExist

Available in Mac OS X v10.0 and later.

The control does not support embedding. Returned, for
example, by GetIndexedSubControl and
EmbedControl.

-30590errControlIsNotEmbedder

Available in Mac OS X v10.0 and later.

You called GetControlData or SetControlData with a
buffer whose size does not match the size of the data you
are attempting to get or set.

-30591errDataSizeMismatch

Available in Mac OS X v10.0 and later.

You called TrackControl, HandleControlClick, or a
similar mouse tracking function, on a control that is
invisible or disabled. You cannot track controls that are
invisible or disabled.

-30592errControlHiddenOrDisabled

Available in Mac OS X v10.0 and later.

The window region code is invalid.-30593errWindowRegionCodeInvalid

Available in Mac OS X v10.0 and later.

You called EmbedControl (or a similar function) with the
same control in the parent and child parameters. In other
words, you cannot embed a control into itself.

-30594errCantEmbedIntoSelf

Available in Mac OS X v10.0 and later.

You attempted to embed the root control in another
control.

-30595errCantEmbedRoot

Available in Mac OS X v10.0 and later.

310 Result Codes
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

DescriptionValueResult Code

You called GetDialogItemAsControl on a dialog item
(such as a kHelpDialogItem) that is not represented by
a control.

-30596errItemNotControl

Available in Mac OS X v10.0 and later.

You called GetControlData or SetControlData with a
buffer that represents a versioned structure, but the version
is unsupported by the control definition. This can happen
with the Tabs control and the kControlTabInfoTag.

-30597controlInvalidDataVersionErr

Available in Mac OS X v10.0 and later.

The control reference passed in was invalid.-30599controlHandleInvalidErr

Available in Mac OS X v10.0 and later.

Result Codes 311
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

312 Result Codes
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Control Manager Reference

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.4

CreateEditTextControl
Creates a new edit text control. (Deprecated in Mac OS X v10.4. Use CreateEditUnicodeTextControl (page
38) instead.)

OSStatus CreateEditTextControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef text,
 Boolean isPassword,
 Boolean useInlineInput,
 const ControlFontStyleRec *style,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. May be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

text
The text of the control. May be NULL.

isPassword
A Boolean indicating whether the field is to be used as a password field. Passing false indicates that
the field is to display entered text normally. Passing true means that the field is to be used as a
password field; any text typed into the field is displayed as bullets.

useInlineInput
A Boolean indicating whether the control is to accept inline input. Pass true to accept inline input;
otherwise pass false.

style
The control’s font style, size, color, and so on. May be NULL.

outControl
On return, the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Deprecated in Mac OS X v10.4 313
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
ControlDefinitions.h

IdleControls
Performs idle event processing. (Deprecated in Mac OS X v10.4. You should remove all calls to IdleControls
because it uses unnecessary processor time. System-supplied controls do not respond to IdleControls in
Mac OS X.)

Not recommended

void IdleControls (
 WindowRef inWindow
);

Parameters
inWindow

A pointer to a window containing controls that support idle events.

Discussion
Your application should call the IdleControls function to give idle time to any controls that want the
kControlMsgIdle message. IdleControls calls the control with an idle event so the control can do
idle-time processing. You should call IdleControls at least once in your event loop. See
ControlDefProcPtr (page 161) for more details on how a control definition function should handle idle
processing.

Special Considerations

Idle events are not recommended. If you have a custom control that needs time to perform tasks (such as
animation), use Carbon Event timers instead. See Carbon EventManager Programming Guide for more details.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Controls.h

Deprecated in Mac OS X v10.5

CreateCustomControl
Creates a custom control. (Deprecated in Mac OS X v10.5. Register your custom subclass of the HIView class
and create an instance of your class using HIObjectCreate.)

314 Deprecated in Mac OS X v10.5
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

OSStatus CreateCustomControl (
 WindowRef owningWindow,
 const Rect *contBounds,
 const ControlDefSpec *def,
 Collection initData,
 ControlRef *outControl
);

Parameters
owningWindow

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

contBounds
The bounds of the new control in the window’s local coordinates.

def
A pointer to the control definition function you want to associate with the new control.

initData
The initial state of the control. For additional information, see “Control Collection Tag Constants” (page
252).

outControl
On return, outControl points to the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 308).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

DisposeControlDefUPP
Disposes of a control definition UPP. (Deprecated in Mac OS X v10.5. Use a custom HIView to draw a custom
control.)

void DisposeControlDefUPP (
 ControlDefUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

Deprecated in Mac OS X v10.5 315
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

GetControlTitle
Obtains the title of a control. (Deprecated in Mac OS X v10.5. Use HIViewCopyText or
CopyControlTitleAsCFString (page 30) instead.)

void GetControlTitle (
 ControlRef theControl,
 Str255 title
);

Parameters
theControl

A handle to the control whose title you want to determine.

title
On input, a pascal string. On output, the title of the control.

Discussion
The GetControlTitle function produces the title of the specified control, which is stored in the
contrlTitle field of the control structure.

When you create a control, you specify an initial title either in the control resource or in the title parameter
of the function NewControl (page 318). You can change the title by using SetControlTitle (page 320).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

HandleControlKey
Sends a keyboard event to a control with keyboard focus. (Deprecated in Mac OS X v10.5. For HIView-based
controls, send the view a kEventTextInputUnicodeForKeyEvent event.)

ControlPartCode HandleControlKey (
 ControlRef inControl,
 SInt16 inKeyCode,
 SInt16 inCharCode,
 EventModifiers inModifiers
);

Parameters
inControl

A handle to the control that currently has keyboard focus.

inKeyCode
The virtual key code, derived from the event structure. This value represents the key pressed or
released by the user. It is always the same for a specific physical key on a particular keyboard regardless
of which modifier keys were also pressed.

inCharCode
A character, derived from the event structure. The value that is generated depends on the virtual key
code, the state of the modifier keys, and the current'KCHR' resource.

316 Deprecated in Mac OS X v10.5
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

inModifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

Return Value
The part code that was hit during the keyboard event; see “Control Meta Part Code Constants” (page 274),
“Control Part Code Constants ” (page 232), and“ Control State Part Code Constants” (page 235). For a description
of this data type, see ControlPartCode (page 192).

Discussion
If you have determined that a keyboard event has occurred in a given window, before calling the
HandleControlKey function, call GetKeyboardFocus (page 99) to get the handle to the control that
currently has keyboard focus. The HandleControlKey function passes the values specified in its inKeyCode,
inCharCode, and inModifiers parameters to control definition functions that set the
kControlSupportsFocus feature bit.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlDefUPP
Invokes a control definition UPP. (Deprecated in Mac OS X v10.5. Use a custom HIView to draw a custom
control.)

SInt32 InvokeControlDefUPP (
 SInt16 varCode,
 ControlRef theControl,
 ControlDefProcMessage message,
 SInt32 param,
 ControlDefUPP userUPP
);

Parameters
varCode

The variation code.

theControl
The control. For a description of this data type, see ControlRef (page 193).

message
The message.

param
The maximum value of the control.

userUPP
The UPP that is to be invoked.

Return Value
Availability
Available in Mac OS X v10.0 and later.

Deprecated in Mac OS X v10.5 317
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

NewControl
Creates a control based on parameter data. (Deprecated in Mac OS X v10.5. Use the specific control creation
function instead (for example, CreateCheckBoxControl (page 33)).)

