
Core Services Framework Reference
Carbon

2007-10-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, AppleShare,
AppleTalk, AppleWorks, Aqua, Bonjour, Carbon,
Chicago, Cocoa, ColorSync, eMac, FireWire,
Geneva, iPod, iTunes, Keychain, Keynote,
LocalTalk, Logic, Mac, Mac OS, Macintosh,
Monaco, MPW, New York, OpenDoc, Pages,
Power Mac, PowerBook, ProDOS, QuickDraw,
QuickTime, SANE, TrueType, and Xcode are
trademarks of Apple Inc., registered in the
United States and other countries.

Aperture, Extensions Manager, Finder,
Numbers, Spotlight, and Switcher are
trademarks of Apple Inc.

NeXT is a trademark of NeXT Software, Inc.,
registered in the United States and other
countries.

AIX is a trademark of IBM Corp., registered in
the U.S. and other countries, and is being used
under license.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

CDB is a trademark of Third Eye Software, Inc.

DEC is a trademark of Digital Equipment
Corporation.

Helvetica, Palatino, and Times are registered
trademarks of Heidelberger Druckmaschinen
AG, available from Linotype Library GmbH.

Intel and Intel Core are registered trademarks
of Intel Corportation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

MMX is a trademark of Intel Corporation or its
subsidiaries in the United States and other
countries.

NuBus is a trademark of Texas Instruments.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

SPEC is a registered trademark of the Standard
Performance Evaluation Corporation (SPEC).

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or

exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 15

Part I Opaque Types 17

Chapter 1 CFFTPStream Reference 19

Overview 19
Functions 19
Constants 21

Chapter 2 CFHost Reference 27

Overview 27
Functions by Task 27
Functions 28
Callbacks 36
Data Types 37
Constants 38

Chapter 3 CFHTTPAuthentication Reference 41

Overview 41
Functions by Task 41
Functions 42
Data Types 47
Constants 48

Chapter 4 CFHTTPMessage Reference 51

Overview 51
Functions by Task 51
Functions 53
Data Types 65
Constants 65

Chapter 5 CFNetDiagnostics Reference 67

Overview 67
Functions by Task 67
Functions 68
Data Types 71

3
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Constants 72

Chapter 6 CFNetServices Reference 75

Overview 75
Functions by Task 75
Functions 78
Callbacks 104
Data Types 107
Constants 109

Chapter 7 CFStream Socket Additions 113

Overview 113
Functions by Task 113
Functions 114
Constants 117

Chapter 8 MDItem Reference 129

Overview 129
Functions by Task 129
Functions 130
Data Types 132
Constants 133

Chapter 9 MDQuery Reference 151

Overview 151
Functions by Task 151
Functions 153
Callbacks 166
Data Types 168
Constants 170

Part II Managers 175

Chapter 10 Alias Manager Reference 177

Overview 177
Functions by Task 177
Functions 180
Callbacks 214
Data Types 216
Constants 218

4
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Gestalt Constants 222

Chapter 11 Code Fragment Manager Reference 223

Overview 223
Functions by Task 223
Functions 224
Callbacks 232
Data Types 234
Constants 247
Result Codes 259

Chapter 12 Collection Manager Reference 263

Overview 263
Functions by Task 263
Functions 267
Callbacks 303
Data Types 305
Constants 307
Result Codes 313

Chapter 13 Component Manager Reference 315

Overview 315
Functions by Task 315
Functions 320
Callbacks 357
Data Types 360
Constants 371
Result Codes 380
Gestalt Constants 381

Chapter 14 Date, Time, and Measurement Utilities Reference 383

Overview 383
Functions by Task 383
Functions 386
Data Types 409
Constants 417
Result Codes 421

Chapter 15 Debugger Services Reference 423

Overview 423
Functions by Task 423

5
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Functions 424
Callbacks 431
Data Types 433
Constants 434
Result Codes 436

Chapter 16 File Manager Reference 437

Overview 437
Functions by Task 437
Functions 459
Callbacks by Task 788
Callbacks 789
Data Types 795
Constants 885
Result Codes 943

Chapter 17 Folder Manager Reference 955

Overview 955
Functions by Task 955
Functions 957
Callbacks 975
Data Types 976
Constants 981
Result Codes 1001
Gestalt Constants 1001

Chapter 18 Gestalt Manager Reference 1003

Overview 1003
Functions by Task 1003
Functions 1004
Callbacks 1011
Data Types 1012
Constants 1012
Result Codes 1113

Chapter 19 Keychain Manager Reference 1115

Overview 1115
Functions by Task 1115
Functions 1119
Callbacks 1171
Data Types 1172
Constants 1176

6
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Result Codes 1194

Chapter 20 Launch Services Reference 1199

Overview 1199
Functions by Task 1200
Functions 1203
Data Types 1236
Constants 1241
Result Codes 1251

Chapter 21 Locale Utilities Reference 1255

Overview 1255
Functions by Task 1255
Functions 1256
Data Types 1269
Constants 1272

Chapter 22 Mathematical and Logical Utilities Reference 1275

Overview 1275
Functions by Task 1276
Functions 1284
Data Types 1345
Constants 1349

Chapter 23 Memory Management Utilities Reference 1353

Overview 1353
Functions by Task 1353
Functions 1355
Callbacks 1367
Data Types 1367
Constants 1372
Result Codes 1376

Chapter 24 Memory Manager Reference 1379

Overview 1379
Functions by Task 1379
Functions 1385
Callbacks 1432
Data Types 1435
Constants 1441
Result Codes 1443

7
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 25 Mixed Mode Manager Reference 1445

Overview 1445
Data Types 1446
Constants 1450
Result Codes 1466
Gestalt Constants 1466

Chapter 26 Multiprocessing Services Reference 1467

Overview 1467
Functions by Task 1467
Functions 1471
Callbacks 1508
Data Types 1509
Constants 1520
Result Codes 1533
Gestalt Constants 1534

Chapter 27 Pascal String Utilities Reference 1535

Overview 1535
Functions 1535
Data Types 1544
Constants 1563

Chapter 28 Power Manager Reference 1585

Overview 1585
Functions by Task 1586
Functions 1590
Callbacks 1620
Data Types 1622
Constants 1631
Result Codes 1654

Chapter 29 Resource Manager Reference 1655

Overview 1655
Functions by Task 1655
Functions 1660
Callbacks 1703
Data Types 1704
Constants 1706
Result Codes 1711

8
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 30 Script Manager Reference (Not Recommended) 1713

Overview 1713
Functions by Task 1714
Functions 1716
Data Types 1735
Constants 1740
Result Codes 1821

Chapter 31 SCSI Manager Reference (Not Recommended) 1823

Overview 1823
Functions 1823
Callbacks 1825
Data Types 1826
Constants 1845
Result Codes 1863

Chapter 32 Text Encoding Conversion Manager Reference 1869

Overview 1869
Functions by Task 1869
Functions 1875
Callbacks by Task 1938
Callbacks 1940
Data Types 1955
Constants 1971
Result Codes 2026

Chapter 33 Text Utilities Reference 2029

Overview 2029
Functions by Task 2030
Functions 2034
Callbacks 2071
Data Types 2072
Constants 2079

Chapter 34 Thread Manager Reference 2085

Overview 2085
Functions by Task 2085
Functions 2088
Callbacks 2120
Data Types 2126
Constants 2131

9
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Result Codes 2134
Gestalt Constants 2134

Chapter 35 Time Manager Reference 2135

Overview 2135
Functions by Task 2135
Functions 2137
Callbacks 2145
Data Types 2145
Constants 2146
Result Codes 2147
Gestalt Constants 2147

Chapter 36 Unicode Utilities Reference 2149

Overview 2149
Functions by Task 2149
Functions 2150
Data Types 2164
Constants 2177

Part III Other References 2187

Chapter 37 Backup Core Reference 2189

Overview 2189
Functions 2189

Chapter 38 Low Memory Accessors Reference 2191

Overview 2191
Functions 2191

Chapter 39 Core Endian Reference 2221

Overview 2221
Functions by Task 2221
Functions 2224
Callbacks 2243
Data Types 2244
Constants 2247

10
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 40 Error Handler Reference 2249

Overview 2249
Functions 2249
Data Types 2250

Chapter 41 Finder Interface Reference 2253

Overview 2253
Data Types 2254
Constants 2261
Result Codes 2280

Chapter 42 MDImporter Reference 2281

Overview 2281
Callbacks 2281
Constants 2282

Chapter 43 MDSchema Reference 2283

Overview 2283
Functions 2283
Constants 2285

Chapter 44 Open Transport Reference 2287

Overview 2287
Functions by Task 2290
Functions 2301
Callbacks by Task 2406
Callbacks 2408
Data Types 2423
Constants 2556
Result Codes 2722

Chapter 45 Search Kit Reference 2729

Overview 2729
Functions by Task 2729
Functions 2734
Callbacks 2780
Data Types 2781
Constants 2784

11
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Spotlight Metadata Attributes 2791

Document Revision History 2819

Index 2821

12
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Tables

Chapter 10 Alias Manager Reference 177

Table 10-1 Information about a file system object 184

Chapter 18 Gestalt Manager Reference 1003

Table 18-1 The representation of Mac OS X versions by the Gestalt Manager 1099

Chapter 44 Open Transport Reference 2287

Table 44-1 2398
Table 44-2 2401

Chapter 45 Search Kit Reference 2729

Table 45-1 Search Kit query operators for non-similarity searches 2765

13
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

14
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

TABLES

Framework /System/Library/Frameworks/CoreServices

Header file directories /System/Library/Frameworks/CoreServices.framework/Headers

Declared in Aliases.h
BackupCore.h
CFFTPStream.h
CFHTTPAuthentication.h
CFHTTPMessage.h
CFHost.h
CFNetDiagnostics.h
CFNetServices.h
CFSocketStream.h
CFStream.h
CodeFragments.h
Collections.h
Components.h
DateTimeUtils.h
Debugging.h
Endian.h
Files.h
Finder.h
FinderRegistry.h
FixMath.h
Folders.h
Gestalt.h
HFSVolumes.h
IOMacOSTypes.h
KeychainCore.h
KeychainHI.h
LSInfo.h
LSOpen.h
LowMem.h
MDImporter.h
MDItem.h
MDQuery.h
MDSchema.h
MacErrors.h
MacLocales.h
MacMemory.h
Math64.h
MixedMode.h
Multiprocessing.h
MultiprocessingInfo.h
NumberFormatting.h
OSTypes.h
OSUtils.h

15
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

OpenTransport.h
OpenTransportProtocol.h
OpenTransportProviders.h
PEFBinaryFormat.h
PLStringFuncs.h
Power.h
QuickTimeComponents.k.h
Resources.h
SCSI.h
SKAnalysis.h
SKDocument.h
SKIndex.h
SKSearch.h
SKSummary.h
Script.h
StringCompare.h
TextCommon.h
TextEncodingConverter.h
TextEncodingPlugin.h
TextUtils.h
Threads.h
Timer.h
ToolUtils.h
TypeSelect.h
UTCUtils.h
UnicodeConverter.h
UnicodeUtilities.h
fenv.h
fp.h
pyport.h
queue.h
syslog.h
types.h

This collection of documents provides the API reference for the Core Services framework, which encompasses
many fundamental operating system services used by Carbon applications.

16
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

17
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART I

Opaque Types

18
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART I

Opaque Types

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFFTPStream.h

Companion guide CFNetwork Programming Guide

Overview

This document describes the CFStream functions for working with FTP connections. It is part of the CFFTP
API.

Functions

CFFTPCreateParsedResourceListing
Parses an FTP listing to a dictionary.

CFIndex CFFTPCreateParsedResourceListing (
 CFAllocatorRef alloc,
 const UInt8 *buffer,
 CFIndex bufferLength,
 CFDictionaryRef *parsed
);

Parameters
alloc

The allocator to use to allocate memory for the dictionary. Pass NULL or kCFAllocatorDefault to
use the current default allocator.

buffer
A pointer to a buffer holding zero or more lines of resource listing.

bufferLength
The length in bytes of the buffer pointed to by buffer.

parsed
Upon return, contains a dictionary containing the parsed resource information. If parsing fails, a NULL
pointer is returned.

Return Value
The number of bytes parsed, 0 if no bytes were available for parsing, or -1 if parsing failed.

Overview 19
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

Discussion
This function examines the contents of buffer as an FTP directory listing and parses into a CFDictionary the
information for a single file or folder. The CFDictionary is returned in the parsed parameter, and the number
of bytes used from buffer is returned.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFFTPStream.h

CFReadStreamCreateWithFTPURL
Creates an FTP read stream.

CFReadStreamRef CFReadStreamCreateWithFTPURL (
 CFAllocatorRef alloc,
 CFURLRef ftpURL
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

ftpURL
A pointer to a CFURL structure for the URL to be downloaded that can be created by calling any of
the CFURLCreate functions, such as CFURLCreateWithString.

Return Value
A new read stream, or NULL if the call failed. Ownership follows the Create Rule.

Discussion
This function creates an FTP read stream for downloading data from an FTP URL. If the ftpURL parameter is
created with the user name and password as part of the URL (such as
ftp://username:password@ftp.example.com) then the user name and password will automatically be
set in the CFReadStream. Otherwise, call CFReadStreamSetProperty to set the steam’s properties, such
as kCFStreamPropertyFTPUserName and kCFStreamPropertyFTPPassword to associate a user name
and password with the stream that are used to log in when the stream is opened. See "Constants" (page 21)
for a description of all FTP stream properties.

To initiate a connection with the FTP server, call CFReadStreamOpen. To read the FTP stream, call
CFReadStreamRead. If the URL refers to a directory, the stream provides the listing results sent by the server.
If the URL refers to a file, the stream provides the data in that file.

To close a connection with the FTP server, call CFReadStreamClose.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFFTPStream.h

20 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

CFWriteStreamCreateWithFTPURL
Creates an FTP write stream.

CFWriteStreamRef CFWriteStreamCreateWithFTPURL (
 CFAllocatorRef alloc,
 CFURLRef ftpURL
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

ftpURL
A pointer to a CFURL structure for the URL to be uploaded created by calling any of the CFURLCreate
functions, such as CFURLCreateWithString.

Return Value
A new write stream, or NULL if the call failed. Ownership follows the Create Rule.

Discussion
This function creates an FTP write stream for uploading data to an FTP URL. If the ftpURL parameter is created
with the user name and password as part of the URL (such as
ftp://username:password@ftp.example.com) then the user name and password will automatically be
set in the CFWriteStream. Call CFWriteStreamSetProperty to set the steam’s properties, such as
kCFStreamPropertyFTPUserName and kCFStreamPropertyFTPPassword to associate a user name and
password with the stream that are used to log in when the stream is opened. See "Constants" (page 21) for
a description of all FTP stream properties.

After creating the write stream, you can call CFWriteStreamGetStatus at any time to check the status of
the stream.

To initiate a connection with the FTP server, call CFWriteStreamOpen. If the URL specifies a directory, the
open is immediately followed by the event kCFStreamEventEndEncountered (and the stream passes to
the state kCFStreamStatusAtEnd). Once the stream reaches this state, the directory has been created.
Intermediary directories are not created.

To write to the FTP stream, call CFWriteStreamWrite.

To close a connection with the FTP server, call CFWriteStreamClose.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFFTPStream.h

Constants

CFStream FTP Property Constants
Constants for setting and copying CFStream FTP properties.

Constants 21
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

const CFStringRef kCFStreamPropertyFTPUserName;
const CFStringRef kCFStreamPropertyFTPPassword;
const CFStringRef kCFStreamPropertyFTPUsePassiveMode;
const CFStringRef kCFStreamPropertyFTPResourceSize;
const CFStringRef kCFStreamPropertyFTPFetchResourceInfo;
const CFStringRef kCFStreamPropertyFTPFileTransferOffset;
const CFStringRef kCFStreamPropertyFTPAttemptPersistentConnection;
const CFStringRef kCFStreamPropertyFTPProxy;
const CFStringRef kCFStreamPropertyFTPProxyHost;
extern const CFStringRef kCFStreamPropertyFTPProxyPort;
extern const CFStringRef kCFStreamPropertyFTPProxyUser;
extern const CFStringRef kCFStreamPropertyFTPProxyPassword;

Constants
kCFStreamPropertyFTPUserName

FTP User Name stream property key for set and copy operations. A value of type CFString for storing
the login user name. Don’t set this property when anonymous FTP is desired.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPPassword
FTP Password stream property key for set and copy operations. A value of type CFString for storing
the login password. Don’t set this property when anonymous FTP is desired.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPUsePassiveMode
FTP Passive Mode stream property key for set and copy operations. Set this property to
kCFBooleanTrue to enable passive mode; set this property to kCFBooleanFalse to disable passive
mode.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPResourceSize
FTP Resource Size read stream property key copy operations. This property stores a CFNumber of
type kCFNumberLongLongType representing the size of a resource in bytes.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPFetchResourceInfo
FTP Fetch Resource Information stream property key for set and copy operations. Set this property
to kCFBooleanTrue to require that resource information, such as size, must be provided before
download starts; set this property to kCFBooleanFalse to allow downloads to start without resource
information. For this version, size is the only resource information.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPFileTransferOffset
FTP File Transfer Offset stream property key for set and copy operations. The value of this property
is a CFNumber of type kCFNumberLongLongType representing the file offset at which to start the
transfer.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

22 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

kCFStreamPropertyFTPAttemptPersistentConnection
FTP Attempt Persistent Connection stream property key for set and copy operations. Set this property
to kCFBooleanTrue to enable the reuse of existing server connections; set this property to
kCFBooleanFalse to not reuse existing server connections. By default, this property is set to
kCFBooleanTrue.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxy
FTP Proxy stream property key for set and copy operations. The property is a value of type CFDictionary
that holds proxy dictionary key-value pairs. The dictionary returned by SystemConfiguration can also
be set as the value of this property.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxyHost
FTP Proxy Host stream property key or an FTP Proxy dictionary key for set and copy operations. The
value of this property is a CFString containing the host name of a proxy server. This property can be
set and copied individually or via a CFDictionary. This property is the same as the
kSCPropNetProxiesFTPProxy property defined in SCSchemaDefinitions.h.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxyPort
FTP Proxy Port stream property key or an FTP Proxy dictionary key for set and copy operations. The
value of this property is a CFNumber of type kCFNumberIntType containing the port number of a
proxy server. This property can be set and copied individually or via a CFDictionary. This property is
the same as the kSCPropNetProxiesFTPPort property defined in SCSchemaDefinitions.h.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxyUser
FTP Proxy Host stream property key or FTP Proxy dictionary key for set and copy operations. The value
of this property is a CFString containing the username to be used when connecting to the proxy
server.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

kCFStreamPropertyFTPProxyPassword
FTP Proxy Port stream property key or FTP Proxy dictionary key for set and copy operations. The value
of this property is a CFString containing the password to be used when connecting to the proxy
server.

Available in Mac OS X v10.3 and later.

Declared in CFFTPStream.h.

Discussion
The CFStream property constants are used to specify the property to set when calling
CFReadStreamSetProperty or CFWriteStreamSetProperty and to copy when calling
CFReadStreamCopyProperty orCFWriteStreamCopyProperty. They can also be passed to a CFDictionary
creator or to an item accessor or mutator.

Availability
Available in Mac OS X version 10.3 and later.

Constants 23
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

Declared In
CFNetwork/CFFTPStream.h

CFStream FTP Resource Constants
FTP resource constants.

const CFStringRef kCFFTPResourceMode;
const CFStringRef kCFFTPResourceName;
const CFStringRef kCFFTPResourceOwner;
const CFStringRef kCFFTPResourceGroup;
const CFStringRef kCFFTPResourceLink;
const CFStringRef kCFFTPResourceSize;
const CFStringRef kCFFTPResourceType;
const CFStringRef kCFFTPResourceModDate;

Constants
kCFFTPResourceMode

CFDictionary key for getting the CFNumber containing the access permissions, defined in
sys/types.h, of the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceName
CFDictionary key for getting the CFString containing the name of the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceOwner
CFDictionary key for getting the CFString containing the name of the owner of the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceGroup
CFDictionary key for getting the CFString containing the name of a group that shares the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceLink
CFDictionary key for getting the CFString containing the symbolic link information. If the item is a
symbolic link, the CFString contains the path to the item that the link references.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceSize
CFDictionary key for getting the CFNumber containing the size in bytes of the FTP resource.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

24 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

kCFFTPResourceType
CFDictionary key for getting the CFNumber containing the type of the FTP resource as defined in
sys/dirent.h.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

kCFFTPResourceModDate
CFDictionary key for getting the CFDate containing the last date and time the FTP resource was
modified.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

Discussion
The values of FTP resource keys are extracted from a line of the directory list by the
CFFTPCreateParsedResourceListing (page 19) function.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFNetwork/CFFTPStream.h

Error Domains
Error domains specific to CFFTPStream calls.

extern const SInt32 kCFStreamErrorDomainFTP;

Constants
kCFStreamErrorDomainFTP

Error domain that returns the last result code returned by the FTP server.

Available in Mac OS X version 10.3 and later.

Declared in CFFTPStream.h.

Discussion
To determine the source of an error, examine the userInfo dictionary included in the CFError object
returned by a function call or call CFErrorGetDomain and pass in the CFError object and the domain
whose value you want to read.

Constants 25
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

26 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

CFFTPStream Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFHost.h

Companion guide CFNetwork Programming Guide

Overview

The CFHost API allows you to create instances of the CFHost object that you can use to acquire host
information, including names, addresses, and reachability information.

The process of acquiring information about a host is known as resolution. Begin by calling
CFHostCreateWithAddress or CFHostCreateWithName to create an instance of a CFHost using an address
or a name, respectively. If you want to resolve the host asynchronously. call CFHostSetClient to associate
your client context and user-defined callback function with the host. Then call CFHostScheduleWithRunLoop
to schedule the host on a run loop.

To start resolution, call CFHostStartInfoResolution. If you set up for asynchronous resolution,
CFHostStartInfoResolution returns immediately. Your callback function will be called when resolution
is complete. If you didn’t set up for asynchronous resolution, CFHostStartInfoResolution blocks until
resolution is complete, an error occurs, or the resolution is cancelled.

When resolution is complete, call CFHostGetAddressing or CFHostGetNames to get an array of known
addresses or known names, respectively, for the host. Call CFHostGetReachability to get flags, declared
in SystemConfiguration/SCNetwork.h, that describe the reachability of the host.

When you no longer need a CFHost object, call CFHostUnscheduleFromRunLoop and CFHostSetClient
to disassociate the host from your user-defined client context and callback function (if it was set up for
asynchronous resolution). Then dispose of it.

Functions by Task

Creating a host

CFHostCreateCopy (page 29)
Creates a new host object by copying.

CFHostCreateWithAddress (page 29)
Uses an address to create an instance of a host object.

Overview 27
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

CFHostCreateWithName (page 30)
Uses a name to create an instance of a host object.

CFHost Functions

CFHostCancelInfoResolution (page 28)
Cancels the resolution of a host.

CFHostGetAddressing (page 31)
Gets the addresses from a host.

CFHostGetNames (page 31)
Gets the names from a CFHost.

CFHostGetReachability (page 32)
Gets reachability information from a host.

CFHostStartInfoResolution (page 34)
Starts resolution for a host object.

CFHostSetClient (page 34)
Associates a client context and a callback function with a CFHost object or disassociates a client
context and callback function that were previously set.

CFHostScheduleWithRunLoop (page 33)
Schedules a CFHost on a run loop.

CFHostUnscheduleFromRunLoop (page 35)
Unschedules a CFHost from a run loop.

Getting the CFHost Type ID

CFHostGetTypeID (page 33)
Gets the Core Foundation type identifier for the CFHost opaque type.

Functions

CFHostCancelInfoResolution
Cancels the resolution of a host.

void CFHostCancelInfoResolution (
 CFHostRef theHost,
 CFHostInfoType info
);

Parameters
theHost

The host for which a resolution is to be cancelled. This value must not be NULL.

28 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

info
A value of type CFHostInfoType specifying the type of resolution that is to be cancelled. See
CFHostInfoType Constants (page 38) for possible values.

Discussion
This function cancels the asynchronous or synchronous resolution specified by info for the host specified
by theHost.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostCreateCopy
Creates a new host object by copying.

CFHostRef CFHostCreateCopy (
 CFAllocatorRef alloc,
 CFHostRef host
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

addr
The host to copy. This value must not be NULL.

Return Value
A valid CFHost object or NULL if the copy could not be created. The new host contains a copy of all previously
resolved data from the original host. Ownership follows the Create Rule.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostCreateWithAddress
Uses an address to create an instance of a host object.

Functions 29
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

CFHostRef CFHostCreateWithAddress (
 CFAllocatorRef allocator,
 CFDataRef addr
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

addr
A CFDataRef object containing a sockaddr structure for the address of the host. This value must not
be NULL.

Return Value
A valid CFHostRef object that can be resolved, or NULL if the host could not be created. Ownership follows
the Create Rule.

Discussion
Call CFHostStartInfoResolution (page 34) to resolve the return object’s name and reachability
information.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostCreateWithName
Uses a name to create an instance of a host object.

CFHostRef CFHostCreateWithName (
 CFAllocatorRef allocator,
 CFStringRef hostname
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

hostname
A string representing the name of the host. This value must not be NULL.

Return Value
A valid CFHostRef object that can be resolved, or NULL if the host could not be created. Ownership follows
the Create Rule.

Discussion
Call CFHostStartInfoResolution (page 34) to resolve the object’s addresses and reachability information.

30 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostGetAddressing
Gets the addresses from a host.

CFArrayRef CFHostGetAddressing (
 CFHostRef theHost,
 Boolean *hasBeenResolved
);

Parameters
theHost

The CFHost whose addresses are to be obtained. This value must not be NULL.

hasBeenResolved
On return, a pointer to a Boolean that is TRUE if addresses were available and FALSE if addresses
were not available. This parameter can be null.

function result
A CFArray of addresses where address is a sockaddr structure wrapped by a CFDataRef, or null if no
addresses were available.

Discussion
This function gets the addresses from a CFHost. The CFHost must have been previously resolved. To resolve
a CFHost, call CFHostStartInfoResolution (page 34).

Special Considerations

This function gets the addresses in a thread-safe way, but the resulting data is not thread-safe. The data is
returned as a “get” as opposed to a copy, so the data is not safe if the CFHost is altered from another thread.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostGetNames
Gets the names from a CFHost.

Functions 31
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

CFArrayRef CFHostGetNames (
 CFHostRef theHost,
 Boolean *hasBeenResolved
);

Parameters
theHost

The host to examine. The host must have been previously resolved. (To resolve a host, call
CFHostStartInfoResolution (page 34).) This value must not be NULL.

hasBeenResolved
On return, contains TRUE if names were available, otherwise FALSE. This value may be NULL.

Return Value
An array containing the of names of theHost, or NULL if no names were available.

Special Considerations

This function gets the names in a thread-safe way, but the resulting data is not thread-safe. The data is
returned as a “get” as opposed to a copy, so the data is not safe if the CFHost is altered from another thread.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostGetReachability
Gets reachability information from a host.

CFDataRef CFHostGetReachability (
 CFHostRef theHost,
 Boolean *hasBeenResolved
);

Parameters
theHost

The host whose reachability is to be obtained. The host must have been previously resolved. (To
resolve a host, call CFHostStartInfoResolution (page 34).) This value must not be NULL.

hasBeenResolved
On return, contains TRUE if the reachability was available, otherwise FALSE. This value may be NULL.

Return Value
A CFData object that wraps the reachability flags (SCNetworkConnectionFlags) defined in
SystemConfiguration/SCNetwork.h, or NULL if reachability information was not available.

Special Considerations

This function gets reachability information in a thread-safe way, but the resulting data is not thread-safe.
The data is returned as a “get” as opposed to a copy, so the data is not safe if the CFHost is altered from
another thread.

Availability
Available in Mac OS X version 10.3 and later.

32 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Declared In
CFHost.h

CFHostGetTypeID
Gets the Core Foundation type identifier for the CFHost opaque type.

CFTypeID CFHostGetTypeID ();

Return Value
The Core Foundation type identifier for the CFHost opaque type.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostScheduleWithRunLoop
Schedules a CFHost on a run loop.

void CFHostScheduleWithRunLoop (
 CFHostRef theHost,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theHost

The host to be schedule on a run loop. This value must not be NULL.

runLoop
The run loop on which to schedule theHost. This value must not be NULL.

runLoopMode
The mode on which to schedule theHost. This value must not be NULL.

Discussion
Schedules theHost on a run loop, which causes resolutions of the host to be performed asynchronously.
The caller is responsible for ensuring that at least one of the run loops on which the host is scheduled is
being run.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

Functions 33
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

CFHostSetClient
Associates a client context and a callback function with a CFHost object or disassociates a client context and
callback function that were previously set.

Boolean CFHostSetClient (
 CFHostRef theHost,
 CFHostClientCallBack clientCB,
 CFHostClientContext *clientContext
);

Parameters
theHost

The host to modify. The value must not be NULL.

clientCB
The callback function to associate with theHost. The callback function will be called when a resolution
completes or is cancelled. If you are calling this function to disassociate a client context and callback
from theHost, pclientCBass NULL.

clientContext
A CFHostClientContext (page 37) structure whose info field will be passed to the callback
function specified by clientCB when clientCB is called. This value must not be NULL when setting
an association.

Pass NULL when disassociating a client context and a callback from a host.

Return Value
TRUE if the association could be set or unset, otherwise FALSE.

Discussion
The callback function specified by clientCB will be called when a resolution completes or is cancelled.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostStartInfoResolution
Starts resolution for a host object.

Boolean CFHostStartInfoResolution (
 CFHostRef theHost,
 CFHostInfoType info,
 CFStreamError *error
);

Parameters
theHost

The host, obtained by previously calling CFHostCreateCopy (page 29),
CFHostCreateWithAddress (page 29), or CFHostCreateWithName (page 30), that is to be resolved.
This value must not be NULL.

34 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

info
A value of type CFHostInfoType specifying the type of information that is to be retrieved. See
CFHostInfoType Constants (page 38) for possible values.

error
A pointer to a CFStreamError structure, that, if an error occurs, is set to the error and the error’s
domain. In synchronous mode, the error indicates why resolution failed, and in asynchronous mode,
the error indicates why resolution failed to start.

Return Value
TRUE if the resolution was started (asynchronous mode); FALSE if another resolution is already in progress
for theHost or if an error occurred.

Discussion
This function retrieves the information specified by info and stores it in the host.

In synchronous mode, this function blocks until the resolution has completed, in which case this function
returns TRUE, until the resolution is stopped by calling CFHostCancelInfoResolution (page 28) from
another thread, in which case this function returns FALSE, or until an error occurs.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostUnscheduleFromRunLoop
Unschedules a CFHost from a run loop.

void CFHostUnscheduleFromRunLoop (
 CFHostRef theHost,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theService

The host to unschedule. This value must not be NULL.

runLoop
The run loop. This value must not be NULL.

runLoopMode
The mode from which the service is to be unscheduled. This value must not be NULL.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Functions 35
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Declared In
CFHost.h

Callbacks

CFHostClientCallBack
Defines a pointer to the callback function that is called when an asynchronous resolution of a CFHost completes
or an error occurs for an asynchronous CFHost resolution.

typedef void (CFHostClientCallBack) (
 CFHostRef theHost,
 CFHostInfoType typeInfo,
 const CFStreamError *error,
 void *info);

If you name your callback MyHostClientCallBack, you would declare it like this:

void MyHostClientCallBack (
 CFHostRef theHost,
 CFHostInfoType typeInfo,
 const CFStreamError *error,
 void *info
);

Parameters
theHost

The host for which an asynchronous resolution has been completed.

typeInfo
Value of type CFHostInfoType representing the type of information (addresses, names, or reachability
information) obtained by the completed resolution. See CFHostInfoType Constants (page 38) for
possible values.

error
If the resolution failed, contains a CFStreamError structure whose error field contains an error
code.

info
User-defined context information. The value pointed to by info is the same as the value pointed to
by the info field of the CFHostClientContext (page 37) structure that was provided when the
host was associated with this callback function.

Discussion
The callback function for a CFHost object is called one or more times when an asynchronous resolution
completes for the specified host, when an asynchronous resolution is cancelled, or when an error occurs
during an asynchronous resolution.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

36 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Data Types

CFHostRef
An opaque reference representing an CFHost object.

typedef struct __CFHost* CFHostRef;

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

CFHostClientContext
A structure containing user-defined data and callbacks for CFHost objects.

struct CFHostClientContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
} CFHostClientContext;
typedef struct CFHostClientContext CFHostClientContext;

Fields
version

The version number of the structure type passed as a parameter to the host client function. The only
valid version number is 0.

info
An arbitrary pointer to allocated memory containing user-defined data that can be associated with
the host and that is passed to the callbacks.

retain
The callback used to add a retain for the host on the info pointer for the life of the host, and may be
used for temporary references the host needs to take. This callback returns the actual info pointer to
store in the host, almost always just the pointer passed as the parameter.

release
The callback used to remove a retain previously added for the host on the info pointer.

copyDescription
The callback used to create a descriptive string representation of the info pointer (or the data pointed
to by the info pointer) for debugging purposes. This callback is called by the CFCopyDescription
function.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFHost.h

Data Types 37
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Constants

CFHostInfoType Constants
Values indicating the type of data that is to be resolved or the type of data that was resolved.

enum CFHostInfoType {
 kCFHostAddresses = 0,
 kCFHostNames = 1,
 kCFHostReachability = 2
};
typedef enum CFHostInfoType CFHostInfoType;

Constants
kCFHostAddresses

Specifies that addresses are to be resolved or that addresses were resolved.

Available in Mac OS X v10.3 and later.

Declared in CFHost.h.

kCFHostNames
Specifies that names are to be resolved or that names were resolved.

Available in Mac OS X v10.3 and later.

Declared in CFHost.h.

kCFHostReachability
Specifies that reachability information is to be resolved or that reachability information was resolved.

Available in Mac OS X v10.3 and later.

Declared in CFHost.h.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFNetwork/CFHost.h

Error Domains
Error domains specific to CFHost calls.

extern const SInt32 kCFStreamErrorDomainNetDB;
extern const SInt32 kCFStreamErrorDomainSystemConfiguration;

Constants
kCFStreamErrorDomainNetDB

The error domain that returns errors from the network database (DNS resolver) layer (described in
/usr/include/netdb.h).

Available in Mac OS X version 10.5 and later.

Declared in CFHost.h.

38 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

kCFStreamErrorDomainSystemConfiguration
The error domain that returns errors from the system configuration layer (described in System
Configuration Framework Reference).

Available in Mac OS X version 10.5 and later.

Declared in CFHost.h.

Discussion
To determine the source of an error, examine the userInfo dictionary included in the CFError object
returned by a function call or call CFErrorGetDomain and pass in the CFError object and the domain
whose value you want to read.

Constants 39
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

40 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

CFHost Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFHTTPAuthentication.h

Companion guide CFNetwork Programming Guide

Overview

The CFHTTPAuthentication opaque type provides an abstraction of HTTP authentication information.

Functions by Task

Creating an HTTP authentication

CFHTTPAuthenticationCreateFromResponse (page 44)
Uses an authentication failure response to create a CFHTTPAuthentication object.

CFHTTP Authentication Functions
This section describes the CFNetwork authentication functions that are used to manage authentication
information associated with a request. The functions work with a CFHTTPAuthentication object, which is
created from an HTTP response that failed with a 401 or 407 error code.

When you have analyzed the CFHTTPAuthentication object and acquired the necessary credentials to perform
the authentication, call CFHTTPMessageApplyCredentials (page 55) or
CFHTTPMessageApplyCredentialDictionary (page 54) to perform the authentication.

CFHTTPAuthenticationAppliesToRequest (page 42)
Returns a Boolean value that indicates whether a CFHTTPAuthentication object is associated with a
CFHTTPMessage object.

CFHTTPAuthenticationCopyDomains (page 43)
Returns an array of domain URLs to which a given CFHTTPAuthentication object can be applied.

CFHTTPAuthenticationCopyMethod (page 43)
Gets the strongest authentication method that will be used when a CFHTTPAuthentication object is
applied to a request.

Overview 41
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

CFHTTPAuthenticationCopyRealm (page 43)
Gets an authentication information’s namespace.

CFHTTPAuthenticationIsValid (page 45)
Returns a Boolean value that indicates whether a CFHTTPAuthentication object is valid.

CFHTTPAuthenticationRequiresAccountDomain (page 46)
Returns a Boolean value that indicates whether a CFHTTPAuthentication object uses an authentication
method that requires an account domain.

CFHTTPAuthenticationRequiresOrderedRequests (page 46)
Returns a Boolean value that indicates whether authentication requests should be made one at a
time.

CFHTTPAuthenticationRequiresUserNameAndPassword (page 47)
Returns a Boolean value that indicates whether a CFHTTPAuthentication object uses an authentication
method that requires a username and a password.

Getting the CFHTTPAuthentication type ID

CFHTTPAuthenticationGetTypeID (page 45)
Gets the Core Foundation type identifier for the CFHTTPAuthentication opaque type.

Functions

CFHTTPAuthenticationAppliesToRequest
Returns a Boolean value that indicates whether a CFHTTPAuthentication object is associated with a
CFHTTPMessage object.

Boolean CFHTTPAuthenticationAppliesToRequest (
 CFHTTPAuthenticationRef auth,
 CFHTTPMessageRef request
);

Parameters
auth

The CFHTTPAuthentication object to examine.

request
Request that auth is to be tested against.

Return Value
TRUE if auth is associated with request, otherwise FALSE.

Discussion
If this function returns TRUE, you can use auth to provide authentication information when using request.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CFHTTPAuthentication.h

42 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

CFHTTPAuthenticationCopyDomains
Returns an array of domain URLs to which a given CFHTTPAuthentication object can be applied.

CFArrayRef CFHTTPAuthenticationCopyDomains (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
A CFArray object that contains the domain URL’s to which auth should be applied. Ownership follows the
Create Rule.

Discussion
This function is provided for informational purposes only.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationCopyMethod
Gets the strongest authentication method that will be used when a CFHTTPAuthentication object is applied
to a request.

CFStringRef CFHTTPAuthenticationCopyMethod (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
A string containing the authentication method that will be used auth is applied to a request. If more than
one authentication method is available, the strongest authentication method is returned. Ownership follows
the Create Rule.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationCopyRealm
Gets an authentication information’s namespace.

Functions 43
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

CFStringRef CFHTTPAuthenticationCopyRealm (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
The namespace, if there is one; otherwise NULL. Ownership follows the Create Rule.

Discussion
Some authentication methods provide a namespace, and it is usually used to prompt the user for a name
and password.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationCreateFromResponse
Uses an authentication failure response to create a CFHTTPAuthentication object.

CFHTTPAuthenticationRef CFHTTPAuthenticationCreateFromResponse (
 CFAllocatorRef alloc,
 CFHTTPMessageRef response
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

response
Response indicating an authentication failure; usually a 401 or a 407 response.

Return Value
CFHTTPAuthentication object that can be used for adding credentials to future requests. Ownership follows
the Create Rule.

Discussion
This function uses a response containing authentication failure information to create a reference to a
CFHTTPAuthentication object. You can use the object to add credentials to future requests. You can query
the object to get the following information:

 ■ whether it can be used and re-used to authenticate with its corresponding server
[CFHTTPAuthenticationIsValid (page 45)]

 ■ the authentication method that will be used when it is used to perform an authentication
[CFHTTPAuthenticationCopyMethod (page 43)]

 ■ whether it is associated with a particular CFHTTPMessageRef
[CFHTTPAuthenticationAppliesToRequest (page 42)

44 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

 ■ whether a user name and a password will be required when it is used to perform an authentication
[CFHTTPAuthenticationRequiresUserNameAndPassword (page 47)]

 ■ whether an account domain will be required when it is used to perform an authentication
[CFHTTPAuthenticationRequiresAccountDomain (page 46)]

 ■ whether authentication requests should be sent one at a time to the corresponding server
[CFHTTPAuthenticationRequiresOrderedRequests (page 46)]

 ■ the namespace (if any) that the domain uses to prompt for a name and password
[CFHTTPAuthenticationCopyRealm (page 43)]

 ■ the domain URLs the instance applies to [CFHTTPAuthenticationCopyDomains (page 43)]

When you have determined what information will be needed to perform the authentication and accumulated
that information, call CFHTTPMessageApplyCredentials (page 55) or
CFHTTPMessageApplyCredentialDictionary (page 54) to perform the authentication.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationGetTypeID
Gets the Core Foundation type identifier for the CFHTTPAuthentication opaque type.

CFTypeID CFHTTPAuthenticationGetTypeID ();

Return Value
The Core Foundation type identifier for the CFHTTPAuthentication opaque type.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationIsValid
Returns a Boolean value that indicates whether a CFHTTPAuthentication object is valid.

Boolean CFHTTPAuthenticationIsValid (
 CFHTTPAuthenticationRef auth,
 CFStreamError *error
);

Parameters
auth

The CFHTTPAuthentication object to examine.

error
Pointer to a CFStreamError structure, whose fields, if an error has occurred, are set to the error and
the error’s domain.

Functions 45
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

Return Value
TRUE if auth contains enough information to be applied to a request.

If this function returns FALSE, the CFHTTPAuthentication object may still contain useful information, such
as the name of an unsupported authentication method.

Discussion
If this function returns TRUE for auth, the object is good for use with functions such as
CFHTTPMessageApplyCredentials (page 55) andCFHTTPMessageApplyCredentialDictionary (page
54). If this function returns FALSE, auth is invalid, and authentications using it will not succeed.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationRequiresAccountDomain
Returns a Boolean value that indicates whether a CFHTTPAuthentication object uses an authentication method
that requires an account domain.

Boolean CFHTTPAuthenticationRequiresAccountDomain (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
TRUE if auth uses an authentication method that requires an account domain, otherwise FALSE.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationRequiresOrderedRequests
Returns a Boolean value that indicates whether authentication requests should be made one at a time.

Boolean CFHTTPAuthenticationRequiresOrderedRequests (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
TRUE if auth requires ordered requests, otherwise FALSE.

46 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

Discussion
Some authentication methods require that future requests must be performed in an ordered manner. If this
function returns TRUE, clients can improve their chances of authenticating successfully by issuing requests
one at a time as responses come back from the server.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPAuthenticationRequiresUserNameAndPassword
Returns a Boolean value that indicates whether a CFHTTPAuthentication object uses an authentication method
that requires a username and a password.

Boolean CFHTTPAuthenticationRequiresUserNameAndPassword (
 CFHTTPAuthenticationRef auth
);

Parameters
auth

The CFHTTPAuthentication object to examine.

Return Value
TRUE if auth requires a username and password when it is applied to a request; otherwise, FALSE.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

Data Types

CFHTTPAuthenticationRef
An opaque reference representing HTTP authentication information.

typedef struct __CFHTTPAuthentication *CFHTTPAuthenticationRef;

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

Data Types 47
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

Constants

CFHTTP Authentication Scheme Constants
Specifies the authentication scheme when adding authentication information to a CFHTTP request message
object.

const CFStringRef kCFHTTPAuthenticationSchemeBasic;
const CFStringRef kCFHTTPAuthenticationSchemeDigest;
const CFStringRef kCFHTTPAuthenticationSchemeNegotiate;
const CFStringRef kCFHTTPAuthenticationSchemeNTLM;

Constants
kCFHTTPAuthenticationSchemeBasic

Specifies basic authentication consisting of a user name and a password.

Available in Mac OS X v10.1 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeDigest
Reserved.

Available in Mac OS X v10.1 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeNegotiate
Specifies the Negotiate authentication scheme.

Available in Mac OS X v10.5 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeNTLM
Specifies the NTLM authentication scheme.

Available in Mac OS X v10.5 and later.

Declared in CFHTTPMessage.h.

Discussion
The authentication scheme constants are used to specify the authentication scheme when calling
CFHTTPMessageAddAuthentication (page 53).

CFStream HTTP Authentication Error Constants
Authentication error codes that may be returned when trying to apply authentication to a request.

48 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

enum CFStreamErrorHTTPAuthentication{
 kCFStreamErrorHTTPAuthenticationTypeUnsupported = -1000,
 kCFStreamErrorHTTPAuthenticationBadUserName = -1001,
 kCFStreamErrorHTTPAuthenticationBadPassword = -1002
};
typedef enum CFStreamErrorHTTPAuthentication CFStreamErrorHTTPAuthentication;

Constants
kCFStreamErrorHTTPAuthenticationTypeUnsupported

Specified authentication type is not supported.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

kCFStreamErrorHTTPAuthenticationBadUserName
User name is in a format that is not suitable for the request. Currently, user names are decoded using
kCFStringEncodingISOLatin1.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

kCFStreamErrorHTTPAuthenticationBadPassword
Password is in a format that is not suitable for the request. Currently, passwords are decoded using
kCFStringEncodingISOLatin1.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

CFHTTPMessageApplyCredentialDictionary Keys
Constants for keys in the dictionary passed to CFHTTPMessageApplyCredentialDictionary (page 54).

const CFStringRef kCFHTTPAuthenticationUserName;
const CFStringRef kCFHTTPAuthenticationPassword;
const CFStringRef kCFHTTPAuthenticationAccountDomain;

Constants
kCFHTTPAuthenticationUserName

Username to use for authentication.

kCFHTTPAuthenticationPassword
Password to use for authentication.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

kCFHTTPAuthenticationAccountDomain
Account domain to use for authentication.

Available in Mac OS X v10.4 and later.

Declared in CFHTTPAuthentication.h.

Constants 49
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

50 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

CFHTTPAuthentication Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFHTTPMessage.h

Companion guides Getting Started with Networking
CFNetwork Programming Guide

Overview

The CFHTTPMessage opaque type represents an HTTP message.

Functions by Task

Creating a Message

CFHTTPMessageCreateCopy (page 60)
Gets a copy of a CFHTTPMessage object.

CFHTTPMessageCreateEmpty (page 60)
Creates and returns a new, empty CFHTTPMessage object.

CFHTTPMessageCreateRequest (page 61)
Creates and returns a CFHTTPMessage object for an HTTP request.

CFHTTPMessageCreateResponse (page 62)
Creates and returns a CFHTTPMessage object for an HTTP response.

Modifying a message

CFHTTPMessageAppendBytes (page 54)
Appends data to a CFHTTPMessage object.

CFHTTPMessageSetBody (page 64)
Sets the body of a CFHTTPMessage object.

CFHTTPMessageSetHeaderFieldValue (page 64)
Sets the value of a header field in an HTTP message.

Overview 51
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Getting information from a message

CFHTTPMessageCopyBody (page 57)
Gets the body from a CFHTTPMessage object.

CFHTTPMessageCopyAllHeaderFields (page 56)
Gets all header fields from a CFHTTPMessage object.

CFHTTPMessageCopyHeaderFieldValue (page 57)
Gets the value of a header field from a CFHTTPMessage object.

CFHTTPMessageCopyRequestMethod (page 58)
Gets the request method from a CFHTTPMessage object.

CFHTTPMessageCopyRequestURL (page 58)
Gets the URL from a CFHTTPMessage object.

CFHTTPMessageCopySerializedMessage (page 59)
Serializes a CFHTTPMessage object.

CFHTTPMessageCopyVersion (page 59)
Gets the HTTP version from a CFHTTPMessage object.

CFHTTPMessageIsRequest (page 64)
Returns a boolean indicating whether the CFHTTPMessage is a request or a response.

CFHTTPMessageIsHeaderComplete (page 63)
Determines whether a message header is complete.

CFHTTPMessageGetResponseStatusCode (page 63)
Gets the status code from a CFHTTPMessage object representing an HTTP response.

CFHTTPMessageCopyResponseStatusLine (page 59)
Gets the status line from a CFHTTPMessage object.

Message authentication

CFHTTPMessageApplyCredentials (page 55)
Performs the authentication method specified by a CFHTTPAuthentication object.

CFHTTPMessageApplyCredentialDictionary (page 54)
Use a dictionary containing authentication credentials to perform the authentication method specified
by a CFHTTPAuthentication object.

CFHTTPMessageAddAuthentication (page 53)
Adds authentication information to a request.

Getting the CFHTTPMessage type identifier

CFHTTPMessageGetTypeID (page 63)
Returns the Core Foundation type identifier for the CFHTTPMessage opaque type.

52 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Functions

CFHTTPMessageAddAuthentication
Adds authentication information to a request.

Boolean CFHTTPMessageAddAuthentication (
 CFHTTPMessageRef request,
 CFHTTPMessageRef authenticationFailureResponse,
 CFStringRef username,
 CFStringRef password,
 CFStringRef authenticationScheme,
 Boolean forProxy
);

Parameters
request

The message to which to add authentication information.

authenticationFailureResponse
The response message that contains authentication failure information.

username
The username to add to the request.

password
The password to add to the request.

authenticationScheme
The authentication scheme to use (kCFHTTPAuthenticationSchemeBasic,
kCFHTTPAuthenticationSchemeNegotiate, kCFHTTPAuthenticationSchemeNTLM, or
kCFHTTPAuthenticationSchemeDigest), or pass NULL to use the strongest supported
authentication scheme provided in the authenticationFailureResponse parameter.

forProxy
A flag indicating whether the authentication data that is being added is for a proxy’s use (TRUE) or
for a remote server’s use (FALSE). If the error code provided by the
authenticationFailureResponse parameter is 407, set forProxy to TRUE. If the error code is
401, set forProxy to FALSE.

Return Value
TRUE if the authentication information was successfully added, otherwise FALSE.

Discussion
This function adds the authentication information specified by the username, password,
authenticationScheme, and forProxy parameters to the specified request message. The message referred
to by the authenticationFailureResponse parameter typically contains a 401 or a 407 error code.

This function is best suited for sending a single request to the server. If you need to send multiple requests,
use CFHTTPMessageApplyCredentials (page 55).

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

Functions 53
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

CFHTTPMessageAppendBytes
Appends data to a CFHTTPMessage object.

Boolean CFHTTPMessageAppendBytes (
 CFHTTPMessageRef message,
 const UInt8 *newBytes,
 CFIndex numBytes
);

Parameters
message

The message to modify.

newBytes
A reference to the data to append.

numBytes
The length of the data pointed to by newBytes.

Return Value
TRUE if the data was successfully appended, otherwise FALSE.

Discussion
This function appends the data specified by newBytes to the specified message object which was created
by calling CFHTTPMessageCreateEmpty (page 60). The data is an incoming serialized HTTP request or
response received from a client or a server. While appending the data, this function deserializes it, removes
any HTTP-based formatting that the message may contain, and stores the message in the message object.
You can then call CFHTTPMessageCopyVersion (page 59), CFHTTPMessageCopyBody (page 57),
CFHTTPMessageCopyHeaderFieldValue (page 57), and CFHTTPMessageCopyAllHeaderFields (page
56) to get the message’s HTTP version, the message’s body, a specific header field, and all of the message’s
headers, respectively.

If the message is a request, you can also call CFHTTPMessageCopyRequestURL (page 58) and
CFHTTPMessageCopyRequestMethod (page 58) to get the message’s request URL and request method,
respectively.

If the message is a response, you can also call CFHTTPMessageGetResponseStatusCode (page 63) and
CFHTTPMessageCopyResponseStatusLine (page 59) to get the message’s status code and status line,
respectively.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageApplyCredentialDictionary
Use a dictionary containing authentication credentials to perform the authentication method specified by a
CFHTTPAuthentication object.

54 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Boolean CFHTTPMessageApplyCredentialDictionary (
 CFHTTPMessageRef request,
 CFHTTPAuthenticationRef auth,
 CFDictionaryRef dict,
 CFStreamError *error
);

Parameters
request

The request for which the authentication method is to be performed.

auth
A CFHTTPAuthentication object specifying the authentication method to perform.

dict
A dictionary containing authentication credentials to be applied to the request. For information on
the keys in this dictionary, see CFHTTPAuthenticationRef (page 47).

error
If an error occurs, upon return contains a CFStreamError object that describes the error and the
error’s domain. Pass NULL if you don’t want to receive error information.

Return Value
TRUE if the authentication was successful, otherwise, FALSE.

Discussion
This function performs the authentication method specified by auth on behalf of the request specified by
request using the credentials contained in the dictionary specified by dict. The dictionary must contain
values for the kCFHTTPAuthenticationUsername and kCFHTTPAuthenticationPassword keys. If
CFHTTPAuthenticationRequiresAccountDomain (page 46) returns TRUE for auth, the dictionary must
also contain a value for the kCFHTTPAuthenticationAccountDomain key.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFHTTPAuthentication
object at the same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPMessageApplyCredentials
Performs the authentication method specified by a CFHTTPAuthentication object.