ControlRef NewControl (
 WindowRef owningWindow,
 const Rect *boundsRect,
 ConstStr255Param controlTitle,
 Boolean initiallyVisible,
 SInt16 initialValue,
 SInt16 minimumValue,
 SInt16 maximumValue,
 SInt16 procID,
 SRefCon controlReference
);

Parameters
owningWindow

A pointer to the window in which you want to place the control. All coordinates pertaining to the
control are interpreted in this window’s local coordinate system.

boundsRect
A pointer to a rectangle, specified in the given window’s local coordinates, that encloses the control
and thus determines its size and location. When specifying this rectangle, you should follow the
guidelines presented in “Dialog Box Layout”, in Mac OS 8 Human Interface Guidelines, for control
placement and alignment.

controlTitle
The title string, used for push buttons, checkboxes, radio buttons, and pop-up menus. When specifying
a multiple-line title, separate the lines with the ASCII character code 0x0D (carriage return). For controls
that don’t use titles, pass an empty string.

initiallyVisible
A Boolean value specifying the visible/invisible state for the control. If you pass true in this parameter,
NewControl draws the control immediately, without using your window’s standard updating
mechanism. If you pass false, you must later use ShowControl (page 153) to display the control.

initialValue
The initial setting for the control. For sliders and scrollbars, pass the appropriate integer value. For
checkboxes and radio buttons, pass the constant indicating the current setting (as defined in “Checkbox
Value Constants” (page 216) and “Radio Button Value Constants” (page 290). For plain buttons that do
not retain a setting, pass 0.

minimumValue
The minimum setting for the control. For sliders and scrollbars, pass the appropriate minimum integer
value. For checkboxes and radio buttons, pass 0 (or the equivalent constant from “Checkbox Value
Constants” (page 216) or “Radio Button Value Constants” (page 290)). For plain buttons that do not
retain a setting, pass 0.

318 Deprecated in Mac OS X v10.5
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

maximumValue
The maximum setting for the control. For sliders and scrollbars, pass the appropriate maximum integer
value. For scroll bars, if the maximum value is equal to the minimum value, the control definition
function automatically disables the scroll bar. For checkboxes and radio buttons, pass 1 (or the
equivalent constant defined in “Checkbox Value Constants” (page 216) or “Radio Button Value
Constants” (page 290)). For plain buttons that do not retain a setting, pass 0.

procID
The control definition ID. If the control definition function isn’t in memory, it is read in. On Mac OS X,
if you do not pass a valid procID (that is, if it does not correspond to a CDEF resource), NewControl
will not create a control and will simply return NULL. On Mac OS 9 and earlier, passing an invalid
procID will cause NewControl to create a pushbutton control.

controlReference
The control’s reference value, which is set and used only by your application.

Return Value
A handle to the control described in its parameters. If NewControl runs out of memory or fails, it returns
NULL. For a description of this data type, see ControlRef (page 193).

Discussion
The NewControl function creates a control structure from the information you specify in its parameters,
adds the control structure to the control list for the specified window, and returns as its function result a
handle to the control. You use this handle when referring to the control in most other Control Manager
functions. Generally, you should use the function GetNewControl (page 100) instead of NewControl, because
GetNewControl is a resource-based control-creation function that allows you to localize your application
without recompiling.

When an embedding hierarchy is established within a window, NewControl automatically embeds the newly
created control in the root control of the owning window.

Carbon Porting Notes

Carbon does not support custom control definitions stored in'CDEF' resources. If you want to specify a
custom control definition for NewControl, you must compile your definition function directly in your
application and then register the function by calling RegisterControlDefinition (page 126). When
NewControl gets a procID value that doesn’t recognize, it checks a special mapping table to find the pointer
that is registered for the resource ID embedded in the procID parameter. It then calls that function to
implement your control.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

NewControlDefUPP
Creates a UPP for a control definition callback function. (Deprecated in Mac OS X v10.5. Use a custom HIView
to draw a custom control.)

Deprecated in Mac OS X v10.5 319
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

ControlDefUPP NewControlDefUPP (
 ControlDefProcPtr userRoutine
);

Return Value
A UPP to your control definition callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlTitle
Changes the title of a control and redraws the control accordingly. (Deprecated in Mac OS X v10.5. Use
HIViewSetText or SetControlTitleWithCFString (page 145) instead.)

Not recommended

void SetControlTitle (
 ControlRef theControl,
 ConstStr255Param title
);

Parameters
theControl

A handle to a control, the title of which you want to change.

title
The new title for the control.

Discussion
The SetControlTitle function changes the contrlTitle field of the control structure to the given string
and redraws the control, using the system font for the control title.

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes, and radio buttons.
When specifying a multiple-line title, separate the lines with the ASCII character code 0x0D (carriage return).
If the control is a button, each line is horizontally centered, and the font leading is inserted between lines.
(The height of each line is equal to the distance from the ascent line to the descent line plus the leading of
the font used. Be sure to make the total height of the rectangle greater than the number of lines times this
height.) If the control is a checkbox or a radio button, the text is justified as appropriate for the user’s current
script system, and the checkbox or button is vertically centered within its rectangle.

When you create a control, you specify an initial title either in the control resource or in the title parameter
of the function NewControl (page 318). To determine a control’s current title, use the function
GetControlTitle (page 316).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

320 Deprecated in Mac OS X v10.5
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

Related Sample Code
CarbonSketch

Declared In
Controls.h

Deprecated in Mac OS X v10.5 321
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

322 Deprecated in Mac OS X v10.5
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Control Manager Functions

This table describes the changes to Control Manager Reference.

NotesDate

Made minor formatting changes.2007-03-26

Added deprecation information.2006-07-24

Updated for Mac OS X v10.4.2006-01-10

Added descriptions of theCreatePopupArrowControl,
CreatePlacardControl, CreateStaticTextControl,
CreatePictureControl,CreateIconControl,CreatePushButtonControl,
CreatePushButtonWithIconControl, CreateRadioButtonControl,
CreateCheckBoxControl, CreateScrollBarControl,
CreatePopupButtonControl, CreateEditUnicodeTextControl functions.

Also added descriptions of the following
constants:kControlBevelButtonIsMultiValueMenuTag,kControlLittleArrowsIncrementValueTag,
kControlGroupBoxFrameRectTag, and
kControlWindowHeaderListHeaderTag.

Added documentation for numerous older functions as well, and fixed
miscellaneous errors.

Made bug fixes and did some consolidation. Filled out result code table.2005-07-07

Removed Data Browser APIs. These APIs are now in the Data Browser Reference.2003-10-15

Parameter type for outNumChildren in CountSubControls (page 31)
corrected to be UInt16.

Moved Miscellaneous functions into other categories. Rearranged function
categories and changed the location of some functions.

Removed functions that are unsupported in Carbon. Also removed the CtlCTab
structure and the PreFilterEventProc callback type.

Updated formatting and linking.2003-02-01

Changed mention of the GetControlTitleAsCFString to the correct API
name: CopyControlTitleAsCFString.

Updated text for EmbedControl (page 73), indicating that it is legal in Mac OS
X for the controlto be embedded and its desired host to be in different windows;
EmbedControl will move the control from one window to the other.

323
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

NotesDate

Added caveat to the kControlClockLongDateTag constant in “Clock Control
Data Tag Constants” (page 216) indicating that some fields in the date structure
may not be valid for all variants.

324
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

ActivateControl function 27
AdvanceKeyboardFocus function 28
Appearance–compliant Push Button, Radio Button, and

Checkbox Control Definition IDs 203
Asynchronous Arrows Control Definition ID 205
AutoEmbedControl function 28
autoTrack constant 221
AuxCtlHandle data type 180
AuxCtlPtr data type 181
AuxCtlRec structure 181

B

Bevel Button Behavior Constants 205
Bevel Button Control Data Tag Constants 207
Bevel Button Control Definition IDs 209
Bevel Button Graphic Alignment Constants 210
Bevel Button Menu Constant 211
Bevel Button Menu Control Data Tag Constants 212
Bevel Button Size Constants 251
Bevel Button Text Alignment Constants 213
Bevel Button Text Placement Constants 214

C

calcCntlRgn constant 221
calcCRgns constant 221
calcThumbRgn constant 222
cBodyColor constant 276
cFrameColor constant 276
ChangeControlPropertyAttributes function 29
Checkbox and Radio Button AutoToggle Control Definition

IDs 215
Checkbox Value Constants 216
checkBoxProc constant 286
ClearKeyboardFocus function 30

Click Activation Constants 264
ClickActivationResult data type 181
Clock Control Data Tag Constants 216
Clock Control Definition IDs 217
Clock Value Flag Constants 218
Constraint Constants 276
Control Bevel Button Menu Placement Constants 237
Control Bevel Thickness Constants 237
Control Can Auto Invalidate Constant 251
Control Chasing Arrows Animating Tag Constant 251
Control Clock Type Constants 237
Control Collection Tag Constants 252
Control Collection Tag Subcontrols Constant 254
Control Content Type Constants 254
Control Data Browser Tag Constants 255
Control Def Constants 255
Control Def Type Constants 256
Control Definition Message Constants 219
Control Disclosure Triangle Orientation Constants 237
Control Edit Unicode Text Post Update Proc Tag Constant

258
Control Edit Unicode Text Proc Constants 258
Control Entire Control Constant 258
Control Features Constants 225
Control Focus Part Code Constants 227
Control Font Style and Key Filter Data Tag Constants 228
Control Font Style Flag Constants 229
Control Key Script Behavior Constants 231
Control Kind Bevel Button Constant 258
Control Kind Chasing Arrows Constant 258
Control Kind Clock Constant 258
Control Kind Data Browser Constant 258
Control Kind Disclosure Button Constant 258
Control Kind Disclosure Triangle Constant 259
Control Kind Edit Text Constant 259
Control Kind Edit Unicode Text Constant 259
Control Kind Group Box Constants 259
Control Kind Icon Constant 259
Control Kind Image Well Constant 259
Control Kind List Box Constant 259
Control Kind Picture Constant 260
Control Kind Placard Constant 260

325
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

Index

Control Kind Pop-up Arrow Constant 260
Control Kind Pop-up Button Constant 260
Control Kind Progress Bar Constants 260
Control Kind Push and Radio Button Constants 260
Control Kind Radio Group Constant 260
Control Kind Round Button Constant 261
Control Kind Scroll Bar Constant 261
Control Kind Scrolling Text Box Constant 261
Control Kind Separator Constant 261
Control Kind Signature Apple Constant 261
Control Kind Slider Constant 262
Control Kind Static Text Constant 262
Control Kind Tabs Constant 262
Control Kind User Pane Constant 262
Control Kind Window Header Constant 262
Control Meta Part Code Constants 274
Control Notify Constants 237
Control Part Code Constants 232
Control Picture Handle Tag Constant 262
Control Pop-up Arrow Orientation Constants 262
Control Pop-up Arrow Size Constants 262
Control Pop-up Button Check Current Tag Constant 263
Control Property Persistent Constant 263
Control Push Button Icon Alignment Constants 237
Control Round Button Content and Size Tag Constants

263
Control Round Button Size Constants 238
Control Scrollbar Shows Arrows Tag Constant 263
Control Size Constants 263
Control Slider Orientation Constants 238
Control State Part Code Constants 235
Control Supports New Messages Constant 263
Control Tab Direction Constants 238
Control Tab Image Content Tag Constant 264
Control Tab Info Version Constants 264
Control Tab Size Constants 238
Control Tab Type Constants 264
Control Use Theme Font ID Mask Constant 264
Control Variant Constants 236
ControlActionProcPtr callback 159
ControlApplyTextColorRec structure 181
ControlBackgroundRec structure 182
ControlBevelButtonBehavior data type 182
ControlBevelButtonMenuBehavior data type 183
ControlButtonContentInfo structure 183
ControlCalcSizeRec structure 184
ControlCapabilities data type 184
ControlClickActivationRec structure 184
ControlCNTLToCollectionProcPtr callback 160
ControlColorProcPtr callback 161
ControlContentType data type 185
ControlContextualMenuClickRec structure 185
ControlDataAccessRec structure 185

ControlDefProcMessage data type 186
ControlDefProcPtr callback 161
ControlDefSpec structure 186
ControlDefType data type 186
ControlEditTextSelectionRec structure 187
ControlEditTextValidationProcPtr callback 169
ControlFocusPart data type 187
ControlFontStyleRec structure 188
ControlGetRegionRec structure 189
ControlHandle data type 190
controlHandleInvalidErr constant 311
ControlID structure 190
ControlImageContentInfo data type 190
controlInvalidDataVersionErr constant 311
ControlKeyDownRec structure 190
ControlKeyFilterProcPtr callback 170
ControlKeyFilterResult data type 191
ControlKeyScriptBehavior data type 191
ControlKind structure 191
ControlNotification data type 192
ControlNotificationUPP data type 192
ControlPartCode data type 192
ControlPopupArrowOrientation data type 192
ControlPopupArrowSize data type 192
controlPropertyInvalid constant 308
controlPropertyNotFoundErr constant 308
ControlPtr data type 192
ControlRecord structure 193
ControlRef data type 193
ControlSetCursorRec structure 193
ControlSize data type 194
ControlTabEntry structure 194
ControlTabInfoRec structure 194
ControlTabInfoRecV1 structure 195
ControlTemplate structure 195
ControlTrackingRec structure 196
ControlUserPaneActivateProcPtr callback 171
ControlUserPaneBackgroundProcPtr callback 172
ControlUserPaneDrawProcPtr callback 174
ControlUserPaneFocusProcPtr callback 175
ControlUserPaneHitTestProcPtr callback 176
ControlUserPaneIdleProcPtr callback 176
ControlUserPaneKeyDownProcPtr callback 177
ControlUserPaneTrackingProcPtr callback 179
ControlVariant data type 196
CopyControlTitleAsCFString function 30
CountSubControls function 31
CreateBevelButtonControl function 32
CreateChasingArrowsControl function 33
CreateCheckBoxControl function 33
CreateCheckGroupBoxControl function 34
CreateClockControl function 35

326
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

CreateCustomControl function (Deprecated in Mac OS
X v10.5) 314

CreateDisclosureButtonControl function 36
CreateDisclosureTriangleControl function 37
CreateEditTextControl function (Deprecated in Mac

OS X v10.4) 313
CreateEditUnicodeTextControl function 38
CreateGroupBoxControl function 39
CreateIconControl function 40
CreateImageWellControl function 41
CreateListBoxControl function 41
CreateLittleArrowsControl function 43
CreatePictureControl function 44
CreatePlacardControl function 45
CreatePopupArrowControl function 45
CreatePopupButtonControl function 46
CreatePopupGroupBoxControl function 47
CreateProgressBarControl function 49
CreatePushButtonControl function 49
CreatePushButtonWithIconControl function 50
CreateRadioButtonControl function 51
CreateRadioGroupControl function 52
CreateRelevanceBarControl function 52
CreateRootControl function 53
CreateRoundButtonControl function 55
CreateScrollBarControl function 55
CreateScrollingTextBoxControl function 57
CreateSeparatorControl function 58
CreateSliderControl function 58
CreateStaticTextControl function 60
CreateTabsControl function 60
CreateUserPaneControl function 62
CreateWindowHeaderControl function 62
cTextColor constant 276
cThumbColor constant 276

D

Data Browser Error Constants 243
DataBrowserCallbacks structure 197
DataBrowserCustomCallbacks structure 197
DataBrowserDragFlags data type 198
DataBrowserListViewColumnDesc structure 198
DataBrowserListViewHeaderDesc structure 198
DataBrowserPropertyDesc structure 199
DataBrowserPropertyFlags data type 199
DataBrowserPropertyPart data type 199
DataBrowserPropertyType data type 199
DataBrowserTableViewColumnDesc data type 200
DataBrowserTableViewColumnID data type 200
DataBrowserTableViewColumnIndex data type 200
DataBrowserTableViewRowIndex data type 200

DataBrowserViewStyle data type 200
DBItemProcDataType data type 201
DBRevealItemDataType data type 201
DBSetSelectionDataType data type 201
DeactivateControl function 63
DisableControl function 64
Disclosure Triangle Constants 256
dispCntl constant 221
DisposeControl function 64
DisposeControlActionUPP function 65
DisposeControlCNTLToCollectionUPP function 65
DisposeControlColorUPP function 66
DisposeControlDefUPP function (Deprecated in Mac

OS X v10.5) 315
DisposeControlEditTextValidationUPP function

66
DisposeControlKeyFilterUPP function 67
DisposeControlUserPaneActivateUPP function 67
DisposeControlUserPaneBackgroundUPP function