Functions 55
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Boolean CFHTTPMessageApplyCredentials (
 CFHTTPMessageRef request,
 CFHTTPAuthenticationRef auth,
 CFStringRef username,
 CFStringRef password,
 CFStreamError *error
);

Parameters
request

Request for which the authentication method is to be performed.

auth
A CFHTTPAuthentication object specifying the authentication method to perform.

username
Username for performing the authentication.

password
Password for performing the authentication.

error
If an error occurs, upon return contains a CFStreamError object that describes the error and the
error’s domain. Pass NULL if you don’t want to receive error information.

Return Value
TRUE if the authentication was successful, otherwise, FALSE.

Discussion
This function performs the authentication method specified by auth on behalf of the request specified by
request using the credentials specified by username and password. If, in addition to a username and
password, you also need to specify an account domain, call
CFHTTPMessageApplyCredentialDictionary (page 54) instead of this function.

This function is appropriate for performing several authentication requests. If you only need to make a single
authentication request, consider using CFHTTPMessageAddAuthentication (page 53) instead.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFHTTPMessage object at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFHTTPAuthentication.h

CFHTTPMessageCopyAllHeaderFields
Gets all header fields from a CFHTTPMessage object.

56 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

CFDictionaryRef CFHTTPMessageCopyAllHeaderFields (
 CFHTTPMessageRef message
);

Parameters
message

The message to examine.

Return Value
A CFDictionary object containing keys and values that are CFString objects, where the key is the header
fieldname and the dictionary value is the header field’s value. Returns NULL if the header fields could not be
copied. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyBody
Gets the body from a CFHTTPMessage object.

CFDataRef CFHTTPMessageCopyBody (
 CFHTTPMessageRef message
);

Parameters
message

The message to examine.

Return Value
A CFData object or NULL if there was a problem creating the object or if the there is no message body.
Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyHeaderFieldValue
Gets the value of a header field from a CFHTTPMessage object.

CFStringRef CFHTTPMessageCopyHeaderFieldValue (
 CFHTTPMessageRef message,
 CFStringRef headerField
);

Parameters
message

The message to examine.

Functions 57
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

headerField
The header field to copy.

Return Value
A CFString object containing a copy of the field specified by headerField, or NULL if there was a problem
creating the object of if the specified header does not exist. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyRequestMethod
Gets the request method from a CFHTTPMessage object.

CFStringRef CFHTTPMessageCopyRequestMethod (
 CFHTTPMessageRef request
);

Parameters
request

The message to examine. This must be a request message.

Return Value
A CFString object containing a copy of the message’s request method, or NULL if there was a problem
creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyRequestURL
Gets the URL from a CFHTTPMessage object.

CFURLRef CFHTTPMessageCopyRequestURL (
 CFHTTPMessageRef request
);

Parameters
request

The message to examine. This must be a request message.

Return Value
A CFURLRef object containing the URL or NULL if there was a problem creating the object. Ownership follows
the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

58 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyResponseStatusLine
Gets the status line from a CFHTTPMessage object.

CFStringRef CFHTTPMessageCopyResponseStatusLine (
 CFHTTPMessageRef response
);

Parameters
response

The message to examine. This must be a response message.

Return Value
A string containing the message’s status line, or NULL if there was a problem creating the object. The status
line includes the message’s protocol version and a success or error code. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopySerializedMessage
Serializes a CFHTTPMessage object.

CFDataRef CFHTTPMessageCopySerializedMessage (
 CFHTTPMessageRef request
);

Parameters
request

The message to serialize.

Return Value
A CFData object containing the serialized message, or NULL if there was a problem creating the object.
Ownership follows the Create Rule.

Discussion
This function returns a copy of a CFHTTPMessage object in serialized format that is ready for transmission.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCopyVersion
Gets the HTTP version from a CFHTTPMessage object.

Functions 59
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

CFStringRef CFHTTPMessageCopyVersion (
 CFHTTPMessageRef message
);

Parameters
message

The message to examine.

Return Value
A CFString object or NULL, if there was a problem creating the object. Ownership follows the Create Rule.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCreateCopy
Gets a copy of a CFHTTPMessage object.

CFHTTPMessageRef CFHTTPMessageCreateCopy (
 CFAllocatorRef alloc,
 CFHTTPMessageRef message
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

message
The message to copy.

Return Value
A CFHTTPMessage object, or NULL if there was a problem creating the object. Ownership follows the Create
Rule.

Discussion
This function returns a copy of a CFHTTPMessage object that you can modify, for example, by calling
CFHTTPMessageCopyHeaderFieldValue (page 57) or by callingCFHTTPMessageSetBody (page 64).
Then serialize the message by callingCFHTTPMessageCopySerializedMessage (page 59) and send the
serialized message to a client or a server.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCreateEmpty
Creates and returns a new, empty CFHTTPMessage object.

60 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

CFHTTPMessageRef CFHTTPMessageCreateEmpty (
 CFAllocatorRef alloc,
 Boolean isRequest
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

isRequest
A flag that determines whether to create an empty message request or an empty message response.
Pass TRUE to create an empty request message; pass FALSE to create an empty response message.

Return Value
A new CFHTTPMessage object or NULL if there was a problem creating the object. Ownership follows the
Create Rule.

Discussion
Call CFHTTPMessageAppendBytes (page 54) to store an incoming, serialized HTTP request or response
message in the empty message object.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCreateRequest
Creates and returns a CFHTTPMessage object for an HTTP request.

CFHTTPMessageRef CFHTTPMessageCreateRequest (
 CFAllocatorRef alloc,
 CFStringRef requestMethod,
 CFURLRef url,
 CFStringRef httpVersion
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

requestMethod
The request method for the request. Use any of the request methods allowed by the HTTP version
specified by httpVersion.

url
The URL to which the request will be sent.

httpVersion
The HTTP version for this message. Pass kCFHTTPVersion1_0 or kCFHTTPVersion1_1.

Return Value
A new CFHTTPMessage object, or NULL if there was a problem creating the object. Ownership follows the
Create Rule.

Functions 61
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Discussion
This function returns a CFHTTPMessage object that you can use to build an HTTP request. Continue building
the request by callingCFHTTPMessageSetBody (page 64) to set the message’s body. Call
CFHTTPMessageCopyHeaderFieldValue (page 57) to set the message’s headers.

If you are using a CFReadStream object to send the message, call CFReadStreamCreateForHTTPRequest
to create a read stream for the request. If you are not using CFReadStream, call
CFHTTPMessageCopySerializedMessage (page 59) to make the message ready for transmission by
serializing it.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageCreateResponse
Creates and returns a CFHTTPMessage object for an HTTP response.

CFHTTPMessageRef CFHTTPMessageCreateResponse (
 CFAllocatorRef alloc,
 CFIndex statusCode,
 CFStringRef statusDescription,
 CFStringRef httpVersion
);

Parameters
allocator

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

statusCode
The status code for this message response. The status code can be any of the status codes defined
in section 6.1.1 of RFC 2616.

statusDescription
The description that corresponds to the status code. Pass NULL to use the standard description for
the given status code, as found in RFC 2616.

httpVersion
The HTTP version for this message response. Pass kCFHTTPVersion1_0 or kCFHTTPVersion1_1.

Return Value
A new CFHTTPMessage object, or NULL if there was a problem creating the object. Ownership follows the
Create Rule.

Discussion
This function returns a CFHTTPMessage object that you can use to build an HTTP response. Continue building
the response by callingCFHTTPMessageSetBody (page 64) to set the message’s body. Call
CFHTTPMessageSetHeaderFieldValue (page 64) to set the message’s headers. Then call
CFHTTPMessageCopySerializedMessage (page 59) to make the message ready for transmission by
serializing it.

Availability
Available in Mac OS X version 10.1 and later.

62 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Declared In
CFHTTPMessage.h

CFHTTPMessageGetResponseStatusCode
Gets the status code from a CFHTTPMessage object representing an HTTP response.

CFIndex CFHTTPMessageGetResponseStatusCode (
 CFHTTPMessageRef response
);

Parameters
response

The message to examine. This must be a response message.

function result
The status code as defined by RFC 2616, section 6.1.1.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageGetTypeID
Returns the Core Foundation type identifier for the CFHTTPMessage opaque type.

CFTypeID CFHTTPMessageGetTypeID ();

Return Value
The Core Foundation type identifier for the CFHTTPMessage opaque type.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageIsHeaderComplete
Determines whether a message header is complete.

Boolean CFHTTPMessageIsHeaderComplete (
 CFHTTPMessageRef message
);

Parameters
message

The message to verify.

function result
TRUE if the message header is complete, otherwise FALSE.

Functions 63
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Discussion
After calling CFHTTPMessageAppendBytes (page 54), call this function to see if the message header is
complete.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageIsRequest
Returns a boolean indicating whether the CFHTTPMessage is a request or a response.

extern Boolean CFHTTPMessageIsRequest(CFHTTPMessageRef message);

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageSetBody
Sets the body of a CFHTTPMessage object.

void CFHTTPMessageSetBody (
 CFHTTPMessageRef message,
 CFDataRef bodyData
);

Parameters
message

The message to modify.

bodyData
The data that is to be set as the body of the message.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

CFHTTPMessageSetHeaderFieldValue
Sets the value of a header field in an HTTP message.

64 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

void CFHTTPMessageSetHeaderFieldValue (
 CFHTTPMessageRef message,
 CFStringRef headerField,
 CFStringRef value
);

Parameters
message

The message to modify.

headerField
The header field to set.

value
The value to set.

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

Data Types

CFHTTPMessageRef
An opaque reference representing an HTTP message.

typedef struct __CFHTTPMessage *CFHTTPMessageRef;

Availability
Available in Mac OS X version 10.1 and later.

Declared In
CFHTTPMessage.h

Constants

CFHTTP Version Constants
Sets the HTTP version in a CFHTTPMessage request or response object.

const CFStringRef kCFHTTPVersion1_0;
const CFStringRef kCFHTTPVersion1_1;

Constants
kCFHTTPVersion1_0

Specifies HTTP version 1.0.

Available in Mac OS X version 10.1 and later.

Data Types 65
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

kCFHTTPVersion1_1
Specifies HTTP version 1.1.

Available in Mac OS X version 10.1 and later.

Discussion
The HTTP version constants are used when you call CFHTTPMessageCreateRequest (page 61) and
CFHTTPMessageCreateResponse (page 62) to create a request or response message.

Declared In
CFNetwork/CFHTTPMessage.h

Authentication Schemes
Constants used to specify the desired authentication scheme for a request.

extern const CFStringRef kCFHTTPAuthenticationSchemeBasic;
extern const CFStringRef kCFHTTPAuthenticationSchemeDigest;
extern const CFStringRef kCFHTTPAuthenticationSchemeNTLM;
extern const CFStringRef kCFHTTPAuthenticationSchemeNegotiate;

Constants
kCFHTTPAuthenticationSchemeBasic

Request the HTTP basic authentication scheme.

Available in Mac OS X version 10.2 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeDigest
Request the HTTP digest authentication scheme.

Available in Mac OS X version 10.2 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeNTLM
Request the HTTP NTLM authentication scheme.

Available in Mac OS X version 10.5 and later.

Declared in CFHTTPMessage.h.

kCFHTTPAuthenticationSchemeNegotiate
Request an automatically negotiated authentication scheme.

Available in Mac OS X version 10.5 and later.

Declared in CFHTTPMessage.h.

66 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

CFHTTPMessage Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFNetDiagnostics.h

Companion guide CFNetwork Programming Guide

Overview

The CFNetDiagnostics opaque type allows you to diagnose network-related problems.

Functions by Task

Creating a net diagnostics object

CFNetDiagnosticCreateWithStreams (page 68)
Creates a network diagnostic object from a pair of CFStreams.

CFNetDiagnosticCreateWithURL (page 69)
Creates a CFNetDiagnosticRef from a CFURLRef.

CFNetDiagnostics Functions

CFNetDiagnosticSetName (page 71)
Overrides the displayed application name.

CFNetDiagnosticDiagnoseProblemInteractively (page 70)
Opens a Network Diagnostics window.

CFNetDiagnosticCopyNetworkStatusPassively (page 68)
Gets a network status value.

Overview 67
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

Functions

CFNetDiagnosticCopyNetworkStatusPassively
Gets a network status value.

CFNetDiagnosticStatus CFNetDiagnosticCopyNetworkStatusPassively (
 CFNetDiagnosticRef details,
 CFStringRef *description
);

Parameters
details

CFNetDiagnosticRef, created by CFNetDiagnosticCreateWithStreams (page 68) or
CFNetDiagnosticCreateWithURL (page 69), for which the Network Diagnostics status is to be
obtained.

description
If not NULL, upon return contains a localized string containing a description of the current network
status. Ownership follows the Create Rule.

Return Value
A network status value.

Discussion
This function returns a status value that can be used to display basic information about the connection, and
optionally gets a localized string containing a description of the current network status.

This function is guaranteed not to generate network activity.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

CFNetDiagnosticCreateWithStreams
Creates a network diagnostic object from a pair of CFStreams.

68 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

CFNetDiagnosticRef CFNetDiagnosticCreateWithStreams (
 CFAllocatorRef alloc,
 CFReadStreamRef readStream,
 CFWriteStreamRef writeStream
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

readStream
Reference to a read stream whose connection has failed, or NULL if you do not want the
CFNetDiagnosticRef to have a read stream.

writeStream
Reference to a write stream whose connection has failed, or NULL if you do not want the
CFNetDiagnosticRef to have a write stream.

function result
CFNetDiagnosticRef that you can pass toCFNetDiagnosticDiagnoseProblemInteractively (page
70) or CFNetDiagnosticCopyNetworkStatusPassively (page 68). Ownership follows the Create
Rule.

Discussion
This function uses references to a read steam and a write stream (or just a read stream or just a write stream)
to create a reference to an instance of a CFNetDiagnostic object. You can pass the reference to
CFNetDiagnosticDiagnoseProblemInteractively (page 70) to open a Network Diagnostics window
or to CFNetDiagnosticCopyNetworkStatusPassively (page 68) to get a description of the connection
referenced by readStream and writeStream.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

CFNetDiagnosticCreateWithURL
Creates a CFNetDiagnosticRef from a CFURLRef.

CFNetDiagnosticRef CFNetDiagnosticCreateWithURL (
 CFAllocatorRef alloc,
 CFURLRef url
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

Functions 69
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

url
CFURLRef that refers to the failed connection.

Return Value
CFNetDiagnosticRef that you can pass to CFNetDiagnosticDiagnoseProblemInteractively (page 70)
or CFNetDiagnosticCopyNetworkStatusPassively (page 68). Ownership follows the Create Rule.

Discussion
This function uses a URL to create a reference to an instance of a CFNetDiagnostic object. You can pass the
reference toCFNetDiagnosticDiagnoseProblemInteractively (page 70) to open a Network Diagnostics
window or to CFNetDiagnosticCopyNetworkStatusPassively (page 68) to get a description of the
connection referenced by readStream and writeStream.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

CFNetDiagnosticDiagnoseProblemInteractively
Opens a Network Diagnostics window.

CFNetDiagnosticStatus CFNetDiagnosticDiagnoseProblemInteractively (
 CFNetDiagnosticRef details
);

Parameters
details

A network diagnostics object, created by CFNetDiagnosticCreateWithStreams (page 68) or
CFNetDiagnosticCreateWithURL (page 69), for which the window is to be opened.

Return Value
CFNetDiagnosticNoErr if no error occurred, or CFNetDiagnosticErr if an error occurred that prevented
this call from completing successfully.

Discussion
This function opens the Network Diagnostics window and returns immediately once the window is open.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

70 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

CFNetDiagnosticSetName
Overrides the displayed application name.

void CFNetDiagnosticSetName (
 CFNetDiagnosticRef details,
 CFStringRef name
);

Parameters
details

The network diagnostics object for which the application name is to be set.

name
Name that is to be set.

Discussion
Frameworks requiring that an application name be displayed to the user derive the application name from
the bundle identifier of the currently running application, in that application’s localization. If you want to
override the derived application name, use this function to set the name that is displayed.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetDiagnosticRef at the
same time.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

Data Types

CFNetDiagnosticRef
An opaque reference representing a CFNetDiagnostic.

typedef struct __CFNetDiagnostic* CFNetDiagnosticRef;

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

CFNetDiagnosticStatus
A CFIndex type that is used to return status values from CFNetDiagnostic status and diagnostic functions.
For a list of possible values, see “CFNetDiagnosticStatusValues Constants” (page 72).

Data Types 71
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

typedef CFIndex CFNetDiagnosticStatus;

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetDiagnostics.h

Constants

CFNetDiagnosticStatusValues Constants
Constants for diagnostic status values.

enum CFNetDiagnosticStatusValues {
 kCFNetDiagnosticNoErr = 0,
 kCFNetDiagnosticErr = -66560L,
 kCFNetDiagnosticConnectionUp = -66559L,
 kCFNetDiagnosticConnectionIndeterminate = -66558L,
 kCFNetDiagnosticConnectionDown = -66557L
};
typedef enum CFNetDiagnosticStatusValues CFNetDiagnosticStatusValues;

Constants
kCFNetDiagnosticNoErr

No error occurred but there is no status.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

kCFNetDiagnosticErr
An error occurred that prevented the call from completing.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

kCFNetDiagnosticConnectionUp
The connection appears to be working.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

kCFNetDiagnosticConnectionIndeterminate
The status of the connection is not known.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

kCFNetDiagnosticConnectionDown
The connection does not appear to be working.

Available in Mac OS X v10.4 and later.

Declared in CFNetDiagnostics.h.

Discussion
Diagnostic status values are returned by CFNetDiagnosticDiagnoseProblemInteractively (page 70)
and CFNetDiagnosticCopyNetworkStatusPassively (page 68).

72 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetwork/CFNetDiagnostics.h

Constants 73
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

74 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

CFNetDiagnostics Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFNetServices.h

Companion guides Bonjour Overview
CFNetwork Programming Guide
NSNetServices and CFNetServices Programming Guide

Overview

The CFNetServices API is part of Bonjour, Apple’s implementation of zero-configuration networking
(ZEROCONF). The CFNetServices API allows you to register a network service, such as a printer or file server,
so that it can be found by name or browsed for by service type and domain. Applications can use the
CFNetServices API to discover the services that are available on the network and to find all access information
— such as name, IP address, and port number — needed to use each service.

In effect, Bonjour registration and discovery combine the functions of a local DNS server and AppleTalk,
allowing applications to provide the kind of user-friendly browsing available in the AppleTalk Chooser using
open protocols, such as Multicast DNS (mDNS). Bonjour gives applications easy access to services over local
IP networks without requiring the service to support an AppleTalk stack, and without requiring a DNS server
on the local network.

For a full description of Bonjour, see Bonjour Overview.

Functions by Task

Creating net service objects

CFNetServiceCreate (page 84)
Creates an instance of a Network Service object.

CFNetServiceCreateCopy (page 86)
Creates a copy of a CFNetService object.

CFNetServiceMonitorCreate (page 92)
Creates an instance of a NetServiceMonitor object that watches for record changes.

CFNetServiceBrowserCreate (page 78)
Creates an instance of a Network Service browser object.

Overview 75
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServices Functions

CFNetServiceBrowserInvalidate (page 79)
Invalidates an instance of a Network Service browser object.

CFNetServiceBrowserScheduleWithRunLoop (page 80)
Schedules a CFNetServiceBrowser on a run loop.

CFNetServiceBrowserSearchForDomains (page 80)
Searches for domains.

CFNetServiceBrowserSearchForServices (page 81)
Searches a domain for services of a specified type.

CFNetServiceBrowserStopSearch (page 82)
Stops a search for domains or services.

CFNetServiceBrowserUnscheduleFromRunLoop (page 83)
Unschedules a CFNetServiceBrowser from a run loop and mode.

CFNetServiceCancel (page 84)
Cancels a service registration or a service resolution.

CFNetServiceCreateDictionaryWithTXTData (page 86)
Uses TXT record data to create a dictionary.

CFNetServiceCreateTXTDataWithDictionary (page 87)
Flattens a set of key/value pairs into a CFDataRef suitable for passing to
CFNetServiceSetTXTData (page 103).

CFNetServiceGetAddressing (page 88)
Gets the IP addressing from a CFNetService.

CFNetServiceGetTargetHost (page 90)
Queries a CFNetService for its target hosts.

CFNetServiceGetDomain (page 88)
Gets the domain from a CFNetService.

CFNetServiceGetName (page 89)
Gets the name from a CFNetService.

CFNetServiceGetPortNumber (page 89)
This function gets the port number from a CFNetService.

CFNetServiceGetTXTData (page 91)
Queries a network service for the contents of its TXT records.

CFNetServiceGetType (page 91)
Gets the type from a CFNetService.

CFNetServiceMonitorInvalidate (page 94)
Invalidates an instance of a Network Service monitor object.

CFNetServiceMonitorScheduleWithRunLoop (page 94)
Schedules a CFNetServiceMonitor on a run loop.

CFNetServiceMonitorStart (page 95)
Starts monitoring.

CFNetServiceMonitorStop (page 96)
Stops a CFNetServiceMonitor.

76 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceMonitorUnscheduleFromRunLoop (page 97)
Unschedules a CFNetServiceMonitor from a run loop.

CFNetServiceRegisterWithOptions (page 98)
Makes a CFNetService available on the network.

CFNetServiceResolveWithTimeout (page 100)
Gets the IP address or addresses for a CFNetService.

CFNetServiceScheduleWithRunLoop (page 101)
Schedules a CFNetService on a run loop.

CFNetServiceSetClient (page 102)
Associates a callback function with a CFNetService or disassociates a callback function from a
CFNetService.

CFNetServiceSetTXTData (page 103)
Sets the TXT record for a CFNetService.

CFNetServiceUnscheduleFromRunLoop (page 104)
Unschedules a CFNetService from a run loop.

CFNetServiceGetProtocolSpecificInformation (page 90) Deprecated in Mac OS X version 10.4
This function gets protocol-specific information from a CFNetService. (Deprecated. Use
CFNetServiceGetTXTData (page 91) instead.)

CFNetServiceRegister (page 97) Deprecated in Mac OS X version 10.4
Makes a CFNetService available on the network. (Deprecated. Use
CFNetServiceRegisterWithOptions (page 98) instead.)

CFNetServiceResolve (page 99) Deprecated in Mac OS X version 10.4
This function updates the specified CFNetService with the IP address or addresses associated with
the service. Call CFNetServiceGetAddressing (page 88) to get the addresses. (Deprecated. Use
CFNetServiceResolveWithTimeout (page 100) instead.)

Modifying a net service

CFNetServiceSetProtocolSpecificInformation (page 103) Deprecated in Mac OS X version 10.4
Sets protocol-specific information for a CFNetService. (Deprecated. Use CFNetServiceSetTXTData
instead.)

Getting the net service type IDs

CFNetServiceGetTypeID (page 92)
Gets the Core Foundation type identifier for the Network Service object.

CFNetServiceMonitorGetTypeID (page 94)
Gets the Core Foundation type identifier for all CFNetServiceMonitor instances.

CFNetServiceBrowserGetTypeID (page 79)
Gets the Core Foundation type identifier for the Network Service browser object.

Functions by Task 77
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Functions

CFNetServiceBrowserCreate
Creates an instance of a Network Service browser object.

CFNetServiceBrowserRef CFNetServiceBrowserCreate (
 CFAllocatorRef alloc,
 CFNetServiceBrowserClientCallBack clientCB,
 CFNetServiceClientContext *clientContext
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

clientCB
Callback function that is to be called when domains and services are found; cannot be NULL. For
details, see CFNetServiceBrowserClientCallBack (page 104).

clientContext
Context information to be used when clientCB is called; cannot be NULL. For details, see
CFNetServiceClientContext (page 107).

Return Value
A new browser object, or NULL if the instance could not be created. Ownership follows the Create Rule.

Discussion
This function creates an instance of a Network Service browser object, called a CFNetServiceBrowser, that
can be used to search for domains and for services.

To use the resulting CFNetServiceBrowser in asynchronous mode, call
CFNetServiceBrowserScheduleWithRunLoop (page 80). Then call
CFNetServiceBrowserSearchForDomains (page 80) and
CFNetServiceBrowserSearchForServices (page 81) to use the CFNetServiceBrowser to search for
services and domains, respectively. The callback function specified by clientCB is called from a run loop to
pass search results to your application. The search continues until you stop the search by calling
CFNetServiceBrowserStopSearch (page 82).

If you do not call CFNetServiceBrowserScheduleWithRunLoop (page 80), searches with the resulting
CFNetServiceBrowser are made in synchronous mode. Calls made to
CFNetServiceBrowserSearchForDomains (page 80) and
CFNetServiceBrowserSearchForServices (page 81) block until there are search results, in which case
the callback function specified by clientCB is called, until the search is are stopped by calling
CFNetServiceBrowserStopSearch (page 82) from another thread, or an error occurs.

To shut down a CFNetServiceBrowser that is running in asynchronous mode, call
CFNetServiceBrowserUnscheduleFromRunLoop (page 83), followed by
CFNetServiceBrowserInvalidate (page 79), and then CFNetServiceBrowserStopSearch (page 82).

Special Considerations

This function is thread safe.

78 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserGetTypeID
Gets the Core Foundation type identifier for the Network Service browser object.

CFTypeID CFNetServiceBrowserGetTypeID ();

Return Value
The type ID.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserInvalidate
Invalidates an instance of a Network Service browser object.

void CFNetServiceBrowserInvalidate (
 CFNetServiceBrowserRef browser
);

Parameters
browser

The CFNetServiceBrowser to invalidate, obtained by a previous call to
CFNetServiceBrowserCreate (page 78).

Discussion
This function invalidates the specified instance of a Network Service browser object. Any searches using the
specified instance that are in progress when this function is called are stopped. An invalidated browser cannot
be scheduled on a run loop and its callback function is never called.

Special Considerations

This function is thread safe as long as another thread does not alter the same CFNetServiceBrowserRef at the
same time.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

Functions 79
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceBrowserScheduleWithRunLoop
Schedules a CFNetServiceBrowser on a run loop.

void CFNetServiceBrowserScheduleWithRunLoop (
 CFNetServiceBrowserRef browser,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
browser

The CFNetServiceBrowser that is to be scheduled on a run loop; cannot be NULL.

runLoop
The run loop on which the browser is to be scheduled; cannot be NULL.

runLoopMode
The mode on which to schedule the browser; cannot be NULL.

Discussion
This function schedules the specified CFNetServiceBrowser on the run loop, thereby placing the browser in
asynchronous mode. The run loop will call the browser’s callback function to deliver the results of domain
and service searches. The caller is responsible for ensuring that at least one of the run loops on which the
browser is scheduled is being run.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserSearchForDomains
Searches for domains.

Boolean CFNetServiceBrowserSearchForDomains (
 CFNetServiceBrowserRef browser,
 Boolean registrationDomains,
 CFStreamError *error
);

Parameters
browser

The CFNetServiceBrowser, obtained by previously calling CFNetServiceBrowserCreate (page 78),
that is to perform the search; cannot be NULL.

registrationDomains
TRUE to search for only registration domains; FALSE to search for domains that can be browsed for
services. For this version of the CFNetServices API, the registration domain is the local domain
maintained by the mDNS responder running on the same machine as the calling application.

80 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

error
A pointer to a CFStreamError structure, that, if an error occurs, will be set to the error and the error’s
domain and passed to your callback function. Pass NULL if you don’t want to receive the error that
may occur as a result of this particular call.

Return Value
TRUE if the search was started (asynchronous mode); FALSE if another search is already in progress for this
CFNetServiceBrowser or if an error occurred.

Discussion
This function uses a CFNetServiceBrowser to search for domains. The search continues until the search is
canceled by calling CFNetServiceBrowserStopSearch (page 82). If registrationDomains is TRUE,
this function searches only for domains in which services can be registered. If registrationDomains is
FALSE, this function searches for domains that can be browsed for services. When a domain is found, the
callback function specified when the CFNetServiceBrowser was created is called and passed an instance of
a CFStringRef containing the domain that was found.

In asynchronous mode, this function returns TRUE if the search was started. Otherwise, it returns FALSE.

In synchronous mode, this function blocks until the search is stopped by calling
CFNetServiceBrowserStopSearch (page 82) from another thread, in which case it returns FALSE, or
until an error occurs.

Special Considerations

This function is thread safe.

For any one CFNetServiceBrowser, only one domain search or one service search can be in progress at the
same time.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserSearchForServices
Searches a domain for services of a specified type.

Boolean CFNetServiceBrowserSearchForServices (
 CFNetServiceBrowserRef browser,
 CFStringRef domain,
 CFStringRef serviceType,
 CFStreamError *error
);

Parameters
browser

The CFNetServiceBrowser, obtained by previously calling CFNetServiceBrowserCreate (page 78),
that is to perform the search; cannot be NULL.

domain
The domain to search for the service type; cannot be NULL. To get the domains that are available for
searching, call CFNetServiceBrowserSearchForDomains (page 80).

Functions 81
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

type
The service type to search for; cannot be NULL. For a list of valid service types, see
http://www.iana.org/assignments/port-numbers.

error
A pointer to a CFStreamError structure, that, if an error occurs, will be set to the error and the error’s
domain and passed to your callback function. Pass NULL if you don’t want to receive the error that
may occur as a result of this particular call.

Return Value
TRUE if the search was started (asynchronous mode); FALSE if another search is already in progress for this
CFNetServiceBrowser or if an error occurred.

Discussion
This function searches the specified domain for services that match the specified service type. The search
continues until the search is canceled by calling CFNetServiceBrowserStopSearch (page 82). When a
match is found, the callback function specified when the CFNetServiceBrowser was created is called and
passed an instance of a CFNetService representing the service that was found.

In asynchronous mode, this function returns TRUE if the search was started. Otherwise, it returns FALSE.

In synchronous mode, this function blocks until the search is stopped by calling
CFNetServiceBrowserStopSearch (page 82) from another thread, in which case this function returns
FALSE, or until an error occurs.

Special Considerations

This function is thread safe.

For any one CFNetServiceBrowser, only one domain search or one service search can be in progress at the
same time.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserStopSearch
Stops a search for domains or services.

void CFNetServiceBrowserStopSearch (
 CFNetServiceBrowserRef browser,
 CFStreamError *error
);

Parameters
browser

The CFNetServiceBrowser that was used to start the search; cannot be NULL.

82 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

http://www.iana.org/assignments/port-numbers

error
A pointer to a CFStreamError structure that will be passed to the callback function associated with
this CFNetServiceBrowser (if the search is being conducted in asynchronous mode) or that is pointed
to by the error parameter when CFNetServiceBrowserSearchForDomains (page 80) or
CFNetServiceBrowserSearchForServices (page 81) returns (if the search is being conducted
in synchronous mode). Set the domain field to kCFStreamErrorDomainCustom and the error
field to an appropriate value.

Discussion
This functions stops a search started by a previous call to CFNetServiceBrowserSearchForDomains (page
80) or CFNetServiceBrowserSearchForServices (page 81). For asynchronous and synchronous searches,
calling this function causes the callback function associated with the CFNetServiceBrowser to be called once
for each domain or service found. If the search is asynchronous, error is passed to the callback function. If
the search is synchronous, calling this function causes CFNetServiceBrowserSearchForDomains or
CFNetServiceBrowserSearchForServices to return FALSE. If the error parameter for either call pointed
to a CFStreamError structure, the CFStreamError structure contains the error code and the error code’s
domain as set when this function was called.

Special Considerations

This function is thread safe.

If you are stopping an asynchronous search, before calling this function, call
CFNetServiceBrowserUnscheduleFromRunLoop (page 83), followed by
CFNetServiceBrowserInvalidate (page 79).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceBrowserUnscheduleFromRunLoop
Unschedules a CFNetServiceBrowser from a run loop and mode.

void CFNetServiceBrowserUnscheduleFromRunLoop (
 CFNetServiceBrowserRef browser,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
browser

The CFNetServiceBrowser that is to be unscheduled; cannot be NULL.

runLoop
The run loop; cannot be NULL.

runLoopMode
The mode from which the browser is to be unscheduled; cannot be NULL.

Discussion
Call this function to shut down a browser that is running asynchronously. To complete the shutdown, call
CFNetServiceBrowserInvalidate (page 79) followed by CFNetServiceBrowserStopSearch (page
82).

Functions 83
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceCancel
Cancels a service registration or a service resolution.

void CFNetServiceCancel (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService, obtained by previously calling CFNetServiceCreate (page 84), for which a
registration or a resolution is to be canceled.

Discussion
This function cancels service registrations, started by CFNetServiceRegister (page 97), thereby making
the service unavailable. It also cancels service resolutions, started by CFNetServiceResolve (page 99).

If you are shutting down an asynchronous service, you should first call
CFNetServiceUnscheduleFromRunLoop (page 104) and CFNetServiceSetClient (page 102) with
clientCB set to NULL. Then call this function.

If you are shutting down a synchronous service, call this function from another thread.

This function also cancels service resolutions. You would want to cancel a service resolution if your callback
function has received an IP address that you’ve successfully used to connect to the service. In addition, you
might want to cancel a service resolution if the resolution is taking longer than a user would want to wait or
if the user canceled the operation.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceCreate
Creates an instance of a Network Service object.

84 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceRef CFNetServiceCreate (
 CFAllocatorRef alloc,
 CFStringRef domain,
 CFStringRef serviceType,
 CFStringRef name,
 SInt32 port
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

domain
The domain in which the CFNetService is to be registered; cannot be NULL. Call
CFNetServiceBrowserCreate (page 78) and CFNetServiceBrowserSearchForDomains (page
80) to get the registration domain.

type
The type of service being registered; cannot be NULL. For a list of valid service types, see
http://www.iana.org/assignments/port-numbers.

name
A unique name if the instance will be used to register a service. The name will become part of the
instance name in the DNS records that will be created when the service is registered. If the instance
will be used to resolve a service, the name should be the name of the machine or service that will be
resolved.

port
Local IP port, in host byte order, on which this service accepts connections. Pass zero to get placeholder
service. With a placeholder service, the service will not be discovered by browsing, but a name conflict
will occur if another client tries to register the same name. Most applications do not need to use
placeholder service.

Return Value
A new net service object, or NULL if the instance could not be created. Ownership follows the Create Rule.

Discussion
If the service depends on information in DNS TXT records, call
CFNetServiceSetProtocolSpecificInformation (page 103).

If the CFNetService is to run in asynchronous mode, call CFNetServiceSetClient (page 102) to prepare
the service for running in asynchronous mode. Then call CFNetServiceScheduleWithRunLoop (page 101)
to schedule the service on a run loop. Then call CFNetServiceRegister (page 97) to make the service
available.

If the CFNetService is to run in synchronous mode, call CFNetServiceRegister (page 97).

To terminate a service that is running in asynchronous mode, call CFNetServiceCancel (page 84) and
CFNetServiceUnscheduleFromRunLoop (page 104).

To terminate a service that is running in synchronous mode, call CFNetServiceCancel (page 84).

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Functions 85
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

http://www.iana.org/assignments/port-numbers

Declared In
CFNetServices.h

CFNetServiceCreateCopy
Creates a copy of a CFNetService object.

CFNetServiceRef CFNetServiceCreateCopy (
 CFAllocatorRef alloc,
 CFNetServiceRef service
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

service
CFNetServiceRef to be copied; cannot be NULL. If service is not a valid CFNetServiceRef, the behavior
of this function is undefined.

Return Value
Copy of service, including all previously resolved data, or NULL if service could not be copied. Ownership
follows the Create Rule.

Discussion
This function creates a copy of the CFNetService specified by service.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
CFNetServices.h

CFNetServiceCreateDictionaryWithTXTData
Uses TXT record data to create a dictionary.

CFDictionaryRef CFNetServiceCreateDictionaryWithTXTData (
 CFAllocatorRef alloc,
 CFDataRef txtRecord
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

txtRecord
TXT record data as returned by CFNetServiceGetTXTData (page 91).

86 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Return Value
A dictionary containing the key/value pairs parsed from txtRecord, or NULL if txtRecord cannot be parsed.
Each key in the dictionary is a CFString object, and each value is a CFData object. Ownership follows the
Create Rule.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceCreateTXTDataWithDictionary
Flattens a set of key/value pairs into a CFDataRef suitable for passing to CFNetServiceSetTXTData (page
103).

CFDataRef CFNetServiceCreateTXTDataWithDictionary (
 CFAllocatorRef alloc,
 CFDictionaryRef keyValuePairs
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

keyValuePairs
CFDictionaryRef containing the key/value pairs that are to be placed in a TXT record. Each key must
be a CFStringRef and each value should be a CFDataRef or a CFStringRef. (See the discussion below
for additional information about values that are CFStringRefs.) This function fails if any other data
types are provided. The length of a key and its value should not exceed 255 bytes.

Return Value
A CFData object containing the flattened form of keyValuePairs, or NULL if the dictionary could not be
flattened. Ownership follows the Create Rule.

Discussion
This function flattens the key/value pairs in the dictionary specified by keyValuePairs into a CFDataRef
suitable for passing to CFNetServiceSetTXTData (page 103). Note that this function is not a general purpose
function for flattening CFDictionaryRefs.

The keys in the dictionary referenced by keyValuePairs must be CFStringRefs and the values must be
CFDataRefs. Any values that are CFStringRefs are converted to CFDataRefs representing the flattened UTF-8
bytes of the string. The types of the values are not encoded in the CFDataRefs, so any CFStringRefs that are
converted to CFDataRefs remain CFDataRefs when the CFDataRef produced by this function is processed by
CFNetServiceCreateDictionaryWithTXTData (page 86).

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Functions 87
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Declared In
CFNetServices.h

CFNetServiceGetAddressing
Gets the IP addressing from a CFNetService.

CFArrayRef CFNetServiceGetAddressing (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose IP addressing is to be obtained; cannot be NULL.

Return Value
A CFArray containing a CFDataRef for each IP address returned, or NULL. Each CFDataRef consists of a
sockaddr structure containing the IP address of the service. This function returns NULL if the service’s
addressing is unknown because CFNetServiceResolve (page 99) has not been called for theService.

Discussion
This function gets the IP addressing from a CFNetService. Typically, the CFNetService was obtained by calling
CFNetServiceBrowserSearchForServices (page 81). Before calling this function, call
CFNetServiceResolve (page 99) to update the CFNetService with its IP addressing.

Special Considerations

This function gets the data in a thread-safe way, but the data itself is not safe if the service is altered from
another thread.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceGetDomain
Gets the domain from a CFNetService.

CFStringRef CFNetServiceGetDomain (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose domain is to be obtained; cannot be NULL.

Return Value
A CFString object containing the domain of the CFNetService.

Discussion
This function gets the domain from a CFNetService.

88 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Special Considerations

This function is thread safe. The function gets the data in a thread-safe way, but the data is not safe if the
service is altered from another thread.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceGetName
Gets the name from a CFNetService.

CFStringRef CFNetServiceGetName (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose name is to be obtained; cannot be NULL.

Return Value
A CFString object containing the name of the service represented by the CFNetService.

Discussion
This function gets the name from a CFNetService.

Special Considerations

This function is thread safe. The function gets the data in a thread-safe way, but the data is not safe if the
service is altered from another thread.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceGetPortNumber
This function gets the port number from a CFNetService. (Deprecated in Mac OS X version 10.4.)

extern SInt32 CFNetServiceGetPortNumber(
 CFNetServiceRef theService);

Parameters
theService

The CFNetService whose protocol-specific information is to be obtained; cannot be NULL. Note that
in order to get protocol-specific information, you must resolve theService by calling
CFNetServiceResolve (page 99) or CFNetServiceResolveWithTimeout (page 100) before
calling this function.

Return Value
A CFString object containing the protocol-specific information, or NULL if there is no information.

Functions 89
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Special Considerations

This function gets the data in a thread-safe way, but the data itself is not safe if the service is altered from
another thread.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceGetProtocolSpecificInformation
This function gets protocol-specific information from a CFNetService. (Deprecated in Mac OS X version 10.4.
Use CFNetServiceGetTXTData (page 91) instead.)

CFStringRef CFNetServiceGetProtocolSpecificInformation (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose protocol-specific information is to be obtained; cannot be NULL. Note that
in order to get protocol-specific information, you must resolve theService by calling
CFNetServiceResolve (page 99) or CFNetServiceResolveWithTimeout (page 100) before
calling this function.

Return Value
A CFString object containing the protocol-specific information, or NULL if there is no information.

Special Considerations

This function gets the data in a thread-safe way, but the data itself is not safe if the service is altered from
another thread.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceGetTargetHost
Queries a CFNetService for its target hosts.

CFStringRef CFNetServiceGetTargetHost (
 CFNetServiceRef theService
);

Parameters
theService

Network service to be queried.

90 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Return Value
The target host name of the machine providing the service or NULL is of the service’s target host is not known.
(The target host will not be known if it has not been resolved.)

Special Considerations

This function is thread safe, but the target host name is not safe if the service is altered from another thread.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceGetTXTData
Queries a network service for the contents of its TXT records.

CFDataRef CFNetServiceGetTXTData (
 CFNetServiceRef theService
);

Parameters
theService

Reference for the network service whose TXT record data is to be obtained; cannot be NULL. Note
that in order to get TXT record data, you must resolve theService by calling
CFNetServiceResolve (page 99) or CFNetServiceResolveWithTimeout (page 100) before
calling this function.

Return Value
CFDataRef object containing the requested TXT data and suitable for passing to
CFNetServiceCreateDictionaryWithTXTData (page 86), or NULL if the service’s TXT data has not been
resolved.

Discussion
This function gets the data from the service’s TXT records.

Special Considerations

This function gets the data in a thread-safe way, but the data itself is not safe if the service is altered from
another thread.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceGetType
Gets the type from a CFNetService.

Functions 91
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFStringRef CFNetServiceGetType (
 CFNetServiceRef theService
);

Parameters
theService

The CFNetService whose type is to be obtained; cannot be NULL.

Return Value
A CFString object containing the type from a CFNetService.

Discussion
This function gets the type of a CFNetService.

Special Considerations

This function is thread safe. The function gets the data in a thread-safe way, but the data is not safe if the
service is altered from another thread.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceGetTypeID
Gets the Core Foundation type identifier for the Network Service object.

CFTypeID CFNetServiceGetTypeID ();

Return Value
The type ID.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorCreate
Creates an instance of a NetServiceMonitor object that watches for record changes.

92 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceMonitorRef CFNetServiceMonitorCreate (
 CFAllocatorRef alloc,
 CFNetServiceRef theService,
 CFNetServiceMonitorClientCallBack clientCB,
 CFNetServiceClientContext *clientContext
);

Parameters
alloc

The allocator to use to allocate memory for the new object. Pass NULL or kCFAllocatorDefault
to use the current default allocator.

theService
CFNetService to be monitored.

clientCB
Pointer to callback function that is to be called when a record associated with theService changes;
cannot be NULL.

clientContext
Pointer to user-defined contextual information that is to be passed to the callback specified by
clientCBwhen the callback is called; cannot be NULL. For details, see CFNetServiceClientContext (page
107).

Return Value
A new instance of a CFNetServiceMonitor, or NULL if the monitor could not be created. Ownership follows
the Create Rule.

Discussion
This function creates a CFNetServiceMonitor that watches for changes in records associated with theService.

If the CFNetServiceMonitor is to run in asynchronous mode, call
CFNetServiceMonitorScheduleWithRunLoop (page 94) to schedule the monitor on a run loop. Then
call CFNetServiceMonitorStart (page 95) to start monitoring. When a change occurs, the callback
function specified by clientCBwill be called. For details, see CFNetServiceMonitorClientCallBack (page 106).

If the CFNetServiceMonitor is to run in synchronous mode, call CFNetServiceMonitorStart (page 95).

To stop a monitor that is running in asynchronous mode, call CFNetServiceMonitorStop (page 96) and
CFNetServiceMonitorUnscheduleFromRunLoop (page 97).

To stop a monitor that is running in synchronous mode, call CFNetServiceMonitorStop (page 96).

If you no longer need to monitor record changes, call CFNetServiceMonitorStop (page 96) to stop the
monitor and then call CFNetServiceMonitorInvalidate (page 94)to invalidate the monitor so it cannot
be used again. Then call CFRelease to release the memory associated with CFNetServiceMonitorRef.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

Functions 93
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceMonitorGetTypeID
Gets the Core Foundation type identifier for all CFNetServiceMonitor instances.

CFTypeID CFNetServiceMonitorGetTypeID ();

Return Value
The type ID.

Special Considerations

This function is thread safe.

Version Notes
Introduced in Mac OS X v10.4.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorInvalidate
Invalidates an instance of a Network Service monitor object.

void CFNetServiceMonitorInvalidate (
 CFNetServiceMonitorRef monitor
);

Parameters
monitor

CFNetServiceMonitor to invalidate; cannot be NULL.

Discussion
This function invalidates the specified Network Service monitor so that it cannot be used again. Before you
call this function, you should call CFNetServiceMonitorStop (page 96). If the monitor has not already
been stopped, this function stops the monitor for you.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorScheduleWithRunLoop
Schedules a CFNetServiceMonitor on a run loop.

94 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

void CFNetServiceMonitorScheduleWithRunLoop (
 CFNetServiceMonitorRef monitor,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theService

The CFNetServiceMonitor that is to be scheduled on a run loop; cannot be NULL.

runLoop
The run loop on which the monitor is to be scheduled; cannot be NULL.

runLoopMode
The mode on which to schedule the monitor; cannot be NULL.

Discussion
Schedules the specified monitor on a run loop, which places the monitor in asynchronous mode. The caller
is responsible for ensuring that at least one of the run loops on which the monitor is scheduled is being run.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorStart
Starts monitoring.

Boolean CFNetServiceMonitorStart (
 CFNetServiceMonitorRef monitor,
 CFNetServiceMonitorType recordType,
 CFStreamError *error
);

Parameters
monitor

CFNetServiceMonitor, created by calling CFNetServiceMonitorCreate (page 92), that is to be
started.

recordType
CFNetServiceMonitorType that specified the type of record to monitor. For possible values, see
CFNetServiceMonitorType Constants (page 110).

error
Pointer to a CFStreamError structure. If an error occurs, on output, the structure’s domain field will
be set to the error code’s domain and the error field will be set to an appropriate error code. Set
this parameter to NULL if you don’t want to receive the error code and its domain.

Return Value
TRUE if an asynchronous monitor was started successfully. FALSE if an error occurred when starting an
asynchronous or synchronous monitor, or if CFNetServiceMonitorStop (page 96) was called for an
synchronous monitor.

Functions 95
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Discussion
This function starts monitoring for changes to records of the type specified by recordType. If a monitor is
already running for the service associated with the specified CFNetServiceMonitorRef, this function returns
FALSE.

For synchronous monitors, this function blocks until the monitor is stopped by calling
CFNetServiceMonitorStop (page 96), in which case, this function returns FALSE.

For asynchronous monitors, this function returns TRUE or FALSE, depending on whether monitoring starts
successfully.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorStop
Stops a CFNetServiceMonitor.

void CFNetServiceMonitorStop (
 CFNetServiceMonitorRef monitor,
 CFStreamError *error
);

Parameters
monitor

CFNetServiceMonitor, started by calling CFNetServiceMonitorStart (page 95), that is to be
stopped.

error
Pointer to a CFStreamError structure or NULL. For synchronous monitors, set the error field of this
structure to the non-zero value you want to be set in the CFStreamError structure when
CFNetServiceMonitorStart (page 95) returns. Note that when it returns,
CFNetServiceMonitorStart returns FALSE. If the monitor was started asynchronously, set the
error field to the non-zero value you want the monitor’s callback to receive when it is called. If this
parameter is NULL, default values for the CFStreamError structure are used: the domain is set to
kCFStreamErrorDomainNetServices and the error code is set to kCFNetServicesErrorCancel.

Discussion
This function stops the specified monitor. Call CFNetServiceMonitorStart (page 95) if you want to start
monitoring again.

If you want to stop monitoring and no longer need to monitor record changes, call
CFNetServiceMonitorInvalidate (page 94) instead of this function.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

96 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Declared In
CFNetServices.h

CFNetServiceMonitorUnscheduleFromRunLoop
Unschedules a CFNetServiceMonitor from a run loop.

void CFNetServiceMonitorUnscheduleFromRunLoop (
 CFNetServiceMonitorRef monitor,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
monitor

The CFNetServiceMonitor that is to be unscheduled; cannot be NULL.

runLoop
The run loop; cannot be NULL.

runLoopMode
The mode from which the monitor is to be unscheduled; cannot be NULL.

Discussion
Unschedules the specified monitor from the specified run loop and mode. Call this function to shut down a
monitor that is running asynchronously.

To change a monitor so that it cannot be scheduled and so that its callback will never be called, call
CFNetServiceMonitorInvalidate (page 94).

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceRegister
Makes a CFNetService available on the network. (Deprecated in Mac OS X version 10.4. Use
CFNetServiceRegisterWithOptions (page 98) instead.)

Boolean CFNetServiceRegister (
 CFNetServiceRef theService,
 CFStreamError *error
);

Parameters
theService

The CFNetService to register; cannot be NULL. The registration will fail if the service doesn’t have a
domain, a type, a name, and an IP address.

Functions 97
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

error
A pointer to a CFStreamError structure that will be set to an error code and the error code’s domain
if an error occurs; or NULL if you don’t want to receive the error code and its domain.

Return Value
TRUE if an asynchronous service registration was started; FALSE if an asynchronous or synchronous registration
failed or if a synchronous registration was canceled.

Discussion
If the service is to run in asynchronous mode, you must call CFNetServiceSetClient (page 102) to associate
a callback function with this CFNetService before calling this function.

When registering a service that runs in asynchronous mode, this function returns TRUE if the service contains
all of the required attributes and the registration process can start. If the registration process completes
successfully, the service is available on the network until you shut down the service by calling
CFNetServiceUnscheduleFromRunLoop (page 104), CFNetServiceSetClient (page 102), and
CFNetServiceCancel (page 84). If the service does not contain all of the required attributes or if the
registration process does not complete successfully, this function returns FALSE.

When registering a service that runs in synchronous mode, this function blocks until an error occurs, in which
case this function returns FALSE. Until this function returns FALSE, the service is available on the network.
To force this function to return FALSE, thereby shutting down the service, call CFNetServiceCancel (page
84) from another thread.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceRegisterWithOptions
Makes a CFNetService available on the network.

Boolean CFNetServiceRegisterWithOptions (
 CFNetServiceRef theService,
 CFOptionFlags options,
 CFStreamError *error
);

Parameters
theService

Network service to register; cannot be NULL. The registration will fail if the service doesn’t have a
domain, a type, a name, and an IP address.

options
Bit flags for specifying registration options. Currently, the only registration option is
kCFNetServiceFlagNoAutoRename. For details, see CFNetService Registration Options (page 109).

98 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

error
Pointer to a CFStreamError structure that will be set to an error code and the error code’s domain
if an error occurs; or NULL if you don’t want to receive the error code and its domain.

Return Value
TRUE if an asynchronous service registration was started; FALSE if an asynchronous or synchronous registration
failed or if a synchronous registration was canceled.

Discussion
If the service is to run in asynchronous mode, you must call CFNetServiceSetClient (page 102) to associate
a callback function with this CFNetService before calling this function.

When registering a service that runs in asynchronous mode, this function returns TRUE if the service contains
all of the required attributes and the registration process can start. If the registration process completes
successfully, the service is available on the network until you shut down the service by calling
CFNetServiceUnscheduleFromRunLoop (page 104), CFNetServiceSetClient (page 102), and
CFNetServiceCancel (page 84). If the service does not contain all of the required attributes or if the
registration process does not complete successfully, this function returns FALSE.

When registering a service that runs in synchronous mode, this function blocks until an error occurs, in which
case this function returns FALSE. Until this function returns FALSE, the service is available on the network.
To force this function to return FALSE, thereby shutting down the service, call CFNetServiceCancel (page
84) from another thread.

The options parameter is a bit flag for specifying service registration options. Currently,
kCFNetServiceFlagNoAutoRename is the only supported registration option. If this bit is set and a service
of the same name is running, the registration will fail. If this bit is not set and a service of the same name is
running, the service that is being registered will be renamed automatically by appending (n) to the service
name, where n is a number that is incremented until the service can be registered with a unique name.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceResolve
This function updates the specified CFNetService with the IP address or addresses associated with the service.
Call CFNetServiceGetAddressing (page 88) to get the addresses. (Deprecated in Mac OS X version 10.4.
Use CFNetServiceResolveWithTimeout (page 100) instead.)

Boolean CFNetServiceResolve (
 CFNetServiceRef theService,
 CFStreamError *error
);

Parameters
theService

The CFNetService to resolve; cannot be NULL. The resolution will fail if the service doesn’t have a
domain, a type, and a name.

Functions 99
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

error
A pointer to a CFStreamError structure that will be set to an error code and the error code’s domain
if an error occurs; or NULL if you don’t want to receive the error code and its domain.

Return Value
TRUE if an asynchronous service resolution was started or if a synchronous service resolution updated the
CFNetService; FALSE if an asynchronous or synchronous resolution failed or if a synchronous resolution was
canceled.

Discussion
When resolving a service that runs in asynchronous mode, this function returns TRUE if the CFNetService
has a domain, type, and name, and the underlying resolution process was started. Otherwise, this function
returns FALSE. Once started, the resolution continues until it is canceled by calling
CFNetServiceCancel (page 84).

When resolving a service that runs in synchronous mode, this function blocks until the CFNetService is
updated with at least one IP address, until an error occurs, or until CFNetServiceCancel (page 84) is called.

Special Considerations

This function is thread safe.

If the service will be used in asynchronous mode, you must call CFNetServiceSetClient (page 102) before
calling this function.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceResolveWithTimeout
Gets the IP address or addresses for a CFNetService.

Boolean CFNetServiceResolveWithTimeout (
 CFNetServiceRef theService,
 CFTimeInterval timeout,
 CFStreamError *error
);

Parameters
theService

The CFNetService to resolve; cannot be NULL. The resolution will fail if the service doesn’t have a
domain, a type, and a name.

timeout
Value of type CFTimeInterval specifying the maximum amount of time allowed to perform the
resolution. If the resolution is not performed within the specified amount of time, a timeout error will
be returned. If timeout is less than or equal to zero, an infinite amount of time is allowed.

error
Pointer to a CFStreamError structure that will be set to an error code and the error code’s domain
if an error occurs; or NULL if you don’t want to receive the error code and its domain.

100 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Return Value
TRUE if an asynchronous service resolution was started or if a synchronous service resolution updated the
CFNetService; FALSE if an asynchronous or synchronous resolution failed or timed out, or if a synchronous
resolution was canceled.

Discussion
This function updates the specified CFNetService with the IP address or addresses associated with the service.
Call CFNetServiceGetAddressing (page 88) to get the addresses.

When resolving a service that runs in asynchronous mode, this function returns TRUE if the CFNetService
has a domain, type, and name, and the underlying resolution process was started. Otherwise, this function
returns FALSE. Once started, the resolution continues until it is canceled by calling
CFNetServiceCancel (page 84).

When resolving a service that runs in synchronous mode, this function blocks until the CFNetService is
updated with at least one IP address, until an error occurs, or until CFNetServiceCancel (page 84) is called.

Special Considerations

This function is thread safe.

If the service will be used in asynchronous mode, you must call CFNetServiceSetClient (page 102) before
calling this function.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceScheduleWithRunLoop
Schedules a CFNetService on a run loop.

void CFNetServiceScheduleWithRunLoop (
 CFNetServiceRef theService,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theService

The CFNetService that is to be scheduled on a run loop; cannot be NULL.

runLoop
The run loop on which the service is to be scheduled; cannot be NULL.

runLoopMode
The mode on which to schedule the service; cannot be NULL.

Discussion
Schedules the specified service on a run loop, which places the service in asynchronous mode. The caller is
responsible for ensuring that at least one of the run loops on which the service is scheduled is being run.

Special Considerations

This function is thread safe.

Functions 101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Before calling this function, call CFNetServiceSetClient (page 102) to prepare a CFNetService for use in
asynchronous mode.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceSetClient
Associates a callback function with a CFNetService or disassociates a callback function from a CFNetService.

Boolean CFNetServiceSetClient (
 CFNetServiceRef theService,
 CFNetServiceClientCallBack clientCB,
 CFNetServiceClientContext *clientContext
);

Parameters
theService

The CFNetService; cannot be NULL.

clientCB
The callback function that is to be associated with this CFNetService. If you are shutting down the
service, set clientCB to NULL to disassociate from this CFNetService the callback function that was
previously associated.

clientContext
Context information to be used when clientCB is called; cannot be NULL.

Return Value
TRUE if the client was set; otherwise, FALSE.

Discussion
The callback function specified by clientCB will be called to report IP addresses (in the case of
CFNetServiceResolve) or to report registration errors (in the case of CFNetServiceRegister).

Special Considerations

This function is thread safe.

For a CFNetService that will operate asynchronously, call this function and then call
CFNetServiceScheduleWithRunLoop (page 101) to schedule the service on a run loop. Then call
CFNetServiceRegister (page 97) or CFNetServiceResolve (page 99).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

102 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceSetProtocolSpecificInformation
Sets protocol-specific information for a CFNetService. (Deprecated in Mac OS X version 10.4. Use
CFNetServiceSetTXTData instead.)

void CFNetServiceSetProtocolSpecificInformation (
 CFNetServiceRef theService,
 CFStringRef theInfo
);

Parameters
theService

The CFNetService whose protocol-specific information is to be set; cannot be NULL.

theInfo
The protocol-specific information to be set. Pass NULL to remove protocol-specific information from
the service.

Discussion
The protocol-specific information appears in DNS TXT records for the service. Each TXT record consists of
zero or more strings, packed together without any intervening gaps or padding bytes for word alignment.
The format of each constituent string is a single length byte, followed by zero to 255 bytes of text data.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X version 10.4.

Declared In
CFNetServices.h

CFNetServiceSetTXTData
Sets the TXT record for a CFNetService.

Boolean CFNetServiceSetTXTData (
 CFNetServiceRef theService,
 CFDataRef txtRecord
);

Parameters
theService

CFNetServiceRef for which a TXT record is to be set; cannot be NULL.

txtRecord
Contents of the TXT record that is to be set. The contents must not exceed 1450 bytes.

Return Value
TRUE if the TXT record was set; otherwise, FALSE.

Discussion
This function sets a TXT record for the specified service. If the service is currently registered on the network,
the record is broadcast. Setting a TXT record on a service that is still being resolved is not allowed.

Functions 103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

CFNetServiceUnscheduleFromRunLoop
Unschedules a CFNetService from a run loop.

void CFNetServiceUnscheduleFromRunLoop (
 CFNetServiceRef theService,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
theService

The CFNetService that is to be unscheduled; cannot be NULL.

runLoop
The run loop; cannot be NULL.

runLoopMode
The mode from which the service is to be unscheduled; cannot be NULL.

Discussion
Unschedules the specified service from the specified run loop and mode. Call this function to shut down a
service that is running asynchronously. To complete the shutdown, call CFNetServiceSetClient (page
102) and set clientCB to NULL. Then call CFNetServiceCancel (page 84).

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

Callbacks

CFNetServiceBrowserClientCallBack
Defines a pointer to the callback function for a CFNetServiceBrowser.

104 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

typedef void (*CFNetServiceBrowserClientCallBack) (
 CFNetServiceBrowserRef browser,
 CFOptionFlags flags,
 CFTypeRef domainOrService,
 CFStreamError* error,
 void* info);

If you name your callback MyNetServiceBrowserClientCallBack, you would declare it like this:

void MyNetServiceBrowserClientCallBack (
 CFNetServiceBrowserRef browser,
 CFOptionFlags flags,
 CFTypeRef domainOrService,
 CFStreamError* error,
 void* info);

Parameters
browser

The CFNetServiceBrowser associated with this callback function.

flags
Flags conveying additional information. The kCFNetServiceFlagIsDomain bit is set if
domainOrService contains a domain; if this bit is not set, domainOrService contains a
CFNetService instance. For additional bit values, see CFNetServiceBrowserClientCallBack Bit Flags (page
109).

domainOrService
A string containing a domain name if this callback function is being called as a result of calling
CFNetServiceBrowserSearchForDomains (page 80), or a CFNetService instance if this callback
function is being called as a result calling CFNetServiceBrowserSearchForServices (page 81).

error
A pointer to a CFStreamError structure whose error field may contain an error code.

info
User-defined context information. The value of info is the same as the value of the info field of the
CFNetServiceClientContext (page 107) structure that was provided when
CFNetServiceBrowserCreate (page 78) was called to create the CFNetServiceBrowser associated
with this callback function.

Discussion
The callback function for a CFNetServiceBrowser is called one or more times when domains or services are
found as the result of calling CFNetServiceBrowserSearchForDomains (page 80) and
CFNetServiceBrowserSearchForServices (page 81).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceClientCallBack
Defines a pointer to the callback function for a CFNetService.

Callbacks 105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

typedef void (*CFNetServiceClientCallBack) (
 CFNetServiceRef theService,
 CFStreamError* error,
 void* info);

If you name your callback MyNetServiceClientCallBack, you would declare it like this:

void MyNetServiceClientCallBack (
 CFNetServiceRef theService,
 CFStreamError* error,
 void* info);

Parameters
theService

CFNetService associated with this callback function.

error
Pointer to a CFStreamError structure whose error field contain may contain an error code.

info
User-defined context information. The value of info is the same as the value of the info field of the
CFNetServiceClientContext (page 107) structure that was provided when
CFNetServiceSetClient (page 102) was called for the CFNetService associated with this callback
function.

Discussion
Your callback function will be called when there are results of resolving a CFNetService to report or when
there are registration errors to report. In the case of resolution, if the service has more than one IP address,
your callback will be called once for each address.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorClientCallBack
Defines a pointer to the callback function that is to be called when a monitored record type changes.

typedef void (*CFNetServiceMonitorClientCallBack) (
 CFNetServiceMonitorRef theMonitor,
 CFNetServiceRef theService,
 CFNetServiceMonitorType typeInfo,
 CFDataRef rdata,
 CFStreamError* error,
 void* info);

If you name your callback MyNetServiceMonitorClientCallBack, you would declare it like this:

void MyNetServiceMonitorClientCallBack (
 CFNetServiceMonitorRef theMonitor,
 CFNetServiceRef theService,
 CFNetserviceMonitorType typeInfo,
 CFDataRef rdata,
 CFStreamError *error,

106 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

 void *info);

Parameters
theMonitor

CFNetServiceMonitor for which the callback is being called.

theService
CFNetService for which the callback is being called.

typeInfo
Type of record that changed. For possible values, see CFNetServiceMonitorType Constants (page 110).

rdata
Contents of the record that changed.

error
Pointer to CFStreamError structure whose error field contains an error code if an error occurred.

info
Arbitrary pointer to the user-defined data that was specified in the info field of the
CFNetServiceClientContext structure when the monitor was created by
CFNetServiceMonitorCreate (page 92).

Discussion
The callback function will be called when the monitored record type changes or when the monitor is stopped
by calling CFNetServiceMonitorStop (page 96).

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

Data Types

CFNetServiceBrowserRef
An opaque reference representing a CFNetServiceBrowser.

typedef struct __CFNetServiceBrowser* CFNetServiceBrowserRef;

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceClientContext
A structure provided when a CFNetService is associated with a callback function or when a CFNetServiceBrowser
is created.

Data Types 107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

struct CFNetServiceClientContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct CFNetServiceClientContext CFNetServiceClientContext;

Fields
version

Version number for this structure. Currently the only valid value is zero.

info
Arbitrary pointer to user-allocated memory containing user-defined data that is associated with the
service, browser, or monitor and is passed to their respective callback functions. The data must be
valid for as long as the CFNetService, CFNetServiceBrowser, or CFNetServiceMonitor is valid. Set this
field to NULL if your callback function doesn’t want to receive user-defined data.

retain
The callback used to add a retain for the service or browser using info for the life of the service or
browser. This callback may be used for temporary references the service or browser needs to take.
This callback returns the actual info pointer so it can be stored in the service or browser. This field
can be NULL.

release
Callback that removes a retain previously added for the service or browser on the info pointer. This
field can be NULL, but setting this field to NULL may result in memory leaks.

copyDescription
Callback used to create a descriptive string representation of the data pointed to by info. In
implementing this function, return a reference to a CFString object that describes your allocator and
some characteristics of your user-defined data, which is used by CFCopyDescription(). You can
set this field to NULL, in which case Core Foundation will provide a rudimentary description.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

CFNetServiceMonitorRef
An opaque reference for a service monitor.

typedef struct __CFNetServiceMonitor* CFNetServiceMonitorRef;

Discussion
Service monitor references are used to monitor record changes on a CFNetServiceRef.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
CFNetServices.h

108 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

CFNetServiceRef
An opaque reference representing a CFNetService.

typedef struct __CFNetService* CFNetServiceRef;

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetServices.h

Constants

CFNetService Registration Options
Bit flags used when registering a service.

enum {
 kCFNetServiceFlagNoAutoRename = 1
};

Constants
kCFNetServiceFlagNoAutoRename

Causes registrations to fail if a name conflict occurs.

Available in Mac OS X v10.4 and later.

Declared in CFNetServices.h.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetwork/CFNetServices.h

CFNetServiceBrowserClientCallBack Bit Flags
Bit flags providing additional information about the result returned when a client’s
CFNetServiceBrowserClientCallBack function is called.

Constants 109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

enum {
kCFNetServiceFlagMoreComing = 1,
kCFNetServiceFlagIsDomain = 2,
kCFNetServiceFlagIsDefault = 4,
kCFNetServiceFlagIsRegistrationDomain = 4, /* For compatibility */
kCFNetServiceFlagRemove = 8
};

Constants
kCFNetServiceFlagMoreComing

If set, a hint that the client’s callback function will be called again soon; therefore, the client should
not do anything time-consuming, such as updating the screen.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServiceFlagIsDomain
If set, the results pertain to a search for domains. If not set, the results pertain to a search for services.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServiceFlagIsDefault
If set, the resulting domain is the default registration or browse domain, depending on the context.
For this version of the CFNetServices API, the default registration domain is the local domain. In
previous versions of this API, this constant was kCFNetServiceFlagIsRegistrationDomain,
which is retained for backward compatibility.

Available in Mac OS X v10.4 and later.

Declared in CFNetServices.h.

kCFNetServiceFlagRemove
If set, the client should remove the result item instead of adding it.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

Discussion
See CFNetServiceBrowserClientCallBack for additional information.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetwork/CFNetServices.h

CFNetServiceMonitorType Constants
Record type specifier used to tell a service monitor the type of record changes to watch for.

110 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

enum {
kCFNetServiceMonitorTXT = 1
} typedef enum CFNetServiceMonitorType CFNetServiceMonitorType;

Constants
kCFNetServiceMonitorTXT

Watch for TXT record changes.

Available in Mac OS X v10.4 and later.

Declared in CFNetServices.h.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetwork/CFNetServices.h

CFNetService Error Constants
Error codes that may be returned by CFNetServices functions or passed to CFNetServices callback functions.

typedef enum {
 kCFNetServicesErrorUnknown = -72000,
 kCFNetServicesErrorCollision = -72001,
 kCFNetServicesErrorNotFound = -72002,
 kCFNetServicesErrorInProgress = -72003,
 kCFNetServicesErrorBadArgument = -72004,
 kCFNetServicesErrorCancel = -72005,
 kCFNetServicesErrorInvalid = -72006,
 kCFNetServicesErrorTimeout = -72007
} CFNetServicesError;

Constants
kCFNetServicesErrorUnknown

An unknown CFNetService error occurred.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorCollision
An attempt was made to use a name that is already in use.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorNotFound
Not used.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorInProgress
A search is already in progress.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

Constants 111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

kCFNetServicesErrorBadArgument
A required argument was not provided.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorCancel
The search or service was canceled.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorInvalid
Invalid data was passed to a CFNetServices function.

Available in Mac OS X v10.2 and later.

Declared in CFNetServices.h.

kCFNetServicesErrorTimeout
Resolution failed because the timeout was reached.

Available in Mac OS X v10.4 and later.

Declared in CFNetServices.h.

Availability
Available in Mac OS X version 10.2 and later.

Declared In
CFNetwork/CFNetServices.h

Error Domains
Error domains.

extern const SInt32 kCFStreamErrorDomainMach;
extern const SInt32 kCFStreamErrorDomainNetServices;

Constants
kCFStreamErrorDomainMach

Error domain returning errors reported by Mach. For more information, see the header file
/usr/include/mach/error.h.

Available in Mac OS X version 10.5 and later.

Declared in CFNetServices.h.

kCFStreamErrorDomainNetServices
Error domain returning errors reported by the service discovery APIs. These errors are only returned
if you use the CFNetServiceBrowser API or any APIs introduced in Mac OS X v10.4 or later.

Available in Mac OS X version 10.5 and later.

Declared in CFNetServices.h.

112 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

CFNetServices Reference

Derived From: CFType

Framework: CoreServices

Declared in CFNetwork/CFSocketStream.h

Companion guide CFNetwork Programming Guide

Overview

This document describes the CFStream functions for working with sockets. It is part of the CFSocketStream
API.

Functions by Task

Creating Socket Pairs

CFStreamCreatePairWithSocketToCFHost (page 116)
Creates readable and writable streams connected to a given CFHost object.

CFStreamCreatePairWithSocketToNetService (page 116)
Creates a pair of streams for a CFNetService.

Setting the Security Protocol

CFSocketStreamPairSetSecurityProtocol (page 114)
This function sets the security protocol for the specified pair of socket streams. (Deprecated. Use
CFReadStreamSetProperty and CFWriteStreamSetProperty in conjunction with the security
constants defined in CFSocketStream.)

Obtaining Errors

CFSocketStreamSOCKSGetError (page 114)
This function gets error codes in thekCFStreamErrorDomainSOCKSdomain from theCFStreamError
returned by a stream operation.

Overview 113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

CFSocketStreamSOCKSGetErrorSubdomain (page 115)
Gets the error subdomain associated with errors in the kCFStreamErrorDomainSOCKS domain from
the CFStreamError returned by a stream operation.

Functions

CFSocketStreamPairSetSecurityProtocol
This function sets the security protocol for the specified pair of socket streams. (Deprecated in Mac OS X
v10.2. Use CFReadStreamSetProperty and CFWriteStreamSetProperty in conjunction with the security
constants defined in CFSocketStream.)

Boolean CFSocketStreamPairSetSecurityProtocol (
 CFReadStreamRef socketReadStream,
 CFWriteStreamRef socketWriteStream,
 CFStreamSocketSecurityProtocol securityProtocol
);

Parameters
socketReadStream

The read stream.

socketWriteStream
The write stream.

securityProtocol
The security protocol to be set. See CFStream Socket Security Protocol Constants (page 121) for possible
values.

function result
TRUE if specified security protocol was set; otherwise, FALSE.

Discussion
Call this function before you call CFReadStreamOpen to open the read stream or CFWriteStreamOpen to
open the write stream.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.2.

Declared In
CFSocketStream.h

CFSocketStreamSOCKSGetError
This function gets error codes in the kCFStreamErrorDomainSOCKS domain from the CFStreamError
returned by a stream operation.

114 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

SInt32 CFSocketStreamSOCKSGetError(CFStreamError* error);

Parameters
error

The error value to decode.

Discussion
Error codes in the kCFStreamErrorDomainSOCKS domain can come from multiple parts of the protocol
stack, many of which define their own error values as part of outside specifications such as the HTTP
specification.

To avoid confusion from conflicting error numbers, error codes in the kCFStreamErrorDomainSOCKS
domain contain two parts: a subdomain, which tells which part of the protocol stack generated the error,
and the error code itself.

Calling CFSocketStreamSOCKSGetError (page 114) returns the error code itself, which must be interpreted
in the context of the result of a call to CFSocketStreamSOCKSGetErrorSubdomain (page 115). Possible
return values (beyond subdomain-specific values such as client versions and HTTP error codes) are listed in
“CFStream Errors” (page 126).

Availability
Available in Mac OS X v10.2 and later.

Declared In
CFSocketStream.h

CFSocketStreamSOCKSGetErrorSubdomain
Gets the error subdomain associated with errors in the kCFStreamErrorDomainSOCKS domain from the
CFStreamError returned by a stream operation.

SInt32 CFSocketStreamSOCKSGetErrorSubdomain(CFStreamError* error);

Parameters
error

The error value to decode.

Discussion
Error codes in the kCFStreamErrorDomainSOCKS domain can come from multiple parts of the protocol
stack, many of which define their own error values as part of outside specifications such as the HTTP
specification.

To avoid confusion from conflicting error numbers, error codes in the kCFStreamErrorDomainSOCKS
domain contain two parts: a subdomain, which tells which part of the protocol stack generated the error,
and the error code itself.

Calling CFSocketStreamSOCKSGetErrorSubdomain (page 115) returns an identifier that tells which layer
of the protocol stack produced the error. The possible values are listed in “Error Subdomains” (page 125).
With this information, you can interpret the error codes returned by CFSocketStreamSOCKSGetError (page
114).

Availability
Available in Mac OS X v10.2 and later.

Functions 115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

Declared In
CFSocketStream.h

CFStreamCreatePairWithSocketToCFHost
Creates readable and writable streams connected to a given CFHost object.

void CFStreamCreatePairWithSocketToCFHost (
 CFAllocatorRef alloc,
 CFHostRef host,
 SInt32 port,
 CFReadStreamRef *readStream,
 CFWriteStreamRef *writeStream
);

Parameters
alloc

The allocator to use to allocate memory for the CFReadStream and CFWriteStream objects. Pass
NULL or kCFAllocatorDefault to use the current default allocator.

host
A CFHost object to which the streams are connected. If unresolved, the host will be resolved prior
to connecting.

port
The TCP port number to which the socket streams should connect.

readStream
Upon return, contains a CFReadStream object connected to the host host on port port, or NULL if
there is a failure during creation. If you pass NULL, the function will not create a readable stream.
Ownership follows the Create Rule.

writeStream
Upon return, contains a CFWriteStream object connected to the host host on port port, or NULL
if there is a failure during creation. If you pass NULL, the function will not create a writable stream.
Ownership follows the Create Rule.

Discussion
The streams do not open a connection to the specified host until one of the streams is opened.

Most properties are shared by both streams. Setting the property for one stream automatically sets the
property for the other.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFSocketStream.h

CFStreamCreatePairWithSocketToNetService
Creates a pair of streams for a CFNetService.

116 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

void CFStreamCreatePairWithSocketToNetService (
 CFAllocatorRef alloc,
 CFNetServiceRef service,
 CFReadStreamRef *readStream,
 CFWriteStreamRef *writeStream
);

Parameters
alloc

The allocator to use to allocate memory for the CFReadStream and CFWriteStream objects. Pass
NULL or kCFAllocatorDefault to use the current default allocator.

service
Reference to the CFNetService to which the streams are to be connected. If the service is not
resolved, the service will be resolved before the streams are connected.

readstream
Upon return, contains a CFReadStream object connected to the service specified by service, or
NULL if there is a failure during creation. If you pass NULL, the function will not create a readable
stream. Ownership follows the Create Rule.

writeStream
Upon return, contains a CFWriteStream object connected to the service specified by service, or
NULL if there is a failure during creation. If you pass NULL, the function will not create a writable
stream. Ownership follows the Create Rule.

Discussion
Read and write operations on sockets can block. To prevent blocking, you can call CFReadStreamSetClient
and CFWriteStreamSetClient to register to receive stream-related event notifications. Then call
CFReadStreamScheduleWithRunLoop and CFWriteStreamScheduleWithRunLoop to schedule the
stream on a run loop for receiving stream-related event notifications. Then call CFReadStreamOpen and
CFWriteStreamOpen to open each stream.

Special Considerations

This function is thread safe.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CFSocketStream.h

Constants

CFStream Property Keys
Constants for CFStream property keys

Constants 117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

const CFStringRef kCFStreamPropertyShouldCloseNativeSocket;
const CFStringRef kCFStreamPropertySocketSecurityLevel;
const CFStringRef kCFStreamPropertySOCKSProxy;
const CFStringRef kCFStreamPropertySSLPeerCertificates;
const CFStringRef kCFStreamPropertySSLSettings;
const CFStringRef kCFStreamPropertyProxyLocalByPass;
extern const CFStringRef kCFStreamPropertySocketRemoteHost;
extern const CFStringRef kCFStreamPropertySocketRemoteNetService;

Constants
kCFStreamPropertyShouldCloseNativeSocket

Should Close Native Socket property key.

If set to kCFBooleanTrue, the stream will close and release the underlying native socket when the
stream is released. If set to kCFBooleanFalse, the stream will not close and release the underlying
native socket when the stream is released. If a stream is created with a native socket, the default value
of this property is kCFBooleanFalse. This property is only available for socket streams. It can be set
by calling CFReadStreamSetProperty and CFWriteStreamSetProperty, and it can be copied
by CFReadStreamCopyProperty and CFWriteStreamCopyProperty.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySocketNativeHandle
Socket Native Handle property key.

Causes CFReadStreamCopyProperty or CFWriteStreamCopyProperty to return CFData object
that contains the native handle for a socket stream. This property is only available for socket streams.

Available in Mac OS X v10.1 and later.

Declared in CFStream.h.

kCFStreamPropertySocketSecurityLevel
Socket Security Level property key.

See CFStream Socket Security Level Constants (page 122) for specific security level constants to use.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySSLPeerCertificates
SSL Peer Certificates property key for copy operations, which return a CFArray object containing
SecCertificateRef objects.

For more information, see SSLGetPeerCertificates in Security/SecureTransport.h.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSProxy
SOCKS proxy property key.

To set a CFStream object to use a SOCKS proxy, call CFReadStreamSetProperty or
CFWriteStreamSetProperty with the property name set to kCFStreamPropertySOCKSProxy
and its value set to a CFDictionary object having at minimum a
kCFStreamPropertySOCKSProxyHost key and a kCFStreamPropertySOCKSProxyPort key. For
information on these keys, see CFStream SOCKS Proxy Key Constants (page 123). SystemConfiguration
returns a CFDictionary for SOCKS proxies that is usable without modification.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

118 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamPropertySSLSettings
SSL Settings property key for set operations.

The key’s value is a CFDictionary object containing security settings. For information on the
dictionary’s keys and values, see CFStream Property SSL Settings Constants (page 119). By default,
there are no security settings.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamPropertyProxyLocalBypass
Proxy Local Bypass property key.

The key’s value is CFBoolean object whose value indicates whether local hostnames should be subject
to proxy handling.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySocketRemoteHost
The key’s value is a CFHostRef for the remote host if it is known. If not, its value is NULL.

Available in Mac OS X version 10.3 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySocketRemoteNetService
The key’s value is a CFNetServiceRef for the remote network service if it is known. If not, its value
is NULL.

Available in Mac OS X version 10.3 and later.

Declared in CFSocketStream.h.

Declared In
CFNetwork/CFSocketStream.h

CFStream Property SSL Settings Constants
Constants for use in a CFDictionary object that is the value of the kCFStreamPropertySSLSettings
stream property key.

const CFStringRef kCFStreamSSLLevel;
const CFStringRef kCFStreamSSLAllowsExpiredCertificates;
const CFStringRef kCFStreamSSLAllowsExpiredRoots;
const CFStringRef kCFStreamSSLAllowsAnyRoot;
const CFStringRef kCFStreamSSLValidatesCertificateChain;
const CFStringRef kCFStreamSSLPeerName;
const CFStringRef kCFStreamSSLCertificates;
const CFStringRef kCFStreamSSLIsServer;

Constants
kCFStreamSSLLevel

Security property key whose value specifies the stream’s security level.

By default, a stream’s security level is kCFStreamSocketSecurityLevelNegotiatedSSL. For other
possible values, see CFStream Socket Security Level Constants (page 122).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

Constants 119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamSSLAllowsExpiredCertificates
Security property key whose value indicates whether expired certificates are allowed.

By default, the value of this key is kCFBooleanFalse (expired certificates are not allowed).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLAllowsExpiredRoots
Security property whose value indicates whether expired root certificates are allowed.

By default, the value of this key is kCFBooleanFalse (expired root certificates are not allowed).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLAllowsAnyRoot
Security property key whose value indicates whether root certificates should be allowed.

By default, the value of this key is kCFBooleanFalse (root certificates are not allowed).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLValidatesCertificateChain
Security property key whose value indicates whether the certificate chain should be validated.

By default, the value of this key is kCFBooleanTrue (the certificate chain should be validated).

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLPeerName
Security property key whose value overrides the name used for certificate verification.

By default, the host name that was used when the stream was created is used; if no host name was
used, no peer name will be used. Set the value of this key to kCFNull to prevent name verification.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLCertificates
Security property key whose value is a CFArray of SecCertificateRefs except for the first element in
the array, which is a SecIdentityRef.

For more information, see SSLSetCertificate() in Security/SecureTransport.h.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

kCFStreamSSLIsServer
Security property key whose value indicates whether the connection is to act as a server in the SSL
process.

By default, the value of this key is kCFBooleanFalse (the connection is not to act as a server). If the
value of this key is kCFBooleanTrue, the kCFStreamSSLCertificates key must contain a valid
value.

Available in Mac OS X v10.4 and later.

Declared in CFSocketStream.h.

Discussion
This enumeration defines the constants for keys in a CFDictionary object that is the value of the
kCFStreamPropertySSLSettings key.

120 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

Declared In
CFNetwork/CFSocketStream.h

CFStream Socket Security Protocol Constants
Specifies constants for setting the security protocol for a socket stream.

typedef enum {
 kCFStreamSocketSecurityNone = 0,
 kCFStreamSocketSecuritySSLv2,
 kCFStreamSocketSecuritySSLv3,
 kCFStreamSocketSecuritySSLv23,
 kCFStreamSocketSecurityTLSv1
} CFStreamSocketSecurityProtocol;

Constants
kCFStreamSocketSecurityNone

Specifies that no security protocol be set for a socket stream. (Deprecated. Use
kCFStreamSocketSecurityLevelNone.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

kCFStreamSocketSecuritySSLv2

Specifies that SSL version 2 be set as the security protocol for a socket stream. (Deprecated. Use
kCFStreamSocketSecurityLevelSSLv2.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

kCFStreamSocketSecuritySSLv3

Specifies that SSL version 3 be set as the security protocol for a socket stream. (Deprecated. Use
kCFStreamSocketSecurityLevelSSLv3.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

kCFStreamSocketSecuritySSLv23

Specifies that SSL version 3 be set as the security protocol for a socket stream pair. If that version is
not available, specifies that SSL version 2 be set as the security protocol for a socket stream.
(Deprecated. Use kCFStreamSocketSecurityLevelNegotiatedSSL.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

Constants 121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamSocketSecurityTLSv1

Specifies that TLS version 1 be set as the security protocol for a socket stream. (Deprecated. Use
kCFStreamSocketSecurityLevelTLSv1.)

Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.2.

Declared in CFSocketStream.h.

Discussion
This enumeration defines constants for setting the security protocol for a socket stream pair when calling
CFSocketStreamPairSetSecurityProtocol (page 114).

Special Considerations

This enumeration is deprecated in favor of the constants described in CFStream Socket Security Level
Constants (page 122).

Declared In
CFNetwork/CFSocketStream.h

CFStream Socket Security Level Constants
Constants for setting the security level of a socket stream.

const CFStringRef kCFStreamSocketSecurityLevelNone;
const CFStringRef kCFStreamSocketSecurityLevelSSLv2;
const CFStringRef kCFStreamSocketSecurityLevelSSLv3;
const CFStringRef kCFStreamSocketSecurityLevelTLSv1;
const CFStringRef kCFStreamSocketSecurityLevelNegotiatedSSL;

Constants
kCFStreamSocketSecurityLevelNone

Specifies that no security level be set.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamSocketSecurityLevelSSLv2
Specifies that SSL version 2 be set as the security protocol for a socket stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamSocketSecurityLevelSSLv3
Specifies that SSL version 3 be set as the security protocol for a socket stream pair.

If SSL version 3 is not available, specifies that SSL version 2 be set as the security protocol for a socket
stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamSocketSecurityLevelTLSv1
Specifies that TLS version 1 be set as the security protocol for a socket stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

122 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamSocketSecurityLevelNegotiatedSSL
Specifies that the highest level security protocol that can be negotiated be set as the security protocol
for a socket stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

Discussion
This enumeration defines the preferred constants for setting the security protocol for a socket stream pair
when calling CFReadStreamSetProperty or CFWriteStreamSetProperty.

Declared In
CFNetwork/CFSocketStream.h

CFStream SOCKS Proxy Key Constants
Constants for SOCKS Proxy CFDictionary keys.

const CFStringRef kCFStreamPropertySOCKSProxyHost;
const CFStringRef kCFStreamPropertySOCKSProxyPort;
const CFStringRef kCFStreamPropertySOCKSVersion;
const CFStringRef kCFStreamSocketSOCKSVersion4;
const CFStringRef kCFStreamSocketSOCKSVersion5;
const CFStringRef kCFStreamPropertySOCKSUser;
const CFStringRef kCFStreamPropertySOCKSPassword;

Constants
kCFStreamPropertySOCKSProxyHost

Constant for the SOCKS proxy host key.

This key contains a CFString object that represents the SOCKS proxy host. Defined to match
kSCPropNetProxiesSOCKSProxy.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSProxyPort
Constant for the SOCKS proxy host port key.

This key contains a CFNumberRef object of type kCFNumberSInt32Type whose value represents
the port on which the proxy listens.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSVersion
Constant for the SOCKS version key.

Its value must be kCFStreamSocketSOCKSVersion4 or kCFStreamSocketSOCKSVersion5 to
set SOCKS4 or SOCKS5, respectively. If this key is not present, SOCKS5 is used by default.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamSocketSOCKSVersion4
Constant used in the kCFStreamSockerSOCKSVersion key to specify SOCKS4 as the SOCKS version
for the stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

Constants 123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamSocketSOCKSVersion5
Constant used in the kCFStreamSOCKSVersion key to specify SOCKS5 as the SOCKS version for the
stream.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSUser
Constant for the key required to set a user name.

The value is a CFString object containing the user’s name.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

kCFStreamPropertySOCKSPassword
Constant for the key required to set a user’s password.

The value is a CFString object containing the user’s password.

Available in Mac OS X v10.2 and later.

Declared in CFSocketStream.h.

Discussion
When setting the stream's SOCKS Proxy property, the property’s value is a CFDictionary object containing
at minimum the kCFStreamPropertySOCKSProxyHost and kCFStreamPropertySOCKSProxyPort keys.
The dictionary may also contain the other keys described in this section.

Error Domains
Error domains specific to CFSocketStream calls.

extern const int kCFStreamErrorDomainSOCKS;
extern const int kCFStreamErrorDomainSSL;
extern const CFIndex kCFStreamErrorDomainWinSock;

Constants
kCFStreamErrorDomainSOCKS

This domain returns error codes from the SOCKS layer. The errors are described in

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorDomainSSL
This domain returns error codes associated with the SSL layer. For a list of error codes, see the header
SecureTransport.h in Security.framework.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorDomainWinSock
When running CFNetwork code on Windows, this domain returns error codes associated with the
underlying TCP/IP stack. You should also note that non-networking errors such as ENOMEM are delivered
through the POSIX domain. See the header winsock2.h for relevant error codes.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

124 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

Discussion
To determine the source of an error, examine the userInfo dictionary included in the CFError object
returned by a function call or call CFErrorGetDomain and pass in the CFError object and the domain
whose value you want to read.

Error Subdomains
Subdomains used to determine how to interpret an error in the kCFStreamErrorDomainSOCKS domain.

enum {
 kCFStreamErrorSOCKSSubDomainNone = 0,
 kCFStreamErrorSOCKSSubDomainVersionCode = 1,
 kCFStreamErrorSOCKS4SubDomainResponse = 2,
 kCFStreamErrorSOCKS5SubDomainUserPass = 3,
 kCFStreamErrorSOCKS5SubDomainMethod = 4,
 kCFStreamErrorSOCKS5SubDomainResponse = 5
};

Constants
kCFStreamErrorSOCKSSubDomainNone

The error code returned is a SOCKS error number.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKSSubDomainVersionCode
The error returned contains the version of SOCKS that the server wishes to use.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKS4SubDomainResponse
The error returned is the status code that the server returned after the last operation.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKS5SubDomainUserPass
This subdomain returns error codes associated with the last authentication attempt.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKS5SubDomainMethod
This subdomain returns the server’s desired negotiation method.

Available in Mac OS X version 10.5 and later.

kCFStreamErrorSOCKS5SubDomainResponse
This subdomain returns the response code sent by the server when replying to a connection request.

Available in Mac OS X version 10.5 and later.

Discussion
Error codes in the kCFStreamErrorDomainSOCKS domain can come from multiple parts of the protocol
stack, many of which define their own error values as part of outside specifications such as the HTTP
specification.

To avoid confusion from conflicting error numbers, error codes in the kCFStreamErrorDomainSOCKS
domain contain two parts: a subdomain, which tells which part of the protocol stack generated the error,
and the error code itself.

Calling CFSocketStreamSOCKSGetErrorSubdomain (page 115) returns an identifier that tells which layer
of the protocol stack produced the error. This list of constants contains the possible values that this function
will return.

Constants 125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

Calling CFSocketStreamSOCKSGetError (page 114) returns the actual error code that the subdomain
describes.

CFStream Errors
Error codes returned by the kCFStreamErrorDomainSOCKS error domain.

/* kCFStreamErrorSOCKSSubDomainNone*/
enum {
 kCFStreamErrorSOCKS5BadResponseAddr = 1,
 kCFStreamErrorSOCKS5BadState = 2,
 kCFStreamErrorSOCKSUnknownClientVersion = 3
};

/* kCFStreamErrorSOCKS4SubDomainResponse*/
enum {
 kCFStreamErrorSOCKS4RequestFailed = 91,
 kCFStreamErrorSOCKS4IdentdFailed = 92,
 kCFStreamErrorSOCKS4IdConflict = 93
};

/* kCFStreamErrorSOCKS5SubDomainMethod*/
enum {
 kSOCKS5NoAcceptableMethod = 0xFF
};

Constants
kCFStreamErrorSOCKS5BadResponseAddr

The address returned is not of a known type. This error code is only valid for errors in the
kCFStreamErrorSOCKSSubDomainNone subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorSOCKS5BadState
The stream is not in a state that allows the requested operation. This error code is only valid for errors
in the kCFStreamErrorSOCKSSubDomainNone subdomain..

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorSOCKSUnknownClientVersion
The SOCKS server rejected access because it does not support connections with the requested SOCKS
version. SOCKS client version. You can query the kCFSOCKSVersionKey key to find out what version
the server requested. This error code is only valid for errors in the
kCFStreamErrorSOCKSSubDomainNone subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

126 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

kCFStreamErrorSOCKS4RequestFailed
Request rejected by the server or request failed. This error is specific to SOCKS4. This error code is
only valid for errors in the kCFStreamErrorSOCKS4SubDomainResponse subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorSOCKS4IdentdFailed
Request rejected by the server because it could not connect to the identd daemon on the client.
This error is specific to SOCKS4. This error code is only valid for errors in the
kCFStreamErrorSOCKS4SubDomainResponse subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kCFStreamErrorSOCKS4IdConflict
Request rejected by the server because the client program and the identd daemon reported different
user IDs. This error is specific to SOCKS4. This error code is only valid for errors in the
kCFStreamErrorSOCKS4SubDomainResponse subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

kSOCKS5NoAcceptableMethod
The client and server could not find a mutually agreeable authentication method. This error code is
only valid for errors in the kCFStreamErrorSOCKS5SubDomainMethod subdomain.

Available in Mac OS X version 10.5 and later.

Declared in CFSocketStream.h.

Discussion
Error codes in the kCFStreamErrorDomainSOCKS domain can come from multiple parts of the protocol
stack, many of which define their own error values as part of outside specifications such as the HTTP
specification.

To avoid confusion from conflicting error numbers, error codes in the kCFStreamErrorDomainSOCKS
domain contain two parts: a subdomain, which tells which part of the protocol stack generated the error,
and the error code itself.

Calling CFSocketStreamSOCKSGetErrorSubdomain (page 115) returns an identifier that tells which layer
of the protocol stack produced the error.

Calling CFSocketStreamSOCKSGetError (page 114) returns the actual error code that the subdomain
describes. This list of constants contains the possible values that this function will return. They must be
interpreted within the context of the relevant error subdomain.

Constants 127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

128 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

CFStream Socket Additions

Derived From: CFType

Framework: CoreServices/CoreServices.h

Declared in MDItem.h

Companion guides Spotlight Overview
Spotlight Query Programming Guide
Spotlight Importer Programming Guide
Spotlight Metadata Attributes Reference

Overview

MDItem is a CF-compliant object that represents a file and the metadata associated with the file.

For functions that expect an MDItemRef parameter, if this parameter is not a valid MDItemRef, the behavior
is undefined. NULL is not a valid MDItemRef.

Functions by Task

Creating an MDItem

MDItemCreate (page 132)
Creates an MDItem object for a file at the specified path.

Getting the Type Identifier

MDItemGetTypeID (page 132)
Returns the type identifier of all MDItem instances.

Retrieving Metadata Attributes

MDItemCopyAttribute (page 130)
Returns the value of the specified attribute in the metadata item.

MDItemCopyAttributes (page 131)
Returns the values of the specified attributes in the metadata item.

Overview 129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

MDItemCopyAttributeList (page 130)
Returns the values of the specified attributes in the metadata item.

MDItemCopyAttributeNames (page 131)
Returns an array containing the attribute names existing in the metadata item.

Functions

MDItemCopyAttribute
Returns the value of the specified attribute in the metadata item.

CFTypeRef MDItemCopyAttribute (
 MDItemRef item,
 CFStringRef name
);

Parameters
item

The item to be queried.

name
The name of the requested attribute.

Return Value
A CFTypeRef, or NULL if there was a failure reading the attribute or the attribute does not exist.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

MDItemCopyAttributeList
Returns the values of the specified attributes in the metadata item.

CFDictionaryRef MDItemCopyAttributeList (
 MDItemRef item,
 ...
);

Parameters
item

The item to be queried.

...
A comma-separated varargs list of the string attribute names..

Return Value
A CFDictionary containing keys for the requested attribute names, and the corresponding values. If an attribute
does not exist, or the attribute is unreadable, there will be no key-value pair for it in the dictionary. Returns
NULL on failure.

130 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

MDItemCopyAttributeNames
Returns an array containing the attribute names existing in the metadata item.

CFArrayRef MDItemCopyAttributeNames (
 MDItemRef item
);

Parameters
item

The item to be queried.

Return Value
A CFArray of CFString attribute names, or NULL on failure.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

MDItemCopyAttributes
Returns the values of the specified attributes in the metadata item.

CFDictionaryRef MDItemCopyAttributes (
 MDItemRef item,
 CFArrayRef names
);

Parameters
item

The item to be queried.

names
A CFArray containing the names of the requested attributes.

Return Value
A CFDictionary containing keys for the requested attribute names, and the corresponding values. If an attribute
does not exist, or the attribute is unreadable, there will be no key-value pair for it in the dictionary. Returns
NULL on failure.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

Functions 131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

MDItemCreate
Creates an MDItem object for a file at the specified path.

MDItemRef MDItemCreate (
 CFAllocatorRef allocator,
 CFStringRef path
);

Parameters
allocator

The CFAllocator object to be used to allocate memory for the new object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

path
A path to the file from which to create the MDItem. The path must exist.

Return Value
An MDItem object or NULL if there was a problem creating the object.

Discussion
Returns a metadata item for the given path. MDItemRefs are uniqued and can be compared using == or
CFEqual.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

MDItemGetTypeID
Returns the type identifier of all MDItem instances.

CFTypeID MDItemGetTypeID (
 void
);

Return Value
The type identifier for the MDItem opaque type.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

Data Types

MDItemRef
A reference to a MDItem object.

132 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

typedef struct __MDItem *MDItemRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDItem.h

Constants

Common Metadata Attribute Keys
Metadata attribute keys that are common to many file types.

Constants 133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

const CFStringRef kMDItemAttributeChangeDate;
const CFStringRef kMDItemAudiences;
const CFStringRef kMDItemAuthors;
const CFStringRef kMDItemCity;
const CFStringRef kMDItemComment;
const CFStringRef kMDItemContactKeywords;
const CFStringRef kMDItemContentCreationDate;
const CFStringRef kMDItemContentModificationDate;
const CFStringRef kMDItemContentType;
const CFStringRef kMDItemContributors;
const CFStringRef kMDItemCopyright;
const CFStringRef kMDItemCountry;
const CFStringRef kMDItemCoverage;
const CFStringRef kMDItemCreator;
const CFStringRef kMDItemDescription;
const CFStringRef kMDItemDueDate;
const CFStringRef kMDItemDurationSeconds;
const CFStringRef kMDItemEmailAddresses;
const CFStringRef kMDItemEncodingApplications;
const CFStringRef kMDItemFinderComment;
const CFStringRef kMDItemFonts;
const CFStringRef kMDItemHeadline;
const CFStringRef kMDItemIdentifier;
const CFStringRef kMDItemInstantMessageAddresses;
const CFStringRef kMDItemInstructions;
const CFStringRef kMDItemKeywords;
const CFStringRef kMDItemKind;
const CFStringRef kMDItemLanguages;
const CFStringRef kMDItemLastUsedDate;
const CFStringRef kMDItemNumberOfPages;
const CFStringRef kMDItemOrganizations;
const CFStringRef kMDItemPageHeight;
const CFStringRef kMDItemPageWidth;
const CFStringRef kMDItemPhoneNumbers;
const CFStringRef kMDItemProjects;
const CFStringRef kMDItemPublishers;
const CFStringRef kMDItemRecipients;
const CFStringRef kMDItemRights;
const CFStringRef kMDItemSecurityMethod;
const CFStringRef kMDItemStarRating;
const CFStringRef kMDItemStateOrProvince;
const CFStringRef kMDItemTextContent;
const CFStringRef kMDItemTitle;
const CFStringRef kMDItemVersion;
const CFStringRef kMDItemWhereFroms;

Constants
kMDItemAttributeChangeDate

The date and time of the last change made to a metadata attribute. A CFDate.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAudiences
The audience for which the file is intended. The audience may be determined by the creator or the
publisher or by a third party. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

134 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemAuthors
The author, or authors, of the contents of the file. The order of the authors is preserved, but does not
represent the main author or relative importance of the authors. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemCity
Identifies city of origin according to guidelines established by the provider. For example, "New York",
"Cupertino", or "Toronto". A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemComment
A comment related to the file. This differs from the Finder comment, kMDItemFinderComment. A
CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemContactKeywords
A list of contacts that are associated with this document, not including the authors. A CFArray of
CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemContentCreationDate
The date that the contents of the file were created. This is different than the file creation date. Its can
be used to store when the file contents were first created, or first modified. A CFDate.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemContentModificationDate
The date and time that the contents of the file were last modified. This is not necessarily the file
modification date. A CFDate.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemContentType
The UTI pedigree of a file. For example, a jpeg image file will have a value of
public.jpeg/public.image/public.data. The value of this attribute is set by the MDImporter. Changes
to this value are lost when the file attributes are next imported. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemContributors
The entities responsible for making contributions to the content of the resource. Examples of a
contributor include a person, an organization or a service. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Constants 135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemCopyright
The copyright owner of the file contents. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemCountry
The full, publishable name of the country or primary location where the intellectual property of the
item was created, according to guidelines of the provider. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemCoverage
The extent or scope of the content of the resource. Coverage will typically include spatial location (a
place name or geographic co-ordinates), temporal period (a period label, date, or date range) or
jurisdiction (such as a named administrative entity). Recommended best practice is to select a value
from a controlled vocabulary, and that, where appropriate, named places or time periods be used in
preference to numeric identifiers such as sets of co-ordinates or date ranges. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemCreator
Application used to create the document content (e.g. "Word", "AppleWorks", etc.). A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemDescription
A description of the content of the resource. The description may include an abstract, table of contents,
reference to a graphical representation of content or a free-text account of the content. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemDueDate
Date this item is due. A CFDate.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemDurationSeconds
The duration, in seconds, of the content of file. A value of 10.5 represents media that is 10 and 1/2
seconds long. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemEmailAddresses
Email addresses related to this item. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemEncodingApplications
Application used to convert the original content into it's current form. For example, a PDF file might
have an encoding application set to "Distiller". A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

136 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemFinderComment
Finder comments for this file. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFonts
Fonts used in this item. You should store the font's full name, the postscript name, or the font family
name, based on the available information. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemHeadline
A publishable entry providing a synopsis of the contents of the file. For example, "Apple Introduces
the iPod Photo". A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemIdentifier
A formal identifier used to reference the resource within a given context. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemInstantMessageAddresses
Instant message addresses related to this item. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemInstructions
Editorial instructions concerning the use of the item, such as embargoes and warnings. For example,
"Second of four stories". A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemKeywords
Keywords associated with this file. For example, “Birthday”, “Important”, etc. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemKind
A description of the kind of item this file represents. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemLanguages
Indicates the languages of the intellectual content of the resource. Recommended best practice for
the values of the Language element is defined by RFC 3066. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Constants 137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemLastUsedDate
The date and time that the file was last used. This value is updated automatically by LaunchServices
everytime a file is opened by double clicking, or by asking LaunchServices to open a file. A CFDate.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemNumberOfPages
Number of pages in the document. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemOrganizations
The company or organization that created the document. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemPageHeight
Height of the document page, in points (72 points per inch). For PDF files this indicates the height of
the first page only. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemPageWidth
Width of the document page, in points (72 points per inch). For PDF files this indicates the width of
the first page only. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemPhoneNumbers
Phone numbers related to this item. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemProjects
The list of projects that this file is part of. For example, if you were working on a movie all of the files
could be marked as belonging to the project “My Movie”. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemPublishers
The entity responsible for making the resource available. For example, a person, an organization, or
a service. Typically, the name of a publisher should be used to indicate the entity. A CFArray of
CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemRecipients
Recipients of this item. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

138 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemRights
Provides a link to information about rights held in and over the resource. Contains a rights management
statement for the resource, or reference a service providing such information. Rights information
often encompasses Intellectual Property Rights (IPR), Copyright, and various Property Rights. If this
attribute is absent, no assumptions can be made about the status of these and other rights with
respect to the resource. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemSecurityMethod
The security or encryption method used for the file. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemStarRating
User rating of this item. For example, the stars rating of an iTunes track. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemStateOrProvince
Identifies the province or state of origin according to guidelines established by the provider. For
example, "CA", "Ontario", or "Sussex". A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemTextContent
Contains a text representation of the content of the document. Data in multiple fields should be
combined using a whitespace character as a separator. An application's Spotlight importer provides
the content of this attribute. Applications can search for values in this attribute, but are not able to
read the content of this attribute directly. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemTitle
The title of the file. For example, this could be the title of a document, the name of an song, or the
subject of an email message. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemVersion
The version number of this file. A CFString

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemWhereFroms
Describes where the file was obtained from. For example, a downloaded file may refer to the URL,
files received by email may indicate the sender’s email address, message subject, etc. A CFArray of
CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Availability
Available in Mac OS X version 10.4 and later.