67
DisposeControlUserPaneDrawUPP function 68
DisposeControlUserPaneFocusUPP function 68
DisposeControlUserPaneHitTestUPP function 68
DisposeControlUserPaneIdleUPP function 69
DisposeControlUserPaneKeyDownUPP function 69
DisposeControlUserPaneTrackingUPP function 69
DisposeEditUnicodePostUpdateUPP function 70
Drag Control Constants 238
Drag Tracking Enter Control Constants 266
dragCntl constant 221
DragControl function 70
Draw1Control function 71
drawCntl constant 220
DrawControlInCurrentPort function 71
DrawControls function 72
Drawing Constants 239
DumpControlHierarchy function 73

E

Editable Text Control Data Tag Constants 240
Editable Text Control Definition ID Constants 242
EditUnicodePostUpdateProcPtr callback 180
EmbedControl function 73
EnableControl function 75
errCantEmbedIntoSelf constant 310
errCantEmbedRoot constant 310
errControlDoesntSupportFocus constant 309
errControlHiddenOrDisabled constant 310
errControlIsNotEmbedder constant 310
errControlsAlreadyExist constant 310
errCouldntSetFocus constant 309

327
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

errDataNotSupported constant 309
errDataSizeMismatch constant 310
errInvalidPartCode constant 310
errItemNotControl constant 311
errMessageNotSupported constant 309
errNoRootControl constant 309
errRootAlreadyExists constant 310
errUnknownControl constant 309
errWindowDoesntSupportFocus constant 309
errWindowRegionCodeInvalid constant 310

F

FindControl function 75
FindControlUnderMouse function 76

G

GetBestControlRect function 77
GetBevelButtonContentInfo function 78
GetBevelButtonMenuHandle function 79
GetBevelButtonMenuValue function 79
GetControl32BitMaximum function 80
GetControl32BitMinimum function 80
GetControl32BitValue function 81
GetControlAction function 82
GetControlBounds function 82
GetControlByID function 83
GetControlClickActivation function 84
GetControlCommandID function 84
GetControlData function 85
GetControlDataHandle function 86
GetControlDataSize function 86
GetControlFeatures function 87
GetControlHilite function 88
GetControlID function 88
GetControlKind function 89
GetControlMaximum function 90
GetControlMinimum function 90
GetControlOwner function 91
GetControlPopupMenuHandle function 91
GetControlPopupMenuID function 92
GetControlProperty function 92
GetControlPropertyAttributes function 93
GetControlPropertySize function 94
GetControlReference function 95
GetControlRegion function 95
GetControlTitle function (Deprecated in Mac OS X

v10.5) 316
GetControlValue function 96

GetControlVariant function 97
GetControlViewSize function 97
GetImageWellContentInfo function 98
GetIndexedSubControl function 98
GetKeyboardFocus function 99
GetNewControl function 100
GetRootControl function 101
GetSuperControl function 101
GetTabContentRect function 102
Group Box Control Data Tag Constants 243
Group Box Control Definition ID Constants 244

H

HandleControlClick function 103
HandleControlContextualMenuClick function 104
HandleControlDragReceive function 105
HandleControlDragTracking function 105
HandleControlKey function (Deprecated in Mac OS X

v10.5) 316
HandleControlSetCursor function 106
HideControl function 107
HiliteControl function 108

I

Icon Control Data Tag Constants 246
Icon Control Definition ID Constants 247
IdleControls function (Deprecated in Mac OS X v10.4)

314
Image Well Control Data Tag Constants 249
Image Well Control Definition ID 250
In Control Part Constants 267
IndicatorDragConstraint structure 201
IndicatorDragConstraintHandle data type 202
initCntl constant 221
inLabel 251
inThumb 251
InvokeControlActionUPP function 109
InvokeControlCNTLToCollectionUPP function 109
InvokeControlColorUPP function 110
InvokeControlDefUPP function (Deprecated in Mac OS

X v10.5) 317
InvokeControlEditTextValidationUPP function 111
InvokeControlKeyFilterUPP function 111
InvokeControlUserPaneActivateUPP function 112
InvokeControlUserPaneBackgroundUPP function 113
InvokeControlUserPaneDrawUPP function 113
InvokeControlUserPaneFocusUPP function 114
InvokeControlUserPaneHitTestUPP function 114

328
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

InvokeControlUserPaneIdleUPP function 115
InvokeControlUserPaneKeyDownUPP function 115
InvokeControlUserPaneTrackingUPP function 116
InvokeEditUnicodePostUpdateUPP function 116
IsAutomaticControlDragTrackingEnabledForWindow

function 117
IsControlActive function 117
IsControlDragTrackingEnabled function 118
IsControlEnabled function 118
IsControlHilited function 119
IsControlVisible function 119
IsValidControlHandle function 120

K

kActivateAndHandleClick constant 265
kActivateAndIgnoreClick constant 265
kControlAddFontSizeMask constant 230
kControlAddToMetaFontMask constant 271
kControlAutoToggles constant 226
kControlBehaviorCommandMenu constant 211
kControlBehaviorMultiValueMenu constant 206
kControlBehaviorOffsetContents constant 206
kControlBehaviorPushbutton constant 205
kControlBehaviorSticky constant 206
kControlBehaviorToggles constant 206
kControlBevelButtonAlignBottom constant 211
kControlBevelButtonAlignBottomLeft constant

211
kControlBevelButtonAlignBottomRight constant

211
kControlBevelButtonAlignCenter constant 210
kControlBevelButtonAlignLeft constant 210
kControlBevelButtonAlignRight constant 210
kControlBevelButtonAlignSysDirection constant

210
kControlBevelButtonAlignTextCenter constant

213
kControlBevelButtonAlignTextFlushLeft constant

213
kControlBevelButtonAlignTextFlushRight

constant 213
kControlBevelButtonAlignTextSysDirection

constant 213
kControlBevelButtonAlignTop constant 211
kControlBevelButtonAlignTopLeft constant 211
kControlBevelButtonAlignTopRight constant 211
kControlBevelButtonCenterPopupGlyphTag

constant 208
kControlBevelButtonContentTag constant 207
kControlBevelButtonGraphicAlignTag constant

207

kControlBevelButtonGraphicOffsetTag constant
208

kControlBevelButtonLargeBevelProc constant 209
kControlBevelButtonLastMenuTag constant 212
kControlBevelButtonMenuDelayTag constant 212
kControlBevelButtonMenuHandleTag constant 208
kControlBevelButtonMenuValueTag constant 208
kControlBevelButtonMultiValueMenuTag constant

208
kControlBevelButtonNormalBevelProc constant

209
kControlBevelButtonOwnedMenuRefTag 251
kControlBevelButtonPlaceAboveGraphic constant

214
kControlBevelButtonPlaceBelowGraphic constant

214
kControlBevelButtonPlaceNormally constant 214
kControlBevelButtonPlaceSysDirection constant

214
kControlBevelButtonPlaceToLeftOfGraphic

constant 214
kControlBevelButtonPlaceToRightOfGraphic

constant 214
kControlBevelButtonScaleIconTag constant 270
kControlBevelButtonSmallBevelProc constant 209
kControlBevelButtonTextAlignTag constant 207
kControlBevelButtonTextOffsetTag constant 207
kControlBevelButtonTextPlaceTag constant 208
kControlBevelButtonTransformTag constant 207
kControlButtonPart constant 233
kControlChasingArrowsProc constant 205
kControlCheckBoxAutoToggleProc constant 215
kControlCheckBoxCheckedValue constant 216
kControlCheckBoxMixedValue constant 216
kControlCheckBoxPart constant 233
kControlCheckBoxProc constant 203
kControlCheckBoxUncheckedValue constant 216
kControlClickableMetaPart constant 274
kControlClockAMPMPart constant 234
kControlClockDateProc constant 217
kControlClockHourDayPart constant 234
kControlClockIsDisplayOnly constant 218
kControlClockIsLive constant 219
kControlClockLongDateTag constant 216
kControlClockMinuteMonthPart constant 234
kControlClockMonthYearProc constant 218
kControlClockNoFlags constant 218
kControlClockPart constant 233
kControlClockSecondYearPart constant 234
kControlClockTimeProc constant 217
kControlClockTimeSecondsProc constant 217
kControlCollectionTagBounds constant 252
kControlCollectionTagCommand constant 253