Constants 139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

Declared In
MDItem.h

Image Metadata Attribute Keys
Metadata attribute keys that are common to image files.

const CFStringRef kMDItemPixelHeight;
const CFStringRef kMDItemPixelWidth;
const CFStringRef kMDItemColorSpace;
const CFStringRef kMDItemBitsPerSample;
const CFStringRef kMDItemFlashOnOff;
const CFStringRef kMDItemFocalLength;
const CFStringRef kMDItemAcquisitionMake;
const CFStringRef kMDItemAcquisitionModel;
const CFStringRef kMDItemISOSpeed;
const CFStringRef kMDItemOrientation;
const CFStringRef kMDItemLayerNames;
const CFStringRef kMDItemWhiteBalance;
const CFStringRef kMDItemAperture;
const CFStringRef kMDItemProfileName;
const CFStringRef kMDItemResolutionWidthDPI;
const CFStringRef kMDItemResolutionHeightDPI;
const CFStringRef kMDItemExposureMode;
const CFStringRef kMDItemExposureTimeSeconds;
const CFStringRef kMDItemEXIFVersion;
const CFStringRef kMDItemAlbum;
const CFStringRef kMDItemHasAlphaChannel;
const CFStringRef kMDItemRedEyeOnOff;
const CFStringRef kMDItemMeteringMode;
const CFStringRef kMDItemMaxAperture;
const CFStringRef kMDItemFNumber;
const CFStringRef kMDItemExposureProgram;
const CFStringRef kMDItemExposureTimeString;

Constants
kMDItemPixelHeight

The height, in pixels, of the contents. For example, the image height or the video frame height. A
CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemPixelWidth
The width, in pixels, of the contents. For example, the image width or the video frame width. A
CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemColorSpace
The color space model used by the document contents. For example, “RGB”, “CMYK”, “YUV”, or “YCbCr”.
A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

140 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemBitsPerSample
The number of bits per sample. For example, the bit depth of an image (8-bit, 16-bit etc...) or the bit
depth per audio sample of uncompressed audio data (8, 16, 24, 32, 64, etc..). A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFlashOnOff
Indicates if a camera flash was used. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFocalLength
The actual focal length of the lens, in millimeters. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAcquisitionMake
The manufacturer of the device used to aquire the document contents. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAcquisitionModel
The model of the device used to aquire the document contents. For example, 100, 200, 400, etc. A
CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemISOSpeed
The ISO speed used to aquire the document contents. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemOrientation
The orientation of the document contents. Possible values are 0 (landscape) and 1 (portrait). A
CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemLayerNames
The names of the layers in the file. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemWhiteBalance
The white balance setting used to aquire the document contents. Possible values are 0 (auto white
balance) and 1 (manual). A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Constants 141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemAperture
The aperature setting used to aqure the document contents. This unit is the APEX value. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemProfileName
The name of the color profile used by the document contents. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemResolutionWidthDPI
Resolution width, in DPI, of this image. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemResolutionHeightDPI
Resolution height, in DPI, of this image. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemExposureMode
The exposure mode used to aquire the document contents. Possible values are 0 (auto exposure), 1
(manual exposure) and 2 (auto bracket). A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemExposureTimeSeconds
The exposure time, in seconds, used to aquire the document contents. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemEXIFVersion
The version of the EXIF header used to generate the metadata. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAlbum
The title for a collection of media. This is analagous to a record album, or photo album. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemHasAlphaChannel
Indicates if this image file has an alpha channel. A CFBoolean.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemRedEyeOnOff
Indicates if red-eye reduction was used to take the picture. Possible values are 0 (no red-eye reduction
mode or unknown) and 1 (red-eye reduction used). A CFBoolean.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

142 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemMeteringMode
The metering mode used to take the image. Possible values are: Unknown, Average,
CenterWeightedAverage, Spot, MultiSpot, Pattern, and Partial. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemMaxAperture
The smallest f-number of the lens. The unit is the APEX?? value. Ordinarily it is given in the range of
00.00 to 99.99. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFNumber
The diameter of the diaphragm aperture in terms of the effective focal length of the lens.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemExposureProgram
The class of the exposure program used by the camera to set exposure when the image is taken.
Possible values include: Manual, Normal, and Aperture priority.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemExposureTimeString
The time of the exposure. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

Video Metadata Attribute Keys
Metadata attribute keys that are common to video files.

const CFStringRef kMDItemAudioBitRate;
const CFStringRef kMDItemCodecs;
const CFStringRef kMDItemDeliveryType;
const CFStringRef kMDItemMediaTypes;
const CFStringRef kMDItemStreamable;
const CFStringRef kMDItemTotalBitRate;
const CFStringRef kMDItemVideoBitRate;

Constants
kMDItemAudioBitRate

The audio bit rate. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Constants 143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemCodecs
The codecs used to encode/decode the media. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemDeliveryType
The delivery type. Values are “Fast start” or “RTSP”. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemMediaTypes
The media types present in the content. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemStreamable
Whether the content is prepared for streaming. A CFBoolean.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemTotalBitRate
The total bit rate, audio and video combined, of the media. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemVideoBitRate
The video bit rate. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

Audio Metadata Attribute Keys
Metadata attribute keys that describe an audio file.

144 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

const CFStringRef kMDItemAppleLoopDescriptors;
const CFStringRef kMDItemAppleLoopsKeyFilterType;
const CFStringRef kMDItemAppleLoopsLoopMode;
const CFStringRef kMDItemAppleLoopsRootKey;
const CFStringRef kMDItemAudioChannelCount;
const CFStringRef kMDItemAudioEncodingApplication;
const CFStringRef kMDItemAudioSampleRate;
const CFStringRef kMDItemAudioTrackNumber;
const CFStringRef kMDItemComposer;
const CFStringRef kMDItemIsGeneralMIDISequence;
const CFStringRef kMDItemKeySignature;
const CFStringRef kMDItemLyricist;
const CFStringRef kMDItemMusicalGenre;
const CFStringRef kMDItemMusicalInstrumentCategory;
const CFStringRef kMDItemMusicalInstrumentName;
const CFStringRef kMDItemRecordingDate;
const CFStringRef kMDItemRecordingYear;
const CFStringRef kMDItemTempo;
const CFStringRef kMDItemTimeSignature;

Constants
kMDItemAppleLoopDescriptors

Specifies multiple pieces of descriptive information about a loop. Besides genre and instrument, files
can contain descriptive information that help users in refining searches. A CFArray of CFStrings.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAppleLoopsKeyFilterType
Specifies key filtering information about a loop. Loops are matched against projects that often in a
major or minor key. To assist users in identifying loops that will "fit" with their compositions, loops
can be tagged with one of the following key filters: "AnyKey" "Minor" "Major" "NeitherKey" "BothKeys".
"AnyKey" means that it fits with anything (whether in a major key, minor key or neither). "Minor" fits
with compositions in a minor key. "NeitherKey" doesn't work well with compositions that are in major
or minor key. "BothKeys" means it fits with major or minor key. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAppleLoopsLoopMode
Specifies how a file should be played. Tagged files can either be loops or non-loops (e.g., a cymbal
crash). "Looping" indicates if the file should be treated as a loop. "Non-looping" indicates the file
should not be treated as a loop. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAppleLoopsRootKey
Specifies the loop's original key. The key is the root note or tonic for the loop, and does not include
the scale type. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Constants 145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemAudioChannelCount
Number of channels in the audio data contained in the file. This integer value only represents the
number of discreet channels of audio data found in the file. It does not indicate any configuration of
the data in regards to a user's speaker setup. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAudioEncodingApplication
The name of the application that encoded the data contained in the audio file. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAudioSampleRate
Sample rate of the audio data contained in the file. The sample rate is a float value representing hz
(audio_frames/second). For example: 44100.0, 22254.54. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemAudioTrackNumber
The track number of a song or composition when it is part of an album. A CFNumber (integer).

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemComposer
The composer of the music contained in the audio file. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemIsGeneralMIDISequence
Indicates whether the MIDI sequence contained in the file is setup for use with a General MIDI device.
A CFBoolean.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemKeySignature
The key of the music contained in the audio file. For example: C, Dm, F#m, Bb. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemLyricist
The lyricist, or text writer, of the music contained in the audio file. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemMusicalGenre
The musical genre of the song or composition contained in the audio file. For example: Jazz, Pop,
Rock, Classical. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

146 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemMusicalInstrumentCategory
Specifies the category of an instrument. Files should have an instrument associated with them ("Other
Instrument" is provided as a catch-all). For some categories, such as "Keyboards", there are instrument
names which provide a more detailed instrument definition, for example "Piano" or "Organ". A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemMusicalInstrumentName
Specifies the name of instrument relative to the instrument category. Files can have an instrument
name associated with them if they have certain instrument categories. For example, the "Percussion"
category has multiple instruments, including "Conga" and "Bongo". A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemRecordingDate
The recording date of the song or composition. This is in contrast to kMDItemContentCreationDate
which, could indicate the creation date of an edited or 'mastered' version of the original art. A CFDate.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemRecordingYear
Indicates the year the item was recorded. For example, 1964, 2003, etc. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemTempo
A float value that specifies the beats per minute of the music contained in the audio file. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemTimeSignature
The time signature of the musical composition contained in the audio/MIDI file. For example: "4/4",
"7/8". A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

File System Metadata Attribute Keys
Metadata attribute keys that describe the file system attributes for a file.

Constants 147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

const CFStringRef kMDItemDisplayName;
const CFStringRef kMDItemFSContentChangeDate;
const CFStringRef kMDItemFSCreationDate;
const CFStringRef kMDItemFSExists;
const CFStringRef kMDItemFSInvisible;
const CFStringRef kMDItemFSIsExtensionHidden;
const CFStringRef kMDItemFSIsReadable;
const CFStringRef kMDItemFSIsWriteable;
const CFStringRef kMDItemFSLabel;
const CFStringRef kMDItemFSName;
const CFStringRef kMDItemFSNodeCount;
const CFStringRef kMDItemFSOwnerGroupID;
const CFStringRef kMDItemFSOwnerUserID;
const CFStringRef kMDItemFSSize;
const CFStringRef kMDItemPath;

Constants
kMDItemDisplayName

The localized version of the file name. This is the localized version of the LaunchServices call
LSCopyDisplayNameForURL()/LSCopyDisplayNameForRef(). A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSContentChangeDate
The date the file contents last changed. A CFDate.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSCreationDate
The date and time that the file was created. A CFDate.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSExists
This attribute is deprecated and was never implemented.

Deprecated in Mac OS X v10.4.

Declared in MDItem.h.

kMDItemFSInvisible
Indicates whether the file is invisible. A CFBoolean.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSIsExtensionHidden
Indicates whether the file extension of the file is hidden. A CFBoolean.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSIsReadable
This attribute is deprecated and was never implemented.

Deprecated in Mac OS X v10.4.

Declared in MDItem.h.

148 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

kMDItemFSIsWriteable
This attribute is deprecated and was never implemented.

Deprecated in Mac OS X v10.4.

Declared in MDItem.h.

kMDItemFSLabel
Index of the Finder label of the file. Possible values are 0 through 7. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSName
The file name of the item. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSNodeCount
Number of files in a directory. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSOwnerGroupID
The group ID of the owner of the file. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSOwnerUserID
The user ID of the owner of the file. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemFSSize
The size, in bytes, of the file on disk. A CFNumber.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

kMDItemPath
The complete path to the file. A CFString.

Available in Mac OS X v10.4 and later.

Declared in MDItem.h.

Availability
Available in Mac OS X version 10.4 and later.

Declared In
MDItem.h

Constants 149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

150 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

MDItem Reference

Derived From: CFType

Framework: CoreServices/CoreServices.h

Declared in MDQuery.h

Companion guides Spotlight Overview
Spotlight Query Programming Guide

Overview

MDQuery is a CF-compliant object, follows the CF conventions, and can be used with the CF polymorphic
functions, such as CFRetain. MDQuery encapsulates queries against the System store of the file metadata.

An MDQuery normally executes asynchronously and posts progress notifications as the results are collected.
During the gathering phase the query results conform to the specified value lists and sorting.

MDQuery gathers results and processes updates only while the current thread's run loop is running.

For functions that take an MDQueryRef parameter, if this parameter is not a valid MDQueryRef, the behavior
is undefined. NULL is not a valid MDQueryRef.

For functions that take CF*Ref parameters, such as CFStringRef and CFArrayRef, if this parameter is not a valid
CF object of the correct type, the behavior is undefined. NULL is not a valid CF*Ref.

Functions by Task

Creating Queries

MDQueryCreate (page 155)
Creates a new query instance.

MDQueryCreateSubset (page 155)
Creates a new query that is a subset of the specified parentquery.

MDQuerySetSearchScope (page 164)
Sets the search scope for a query instance.

Overview 151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

Getting and Setting Query Parameters

MDQueryGetBatchingParameters (page 158)
Returns the current parameters that control the batching of progress notifications.

MDQueryCopyValueListAttributes (page 154)
Returns the list of attribute names for which values are being collected by the query.

MDQueryCopySortingAttributes (page 153)
Returns the list of attribute names used to sort the results.

MDQueryCopyQueryString (page 153)
Returns the query string of the query.

MDQuerySetBatchingParameters (page 161) Deprecated in Mac OS X v10.2
Set the query batching parameters.

Setting Callback Functions

MDQuerySetCreateResultFunction (page 162)
Sets the function used to create the result objects of the MDQuery.

MDQuerySetSortComparator (page 165)
Sets the function used to sort the results of an MDQuery.

MDQuerySetCreateValueFunction (page 163)
Sets the function used to create the value objects of the MDQuery.

Starting, Stopping and Pausing Queries

MDQueryExecute (page 157)
Run the query, and populate the query with the results.

MDQueryStop (page 165)
Stops the query from generating more results.

MDQueryDisableUpdates (page 156)
Disables updates to the query result list.

MDQueryEnableUpdates (page 156)
Enables updates to the query result list.

MDQueryIsGatheringComplete (page 161)
Returns true if the first phase of a query, the initial result gathering, has finished.

Getting Query Result Values

MDQueryCopyValuesOfAttribute (page 154)
Returns the list of values from the results of the query for the specified attribute.

MDQueryGetAttributeValueOfResultAtIndex (page 158)
Returns the value of the named attribute for the result at the given index.

MDQueryGetCountOfResultsWithAttributeValue (page 158)
Returns the number of results which have the given attribute and attribute value.

152 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

MDQueryGetIndexOfResult (page 159)
Returns the current index of the given result.

MDQueryGetResultAtIndex (page 160)
Returns the current result at the given index.

MDQueryGetResultCount (page 160)
Returns the number of results currently collected by the query.

Getting the Type Identifier

MDQueryGetTypeID (page 161)
Returns the type identifier of all MDQuery instances

Functions

MDQueryCopyQueryString
Returns the query string of the query.

CFStringRef MDQueryCopyQueryString (
 MDQueryRef query
);

Parameters
query

The query.

Return Value
A CFStringRef containing the query string.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryCopySortingAttributes
Returns the list of attribute names used to sort the results.

CFArrayRef MDQueryCopySortingAttributes (
 MDQueryRef query
);

Parameters
query

The query.

Return Value
A CFArrayRef containing the attribute names used to sort the query results.

Functions 153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryCopyValueListAttributes
Returns the list of attribute names for which values are being collected by the query.

CFArrayRef MDQueryCopyValueListAttributes (
 MDQueryRef query
);

Parameters
query

The query.

Return Value
A CFArrayRef containing the attribute names of the collected values.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryCopyValuesOfAttribute
Returns the list of values from the results of the query for the specified attribute.

CFArrayRef MDQueryCopyValuesOfAttribute (
 MDQueryRef query,
 CFStringRef name
);

Parameters
query

The query.

name
The attribute name to return the value of. If the attribute is not one of those requested when the
query was created the behavior is undefined

Return Value
A CFArrayRef containing the value objects for the specified attribute. The array contents are not ordered and
contain only one occurrence of each value. The array contents may change over time if the query is configured
for live-updates.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

154 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

MDQueryCreate
Creates a new query instance.

MDQueryRef MDQueryCreate (
 CFAllocatorRef allocator,
 CFStringRef queryString,
 CFArrayRef valueListAttrs,
 CFArrayRef sortingAttrs
);

Parameters
allocator

The CFAllocator object to be used to allocate memory for the new object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

queryString
The query expression string for this query.

valueListAttrs
An optional array of attribute names. The query will collect the values of these attributes into uniqued
lists that can be used to summarize the results of the query and allow the user to further qualify the
search. This parameter may be NULL if no value lists are required. Value list collection increases CPU
usage and significantly increases the memory usage of an MDQuery. The attribute names are CFStrings.

sortingAttrs
A n array of attribute names used to sort the results, or NULL if no sorting is required. The first name
in the array is used as the primary sort key, the second as the secondary key, and so on. The comparison
of like-typed values is a simple, literal comparison. Sorting increases memory usage and significantly
increases the CPU usage of an MDQuery. It is usually more efficent to allow the MDQuery to sort the
results than retrieiving the values and sorting the results yourself. The attribute names are CFStrings.

Return Value
An MDQueryRef, or NULL on failure. If the query string is empty or malformed the function returns NULL.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryCreateSubset
Creates a new query that is a subset of the specified parentquery.

MDQueryRef MDQueryCreateSubset (
 CFAllocatorRef allocator,
 MDQueryRef query,
 CFStringRef queryString,
 CFArrayRef valueListAttrs,
 CFArrayRef sortingAttrs
);

Parameters
allocator

The CFAllocator object to be used to allocate memory for the new object. Pass NULL or
kCFAllocatorDefault to use the current default allocator.

Functions 155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

query
The parent query

queryString
The query expression string for this query.

valueListAttrs
An optional array of attribute names. The query will collect the values of these attributes into uniqued
lists that can be used to summarize the results of the query and allow the user to further qualify the
search. This parameter may be NULL if no value lists are required. Value list collection increases CPU
usage and significantly increases the memory usage of an MDQuery. The attribute names are CFStrings.

sortingAttrs
A n array of attribute names used to sort the results, or NULL if no sorting is required. The first name
in the array is used as the primary sort key, the second as the secondary key, and so on. The comparison
of like-typed values is a simple, literal comparison. Sorting increases memory usage and significantly
increases the CPU usage of an MDQuery. It is usually more efficent to allow the MDQuery to sort the
results than retrieiving the values and sorting the results yourself. The attribute names are CFStrings.

Return Value
An MDQueryRef, or NULL on failure. If the query string is empty or malformed the function returns NULL.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryDisableUpdates
Disables updates to the query result list.

void MDQueryDisableUpdates (
 MDQueryRef query
);

Parameters
query

The query.

Discussion
This function should be called before iterating over query results that could change due to live-updates. The
disabled state is a counter and disabling can be done recursively and from different threads.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryEnableUpdates
Enables updates to the query result list.

156 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

void MDQueryEnableUpdates (
 MDQueryRef query
);

Parameters
query

The query.

Discussion
This function should be called when finished iterating through the list of results. Live-updates to the query
results will continue when all the disables have been matched by a corresponding enable.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryExecute
Run the query, and populate the query with the results.

Boolean MDQueryExecute (
 MDQueryRef query,
 CFOptionFlags optionFlags
);

Parameters
query

The query to execute.

optionFlags
A bitwise OR of the MDQueryOptionFlags to be used by the query.

Return Value
Returns TRUE if the query was started, FALSE otherwise. Queries cannot be executed more than once.

Discussion
Queries only gather results or process updates while the current thread's run loop is running.

Queries have two phases: the initial gathering phase that collects all currently matching results and a second
live-update phase. Updates occur during the live-update phase if a change in a file occurs such that it no
longer matches the query or if it begins to match the query. Files which begin to match the query are added
to the result list, and files which no longer match the query expression are removed from the result list.

Query notifications are posted within the context of the same thread which executes the query.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

Functions 157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

MDQueryGetAttributeValueOfResultAtIndex
Returns the value of the named attribute for the result at the given index.

void * MDQueryGetAttributeValueOfResultAtIndex (
 MDQueryRef query,
 CFStringRef name,
 CFIndex idx
);

Parameters
query

The query.

name
The attribute name to return the values of. If the attribute is not one of those requested in the
valueListAttrs or sortingAttrs parameters to one of the query creation functions, the result
will be NULL.

idx
The index into the query's result list. If the index is negative or is equal to or larger than the current
number of results in the query, the behavior is undefined.

Return Value
The value of the attribute, or NULL if the attribute doesn't exist for the specidied result.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryGetBatchingParameters
Returns the current parameters that control the batching of progress notifications.

MDQueryBatchingParams MDQueryGetBatchingParameters (
 MDQueryRef query
);

Parameters
query

The query.

Return Value
An MDQueryBatchingParams structure with the current batching parameters.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryGetCountOfResultsWithAttributeValue
Returns the number of results which have the given attribute and attribute value.

158 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

CFIndex MDQueryGetCountOfResultsWithAttributeValue (
 MDQueryRef query,
 CFStringRef name,
 CFTypeRef value
);

Parameters
query

The query.

name
The attribute name to return the result count of. If the attribute is not one of those requested in the
valueListAttrs parameter, the behavior is undefined.

value
The attribute value for which to return the number of results with that value. This parameter may be
NULL, in which case the number of results that do not contain the specified attribute is returned.

Return Value
The number of results containing that attribute and value.

Discussion
This count may change over time if the query allows live-updates.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryGetIndexOfResult
Returns the current index of the given result.

CFIndex MDQueryGetIndexOfResult (
 MDQueryRef query,
 const void *result
);

Parameters
query

The query.

result
The result object to search for. If a custom create-result function has been set and this parameter is
not a valid result object that the provided callbacks can handle, the behavior is undefined. If a custom
create-result function has not been set this parameter must be a valid MDItemRef.

Return Value
The index of the given result, or kCFNotFound if the value is not one of the query's existing results. If you
provided a custom result creation function result, the result will be objects created by that function.

Discussion
If a result-create function has been set, and the equal callback is non-NULL, it will be used to test the query's
results against the candidate result.

Note that the index of a result can change over time if the query allows live-updates.

Functions 159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryGetResultAtIndex
Returns the current result at the given index.

const void * MDQueryGetResultAtIndex (
 MDQueryRef query,
 CFIndex idx
);

Parameters
query

The query.

idx
The index into the query's result list. If the index is negative, or is equal to or larger than the current
number of results in the query, the behavior is undefined.

Return Value
Returns the MDItemRef currently at the given index, or if a result-creation function has been set, returns the
result returned by that function.

Discussion
This function causes the result object to be created if it hasn't been created already. For performance reasons
you should only request objects that you require. If possible, call this function to fetch only the results you
need to display or otherwise process.

Note that the index of a particular result can change over time if the query is configured to allow live-updates.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryGetResultCount
Returns the number of results currently collected by the query.

CFIndex MDQueryGetResultCount (
 MDQueryRef query
);

Parameters
query

The query.

Return Value
The number of results in the query.

160 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

Discussion
Note that the number of results in a query will change over time as the query's result list is updated.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryGetTypeID
Returns the type identifier of all MDQuery instances

CFTypeID MDQueryGetTypeID (
 void
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryIsGatheringComplete
Returns true if the first phase of a query, the initial result gathering, has finished.

Boolean MDQueryIsGatheringComplete (
 MDQueryRef query
);

Parameters
query

The query.

Return Value
Returns TRUE if the first phase of a query has completed, otherwise FALSE.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQuerySetBatchingParameters
Set the query batching parameters.

Functions 161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

void MDQuerySetBatchingParameters (
 MDQueryRef query,
 MDQueryBatchingParams params
);

Parameters
query

The query.

params
An MDQueryBatchingParams structure with the batching parameters to set.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQuerySetCreateResultFunction
Sets the function used to create the result objects of the MDQuery.

void MDQuerySetCreateResultFunction (
 MDQueryRef query,
 MDQueryCreateResultFunction func,
 void *context,
 const CFArrayCallBacks *cb
);

Parameters
query

The query.

func
The callback function the MDQuery will use to create its results, such as those returned by the function
MDQueryGetResultAtIndex. This parameter may be NULL, in which case any previous result creation
settings are cancelled and the MDQuery will subsequently produce MDItemRefs. If a function is
specified and is not of type MDQueryCreateResultFunction or does not behave as a
MDQueryCreateResultFunction must, the behavior is undefined.

context
A pointer-sized user-defined value, that is passed as the third parameter to the create function.
MDQuery does not use this value, does not retain the context in any way, and requires that the context
be valid for the lifetime of the query. If the context is not what is expected by the create function, the
behavior is undefined.

162 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

cb
A pointer to a CFArrayCallBacks structure initialized with the callbacks for the query to use to
manage the created result objects. A copy of the contents of the callbacks structure is made, so that
a pointer to a structure on the stack can be passed in, or can be reused for multiple query creations.
Only version 0 of the CFArrayCallBacks is supported. The retain field may be NULL, in which case
the MDQuery will not add a retain to the created results for the query. The release field may be NULL,
in which case the MDQuery will not remove the query's retain (such as the one it gets from the create
function) on the result objects when the query is destroyed. If the copyDescription field is NULL,
the query will create a simple description for the result objects. If the equal field is NULL, the query
will use pointer equality to test for equality of results. This callbacks parameter itself may be NULL in
which case it is treated as a valid version 0 structure with all fields NULL. Otherwise, if any of the fields
are not valid pointers to functions of the correct type, or this parameter is not a valid pointer to a
CFArrayCallBacks callbacks structure, the behavior is undefined. If any of the value values returned
from the create function is not one understood by one or more of the callback functions, the behavior
when those callback functions are used is undefined. For example, if the create function can return
NULL, then NULL must be understood by the callback functions as a possible parameter. The retain
and release callbacks must be a matched set, you should not assume that the retain function will be
unused or that additional reference counts will not be taken on the created results.

Discussion
If no create function is specified for an MDQuery, the default result objects are MDItemRefs. Results created
after the function MDQuerySetCreateResultFunction is called are created through the specified create
function, but values created before the function was set, or after it is unset, are not modified. It is not advisable
to change this function after the function MDQueryExecute has been called. The create-result function is
called lazily as results are requested from a query, it is not called on all results, and may not be called at all.
This avoids the cost of creating potentially hundreds of thousands of what might be temporary objects.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQuerySetCreateValueFunction
Sets the function used to create the value objects of the MDQuery.

void MDQuerySetCreateValueFunction (
 MDQueryRef query,
 MDQueryCreateValueFunction func,
 void *context,
 const CFArrayCallBacks *cb
);

Parameters
query

The query.

func
The callback function the MDQuery should use to create the value list values, such as those returned
by the function MDQueryCopyValuesOfAttribute. This parameter may be NULL, in which case any
previous value creation settings are cancelled and the MDQuery will subsequently produce the default
CFTypeRefs. If a function is specified and is not of type MDQueryCreateValueFunction or does not
behave as a MDQueryCreateValueFunction must, the behavior is undefined.

Functions 163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

context
A pointer-sized user-defined value, that is passed as the third parameter to the create function.
MDQuery does not use this value, does not retain the context in any way, and requires that the context
be valid for the lifetime of the query. If the context is not what is expected by the create function, the
behavior is undefined.

cb
A pointer to a CFArrayCallBacks structure initialized with the callbacks for the query to use to manage
the created value objects. A copy of the contents of the callbacks structure is made, so that a pointer
to a structure on the stack can be passed in, or can be reused for multiple query creations. Only version
0 of the CFArrayCallBacks is supported. The retain field may be NULL, in which case the MDQuery
will not add a retain to the created values. The release field may be NULL, in which case the MDQuery
will do nothing to remove the query's retain (such as the one it gets from the create function) on the
value objects when the query is destroyed. If the copyDescription field is NULL, the query will
create a simple description for the value objects. If the equal field is NULL, the query will use pointer
equality to test for equality of values. This callbacks parameter itself may be NULL in which case it is
treated as a valid version 0 structure with all fields NULL. Otherwise, if any of the fields are not valid
pointers to functions of the correct type, or this parameter is not a valid pointer to a
CFArrayCallBacks callbacks structure, the behavior is undefined. If any of the value values returned
from the create function is not one understood by one or more of the callback functions, the behavior
when those callback functions are used is undefined. For example, if the create function can return
NULL, then NULL must be understood by the callback functions as a possible parameter. The retain
and release callbacks must be a matched set, you should not assume that the retain function will be
unused or that additional reference counts will not be taken on the created results.

Discussion
Values created after a create function is set will be created using the newly specified function, but existing
values are not modified. It is not advisable to change this function after MDQueryExecute has been called
with the query.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQuerySetSearchScope
Sets the search scope for a query instance.

void MDQuerySetSearchScope (
 MDQueryRef query,
 CFArrayRef scopeDirectories,
 OptionBits scopeOptions
);

Parameters
query

The query object to modify.

scopeDirectories
A CFArray of CFStringRef or CFURLRef objects which specify where to search. For convenience the
kMDQueryScopeHome, kMDQueryScopeComputer and kMDQueryScopeNetwork constants may
also be included in the array.

164 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

scopeOptions
Additional options for modifying the search. Currently you must pass 0.

Discussion

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQuerySetSortComparator
Sets the function used to sort the results of an MDQuery.

void MDQuerySetSortComparator (
 MDQueryRef query,
 MDQuerySortComparatorFunction comparator,
 void *context
);

Parameters
query

The query.

comparator
The callback function the MDQuery uses to sort the results list. This parameter may be NULL which
cancels previous sort comparator settings. If a function is specified and is not of type
MDQuerySortComparatorFunctionor does not behave as aMDQuerySortComparatorFunction
must, the behavior is undefined.

context
A pointer-sized user-defined value, that is passed as the third parameter to the create function.
MDQuery does not use this value, does not retain the context in any way, and requires that the context
be valid for the lifetime of the query. If the context is not what is expected by the create function, the
behavior is undefined.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryStop
Stops the query from generating more results.

void MDQueryStop (
 MDQueryRef query
);

Parameters
query

The query.

Functions 165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

Discussion
Queries may be executed only once and cannot be restarted. The query will first complete processing any
unprocessed results.do. That may trigger a progress notification, so be aware of that if you are stopping a
query from within your progress note handler; that is, during this function, a recursive progress and/or finished
notification might occur, which might recursively call your notification handler. It is safe to call this function
recursively. You would call this function to stop a query that is generating way too many results to be useful,
but still want to access the results that have come in so far. If a query is stopped before the gathering phase
finishes, it will not report itself as finished, nor will it send out a finished notification.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

Callbacks

MDQueryCreateResultFunction
Callback function used to create the result objects stored and returned by a query.

typedef const void * (*MDQueryCreateResultFunction) (
 MDQueryRef query,
 MDItemRef item,
 void *context
);

forthcoming

Parameters
query

The query instance.

item
The default MDItemRef for the result.

context
The user-defined context parameter provided to the MDQuerySetCreateResultFunction function.

Return Value
The function must return a pointer-sized value that can be managed with the callbacks which were set at
the same time the create function was given to the query. The value must be returned with a reference (such
as if the retain callback had been called on it), as implied by the Create name. If this function doesn't wish
to create a new object it can return the given MDItemRef, but must also return it with a new retain, and the
callbacks must be able to handle an MDItemRef as an input value. If this function returns NULL, NULL will be
stored for the moment in the query, MDQueryGetResultAtIndex() may return NULL for that result, and the
next time the query wants the result, it will call this function again.

Discussion
The function may hold onto the given attribute name and/or value in some other data structure, but must
retain them for them to remain valid.

166 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQueryCreateValueFunction
Callback function used to create the value objects stored and returned by a query.

typedef const void * (*MDQueryCreateValueFunction) (
 MDQueryRef query,
 CFStringRef attrName,
 CFTypeRef attrValue,
 void *context
);

forthcoming

Parameters
query

The query instance.

attrName
The attribute name of the value.

attrValue
The default value of the value.

context
The user-defined context parameter provided in the MDQuerySetCreateValueFunction function.

Return Value
The function must return a pointer-sized value that can be managed with the callbacks which were set at
the same time the create function was given to the query. The value must be returned with a reference (such
as if the retain callback had been called on it), as implied by the Create name. If this function doesn't wish
to create a new object, it can return the given CFTypeRef, but must also return it with a new retain, and the
callbacks must be able to handle a CFTypeRef as an input value.

Discussion
The function may hold onto the given attribute name and/or value in some other data structure, but must
retain them for them to remain valid

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

MDQuerySortComparatorFunction
Callback function used to sort the results of a query.

Callbacks 167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

typedef CFComparisonResult (*MDQuerySortComparatorFunction) (
 const CFTypeRef attrs1[],
 const CFTypeRef attrs2[],
 void *context
);

asdfasdfasdfasdfadsf

Parameters
query

The query instance.

attrs1
A C array of attribute values for a result. The values occur in the array in the same order and position
that the attribute names were passed in the sortingAttrs array when the query was created. The
values of the attributes will be NULL if the attribute doesn't exist for a result or if read access to that
attribute is not allowed.

attrs2
A C array of attribute values for a result. The values occur in the array in the same order and position
that the attribute names were passed in the sortingAttrs array when the query was created. The
values of the attributes will be NULL if the attribute doesn't exist for a result or if read access to that
attribute is not allowed.

context
The user-defined context parameter provided in the function MDQuerySetSortComparator.

Return Value
The function must return one of the CFComparisonResults kCFCompareLessThan, kCFCompareEqualTo,
or kCFCompareGreaterThan. There is no provision for unordered results. The comparison should be a total
order relation and produce the same results for the same inputs.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

Data Types

Batching Parameters

MDQueryBatchingParams
Structure containing the progress notification batching parameters of a MDQuery.

168 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

typedef struct {
 size_t first_max_num;
 size_t first_max_ms;
 size_t progress_max_num;
 size_t progress_max_ms;
 size_t update_max_num;
 size_t update_max_ms;
} MDQueryBatchingParams;

Fields
first_max_num

The maximum number of results that can accumulate before the first progress notification is sent.
This value is used only during the initial result-gathering phase of a query.

first_max_ms
The maximum number of milliseconds that can pass before the first progress notification is sent. This
value is advisory, in that the notification will be triggered at some point after first_max_ms
milliseconds have passed since the query began accumulating results. This value is used only during
the initial result-gathering phase of a query.

progress_max_num
The maximum number of results that can accumulate before additional progress notifications are
sent. This value is used only during the initial result-gathering phase of a query.

progress_max_ms
The maximum number of milliseconds that can pass before additional progress notifications are sent.
This value is advisory, in that the notification will be triggered at some point after progress_max_ms
milliseconds have passed since the query began accumulating results. This value is used only during
the initial result-gathering phase of a query.

update_max_num
The maximum number of results that can accumulate before an update notification is sent. This value
is used only during the live-update phase of a query.

update_max_ms
The maximum number of milliseconds that can pass before an update notification is sent. This value
is advisory, in that the notification will be triggered at some point after update_max_msmilliseconds
have passed since the query began accumulating results. This value is used only during the live-update
phase of a query.

Discussion
The default batching parameters are undefined and subject to change.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

Miscellaneous

MDQueryRef
A reference to a MDQuery object.

Data Types 169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

typedef struct __MDQuery *MDQueryRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
MDQuery.h

Constants

Query Option Flags

MDQueryOptionsFlags
Specify the execution mode for a query.

typedef enum {
 kMDQuerySynchronous = 1,
 kMDQueryWantsUpdates = 4,
} MDQueryOptionFlags;

Constants
kMDQuerySynchronous

Specifies that a query should block during the initial gather phase. The query’s run loop will run in
the default mode. If this option is not specified the query function returns immediately after starting
the query asynchronously.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

kMDQueryWantsUpdates
Specifies that a query should provide live-updates to the result list after the initial gathering phase.
Updates occur during the live-update phase if a change in a file occurs such that it no longer matches
the query or if it begins to match the query. Files which begin to match the query are added to the
result list, and files which no longer match the query expression are removed from the result list.
Currently, this option is ignored if the kMDQuerySynchronous parameter is specified. This is subject
to change, and you should always pass the value appropraite to the required behavior.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

Notifications

kMDQueryDidFinishNotification
Indicates that a query has finished with the initial result-gathering phase.

170 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

const CFStringRef kMDQueryDidFinishNotification;

Constants
kMDQueryDidFinishNotification

Posted to indicate that the query has finished the initial result-gathering phase.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

Discussion
The query results list is not updated as a result of this notification.

This notification is only sent to the application’s notification center.

kMDQueryDidUpdateNotification
Indicates that a query’s results list has change during the live-update phase of a query.

const CFStringRef kMDQueryDidUpdateNotification;

Constants
kMDQueryDidUpdateNotification

Notification posted to indicate that a change has occured to the query’s resuls list during the
live-update phase of a query’s execution.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

Discussion
The info dictionary of the notification can contain kMDQueryUpdateAddedItems,
kMDQueryUpdateChangedItems, and kMDQueryUpdateRemovedItems keys.

This notification is only sent to the application’s notification center.

kMDQueryProgressNotification
Indicates that a query’s results list has change during the initial result-gathering phase of a query.

const CFStringRef kMDQueryProgressNotification;

Constants
kMDQueryProgressNotification

Notification posted to indicate that a change has occurred to the query’s results list during the initial
result-gathering phase of execution.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

Discussion
New items are typically added during this phase, however it is possible for items to be removed or updated,
if the original file is changed. The info dictionary of the notification can contain
kMDQueryUpdateChangedItems and kMDQueryUpdateRemovedItems keys.

For performance reasons added results are not indicated in progress notifications, to avoid the cost of creating
the result objects.

Constants 171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

This notification is only sent to the application’s notification center.

Notification Info Keys

Query Result Change Keys
Specify the items that have changed in the query results.

const CFStringRef kMDQueryUpdateAddedItems;
const CFStringRef kMDQueryUpdateChangedItems;
const CFStringRef kMDQueryUpdateRemovedItems;

Constants
kMDQueryUpdateAddedItems

An array that identifies the items that have been added to the query results. This list only contains
result objects that have previously been created, result objects that have not been created are not
included.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

kMDQueryUpdateChangedItems
An array that identifies the items that have changed in the query results. This list only contains result
objects that have previously been created, result objects that have not been created are not included.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

kMDQueryUpdateRemovedItems
An array that identifies the items that have been removed from the query results. This list only contains
result objects that have previously been created, result objects that have not been created are not
included.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

Query Search Scope Keys
Specify the scope of a query’s search.

const CFStringRef kMDQueryScopeHome;
const CFStringRef kMDQueryScopeComputer;
const CFStringRef kMDQueryScopeNetwork;

Constants
kMDQueryScopeHome

Specifies that the query should be restricted to the volume and directory that contains the current
user’s home directory.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

172 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

kMDQueryScopeComputer
Specifies that the query should be restricted to all locally mounted volumes, plus the user’s home
directory (which may be on a remote volume).

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

kMDQueryScopeNetwork
Specifies that the query should include all user mounted remote volumes.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

Discussion
These constants can be passed in the scopeDirectories array to the function MDQuerySetSearchScope.

Result Relevance Sorting Key
Key used in a user notification’s description dictionary that indicates the relevance of a result.

const CFStringRef kMDQueryResultContentRelevance;

Constants
kMDQueryResultContentRelevance

A CFNumberRef with a floating point value between 0.0 and 1.0 inclusive.

Available in Mac OS X v10.4 and later.

Declared in MDQuery.h.

Discussion
The relevance value indicates the relevance of the content of a result object. The relevance is computed
based on the value of the result itself, not on its relevance to the other results returned by the query.

The relevance value is for the content of the object only, not on the result item as a whole, and may not be
computed if the item matches theq uery through evaluation of other attributes

If the value is not computed it is treated as an attribute on the item that does not exist.

Constants 173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

174 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

MDQuery Reference

175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART II

Managers

176
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART II

Managers

Framework: CoreServices/CoreServices.h

Declared in Aliases.h

Overview

The Alias Manager creates and resolves alias records, which are data structures that describe file system
objects (files, directories, and volumes.) An alias record contains a "fingerprint" of a file system object. You
can store the alias record instead of a file system reference, and use the Alias Manager to find the object
again when it's needed. The Alias Manager contains algorithms for locating objects that have been moved,
renamed, copied, or restored from backup.

The exact makeup of an alias record depends on the file system in which the object resides. The Alias Manager
takes advantage of persistent object ids, creation dates, file types, creator codes and the like if they are
available. By default, an object at the location stored in the alias record will be considered a stronger match
than an object with the same file id in a different location. (You can alter this behavior by passing flags to
the functions that resolve the alias.)

The Alias Manager supports two types of alias records. The standard alias contains as much information as
the Alias Manager can gather from the underlying file system. The minimal alias only stores a subset of the
information in a standard alias record. A minimal alias may be used when the object is unlikely to move, the
reference is to be short-lived, or space is a critical issue (the exact space savings depends on the underlying
file system format.) The standard alias is the preferred format because it is more robust.

The Finder supports the creation and use of alias files that contain alias records. Currently, Mac OS X does
not provide a way for other applications to create these alias files. The Alias Manager can identify and resolve
Finder alias files, but it cannot create them.

Functions by Task

Creating and Updating Alias Records

FSNewAlias (page 188)
Creates a new alias record, given a target file or directory.

FSNewAliasUnicode (page 191)
Creates a new alias record, given the Unicode name and parent directory of the target.

FSNewAliasFromPath (page 189)
Creates a new alias record, given the pathname of the target file or directory.

Overview 177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

FSNewAliasMinimal (page 190)
Creates a new minimal alias record, given a target file or directory.

FSNewAliasMinimalUnicode (page 190)
Creates a minimal alias, given the Unicode name and parent directory of the target.

FSUpdateAlias (page 196)
Updates an alias record for a specified target.

Getting Alias Size

GetAliasSize (page 198)
Gets the size of an alias record referenced by a handle.

GetAliasSizeFromPtr (page 198)
Gets the size of an alias record referenced by a pointer.

Getting and Setting Alias User Types

GetAliasUserType (page 198)
Gets the user type for an alias record referenced by a handle.

SetAliasUserType (page 212)
Sets the user type for an alias record referenced by a handle.

GetAliasUserTypeFromPtr (page 199)
Gets the user type for the alias record referenced by a pointer.

SetAliasUserTypeWithPtr (page 212)
Sets the user type for the alias record referenced by a pointer.

Resolving and Reading Alias Records

FSCopyAliasInfo (page 181)
Returns information from an alias handle.

FSMatchAliasBulk (page 185)
Identifies a list of possible matches for an alias.

FSResolveAlias (page 192)
Returns an FSRef to the single most likely target of an alias record.

FSResolveAliasWithMountFlags (page 195)
Returns an FSRef to the target of an alias.

FSMatchAlias (page 184) Deprecated in Mac OS X v10.5
Identifies a list of possible matches for an alias. (Deprecated. Use FSMatchAliasBulk (page 185)
instead.)

FSMatchAliasNoUI (page 187) Deprecated in Mac OS X v10.5
Identifies a list of possible matches for an alias without any user interaction. (Deprecated. Use
FSMatchAliasBulk (page 185) with the kARMNoUI flag instead.)

178 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Working With Finder Alias Files

FSFollowFinderAlias (page 182)
Resolves an alias record obtained from a Finder alias file.

FSIsAliasFile (page 183)
Determines whether a file system object is an alias file, a data file, or a folder.

FSResolveAliasFile (page 193)
Resolves an alias contained in an alias file.

FSResolveAliasFileWithMountFlags (page 194)
Resolves an alias contained in an alias file.

Working With Universal Procedure Pointers to Alias Manager Callbacks

NewAliasFilterUPP (page 204)
Creates a new universal procedure pointer (UPP) to an alias filtering callback function.

DisposeAliasFilterUPP (page 180)
Disposes of a universal procedure pointer (UPP) to an alias filtering callback function.

InvokeAliasFilterUPP (page 199)
Calls your alias filtering callback function.

Deprecated Functions
Alias Manager functions that use the FSSpec data type have been deprecated. Instead, you should use the
equivalent FSRef–based functions, which include support for features such as unicode and long filenames.
For more information on FSSpec and FSRef types, see File Manager Reference.

GetAliasInfo (page 197) Deprecated in Mac OS X v10.3
Gets information from an alias record without actually resolving the record. (Deprecated. Use
FSCopyAliasInfo (page 181) instead.)

FollowFinderAlias (page 181) Deprecated in Mac OS X v10.5
Resolves an alias record obtained from a Finder alias file. (Deprecated. Use
FSFollowFinderAlias (page 182) instead.)

MatchAliasNoUI (page 202) Deprecated in Mac OS X v10.5
Identifies a list of possible matches for an alias without any user interaction. (Deprecated. Use
FSMatchAliasBulk (page 185) with the kARMNoUI flag instead.)

ResolveAliasFileWithMountFlags (page 209) Deprecated in Mac OS X v10.5
Resolves an alias contained in an alias file. (Deprecated. Use
FSResolveAliasFileWithMountFlags (page 194) instead.)

IsAliasFile (page 200) Deprecated in Mac OS X v10.4
Determines whether a file system object is an alias file, a data file, or a folder. (Deprecated. Use
FSIsAliasFile (page 183) instead.)

MatchAlias (page 201) Deprecated in Mac OS X v10.4
Identifies a list of possible matches for an alias and passes the list through an optional selection filter.
The filter can return more than one possible match. (Deprecated. Use FSMatchAliasBulk (page 185)
instead.)

Functions by Task 179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

NewAlias (page 203) Deprecated in Mac OS X v10.4
Creates a complete alias record. (Deprecated. Use FSNewAlias (page 188) instead.)

NewAliasMinimal (page 205) Deprecated in Mac OS X v10.4
Creates a short alias record quickly. (Deprecated. Use FSNewAliasMinimal (page 190) instead.)

NewAliasMinimalFromFullPath (page 205) Deprecated in Mac OS X v10.4
Creates an alias record that contains only the full pathname of the target. (Deprecated. Use
FSNewAliasMinimal (page 190) or FSNewAliasMinimalUnicode (page 190) instead.)

ResolveAlias (page 206) Deprecated in Mac OS X v10.4
Identifies the single most likely target of an alias record. (Deprecated. Use FSResolveAlias (page
192) instead.)

ResolveAliasFile (page 208) Deprecated in Mac OS X v10.4
Resolves an alias contained in an alias file. (Deprecated. Use FSResolveAliasFile (page 193) instead.)

ResolveAliasFileWithMountFlagsNoUI (page 210) Deprecated in Mac OS X v10.4
Resolves an alias file without any user interaction. (Deprecated. Use
FSResolveAliasFileWithMountFlags (page 194) with thekResolveAliasFileNoUI flag instead.)

ResolveAliasWithMountFlags (page 211) Deprecated in Mac OS X v10.4
Identifies the target of an alias. (Deprecated. Use FSResolveAliasWithMountFlags (page 195)
instead.)

UpdateAlias (page 213) Deprecated in Mac OS X v10.4
Updates an alias record. (Deprecated. Use FSUpdateAlias (page 196) instead.)

Functions

DisposeAliasFilterUPP
Disposes of a universal procedure pointer (UPP) to an alias filtering callback function.

void DisposeAliasFilterUPP (
 AliasFilterUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
See AliasFilterProcPtr (page 215) for more information on alias filtering callback functions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Aliases.h

180 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

FollowFinderAlias
Resolves an alias record obtained from a Finder alias file. (Deprecated in Mac OS X v10.5. Use
FSFollowFinderAlias (page 182) instead.)

OSErr FollowFinderAlias (
 const FSSpec *fromFile,
 AliasHandle alias,
 Boolean logon,
 FSSpec *target,
 Boolean *wasChanged
);

Parameters
fromFile

A pointer to a file system specification specifying a file for a first attempt at a relative resolution; pass
a pointer to the alias file's FSSpec forthis parameter.

alias
A handle to the alias record taken from the alias file's resources.

logon
If true, the Alias Manager attempts to mount a volume if necessary to complete the resolution of
the alias.

target
A pointer to an FSSpec structure. On return, this FSSpec refers to the target found by the resolution.

wasChanged
A pointer to a Boolean value. FollowFinderAlias sets this value to true if it has updated the alias
record. If the alias has been updated, you should call ChangedResource and WriteResource if the
updated record should be saved in the resource file.

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Aliases.h

FSCopyAliasInfo
Returns information from an alias handle.

Functions 181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

OSStatus FSCopyAliasInfo (
 AliasHandle inAlias,
 HFSUniStr255 *targetName,
 HFSUniStr255 *volumeName,
 CFStringRef *pathString,
 FSAliasInfoBitmap *whichInfo,
 FSAliasInfo *info
);

Parameters
inAlias

A handle to the alias record from which to get information.

targetName
A pointer to a string that, on return, contains the name of the target item. Pass NULL if you do not
want this information returned.

volumeName
A pointer to a string that, on return, contains the name of the volume the target resides on. Pass NULL
if you do not want this information returned.

pathString
A pointer a CFString that, on return, contains the POSIX path to the target. Pass NULL if you do not
want this information returned.

whichInfo
A pointer to a variable of type FSAliasInfoBitmap. On return, this field indicates which fields in
the alias information block, specified in the info parameter, contain valid data. See “Alias Information
Masks” (page 218) for a description of the values that may be returned here. This parameter may be
NULL.

info
A pointer to a structure of type FSAliasInfo (page 217). On return, this structure contains information
about the alias. Pass NULL if you do not want this information returned.

Return Value
A result code.

Discussion
This function returns the requested information from the alias handle passed in the inAlias parameter. The
information is gathered only from the alias record, so it may not match what is on disk. No disk input/output
is performed.

The FSCopyAliasInfo function adds support for unicode filenames and filenames longer than 32 bytes. It
replaces the GetAliasInfo function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Aliases.h

FSFollowFinderAlias
Resolves an alias record obtained from a Finder alias file.

182 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

OSErr FSFollowFinderAlias (
 FSRef *fromFile,
 AliasHandle alias,
 Boolean logon,
 FSRef *target,
 Boolean *wasChanged
);

Parameters
fromFile

A pointer to the file to use for a first attempt at a relative resolution; pass a pointer to the alias file's
FSRef for this parameter.

alias
A handle to the alias record taken from the alias file's resources.

logon
If true, the Alias Manager attempts to mount a volume if necessary to complete the resolution of
the alias.

target
A pointer to an FSRef structure. On return, this FSRef refers to the target found by the resolution.

wasChanged
A pointer to a Boolean value. FSFollowFinderAlias sets this value to true if it has updated the
alias record.

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Aliases.h

FSIsAliasFile
Determines whether a file system object is an alias file, a data file, or a folder.

OSErr FSIsAliasFile (
 const FSRef *fileRef,
 Boolean *aliasFileFlag,
 Boolean *folderFlag
);

Parameters
fileRef

A pointer to the file system object to test.

aliasFileFlag
A pointer to a Boolean variable. On return, a value of TRUE indicates that the object specified in the
fileRef parameter is an alias file. A value of FALSE indicates that the object is not an alias file.

folderFlag
A pointer to a Boolean variable. On return, a value of TRUE indicates that the object specified in the
fileRef parameter is a folder. A value of FALSE indicates that the object is a file.

Functions 183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Return Value
A result code.

Discussion
Table 10-1 summarizes the information that this function provides about the object specified in the fileRef
parameter:

Table 10-1 Information about a file system object

Object kindFolder flagAlias flag

Alias fileFT

Data fileFF

FolderTF

Note that if fileRef is an alias file, this function does not provide any information about the object to which
the alias refers. To find out whether this object is a file or a folder, you can use FSResolveAliasFile (page
193).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Aliases.h

FSMatchAlias
Identifies a list of possible matches for an alias. (Deprecated in Mac OS X v10.5. Use FSMatchAliasBulk (page
185) instead.)

OSErr FSMatchAlias (
 const FSRef *fromFile,
 unsigned long rulesMask,
 AliasHandle inAlias,
 short *aliasCount,
 FSRef *aliasList,
 Boolean *needsUpdate,
 AliasFilterUPP aliasFilter,
 void *yourDataPtr
);

Parameters
fromFile

A pointer to the starting point for a relative search. You may pass NULL if you do not want this function
to perform a relative search.

rulesMask
A set of rules to guide the resolution. Pass the sum of all of the rules you want to invoke. For a
description of the values you can use in this parameter, see “Matching Constants” (page 220).

184 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

inAlias
A handle to the alias record to be resolved.

aliasCount
On input, a pointer to the maximum number of possible matches to return. On output, the actual
number of matches returned.

aliasList
A pointer to an array of FSRef structures. On return, this array holds the results of the search, a list
of possible candidates.

needsUpdate
A pointer to a Boolean flag that, on return, indicates whether the alias record needs to be updated.

aliasFilter
An application-defined filter function. The Alias Manager executes this function each time it identifies
a possible match. Your filter function returns a Boolean value that determines whether the possible
match is discarded (true) or added to the list of possible targets (false). It can also terminate the
search by setting the variable parameter quitFlag. See AliasFilterProcPtr (page 215) for a
description of the filter function.

yourDataPtr
A pointer to data to be passed to the filter function. The yourDataPtr parameter can point to any
data your application might need in the filter function.

Return Value
A result code. When it finds the specified volume and parent directory but fails to find the target file or
directory in that location, FSMatchAlias returns fnfErr. Note that the file system objects in the aliasList
parameter are not valid in this case.

Discussion
After it identifies a target, FSMatchAlias compares some key information about the target with the same
information in the record. If the information does not match, FSMatchAlias sets the needsUpdate flag to
true.

The FSMatchAlias function also sets the needsUpdate flag to true if it identifies a list of possible matches
rather than a single match or if kARMsearchRelFirst is set in the rulesMask parameter but the target is
identified through either an absolute search or an exhaustive search. Otherwise, the FSMatchAlias function
sets the needsUpdate flag to false. FSMatchAlias always sets the needsUpdate flag to false when
resolving an alias created by FSNewAliasMinimal. If you want to update the alias record to reflect the final
results of the resolution, call FSUpdateAlias.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Aliases.h

FSMatchAliasBulk
Identifies a list of possible matches for an alias.