329
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

kControlCollectionTagIDID constant 253
kControlCollectionTagIDSignature constant 253
kControlCollectionTagMaximum constant 252
kControlCollectionTagMinimum constant 252
kControlCollectionTagRefCon constant 253
kControlCollectionTagTitle constant 253
kControlCollectionTagUnicodeTitle constant 253
kControlCollectionTagValue constant 252
kControlCollectionTagVarCode constant 253
kControlCollectionTagViewSize constant 252
kControlCollectionTagVisibility constant 253
kControlContentCIconHandle constant 255
kControlContentCIconRes constant 254
kControlContentIconRef constant 255
kControlContentIconSuiteHandle constant 254
kControlContentIconSuiteRes constant 254
kControlContentMetaPart constant 274
kControlContentPictHandle constant 255
kControlContentPictRes constant 254
kControlContentTextOnly constant 254
kControlDefObjectClass constant 255
kControlDefProcPtr constant 255
kControlDisabledPart constant 235
kControlDisclosureButtonClosed constant 256
kControlDisclosureButtonDisclosed constant 256
kControlDownButtonPart constant 234
kControlEditTextCFStringTag constant 241
kControlEditTextFixedTextTag constant 241
kControlEditTextInlineInputProc constant 271
kControlEditTextInlinePostUpdateProcTag

constant 241
kControlEditTextInlinePreUpdateProcTag

constant 241
kControlEditTextInsertCFStringRefTag constant

257
kControlEditTextInsertTextBufferTag constant

256
kControlEditTextKeyScriptBehaviorTag constant

240
kControlEditTextLockedTag constant 241
kControlEditTextPart constant 232
kControlEditTextPasswordCFStringTag constant

242
kControlEditTextPasswordProc constant 242
kControlEditTextProc constant 242
kControlEditTextSelectionTag constant 240
kControlEditTextSingleLineTag constant 256
kControlEditTextTEHandleTag constant 240
kControlEditTextTextTag constant 240
kControlEditTextValidationProcTag constant 241
kControlEditUnicodeTextPostUpdateProcTag

constant 257
kControlFocusNextPart constant 227

kControlFocusNoPart constant 227
kControlFocusPrevPart constant 228
kControlFontBigSystemFont constant 275
kControlFontSmallBoldSystemFont constant 275
kControlFontSmallSystemFont constant 275
kControlFontStyleTag constant 228
kControlGetsFocusOnClick constant 226
kControlGroupBoxCheckBoxProc constant 244
kControlGroupBoxFrameRectTag constant 244
kControlGroupBoxMenuHandleTag constant 243
kControlGroupBoxPopupButtonProc constant 245
kControlGroupBoxSecondaryCheckBoxProc constant

245
kControlGroupBoxSecondaryPopupButtonProc

constant 245
kControlGroupBoxSecondaryTextTitleProc

constant 245
kControlGroupBoxTextTitleProc constant 244
kControlGroupBoxTitleRectTag constant 272
kControlHandlesTracking constant 226
kControlHasRadioBehavior constant 226
kControlHasSpecialBackground constant 226
kControlIconAlignmentTag constant 246
kControlIconContentTag constant 273
kControlIconNoTrackProc constant 247
kControlIconPart constant 233
kControlIconProc constant 247
kControlIconRefNoTrackProc constant 248
kControlIconRefProc constant 248
kControlIconResourceIDTag constant 272
kControlIconSuiteNoTrackProc constant 247
kControlIconSuiteProc constant 247
kControlIconTransformTag constant 246
kControlImageWellContentTag constant 249
kControlImageWellPart constant 233
kControlImageWellProc constant 250
kControlImageWellTransformTag constant 249
kControlInactivePart constant 235
kControlIndicatorPart constant 235
kControlKeyFilterBlockKey constant 266
kControlKeyFilterPassKey constant 266
kControlKeyFilterTag constant 228
kControlKeyScriptBehaviorAllowAnyScript

constant 231
kControlKeyScriptBehaviorPrefersRoman constant

231
kControlKeyScriptBehaviorRequiresRoman

constant 231
kControlKindLittleArrows 259
kControlKindSignatureApple constant 261
kControlLabelPart constant 232
kControlListBoxAutoSizeProc constant 268
kControlListBoxDoubleClickPart constant 233

330
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

kControlListBoxDoubleClickTag constant 267
kControlListBoxLDEFTag constant 268
kControlListBoxListHandleTag constant 267
kControlListBoxPart constant 233
kControlListBoxProc constant 268
kControlLittleArrowsIncrementValueTag constant

270
kControlLittleArrowsProc constant 269
kControlMenuPart constant 232
kControlMsgActivate constant 223
kControlMsgApplyTextColor constant 224
kControlMsgCalcBestRect constant 222
kControlMsgCalcValueFromPos constant 223
kControlMsgDrawGhost constant 222
kControlMsgFocus constant 222
kControlMsgGetData constant 223
kControlMsgGetFeatures constant 222
kControlMsgGetRegion constant 224
kControlMsgHandleTracking constant 222
kControlMsgIdle constant 222
kControlMsgKeyDown constant 222
kControlMsgSetData constant 223
kControlMsgSetUpBackground constant 223
kControlMsgSubControlAdded constant 223
kControlMsgSubControlRemoved constant 224
kControlMsgSubValueChanged constant 223
kControlMsgTestNewMsgSupport constant 223
kControlNoPart constant 235
kControlNoVariant constant 236
kControlOpaqueMetaPart constant 274
kControlPageDownPart constant 234
kControlPageUpPart constant 234
kControlPictureNoTrackProc constant 277
kControlPicturePart constant 232
kControlPictureProc constant 277
kControlPlacardProc constant 278
kControlPopupArrowEastProc constant 281
kControlPopupArrowNorthProc constant 281
kControlPopupArrowSmallEastProc constant 281
kControlPopupArrowSmallNorthProc constant 282
kControlPopupArrowSmallSouthProc constant 282
kControlPopupArrowSmallWestProc constant 282
kControlPopupArrowSouthProc constant 281
kControlPopupArrowWestProc constant 281
kControlPopupButtonExtraHeightTag constant 273
kControlPopupButtonMenuHandleTag constant 283
kControlPopupButtonMenuIDTag constant 283
kControlPopupButtonMenuRefTag constant 283
kControlPopUpButtonOwnedMenuRefTag constant

273
kControlPopupButtonProc constant 284
kControlPopupFixedWidthVariant constant 284
kControlPopupUseAddResMenuVariant constant 284

kControlPopupUseWFontVariant constant 285
kControlPopupVariableWidthVariant constant 284
kControlProgressBarIndeterminateTag constant

288
kControlProgressBarProc constant 289
kControlPushButLeftIconProc constant 204
kControlPushButRightIconProc constant 204
kControlPushButtonCancelTag constant 290
kControlPushButtonDefaultTag constant 290
kControlPushButtonProc constant 203
kControlRadioButtonAutoToggleProc constant 215
kControlRadioButtonCheckedValue constant 290
kControlRadioButtonMixedValue constant 291
kControlRadioButtonPart constant 233
kControlRadioButtonProc constant 203
kControlRadioButtonUncheckedValue constant 290
kControlRadioGroupPart constant 233
kControlRadioGroupProc constant 291
kControlScrollBarLiveProc constant 292
kControlScrollBarProc constant 292
kControlScrollTextBoxAutoScrollAmountTag

constant 293
kControlScrollTextBoxAutoScrollProc constant

294
kControlScrollTextBoxContentsTag constant 293
kControlScrollTextBoxDelayBeforeAutoScrollTag

constant 293
kControlScrollTextBoxDelayBetweenAutoScrollTag

constant 293
kControlScrollTextBoxProc constant 294
kControlSeparatorLineProc constant 295
kControlSliderHasTickMarks constant 296
kControlSliderLiveFeedback constant 296
kControlSliderNonDirectional constant 297
kControlSliderProc constant 296
kControlSliderReverseDirection constant 296
kControlStaticTextCFStringTag constant 298
kControlStaticTextIsMultilineTag constant 298
kControlStaticTextProc constant 299
kControlStaticTextTextHeightTag constant 298
kControlStaticTextTextTag constant 297
kControlStaticTextTruncTag constant 298
kControlStructureMetaPart constant 274
kControlSupportsCalcBestRect constant 226
kControlSupportsDataAccess constant 226
kControlSupportsEmbedding constant 225
kControlSupportsFocus constant 225
kControlSupportsGetRegion constant 227
kControlSupportsGhosting constant 225
kControlSupportsLiveFeedback constant 226
kControlSupportsNewMessages constant 264
kControlTabContentRectTag constant 300
kControlTabEnabledFlagTag constant 300