Functions 185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

OSStatus FSMatchAliasBulk (
 const FSRef *fromFile,
 unsigned long rulesMask,
 AliasHandle inAlias,
 short *aliasCount,
 FSRef *aliasList,
 Boolean *needsUpdate,
 FSAliasFilterProcPtr aliasFilter,
 void *yourDataPtr
);

Parameters
fromFile

A pointer to the starting point for a relative search. You may pass NULL if you do not want this function
to perform a relative search. By default, this function performs a relative search only if the absolute
search does not find a match. If you want to perform the relative search first, you should pass
kARMSearchRelFirst in the rulesMask parameter.

rulesMask
A set of rules to guide the resolution. Pass the sum of all of the rules you want to invoke. For a
description of the values you can use in this parameter, see “Matching Constants” (page 220).

inAlias
A handle to the alias record to be resolved.

aliasCount
On input, a pointer to the maximum number of possible matches to return. On output, the actual
number of matches returned.

aliasList
A pointer to an array of FSRef structures. On output, this array holds the results of the search, a list
of possible candidates.

needsUpdate
A pointer to a Boolean flag that, on output, indicates whether the alias record needs to be updated.
For more information about this parameter, see the Discussion.

aliasFilter
An optional application-defined filter function. The Alias Manager calls your filter function each time
it identifies a possible match or after the search has continued for three seconds without a match.
Your filter function returns a Boolean value that determines whether the possible match is discarded
(true) or added to the list of possible targets (false). It can also terminate the search by setting the
variable parameter quitFlag. See FSAliasFilterProcPtr (page 215) for a description of the filter
function.

yourDataPtr
A pointer to data to be passed to the filter function, or NULL. The yourDataPtr parameter can point
to any data your application might need in the filter function.

Return Value
A result code. If the Alias Manager finds the specified volume and parent directory but fails to find the target
file or directory in that location, the return value is fnfErr and the elements in the aliasList parameter
are not valid.

Discussion
After it identifies a target, this function compares some key information about the target with the same
information in the record. If the information does not match, this function sets the needsUpdate flag to
true. This function also sets the needsUpdate flag to true if it identifies a list of possible matches rather
than a single match or if kARMsearchRelFirst is set in the rulesMask parameter but the target is identified

186 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

through either an absolute search or an exhaustive search. Otherwise, this function sets the needsUpdate
flag to false. This function always sets the needsUpdate flag to false when resolving an alias created by
FSNewAliasMinimal. To update the alias record to reflect the final results of the resolution, use the function
FSUpdateAlias (page 196).

Availability
Available in Mac OS X v10.5 and later.

Declared In
Aliases.h

FSMatchAliasNoUI
Identifies a list of possible matches for an alias without any user interaction. (Deprecated in Mac OS X v10.5.
Use FSMatchAliasBulk (page 185) with the kARMNoUI flag instead.)

OSErr FSMatchAliasNoUI (
 const FSRef *fromFile,
 unsigned long rulesMask,
 AliasHandle inAlias,
 short *aliasCount,
 FSRef *aliasList,
 Boolean *needsUpdate,
 AliasFilterUPP aliasFilter,
 void *yourDataPtr
);

Parameters
fromFile

A pointer to the starting point for a relative search. You may pass NULL if you do not want this function
to perform a relative search.

rulesMask
A set of rules to guide the resolution. Pass the sum of all of the rules you want to invoke. For a
description of the values you can use in this parameter, see “Matching Constants” (page 220).

inAlias
A handle to the alias record to be resolved.

aliasCount
On input, a pointer to the maximum number of possible matches to return. On output, the actual
number of matches returned.

aliasList
A pointer to an array of FSRef structures. On return, this array holds the results of the search, a list
of possible candidates.

needsUpdate
A pointer to a Boolean flag that, on return, indicates whether the alias record needs to be updated.

aliasFilter
An application-defined filter function. The Alias Manager executes this function each time it identifies
a possible match. Your filter function returns a Boolean value that determines whether the possible
match is discarded (true) or added to the list of possible targets (false). It can also terminate the
search by setting the variable parameter quitFlag. See AliasFilterProcPtr (page 215) for a
description of the filter function.

Functions 187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

yourDataPtr
A pointer to data to be passed to the filter function. The yourDataPtr parameter can point to any
data your application might need in the filter function.

Return Value
A result code.

Discussion
The FSMatchAliasNoUI function operates in much the same way as the FSMatchAlias function; however,
it does not present an interface to the user. Additionally, the FSMatchAliasNoUI function does not mount
network volumes, even when it is possible to mount the volume without user interaction. See the discussion
of FSMatchAlias (page 184) for more information.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Aliases.h

FSNewAlias
Creates a new alias record, given a target file or directory.

OSErr FSNewAlias (
 const FSRef *fromFile,
 const FSRef *target,
 AliasHandle *inAlias
);

Parameters
fromFile

A pointer to the starting point for a relative search. You may pass NULL if you do not need relative
search information in the alias record. The files or directories specified in the fromFile and target
parameters must reside on the same volume.

target
A pointer to the target file or directory of the alias.

inAlias
A pointer to an alias handle. On return, this handle refers to the newly created alias record. If the
function fails to create an alias record, it sets inAlias to NULL.

Return Value
A result code. If the specified target is valid, this function creates an alias record for the target and returns
noErr. Any other return value indicates that this function did not create an alias record.

Discussion
The FSNewAlias function creates an alias record that describes the specified target. It allocates the storage,
fills in the record, and puts a record handle to that storage in the inAlias parameter. FSNewAlias records
the full pathname of the target and a collection of other information relevant to locating the target, verifying
the target, and mounting the target’s volume, if necessary. You can have FSNewAlias store relative search
information as well by supplying a starting point for a relative search.

188 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Aliases.h

FSNewAliasFromPath
Creates a new alias record, given the pathname of the target file or directory.

OSErr FSNewAliasFromPath (
 const char *fromFilePath,
 const char *targetPath,
 OptionBits flags,
 AliasHandle *inAlias,
 Boolean *isDirectory
);

Parameters
fromFilePath

A C string that specifies the starting point for a relative search. The string should contain a UTF-8
pathname. You may pass NULL if you do not need relative search information in the alias record.

targetPath
A C string that contains the full UTF-8 pathname of the target object.

flags
Reserved for future use. Currently, you should pass 0.

inAlias
A pointer to an alias handle. On output, this handle refers to the newly created alias record.

isDirectory
A pointer to a Boolean value. On input, if the target does not exist, set the value to true if the target
is a directory or false if it is not. (Pass NULL if you are not sure whether the target is a directory.) On
output, if the target exists, the value is true if the target is a directory, false if it is not.

Return Value
A result code. For more information, see the Discussion.

Discussion
If the specified target exists, this function creates an alias record for the target and returns noErr. If the
parent directory specified in the target pathname exists but the target itself does not exist, this function
creates an alias record for the target and returns fnfErr. Any other return value indicates that this function
did not create an alias record.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Aliases.h

Functions 189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

FSNewAliasMinimal
Creates a new minimal alias record, given a target file or directory.

OSErr FSNewAliasMinimal (
 const FSRef *target,
 AliasHandle *inAlias
);

Parameters
target

A pointer to the target of the alias record.

inAlias
A pointer to an alias handle. On return, this handle refers to the newly created alias record. If the
function fails to create an alias record, it sets inAlias to NULL.

Return Value
A result code. If the specified target is valid, this function creates an alias record for the target and returns
noErr. Any other return value indicates that this function did not create an alias record.

Discussion
The FSNewAliasMinimal function creates an alias record that contains only the minimum information
necessary to describe the target. The FSNewAliasMinimal function uses the standard alias record data
structure, but it fills in only parts of the record.

The FSResolveAlias (page 192) function never updates a minimal alias record.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Aliases.h

FSNewAliasMinimalUnicode
Creates a minimal alias, given the Unicode name and parent directory of the target.

OSErr FSNewAliasMinimalUnicode (
 const FSRef *targetParentRef,
 UniCharCount targetNameLength,
 const UniChar *targetName,
 AliasHandle *inAlias,
 Boolean *isDirectory
);

Parameters
targetParentRef

A pointer to the parent directory of the target.

targetNameLength
The number of Unicode characters in the target's name.

targetName
A pointer to the Unicode name of the target.

inAlias
A pointer to an alias handle. On return, this handle refers to the newly created alias record.

190 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

isDirectory
A pointer to a Boolean value. On input, if the target does not exist, set the value to true if the target
is a directory or false if it is not. (Pass NULL if you are not sure whether the target is a directory.) On
output, if the target exists, the value is true if the target is a directory, false if it is not.

Return Value
A result code. For more information, see the Discussion.

Discussion
If the specified target exists, this function creates an alias record for the target and returns noErr. If the
parent directory exists but the target itself does not exist, this function creates an alias record for the target
and returns fnfErr. Any other return value indicates that this function did not create an alias record.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Aliases.h

FSNewAliasUnicode
Creates a new alias record, given the Unicode name and parent directory of the target.

OSErr FSNewAliasUnicode (
 const FSRef *fromFile,
 const FSRef *targetParentRef,
 UniCharCount targetNameLength,
 const UniChar *targetName,
 AliasHandle *inAlias,
 Boolean *isDirectory
);

Parameters
fromFile

A pointer to the starting point for a relative search. You may pass NULL if you do not need relative
search information in the alias record.

targetParentRef
A pointer to the parent directory of the target.

targetNameLength
The number of Unicode characters in the target's name.

targetName
A pointer to the Unicode name of the target.

inAlias
A pointer to an alias handle. On return, this handler refers to the newly created alias record.

isDirectory
A pointer to a Boolean value. On input, if the target does not exist, set the value to true if the target
is a directory or false if it is not. (Pass NULL if you are not sure whether the target is a directory.) On
output, if the target exists, the value is true if the target is a directory, false if it is not.

Return Value
A result code. For more information, see the Discussion.

Functions 191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Discussion
If the specified target exists, this function creates an alias record for the target and returns noErr. If the
parent directory exists but the target itself does not exist, this function creates an alias record for the target
and returns fnfErr. Any other return value indicates that this function did not create an alias record.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Aliases.h

FSResolveAlias
Returns an FSRef to the single most likely target of an alias record.

OSErr FSResolveAlias (
 const FSRef *fromFile,
 AliasHandle alias,
 FSRef *target,
 Boolean *wasChanged
);

Parameters
fromFile

A pointer to the starting point for a relative search. If you pass NULL in this parameter,
FSResolveAlias performs only an absolute search. If you pass a pointer to a valid FSRef in the
fromFile parameter, FSResolveAlias performs a relative search for the target, followed by an
absolute search only if the relative search fails. If you want to perform an absolute search followed
by a relative search, you should use the function FSMatchAliasBulk (page 185).

alias
A handle to the alias record to be resolved and, if necessary, updated.

target
A pointer to an FSRef. On successful return, this FSRef describes the target of the alias record. This
parameter must point to a valid FSRef structure.

wasChanged
A pointer to a Boolean value indicating, on return, whether the alias record in the alias parameter
was updated because it contained some outdated information about the target. If it updates the alias
record, FSResolveAlias sets the wasChanged parameter to true. Otherwise, it sets it to false.
(FSResolveAlias never updates a minimal alias, so it never sets wasChanged to truewhen resolving
a minimal alias.

Return Value
A result code. When it finds the specified volume and parent directory but fails to find the target file or
directory in that location, FSResolveAlias returns fnfErr. Note that the FSRef in the alias parameter
is not valid in this case.

Discussion
The FSResolveAlias function performs a fast search for the target of the alias. If the resolution is successful,
FSResolveAlias returns (in the target parameter) the FSRef for the target file system object, updates
the alias record if necessary, and reports (through the wasChanged parameter) whether the record was
updated. If the target is on an unmounted AppleShare volume, FSResolveAlias automatically mounts the
volume. If the target is on an unmounted ejectable volume, FSResolveAlias asks the user to insert the
volume. The FSResolveAlias function exits after it finds one acceptable target.

192 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

After it identifies a target, FSResolveAlias compares some key information about the target with the
information in the alias record. If the information differs, FSResolveAlias updates the record to match the
target.

The FSResolveAlias function displays the standard dialogs when it needs input from the user, such as a
name and password for mounting a remote volume. The user can cancel the resolution through these dialogs.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Aliases.h

FSResolveAliasFile
Resolves an alias contained in an alias file.

OSErr FSResolveAliasFile (
 FSRef *theRef,
 Boolean resolveAliasChains,
 Boolean *targetIsFolder,
 Boolean *wasAliased
);

Parameters
theRef

A pointer to the alias file you plan to open. If the function completes successfully, this FSRef describes
to the file or the directory referred to by the alias file.

resolveAliasChains
A Boolean value. Set this parameter to TRUE if you want FSResolveAliasFile to resolve all aliases
in a chain (for example, an alias file that refers to an alias file and so on), stopping only when it reaches
the target file. Set this parameter to FALSE if you want to resolve only one alias file, even if the target
is another alias file.

targetIsFolder
A pointer to a Boolean value. The FSResolveAliasFile function returns TRUE in this parameter if
the FSRef in the parameter theRef points to a directory or a volume; otherwise,
FSResolveAliasFile returns FALSE in this parameter.

wasAliased
A pointer to a Boolean value. The FSResolveAliasFile function returns TRUE in this parameter if
the FSRef in the parameter theRef points to an alias; otherwise, FSResolveAliasFile returns
FALSE in this parameter.

Return Value
A result code. When it finds the specified volume and parent directory but fails to find the target file or
directory in that location, FSResolveAliasFile returns fnfErr.

Discussion
If your application bypasses the Finder when manipulating documents, it should check for and resolve aliases
itself by using the FSResolveAliasFile function.

Functions 193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

The FSResolveAliasFile function first checks the catalog file for the file or directory specified in the
parameter theRef to determine whether it is an alias and whether it is a file or a directory. If the object is
not an alias, FSResolveAliasFile leaves theRef unchanged, sets the targetIsFolder parameter to
TRUE for a directory or volume and FALSE for a file, sets wasAliased to FALSE, and returns noErr. If the
object is an alias, FSResolveAliasFile resolves it, places the target in the parameter theRef, and sets
the wasAliased flag to TRUE.

If FSResolveAliasFile receives an error code while resolving an alias, it leaves the input parameters as
they are and exits, returning an error code. FSResolveAliasFile can return any Resource Manager or File
Manager errors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Aliases.h

FSResolveAliasFileWithMountFlags
Resolves an alias contained in an alias file.

OSErr FSResolveAliasFileWithMountFlags (
 FSRef *theRef,
 Boolean resolveAliasChains,
 Boolean *targetIsFolder,
 Boolean *wasAliased,
 unsigned long mountFlags
);

Parameters
theRef

A pointer to the alias file you plan to open. If the function completes successfully, this FSRef describes
the file or the directory referred to by the alias file.

resolveAliasChains
A Boolean value. Set this parameter to TRUE if you want FSResolveAliasFileWithMountFlags
to resolve all aliases in a chain (for example, an alias file that refers to an alias file and so on), stopping
only when it reaches the target file. Set this parameter to FALSE if you want to resolve only one alias
file, even if the target is another alias file.

targetIsFolder
A pointer to a Boolean value. The FSResolveAliasFileWithMountFlags function returns TRUE
in this parameter if the FSRef in the parameter theRef points to a directory or a volume; otherwise,
FSResolveAliasFileWithMountFlags returns FALSE in this parameter.

wasAliased
A pointer to a Boolean value. The FSResolveAliasFileWithMountFlags function returns TRUE
in this parameter if the FSRef in the parameter theRef points to an alias; otherwise,
FSResolveAliasFileWithMountFlags returns FALSE in this parameter.

mountFlags
Options controlling how the alias file is resolved. See “Volume Mount Options” (page 220) for a
description of the values you can use here. Set this parameter to kResolveAliasFileNoUI to prevent
any user interaction, including disk switch alerts, while the alias is being resolved.

194 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Return Value
A result code.

Discussion
The function FSResolveAliasFileWithMountFlags is identical to FSResolveAliasFile (page 193) with
the exception that it provides the mountFlags parameter, allowing callers additional control over how the
alias file is resolved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Aliases.h

FSResolveAliasWithMountFlags
Returns an FSRef to the target of an alias.

OSErr FSResolveAliasWithMountFlags (
 const FSRef *fromFile,
 AliasHandle inAlias,
 FSRef *target,
 Boolean *wasChanged,
 unsigned long mountFlags
);

Parameters
fromFile

A pointer to the starting point for a relative search. If you pass NULL in this parameter,
FSResolveAliasWithMountFlags performs an absolute search. If you pass a pointer to a valid
FSRef in the fromFile parameter, FSResolveAliasWithMountFlags performs a relative search
for the target, followed by an absolute search only if the relative search fails. If you want to perform
an absolute search followed by a relative search, you should use the function
FSMatchAliasBulk (page 185).

inAlias
A handle to the alias record to be resolved and, if necessary, updated.

target
A pointer to an FSRef structure. On successful return, this FSRef refers to the target of the alias
record. This parameter must point to a valid FSRef structure.

wasChanged
A pointer to a Boolean value indicating, on return, whether the alias record to be resolved was updated
because it contained some outdated information about the target. If it updates the alias record,
FSResolveAliasWithMountFlags sets the wasChanged parameter to true. Otherwise, it sets it
to false. (FSResolveAliasWithMountFlags never updates a minimal alias, so it never sets
wasChanged to true when resolving a minimal alias.

mountFlags
Options controlling how the alias is resolved. See “Volume Mount Options” (page 220) for a description
of the values you can use here. Set this parameter to kResolveAliasFileNoUI to prevent any user
interaction while the alias is being resolved.

Return Value
A result code.

Functions 195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Discussion
The function FSResolveAliasWithMountFlags is identical to FSResolveAlias (page 192) with the
exception that it provides the mountFlags parameter, allowing callers additional control over how the alias
is resolved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Aliases.h

FSUpdateAlias
Updates an alias record for a specified target.

OSErr FSUpdateAlias (
 const FSRef *fromFile,
 const FSRef *target,
 AliasHandle alias,
 Boolean *wasChanged
);

Parameters
fromFile

A pointer to the starting point for a relative search. You may pass NULL if you do not need relative
search information in the alias record. The two files or directories specified in the fromFile and
target parameters must reside on the same volume.

target
A pointer to the target of the alias record.

alias
A handle to the alias record to be updated.

wasChanged
A pointer to a Boolean value that, on output, indicates whether the newly constructed alias record is
different from the old one. If the new record is exactly the same as the old one, the value is false.
Otherwise, the value is true. Check this parameter to determine whether you need to save an updated
record.

Return Value
A result code.

Discussion
This function rebuilds the entire alias record and fills it in as the FSNewAlias function would. The
FSUpdateAlias function always creates a complete alias record. When you use FSUpdateAlias to update
a minimal alias record, you convert the minimal record to a complete record.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Aliases.h

196 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

GetAliasInfo
Gets information from an alias record without actually resolving the record. (Deprecated in Mac OS X v10.3.
Use FSCopyAliasInfo (page 181) instead.)

OSErr GetAliasInfo (
 AliasHandle alias,
 AliasInfoType index,
 Str63 theString
);

Parameters
alias

A handle to the alias record to be read.

index
The kind of information to be retrieved. If the value of index is a positive integer, GetAliasInfo
retrieves the parent directory that has the same hierarchical level above the target as the index
parameter (for example, an index value of 2 returns the name of the parent directory of the target’s
parent directory). You can therefore assemble the names of the target and all of its parent directories
by making repeated calls to GetAliasInfo with incrementing index values, starting with a value of
0. When the value of index is greater than the number of levels between the target and the root,
GetAliasInfo returns an empty string. You can also set the index parameter to one of the values
described in “Information Type Constants” (page 222).

theString
A string that, on return, holds the requested information.

Return Value
A result code.

Discussion
The GetAliasInfo function returns the information stored in the alias record, which might not be current.
To ensure that the information is current, you can resolve and update the alias record before calling
GetAliasInfo.

The GetAliasInfo function cannot provide all kinds of information about a minimal alias.

Special Considerations

Use the FSCopyAliasInfo (page 181) function instead of GetAliasInfo. GetAliasInfo does not reliably
return information for aliases to items on POSIX file systems. In addition, GetAliasInfo does not support
unicode names or names longer than 32 bytes. If the name of the alias target is longer than 32 bytes, the
name is truncated and the file ID and extension (if any) are appended before the name is returned by
GetAliasInfo.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Aliases.h

Functions 197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

GetAliasSize
Gets the size of an alias record referenced by a handle.

Size GetAliasSize (
 AliasHandle alias
);

Parameters
alias

A handle to the alias record from which to get the information.

Return Value
The size of the alias record.

Discussion
The returned size is smaller than the size returned by the function GetHandleSize if any custom data is
added. This routine is thread safe.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Aliases.h

GetAliasSizeFromPtr
Gets the size of an alias record referenced by a pointer.

Size GetAliasSizeFromPtr (
 const AliasRecord *alias
);

Parameters
alias

A pointer to the alias record from which to get the information.

Return Value
The size of the alias record.

Discussion
This routine is thread safe.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Aliases.h

GetAliasUserType
Gets the user type for an alias record referenced by a handle.

198 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

OSType GetAliasUserType (
 AliasHandle alias
);

Parameters
alias

A handle to the alias record from which to get the user type.

Return Value
The user type associated with the alias.

Discussion
This routine is thread safe.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Aliases.h

GetAliasUserTypeFromPtr
Gets the user type for the alias record referenced by a pointer.

OSType GetAliasUserTypeFromPtr (
 const AliasRecord *alias
);

Parameters
alias

A pointer to the alias record from which to get the user type.

Return Value
The user type associated with the alias.

Discussion
This routine is thread safe.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Aliases.h

InvokeAliasFilterUPP
Calls your alias filtering callback function.

Functions 199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Boolean InvokeAliasFilterUPP (
 CInfoPBPtr cpbPtr,
 Boolean *quitFlag,
 Ptr myDataPtr,
 AliasFilterUPP userUPP
);

Discussion
You should not need to use the function InvokeAliasFilterUPP, as the system calls your alias filtering
callback for you.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Aliases.h

IsAliasFile
Determines whether a file system object is an alias file, a data file, or a folder. (Deprecated in Mac OS X v10.4.
Use FSIsAliasFile (page 183) instead.)

OSErr IsAliasFile (
 const FSSpec *fileFSSpec,
 Boolean *aliasFileFlag,
 Boolean *folderFlag
);

Parameters
fileFSSpec

A pointer to a file specification structure describing a file.

aliasFileFlag
A pointer to a Boolean variable. On return, a value of TRUE indicates that the object specified in the
fileRef parameter is an alias file. A value of FALSE indicates that the object is not an alias file.

folderFlag
A pointer to a Boolean variable. On return, a value of TRUE indicates that the object specified in the
fileRef parameter is a folder. A value of FALSE indicates that the object is a file.

Return Value
A result code.

Discussion
This function determines whether a file is an alias file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Aliases.h

200 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

MatchAlias
Identifies a list of possible matches for an alias and passes the list through an optional selection filter. The
filter can return more than one possible match. (Deprecated in Mac OS X v10.4. Use FSMatchAliasBulk (page
185) instead.)

OSErr MatchAlias (
 const FSSpec *fromFile,
 unsigned long rulesMask,
 AliasHandle alias,
 short *aliasCount,
 FSSpecArrayPtr aliasList,
 Boolean *needsUpdate,
 AliasFilterUPP aliasFilter,
 void *yourDataPtr
);

Parameters
fromFile

A pointer to the starting point for a relative search. If you do not want MatchAlias to perform a
relative search, set fromFile to NULL. If you want MatchAlias to perform a relative search, pass a
pointer to a file system specification structure that describes the starting point for the search.

rulesMask
A set of rules to guide the resolution. Pass the sum of all of the rules you want to invoke. For a
description of the values you can use in this parameter, see “Matching Constants” (page 220).

alias
A handle to the alias record to be resolved.

aliasCount
On input, a pointer to the maximum number of possible matches to return. On output, the actual
number of matches returned.

aliasList
A pointer to the array that holds the results of the search, a list of possible candidates.

needsUpdate
A pointer to a Boolean flag that indicates whether the alias record to be resolved needs to be updated.

aliasFilter
An application-defined filter function. The Alias Manager executes this function each time it identifies
a possible match and after the search has continued for three seconds without a match. Your filter
function returns a Boolean value that determines whether the possible match is discarded (true) or
added to the list of possible targets (false). It can also terminate the search by setting the variable
parameter quitFlag. See AliasFilterProcPtr (page 215) for a description of the filter function.

yourDataPtr
A pointer to data to be passed to the filter function. The yourDataPtr parameter can point to any
data your application might need in the filter function.

Return Value
A result code.

Discussion
If MatchAlias finds the parent directory on the correct volume but does not find the target, it sets the
aliasCount parameter to 1, puts the file system specification structure for the target in the results list, and
returns fnfErr. The FSSpec structure is valid, although the object it describes does not exist. This information

Functions 201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

is intended as a "hint" that lets you explore possible solutions to the resolution failure. You can, for example,
use the FSSpec structure and the File Manager function FSpCreate to create a replacement for a missing
file.

After it identifies a target, MatchAlias compares some key information about the target with the same
information in the record. If the information does not match, MatchAlias sets the needsUpdate flag to
true. The key information is

 ■ the name of the target

 ■ the directory ID of the target’s parent

 ■ the file ID or directory ID of the target

 ■ the name and creation date of the volume on which the target resides

The MatchAlias function also sets the needsUpdate flag to true if it identifies a list of possible matches
rather than a single match or if kARMsearchRelFirst is set in the rulesMask parameter but the target is
identified through either an absolute search or an exhaustive search. Otherwise, the MatchAlias function
sets the needsUpdate flag to false. MatchAlias always sets the needsUpdate flag to false when
resolving an alias created by NewAliasMinimal. If you want to update the alias record to reflect the final
results of the resolution, call UpdateAlias.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Aliases.h

MatchAliasNoUI
Identifies a list of possible matches for an alias without any user interaction. (Deprecated in Mac OS X v10.5.
Use FSMatchAliasBulk (page 185) with the kARMNoUI flag instead.)

OSErr MatchAliasNoUI (
 const FSSpec *fromFile,
 unsigned long rulesMask,
 AliasHandle alias,
 short *aliasCount,
 FSSpecArrayPtr aliasList,
 Boolean *needsUpdate,
 AliasFilterUPP aliasFilter,
 void *yourDataPtr
);

Parameters
fromFile

A pointer to the starting point for a relative search. If you do not want MatchAliasNoUI to perform
a relative search, set fromFile to NULL. If you want MatchAliasNoUI to perform a relative search,
pass a pointer to a file system specification structure that describes the starting point for the search.

202 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

rulesMask
A set of rules to guide the resolution. Pass the sum of all of the rules you want to invoke. For a
description of the values you can use in this parameter, see “Matching Constants” (page 220).

alias
A handle to the alias record to be resolved.

aliasCount
On input, a pointer to the maximum number of possible matches to return. On output, the actual
number of matches returned.

aliasList
A pointer to the array of FSSpec structures that holds, on return, the results of the search, a list of
possible candidates.

needsUpdate
A pointer to a Boolean flag that, on return, indicates whether the alias record needs to be updated.

aliasFilter
An application-defined filter function. The Alias Manager executes this function each time it identifies
a possible match and after the search has continued for three seconds without a match. Your filter
function returns a Boolean value that determines whether the possible match is discarded (true) or
added to the list of possible targets (false). It can also terminate the search by setting the variable
parameter quitFlag. See AliasFilterProcPtr (page 215) for a description of the filter function.

yourDataPtr
A pointer to data to be passed to the filter function. The yourDataPtr parameter can point to any
data your application might need in the filter function.

Return Value
A result code.

Discussion
The MatchAliasNoUI function operates in the same way as the MatchAlias function; however, it does not
present an interface to the user. See the discussion of MatchAlias (page 201) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Aliases.h

NewAlias
Creates a complete alias record. (Deprecated in Mac OS X v10.4. Use FSNewAlias (page 188) instead.)

Functions 203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

OSErr NewAlias (
 const FSSpec *fromFile,
 const FSSpec *target,
 AliasHandle *alias
);

Parameters
fromFile

A pointer to the starting point for a relative search. If you do not need relative search information in
the alias record, pass a fromFile value of NULL. If you want NewAlias to record relative search
information, pass a pointer to a valid FSSpec structure in this parameter. The files or directories
specified in the fromFile and target parameters must reside on the same volume.

target
A pointer to an FSSpec structure for the target of the alias record.

alias
A pointer to an alias handle. On return, this handle refers to the newly created alias record. If the
function fails to create an alias record, it sets alias to NULL.

Return Value
A result code.

Discussion
The NewAlias function creates an alias record that describes the specified target. It allocates the storage,
fills in the record, and puts a record handle to that storage in the alias parameter. NewAlias always records
the name and file or directory ID of the target, its creation date, the parent directory name and ID, and the
volume name and creation date. It also records the full pathname of the target and a collection of other
information relevant to locating the target, verifying the target, and mounting the target’s volume, if necessary.
You can have NewAlias store relative search information as well by supplying a starting point for a relative
search.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Aliases.h

NewAliasFilterUPP
Creates a new universal procedure pointer (UPP) to an alias filtering callback function.

AliasFilterUPP NewAliasFilterUPP (
 AliasFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your alias filtering callback function. For more information, see
AliasFilterProcPtr (page 215).

Return Value
On return, a UPP to the alias filtering callback function.

204 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Aliases.h

NewAliasMinimal
Creates a short alias record quickly. (Deprecated in Mac OS X v10.4. Use FSNewAliasMinimal (page 190)
instead.)

OSErr NewAliasMinimal (
 const FSSpec *target,
 AliasHandle *alias
);

Parameters
target

A pointer to the target of the alias record.

alias
A pointer to an alias handle. On return, this handle refers to the newly created alias record. If the
function fails to create an alias record, it sets alias to NULL.

Return Value
A result code.

Discussion
The NewAliasMinimal function creates an alias record that contains only the minimum information necessary
to describe the target: the target name, the parent directory ID, the volume name and creation date, and the
volume mounting information. The NewAliasMinimal function uses the standard alias record data structure,
but it fills in only parts of the record.

The ResolveAlias (page 206) function never updates a minimal alias record.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Aliases.h

NewAliasMinimalFromFullPath
Creates an alias record that contains only the full pathname of the target. (Deprecated in Mac OS X v10.4.
Use FSNewAliasMinimal (page 190) or FSNewAliasMinimalUnicode (page 190) instead.)

Functions 205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

OSErr NewAliasMinimalFromFullPath (
 short fullPathLength,
 const void *fullPath,
 ConstStr32Param zoneName,
 ConstStr31Param serverName,
 AliasHandle *alias
);

Parameters
fullPathLength

The number of characters in the full pathname of the target.

fullPath
A pointer to a buffer that contains the full pathname of the target. The full pathname starts with the
name of the volume, includes all of the directory names in the path to the target, and ends with the
target name. (For a description of pathnames, see the documentation for the File Manager.)

zoneName
The AppleTalk zone name of the AppleShare volume on which the target resides. Set this parameter
to a null string if you do not need it.

serverName
The AppleTalk server name of the AppleShare volume on which the target resides. Set this parameter
to a null string if you do not need it.

alias
A pointer to an alias handle. On return, this handle refers to the newly created alias record. If the
function fails to create an alias record, it sets alias to NULL.

Return Value
A result code.

Discussion
The NewAliasMinimalFromFullPath function creates an alias record that identifies the target by full
pathname. You can call NewAliasMinimalFromFullPath to create an alias record for a file that doesn’t
exist or that resides on an unmounted volume.

The NewAliasMinimalFromFullPath function uses the standard alias record data structure, but it fills in
only the information provided in the input parameters. You can therefore use
NewAliasMinimalFromFullPath to create alias records for targets on unmounted volumes.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Aliases.h

ResolveAlias
Identifies the single most likely target of an alias record. (Deprecated in Mac OS X v10.4. Use
FSResolveAlias (page 192) instead.)

206 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

OSErr ResolveAlias (
 const FSSpec *fromFile,
 AliasHandle alias,
 FSSpec *target,
 Boolean *wasChanged
);

Parameters
fromFile

A pointer to the starting point for a relative search. If you pass a fromFile parameter of NULL,
ResolveAlias performs only an absolute search. If you pass a pointer to a valid FSSpec structure
in the fromFile parameter, ResolveAlias performs a relative search for the target, followed by
an absolute search only if the relative search fails. If you want to perform an absolute search followed
by a relative search, you must use the MatchAlias function.

alias
A handle to the alias record to be resolved and, if necessary, updated.

target
A pointer to the target of the alias record. This parameter must be a valid FSSpec structure.

wasChanged
A pointer to a Boolean value indicating whether the alias record to be resolved was updated because
it contained some outdated information about the target. If it updates the alias record, ResolveAlias
sets the wasChanged parameter to true. Otherwise, it sets it to false. (ResolveAlias never updates
a minimal alias, so it never sets wasChanged to true when resolving a minimal alias.

Return Value
A result code.

Discussion
The ResolveAlias function performs a fast search for the target of the alias. If the resolution is successful,
ResolveAlias returns (in the target parameter) the FSSpec structure for the target file system object,
updates the alias record if necessary, and reports (through the wasChanged parameter) whether the record
was updated. If the target is on an unmounted AppleShare volume, ResolveAlias automatically mounts
the volume. If the target is on an unmounted ejectable volume, ResolveAlias asks the user to insert the
volume. The ResolveAlias function exits after it finds one acceptable target.

After it identifies a target, ResolveAlias compares some key information about the target with the
information in the alias record. (The description of the MatchAlias (page 201) function lists the key
information.) If the information differs, ResolveAlias updates the record to match the target.

When it finds the specified volume and parent directory but fails to find the target file or directory in that
location, ResolveAlias returns a result code of fnfErr and fills in the target parameter with a complete
FSSpec structure describing the target (that is, the volume reference number, parent directory ID, and
filename or folder name). The FSSpec structure is valid, although the object it describes does not exist. This
information is intended as a "hint" that lets you explore possible solutions to the resolution failure. You can,
for example, pass the FSSpec structure to the File Manager function FSpCreate to create a replacement
for a missing file.

The ResolveAlias function displays the standard dialog boxes when it needs input from the user, such as
a name and password for mounting a remote volume. The user can cancel the resolution through these
dialog boxes.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Not available to 64-bit applications.

Declared In
Aliases.h

ResolveAliasFile
Resolves an alias contained in an alias file. (Deprecated in Mac OS X v10.4. Use FSResolveAliasFile (page
193) instead.)

OSErr ResolveAliasFile (
 FSSpec *theSpec,
 Boolean resolveAliasChains,
 Boolean *targetIsFolder,
 Boolean *wasAliased
);

Parameters
theSpec

A pointer to the alias file you plan to open. If the function completes successfully, this FSSpec refers
to the file or the directory that was referred to by the alias file.

resolveAliasChains
A Boolean value. Set this parameter to TRUE if you want ResolveAliasFile to resolve all aliases in
a chain (for example, an alias file that refers to an alias file and so on), stopping only when it reaches
the target file. Set this parameter to FALSE if you want to resolve only one alias file, even if the target
is another alias file.

targetIsFolder
A return parameter only. The ResolveAliasFile function returns TRUE in this parameter if the file
specification structure in the parameter theSpec points to a directory or a volume; otherwise,
ResolveAliasFile returns FALSE in this parameter.

wasAliased
A return parameter only. The ResolveAliasFile function returns TRUE in this parameter if the file
specification structure in the parameter theSpec points to an alias; otherwise, ResolveAliasFile
returns FALSE in this parameter.

Return Value
A result code.

Discussion
If your application bypasses the Finder when manipulating documents, it should check for and resolve aliases
itself by using the ResolveAliasFile function.

The ResolveAliasFile function first checks the catalog file for the file or directory specified in the parameter
theSpec to determine whether it is an alias and whether it is a file or a directory. If the object is not an alias,
ResolveAliasFile leaves theSpec unchanged, sets the targetIsFolder parameter to TRUE for a
directory or volume and FALSE for a file, sets wasAliased to FALSE, and returns noErr. If the object is an
alias, ResolveAliasFile resolves it, places the target in the parameter theSpec, and sets the wasAliased
flag to TRUE.

When ResolveAliasFile finds the specified volume and parent directory but fails to find the target file
or directory in that location, ResolveAliasFile returns a result code of fnfErr and fills in the parameter
theSpecwith a complete file system specification structure describing the target (that is, its volume reference
number, parent directory ID, and filename or folder name). The file system specification structure is valid,

208 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

although the object it describes does not exist. This information is intended as a "hint" that lets you explore
possible solutions to the resolution failure. You can, for example, use the file system specification structure
to create a replacement for a missing file with the File Manager function FSpCreate.

If ResolveAliasFile receives an error code while resolving an alias, it leaves the input parameters as they
are and exits, returning an error code. ResolveAliasFile can return any Resource Manager or File Manager
errors.

Special Considerations

Before calling the ResolveAliasFile function, you should make sure that it is available by using the
Gestalt function with the gestaltAliasMgrAttr selector.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Aliases.h

ResolveAliasFileWithMountFlags
Resolves an alias contained in an alias file. (Deprecated in Mac OS X v10.5. Use
FSResolveAliasFileWithMountFlags (page 194) instead.)

OSErr ResolveAliasFileWithMountFlags (
 FSSpec *theSpec,
 Boolean resolveAliasChains,
 Boolean *targetIsFolder,
 Boolean *wasAliased,
 unsigned long mountFlags
);

Parameters
theSpec

A pointer to the alias file you plan to open. If the function completes successfully, this FSSpec refers
to the file or the directory that was referred to by the alias file.

resolveAliasChains
A Boolean value. Set this parameter to TRUE if you want ResolveAliasFileWithMountFlags to
resolve all aliases in a chain (for example, an alias file that refers to an alias file and so on), stopping
only when it reaches the target file. Set this parameter to FALSE if you want to resolve only one alias
file, even if the target is another alias file.

targetIsFolder
A return parameter only. The ResolveAliasFileWithMountFlags function returns TRUE in this
parameter if the file specification structure in the parameter theSpec points to a directory or a volume;
otherwise, ResolveAliasFileWithMountFlags returns FALSE in this parameter.

wasAliased
A return parameter only. The ResolveAliasFileWithMountFlags function returns TRUE in this
parameter if the file specification structure in the parameter theSpec points to an alias; otherwise,
ResolveAliasFileWithMountFlags returns FALSE in this parameter.

Functions 209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

mountFlags
Options controlling how the alias file is resolved. See “Volume Mount Options” (page 220) for a
description of the values you can use here. Set this parameter to kResolveAliasFileNoUI to prevent
any user interaction while the alias is being resolved.

Return Value
A result code.

Discussion
The function ResolveAliasFileWithMountFlags is identical to ResolveAliasFile (page 208) with the
exception that it provides the mountFlags parameter.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Aliases.h

ResolveAliasFileWithMountFlagsNoUI
Resolves an alias file without any user interaction. (Deprecated in Mac OS X v10.4. Use
FSResolveAliasFileWithMountFlags (page 194) with the kResolveAliasFileNoUI flag instead.)

OSErr ResolveAliasFileWithMountFlagsNoUI (
 FSSpec *theSpec,
 Boolean resolveAliasChains,
 Boolean *targetIsFolder,
 Boolean *wasAliased,
 unsigned long mountFlags
);

Parameters
theSpec

A pointer to the alias file you plan to open. If the function completes successfully, this FSSpec refers
to the file or the directory that was referred to by the alias file.

resolveAliasChains
A Boolean value. Set this parameter to TRUE if you want ResolveAliasFileWithMountFlagsNoUI
to resolve all aliases in a chain (for example, an alias file that refers to an alias file and so on), stopping
only when it reaches the target file. Set this parameter to FALSE if you want to resolve only one alias
file, even if the target is another alias file.

targetIsFolder
A return parameter only. The ResolveAliasFileWithMountFlagsNoUI function returns TRUE in
this parameter if the file specification structure in the parameter theSpec points to a directory or a
volume; otherwise, ResolveAliasFileWithMountFlagsNoUI returns FALSE in this parameter.

wasAliased
A return parameter only. The ResolveAliasFileWithMountFlagsNoUI function returns TRUE in
this parameter if the file specification structure in the parameter theSpec points to an alias; otherwise,
ResolveAliasFileWithMountFlagsNoUI returns FALSE in this parameter.

210 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

mountFlags
Options controlling how the alias file is resolved. See “Volume Mount Options” (page 220) for a
description of the values you can use here. Set this parameter to kResolveAliasFileNoUI to prevent
any user interaction, including disk switch alerts, while the alias is being resolved.

Return Value
A result code.

Discussion
The function ResolveAliasFileWithMountFlagsNoUI is identical to ResolveAliasFile (page 208) with
the exception that it presents no interface to the user.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Aliases.h

ResolveAliasWithMountFlags
Identifies the target of an alias. (Deprecated in Mac OS X v10.4. Use FSResolveAliasWithMountFlags (page
195) instead.)

OSErr ResolveAliasWithMountFlags (
 const FSSpec *fromFile,
 AliasHandle alias,
 FSSpec *target,
 Boolean *wasChanged,
 unsigned long mountFlags
);

Parameters
fromFile

A pointer to the starting point for a relative search. If you pass NULL in this parameter,
ResolveAliasWithMountFlags performs only an absolute search. If you pass a pointer to a valid
FSSpec structure in the fromFile parameter, ResolveAliasWithMountFlags performs a relative
search for the target, followed by an absolute search only if the relative search fails. If you want to
perform an absolute search followed by a relative search, you must use the MatchAlias function.

alias
A handle to the alias record to be resolved and, if necessary, updated.

target
A pointer to an FSSpec structure. On return, this FSSpec identifies the target of the alias record. This
parameter must point to a valid FSSpec structure.

wasChanged
A pointer to a Boolean value indicating, on return, whether the alias record to be resolved was updated
because it contained some outdated information about the target. If it updates the alias record,
ResolveAliasWithMountFlags sets the wasChanged parameter to true. Otherwise, it sets it to
false. (ResolveAliasWithMountFlags never updates a minimal alias, so it never sets wasChanged
to true when resolving a minimal alias.

Functions 211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

mountFlags
Options controlling how the alias is resolved. See “Volume Mount Options” (page 220) for a description
of the values you can use here. Set this parameter to kResolveAliasFileNoUI to prevent any user
interaction while the alias is being resolved.

Return Value
A result code.

Discussion
The function ResolveAliasWithMountFlags is identical to ResolveAlias (page 206) with the exception
that it provides the mountFlags parameter, allowing callers additional control over how the alias is resolved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Aliases.h

SetAliasUserType
Sets the user type for an alias record referenced by a handle.

void SetAliasUserType (
 AliasHandle alias,
 OSType userType
);

Parameters
alias

A handle to the alias record for which to set the user type.

userType
The user type associated with the alias.

Discussion
This routine is thread safe.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Aliases.h

SetAliasUserTypeWithPtr
Sets the user type for the alias record referenced by a pointer.

212 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

void SetAliasUserTypeWithPtr (
 AliasPtr alias,
 OSType userType
);

Parameters
alias

A pointer to the alias record for which to set the user type.

userType
The user type associated with the alias.

Discussion
This routine is thread safe.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Aliases.h

UpdateAlias
Updates an alias record. (Deprecated in Mac OS X v10.4. Use FSUpdateAlias (page 196) instead.)

OSErr UpdateAlias (
 const FSSpec *fromFile,
 const FSSpec *target,
 AliasHandle alias,
 Boolean *wasChanged
);

Parameters
fromFile

A pointer to the starting point for a relative search. If you do not need relative search information in
the record, pass a fromFile value of NULL. If you want UpdateAlias to record relative search
information, pass a pointer to a valid FSSpec structure in this parameter.

target
A pointer to the target of the alias record.

alias
A handle to the alias record to be updated.

wasChanged
A pointer to a Boolean value indicating whether the newly constructed alias record is exactly the
same as the old one. If the new record is the same as the old one, UpdateAlias sets the wasChanged
parameter to false. Otherwise, it sets it to true. Check this parameter to determine whether you
need to save an updated record.

Return Value
A result code.

Discussion
The UpdateAlias function rebuilds the entire alias record and fills it in as the NewAlias function would.

Functions 213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

The UpdateAlias function always creates a complete alias record. When you use UpdateAlias to update
a minimal alias record, you convert the minimal record to a complete record.

Special Considerations

The two files or directories, specified in the fromFile and target parameters, must reside on the same
volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Aliases.h

Callbacks

AliasFilterProcPtr
Defines a pointer to an alias filtering callback function that filters out possible targets identified by the
FSMatchAlias (page 184) function.

typedef Boolean (*AliasFilterProcPtr) (
 CInfoPBPtr cpbPtr,
 Boolean * quitFlag,
 Ptr myDataPtr
);

If you name your function MyAliasFilterCallback, you would declare it like this:

Boolean MyAliasFilterCallback (
 CInfoPBPtr cpbPtr,
 Boolean * quitFlag,
 Ptr myDataPtr
);

Parameters
cpbPtr

A pointer to a catalog information parameter block. When your function is called, the cpbPtrparameter
points to the catalog information parameter block of the possible match (returned by the File Manager
function PBGetCatInfo).

quitFlag
On exit, set this to true if you want to terminate the search.

myDataPtr
A pointer to any customized data that your application passed when it called FSMatchAlias (page
184). This parameter allows your filter function to access any data that your application has set up on
its own.

214 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Return Value
Your function should return true to indicate that the possible match is to be discarded, or false to indicate
that the possible match is to be added to the list of possible targets.

Discussion
You can write your own filter function to examine possible targets identified by the FSMatchAlias function.
The FSMatchAlias function calls your filter function each time it identifies a possible match.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Aliases.h

FSAliasFilterProcPtr
Defines a pointer to an alias filtering callback function that filters out possible targets identified by the
FSMatchAliasBulk (page 185) function.

typedef Boolean (*FSAliasFilterProcPtr) (
 FSRef *ref,
 Boolean *quitFlag,
 Ptr myDataPtr
);

If you name your function MyFSAliasFilterCallback, you would declare it like this:

Boolean MyAliasFilterCallback (
 FSRef *ref,
 Boolean *quitFlag,
 Ptr myDataPtr
);

Parameters
ref

A pointer to a file system object. When your function is called, the ref parameter points to the possible
match.

quitFlag
On output, set this Boolean flag to true if you want to terminate the search.

myDataPtr
A pointer to any customized data that your application passed when it called
FSMatchAliasBulk (page 185). This parameter allows your filter function to access any data that
your application has set up on its own.

Return Value
Your function should return true to indicate that the possible match is to be discarded, or false to indicate
that the possible match is to be added to the list of possible targets.

Discussion
You can write your own filter function to examine possible targets identified by the FSMatchAliasBulk
function. The FSMatchAliasBulk function calls your filter function each time it identifies a possible match.

Callbacks 215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
Aliases.h

Data Types

AliasInfoType
Defines the alias record information type used in the index parameter of GetAliasInfo.

typedef short AliasInfoType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Aliases.h

AliasFilterUPP
Defines a universal procedure pointer (UPP) to an alias filtering function.

typedef AliasFilterProcPtr AliasFilterUPP;

Discussion
See AliasFilterProcPtr (page 215) for more information on alias filtering functions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Aliases.h

AliasRecord
Defines an alias record.

216 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

struct AliasRecord {
 OSType userType;
 unsigned short aliasSize;
};
typedef struct AliasRecord AliasRecord;
typedef AliasRecord * AliasPtr;
typedef AliasPtr * AliasHandle;

Fields
userType

A 4-byte field that can contain application-specific data. When an alias record is created, this field
contains 0. Your application can use this field for its own purposes.

aliasSize
The size, in bytes, assigned to the alias record at the time of its creation or updating. This is the total
size of the record, including the userType and aliasSize fields, as well as the variable-length data
that is private to the Alias Manager.

Discussion
The Alias Manager uses alias records to store information that allows it to locate an object in the file system.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Aliases.h

FSAliasInfo
Defines an information block passed to the FSCopyAliasInfo function.

struct FSAliasInfo {
 UTCDateTime volumeCreateDate;
 UTCDateTime targetCreateDate;
 OSType fileType;
 OSType fileCreator;
 UInt32 parentDirID;
 UInt32 nodeID;
 UInt16 filesystemID;
 UInt16 signature;
 Boolean volumeIsBootVolume;
 Boolean volumeIsAutomounted;
 Boolean volumeIsEjectable;
 Boolean volumeHasPersistentFileIDs;
 Boolean isDirectory;
};
typedef struct FSAliasInfo FSAliasInfo;
typedef FSAliasInfo * FSAliasInfoPtr;

Fields
volumeCreateDate

The creation date of the volume on which the alias target resides.

targetCreateDate
The creation date of the alias target.

Data Types 217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

fileType
The file type of the target.

fileCreator
The creator code of the target.

parentDirID
The directory ID of the target’s parent directory.

nodeID
The ID of the file or directory that is the alias target.

filesystemID
The filesystem ID.

signature
The volume signature of the volume on which the target resides.

volumeIsBootVolume
A Boolean value indicating whether the volume is the boot volume.

volumeIsAutomounted
A Boolean value indicating whether the volume is automounted.

volumeIsEjectable
A Boolean value indicating whether the volume is ejectable.

volumeHasPersistentFileIDs
A Boolean value indicating whether the volume has persistent file ID’s.

isDirectory
A Boolean value indicating whether the alias target is a directory.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Aliases.h

Constants

Alias Information Masks
Returned by the FSCopyAliasInfo function to indicate which fields of the alias information structure contain
valid data.

218 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

typedef UInt32 FSAliasInfoBitmap;
enum {
 kFSAliasInfoNone = 0x00000000,
 kFSAliasInfoVolumeCreateDate = 0x00000001,
 kFSAliasInfoTargetCreateDate = 0x00000002,
 kFSAliasInfoFinderInfo = 0x00000004,
 kFSAliasInfoIsDirectory = 0x00000008,
 kFSAliasInfoIDs = 0x00000010,
 kFSAliasInfoFSInfo = 0x00000020,
 kFSAliasInfoVolumeFlags = 0x00000040
};

Constants
kFSAliasInfoNone

None of the alias information is valid.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

kFSAliasInfoVolumeCreateDate
The volume creation date in the volumeCreateDate field is valid.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

kFSAliasInfoTargetCreateDate
The creation date of the alias target, in the targetCreateDate field, is valid.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

kFSAliasInfoFinderInfo
The file type and creator information, in the fileType and fileCreator fields, is valid.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

kFSAliasInfoIsDirectory
The information in the isDirectory field is valid.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

kFSAliasInfoIDs
The parent directory ID and alias target ID, in the parentDirID and nodeID fields, are valid.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

kFSAliasInfoFSInfo
The filesystem ID and signature, in the filesystemID and signature fields, are valid.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

kFSAliasInfoVolumeFlags
The volume information, in the volumeIsBootVolume, volumeIsAutomounted,
volumeIsEjectable, and volumeHasPersistentFileIDs fields, is valid.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

Constants 219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Volume Mount Options
Specify how an alias should be resolved.

enum {
 kResolveAliasFileNoUI = 0x00000001,
 kResolveAliasTryFileIDFirst = 0x00000002
};

Constants
kResolveAliasFileNoUI

The Alias Manager should resolve the alias without presenting a user interface.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

kResolveAliasTryFileIDFirst
The Alias Manager should search for the alias target using file IDs before searching using the path.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

Discussion
The FSResolveAliasWithMountFlags (page 195), FSResolveAliasFileWithMountFlags (page 194),
ResolveAliasWithMountFlags (page 211), ResolveAliasFileWithMountFlags (page 209), and
ResolveAliasFileWithMountFlagsNoUI (page 210) functions take these constants in the mountFlags
parameter, allowing you to specify how the alias should be resolved.

Matching Constants
Specify the matching criteria for the alias matching functions.

enum {
 kARMMountVol = 0x00000001,
 kARMNoUI = 0x00000002,
 kARMMultVols = 0x00000008,
 kARMSearch = 0x00000100,
 kARMSearchMore = 0x00000200,
 kARMSearchRelFirst = 0x00000400,
 kARMTryFileIDFirst = 0x00000800
};

Constants
kARMMountVol

Automatically try to mount the target’s volume if it is not mounted.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

kARMNoUI
Stop if a search requires user interaction, such as a password dialog box when mounting a remote
volume. If user interaction is needed and kARMNoUI is in effect, the search fails.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

220 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

kARMMultVols
Search all mounted volumes. The search begins with the volume on which the target resided when
the record was created. When you specify a fast search of all mounted volumes, MatchAlias performs
a formal fast search only on the volume described in the alias record. On all other volumes it looks
for the target by ID or by name in the directory with the specified parent directory ID. When you
specify an exhaustive search of multiple volumes, MatchAlias performs the same search on all
volumes. When resolving an alias record created by NewAliasMinimalFromFullPath, MatchAlias
ignores this flag.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

kARMSearch
Perform a fast search for the alias target. If kARMSearchRelFirst is not set, perform an absolute
search first, followed by a relative search only if the value of the fromFile parameter is not NULL
and the list of matches is not full.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

kARMSearchMore
Perform an exhaustive search for the alias target. On HFS volumes, the exhaustive search uses the
File Manager function PBCatSearch to identify candidates with matching creation date, type, and
creator. The PBCatSearch function is available only on HFS volumes and only on systems running
version 7.0 or later. On MFS volumes or HFS volumes that do not support PBCatSearch, the exhaustive
search makes a series of indexed calls to File Manager functions, using the same search criteria. If you
set kARMSearchMore and either or both of kARMSearch and kARMSearchRelFirst, MatchAlias
performs the fast search first.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

kARMSearchRelFirst
If kARMSearch is also set, perform a relative search before the absolute search. (If kARMSearch is
also set and the target is found through the absolute search, MatchAlias sets the needsUpdate
flag to true.) If neither kARMSearch nor kARMSearchMore is set, perform only a relative search. If
kARMSearch is not set but kARMSearchMore is set, perform a relative search followed by an exhaustive
search.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

kARMTryFileIDFirst
Perform a search using the file ID of the target before searching using the path.