331
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

kControlTabInfoTag constant 302
kControlTabLargeProc constant 301
kControlTabSmallProc constant 301
kControlTriangleAutoToggleProc constant 303
kControlTriangleLastValueTag constant 302
kControlTriangleLeftFacingAutoToggleProc

constant 303
kControlTriangleLeftFacingProc constant 303
kControlTrianglePart constant 232
kControlTriangleProc constant 303
kControlUpButtonPart constant 233
kControlUseAllMask constant 230
kControlUseBackColorMask constant 230
kControlUseFaceMask constant 229
kControlUseFontMask constant 229
kControlUseForeColorMask constant 229
kControlUseJustMask constant 230
kControlUseModeMask constant 230
kControlUserItemDrawProcTag constant 304
kControlUserPaneActivateProcTag constant 305
kControlUserPaneBackgroundProcTag constant 306
kControlUserPaneDrawProcTag constant 304
kControlUserPaneFocusProcTag constant 305
kControlUserPaneHitTestProcTag constant 304
kControlUserPaneIdleProcTag constant 305
kControlUserPaneKeyDownProcTag constant 305
kControlUserPaneProc constant 306
kControlUserPaneTrackingProcTag constant 305
kControlUseSizeMask constant 229
kControlUsesOwningWindowsFontVariant constant

236
kControlWantsActivate constant 225
kControlWantsIdle constant 225
kControlWindowHeaderIsListHeaderTag constant

308
kControlWindowHeaderProc constant 307
kControlWindowListViewHeaderProc constant 307
kDoNotActivateAndHandleClick constant 265
kDoNotActivateAndIgnoreClick constant 265
kDragControlEntireControl constant 239
kDragControlIndicator constant 239
kDrawControlEntireControl constant 239
kDrawControlIndicatorOnly constant 239
Key Filter Result Codes 266
kHIUserPaneClassID data type 203
KillControls function 120

L

List Box Control Data Tag Constants 267
List Box Control Definition ID Constants 268
Little Arrows Control Definition ID Constant 269

Little Arrows Control Tag Constant 270

M

Mac OS 8.5 Bevel Button Control Data Tag Constant 270
Mac OS 8.5 Control Font Style Flag Constant 271
Mac OS 8.5 Editable Text Control Definition ID Constant

271
Mac OS 8.5 Group Box Control Data Tag Constant 272
Mac OS 8.5 Icon Control Data Tag Constants 272
Mac OS 8.5 Pop-up Button Control Data Tag Constants

273
Meta Font Constants 275
MoveControl function 121

N

NewControl function (Deprecated in Mac OS X v10.5)
318

NewControlActionUPP function 122
NewControlCNTLToCollectionUPP function 122
NewControlColorUPP function 122
NewControlDefUPP function (Deprecated in Mac OS X

v10.5) 319
NewControlEditTextValidationUPP function 123
NewControlKeyFilterUPP function 123
NewControlUserPaneActivateUPP function 123
NewControlUserPaneBackgroundUPP function 124
NewControlUserPaneDrawUPP function 124
NewControlUserPaneFocusUPP function 124
NewControlUserPaneHitTestUPP function 124
NewControlUserPaneIdleUPP function 125
NewControlUserPaneKeyDownUPP function 125
NewControlUserPaneTrackingUPP function 125
NewEditUnicodePostUpdateUPP function 126

O

Order Constants 267

P

Part Identifier Constants 276
Picture Control Definition ID Constants 277
Placard Control Definition ID Constant 278
Pop-up Arrow Control Definition ID Constants 281
Pop-up Button Control Data Tag Constants 283

332
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

Pop-up Button Control Definition ID Constants 284
Pop-up Menu Title Constants 279
Pop-up Menu Title Justification Constants 280
Pop-up Width Constants 286
popupMenuProc constant 287
PopupPrivateData structure 202
PopupPrivateDataHandle data type 202
PopupPrivateDataPtr data type 202
popupTitleBold constant 279
popupTitleCenterJust constant 280
popupTitleCondense constant 279
popupTitleExtend constant 279
popupTitleItalic constant 279
popupTitleLeftJust constant 280
popupTitleNoStyle constant 279
popupTitleOutline constant 279
popupTitleRightJust constant 280
popupTitleShadow constant 279
popupTitleUnderline constant 279
posCntl constant 221
Pre–Appearance Control Definition ID Constants 286
Progress Bar Control Data Tag Constants 288
Progress Bar Control Definition ID Constants 289
Push Button Control Data Tag Constants 290
pushButProc constant 286

R

Radio Button Value Constants 290
Radio Group Control Definition ID Constant 291
radioButProc constant 286
RegisterControlDefinition function 126
RemoveControlProperty function 127
ReverseKeyboardFocus function 127

S

Scroll Bar Control Definition ID Constants 292
scrollBarProc constant 287
Scrolling Text Box Control Data Tag Constants 293
Scrolling Text Box Control Definition ID Constants 294
Selection Constants 266
SendControlMessage function 128
Separator Line Control Definition ID Constant 295
SetAutomaticControlDragTrackingEnabledForWindow

function 129
SetBevelButtonContentInfo function 129
SetBevelButtonGraphicAlignment function 130
SetBevelButtonMenuValue function 131
SetBevelButtonTextAlignment function 131

SetBevelButtonTextPlacement function 132
SetBevelButtonTransform function 132
SetControl32BitMaximum function 133
SetControl32BitMinimum function 133
SetControl32BitValue function 134
SetControlAction function 135
SetControlBounds function 135
SetControlColorProc function 136
SetControlCommandID function 137
SetControlData function 137
SetControlDataHandle function 138
SetControlDragTrackingEnabled function 139
SetControlFontStyle function 140
SetControlID function 140
SetControlMaximum function 141
SetControlMinimum function 141
SetControlPopupMenuHandle function 142
SetControlPopupMenuID function 143
SetControlProperty function 143
SetControlReference function 144
SetControlSupervisor function 144
SetControlTitle function (Deprecated in Mac OS X

v10.5) 320
SetControlTitleWithCFString function 145
SetControlValue function 146
SetControlViewSize function 147
SetControlVisibility function 147
SetDisclosureTriangleLastValue function 148
SetImageWellContentInfo function 149
SetImageWellTransform function 149
SetKeyboardFocus function 150
SetTabEnabled function 150
SetUpControlBackground function 151
SetUpControlTextColor function 152
ShowControl function 153
SizeControl function 154
Slider Control Definition ID Constants 296
Static Text Control Data Tag Constants 297
Static Text Control Definition ID Constant 299

T

Tab Control Data Tag Constants 300
Tab Control Definition IDs 301
Tab Control Info Tag Constant 302
testCntl constant 220
TestControl function 154
Text Proc Constants 300
thumbCntl constant 221
TrackControl function 155
Triangle Control Data Tag Constant 302
Triangle Control Definition ID Constants 303

333
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

U

Unicode Control Data Tags 256
UpdateControls function 156
User Item and User Pane Control Data Tag Constants 304
User Pane Control Definition ID Constant 306
useWFont Constants 307

W

Window Control Data List Header Tag Constant 308
Window Control Definition IDs 307