Available in Mac OS X v10.2 and later.

Declared in Aliases.h.

Discussion
The FSMatchAlias (page 184), FSMatchAliasNoUI (page 187), MatchAliasNoUI (page 202) and
MatchAlias (page 201) functions use these constants to specify the matching criteria by passing a sum of
these constants in the rulesMask parameter. You must specify at least one of the last three parameters:
kARMSearch, kARMSearchMore, and kARMSearchRelFirst.

Alias Resource Type
Specifies the file type of an alias resource file.

Constants 221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

enum {
 rAliasType = 'alis'
};

Information Type Constants
The GetAliasInfo function uses these constants in the index parameter.

enum {
 asiZoneName = -3,
 asiServerName = -2,
 asiVolumeName = -1,
 asiAliasName = 0,
 asiParentName = 1
};

Constants
asiZoneName

If the record represents a target on an AppleShare volume, retrieve the server’s zone name. Otherwise,
return an empty string.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

asiServerName
If the record represents a target on an AppleShare volume, retrieve the server name. Otherwise, return
an empty string.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

asiVolumeName
Return the name of the volume on which the target resides.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

asiAliasName
Return the name of the target.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

asiParentName
Return the name of the parent directory of the target of the record. If the target is a volume, return
the volume name.

Available in Mac OS X v10.0 and later.

Declared in Aliases.h.

Gestalt Constants

You can check for version and feature availability information by using the Alias Manager selectors defined
in the Gestalt Manager. For more information, see Gestalt Manager Reference.

222 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Alias Manager Reference

Framework: CoreServices/CoreServices.h

Declared in CodeFragments.h

Overview

This chapter describes the Code Fragment Manager, the part of the Mac OS that loads fragments into memory
and prepares them for execution. A fragment can be an application, an import library, a system extension,
or any other block of executable code and its associated data.

The Code Fragment Manager is intended to operate transparently to most applications and other software.
You need to use the Code Fragment Manager explicitly only if

 ■ you need to load code modules dynamically during the execution of your application or other software

 ■ you want to unload code modules before the termination of your application

 ■ you want to obtain information about the symbols exported by a fragment

For example, if your application supports dynamic loading of tools, filters, or other software modules contained
in fragments, you'll need to use the Code Fragment Manager to load and prepare them for execution.

Carbon supports the Code Fragment Manager.

Functions by Task

Finding Symbols

CountSymbols (page 225) Deprecated in Mac OS X v10.5
Determines how many symbols are exported from a specified fragment.

FindSymbol (page 226) Deprecated in Mac OS X v10.5
Searches for a specific exported symbol.

GetIndSymbol (page 229) Deprecated in Mac OS X v10.5
Gets information about the exported symbols in a fragment.

Overview 223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Loading Fragments

GetDiskFragment (page 227) Deprecated in Mac OS X v10.5
Locates and possibly also loads a fragment contained in a file’s data fork into your application’s
context.

GetMemFragment (page 229) Deprecated in Mac OS X v10.5
Prepares a memory-based fragment for subsequent execution.

GetSharedLibrary (page 231) Deprecated in Mac OS X v10.5
Locates and possibly also loads an import library into your application’s context.

Unloading Fragments

CloseConnection (page 224) Deprecated in Mac OS X v10.5
Closes a connection to a fragment.

Converting a Bundle Prelocator

ConvertBundlePreLocator (page 225) Deprecated in Mac OS X v10.5
Converts a bundle prelocator to a Core Foundation bundle locator.

Functions

CloseConnection
Closes a connection to a fragment. (Deprecated in Mac OS X v10.5.)

OSErr CloseConnection (
 CFragConnectionID *connID
);

Parameters
connID

A pointer to a connection ID.

Return Value
A result code. See “Code Fragment Manager Result Codes” (page 259).

Discussion
The CloseConnection function closes the connection to a fragment indicated by the connID parameter.
CloseConnection decrements the count of existing connections to the specified fragment and, if the
resulting count is 0, calls the fragment’s termination function and releases the memory occupied by the code
and data sections of the fragment. If the resulting count is not 0, any per-connection data is released but the
code section remains in memory.

When a fragment is unloaded as a result of its final connection having been closed, all libraries that depend
on that fragment are also released, provided that their usage counts are also 0.

224 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

The Code Fragment Manager automatically closes any connections that remain open at the time ExitToShell
is called for your application, so you need to call CloseConnection only for fragments you wish to unload
before your application terminates.

Special Considerations

You can close a connection only to the root of a loading sequence (that is, the fragment whose loading
triggered the entire load chain).

Availability
Available in CarbonLib 1.0 and later when Code Fragment Manager 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CodeFragments.h

ConvertBundlePreLocator
Converts a bundle prelocator to a Core Foundation bundle locator. (Deprecated in Mac OS X v10.5.)

OSErr ConvertBundlePreLocator (
 CFragSystem7LocatorPtr initBlockLocator
);

Parameters
initBlockLocator

A pointer to a fragment locator structure. On input, the structure contains a System 7 locator. On
output, the structure contains a CFragCFBundleLocator.

Return Value
A result code. See “Code Fragment Manager Result Codes” (page 259).

Discussion
This function can be used by initialization routines.

Availability
Available in Mac OS X 10.1 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CountSymbols
Determines how many symbols are exported from a specified fragment. (Deprecated in Mac OS X v10.5.)

Functions 225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

OSErr CountSymbols (
 CFragConnectionID connID,
 long *symCount
);

Parameters
connID

A connection ID.

symCount
On return, a pointer to the number of exported symbols in the fragment whose connection ID is
connID. You can use the value returned in symCount to index through all the exported symbols in
a particular fragment (using the GetIndSymbol function).

Return Value
A result code. See “Code Fragment Manager Result Codes” (page 259).

Availability
Available in CarbonLib 1.0 and later when Code Fragment Manager 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CodeFragments.h

FindSymbol
Searches for a specific exported symbol. (Deprecated in Mac OS X v10.5.)

OSErr FindSymbol (
 CFragConnectionID connID,
 ConstStr255Param symName,
 Ptr *symAddr,
 CFragSymbolClass *symClass
);

Parameters
connID

A connection ID.

symName
A symbol name.

symAddr
On return, a pointer to the address of the symbol whose name is symName.

symClass
On return, a pointer to the class of the symbol whose name is symName. The currently recognized
symbol classes are defined by the “Load Flag, Symbol Class, and Fragment Locator Constants” (page
252).

Return Value
A result code. See “Code Fragment Manager Result Codes” (page 259).

226 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Discussion
The FindSymbol function searches the code fragment identified by the connID parameter for the symbol
whose name is specified by the symName parameter. If that symbol is found, FindSymbol returns the address
of the symbol in the symAddr parameter and the class of the symbol in the symClass parameter.

Because a fragment’s code is normally exported through transition vectors to that code, the value
kCodeSymbol is not returned in the PowerPC environment. You can use the other two constants to distinguish
exports that represent code (of class kTVectSymbol) from those that represent general data (of class
kDataSymbol).

Availability
Available in CarbonLib 1.0 and later when Code Fragment Manager 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CodeFragments.h

GetDiskFragment
Locates and possibly also loads a fragment contained in a file’s data fork into your application’s context.
(Deprecated in Mac OS X v10.5.)

OSErr GetDiskFragment (
 const FSSpec *fileSpec,
 UInt32 offset,
 UInt32 length,
 ConstStr63Param fragName,
 CFragLoadOptions options,
 CFragConnectionID *connID,
 Ptr *mainAddr,
 Str255 errMessage
);

Parameters
fileSpec

A pointer to a file system specification that identifies the disk-based fragment to load.

offset
The number of bytes from the beginning of the file’s data fork at which the beginning of the fragment
is located.

length
The length (in bytes) of the fragment. Specify the constant kWholeFork for this parameter if the
fragment extends to the end-of-file of the data fork. Specify a nonzero value for the exact length of
the fragment.

fragName
An optional name of the fragment. (This information is used primarily to allow you to identify the
fragment during debugging.

loadFlags
A flag that specifies the operation to perform on the fragment.The Code Fragment Manager recognizes
the constants described in “Load Flag, Symbol Class, and Fragment Locator Constants” (page 252).

Functions 227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

connID
On return, a pointer to the connection ID that identifies the connection to the fragment. You can pass
this ID to other Code Fragment Manager functions.

mainAddr
On return, a pointer to the main address of the fragment. The value returned is specific to the fragment
itself. Your application can use this parameter for its own purposes.

errMessage
On return, the name of the fragment that could not successfully be loaded. This parameter is
meaningful only if the call to GetDiskFragment fails.

Return Value
A result code. See “Code Fragment Manager Result Codes” (page 259). The kFindLib constant in the
loadFlags parameter specifies that the Code Fragment Manager search for the specified fragment. If the
fragment is already prepared and connected to your application, GetDiskFragment returns fragNoErr. If
the specified fragment is not found, GetDiskFragment returns the result code fragLibNotFound. If the
specified fragment is found but could not be connected to your application, the function returns
fragLibConnErr.

Discussion
Loading involves finding the specified fragment, reading it into memory (if it is not already in memory), and
preparing it for execution. The Code Fragment Manager attempts to resolve all symbols imported by the
fragment; to do so may involve loading import libraries.

If the fragment loading fails, the Code Fragment Manager returns an error code. Note, however, that the
error encountered is not always in the fragment you asked to load. Rather, the error might have occurred
while attempting to load an import library that the fragment you want to load depends on. For this reason,
the Code Fragment Manager also returns, in the errMessage parameter, the name of the fragment that
caused the load to fail. Although fragment names are restricted to 63 characters, the errMessage parameter
is declared as type Str255; doing this allows future versions of the Code Fragment Manager to return a more
informative message in the errMessage parameter.

Availability
Modified in Carbon. Available in CarbonLib 1.0 and later when Code Fragment Manager 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Carbon Porting Notes

On Mac OS X, GetDiskFragment does not include the folder containing the root fragment (assuming that
it is different from the application fragment) in its search path for import libraries. For example, say your
application used a special folder to store plugins. If that folder also contained special libraries for those
plugins, then calling GetDiskFragment to load a plugin would not find those libraries.

The workaround is to make sure that any import libraries you require are in the Code Fragment Manager's
search path (such as by designating an application library subfolder in the code fragment resource, or placing
the libraries in the application's container). For more details of how the Code Fragment Manager searches
for import libraries, see Mac OS Runtime Architectures.

Declared In
CodeFragments.h

228 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

GetIndSymbol
Gets information about the exported symbols in a fragment. (Deprecated in Mac OS X v10.5.)

OSErr GetIndSymbol (
 CFragConnectionID connID,
 long symIndex,
 Str255 symName,
 Ptr *symAddr,
 CFragSymbolClass *symClass
);

Parameters
connID

A connection ID.

symIndex
A symbol index. This index is zero-based. That is, the value of this parameter should be between zero
and the number of symbols -1 (where the number of symbols is determined by calling the
CountSymbols (page 225) function).

symName
On return, the name of the indicated symbol.

symAddr
On return, a pointer to the address of the indicated symbol.

symClass
On return, a pointer to the class of the indicated symbol. See “Load Flag, Symbol Class, and Fragment
Locator Constants” (page 252).

Return Value
A result code. See “Code Fragment Manager Result Codes” (page 259).

Discussion
If GetIndSymbol executes successfully, it returns the symbol’s name, starting address, and class in the
symName, symAddr, and symClass parameters, respectively. A fragment’s exported symbols are retrieved
in no predetermined order.

Availability
Available in CarbonLib 1.0 and later when Code Fragment Manager 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CodeFragments.h

GetMemFragment
Prepares a memory-based fragment for subsequent execution. (Deprecated in Mac OS X v10.5.)

Functions 229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

OSErr GetMemFragment (
 void *memAddr,
 UInt32 length,
 ConstStr63Param fragName,
 CFragLoadOptions options,
 CFragConnectionID *connID,
 Ptr *mainAddr,
 Str255 errMessage
);

Parameters
memAddr

The address of the fragment.

length
The size, in bytes, of the fragment.

fragName
The name of the fragment. (This information is used primarily to allow you to identify the fragment
during debugging.

loadFlags
A flag that specifies the operation to perform on the fragment. The Code Fragment Manager recognizes
the constants described in “Load Flag, Symbol Class, and Fragment Locator Constants” (page 252).

connID
On return, a pointer to the connection ID that identifies the connection to the fragment. You can pass
this ID to other Code Fragment Manager functions (for example, CloseConnection).

mainAddr
On return, a pointer to the main address of the fragment. The value returned is specific to the fragment
itself.

errMessage
On return, the name of the fragment that could not successfully be loaded. This parameter is
meaningful only if the call to GetMemFragment fails.

Return Value
A result code. See “Code Fragment Manager Result Codes” (page 259).

Discussion
The GetMemFragment is most useful for handling code that is contained in a resource. You can read the
resource data into memory using normal Resource Manager functions (for example, Get1Resource) and
then call GetMemFragment to complete the processing required to prepare it for use (for example, to resolve
any imports and execute the fragment’s initialization function).

You must lock the resource-based fragment into memory (for example, by calling HLock) before calling
GetMemFragment. You must not unlock the memory until you have closed the connection to the fragment
(by calling CloseConnection).

Loading involves finding the specified fragment, reading it into memory (if it is not already in memory), and
preparing it for execution. The Code Fragment Manager attempts to resolve all symbols imported by the
fragment; to do so may involve loading import libraries.

If the fragment loading fails, the Code Fragment Manager returns an error code. Note, however, that the
error encountered is not always in the fragment you asked to load. Rather, the error might have occurred
while attempting to load an import library that the fragment you want to load depends on. For this reason,
the Code Fragment Manager also returns, in the errMessage parameter, the name of the fragment that

230 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

caused the load to fail. Although fragment names are restricted to 63 characters, the errMessage parameter
is declared as type Str255; doing this allows future versions of the Code Fragment Manager to return a more
informative message in the errMessage parameter.

Availability
Available in CarbonLib 1.0 and later when Code Fragment Manager 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CodeFragments.h

GetSharedLibrary
Locates and possibly also loads an import library into your application’s context. (Deprecated in Mac OS X
v10.5.)

OSErr GetSharedLibrary (
 ConstStr63Param libName,
 CFragArchitecture archType,
 CFragLoadOptions options,
 CFragConnectionID *connID,
 Ptr *mainAddr,
 Str255 errMessage
);

Parameters
libName

The name of an import library.

archType
The instruction set architecture of the import library. For the PowerPC architecture, use the constant
kPowerPCArch. For the 680x0 architecture, use the constant kMotorola68KArch.

loadFlags
A flag that specifies the operation to perform on the import library. The Code Fragment Manager
recognizes the constants described in “Load Flag, Symbol Class, and Fragment Locator Constants” (page
252).

connID
On return, a pointer to the connection ID that identifies the connection to the import library. You can
pass this ID to other Code Fragment Manager functions.

mainAddr
On return, a pointer to the main address of the import library. The value returned is specific to the
import library itself and is not used by the Code Fragment Manager.

errMessage
On return, the name of the fragment that could not successfully be loaded. This parameter is
meaningful only if the call to GetSharedLibrary fails.

Return Value
A result code. See “Code Fragment Manager Result Codes” (page 259).

Functions 231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Discussion
The GetSharedLibrary function locates the import library named by the libName parameter and possibly
also loads that import library into your application’s context. The actions of GetSharedLibrary depend on
the action flag you pass in the loadFlags parameter; pass kFindLib to get the connection ID of an existing
connection to the specified fragment, kLoadLib to load the specified fragment, or kLoadNewCopy to load
the fragment with a new copy of the fragment’s data section.

The GetSharedLibrary function does not resolve any unresolved imports in your application. In particular,
you cannot use it to resolve any weak imports in your code fragment.

Loading involves finding the specified fragment, reading it into memory (if it is not already in memory), and
preparing it for execution. The Code Fragment Manager attempts to resolve all symbols imported by the
fragment; to do so may involve loading import libraries.

If the fragment loading fails, the Code Fragment Manager returns an error code. Note, however, that the
error encountered is not always in the fragment you asked to load. Rather, the error might have occurred
while attempting to load an import library that the fragment you want to load depends on. For this reason,
the Code Fragment Manager also returns, in the errMessage parameter, the name of the fragment that
caused the load to fail. Although fragment names are restricted to 63 characters, the errMessage parameter
is declared as type Str255; doing this allows future versions of the Code Fragment Manager to return a more
informative message in the errMessage parameter.

Availability
Available in CarbonLib 1.0 and later when Code Fragment Manager 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
CodeFragments.h

Callbacks

CFragInitFunction
Defines a fragment initialization function that is executed by the Code Fragment Manager when the fragment
is first loaded into memory and prepared for execution.

typedef OSErr (*CFragInitFunction) (
 const CFragInitBlock * initBlock
);

If you name your function MyCFragInitFunction, you would declare it like this:

OSErr MyCFragInitFunction (
 const CFragInitBlock * initBlock
);

Parameters
initBlock

A pointer to a fragment initialization block specifying information about the fragment.

232 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Return Value
A result code. See “Code Fragment Manager Result Codes” (page 259). Your initialization function should
return noErr if it executes successfully, and some other result code if it does not. If your initialization function
returns any result code other than noErr, the entire load fails and the error fragUserInitProcErr is
returned to the code that requested the root load.

Discussion
A fragment’s initialization function is executed immediately before the fragment’s main function (if it has
one) is executed. The initialization function is passed a pointer to an initialization block, which contains
information about the fragment, such as its location and connection ID. See InitBlock (page 245) for a
description of the fields of the initialization block.

You can use the initialization function to perform any tasks that need to be performed before any of the
code or data in the fragment is accessed. For example, you might want to open the fragment’s resource fork
(if it has one). You can determine the location of the fragment’s container from the FragmentLocator field
of the fragment initialization block whose address is passed to your initialization function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragTermProcedure
Defines a pointer to a fragment termination function that is executed by the Code Fragment Manager when
the fragment is unloaded from memory.

typedef void (*CFragTermProcedure) (
);

If you name your function MyCFragTermProcedure, you would declare it like this:

void MyCFragTermProcedure ();

Discussion
A fragment’s termination function is executed immediately before the fragment is unloaded from memory.
You can use the termination function to perform any necessary clean-up tasks, such as closing open resource
files or disposing of any memory allocated by the fragment.

Note that a termination function is not passed any parameters and does not return any result. You are
expected to maintain any information about the fragment (such as file reference numbers of any open files)
in its static data area.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

Callbacks 233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Data Types

CFragCFBundleLocator

struct CFragCFBundleLocator {
 CFBundleRef fragmentBundle;
 UInt32 offset;
 UInt32 length;
};
typedef struct CFragCFBundleLocator CFragCFBundleLocator;

Fields
fragmentBundle
offset
length

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragClosureID

typedef struct OpaqueCFragClosureID * CFragClosureID;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragConnectionID

typedef struct OpaqueCFragConnectionID * CFragConnectionID;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

234 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

CFragContainerID

typedef struct OpaqueCFragContainerID * CFragContainerID;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragContextID

typedef MPProcessID CFragContextID;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragHFSDiskFlatLocator

typedef CFragSystem7DiskFlatLocator CFragHFSDiskFlatLocator;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

CFragHFSLocator

typedef CFragSystem7Locator CFragHFSLocator;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

CFragHFSLocatorPtr

typedef CFragSystem7LocatorPtr CFragHFSLocatorPtr;

Availability
Available in Mac OS X v10.0 and later.

Data Types 235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Declared In
CodeFragments.h

CFragHFSMemoryLocator

typedef CFragSystem7MemoryLocator CFragHFSMemoryLocator;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

CFragHFSSegmentedLocator

typedef CFragSystem7SegmentedLocator CFragHFSSegmentedLocator;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

CFragInitBlock

typedef CFragSystem7InitBlock CFragInitBlock;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragInitBlockPtr

typedef CFragSystem7InitBlockPtr CFragInitBlockPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

236 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

CFragResource

struct CFragResource {
 UInt32 reservedA;
 UInt32 reservedB;
 UInt16 reservedC;
 UInt16 version;
 UInt32 reservedD;
 UInt32 reservedE;
 UInt32 reservedF;
 UInt32 reservedG;
 UInt16 reservedH;
 UInt16 memberCount;
 CFragResourceMember firstMember;
};
typedef struct CFragResource CFragResource;
typedef CFragResource * CFragResourcePtr;
typedef CFragResourcePtr * CFragResourceHandle;

Fields
reservedA

This field is reserved for future use. Set this field to 0.

reservedB
This field is reserved for future use. Set this field to 0.

reservedC
This field is reserved for future use. Set this field to 0.

version
reservedD

This field is reserved for future use. Set this field to 0.

reservedE
This field is reserved for future use. Set this field to 0.

reservedF
This field is reserved for future use. Set this field to 0.

reservedG
This field is reserved for future use. Set this field to 0.

reservedH
This field is reserved for future use. Set this field to 0.

memberCount
firstMember

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

Data Types 237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

CFragResourceExtensionHeader

struct CFragResourceExtensionHeader {
 UInt16 extensionKind;
 UInt16 extensionSize;
};
typedef struct CFragResourceExtensionHeader CFragResourceExtensionHeader;
typedef CFragResourceExtensionHeader * CFragResourceExtensionHeaderPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragResourceMember

struct CFragResourceMember {
 CFragArchitecture architecture;
 UInt16 reservedA;
 UInt8 reservedB;
 UInt8 updateLevel;
 CFragVersionNumber currentVersion;
 CFragVersionNumber oldDefVersion;
 CFragUsage1Union uUsage1;
 CFragUsage2Union uUsage2;
 CFragUsage usage;
 CFragLocatorKind where;
 UInt32 offset;
 UInt32 length;
 CFragWhere1Union uWhere1;
 CFragWhere2Union uWhere2;
 UInt16 extensionCount;
 UInt16 memberSize;
 unsigned char name[16];
};
typedef struct CFragResourceMember CFragResourceMember;
typedef CFragResourceMember * CFragResourceMemberPtr;

Fields
architecture
reservedA

This field is reserved. Set to 0.

reservedB
This field is reserved. Set to 0.

238 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

updateLevel
currentVersion
oldDefVersion
uUsage1
uUsage2
usage
where
offset
length
uWhere1
uWhere2
extensionCount

Specifies the number of extensions beyond the name.

memberSize
Specifies the size in bytes, including all extensions.

name

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragResourceSearchExtension

struct CFragResourceSearchExtension {
 CFragResourceExtensionHeader header;
 OSType libKind;
 unsigned char qualifiers[1];
};
typedef struct CFragResourceSearchExtension CFragResourceSearchExtension;
typedef CFragResourceSearchExtension * CFragResourceSearchExtensionPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragSystem7DiskFlatLocator
Defines a disk location structure.

Data Types 239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

struct CFragSystem7DiskFlatLocator {
 FSSpec * fileSpec;
 UInt32 offset;
 UInt32 length;
};
typedef struct CFragSystem7DiskFlatLocator CFragSystem7DiskFlatLocator;
typedef CFragSystem7DiskFlatLocator DiskFragment;

Fields
fileSpec

A pointer to a file specification structure (a data structure of type FSSpec) for the data fork of a file.
This pointer is valid only while the initialization function is executing. If you need to access the
information in the file specification structure at any later time, you must make a copy of that structure.

offset
The offset, in bytes, from the beginning of the file’s data fork to the beginning of the fragment.

length
The length, in bytes, of the fragment. If this field contains the value 0, the fragment extends to the
end-of-file.

Discussion
For fragments located in the data fork of a file on disk, the onDisk field of a fragment location structure
contains a disk location structure, which specifies the location of the fragment.

The fields of a fragment initialization block are aligned in memory in accordance with 680x0 alignment
conventions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragSystem7InitBlock

struct CFragSystem7InitBlock {
 CFragContextID contextID;
 CFragClosureID closureID;
 CFragConnectionID connectionID;
 CFragSystem7Locator fragLocator;
 StringPtr libName;
 UInt32 reservedA;
};
typedef struct CFragSystem7InitBlock CFragSystem7InitBlock;
typedef CFragSystem7InitBlock * CFragSystem7InitBlock;
typedef CFragSystem7InitBlock CFragInitBlock;

Fields
contextID

A context ID.

closureID
A closure ID.

240 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

connectionID
A connection ID.

fragLocator
A fragment location structure, CFragSystem7Locator (page 241) that specifies the location of the
fragment.

libName
A pointer to the name of the fragment being initialized. The name is a Pascal string (a length byte
followed by the name itself).

reservedA
Reserved for use by Apple Computer.

Discussion
The Code Fragment Manager passes to your fragment’s initialization function a pointer to a fragment
initialization block, which contains information about the fragment. A fragment initialization block is defined
by the InitBlock data type.

The fields of a fragment initialization block are aligned in memory in accordance with 680x0 alignment
conventions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragSystem7Locator
Defines a fragment location structure.

struct CFragSystem7Locator {
 SInt32 where
 union {
 CFragSystem7DiskFlatLocator onDisk;
 CFragSystem7MemoryLocator inMem;
 CFragSystem7SegmentedLocator inSegs;
 CFragCFBundleLocator inBundle;
 } u;
};
typedef struct CFragSystem7Locator CFragSystem7Locator;
typedef CFragSystem7Locator * CFragSystem7LocatorPtr;
typedef CFragSystem7Locator FragmentLocator;

Fields
where

A selector that determines which member of the following union is relevant. This field can contain
one of the constants described in “Load Flag, Symbol Class, and Fragment Locator Constants” (page
252).

u
If the where field has the value kOnDiskFlat, a disk location structure.

Discussion
The fragLocator field of an initialization block contains a fragment location structure that provides
information about the location of a fragment.

Data Types 241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

The fields of a fragment initialization block are aligned in memory in accordance with 680x0 alignment
conventions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragSystem7MemoryLocator
Defines a memory location structure.

struct CFragSystem7MemoryLocator {
 LogicalAddress address;
 UInt32 length;
 Boolean inPlace;
 UInt8 reservedA;
 UInt16 reservedB;
};
typedef struct CFragSystem7MemoryLocator CFragSystem7MemoryLocator;
typedef CFragSystem7MemoryLocator MemFragment;

Fields
address

A pointer to the beginning of the fragment in memory.

length
The length, in bytes, of the fragment.

inPlace
A Boolean value that specifies whether the container’s data section is instantiated in place (true) or
elsewhere (false).

reservedA
This field is reserved for future use. Set to 0.

reservedB
This field is reserved for future use. Set to 0.

Discussion
For fragments located in memory, the inMem field of a fragment location structure contains a memory location
structure, which specifies the location of the fragment in memory.

The fields of a fragment initialization block are aligned in memory in accordance with 680x0 alignment
conventions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

242 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

CFragSystem7SegmentedLocator
Defines a segment location structure.

struct CFragSystem7SegmentedLocator {
 FSSpec * fileSpec;
 OSType rsrcType;
 SInt16 rsrcID;
 UInt16 reservedA;
};
typedef struct CFragSystem7SegmentedLocator CFragSystem7SegmentedLocator;
typedef CFragSystem7SegmentedLocator SegmentedFragment;

Fields
fileSpec

A pointer to a file specification structure (a data structure of type FSSpec) for the resource fork of a
file. This pointer is valid only while the initialization function is executing. If you need to access the
information in the file specification structure at any later time, you must make a copy of that structure.

rsrcType
The resource type of the resource containing the fragment.

rsrcID
The resource ID of the resource containing the fragment.

reservedA
This field is reserved for future use.

Discussion
For fragments located in the resource fork of a file on disk, the inSegs field of a fragment location structure
contains a segment location structure, which specifies the location of the fragment.

The fields of a fragment initialization block are aligned in memory in accordance with 680x0 alignment
conventions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragUsage1Union

union CFragUsage1Union {
 UInt32 appStackSize;
};
typedef union CFragUsage1Union CFragUsage1Union;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

Data Types 243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

CFragUsage2Union

union CFragUsage2Union {
 SInt16 appSubdirID;
 UInt16 libFlags;
};
typedef union CFragUsage2Union CFragUsage2Union;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragWhere1Union

union CFragWhere1Union {
 UInt32 spaceID;
};
typedef union CFragWhere1Union CFragWhere1Union;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

CFragWhere2Union

union CFragWhere2Union {
 UInt16 reserved;
};
typedef union CFragWhere2Union CFragWhere2Union;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CodeFragments.h

ConnectionID

typedef CFragConnectionID ConnectionID;

Availability
Available in Mac OS X v10.0 and later.

244 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Declared In
CodeFragments.h

DiskFragment
A CFragSystem7DiskFlatLocator structure.

typedef CFragSystem7DiskFlatLocator DiskFragment;

Discussion
See CFragSystem7DiskFlatLocator (page 239).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

FragmentLocator
A CFragSystem7Locator structure.

typedef CFragSystem7Locator FragmentLocator;

Discussion
See CFragSystem7Locator (page 241).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

FragmentLocatorPtr

typedef CFragSystem7LocatorPtr FragmentLocatorPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

InitBlock

typedef CFragInitBlock InitBlock;

Availability
Available in Mac OS X v10.0 and later.

Data Types 245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Declared In
CodeFragments.h

InitBlockPtr

typedef CFragInitBlockPtr InitBlockPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

LoadFlags

typedef CFragLoadOptions LoadFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

MemFragment
A CFragSystem7MemoryLocator structure.

typedef CFragSystem7MemoryLocator MemFragment;

Discussion
See CFragSystem7MemoryLocator (page 242).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

SegmentedFragment
A CFragSystem7SegmentedLocator structure.

typedef CFragSystem7SegmentedLocator SegmentedFragment;

Discussion
See CFragSystem7SegmentedLocator (page 243).

Availability
Available in Mac OS X v10.0 and later.

246 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Declared In
CodeFragments.h

SymClass

typedef CFragSymbolClass SymClass;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CodeFragments.h

Constants

Architecture Constants

typedef OSType CFragArchitecture;
enum {
 kPowerPCCFragArch = 'pwpc',
 kMotorola68KCFragArch = 'm68k',
 kAnyCFragArch = 0x3F3F3F3F
};

Constants
kPowerPCCFragArch

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kMotorola68KCFragArch
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kAnyCFragArch
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

Constants 247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Code Fragment Kind

enum {
 kIsCompleteCFrag = 0,
 kFirstCFragUpdate = 1
};

Constants
kIsCompleteCFrag

Indicates a base fragment rather than an update.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kFirstCFragUpdate
Indicates the first update, others are numbered starting with 2.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

248 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Current Resource Version

enum {
 kCurrCFragResourceVersion = 1
};

Default Name Length

enum {
 kDefaultCFragNameLen = 16
};

File Location

#define IsFileLocation CFragHasFileLocation;

kCFragGoesToEOF

enum {
 kCFragGoesToEOF = 0
};

kCFragLibUsageMapPrivatelyMask

enum {
 kCFragLibUsageMapPrivatelyMask = 0x0001
};

Constants
kCFragLibUsageMapPrivatelyMask

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

Constants 249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

kCFragResourceSearchExtensionKind

enum {
 kCFragResourceSearchExtensionKind = 0x30EE
};

kCFragResourceType

enum {
 kCFragResourceType = 'cfrg',
 kCFragResourceID = 0,
 kCFragLibraryFileType = 'shlb',
 kCFragAllFileTypes = 0xFFFFFFFF
};

Constants
kCFragResourceType

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kCFragResourceID
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kCFragLibraryFileType
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kCFragAllFileTypes
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kCompiledCFragArch

enum {
 kCompiledCFragArch = 'kPowerPCCFragArch'
};

Constants
kCompiledCFragArch

The value for this constant is 'kPowerPCCFragArch' if you have defined TARGET_CPU_PPC. If you
define TARGET_CPU_X86, then the value of this constant is 'none'

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

250 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

kLoadCFrag

enum {
 kLoadCFrag = kReferenceCFrag
};

Constants
kLoadCFrag

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kPowerPC

enum {
 kPowerPC = kPowerPCCFragArch,
 kMotorola68K = kMotorola68KCFragArch
};

Constants
kPowerPC

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kMotorola68K
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

Constants 251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Load Flag, Symbol Class, and Fragment Locator Constants

enum {
 kPowerPCArch = kPowerPCCFragArch,
 kMotorola68KArch = kMotorola68KCFragArch,
 kAnyArchType = kAnyCFragArch,
 kNoLibName = 0,
 kNoConnectionID = 0,
 kLoadLib = kLoadCFrag,
 kFindLib = kFindCFrag,
 kNewCFragCopy = kPrivateCFragCopy,
 kLoadNewCopy = kPrivateCFragCopy,
 kUseInPlace = 0x80,
 kCodeSym = kCodeCFragSymbol,
 kDataSym = kDataCFragSymbol,
 kTVectSym = kTVectorCFragSymbol,
 kTOCSym = kTOCCFragSymbol,
 kGlueSym = kGlueCFragSymbol,
 kInMem = kMemoryCFragLocator,
 kOnDiskFlat = kDataForkCFragLocator,
 kOnDiskSegmented = kResourceCFragLocator,
 kIsLib = kImportLibraryCFrag,
 kIsApp = kApplicationCFrag,
 kIsDropIn = kDropInAdditionCFrag,
 kFullLib = kIsCompleteCFrag,
 kUpdateLib = kFirstCFragUpdate,
 kWholeFork = kCFragGoesToEOF,
 kCFMRsrcType = kCFragResourceType,
 kCFMRsrcID = kCFragResourceID,
 kSHLBFileType = kCFragLibraryFileType,
 kUnresolvedSymbolAddress = kUnresolvedCFragSymbolAddress
};

Constants
kPowerPCArch

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kMotorola68KArch
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kAnyArchType
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kNoLibName
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kNoConnectionID
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

252 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

kLoadLib
Specifies that the Code Fragment Manager search for the specified fragment.

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kFindLib
Specifies that the Code Fragment Manager search for the specified fragment and, if it finds it, load it
into memory. If the fragment has already been loaded, it is not loaded again. The Code Fragment
Manager uses the data-instantiation method specified in the fragment’s container (which is either
global or per-connection instantiation).

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kNewCFragCopy
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kLoadNewCopy
Specifies that the Code Fragment Manager load the specified fragment, creating a new copy of any
writable data maintained by the fragment. You specify kLoadNewCopy to obtain one instance per
load of the fragment’s data and to override the data-instantiation method specified in the container
itself. This is most useful for application extensions (for example, drop-in tools).

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kUseInPlace
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kCodeSym
Specifies a code symbol.

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kDataSym
Specifies a data symbol.

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kTVectSym
Specifies a transition vector symbol.

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kTOCSym
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kGlueSym
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

Constants 253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

kInMem
Specifies that the container is in memory. If used in the where parameter of a FragmentLocator
structure, the relevant member of the union is a CFragSystem7SegmentedLocator (page 243)
structure.

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kOnDiskFlat
Specifies that the container is in a data fork. If used in the where parameter of a FragmentLocator
structure, the relevant member of the union is a CFragSystem7SegmentedLocator (page 243)
structure.

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kOnDiskSegmented
Specifies that the container is in a resource. If used in the where parameter of a FragmentLocator
structure, the relevant member of the union is a CFragSystem7SegmentedLocator (page 243)
structure.

Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kIsLib
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kIsApp
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kIsDropIn
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kFullLib
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kUpdateLib
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kWholeFork
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kCFMRsrcType
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kCFMRsrcID
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

254 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

kSHLBFileType
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

kUnresolvedSymbolAddress
Available in Mac OS X v10.0 and later.

Declared in CodeFragments.h.

Discussion
The load flag constants (kLoadLib, kFindLib, and kLoadNewCopy) are used in the loadFlags parameter
of the GetDiskFragment (page 227), GetMemFragment (page 229), and GetSharedLibrary (page 231)
functions to specify the action taken by those functions.

The symbol class constants (kCodeSym, kDataSym, and kTVectSym) are returned in the symClass parameter
of the FindSymbol (page 226) function to specify the class of the specified symbol.

The fragment locator constants (kInMem, kOnDiskFlat, and kOnDiskSegmented) are used in the where
field of the FragmentLocator (page 245) structure to indicate which member of the union u is relevant.

Load Options

typedef OptionBits CFragLoadOptions;
enum {
 kReferenceCFrag = 0x0001,
 kFindCFrag = 0x0002,
 kPrivateCFragCopy = 0x0005
};

Constants
kReferenceCFrag

Try to use existing copy, increment reference counts.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kFindCFrag
Try find an existing copy, do not increment reference counts.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kPrivateCFragCopy
Prepare a new private copy.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

Constants 255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Locator Kind

typedef UInt8 CFragLocatorKind;
enum {
 kMemoryCFragLocator = 0,
 kDataForkCFragLocator = 1,
 kResourceCFragLocator = 2,
 kNamedFragmentCFragLocator = 4,
 kCFBundleCFragLocator = 5,
 kCFBundlePreCFragLocator = 6
};

Constants
kMemoryCFragLocator

Indicates the container is in memory.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kDataForkCFragLocator
Indicates the container is in a file’s data fork.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kResourceCFragLocator
Indicates the container is in a file’s resource fork.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kNamedFragmentCFragLocator
This constant is reserved for future use.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kCFBundleCFragLocator
Indicates the container is in the executable of a CFBundle.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kCFBundlePreCFragLocator
Indicates it was passed to the initialization routines in lieu of kCFBundleCFragLocator

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

256 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Symbol Class Constants

typedef UInt8 CFragSymbolClass;
enum {
 kCodeCFragSymbol = 0,
 kDataCFragSymbol = 1,
 kTVectorCFragSymbol = 2,
 kTOCCFragSymbol = 3,
 kGlueCFragSymbol = 4
};

Constants
kCodeCFragSymbol

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kDataCFragSymbol
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kTVectorCFragSymbol
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kTOCCFragSymbol
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kGlueCFragSymbol
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

Unresolved Symbol Address

enum {
 kUnresolvedCFragSymbolAddress = 0
};

Constants
kUnresolvedCFragSymbolAddress

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

Constants 257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Usage Constants

typedef UInt8 CFragUsage;
enum {
 kImportLibraryCFrag = 0,
 kApplicationCFrag = 1,
 kDropInAdditionCFrag = 2,
 kStubLibraryCFrag = 3,
 kWeakStubLibraryCFrag = 4
};

Constants
kImportLibraryCFrag

Indicates a standard CFM import library.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kApplicationCFrag
Indicates a MacOS application.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kDropInAdditionCFrag
Indicates an application or library private extension/plug-in.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kStubLibraryCFrag
Indicates an import library used for linking only

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kWeakStubLibraryCFrag
Indicates an import library used for linking only and will be automatically weak linked

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

258 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Version Number

typedef UInt32 CFragVersionNumber;
enum {
 kNullCFragVersion = 0,
 kWildcardCFragVersion = 0xFFFFFFFF
};

Constants
kNullCFragVersion

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

kWildcardCFragVersion
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CodeFragments.h.

Result Codes

The most common result codes returned by Code Fragment Manager are listed in the table below. The Code
Fragment Manager may also return paramErr (-50).

DescriptionValueResult Code

The context ID was not valid.-2800cfragContextIDErr

Available in Mac OS X v10.0 and later.

The first value in the range of CFM errors.-2800cfragFirstErrCode

Available in Mac OS X v10.0 and later.

The connection ID was not valid.-2801cfragConnectionIDErr

Available in Mac OS X v10.0 and later.

The specified symbol was not found.-2802cfragNoSymbolErr

Available in Mac OS X v10.0 and later.

The specified section was not found.-2803cfragNoSectionErr

Available in Mac OS X v10.0 and later.

The named library was not found.-2804cfragNoLibraryErr

Available in Mac OS X v10.0 and later.

The registration name was already in use.-2805cfragDupRegistrationErr

Available in Mac OS X v10.0 and later.

Result Codes 259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

DescriptionValueResult Code

A fragment's container format is unknown.-2806cfragFragmentFormatErr

Available in Mac OS X v10.0 and later.

A fragment had "hard" unresolved imports.-2807cfragUnresolvedErr

Available in Mac OS X v10.0 and later.

The registration insertion point was not found.-2808cfragNoPositionErr

Available in Mac OS X v10.0 and later.

Out of memory for internal bookkeeping.-2809cfragNoPrivateMemErr

Available in Mac OS X v10.0 and later.

Out of memory for fragment mapping or section instances.-2810cfragNoClientMemErr

Available in Mac OS X v10.0 and later.

No more CFM IDs for contexts, connections, etc.-2811cfragNoIDsErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-2812cfragInitOrderErr

An import library was too old for a client.-2813cfragImportTooOldErr

Available in Mac OS X v10.0 and later.

An import library was too new for a client.-2814cfragImportTooNewErr

Available in Mac OS X v10.0 and later.

Circularity in required initialization order.-2815cfragInitLoopErr

Available in Mac OS X v10.0 and later.

A boot library has an initialization function. (System 7 only)-2816cfragInitAtBootErr

Available in Mac OS X v10.0 and later.

Internal error during CFM initialization.-2818cfragCFMStartupErr

Available in Mac OS X v10.0 and later.

An internal inconsistency has been detected.-2819cfragCFMInternalErr

Available in Mac OS X v10.0 and later.

A fragment's container was corrupt (known format).-2820cfragFragmentCorruptErr

Available in Mac OS X v10.0 and later.

A fragment's initialization routine returned an error.-2821cfragInitFunctionErr

Available in Mac OS X v10.0 and later.

No application member found in the cfrg resource.-2822cfragNoApplicationErr

Available in Mac OS X v10.0 and later.

260 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

DescriptionValueResult Code

A fragment has an unacceptable architecture.-2823cfragArchitectureErr

Available in Mac OS X v10.0 and later.

A semantic error in usage of the fragment.-2824cfragFragmentUsageErr

Available in Mac OS X v10.0 and later.

A file was too large to be mapped.-2825cfragFileSizeErr

Available in Mac OS X v10.0 and later.

The closure ID was actually a connection ID.-2826cfragNotClosureErr

Available in Mac OS X v10.0 and later.

The registration name was not found.-2827cfragNoRegistrationErr

Available in Mac OS X v10.0 and later.

The fragment container ID was not valid.-2828cfragContainerIDErr

Available in Mac OS X v10.0 and later.

The closure ID was not valid.-2829cfragClosureIDErr

Available in Mac OS X v10.0 and later.

Used by notification handlers to abort a closure.-2830cfragAbortClosureErr

Available in Mac OS X v10.0 and later.

An output parameter is too small to hold the value.-2831cfragOutputLengthErr

Available in Mac OS X v10.0 and later.

A file could not be mapped.-2851cfragMapFileErr

Available in Mac OS X v10.4 and later.

Bundle does not have valid executable file.-2854cfragExecFileRefErr

Available in Mac OS X v10.4 and later.

Could not find standard CFM folder.-2855cfragStdFolderErr

Available in Mac OS X v10.4 and later.

Resource fork could not be opened.-2856cfragRsrcForkErr

Available in Mac OS X v10.4 and later.

'cfrg' resource could not be loaded.-2857cfragCFragRsrcErr

Available in Mac OS X v10.4 and later.

Reserved value for internal warnings.-2897cfragFirstReservedCode

Available in Mac OS X v10.0 and later.

Result Codes 261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

DescriptionValueResult Code

Reserved value for internal warnings.-2897cfragReservedCode_3

Available in Mac OS X v10.0 and later.

Reserved value for internal warnings.-2898cfragReservedCode_2

Available in Mac OS X v10.0 and later.

The last value in the range of CFM errors.-2899cfragLastErrCode

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-2899cfragReservedCode_1

262 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Code Fragment Manager Reference

Framework: CoreServices/CoreServices.h

Declared in Collections.h

Overview

The Collection Manager implements an abstract data type that allows you to store multiple pieces of related
information. This abstract data type is called a collection object. A collection object, or simply a collection,
is an abstract data type that allows you to store information.

A collection is like an array in that it contains a number of individually accessible items. However, a collection
offers some advantages over an array:

 ■ A collection allows for a variable number of data items. You can add items to a collection or remove
items from a collection during run time, and the Collection Manager automatically resizes the collection.

 ■ A collection allows for variable-size items. Each item in a collection can contain data of any size.

A collection is also similar to a database, in that you can store information and retrieve it using a variety of
search mechanisms.

The internal structure of a collection object is private–you must store information in a collection and retrieve
information from it by providing a Collection Manager function with a reference to the collection. You use
the functions provided by the Collection Manager to

 ■ create and manipulate collection objects

 ■ add information to a collection object

 ■ retrieve information from a collection object

 ■ store a collection object to disk and retrieve a collection object from disk

Carbon fully supports the Collection Manager.

Functions by Task

Adding and Replacing Items in a Collection

AddCollectionItem (page 267)
Adds a new item to a collection or to replace an existing item in a collection.

Overview 263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

ReplaceIndexedCollectionItem (page 295)
Replaces the variable-length data of an item in a collection given the item’s index.

Cloning and Copying Collection Objects

CloneCollection (page 270)
Clones a collection object—that is, increment its owner count.

CopyCollection (page 271)
Creates a copy of an existing collection.

CountCollectionOwners (page 272)
Determines the number of existing references to a collection object.

Counting Items in a Collection

CountCollectionItems (page 272)
Determines the total number of items in a collection.

CountTaggedCollectionItems (page 273)
Obtains the total number of items in a collection that have a specified collection tag.

Creating and Disposing of Collection Objects

DisposeCollection (page 274)
Disposes of a collection object.

NewCollection (page 291)
Creates a new, empty collection object.

Editing Item Attributes

SetCollectionItemInfo (page 299)
Edits the attributes of a specific collection item given the item’s collection tag and collection ID.

SetIndexedCollectionItemInfo (page 300)
Edits the attributes of a specific collection item given the item’s collection index.

Flattening and Unflattening a Collection

FlattenCollection (page 275)
Converts a collection object into a stream format suitable for storing and unflattening.

FlattenPartialCollection (page 277)
Converts a collection object into a stream format suitable for storage and unflattening.

UnflattenCollection (page 301)
Unflattens a collection that was flattened using the FlattenCollection or
FlattenPartialCollection function.

264 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Getting and Setting the Default Attributes for a Collection

GetCollectionDefaultAttributes (page 278)
Examines the default attributes of a collection object.

SetCollectionDefaultAttributes (page 298)
Alters the default attributes of a collection object.

Getting and Setting the Exception Procedure for a Collection

GetCollectionExceptionProc (page 279)
Obtains a pointer to the exception procedure installed in a specified collection.

SetCollectionExceptionProc (page 299)
Installs an exception procedure in a collection object.

Getting Information About a Collection Item

GetCollectionItemInfo (page 281)
Obtains information about a specific collection item given the item’s collection tag and collection ID.

GetIndexedCollectionItemInfo (page 285)
Obtains information about a specific collection item given the item’s collection index.

GetTaggedCollectionItemInfo (page 288)
Obtains information about a specific collection item given the item’s collection tag and tag list position.

Getting Information About Collection Tags

CollectionTagExists (page 270)
Determines whether any of the items in a specified collection contain a specified collection tag.

CountCollectionTags (page 273)
Determines the number of distinct collection tags contained by the items of a specified collection.

GetIndexedCollectionTag (page 286)
Examines a specific collection tag contained in a collection.

Reading Collections From Resource Files

GetNewCollection (page 287)
Reads a collection in from a collection ('cltn') resource.

Removing Items From a Collection

EmptyCollection (page 275)
Removes every item in a collection.

Functions by Task 265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

PurgeCollection (page 292)
Removes all items in a collection whose attributes match a specified pattern.

PurgeCollectionTag (page 293)
Removes all items with a specific collection tag from a collection.

RemoveCollectionItem (page 294)
Removes an item from a collection given the item’s associated collection tag and collection ID.

RemoveIndexedCollectionItem (page 295)
Removes an item from a collection given the item’s index.

Retrieving the Variable-Length Data From an Item

GetCollectionItem (page 280)
Obtains a copy of the variable-length data associated with a collection item given the item’s collection
tag and collection ID.

GetIndexedCollectionItem (page 283)
Obtains a copy of the variable-length data associated with a collection item given the item’s collection
index.

GetTaggedCollectionItem (page 287)
Obtains a copy of the variable-length data associated with a collection item given the item’s collection
tag and tag list position.

Working With Macintosh Memory Manager Handles

AddCollectionItemHdl (page 268)
Adds a new item to a collection or to replace an existing item in a collection, specifying the item’s
variable-length data using a handle rather than a pointer and a data size.

FlattenCollectionToHdl (page 276)
Flattens a collection into a Macintosh Memory Manager handle.

GetCollectionItemHdl (page 281)
Obtains a copy of the variable-length data associated with a collection item given the item’s collection
tag and collection ID.

GetIndexedCollectionItemHdl (page 284)
Copies the variable-length data associated with a collection item into a Macintosh Memory Manager
handle, given the item’s collection index.

ReplaceIndexedCollectionItemHdl (page 297)
Replaces the variable-length data of an item in a collection given the item’s collection index, specifying
the item’s new variable-length data using a handle rather than a pointer and a data size.

UnflattenCollectionFromHdl (page 302)
Unflattens a collection that was flattened using the FlattenCollectionToHdl utility function.

Working With Universal Procedure Pointers

NewCollectionExceptionUPP (page 291)
Creates a new universal procedure pointer (UPP) to an error-handling callback.

266 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

InvokeCollectionExceptionUPP (page 290)
Calls an error-handling callback.

DisposeCollectionExceptionUPP (page 274)
Disposes of a universal procedure pointer (UPP) to an error-handling callback.

NewCollectionFlattenUPP (page 292)
Creates a new universal procedure pointer (UPP) to a data-flattening callback.

InvokeCollectionFlattenUPP (page 290)
Calls a data-flattening callback.

DisposeCollectionFlattenUPP (page 275)
Disposes of a universal procedure pointer (UPP) to a data-flattening callback.

Retaining And Releasing

RetainCollection (page 298)
Increments the owner count (the number of existing references) for a collection object.

GetCollectionRetainCount (page 283)
Obtains the owner count (the number of existing references) for a collection object.

ReleaseCollection (page 294)
Decrements the owner count (the number of existing references) for a collection object.

Functions

AddCollectionItem
Adds a new item to a collection or to replace an existing item in a collection.

OSErr AddCollectionItem (
 Collection c,
 CollectionTag tag,
 SInt32 id,
 SInt32 itemSize,
 const void *itemData
);

Parameters
c

A reference to the collection you want to add the item to. The behavior of this function is undefined
if you do not provide a reference to a valid collection object.

tag
The collection tag you want to associate with the new item.

id
The collection ID you want to associate with the new item.

itemSize
The size in bytes of the item’s variable-length data.

Functions 267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

itemData
A pointer to the item’s variable-length data.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
The AddCollectionItem function adds an item to the collection referenced by the c parameter. This new
item contains

 ■ the collection tag specified by the tag parameter

 ■ the collection ID specified by the id parameter

 ■ the attributes specified by the default attributes of the c collection

 ■ the variable-length data specified by the itemSize and itemData parameters

This function copies the information pointed to by the itemData parameter into the new item; after calling
this function, you may alter this information or free the memory pointed to by this parameter without affecting
the collection.

If the c collection already contains an item with the same collection tag and collection ID as specified in the
tag and id parameters, this function removes the original item and replaces it with the new one, unless the
existing item is locked. If it is locked, this function returns a collectionItemLockedErr result code.

The itemSize parameter determines how many bytes of information this function copies into the new item.
If you specify 0 for this parameter, or provide NULL for the itemData parameter, this function copies no
information into the variable-length data of the new item, or removes the variable-length data if the item
already exists.

To lock a collection item, use the functions SetCollectionItemInfo (page 299) and
SetIndexedCollectionItemInfo (page 300).

To replace a collection item using the item’s index (rather than the item’s tag and ID), use the
ReplaceIndexedCollectionItem (page 295) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

AddCollectionItemHdl
Adds a new item to a collection or to replace an existing item in a collection, specifying the item’s
variable-length data using a handle rather than a pointer and a data size.