334
2007-03-26 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

	Control Manager Reference
	Contents
	Control Manager Reference
	Overview
	Functions by Task
	Creating and Removing Controls
	Embedding Controls
	Displaying Controls
	Handling Events in Controls
	Manipulating Controls
	Handling Keyboard Focus
	Accessing Control Settings and Data
	Manipulating Menus in Controls
	Manipulating Bevel Buttons
	Managing Control UPPs
	Obsolete Functions

	Functions
	ActivateControl
	AdvanceKeyboardFocus
	AutoEmbedControl
	ChangeControlPropertyAttributes
	ClearKeyboardFocus
	CopyControlTitleAsCFString
	CountSubControls
	CreateBevelButtonControl
	CreateChasingArrowsControl
	CreateCheckBoxControl
	CreateCheckGroupBoxControl
	CreateClockControl
	CreateDisclosureButtonControl
	CreateDisclosureTriangleControl
	CreateEditUnicodeTextControl
	CreateGroupBoxControl
	CreateIconControl
	CreateImageWellControl
	CreateListBoxControl
	CreateLittleArrowsControl
	CreatePictureControl
	CreatePlacardControl
	CreatePopupArrowControl
	CreatePopupButtonControl
	CreatePopupGroupBoxControl
	CreateProgressBarControl
	CreatePushButtonControl
	CreatePushButtonWithIconControl
	CreateRadioButtonControl
	CreateRadioGroupControl
	CreateRelevanceBarControl
	CreateRootControl
	CreateRoundButtonControl
	CreateScrollBarControl
	CreateScrollingTextBoxControl
	CreateSeparatorControl
	CreateSliderControl
	CreateStaticTextControl
	CreateTabsControl
	CreateUserPaneControl
	CreateWindowHeaderControl
	DeactivateControl
	DisableControl
	DisposeControl
	DisposeControlActionUPP
	DisposeControlCNTLToCollectionUPP
	DisposeControlColorUPP
	DisposeControlEditTextValidationUPP
	DisposeControlKeyFilterUPP
	DisposeControlUserPaneActivateUPP
	DisposeControlUserPaneBackgroundUPP
	DisposeControlUserPaneDrawUPP
	DisposeControlUserPaneFocusUPP
	DisposeControlUserPaneHitTestUPP
	DisposeControlUserPaneIdleUPP
	DisposeControlUserPaneKeyDownUPP
	DisposeControlUserPaneTrackingUPP
	DisposeEditUnicodePostUpdateUPP
	DragControl
	Draw1Control
	DrawControlInCurrentPort
	DrawControls
	DumpControlHierarchy
	EmbedControl
	EnableControl
	FindControl
	FindControlUnderMouse
	GetBestControlRect
	GetBevelButtonContentInfo
	GetBevelButtonMenuHandle
	GetBevelButtonMenuValue
	GetControl32BitMaximum
	GetControl32BitMinimum
	GetControl32BitValue
	GetControlAction
	GetControlBounds
	GetControlByID
	GetControlClickActivation
	GetControlCommandID
	GetControlData
	GetControlDataHandle
	GetControlDataSize
	GetControlFeatures
	GetControlHilite
	GetControlID
	GetControlKind
	GetControlMaximum
	GetControlMinimum
	GetControlOwner
	GetControlPopupMenuHandle
	GetControlPopupMenuID
	GetControlProperty
	GetControlPropertyAttributes
	GetControlPropertySize
	GetControlReference
	GetControlRegion
	GetControlValue
	GetControlVariant
	GetControlViewSize
	GetImageWellContentInfo
	GetIndexedSubControl
	GetKeyboardFocus
	GetNewControl
	GetRootControl
	GetSuperControl
	GetTabContentRect
	HandleControlClick
	HandleControlContextualMenuClick
	HandleControlDragReceive
	HandleControlDragTracking
	HandleControlSetCursor
	HideControl
	HiliteControl
	InvokeControlActionUPP
	InvokeControlCNTLToCollectionUPP
	InvokeControlColorUPP
	InvokeControlEditTextValidationUPP
	InvokeControlKeyFilterUPP
	InvokeControlUserPaneActivateUPP
	InvokeControlUserPaneBackgroundUPP
	InvokeControlUserPaneDrawUPP
	InvokeControlUserPaneFocusUPP
	InvokeControlUserPaneHitTestUPP
	InvokeControlUserPaneIdleUPP
	InvokeControlUserPaneKeyDownUPP
	InvokeControlUserPaneTrackingUPP
	InvokeEditUnicodePostUpdateUPP
	IsAutomaticControlDragTrackingEnabledForWindow
	IsControlActive
	IsControlDragTrackingEnabled
	IsControlEnabled
	IsControlHilited
	IsControlVisible
	IsValidControlHandle
	KillControls
	MoveControl
	NewControlActionUPP
	NewControlCNTLToCollectionUPP
	NewControlColorUPP
	NewControlEditTextValidationUPP
	NewControlKeyFilterUPP
	NewControlUserPaneActivateUPP
	NewControlUserPaneBackgroundUPP
	NewControlUserPaneDrawUPP
	NewControlUserPaneFocusUPP
	NewControlUserPaneHitTestUPP
	NewControlUserPaneIdleUPP
	NewControlUserPaneKeyDownUPP
	NewControlUserPaneTrackingUPP
	NewEditUnicodePostUpdateUPP
	RegisterControlDefinition
	RemoveControlProperty
	ReverseKeyboardFocus
	SendControlMessage
	SetAutomaticControlDragTrackingEnabledForWindow
	SetBevelButtonContentInfo
	SetBevelButtonGraphicAlignment
	SetBevelButtonMenuValue
	SetBevelButtonTextAlignment
	SetBevelButtonTextPlacement
	SetBevelButtonTransform
	SetControl32BitMaximum
	SetControl32BitMinimum
	SetControl32BitValue
	SetControlAction
	SetControlBounds
	SetControlColorProc
	SetControlCommandID
	SetControlData
	SetControlDataHandle
	SetControlDragTrackingEnabled
	SetControlFontStyle
	SetControlID
	SetControlMaximum
	SetControlMinimum
	SetControlPopupMenuHandle
	SetControlPopupMenuID
	SetControlProperty
	SetControlReference
	SetControlSupervisor
	SetControlTitleWithCFString
	SetControlValue
	SetControlViewSize
	SetControlVisibility
	SetDisclosureTriangleLastValue
	SetImageWellContentInfo
	SetImageWellTransform
	SetKeyboardFocus
	SetTabEnabled
	SetUpControlBackground
	SetUpControlTextColor
	ShowControl
	SizeControl
	TestControl
	TrackControl
	UpdateControls

	Callbacks by Task
	Defining Your Own Action Function
	Defining Your Own Control Definition Function
	Defining Your Own Key Filter Function
	Defining Your Own Text Validation Function
	Defining Your Own User Pane Functions
	Miscellaneous

	Callbacks
	ControlActionProcPtr
	ControlCNTLToCollectionProcPtr
	ControlColorProcPtr
	ControlDefProcPtr
	ControlEditTextValidationProcPtr
	ControlKeyFilterProcPtr
	ControlUserPaneActivateProcPtr
	ControlUserPaneBackgroundProcPtr
	ControlUserPaneDrawProcPtr
	ControlUserPaneFocusProcPtr
	ControlUserPaneHitTestProcPtr
	ControlUserPaneIdleProcPtr
	ControlUserPaneKeyDownProcPtr
	ControlUserPaneTrackingProcPtr
	EditUnicodePostUpdateProcPtr

	Data Types
	AuxCtlHandle
	AuxCtlPtr
	AuxCtlRec
	ClickActivationResult
	ControlApplyTextColorRec
	ControlBackgroundRec
	ControlBevelButtonBehavior
	ControlBevelButtonMenuBehavior
	ControlButtonContentInfo
	ControlCalcSizeRec
	ControlCapabilities
	ControlClickActivationRec
	ControlContentType
	ControlContextualMenuClickRec
	ControlDataAccessRec
	ControlDefProcMessage
	ControlDefSpec
	ControlDefType
	ControlEditTextSelectionRec
	ControlFocusPart
	ControlFontStyleRec
	ControlGetRegionRec
	ControlHandle
	ControlID
	ControlImageContentInfo
	ControlKeyDownRec
	ControlKeyFilterResult
	ControlKeyScriptBehavior
	ControlKind
	ControlNotification
	ControlNotificationUPP
	ControlPartCode
	ControlPopupArrowOrientation
	ControlPopupArrowSize
	ControlPtr
	ControlRecord
	ControlRef
	ControlSetCursorRec
	ControlSize
	ControlTabEntry
	ControlTabInfoRec
	ControlTabInfoRecV1
	ControlTemplate
	ControlTrackingRec
	ControlVariant
	DataBrowserCallbacks
	DataBrowserCustomCallbacks
	DataBrowserDragFlags
	DataBrowserListViewColumnDesc
	DataBrowserListViewHeaderDesc
	DataBrowserPropertyDesc
	DataBrowserPropertyFlags
	DataBrowserPropertyPart
	DataBrowserPropertyType
	DataBrowserTableViewColumnDesc
	DataBrowserTableViewColumnIndex
	DataBrowserTableViewRowIndex
	DataBrowserTableViewColumnID
	DataBrowserViewStyle
	DBItemProcDataType
	DBRevealItemDataType
	DBSetSelectionDataType
	IndicatorDragConstraint
	IndicatorDragConstraintHandle
	PopupPrivateData
	PopupPrivateDataHandle
	PopupPrivateDataPtr
	kHIUserPaneClassID

	Constants
	Appearance–compliant Push Button, Radio Button, and Checkbox Control Definition IDs
	Asynchronous Arrows Control Definition ID
	Bevel Button Behavior Constants
	Bevel Button Control Data Tag Constants
	Bevel Button Control Definition IDs
	Bevel Button Graphic Alignment Constants
	Bevel Button Menu Constant
	Bevel Button Menu Control Data Tag Constants
	Bevel Button Text Alignment Constants
	Bevel Button Text Placement Constants
	Checkbox and Radio Button AutoToggle Control Definition IDs
	Checkbox Value Constants
	Clock Control Data Tag Constants
	Clock Control Definition IDs
	Clock Value Flag Constants
	Control Definition Message Constants
	Control Features Constants
	Control Focus Part Code Constants
	Control Font Style and Key Filter Data Tag Constants
	Control Font Style Flag Constants
	Control Key Script Behavior Constants
	Control Part Code Constants
	Control State Part Code Constants
	Control Variant Constants
	Control Bevel Button Menu Placement Constants
	Control Bevel Thickness Constants
	Control Clock Type Constants
	Control Disclosure Triangle Orientation Constants
	Control Notify Constants
	Control Push Button Icon Alignment Constants
	Control Round Button Size Constants
	Control Slider Orientation Constants
	Control Tab Direction Constants
	Control Tab Size Constants
	Drag Control Constants
	Drawing Constants
	Editable Text Control Data Tag Constants
	Editable Text Control Definition ID Constants
	Data Browser Error Constants
	Group Box Control Data Tag Constants
	Group Box Control Definition ID Constants
	Icon Control Data Tag Constants
	Icon Control Definition ID Constants
	Image Well Control Data Tag Constants
	Image Well Control Definition ID
	inLabel
	inThumb
	kControlBevelButtonOwnedMenuRefTag
	Bevel Button Size Constants
	Control Can Auto Invalidate Constant
	Control Chasing Arrows Animating Tag Constant
	Control Collection Tag Constants
	Control Collection Tag Subcontrols Constant
	Control Content Type Constants
	Control Data Browser Tag Constants
	Control Def Constants
	Control Def Type Constants
	Disclosure Triangle Constants
	Unicode Control Data Tags
	Control Edit Unicode Text Post Update Proc Tag Constant
	Control Edit Unicode Text Proc Constants
	Control Entire Control Constant
	Control Kind Bevel Button Constant
	Control Kind Chasing Arrows Constant
	Control Kind Clock Constant
	Control Kind Data Browser Constant
	Control Kind Disclosure Button Constant
	Control Kind Disclosure Triangle Constant
	Control Kind Edit Text Constant
	Control Kind Edit Unicode Text Constant
	Control Kind Group Box Constants
	Control Kind Icon Constant
	Control Kind Image Well Constant
	Control Kind List Box Constant
	kControlKindLittleArrows
	Control Kind Picture Constant
	Control Kind Placard Constant
	Control Kind Pop-up Arrow Constant
	Control Kind Pop-up Button Constant
	Control Kind Progress Bar Constants
	Control Kind Push and Radio Button Constants
	Control Kind Radio Group Constant
	Control Kind Round Button Constant
	Control Kind Scroll Bar Constant
	Control Kind Scrolling Text Box Constant
	Control Kind Separator Constant
	Control Kind Signature Apple Constant
	Control Kind Slider Constant
	Control Kind Static Text Constant
	Control Kind Tabs Constant
	Control Kind User Pane Constant
	Control Kind Window Header Constant
	Control Picture Handle Tag Constant
	Control Pop-up Arrow Orientation Constants
	Control Pop-up Arrow Size Constants
	Control Pop-up Button Check Current Tag Constant
	Control Property Persistent Constant
	Control Round Button Content and Size Tag Constants
	Control Scrollbar Shows Arrows Tag Constant
	Control Size Constants
	Control Supports New Messages Constant
	Control Tab Image Content Tag Constant
	Control Tab Info Version Constants
	Control Tab Type Constants
	Control Use Theme Font ID Mask Constant
	Click Activation Constants
	Selection Constants
	Drag Tracking Enter Control Constants
	Key Filter Result Codes
	In Control Part Constants
	Order Constants
	List Box Control Data Tag Constants
	List Box Control Definition ID Constants
	Little Arrows Control Definition ID Constant
	Little Arrows Control Tag Constant
	Mac OS 8.5 Bevel Button Control Data Tag Constant
	Mac OS 8.5 Control Font Style Flag Constant
	Mac OS 8.5 Editable Text Control Definition ID Constant
	Mac OS 8.5 Group Box Control Data Tag Constant
	Mac OS 8.5 Icon Control Data Tag Constants
	Mac OS 8.5 Pop-up Button Control Data Tag Constants
	Control Meta Part Code Constants
	Meta Font Constants
	Constraint Constants
	Part Identifier Constants
	Picture Control Definition ID Constants
	Placard Control Definition ID Constant
	Pop-up Menu Title Constants
	Pop-up Menu Title Justification Constants
	Pop-up Arrow Control Definition ID Constants
	Pop-up Button Control Data Tag Constants
	Pop-up Button Control Definition ID Constants
	Pop-up Width Constants
	Pre–Appearance Control Definition ID Constants
	Progress Bar Control Data Tag Constants
	Progress Bar Control Definition ID Constants
	Push Button Control Data Tag Constants
	Radio Button Value Constants
	Radio Group Control Definition ID Constant
	Scroll Bar Control Definition ID Constants
	Scrolling Text Box Control Data Tag Constants
	Scrolling Text Box Control Definition ID Constants
	Separator Line Control Definition ID Constant
	Slider Control Definition ID Constants
	Static Text Control Data Tag Constants
	Static Text Control Definition ID Constant
	Text Proc Constants
	Tab Control Data Tag Constants
	Tab Control Definition IDs
	Tab Control Info Tag Constant
	Triangle Control Data Tag Constant
	Triangle Control Definition ID Constants
	User Item and User Pane Control Data Tag Constants
	User Pane Control Definition ID Constant
	useWFont Constants
	Window Control Definition IDs
	Window Control Data List Header Tag Constant

	Result Codes

	Appendix A: Deprecated Control Manager Functions
	Deprecated in Mac OS X v10.4
	CreateEditTextControl
	IdleControls

	Deprecated in Mac OS X v10.5
	CreateCustomControl
	DisposeControlDefUPP
	GetControlTitle
	HandleControlKey
	InvokeControlDefUPP
	NewControl
	NewControlDefUPP
	SetControlTitle

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