268 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr AddCollectionItemHdl (
 Collection aCollection,
 CollectionTag tag,
 SInt32 id,
 Handle itemData
);

Parameters
aCollection

A reference to the collection you want to add the item to. The behavior of this function is undefined
if you do not provide a reference to a valid collection object.

tag
The collection tag you want to associate with the new item.

id
The collection ID you want to associate with the new item.

itemData
A Macintosh Memory Manager handle to the item’s variable-length data. This function copies the
information referenced by the itemData parameter into the new item; after calling this function, you
may alter this information or free the memory referenced by this parameter without affecting the
collection.

Return Value
A result code. See “Result Codes” (page 313). If the aCollection collection already contains an item with
the same collection tag and collection ID as specified in the tag and id parameters, this function removes
the variable-length data from the original item and replaces it with the new data, unless the existing item is
locked. If it is locked, this function returns a collectionItemLockedErr result code.

Discussion
The AddCollectionItemHdl function adds an item to the collection referenced by the aCollection
parameter. This new item contains:

 ■ the collection tag specified by the tag parameter

 ■ the collection ID specified by the id parameter

 ■ the attributes specified by the default attributes of the aCollection collection

 ■ the variable-length data specified by the itemData parameter

To add or replace a collection item using a pointer (rather than a handle) to the item’s variable-length data,
use the AddCollectionItem (page 267) function.

To replace a collection item using the item’s collection index (rather than the item’s collection tag and
collection ID), use the ReplaceIndexedCollectionItemHdl (page 297) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

CloneCollection
Clones a collection object—that is, increment its owner count.

Collection CloneCollection (
 Collection c
);

Parameters
c

A reference to the collection object you want to clone. The behavior of this function is undefined if
you do not provide a reference to a valid collection object.

Return Value
A reference to the cloned collection. (This result is effectively a copy of the reference you provide in the c
parameter. See the description of the Collection data type.

Discussion
Typically, you use this function to increment a collection object’s owner count to represent a new reference
to the collection object. For example, if you want two variables in your application to reference a single
collection object, you can use this code to maintain the correct owner count:

firstReference = NewCollection();
secondReference = CloneCollection(firstReference);

Disposing of either reference (using the DisposeCollection function) simply decrements the collection’s
owner count. Disposing of the remaining reference decrements the owner count again and frees the memory
associated with the collection.

To decrement the owner count of a collection object, use the DisposeCollection (page 274) function. To
determine the owner count of an existing collection object, use the CountCollectionOwners (page 272)
function.

To copy a collection object, use the CopyCollection (page 271) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

CollectionTagExists
Determines whether any of the items in a specified collection contain a specified collection tag.

Boolean CollectionTagExists (
 Collection c,
 CollectionTag tag
);

Parameters
c

A reference to the collection object you want to search for a specific collection tag. The behavior of
this function is undefined if you do not provide a reference to a valid collection object.

270 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

tag
The collection tag to search for in the collection.

Return Value
True if the c collection contains any items that contain the specified tag.

Discussion
For information about data types related to collection tags, see CollectionTag (page 306).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

CopyCollection
Creates a copy of an existing collection.

Collection CopyCollection (
 Collection srcCollection,
 Collection dstCollection
);

Parameters
srcCollection

A reference to the collection object you want to copy. The behavior of this function is undefined if
you do not provide a reference to a valid collection object.

dstCollection
A reference to a collection object to contain the copied collection items. You may provide NULL for
this parameter to request that the Collection Manager create a new collection object to hold the
copied information.

Return Value
A reference to the collection object containing the copied information. See the description of the Collection
data type.

Discussion
The CopyCollection function copies all of the information (except the owner count and exception procedure)
from the collection object referenced by the srcCollection parameter into the collection object referenced
by the dstCollection parameter.

If you specify NULL for the dstCollection parameter, this function creates a new collection object to copy
the information into. (This function does not return an error code; it returns NULL if it cannot create a new
collection object.)

To clone a collection object, use the DisposeCollection (page 274) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

CountCollectionItems
Determines the total number of items in a collection.

SInt32 CountCollectionItems (
 Collection c
);

Parameters
c

A reference to the collection object whose items you want to count. The behavior of this function is
undefined if you do not provide a reference to a valid collection object.

Return Value
The total number of items in the c collection.

Discussion
To count the items in a collection that have a specified collection tag, use the
CountTaggedCollectionItems (page 273) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

CountCollectionOwners
Determines the number of existing references to a collection object.

SInt32 CountCollectionOwners (
 Collection c
);

Parameters
c

The collection object whose owner count you want to determine. The behavior of this function is
undefined if you do not provide a reference to a valid collection object.

Return Value
The owner count of the collection object.

Discussion
To increment the owner count of a collection object, use the CloneCollection (page 270) function. To
decrement the owner count of a collection object, use the DisposeCollection (page 274) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

272 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

CountCollectionTags
Determines the number of distinct collection tags contained by the items of a specified collection.

SInt32 CountCollectionTags (
 Collection c
);

Parameters
c

A reference to the collection object whose collection tags you want to count. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

Return Value
The number of distinct collection tags contained by the items of the c collection.

Discussion
For information about data types related to collection tags, see CollectionTag (page 306).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

CountTaggedCollectionItems
Obtains the total number of items in a collection that have a specified collection tag.

SInt32 CountTaggedCollectionItems (
 Collection c,
 CollectionTag tag
);

Parameters
c

A reference to the collection object whose items you want to count. The behavior of this function is
undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the items you want to count.

Return Value
The total number of items in the c collection whose collection tags match the value specified in the tag
parameter.

Discussion
To count all of the items in a collection, use the CountCollectionItems (page 272) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

DisposeCollection
Disposes of a collection object.

void DisposeCollection (
 Collection c
);

Parameters
c

A reference to the collection object you want to dispose of. The behavior of this function is undefined
if you do not provide a reference to a valid collection object.

Discussion
The DisposeCollection function decrements the owner count of the collection object referenced by the
c parameter. If the resulting owner count is 0, this function releases the memory occupied by the collection
object, and the collection object reference contained in the c parameter becomes invalid.

To create a new collection object, use the NewCollection (page 291) function.

To increment the owner count of a collection object, use the CloneCollection (page 270) function. To
determine the owner count of an existing collection object, use the CountCollectionOwners (page 272)
function

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

DisposeCollectionExceptionUPP
Disposes of a universal procedure pointer (UPP) to an error-handling callback.

void DisposeCollectionExceptionUPP (
 CollectionExceptionUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback CollectionExceptionProcPtr (page 303) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

274 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

DisposeCollectionFlattenUPP
Disposes of a universal procedure pointer (UPP) to a data-flattening callback.

void DisposeCollectionFlattenUPP (
 CollectionFlattenUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback CollectionFlattenProcPtr (page 304) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

EmptyCollection
Removes every item in a collection.

void EmptyCollection (
 Collection c
);

Parameters
c

A reference to the collection object you want to empty. The behavior of this function is undefined if
you do not provide a reference to a valid collection object.

Discussion
This function removes every item in the collection referenced by the c parameter. This function provides the
fastest mechanism for emptying a collection.

To remove all of the items in a collection whose attributes match a specified pattern, use the
PurgeCollection (page 292) function.

To remove all of the items in a collection with a specified collection tag, use the PurgeCollectionTag (page
293) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

FlattenCollection
Converts a collection object into a stream format suitable for storing and unflattening.

Functions 275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr FlattenCollection (
 Collection c,
 CollectionFlattenUPP flattenProc,
 void *refCon
);

Parameters
c

A reference to the collection that you want to flatten. The behavior of this function is undefined if
you do not provide a reference to a valid collection object.

flattenProc
A pointer to a callback function you provide to process the flattened stream of bytes.

refCon
A pointer to the reference constant that you want the Collection Manager to pass to your callback
function each time that it calls the callback function. You can use this parameter as a pointer to a
structure containing information your callback function needs to process the blocks of flattened data.

Return Value
A result code. See “Result Codes” (page 313). This function can return any error returned by the callback
function.

Discussion
You could, for example, use this function to copy a collection onto the Clipboard so that it could be pasted
into another application.

The FlattenCollection function flattens into a stream of bytes the collection you specify with the c
parameter. As this function flattens the collection, it repeatedly calls the callback function you specify using
the flattenProc parameter. Each time it calls this function, it provides the callback function with a pointer
to a block of memory containing flattened data. It continues to call this function until it has flattened the
entire collection. Your callback function can process the flattened data in a number of ways: it could copy
the flattened data into a handle-based block of memory, it could write the flattened data to disk, and so on.

When flattening the c collection, this function includes only the collection items whose persistence attribute
is set.

To create a flattened collection that includes only those collection items whose attributes match a specified
pattern, use the FlattenPartialCollection (page 277) function.

To unflatten a flattened collection, use the UnflattenCollection (page 301) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

FlattenCollectionToHdl
Flattens a collection into a Macintosh Memory Manager handle.

276 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr FlattenCollectionToHdl (
 Collection aCollection,
 Handle flattened
);

Parameters
aCollection

The collection that you want to flatten into a handle. The behavior of this function is undefined if you
do not provide a reference to a valid collection object.

flattened
A handle to contain the flattened data. You must provide a valid Macintosh Memory Manager handle
in this parameter. You may specify a handle of size 0; this function resizes the handle as necessary to
hold the flattened data.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
This function flattens the collection referenced by the aCollection parameter into a block of memory
referenced by the handle you provide in the flattened parameter.

To flatten a collection directly to disk, use the FlattenCollection (page 275) function.

To unflatten a collection from a block of memory referenced by a handle, use the
UnflattenCollectionFromHdl (page 302) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

FlattenPartialCollection
Converts a collection object into a stream format suitable for storage and unflattening.

OSErr FlattenPartialCollection (
 Collection c,
 CollectionFlattenUPP flattenProc,
 void *refCon,
 SInt32 whichAttributes,
 SInt32 matchingAttributes
);

Parameters
c

The collection that you want to flatten. The behavior of this function is undefined if you do not provide
a reference to a valid collection object.

flattenProc
A pointer to a function to write data.

Functions 277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

refCon
A reference constant that you want the Collection Manager to pass to your flatten function each time
it calls the flatten function. You can use this parameter as a pointer to a structure containing information
your callback function needs to process the blocks of flattened data.

whichAttributes
A mask indicating which attributes you want to test.

matchingAttributes
An SInt32 word containing the attribute values you want to match.

Return Value
A result code. See “Result Codes” (page 313). This function can return any error returned by the callback
function.

Discussion
With this function, you can include in the flattened collection only those items whose attributes match a
specified pattern.

The FlattenPartialCollection function flattens into a stream of bytes the collection you specify with
the c parameter. It includes only the collection items whose attributes specified by the whichAttributes
parameter match the values specified by the matchingAttributes parameter.

As this function flattens the collection, it repeatedly calls the callback function you specify using the
flattenProc parameter. Each time it calls this function, it provides the callback function with a pointer to
a block of memory containing flattened data. It continues to call this function until it has flattened the entire
collection. Your callback function can process the flattened data in a number of ways: it could copy the
flattened data into a handle-based block of memory, it could write the flattened data to disk, and so on.

When flattening the c collection, this function includes only the collection items whose persistence attribute
is set, regardless of the values you provide in the whichAttributes and matchingAttributes parameters.

To create a flattened collection that includes every item in a collection, use the FlattenCollection (page
275) function.

To unflatten a flattened collection, use the UnflattenCollection (page 301) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetCollectionDefaultAttributes
Examines the default attributes of a collection object.

278 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

SInt32 GetCollectionDefaultAttributes (
 Collection c
);

Parameters
c

A reference to the collection object whose default attributes you want to determine. The behavior of
this function is undefined if you do not provide a reference to a valid collection object.

Return Value
An SInt32 word containing the bit flags that make up the collection’s default attributes.

Discussion
To change the attributes of a collection object, use the SetCollectionDefaultAttributes (page 298)
function.

To examine the attributes of a specific item in a collection, use GetCollectionItemInfo (page 281),
GetIndexedCollectionItemInfo (page 285), and GetTaggedCollectionItemInfo (page 288)

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetCollectionExceptionProc
Obtains a pointer to the exception procedure installed in a specified collection.

CollectionExceptionUPP GetCollectionExceptionProc (
 Collection c
);

Parameters
c

A reference to the collection object whose exception procedure you want to determine. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

Return Value
A pointer to the exception procedure installed in the c collection object. See the description of the
CollectionExceptionUPP data type.

Discussion
To install a new exception procedure in a collection object, use the SetCollectionExceptionProc (page
299) function.

For more information about exception procedures, see CollectionExceptionProcPtr (page 303).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

GetCollectionItem
Obtains a copy of the variable-length data associated with a collection item given the item’s collection tag
and collection ID.

OSErr GetCollectionItem (
 Collection c,
 CollectionTag tag,
 SInt32 id,
 SInt32 *itemSize,
 void *itemData
);

Parameters
c

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item whose data you want to retrieve.

id
The collection ID associated with the item whose data you want to retrieve.

itemSize
A pointer to an SInt32 value indicating the number of bytes of data you want returned in the
itemData parameter. On return, this value indicates the size in bytes of the variable-length data
associated with the specified item. You may specify the constant dontWantSize for this parameter
to indicate that you want to copy all the specified item’s variable-length data and you do not want
to determine the size of this data. You may specify a value for the itemSize parameter that is greater
than the actual number of bytes in the specified item’s variable-length data however, this function
never returns in the itemData parameter more data than contained in the specified item’s
variable-length data.

itemData
A pointer to a block of memory to contain the item’s data. On return, this memory contains a copy
of the data associated with the specified item. You may specify the constant dontWantData for this
parameter if you do not want a copy of the item’s data.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
If you do not know the size of the item you want to retrieve, you typically call this function twice. The first
time you provide a pointer in the itemSize parameter to determine the size of the specified item’s data
and you specify dontWantData for the itemData parameter. Then you allocate a memory block large enough
to hold a copy of the item’s data. Then you call the function a second time. This time you specify the constant
dontWantSize for the itemSize parameter and provide a pointer to the allocated memory block for the
itemData parameter. The function then copies the data into the allocated block of memory.

To retrieve the data associated with a collection item given its collection index (rather than its collection tag
and ID), use the GetIndexedCollectionItem (page 283) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

280 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Declared In
Collections.h

GetCollectionItemHdl
Obtains a copy of the variable-length data associated with a collection item given the item’s collection tag
and collection ID.

OSErr GetCollectionItemHdl (
 Collection aCollection,
 CollectionTag tag,
 SInt32 id,
 Handle itemData
);

Parameters
aCollection

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item whose data you want to retrieve.

id
The collection ID associated with the item whose data you want to retrieve.

itemData
A handle to a block of memory to contain the item’s data. On return, this memory contains a copy of
the data associated with the specified item. You must provide a valid Macintosh Memory Manager
handle for this function to copy the data into.You may specify the constant dontWantData for this
parameter if you do not want a copy of the item’s data.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
You specify a collection object using the aCollection parameter and you specify an item in that collection
using the tag and id parameters.

To retrieve the data associated with a collection item into a block of memory referenced by a pointer (rather
than a handle), use the GetCollectionItem (page 280) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetCollectionItemInfo
Obtains information about a specific collection item given the item’s collection tag and collection ID.

Functions 281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr GetCollectionItemInfo (
 Collection c,
 CollectionTag tag,
 SInt32 id,
 SInt32 *index,
 SInt32 *itemSize,
 SInt32 *attributes
);

Parameters
c

A reference to the collection object containing the item you want to obtain information about. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item you want to obtain information about.

id
The collection ID associated with the item you want to obtain information about.

index
On return, this value represents the collection index of the specified item. You may specify the constant
dontWantIndex for this parameter if you do not want to determine the specified item’s collection
index.

itemSize
On return, this value indicates the size in bytes of the variable-length data associated with the specified
item. You may specify the constant dontWantSize for this parameter to indicate that you do not
want to determine the size of this data.

attributes
On return, this value contains a copy of the attributes associated with the specified item. You may
specify the constant dontWantAttributes for this parameter if you do not want a copy of the item’s
attributes.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
This function returns information in the index, itemSize, and attributes parameters:

 ■ If you provide a pointer in the index parameter, the function uses this parameter to return the collection
index of the specified item. Once you have determined an item’s collection index, you can use it to
specify the item when calling Collection Manager functions, rather than using the item’s collection tag
and collection ID. Specifying collection items using their collection index, rather than using the item’s
collection tag and collection ID, generally results in improved performance.

 ■ If you provide a pointer in the itemSize parameter, the function uses this parameter to return the size
in bytes of the variable-length data associated with the specified collection item.

 ■ If you provide a pointer in the attributes parameter, the function uses this parameter to return a copy
of the attributes associated with the specified collection item.

To obtain information about a collection item using the collection index to specify the item, use the
GetIndexedCollectionItemInfo (page 285) function.

To obtain information about a collection item using the tag and whichItem parameters to specify the item,
use the GetTaggedCollectionItemInfo (page 288) function.

282 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetCollectionRetainCount
Obtains the owner count (the number of existing references) for a collection object.

ItemCount GetCollectionRetainCount (
 Collection c
);

Parameters
c

Discussion
This function performs the same operation as CountCollectionOwners (page 272), but follows the preferred
naming conventions for Carbon and Core Foundation functions.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.1 and later.

Declared In
Collections.h

GetIndexedCollectionItem
Obtains a copy of the variable-length data associated with a collection item given the item’s collection index.

OSErr GetIndexedCollectionItem (
 Collection c,
 SInt32 index,
 SInt32 *itemSize,
 void *itemData
);

Parameters
c

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item whose data you want to retrieve.

Functions 283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

itemSize
A pointer to an SInt32 value indicating the number of bytes of data you want returned in the
itemData parameter. On return, this value indicates the size in bytes of the variable-length data
associated with the specified item. You may specify the constant dontWantSize for this parameter
to indicate that you want to copy all of the specified item’s variable-length data and you do not want
to determine the size of this data. You may specify a value for the itemSize parameter that is greater
than the actual number of bytes in the specified item’s variable-length data however, this function
never returns in the itemData parameter more data than contained in the specified item’s
variable-length data.

itemData
A pointer to a block of memory to contain the item’s data. On return, this memory contains a copy
of the data associated with the specified item. You may specify the constant dontWantData for this
parameter if you do not want a copy of the item’s data.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
If you do not know the size of the item you want to retrieve, you typically call this function twice. The first
time you provide a pointer in the itemSize parameter to determine the size of the specified item’s data
and you specify the constant dontWantData for the itemData parameter. Then you allocate a memory
block large enough to hold a copy of the item’s data. Then you call the function a second time. This time
you specify the constant dontWantSize for the itemSize parameter and provide a pointer to the allocated
memory block for the itemData parameter. The function then copies the data into the allocated block of
memory.

To retrieve the data associated with a collection item given its collection tag and ID (rather than its collection
index), use the GetCollectionItem (page 280) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetIndexedCollectionItemHdl
Copies the variable-length data associated with a collection item into a Macintosh Memory Manager handle,
given the item’s collection index.

OSErr GetIndexedCollectionItemHdl (
 Collection aCollection,
 SInt32 index,
 Handle itemData
);

Parameters
aCollection

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item whose data you want to retrieve.

284 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

itemData
A handle to a block of memory to contain the item’s data. On return, this memory contains a copy of
the data associated with the specified item.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
To retrieve the data associated with a collection item into a block of memory referenced by a pointer (rather
than a handle), use the GetCollectionItem (page 280) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetIndexedCollectionItemInfo
Obtains information about a specific collection item given the item’s collection index.

OSErr GetIndexedCollectionItemInfo (
 Collection c,
 SInt32 index,
 CollectionTag *tag,
 SInt32 *id,
 SInt32 *itemSize,
 SInt32 *attributes
);

Parameters
c

A reference to the collection object containing the item you want to obtain information about. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item you want to obtain information about.

tag
A pointer to a collection tag. On return, the collection tag associated with the specified item. You may
specify the constant dontWantTag for this parameter if you do not want to determine the specified
item’s collection tag.

id
A pointer to an SInt32 value. On return, the collection ID associated with the specified item. You
may specify the constant dontWantId for this parameter if you do not want to determine the specified
item’s collection ID.

itemSize
A pointer to an SInt32 value. On return, this value indicates the size in bytes of the data associated
with the specified item. You may specify the constant dontWantSize for this parameter if you do
not want to determine the specified item’s data size.

Functions 285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

attributes
A pointer to an SInt32 value. On return, this value contains a copy of the attributes associated with
the specified item. You may specify the constant dontWantAttributes for this parameter if you do
not want a copy of the item’s attributes.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
To obtain information about a collection item using the collection tag and collection ID to specify the item,
use the GetCollectionItemInfo (page 281) function.

To obtain information about a collection item using the collection tag and tag list position to specify the
item, use the GetTaggedCollectionItemInfo (page 288) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetIndexedCollectionTag
Examines a specific collection tag contained in a collection.

OSErr GetIndexedCollectionTag (
 Collection c,
 SInt32 tagIndex,
 CollectionTag *tag
);

Parameters
c

The collection from which to obtain a specific collection tag. The behavior of this function is undefined
if you do not provide a reference to a valid collection object.

tagIndex
The position of the desired collection tag in the c collection’s list of distinct collection tags.

tag
A pointer to a collection tag. On return, the collection tag that lies at the specified position in the list
of distinct collection tags contained in the c collection.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
Each collection object contains a number of distinct collection tags. By sequentially incrementing the value
of the tagIndex parameter from 1 to the result of the CountCollectionTags (page 273) function, you can
use this function to determine every collection tag contained in a collection.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

286 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Declared In
Collections.h

GetNewCollection
Reads a collection in from a collection ('cltn') resource.

Collection GetNewCollection (
 SInt16 collectionID
);

Parameters
collectionID

The resource ID associated with the collection resource from which you want to create the new
collection object.

Return Value
A reference to the new collection object. If this function does not find a collection resource with the specified
resource ID, it returns NULL as the function result. See the description of the Collection data type.

Discussion
This function searches the current resource file path for a collection ('cltn') resource with the resource ID
specified by the collectionID parameter. If it finds such a resource, this function creates a new collection
object, initializes it with the information stored in the resource, and returns a reference to it as the function
result.

You can use the MemError and ResError functions to check for other errors after calling this function.

For information about collection resources, see ‘cltn’.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetTaggedCollectionItem
Obtains a copy of the variable-length data associated with a collection item given the item’s collection tag
and tag list position.

OSErr GetTaggedCollectionItem (
 Collection c,
 CollectionTag tag,
 SInt32 whichItem,
 SInt32 *itemSize,
 void *itemData
);

Parameters
c

A reference to the collection object containing the item whose data you want to retrieve. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

Functions 287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

tag
The collection tag associated with the item whose data you want to retrieve.

whichItem
The tag list position associated with the specific item.

itemSize
A pointer to an SInt32 value indicating the number of bytes of data you want returned in the
itemData parameter. On return, this value indicates the size in bytes of the variable-length data
associated with the specified item. You may specify the constant dontWantSize for this parameter
to indicate that you want to copy all of the specified item’s variable-length data and you do not want
to determine the size of this data.

itemData
A pointer to a block of memory to contain the item’s data. On return, this memory contains a copy
of the data associated with the specified item. You may specify the constant dontWantData for this
parameter if you do not want a copy of the item’s data.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
Remember that a tag list position is the sequential index that determines an item given a specific collection
tag. For example:

 ■ A whichItem value of 1 indicates the first item with the specified tag.

 ■ A whichItem value of 2 indicates the second item with the specified tag.

By sequentially incrementing the whichItem parameter, you can use this function to step through all of the
items in a collection without knowing their collection IDs.

If you do not know the size of the item you want to retrieve, you typically call this function twice. The first
time you provide a pointer in the itemSize parameter to determine the size of the specified item’s data
and you specify the constant dontWantData for the itemData parameter. Then you allocate a memory
block large enough to hold a copy of the item’s data. Then you call the function a second time. This time
you specify the constant dontWantSize for the itemSize parameter and provide a pointer to the allocated
memory block for the itemData parameter. The function then copies the data into the allocated block of
memory.

To retrieve the data associated with a collection item given its collection tag and ID, use the
GetCollectionItem (page 280) function.

To retrieve the data associated with a collection item given its collection index, use the
GetIndexedCollectionItem (page 283) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

GetTaggedCollectionItemInfo
Obtains information about a specific collection item given the item’s collection tag and tag list position.

288 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr GetTaggedCollectionItemInfo (
 Collection c,
 CollectionTag tag,
 SInt32 whichItem,
 SInt32 *id,
 SInt32 *index,
 SInt32 *itemSize,
 SInt32 *attributes
);

Parameters
c

A reference to the collection object containing the item you want to obtain information about. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item you want to obtain information about.

whichItem
The tag list position of the item you want to obtain information about.

id
A pointer to an SInt32 value. On return, this value represents the collection ID associated with the
specified item. You may specify the constant dontWantId for this parameter if you do not want to
determine the specified item’s collection ID.

index
A pointer to an SInt32 value. On return, this value represents the collection index of the specified
item. You may specify the constant dontWantIndex for this parameter if you do not want to determine
the specified item’s collection index.

itemSize
A pointer to an SInt32 value. On return, this value indicates the size in bytes of the data associated
with the specified item. You may specify the constant dontWantSize for this parameter if you do
not want to determine the specified item’s data size.

attributes
A pointer. On return, this value contains a copy of the attributes associated with the specified item.
You may specify the constant dontWantAttributes for this parameter if you do not want a copy
of the item’s attributes.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
Remember that a collection tag and a tag list position uniquely identify a collection item. The tag list position
indicates where the collection item would lie in a list made up of all the collection items with the same
collection tag. For example:

 ■ A whichItem value of 1 indicates the first item with the specified tag.

 ■ A whichItem value of 2 indicates the second item with the specified tag.

By sequentially incrementing the whichItem parameter, you can use this function to step through all of the
items in a collection that share a collection tag without knowing their collection IDs.

To obtain information about a collection item using the collection tag and collection ID to specify the item,
use the GetCollectionItemInfo (page 281) function.

Functions 289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

To obtain information about a collection item using the collection index to specify the item, use the
GetIndexedCollectionItemInfo (page 285) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

InvokeCollectionExceptionUPP
Calls an error-handling callback.

OSErr InvokeCollectionExceptionUPP (
 Collection c,
 OSErr status,
 CollectionExceptionUPP userUPP
);

Discussion
You should not need to use the function InvokeCollectionExceptionUPP, as the system calls your
error-handling callback function for you. See the callback CollectionExceptionProcPtr (page 303) for
more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

InvokeCollectionFlattenUPP
Calls a data-flattening callback.

OSErr InvokeCollectionFlattenUPP (
 SInt32 size,
 void *data,
 void *refCon,
 CollectionFlattenUPP userUPP
);

Discussion
You should not need to use the function InvokeCollectionFlattenUPP, as the system calls your
data-flattening callback function for you. See the callback CollectionFlattenProcPtr (page 304) for more
information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

290 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Declared In
Collections.h

NewCollection
Creates a new, empty collection object.

Collection NewCollection (
 void
);

Return Value
A reference to the newly created collection object. The new collection contains no items and has an owner
count of 1. The NewCollection function does not return an error code; it returns NULL if it cannot create
a new collection object. See the description of the Collection data type.

Discussion
The NewCollection function allocates memory for a new collection object, initializes it, and returns a
reference to it.

To create a copy of an existing collection object, use the CopyCollection (page 271) function.

Special Considerations

You are responsible for disposing of collection objects that you create with this function when you no longer
need them. To dispose of a collection object, use the DisposeCollection (page 274) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

NewCollectionExceptionUPP
Creates a new universal procedure pointer (UPP) to an error-handling callback.

CollectionExceptionUPP NewCollectionExceptionUPP (
 CollectionExceptionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your error-handling callback.

Return Value
On return, a UPP to the error-handling callback. See the description of the CollectionExceptionUPP data
type.

Discussion
See the callback CollectionExceptionProcPtr (page 303) for more information.

Availability
Available in CarbonLib 1.0 and later.

Functions 291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Available in Mac OS X 10.0 and later.

Declared In
Collections.h

NewCollectionFlattenUPP
Creates a new universal procedure pointer (UPP) to a data-flattening callback.

CollectionFlattenUPP NewCollectionFlattenUPP (
 CollectionFlattenProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your data-flattening callback.

Return Value
On return, a UPP to the data-flattening callback. See the description of the CollectionFlattenUPP data
type.

Discussion
See the callback CollectionFlattenProcPtr (page 304) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

PurgeCollection
Removes all items in a collection whose attributes match a specified pattern.

void PurgeCollection (
 Collection c,
 SInt32 whichAttributes,
 SInt32 matchingAttributes
);

Parameters
c

A reference to the collection object containing the items you want to remove. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

whichAttributes
A mask indicating which attributes you want to test. You should set the bits of the parameter that
correspond to the attributes you want to test.

matchingAttributes
An SInt32 word containing the values of the attributes you want to match.

292 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Discussion
The PurgeCollection function removes from the c collection any items whose attributes match the criteria
you specify in the whichAttributes and matchingAttributes parameters.

This function compares the specified attributes of each item in the c collection with the corresponding
attributes in the matchingAttributes parameter. If the values of all the specified attributes match, the
function removes the item. To avoid purging locked items, you should clear the lock attribute in the
whichAttributes and matchingAttributes parameters.

To remove all of the items in a collection with a specified collection tag, use the PurgeCollectionTag (page
293) function.

To remove every item in a collection, use the EmptyCollection (page 275) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

PurgeCollectionTag
Removes all items with a specific collection tag from a collection.

void PurgeCollectionTag (
 Collection c,
 CollectionTag tag
);

Parameters
c

A reference to the collection object containing the items you want to remove. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the items to remove.

Discussion
The PurgeCollectionTag function removes from the c collection all items whose collection tag matches
the value of the tag parameter. This function removes locked and unlocked items.

To remove all of the items in a collection whose attributes match a specified pattern, use the
PurgeCollection (page 292) function.

To remove every item in a collection, use the EmptyCollection (page 275) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Functions 293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

ReleaseCollection
Decrements the owner count (the number of existing references) for a collection object.

OSStatus ReleaseCollection (
 Collection c
);

Parameters
c

Return Value
A result code. See “Result Codes” (page 313).

Discussion
This function performs the same operation as DisposeCollection (page 274), but follows the preferred
naming conventions for Carbon and Core Foundation functions.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.1 and later.

Declared In
Collections.h

RemoveCollectionItem
Removes an item from a collection given the item’s associated collection tag and collection ID.

OSErr RemoveCollectionItem (
 Collection c,
 CollectionTag tag,
 SInt32 id
);

Parameters
c

A reference to the collection object from which you want to remove the item. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item you want to remove.

id
The collection ID associated with the item you want to remove.

Return Value
A result code. See “Result Codes” (page 313). If the c collection does not contain an item whose collection
tag and collection ID match the values in the tag and id parameters, this function returns a
collectionItemNotFoundErr result code.

Discussion
The RemoveCollectionItem function removes the item specified by the tag and id parameters from the
collection referenced by the c parameter. This function removes the specified item even if its lock attribute
is set.

294 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

To remove a collection item using the item’s index (rather than the item’s tag and ID), use the
RemoveIndexedCollectionItem (page 295) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

RemoveIndexedCollectionItem
Removes an item from a collection given the item’s index.

OSErr RemoveIndexedCollectionItem (
 Collection c,
 SInt32 index
);

Parameters
c

A reference to the collection object from which you want to remove the item. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

index
The collection index of the item you want to remove.

Return Value
A result code. See “Result Codes” (page 313). If the c collection does not contain an item whose collection
index matches the values in the index parameter, this function returns a collectionIndexRangeErr result
code.

Discussion
The RemoveIndexedCollectionItem function removes the item specified by the index parameter from
the collection referenced by the c parameter. This function removes the specified item even if its lock attribute
is set.

To remove a collection item using the item’s tag and ID (rather than the item’s index), use the
RemoveCollectionItem (page 294) function.

To replace an item in a collection, use the function ReplaceIndexedCollectionItem (page 295).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

ReplaceIndexedCollectionItem
Replaces the variable-length data of an item in a collection given the item’s index.

Functions 295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr ReplaceIndexedCollectionItem (
 Collection c,
 SInt32 index,
 SInt32 itemSize,
 const void *itemData
);

Parameters
c

A reference to the collection containing the item you want to replace. The behavior of this function
is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item to replace.

itemSize
The item’s size. The itemSize parameter determines how many bytes of information this function
copies into the new item. If you specify 0 for this parameter, or provide NULL for the itemData
parameter, this function copies no information into the variable-length data of the new item, or
removes the variable-length data if the item already exists.

itemData
A pointer to the item’s data. This function copies the information pointed to by the itemData
parameter into the new item; after calling this function, you may alter this information or free the
memory pointed to by this parameter without affecting the collection.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
You specify which item to replace using the index parameter. If the c collection does not contain an item
whose collection index matches the value of the index parameter, this function returns a
collectionIndexRangeErr result code.

If the c collection does contain an item with the specified index, this function replaces that item with a new
item (if the existing item is not locked—if it is, this function returns a collectionItemLockedErr result
code). The new item contains

 ■ the same collection tag as the original item

 ■ the same collection ID as the original item

 ■ the same attributes as the original item

 ■ the variable-length data specified by the itemSize and itemData parameters

To lock a collection item, use the functions SetCollectionItemInfo (page 299) and
SetIndexedCollectionItemInfo (page 300).

To replace a collection item using the item’s tag and ID (rather than the item’s index), use the
AddCollectionItem (page 267) function.

To remove an item from a collection, use the functions RemoveCollectionItem (page 294),
RemoveIndexedCollectionItem (page 295),PurgeCollection (page 292),PurgeCollectionTag (page
293), and EmptyCollection (page 275).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.

296 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Available in Mac OS X 10.0 and later.

Declared In
Collections.h

ReplaceIndexedCollectionItemHdl
Replaces the variable-length data of an item in a collection given the item’s collection index, specifying the
item’s new variable-length data using a handle rather than a pointer and a data size.

OSErr ReplaceIndexedCollectionItemHdl (
 Collection aCollection,
 SInt32 index,
 Handle itemData
);

Parameters
aCollection

A reference to the collection containing the item you want to replace. The behavior of this function
is undefined if you do not provide a reference to a valid collection object.

index
The collection index associated with the item you want to replace.

itemData
A Macintosh Memory Manager handle to the new variable-length data. This function copies the
information referenced by the itemData parameter into the collection item; after calling this function,
you may alter this information or free the memory referenced by this parameter without affecting
the collection.

Return Value
A result code. See “Result Codes” (page 313). If the aCollection collection does not contain an item whose
collection index matches the value of the index parameter, this function returns a
collectionIndexRangeErr result code.

Discussion
If the aCollection collection does contain an item with the specified index, this function replaces the data
in that item with new data (if the existing item is not locked—if it is, this function returns a
collectionItemLockedErr result code). The resulting item contains

 ■ the same collection tag as the original item

 ■ the same collection ID as the original item

 ■ the same attributes as the original item

 ■ the variable-length data specified by the itemData parameter

To replace a collection item using a pointer (rather than a handle) to the item’s variable-length data, use the
ReplaceIndexedCollectionItem (page 295) function.

To replace a collection item using the item’s collection tag and collection ID (rather than the item’s collection
index), use the AddCollectionItemHdl (page 268) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.

Functions 297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Available in Mac OS X 10.0 and later.

Declared In
Collections.h

RetainCollection
Increments the owner count (the number of existing references) for a collection object.

OSStatus RetainCollection (
 Collection c
);

Parameters
c

Return Value
A result code. See “Result Codes” (page 313).

Discussion
This function performs the same operation as CloneCollection (page 270), but follows the preferred naming
conventions for Carbon and Core Foundation functions.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.1 and later.

Declared In
Collections.h

SetCollectionDefaultAttributes
Alters the default attributes of a collection object.

void SetCollectionDefaultAttributes (
 Collection c,
 SInt32 whichAttributes,
 SInt32 newAttributes
);

Parameters
c

A reference to the collection object whose default attributes you want to alter. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

whichAttributes
A mask indicating which bit flags in the c collection’s default attributes you want to alter. For every
bit in the whichAttributes parameter, this function takes one of two actions:

 ■ If the bit is set, this function copies the value of the corresponding bit from the newAttributes
parameter into the corresponding bit of the default attributes of the c collection.

 ■ If the bit is not set, the corresponding bit of the c collection’s default attributes remains unchanged.

298 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

newAttributes
The new values for the bit flags.

Discussion
To examine the attributes of a collection object, use the GetCollectionDefaultAttributes (page 278)
function.

To change the attributes of a specific item in a collection, use the functions SetCollectionItemInfo (page
299) and SetIndexedCollectionItemInfo (page 300).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

SetCollectionExceptionProc
Installs an exception procedure in a collection object.

void SetCollectionExceptionProc (
 Collection c,
 CollectionExceptionUPP exceptionProc
);

Parameters
c

A reference to the collection object whose exception procedure you want to change. The behavior
of this function is undefined if you do not provide a reference to a valid collection object.

exceptionProc
A pointer to the new exception procedure.

Discussion
The SetCollectionExceptionProc function copies the function pointer from the exceptionProc
parameter into the collection object referenced by the c parameter.

To obtain a pointer to an existing exception procedure in a collection object, use the
GetCollectionExceptionProc (page 279) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

SetCollectionItemInfo
Edits the attributes of a specific collection item given the item’s collection tag and collection ID.

Functions 299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr SetCollectionItemInfo (
 Collection c,
 CollectionTag tag,
 SInt32 id,
 SInt32 whichAttributes,
 SInt32 newAttributes
);

Parameters
c

A reference to the collection object containing the item whose attributes you want to edit. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

tag
The collection tag associated with the item whose attributes you want to edit.

id
The collection ID associated with the item whose attributes you want to edit.

whichAttributes
A mask indicating which attributes you want to edit.

newAttributes
An SInt32 word containing the new settings for the attributes.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
This function copies bit values from the newAttributes parameter to the attributes associated with the
specified item.

This function uses the whichAttributes parameter to determine which bits to copy. For every bit in the
whichAttributes parameter, this function takes one of two actions:

 ■ If the bit is set, this function copies the value of the corresponding bit from the newAttributes parameter
into the corresponding bit of the attributes associated with the specified item.

 ■ If the bit is not set, the corresponding bit of the specified item’s attributes remains unchanged.

The whichAttributes parameter allows you to change the values of specific bits in the specified item’s
attributes without affecting the values of other bits.

To obtain information about a collection item using the collection index to specify the item, use the
SetIndexedCollectionItemInfo (page 300) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

SetIndexedCollectionItemInfo
Edits the attributes of a specific collection item given the item’s collection index.

300 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr SetIndexedCollectionItemInfo (
 Collection c,
 SInt32 index,
 SInt32 whichAttributes,
 SInt32 newAttributes
);

Parameters
c

A reference to the collection object containing the item whose attributes you want to edit. The
behavior of this function is undefined if you do not provide a reference to a valid collection object.

index
The collection index of the item whose attributes you want to edit.

whichAttributes
A mask indicating which attributes you want to edit.

newAttributes
An SInt32 word containing the new settings for the attributes.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
The SetIndexedCollectionItemInfo function copies bit values from the newAttributes parameter to
the attributes associated with the specified item.

This function uses the whichAttributes parameter to determine which bits to copy. For every bit in the
whichAttributes parameter, this function takes one of two actions:

 ■ If the bit is set, this function copies the value of the corresponding bit from the newAttributes parameter
into the corresponding bit of the attributes associated with the specified item.

 ■ If the bit is not set, the corresponding bit of the specified item’s attributes remains unchanged.

The whichAttributes parameter allows you to change the values of specific bits in the specified item’s
attributes without affecting the values of other bits.

To edit the attributes of collection item using the collection tag and collection ID (rather than the collection
index) to specify the item, use the SetCollectionItemInfo (page 299) function.

To examine the attributes of a collection item, use the functions GetCollectionItemInfo (page 281),
GetIndexedCollectionItemInfo (page 285), and GetTaggedCollectionItemInfo (page 288).

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

UnflattenCollection
Unflattens a collection that was flattened using the FlattenCollection or FlattenPartialCollection
function.

Functions 301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr UnflattenCollection (
 Collection c,
 CollectionFlattenUPP flattenProc,
 void *refCon
);

Parameters
c

A reference to the collection object you want to create from the flattened data. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

flattenProc
A pointer to a function to read in flattened data.

refCon
A reference constant that you want the Collection Manager to pass to your callback function each
time it calls the callback function. You can use this parameter as a pointer to a structure containing
information your callback function needs when reading the blocks of flattened data.

Return Value
A result code. See “Result Codes” (page 313). This function can return any error returned by the callback
function.

Discussion
The UnflattenCollection function unflattens a stream of bytes into the collection object you specify
with the c parameter.

As this function unflattens the collection, it repeatedly calls the callback function you specify using the
flattenProc parameter. Each time it calls this function, it provides the callback function with a pointer to
a block of memory and a requested size. The callback function is responsible for reading the next set of bytes
from the flattened byte stream and copying the data into the block of memory.

The Collection Manager continues to call your callback function, requesting more of the flattened stream of
bytes each time, until it has unflattened the entire collection. Your callback function can read the flattened
data from any source you choose: it could read the flattened data from a handle-based block of memory, it
could read the flattened data from disk, and so on.

To create a flattened collection that includes only those collection items whose attributes match a specified
pattern, use the FlattenPartialCollection (page 277) function.

To create a flattened collection that includes every item in a collection, use the FlattenCollection (page
275) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

UnflattenCollectionFromHdl
Unflattens a collection that was flattened using the FlattenCollectionToHdl utility function.

302 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

OSErr UnflattenCollectionFromHdl (
 Collection aCollection,
 Handle flattened
);

Parameters
aCollection

A reference to a collection object in which to store the unflattened information. The behavior of this
function is undefined if you do not provide a reference to a valid collection object.

flattened
A handle to the data that was previously flattened. You must provide a valid Macintosh Memory
Manager handle in this parameter.

Return Value
A result code. See “Result Codes” (page 313).

Discussion
To unflatten a collection directly from disk, use the UnflattenCollection (page 301) function.

To flatten a collection to a block of memory referenced by a handle, use the FlattenCollectionToHdl (page
276) function.

Availability
Available in CarbonLib 1.0 and later when Collections 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
Collections.h

Callbacks

CollectionExceptionProcPtr
Defines a pointer to an error handling callback function that handles errors that occur when operating on a
collection object.

typedef OSErr (*CollectionExceptionProcPtr) (Collection c, OSErr status);

If you name your function MyCollectionExceptionProc, you would declare it like this:

OSErr MyCollectionExceptionProc (
 Collection c,
 OSErr status
);

Parameters
c

A reference to the collection object for which the error occurred.

status
The result code associated with the error that occurred.

Callbacks 303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Return Value
A result code. See “Result Codes” (page 313).

Discussion
You create this function to install in a collection object using the SetCollectionExceptionProc (page
299) function. Subsequently, whenever the Collection Manager is operating on that collection object and an
error occurs, the Collection Manager calls this function, sending it a reference to the collection for which the
error occurred and the result code associated with the error. You can use this information to handle the error
appropriately for your application.

You can use an exception procedure to respond to an error in a number of ways:

 ■ You can change the error from one result code to another by returning as the function result the new
result code.

 ■ You can handle the error and return the noErr error code, which indicates that the Collection Manager
should return control to the place in your application that generated the error, as if no error had occurred.

 ■ You can use the ANSI C functions setjmp and longjmp to jump out of the exception procedure into
code to handle the error.

To install an exception procedure in a collection object, use the SetCollectionExceptionProc (page 299)
function.

To obtain a pointer to an existing exception procedure in a collection object, use the
GetCollectionExceptionProc (page 279) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

CollectionFlattenProcPtr
Defines a pointer to a flattening callback function that reads or writes flattened collection data.

typedef OSErr (*CollectionFlattenProcPtr)
(
 SInt32 size,
 void * data,
 void * refCon
);

If you name your function MyCollectionFlattenProc, you would declare it like this:

OSErr MyCollectionFlattenProc (
 SInt32 size,
 void * data,
 void * refCon
);

304 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Parameters
size

The size of the block of flattened data to read or write.Your function should read or copy the requested
number of bytes of flattened data into the block of memory pointed to by the data parameter.

data
A pointer to the block of flattened data. When flattening, this pointer points to the data your callback
function should write. When unflattening, your callback function should read flattened data into the
memory pointed to by this parameter.

refCon
A value you provide to the FlattenCollection function or UnflattenCollection function that
the Collection Manager passes on to your callback function. You can use this parameter as a pointer
to a structure containing relevant state information you need when reading or writing the flattened
data.

Return Value
A result code. See “Result Codes” (page 313). If the execution of this function results in any fatal error, you
should return the error code back to the Collection Manager as the function result. If the function executes
successfully, you should return the noErr error code as the function result.

Discussion
You create this function to pass to the FlattenCollection (page 275), FlattenPartialCollection (page
277), and UnflattenCollection (page 301) functions when flattening or unflattening a collection.

As the Collection Manager is flattening a collection, it repeatedly calls this callback function to process
sequential blocks of flattened data. Each time it calls this function, it provides a pointer to the current block
of flattened data in the data parameter and the size of the current block in the size parameter. You can
process this data in a number of ways: appending it to a handle-based block of memory, writing it to disk,
and so on.

When unflattening a collection, the Collection Manager repeatedly calls this function to obtain blocks of
flattened data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

Data Types

Collection
Defines defines a reference to an opaque type that your compiler can type-check.

typedef struct OpaqueCollection * Collection;

Discussion
The Collection Manager provides you with access to a collection object through a Collection reference.
The Collection type defines a reference type that your compiler can type-check; it does not define a pointer
to a publicly defined data structure. The contents of the collection object are private; you must use the
Collection Manager functions to manipulate collection objects.

Data Types 305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

CollectionExceptionUPP
Defines a universal procedure pointer to an error-handling callback.

typedef CollectionExceptionProcPtr CollectionExceptionUPP;

Discussion
For more information, see the description of the CollectionExceptionProcPtr (page 303) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

CollectionFlattenUPP
Defines a universal procedure pointer to a data-flattening callback.

typedef CollectionFlattenProcPtr CollectionFlattenUPP;

Discussion
For more information, see the description of the CollectionFlattenProcPtr (page 304)callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

CollectionTag
Defines a data type for a collection tag.

typedef FourCharCode CollectionTag;

Discussion
Each item in a collection is uniquely identified by its collection tag and its collection ID. The collection tag is
a four-character identifier, similar to the identifiers used for resources.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Collections.h

306 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Constants

Attribute Bit Masks
Used to test or set a particular collection item attribute.

enum {
 kCollectionUser0Mask = 1L << kCollectionUser0Bit,
 kCollectionUser1Mask = 1L << kCollectionUser1Bit,
 kCollectionUser2Mask = 1L << kCollectionUser2Bit,
 kCollectionUser3Mask = 1L << kCollectionUser3Bit,
 kCollectionUser4Mask = 1L << kCollectionUser4Bit,
 kCollectionUser5Mask = 1L << kCollectionUser5Bit,
 kCollectionUser6Mask = 1L << kCollectionUser6Bit,
 kCollectionUser7Mask = 1L << kCollectionUser7Bit,
 kCollectionUser8Mask = 1L << kCollectionUser8Bit,
 kCollectionUser9Mask = 1L << kCollectionUser9Bit,
 kCollectionUser10Mask = 1L << kCollectionUser10Bit,
 kCollectionUser11Mask = 1L << kCollectionUser11Bit,
 kCollectionUser12Mask = 1L << kCollectionUser12Bit,
 kCollectionUser13Mask = 1L << kCollectionUser13Bit,
 kCollectionUser14Mask = 1L << kCollectionUser14Bit,
 kCollectionUser15Mask = 1L << kCollectionUser15Bit,
 kCollectionReserved0Mask = 1L << kCollectionReserved0Bit,
 kCollectionReserved1Mask = 1L << kCollectionReserved1Bit,
 kCollectionReserved2Mask = 1L << kCollectionReserved2Bit,
 kCollectionReserved3Mask = 1L << kCollectionReserved3Bit,
 kCollectionReserved4Mask = 1L << kCollectionReserved4Bit,
 kCollectionReserved5Mask = 1L << kCollectionReserved5Bit,
 kCollectionReserved6Mask = 1L << kCollectionReserved6Bit,
 kCollectionReserved7Mask = 1L << kCollectionReserved7Bit,
 kCollectionReserved8Mask = 1L << kCollectionReserved8Bit,
 kCollectionReserved9Mask = 1L << kCollectionReserved9Bit,
 kCollectionReserved10Mask = 1L << kCollectionReserved10Bit,
 kCollectionReserved11Mask = 1L << kCollectionReserved11Bit,
 kCollectionReserved12Mask = 1L << kCollectionReserved12Bit,
 kCollectionReserved13Mask = 1L << kCollectionReserved13Bit,
 kCollectionPersistenceMask = 1L << kCollectionPersistenceBit,
 kCollectionLockMask = 1L << kCollectionLockBit
};

Discussion
Using the attribute bit numbers, the Collection Manager provides convenient attribute masks for each of the
attributes. You can use these attribute masks when testing or setting a particular collection item attribute.

Attribute Bit Masks (Old)
Used to test or set a particular collection item attribute.

Constants 307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

enum {
 collectionUser0Mask = kCollectionUser0Mask,
 collectionUser1Mask = kCollectionUser1Mask,
 collectionUser2Mask = kCollectionUser2Mask,
 collectionUser3Mask = kCollectionUser3Mask,
 collectionUser4Mask = kCollectionUser4Mask,
 collectionUser5Mask = kCollectionUser5Mask,
 collectionUser6Mask = kCollectionUser6Mask,
 collectionUser7Mask = kCollectionUser7Mask,
 collectionUser8Mask = kCollectionUser8Mask,
 collectionUser9Mask = kCollectionUser9Mask,
 collectionUser10Mask = kCollectionUser10Mask,
 collectionUser11Mask = kCollectionUser11Mask,
 collectionUser12Mask = kCollectionUser12Mask,
 collectionUser13Mask = kCollectionUser13Mask,
 collectionUser14Mask = kCollectionUser14Mask,
 collectionUser15Mask = kCollectionUser15Mask,
 collectionReserved0Mask = kCollectionReserved0Mask,
 collectionReserved1Mask = kCollectionReserved1Mask,
 collectionReserved2Mask = kCollectionReserved2Mask,
 collectionReserved3Mask = kCollectionReserved3Mask,
 collectionReserved4Mask = kCollectionReserved4Mask,
 collectionReserved5Mask = kCollectionReserved5Mask,
 collectionReserved6Mask = kCollectionReserved6Mask,
 collectionReserved7Mask = kCollectionReserved7Mask,
 collectionReserved8Mask = kCollectionReserved8Mask,
 collectionReserved9Mask = kCollectionReserved9Mask,
 collectionReserved10Mask = kCollectionReserved10Mask,
 collectionReserved11Mask = kCollectionReserved11Mask,
 collectionReserved12Mask = kCollectionReserved12Mask,
 collectionReserved13Mask = kCollectionReserved13Mask,
 collectionPersistenceMask = kCollectionPersistenceMask,
 collectionLockMask = kCollectionLockMask
};

Discussion
Using the attribute bit numbers, the Collection Manager provides convenient attribute masks for each of the
attributes. You can use these attribute masks when testing or setting a particular collection item attribute.

Attribute Bit Numbers
Provides constant names for each of the bits in a collection item attributes.

308 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

enum {
 kCollectionUser0Bit = 0,
 kCollectionUser1Bit = 1,
 kCollectionUser2Bit = 2,
 kCollectionUser3Bit = 3,
 kCollectionUser4Bit = 4,
 kCollectionUser5Bit = 5,
 kCollectionUser6Bit = 6,
 kCollectionUser7Bit = 7,
 kCollectionUser8Bit = 8,
 kCollectionUser9Bit = 9,
 kCollectionUser10Bit = 10,
 kCollectionUser11Bit = 11,
 kCollectionUser12Bit = 12,
 kCollectionUser13Bit = 13,
 kCollectionUser14Bit = 14,
 kCollectionUser15Bit = 15,
 kCollectionReserved0Bit = 16,
 kCollectionReserved1Bit = 17,
 kCollectionReserved2Bit = 18,
 kCollectionReserved3Bit = 19,
 kCollectionReserved4Bit = 20,
 kCollectionReserved5Bit = 21,
 kCollectionReserved6Bit = 22,
 kCollectionReserved7Bit = 23,
 kCollectionReserved8Bit = 24,
 kCollectionReserved9Bit = 25,
 kCollectionReserved10Bit = 26,
 kCollectionReserved11Bit = 27,
 kCollectionReserved12Bit = 28,
 kCollectionReserved13Bit = 29,
 kCollectionPersistenceBit = 30,
 kCollectionLockBit = 31
};

Discussion
The Collection Manager provides the attribute bit numbers enumeration to provide constant names for each
of the bits in a collection item’s attributes.

The lower 16 bits of the attributes property of a collection item represent the user-defined attributes. You
can use these attributes for any purpose suitable to your application.

The upper 16 bits are reserved for use by Apple Computer, Inc. Currently, the 2 high bits are defined: bit 30
represents the persistence attribute and bit 31 represents the lock attribute.

Attribute Bit Numbers (Old)
Provides constant names for each of the bits in a collection item attributes.

Constants 309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

enum {
 collectionUser0Bit = kCollectionUser0Bit,
 collectionUser1Bit = kCollectionUser1Bit,
 collectionUser2Bit = kCollectionUser2Bit,
 collectionUser3Bit = kCollectionUser3Bit,
 collectionUser4Bit = kCollectionUser4Bit,
 collectionUser5Bit = kCollectionUser5Bit,
 collectionUser6Bit = kCollectionUser6Bit,
 collectionUser7Bit = kCollectionUser7Bit,
 collectionUser8Bit = kCollectionUser8Bit,
 collectionUser9Bit = kCollectionUser9Bit,
 collectionUser10Bit = kCollectionUser10Bit,
 collectionUser11Bit = kCollectionUser11Bit,
 collectionUser12Bit = kCollectionUser12Bit,
 collectionUser13Bit = kCollectionUser13Bit,
 collectionUser14Bit = kCollectionUser14Bit,
 collectionUser15Bit = kCollectionUser15Bit,
 collectionReserved0Bit = kCollectionReserved0Bit,
 collectionReserved1Bit = kCollectionReserved1Bit,
 collectionReserved2Bit = kCollectionReserved2Bit,
 collectionReserved3Bit = kCollectionReserved3Bit,
 collectionReserved4Bit = kCollectionReserved4Bit,
 collectionReserved5Bit = kCollectionReserved5Bit,
 collectionReserved6Bit = kCollectionReserved6Bit,
 collectionReserved7Bit = kCollectionReserved7Bit,
 collectionReserved8Bit = kCollectionReserved8Bit,
 collectionReserved9Bit = kCollectionReserved9Bit,
 collectionReserved10Bit = kCollectionReserved10Bit,
 collectionReserved11Bit = kCollectionReserved11Bit,
 collectionReserved12Bit = kCollectionReserved12Bit,
 collectionReserved13Bit = kCollectionReserved13Bit,
 collectionPersistenceBit = kCollectionPersistenceBit,
 collectionLockBit = kCollectionLockBit
};

Discussion
The Collection Manager provides the attribute bit numbers enumeration to provide constant names for each
of the bits in a collection item’s attributes.

The lower 16 bits of the attributes property of a collection item represent the user-defined attributes. You
can use these attributes for any purpose suitable to your application.

The upper 16 bits are reserved for use by Apple Computer, Inc. Currently, the 2 high bits are defined: bit 30
represents the persistence attribute and bit 31 represents the lock attribute.

Attributes Masks
Used to specify attributes for any of the attribute-related Collection Manager functions.

310 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

enum {
 kCollectionNoAttributes = 0x00000000,
 kCollectionAllAttributes = 0xFFFFFFFF,
 kCollectionUserAttributes = 0x0000FFFF,
 kCollectionDefaultAttributes = 0x40000000
};

Constants
kCollectionNoAttributes

Specifies a mask in which all collection attributes are clear. You might use this constant when clearing
all the attributes of an item or when testing whether all of an item’s attributes are clear.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

kCollectionAllAttributes
Specifies a mask in which all collection attributes are set. You might use this constant as a mask to
indicate that you want to edit or test every attribute of an item, or you might use it to set every
attribute of an item.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

kCollectionUserAttributes
Specifies a mask in which the user attributes are set and the reserved attributes are clear. You might
use this constant as a mask to indicate that you want to edit or test only the user attributes of an
item, or you might use it to set every user attribute of an item.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

kCollectionDefaultAttributes
Specifies a mask in which the persistent attribute is set and all other attributes are clear. You might
use this constant when testing to see if an item’s attributes have been edited.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

Discussion
The Collection Manager provides four convenient attributes masks that you can use when specifying attributes
for any of the attribute-related Collection Manager functions. You can also use the attribute bit masks as
masks for individual attributes.

Attributes Masks (Old)
Used to specify attributes for any of the attribute-related Collection Manager functions.

Constants 311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

enum {
 noCollectionAttributes = kCollectionNoAttributes,
 allCollectionAttributes = kCollectionAllAttributes,
 userCollectionAttributes = kCollectionUserAttributes,
 defaultCollectionAttributes = kCollectionDefaultAttributes
};

Constants
noCollectionAttributes

Specifies a mask in which all collection attributes are clear. You might use this constant when clearing
all the attributes of an item or when testing whether all of an item’s attributes are clear.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

allCollectionAttributes
Specifies a mask in which all collection attributes are set. You might use this constant as a mask to
indicate that you want to edit or test every attribute of an item, or you might use it to set every
attribute of an item.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

userCollectionAttributes
Specifies a mask in which the user attributes are set and the reserved attributes are clear. You might
use this constant as a mask to indicate that you want to edit or test only the user attributes of an
item, or you might use it to set every user attribute of an item.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

defaultCollectionAttributes
Specifies a mask in which the persistent attribute is set and all other attributes are clear. You might
use this constant when testing to see if an item’s attributes have been edited.

Available in Mac OS X v10.0 and later.

Declared in Collections.h.

Discussion
The Collection Manager provides four convenient attributes masks that you can use when specifying attributes
for any of the attribute-related Collection Manager functions. You can also use the attribute bit masks as
masks for individual attributes.

Optional Return Value Constants
Used to specify that you do not want a particular piece of information.

312 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

enum {
 kCollectionDontWantTag = 0,
 kCollectionDontWantId = 0,
 kCollectionDontWantSize = 0,
 kCollectionDontWantAttributes = 0,
 kCollectionDontWantIndex = 0,
 kCollectionDontWantData = 0
};

Discussion
Many of the Collection Manager functions return multiple pieces of information. For most of these functions,
you can specify that you do not want a specific piece of information to be returned by specifying NULL for
the corresponding parameter when calling the function.

The Collection Manager provides the optional return value constants to make your code easier to read when
specifying that you are not interested in obtaining certain types of information. You can use these enumeration
constants in place of the more generic constant NULLwhen specifying that you do not want to receive certain
optional return values from a function.

Optional Return Value Constants (Old)
Used to specify that you do not want a particular piece of information.

enum {
 dontWantTag = kCollectionDontWantTag,
 dontWantId = kCollectionDontWantId,
 dontWantSize = kCollectionDontWantSize,
 dontWantAttributes = kCollectionDontWantAttributes,
 dontWantIndex = kCollectionDontWantIndex,
 dontWantData = kCollectionDontWantData
};

Discussion
Many of the Collection Manager functions return multiple pieces of information. For most of these functions,
you can specify that you do not want a specific piece of information to be returned by specifying NULL for
the corresponding parameter when calling the function.

The Collection Manager provides the optional return value constants to make your code easier to read when
specifying that you are not interested in obtaining certain types of information. You can use these enumeration
constants in place of the more generic constant NULLwhen specifying that you do not want to receive certain
optional return values from a function.

Result Codes

The most common result codes returned by the Collection Manager are listed in the table below.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-5750collectionItemLockedErr

Available in Mac OS X v10.0 and later.-5751collectionItemNotFoundErr

Result Codes 313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-5752collectionIndexRangeErr

Available in Mac OS X v10.0 and later.-5753collectionVersionErr

314 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Collection Manager Reference

Framework: CoreServices/CoreServices.h

Declared in Components.h

Overview

You can use the Component Manager to allow your application to find and utilize various software objects
(components) at run time. You can create your own components, and you can use the Component Manager
to help manage your components. A component is a piece of code that provides a defined set of services to
one or more clients. Applications, system extensions, as well as other components can use the services of a
component. A component typically provides a specific type of service to its clients. For example, a component
might provide image compression or image decompression capabilities; an application could call such a
component, providing the image to compress, and the component could perform the desired operation and
return the compressed image to the application. The Component Manager provides access to components
and manages them by, for example, keeping track of the currently available components and routing requests
to the appropriate component.

Functions by Task

Finding Components

CountComponents (page 330)
Returns the number of registered components that meet the selection criteria specified by your
application.

FindNextComponent (page 333)
Returns the component identifier for the next registered component that meets the selection criteria
specified by your application.

GetComponentListModSeed (page 338)
Allows your application to determine if the list of registered components has changed.

GetComponentTypeModSeed (page 341)

ResolveComponentAlias (page 353)

Overview 315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Opening and Closing Components

OpenAComponent (page 345)

OpenADefaultComponent (page 346)

OpenComponent (page 346)
Opens a connection to the component with the component identifier specified by your application.

OpenDefaultComponent (page 348)
Opens a connection to a registered component of the component type and subtype specified by
your application.

CloseComponent (page 327)
Terminates your application’s connection to a component.

Getting Information About Components

GetComponentIconSuite (page 334)
Returns a handle to a component’s icon suite to your application.

GetComponentInfo (page 335)
Returns to your application the registration information for a component.

GetComponentPublicIndString (page 338)

GetComponentPublicResource (page 339)

GetComponentPublicResourceList (page 339)

ComponentFunctionImplemented (page 328) Deprecated in Mac OS X v10.5
Allows your application to determine whether a component supports a specified request.

GetComponentVersion (page 341) Deprecated in Mac OS X v10.5
Returns the version number of a component to your application.

Retrieving Component Errors

GetComponentInstanceError (page 336)
Returns to your application the last error generated by a specific connection to a component.

Calling Component Functions

CallComponentOpen (page 324)

CallComponentClose (page 320)

316 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

CallComponentCanDo (page 320)

CallComponentVersion (page 326)

CallComponentRegister (page 324)

CallComponentTarget (page 325)

CallComponentUnregister (page 325)

CallComponentDispatch (page 321)

CallComponentGetMPWorkFunction (page 323)

CallComponentGetPublicResource (page 324)

Accessing the Thread Safety Mode

CSSetComponentsThreadMode (page 331)
Sets whether or not using thread-unsafe components is allowed in the current thread.

CSGetComponentsThreadMode (page 330)
Indicates whether using thread-unsafe components is allowed in the current thread.

Creating and Managing Universal Procedure Pointers

NewComponentRoutineUPP (page 344)
Creates a new universal procedure pointer (UPP) to a component routine callback function.

InvokeComponentRoutineUPP (page 342)
Calls your component routine callback function

DisposeComponentRoutineUPP (page 333)
Disposes of the universal procedure pointer (UPP) to a component routine callback function.

NewComponentFunctionUPP (page 343)

DisposeComponentFunctionUPP (page 332)

NewComponentMPWorkFunctionUPP (page 344)

InvokeComponentMPWorkFunctionUPP (page 342)

DisposeComponentMPWorkFunctionUPP (page 332)

Functions by Task 317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

NewGetMissingComponentResourceUPP (page 344)

InvokeGetMissingComponentResourceUPP (page 343)

DisposeGetMissingComponentResourceUPP (page 333)

Registering Components

RegisterComponent (page 348)
Registers a component stored in memory.

RegisterComponentResource (page 352)
Registers a component stored in a resource file.

RegisterComponentResourceFile (page 352)
Registers all component resources in the given resource file.

UnregisterComponent (page 357)
Removes a component from the Component Manager’s registration list.

RegisterComponentFileRef (page 351)

RegisterComponentFileRefEntries (page 351)

RegisterComponentFile (page 350) Deprecated in Mac OS X v10.5

RegisterComponentFileEntries (page 350) Deprecated in Mac OS X v10.5

Dispatching to Component Functions

CallComponentFunction (page 321)
Invokes the specified function of your component.

CallComponentFunctionWithStorage (page 322)
Invokes the specified function of your component.

CallComponentFunctionWithStorageProcInfo (page 323)

Managing Component Connections

CountComponentInstances (page 329)
Determines the number of open connections being managed by a specified component.

GetComponentInstanceStorage (page 337)
Allows your component to retrieve a handle to the memory associated with a connection.

SetComponentInstanceStorage (page 354)
Allows your component to associate memory with a connection.

318 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

ComponentSetTarget (page 328) Deprecated in Mac OS X v10.5
Calls a component’s target request function and informs a component that it has been targeted by
another component.

Setting Component Errors

SetComponentInstanceError (page 353)
Passes error information to the Component Manager which sets the current error value for the
appropriate connection.

Working With Component Reference Constants

GetComponentRefcon (page 339)
Retrieves the value of the reference constant for your component.

SetComponentRefcon (page 355)
Sets the reference constant for your component.

Accessing a Component’s Resource File

OpenAComponentResFile (page 345)

OpenComponentResFile (page 347)
Allows your component to gain access to its resource file.

CloseComponentResFile (page 327)
Closes the resource file that your component opened previously with the OpenComponentResFile
function.

GetComponentResource (page 340)

GetComponentIndString (page 335)

Calling Other Components

DelegateComponentCall (page 331)
Allows your component to pass on a request to a specified component.

Capturing Components

CaptureComponent (page 326)
Allows your component to capture another component.

UncaptureComponent (page 356)
Allows your component to uncapture a previously captured component.

Functions by Task 319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Changing the Default Search Order

SetDefaultComponent (page 356)
Changes the search order for registered components.

Functions

CallComponentCanDo

ComponentResult CallComponentCanDo (
 ComponentInstance ci,
 SInt16 ftnNumber
);

Parameters
ci

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentClose

ComponentResult CallComponentClose (
 ComponentInstance ci,
 ComponentInstance self
);

Parameters
ci
self

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

320 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

CallComponentDispatch

ComponentResult CallComponentDispatch (
 ComponentParameters *cp
);

Parameters
cp

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentFunction
Invokes the specified function of your component.

ComponentResult CallComponentFunction (
 ComponentParameters *params,
 ComponentFunctionUPP func
);

Parameters
params

A pointer to the ComponentDescription (page 361) structure that your component received from
the Component Manager. These are the parameters originally provided by the application that called
your component.

func
A universal procedure pointer to the component function that is to handle the request. The Component
Manager calls the function referred to by the func parameter, using Pascal calling conventions, with
the parameters that were originally provided by the application that called your component. The
function referred to by this parameter must return a function result of type ComponentResult
indicating the success or failure of the operation. See the ComponentRoutineProcPtr (page 358)
callback for more information on component functions.

Return Value
The value that is returned by the function referred to by the func parameter. Your component should use
this value to set the current error for this connection. You can use the SetComponentInstanceError (page
353) function to set the current error.

Discussion
When an application requests service from your component, your component receives a component
parameters structure containing the parameters that the application provided when it called your component.
Your component can use this structure to access the parameters directly. Alternatively, you can use either
this function or CallComponentFunctionWithStorage (page 322) to extract those parameters and pass
them to a subroutine of your component. By taking advantage of these functions, you can simplify the
structure of your component code.

Functions 321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

If your component subroutine does not need global data, your component should use this function. If your
component subroutine requires memory in which to store global data for the component, your component
must use CallComponentFunctionWithStorage.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentFunctionWithStorage
Invokes the specified function of your component.

ComponentResult CallComponentFunctionWithStorage (
 Handle storage,
 ComponentParameters *params,
 ComponentFunctionUPP func
);

Parameters
storage

A handle to the memory associated with the current connection. The Component Manager provides
this handle to your component along with the request.

params
A pointer to the ComponentParameters (page 365) structure that your component received from
the Component Manager. These are the parameters originally provided by the application that called
your component.

func
A universal procedure pointer to the component function that is to handle the request. The Component
Manager calls the function referred to by the func parameter, using Pascal calling conventions, with
the parameters that were originally provided by the application that called your component. These
parameters are preceded by a handle to the memory associated with the current connection. The
function referred to by the func parameter must return a function result of type ComponentResult
indicating the success or failure of the operation. See the ComponentRoutineProcPtr (page 358)
callback for more information on component functions.

Return Value
The value that is returned by the function referred to by the func parameter. Your component should use
this value to set the current error for this connection. Use the SetComponentInstanceError (page 353)
function to set the current error for a connection.

Discussion
When an application requests service from your component, your component receives a component
parameters structure containing the parameters that the application provided when it called your component.
Your component can use this structure to access the parameters directly. Alternatively, you can use either
the CallComponentFunction (page 321) function or this function to extract those parameters and pass
them to a subroutine of your component. By taking advantage of these functions, you can simplify the
structure of your component code.

322 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

If your component subroutine requires a handle to the memory associated with the connection, you must
use this function. You allocate the memory for a given connection each time your component is opened.
You inform the Component Manager that a connection has memory associated with it by calling the
SetComponentInstanceError (page 353) function.

Subroutines of a component that don’t need global data should use CallComponentFunction instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentFunctionWithStorageProcInfo

ComponentResult CallComponentFunctionWithStorageProcInfo (
 Handle storage,
 ComponentParameters *params,
 ProcPtr func,
 ProcInfoType funcProcInfo
);

Parameters
storage
params
funcProcInfo

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentGetMPWorkFunction

ComponentResult CallComponentGetMPWorkFunction (
 ComponentInstance ci,
 ComponentMPWorkFunctionUPP *workFunction,
 void **refCon
);

Parameters
ci
workFunction

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

CallComponentGetPublicResource

ComponentResult CallComponentGetPublicResource (
 ComponentInstance ci,
 OSType resourceType,
 SInt16 resourceID,
 Handle *resource
);

Parameters
ci
resourceType
resource

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentOpen

ComponentResult CallComponentOpen (
 ComponentInstance ci,
 ComponentInstance self
);

Parameters
ci
self

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentRegister

ComponentResult CallComponentRegister (
 ComponentInstance ci
);

Parameters
ci

Return Value
See the description of the ComponentResult data type.

324 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentTarget

ComponentResult CallComponentTarget (
 ComponentInstance ci,
 ComponentInstance target
);

Parameters
ci
target

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CallComponentUnregister

ComponentResult CallComponentUnregister (
 ComponentInstance ci
);

Parameters
ci

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

CallComponentVersion

ComponentResult CallComponentVersion (
 ComponentInstance ci
);

Parameters
ci

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CaptureComponent
Allows your component to capture another component.

Component CaptureComponent (
 Component capturedComponent,
 Component capturingComponent
);

Parameters
capturedComponent

The component to be captured. Your component can obtain this identifier from the
FindNextComponent (page 333) function or from the component registration functions. You can use
a component instance here, but you must coerce the data type appropriately.

capturingComponent
Your component. Note that you can use the component instance (appropriately coerced) that your
component received in its open request in this parameter.

Return Value
A new component identifier. Your component can use this new identifier to refer to the captured component.
For example, your component can open the captured component by providing this identifier to the
OpenComponent (page 346) structure. Your component must provide this identifier to the
UncaptureComponent (page 356) function to specify the component to be restored to the search list. If the
component you wish to capture is already captured, the component identifier is set to NULL. See the
description of the Component data type.

Discussion
Typically, your component captures another component when you want to override all or some of the features
provided by a component or to provide new features. For example, a component called NewMath might
capture a component called OldMath. Suppose the NewMath component provides a new function,
DoExponent. Whenever NewMath gets an exponent request, it can handle the request itself. For all other
requests, NewMath might call the OldMath component to perform the request.

After capturing a component, your component might choose to target a particular instance of the captured
component.

326 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

In response to this function, the Component Manager removes the specified component from the list of
available components. As a result, applications cannot retrieve information about the captured component
or gain access to it. Current clients of the captured component are not affected by this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CloseComponent
Terminates your application’s connection to a component.

OSErr CloseComponent (
 ComponentInstance aComponentInstance
);

Parameters
aComponentInstance

The connection you wish to close. Your application obtains the component instance from the
OpenComponent (page 346) function or the OpenDefaultComponent (page 348) function. You can
use a component identifier here, but you must coerce the data type appropriately.

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Discussion
This function closes only a single connection. If your application has several connections to a single component,
you must call it once for each connection.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
Components.h

CloseComponentResFile
Closes the resource file that your component opened previously with the OpenComponentResFile function.

OSErr CloseComponentResFile (
 ResFileRefNum refnum
);

Parameters
refnum

The reference number that identifies the resource file to be closed. Your component obtains this
value from the OpenComponentResFile (page 347) function. Your component must close any open
resource files before returning to the calling application.

Functions 327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentFunctionImplemented
Allows your application to determine whether a component supports a specified request. (Deprecated in
Mac OS X v10.5.)

ComponentResult ComponentFunctionImplemented (
 ComponentInstance ci,
 SInt16 ftnNumber
);

Parameters
ci

The component instance of which you wish to make a request. Your application obtains the component
instance from the OpenDefaultComponent (page 348) function or the OpenComponent (page 346)
function. You can use a component identifier here, but you must coerce the data type appropriately.

ftnNumber
A request code value. See the documentation supplied with the component for request code values.

Return Value
Indicates whether the component supports the specified request. You can interpret this number as if it were
a Boolean value. If the returned value is TRUE, the component supports the specified request. If the returned
value is FALSE, the component does not support the request. Your application can use this function to
determine a component’s capabilities.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Components.h

ComponentSetTarget
Calls a component’s target request function and informs a component that it has been targeted by another
component. (Deprecated in Mac OS X v10.5.)

328 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

ComponentResult ComponentSetTarget (
 ComponentInstance ci,
 ComponentInstance target
);

Parameters
ci

The component instance to which to send a target request (the component that has been targeted).
You can use a component identifier here, but you must coerce the data type appropriately.

target
The component instance issuing the target request.

Return Value
The value that the targeted component instance returns in response to the target request, or
badComponentSelector if the targeted component does not support the target request.

Discussion
Your component can target a component instance without capturing the component or your component
can first capture the component and then target a specific instance of the component.

You should not target a component instance if the component does not support the target request. Before
calling this function, you should issue a can do request to the component instance you want to target to
verify that the component supports the target request. After receiving a target request, the targeted
component instance should call the component instance that targeted it whenever the targeted component
instance would normally call one of its defined functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Components.h

CountComponentInstances
Determines the number of open connections being managed by a specified component.

long CountComponentInstances (
 Component aComponent
);

Parameters
aComponent

The component for which you want a count of open connections. You can use a component instance
here, but you must coerce the data type appropriately.

Return Value
The number of open connections for the specified component.

Discussion
This function can be useful if you want to restrict the number of connections for your component or if your
component needs to perform special processing based on the number of open connections.

Functions 329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
Components.h

CountComponents
Returns the number of registered components that meet the selection criteria specified by your application.

long CountComponents (
 ComponentDescription *looking
);

Parameters
looking

A pointer to a ComponentDescription (page 361) structure. Your application specifies the criteria
for the component search in the fields of this structure.

The Component Manager ignores fields in the component description structure that are set to 0. For
example, if you set all the fields to 0, the Component Manager returns the number of components
registered in the system. Similarly, if you set all fields to 0 except for the componentManufacturer
field, the Component Manager returns the number of registered components supplied by the
manufacturer you specify.

Return Value
The number of components that meet the specified search criteria.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

CSGetComponentsThreadMode
Indicates whether using thread-unsafe components is allowed in the current thread.

CSComponentsThreadMode CSGetComponentsThreadMode (
 void
);

Return Value
A flag that indicates whether using thread-unsafe components is allowed in the current thread.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Components.h

330 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

CSSetComponentsThreadMode
Sets whether or not using thread-unsafe components is allowed in the current thread.

void CSSetComponentsThreadMode (
 CSComponentsThreadMode mode
);

Parameters
mode

A flag that determines whether the current thread is restricted to calling components that are
thread-safe. You should set this flag to kCSAcceptThreadSafeComponentsOnlyMode whenever
you want the current thread to call only components that are thread-safe.

Discussion
Core Services maintains a component thread-mode flag for each thread in the current process. The default
value of this flag is kCSAcceptAllComponentsMode, which means the thread can call any component
regardless of whether the component is thread-safe. Applications and other high-level code that call
component-based APIs (such as QuickTime) from preemptive threads should call this function from their
thread beforehand and pass in the value kCSAcceptThreadSafeComponentsOnlyMode.

A thread’s component thread-mode flag can safely retain its default value only if the thread is the main thread
or if it participates in cooperative locking, such as Carbon Thread Manager-style cooperative threads and
application threads that perform their own private locking.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Components.h

DelegateComponentCall
Allows your component to pass on a request to a specified component.

ComponentResult DelegateComponentCall (
 ComponentParameters *originalParams,
 ComponentInstance ci
);

Parameters
originalParams

A pointer to the ComponentParameters (page 365) structure provided to your component by the
Component Manager.

ci
The component instance that is to process the request. The Component Manager provides a component
instance to your component when it opens a connection to another component with the
OpenComponent (page 346) or OpenDefaultComponent (page 348) function. You must specify a
component instance; this function does not accept a component identifier.

Return Value
The component result returned by the specified component.

Functions 331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Discussion
Your component may supplement its capabilities by using the services of another component to directly
satisfy application requests using this function. For example, you might want to create two similar components
that provide different levels of service to applications. Rather than completely implementing both components,
you could design one to rely on the capabilities of the other. In this manner, you have to implement only
that portion of the more capable component that provides additional services.

You may also invoke the services of another component using the standard mechanisms used by applications.
The Component Manager then passes the requests to the appropriate component, and your component
receives the results of those requests.

Your component must open a connection to the component to which the requests are to be passed. Your
component must close that connection when it has finished using the services of the other component.

Your component should never use this function with open or close requests from the Component
Manager—always use theOpenComponent andCloseComponent (page 327) functions to manage connections
with other components.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

DisposeComponentFunctionUPP

void DisposeComponentFunctionUPP (
 ComponentFunctionUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

DisposeComponentMPWorkFunctionUPP

void DisposeComponentMPWorkFunctionUPP (
 ComponentMPWorkFunctionUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

332 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

DisposeComponentRoutineUPP
Disposes of the universal procedure pointer (UPP) to a component routine callback function.

void DisposeComponentRoutineUPP (
 ComponentRoutineUPP userUPP
);

Parameters
userUPP

Discussion
See the ComponentRoutineProcPtr (page 358) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

DisposeGetMissingComponentResourceUPP

void DisposeGetMissingComponentResourceUPP (
 GetMissingComponentResourceUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

FindNextComponent
Returns the component identifier for the next registered component that meets the selection criteria specified
by your application.

Component FindNextComponent (
 Component aComponent,
 ComponentDescription *looking
);

Parameters
aComponent

The starting point for the search. Set this field to 0 to start the search at the beginning of the
component list. If you are continuing a search, you can specify a component identifier previously
returned by this function. The function then searches the remaining components.

Functions 333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

looking
A pointer to a ComponentDescription (page 361) structure. Your application specifies the criteria
for the component search in the fields of this structure.

The Component Manager ignores fields in the component description structure that are set to 0. For
example, if you set all the fields to 0, all components meet the search criteria. In this case, your
application can retrieve information about all of the components that are registered in the system
by repeatedly calling FindNextComponent and GetComponentInfo (page 335) until the search is
complete. Similarly, if you set all fields to 0 except for the componentManufacturer field, the
Component Manager searches all registered components for a component supplied by the
manufacturer you specify. Note that this function does not modify the contents of the component
description structure you supply. To retrieve detailed information about a component, you need to
use the GetComponentInfo (page 335) function to get the component description structure for each
returned component.

Return Value
The component identifier of a component that meets the search criteria or 0 when there are no more matching
components. Your application can use the component identifier returned by this function to get more
information about the component, using GetComponentInfo, or to open the component, using either the
OpenDefaultComponent (page 348) function or theOpenComponent (page 346) function. See the description
of the Component data type.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX
WhackedTV

Declared In
Components.h

GetComponentIconSuite
Returns a handle to a component’s icon suite to your application.

OSErr GetComponentIconSuite (
 Component aComponent,
 Handle *iconSuite
);

Parameters
aComponent

The component whose icon suite you wish to obtain. Your application obtains a component identifier
from the FindNextComponent (page 333) function. If your application registers a component, it can
also obtain a component identifier from the RegisterComponent (page 348) or
RegisterComponentResource (page 352) function. You can use a component instance here, but
you must coerce the data type appropriately.

iconSuite
On return, a pointer to a handle for the component’s icon suite or, if the component has not provided
an icon suite, NULL. A component provides the resource ID of its icon family to the Component
Manager in the optional extensions to the component resource. Your application is responsible for
disposing of the returned icon suite handle.

334 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Components.h

GetComponentIndString

OSErr GetComponentIndString (
 Component aComponent,
 Str255 theString,
 SInt16 strListID,
 SInt16 index
);

Parameters
aComponent
theString

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
Components.h

GetComponentInfo
Returns to your application the registration information for a component.

Functions 335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

OSErr GetComponentInfo (
 Component aComponent,
 ComponentDescription *cd,
 Handle componentName,
 Handle componentInfo,
 Handle componentIcon
);

Parameters
aComponent

The component about which you wish to obtain information. Your application obtains a component
identifier from the FindNextComponent (page 333) function. If your application registers a component,
it can also obtain a component identifier from the RegisterComponent (page 348) or
RegisterComponentResource (page 352) function.

You may supply a component instance rather than a component identifier to this function, but you
must coerce the data type appropriately. Your application can obtain a component instance from the
OpenComponent (page 346) or OpenDefaultComponent (page 348) functions.

cd
A pointer to a ComponentDescription (page 361) structure. The function returns information about
the specified component in this structure.

componentName
On return, a handle to the component’s name. If the component does not have a name, an empty
handle. Set this field to NULL if you do not want to receive the component’s name.

componentInfo
On return, a handle to the component’s information string. If the component does not have an
information string, an empty handle. Set this field to NULL if you do not want to receive the
component’s information string.

componentIcon
On return, a handle to the component’s icon. If the component does not have an icon, an empty
handle. Set this field to NULL if you do not want to receive the component’s icon. To get a handle to
the component’s icon suite, if it provides one, use the GetComponentIconSuite (page 334) function.

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Discussion
For information on registering components, see “Registering Components”.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
Components.h

GetComponentInstanceError
Returns to your application the last error generated by a specific connection to a component.

336 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

OSErr GetComponentInstanceError (
 ComponentInstance aComponentInstance
);

Parameters
aComponentInstance

The component instance from which you want error information. Your application obtains the
component instance from the OpenDefaultComponent (page 348) function or the
OpenComponent (page 346) function. You can use a component identifier here, but you must coerce
the data type appropriately.

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Discussion
Some component functions return error information as their function result. Other component functions set
an error code that your application can retrieve using this function. Refer to the documentation supplied
with the component for information on how that particular component handles errors.

Once you have retrieved an error code, the Component Manager clears the error code for the connection. If
you want to retain that error value, you should save it in your application’s local storage.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentInstanceStorage
Allows your component to retrieve a handle to the memory associated with a connection.

Handle GetComponentInstanceStorage (
 ComponentInstance aComponentInstance
);

Parameters
aComponentInstance

The connection for which to retrieve the associated memory. The Component Manager provides a
component instance to your component when the connection is opened. You can use a component
identifier here, but you must coerce the data type appropriately.

Return Value
A handle to the memory associated with the specified connection.

Discussion
Typically, your component does not need to use this function, because the Component Manager provides
this handle to your component each time the client application requests service from this connection.

Your component tells the Component Manager about the memory associated with a connection by calling
the SetComponentInstanceStorage (page 354) function.

Availability
Available in Mac OS X v10.0 and later.

Functions 337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Declared In
Components.h

GetComponentListModSeed
Allows your application to determine if the list of registered components has changed.

SInt32 GetComponentListModSeed (
 void
);

Parameters
Return Value
The component registration seed number. Each time the Component Manager registers or unregisters a
component it generates a new, unique seed number. By comparing the return value to values previously
returned by this function, you can determine whether the list has changed. Your application may use this
information to rebuild its internal component lists or to trigger other activity that is necessary whenever new
components are available.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentPublicIndString

OSErr GetComponentPublicIndString (
 Component aComponent,
 Str255 theString,
 SInt16 strListID,
 SInt16 index
);

Parameters
aComponent
theString

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

338 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

GetComponentPublicResource

OSErr GetComponentPublicResource (
 Component aComponent,
 OSType resourceType,
 SInt16 resourceID,
 Handle *theResource
);

Parameters
aComponent
resourceType
theResource

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentPublicResourceList

OSErr GetComponentPublicResourceList (
 OSType resourceType,
 SInt16 resourceID,
 SInt32 flags,
 ComponentDescription *cd,
 GetMissingComponentResourceUPP missingProc,
 void *refCon,
 void *atomContainerPtr
);

Parameters
resourceType
cd
missingProc

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentRefcon
Retrieves the value of the reference constant for your component.

Functions 339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

long GetComponentRefcon (
 Component aComponent
);

Parameters
aComponent

The component whose reference constant you wish to get. You can use a component instance here,
but you must coerce the data type appropriately.

Return Value
The reference constant for the specified component.

Discussion
There is one reference constant for each component, regardless of the number of connections to that
component. When your component is registered, the Component Manager sets this reference constant to
0.

The reference constant is a 4-byte value that your component can use in any way you decide. For example,
you might use the reference constant to store the address of a data structure that is shared by all connections
maintained by your component. You should allocate shared structures in the system heap. Your component
should deallocate the structure when its last connection is closed or when it is unregistered.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentResource

OSErr GetComponentResource (
 Component aComponent,
 OSType resType,
 SInt16 resID,
 Handle *theResource
);

Parameters
aComponent
resType
theResource

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

340 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

GetComponentTypeModSeed

SInt32 GetComponentTypeModSeed (
 OSType componentType
);

Parameters
componentType

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetComponentVersion
Returns the version number of a component to your application. (Deprecated in Mac OS X v10.5.)

ComponentResult GetComponentVersion (
 ComponentInstance ci
);

Parameters
ci

The component instance from which you want to retrieve version information. Your application
obtains the component instance from the OpenDefaultComponent (page 348) function or the
OpenComponent (page 346) function.

Return Value
The version number of the component you specify. The high-order 16 bits represent the major version, and
the low-order 16 bits represent the minor version. The major version specifies the component specification
level the minor version specifies a particular implementation’s version number.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Components.h

Functions 341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

InvokeComponentMPWorkFunctionUPP

ComponentResult InvokeComponentMPWorkFunctionUPP (
 void *globalRefCon,
 ComponentMPWorkFunctionHeaderRecordPtr header,
 ComponentMPWorkFunctionUPP userUPP
);

Parameters
header
userUPP

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

InvokeComponentRoutineUPP
Calls your component routine callback function

ComponentResult InvokeComponentRoutineUPP (
 ComponentParameters *cp,
 Handle componentStorage,
 ComponentRoutineUPP userUPP
);

Parameters
cp
componentStorage
userUPP

Return Value
See the description of the ComponentResult data type.

Discussion
See the ComponentRoutineProcPtr (page 358) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

342 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

InvokeGetMissingComponentResourceUPP

OSErr InvokeGetMissingComponentResourceUPP (
 Component c,
 OSType resType,
 SInt16 resID,
 void *refCon,
 Handle *resource,
 GetMissingComponentResourceUPP userUPP
);

Parameters
c
resType
resource
userUPP

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

NewComponentFunctionUPP

ComponentFunctionUPP NewComponentFunctionUPP (
 ProcPtr userRoutine,
 ProcInfoType procInfo
);

Parameters
procInfo

Return Value
See the description of the ComponentFunctionUPP data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

NewComponentMPWorkFunctionUPP

ComponentMPWorkFunctionUPP NewComponentMPWorkFunctionUPP (
 ComponentMPWorkFunctionProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ComponentMPWorkFunctionUPP data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

NewComponentRoutineUPP
Creates a new universal procedure pointer (UPP) to a component routine callback function.

ComponentRoutineUPP NewComponentRoutineUPP (
 ComponentRoutineProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ComponentRoutineUPP data type.

Discussion
See the ComponentRoutineProcPtr (page 358) callback for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

NewGetMissingComponentResourceUPP

GetMissingComponentResourceUPP NewGetMissingComponentResourceUPP (
 GetMissingComponentResourceProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the GetMissingComponentResourceUPP data type.

Availability
Available in Mac OS X v10.0 and later.

344 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Declared In
Components.h

OpenAComponent

OSErr OpenAComponent (
 Component aComponent,
 ComponentInstance *ci
);

Parameters
aComponent
ci

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

OpenAComponentResFile

OSErr OpenAComponentResFile (
 Component aComponent,
 ResFileRefNum *resRef
);

Parameters
aComponent

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

OpenADefaultComponent

OSErr OpenADefaultComponent (
 OSType componentType,
 OSType componentSubType,
 ComponentInstance *ci
);

Parameters
componentType
componentSubType
ci

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
Components.h

OpenComponent
Opens a connection to the component with the component identifier specified by your application.

ComponentInstance OpenComponent (
 Component aComponent
);

Parameters
aComponent

The component you wish to open. Your application obtains this identifier from the
FindNextComponent (page 333) function. If your application registers a component, it can also obtain
a component identifier from theRegisterComponent function or theRegisterComponentResource
function.

Return Value
A component instance which identifies your application’s connection to the component. You must supply
this component instance whenever you call the functions provided by the component. When you close the
component, you must also supply this component instance to the CloseComponent (page 327) function.

If it cannot open the specified component, the function returns NULL.

See the description of the ComponentInstance data type.

Discussion
Your application must open a component before it can call any component functions. To use this function,
you must already have obtained a component identifier. Alternatively, you can use the
OpenDefaultComponent (page 348) function to open a component without calling FindNextComponent.

346 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Note that your application may maintain several connections to a single component, or it may have
connections to several components at the same time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
WhackedTV

Declared In
Components.h

OpenComponentResFile
Allows your component to gain access to its resource file.

ResFileRefNum OpenComponentResFile (
 Component aComponent
);

Parameters
aComponent

The component whose resource file you wish to open. Applications that register components may
obtain this identifier from the RegisterComponentResource (page 352) function. You can use a
component instance here, but you must coerce the data type appropriately.

Return Value
A reference number that your component can use to read data from the appropriate resource file. If the
specified component does not have an associated resource file or if the Component Manager cannot open
the resource file, the function returns 0 or a negative number.

Discussion
This function opens the resource file with read-only permission. The Component Manager adds the resource
file to the current resource chain. Your component must close the resource file with the
CloseComponentResFile (page 327) function before returning to the calling application. Note that there
is only one resource file associated with a component.

Your component can use FSpOpenResFile or equivalent Resource Manager functions to open other resource
files, but you must use this function to open your component’s resource file.

If you store your component in a component resource but register the component with the
RegisterComponent (page 348) function, rather than with the RegisterComponentResource or
RegisterComponentResourceFile function, your component cannot access its resource file with this
function.

Note that when working with resources, your component should always first save the current resource file,
perform any resource operations, then restore the current resource file to its previous value before returning.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

OpenDefaultComponent
Opens a connection to a registered component of the component type and subtype specified by your
application.

ComponentInstance OpenDefaultComponent (
 OSType componentType,
 OSType componentSubType
);

Parameters
componentType

The type of the component. All components of a particular type support a common set of interface
functions. Use this parameter to search for components of a given type.

componentSubType
The subtype of the component. Different subtypes of a component type may support additional
features or provide interfaces that extend beyond the standard functions for a given component type.
For example, the subtype of an image compressor component indicates the compression algorithm
employed by the compressor.

Your application can use the componentSubType parameter to perform a more specific lookup
operation than is possible using only the componentType parameter. For example, you may want
your application to use only components of a certain component type ('draw') that also have a
specific subtype ('oval'). Set this parameter to 0 to select a component with any subtype value.

Return Value
A component instance that identifies the connection opened to the component which matches your search
criteria. You must supply this component instance whenever you call the functions provided by the component.
When you close the component, you must also supply this component instance to the CloseComponent (page
327) function.

If more than one component in the list of registered components meets the search criteria, the function
opens the first one that it finds in its list. If it cannot open the specified component, it returns NULL.

See the description of the ComponentInstance data type.

Discussion
Your application must open a component before it can call any component functions. This function searches
for a component by type and subtype. You do not have to supply a component description structure or call
the FindNextComponent (page 333) function to use this function. If you want to exert more control over
the selection process, you can use the FindNextComponent and OpenComponent (page 346) functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

RegisterComponent
Registers a component stored in memory.

348 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Component RegisterComponent (
 ComponentDescription *cd,
 ComponentRoutineUPP componentEntryPoint,
 SInt16 global,
 Handle componentName,
 Handle componentInfo,
 Handle componentIcon
);

Parameters
cd

A pointer to a ComponentDescription (page 361) structure that describes the component to be
registered. You must correctly fill in the fields of this structure before calling this function. When
applications search for components using the FindNextComponent (page 333) function, the
Component Manager compares the attributes you specify here with those specified by the application.
If the attributes match, the Component Manager returns the component identifier to the application.

componentEntryPoint
A universal procedure pointer (UPP) to your component’s main entry point. The function referred to
by this parameter receives all requests for the component. See the ComponentRoutineProcPtr (page
358) callback for more information on creating a component function.

global
A set of flags that control the scope of component registration. See Register Component Resource
flags (page 377) for a description of the flags.

componentName
A handle to the component’s name. Set this parameter to NULL if you do not want to assign a name
to the component.

componentInfo
A handle to the component’s information string. Set this parameter to NULL if you do not want to
assign an information string to the component.

componentIcon
A handle to the component’s icon (a 32-by-32 pixel black-and-white icon). Set this parameter to NULL
if you do not want to supply an icon for this component. Note that this icon is not used by the Finder
you supply an icon only so that other components or applications can display your component’s icon
if needed.

Return Value
The unique component identifier assigned to the component by the Component Manager or, if it cannot
register the component, NULL. See the description of the Component data type.

Discussion
Before a component can be used by an application, the component must be registered with the Component
Manager. Applications can then find and open the component using the standard Component Manager
functions.

Components you register with the RegisterComponent function must be in memory when you call this
function. If you want to register a component that is stored in the resource fork of a file, use the
RegisterComponentResource (page 352) function. Use the RegisterComponentResourceFile (page
352) function to register all components in the resource fork of a file. The Component Manager automatically
registers component resources stored in files with file types of 'thng' that are stored in the Extensions
folder. See “Resources” for more information on component resource files.

Functions 349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Note that a component residing in your application heap remains registered until your application unregisters
it or quits. When an application quits, the Component Manager automatically closes any component
connections to that application. In addition, if the application has registered components that reside in its
heap space, the Component Manager automatically unregisters those components. A component residing
in the system heap and registered by your application remains registered until your application unregisters
it or until the computer is shut down.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

RegisterComponentFile
(Deprecated in Mac OS X v10.5.)

OSErr RegisterComponentFile (
 const FSSpec *spec,
 short global
);

Parameters
spec

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Components.h

RegisterComponentFileEntries
(Deprecated in Mac OS X v10.5.)

OSErr RegisterComponentFileEntries (
 const FSSpec *spec,
 short global,
 const ComponentDescription *toRegister,
 UInt32 registerCount
);

Parameters
spec
toRegister
registerCount

Return Value
A result code. See “Component Manager Result Codes” (page 380).

350 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Components.h

RegisterComponentFileRef

OSErr RegisterComponentFileRef (
 const FSRef *ref,
 SInt16 global
);

Parameters
ref

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

RegisterComponentFileRefEntries

OSErr RegisterComponentFileRefEntries (
 const FSRef *ref,
 SInt16 global,
 const ComponentDescription *toRegister,
 UInt32 registerCount
);

Parameters
ref
toRegister
registerCount

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Functions 351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

RegisterComponentResource
Registers a component stored in a resource file.

Component RegisterComponentResource (
 ComponentResourceHandle cr,
 SInt16 global
);

Parameters
cr

A handle to a component resource that describes the component to be registered. The component
resource contains all the information required to register the component. Components you register
with this function must be stored in a resource file as a component resource. The Component Manager
automatically registers component resources stored in files with file types of 'thng' that are stored
in the Extensions folder. See “Resources” for more information on component resource files.

global
A set of flags that controls the scope of component registration. See Register Component Resource
flags (page 377) for a description of the flags.

Return Value
The unique component identifier assigned to the component by the Component Manager, or NULL if the
function could not register the component. See the description of the Component data type.

Discussion
Before a component can be used by an application, the component must be registered with the Component
Manager. Applications can then find and open the component using the standard Component Manager
functions.

If you want to register a component that is in memory, use the RegisterComponent (page 348) function.

This function does not actually load the code specified by the component resource into memory. Rather, the
Component Manager loads the component code the first time an application opens the component. If the
code is not in the same file as the component resource or if the Component Manager cannot find the file,
the open request fails.

Note that a component registered locally by your application remains registered until your application
unregisters it or quits. When an application quits, the Component Manager automatically closes any component
connections to that application. In addition, if the application has registered components that reside in its
heap space, the Component Manager automatically unregisters those components. A component registered
globally by your application remains registered until your application unregisters it or until the computer is
shut down.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

RegisterComponentResourceFile
Registers all component resources in the given resource file.

352 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

SInt32 RegisterComponentResourceFile (
 SInt16 resRefNum,
 SInt16 global
);

Parameters
resRefNum

The reference number of the resource file containing the components to register.

global
A set of flags that control the scope of the registration of the components in the resource file. See
Register Component Resource flags (page 377) for a description of the flags.

Return Value
The number of components registered, if all components in the specified resource file are successfully
registered. If one or more of the components in the resource file could not be registered, or if the specified
file reference number is invalid, a negative function result.

Discussion
Before a component can be used by an application, the component must be registered with the Component
Manager. The Component Manager automatically registers component resources stored in files with file
types of 'thng' that are stored in the Extensions folder. For a description of the format and content of
component resources, see “Resources”.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ResolveComponentAlias

Component ResolveComponentAlias (
 Component aComponent
);

Parameters
aComponent

Return Value
See the description of the Component data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

SetComponentInstanceError
Passes error information to the Component Manager which sets the current error value for the appropriate
connection.

Functions 353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

void SetComponentInstanceError (
 ComponentInstance aComponentInstance,
 OSErr theError
);

Parameters
aComponentInstance

The connection for which to set the error. The Component Manager provides a component instance
to your component when the connection is opened. The Component Manager also provides a
component instance to your component as the first parameter in the params field of the parameters
structure.

theError
The new value for the current error.

Discussion
In general, your component returns error information in its function result a nonzero function result indicates
an error occurred, and a function result of 0 indicates the request was successful. However, some requests
require that your component return other information as its function result. In these cases, your component
can use this function to report its latest error state to the Component Manager. You can also use this function
at any time during your component’s execution to report an error.

Applications retrieve this error information by calling the GetComponentInstanceError (page 336) function.
The documentation for your component should specify how the component indicates errors.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

SetComponentInstanceStorage
Allows your component to associate memory with a connection.

void SetComponentInstanceStorage (
 ComponentInstance aComponentInstance,
 Handle theStorage
);

Parameters
aComponentInstance

The connection to associate with the allocated memory. The Component Manager provides a
component instance to your component when the connection is opened. You can use a component
identifier here, but you must coerce the data type appropriately.

theStorage
A handle to the memory that your component has allocated for the connection. Your component
must allocate this memory in the current heap. The Component Manager saves this handle and
provides it to your component, along with other parameters, in subsequent requests to this connection.

354 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Discussion
When an application or component opens a connection to your component, the Component Manager sends
your component an open request. In response to this open request, your component should set up an
environment to service the connection. Typically, your component should allocate some memory for the
connection. Your component can then use that memory to maintain state information appropriate to the
connection.

Your component should dispose of any allocated memory for the connection only in response to the close
request. Note that whenever an open request fails, the Component Manager always issues the close request.
Furthermore, the value stored with this function is always passed to the close request, so it must be valid or
NULL. If the open request tries to dispose of its allocated memory before returning, it should call this function
again with a NULL handle to keep the Component Manager from passing an invalid handle to the close
request.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
Components.h

SetComponentRefcon
Sets the reference constant for your component.

void SetComponentRefcon (
 Component aComponent,
 long theRefcon
);

Parameters
aComponent

The component whose reference constant you wish to set. You can use a component instance here,
but you must coerce the data type appropriately.

theRefcon
The reference constant value that you want to set for your component. Your component can retrieve
the reference constant using the GetComponentRefcon (page 339) function.

Discussion
There is one reference constant for each component, regardless of the number of connections to that
component. When your component is registered, the Component Manager sets this reference constant to
0.

The reference constant is a 4-byte value that your component can use in any way you decide. For example,
you might use the reference constant to store the address of a data structure that is shared by all connections
maintained by your component. You should allocate shared structures in the system heap. Your component
should deallocate the structure when its last connection is closed or when it is unregistered.

Availability
Available in Mac OS X v10.0 and later.

Functions 355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Declared In
Components.h

SetDefaultComponent
Changes the search order for registered components.

OSErr SetDefaultComponent (
 Component aComponent,
 SInt16 flags
);

Parameters
aComponent

The component which you wish moved to the front of the search chain. The order of the search chain
influences which component the Component Manager selects in response to an application’s use of
the OpenDefaultComponent (page 348) and FindNextComponent (page 333) functions. You can
use a component instance here, but you must coerce the data type appropriately.

flags
A value specifying the control information governing the operation. The value of this parameter
controls which component description fields the Component Manager examines during the reorder
operation. Set the appropriate flags to 1 to define the fields that are examined during the reorder
operation. See Set Default Component Flags (page 379) for a description of the values you can use
here.

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Discussion
Note that this function changes the search order for all applications. As a result, you should use this function
carefully.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

UncaptureComponent
Allows your component to uncapture a previously captured component.

OSErr UncaptureComponent (
 Component aComponent
);

Parameters
aComponent

The component to be uncaptured. Your component obtains this identifier from the
CaptureComponent (page 326) function. You can use a component instance here, but you must
coerce the data type appropriately.

Return Value
A result code. See “Component Manager Result Codes” (page 380).

356 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Discussion
This function restores the specified component to the list of available components. Applications can then
access the component and retrieve information about the component using Component Manager functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

UnregisterComponent
Removes a component from the Component Manager’s registration list.

OSErr UnregisterComponent (
 Component aComponent
);

Parameters
aComponent

The component to be removed. Applications that register components may obtain this identifier from
the RegisterComponent (page 348) or RegisterComponentResource (page 352) functions. The
component must not be in use by any applications or components. You can use a component instance
here, but you must coerce the data type appropriately.

Return Value
A result code. See “Component Manager Result Codes” (page 380). If there are open connections to the
component, returns a validInstancesExist error.

Discussion
Most components are registered at startup and remain registered until the computer is shut down. However,
you may want to provide some services temporarily. In that case you dispose of the component that provides
the temporary service by using this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Callbacks

ComponentMPWorkFunctionProcPtr

typedef ComponentResult (*ComponentMPWorkFunctionProcPtr) (
 void * globalRefCon,
 ComponentMPWorkFunctionHeaderRecordPtr header
);

If you name your function MyComponentMPWorkFunctionProc, you would declare it like this:

ComponentResult MyComponentMPWorkFunctionProc (

Callbacks 357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

 void * globalRefCon,
 ComponentMPWorkFunctionHeaderRecordPtr header
);

Parameters
header

Return Value
See the description of the ComponentResult data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentRoutineProcPtr
Defines a pointer to your component callback function, which serves as the main entry point into your
component and performs the component’s services.

typedef ComponentResult (*ComponentRoutineProcPtr) (
 ComponentParameters * cp,
 Handle componentStorage
);

If you name your function MyComponentRoutineProc, you would declare it like this:

ComponentResult ComponentRoutineProcPtr (
 ComponentParameters * cp,
 Handle componentStorage
);

Parameters
cp

A ComponentParameters (page 365) structure. The what field of the component parameters structure
indicates the action your component should perform. The parameters that the client invoked your
function with are contained in the params field of the component parameters structure. Your
component can use the CallComponentFunction (page 321) or
CallComponentFunctionWithStorage (page 322) function to extract the parameters from this
structure.

componentStorage
A handle to any memory that your component has associated with the connection. Typically, upon
receiving an open request, your component allocates memory and uses the
SetComponentInstanceStorage (page 354) function to associate the allocated memory with the
component connection.

Return Value
Your component should return a value of type ComponentResult. If your component does not return error
information as its function result, it should indicate errors using the SetComponentInstanceError (page
353) function. See the description of the ComponentResult data type.

358 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Discussion
You pass a pointer to your component callback function to the Component Manager when you register your
component. The Component Manager can then call your component when another application or component
requests its services. When your component receives a request, it should perform the action specified in the
what field of the component parameters structure.

The pointer which you pass to the Component Manager should be a universal procedure pointer (UPP). The
definition of the UPP data type for your component function is as follows:

typedef (ComponentRoutineProcPtr) ComponentRoutineUPP;

Before using your component function, you must first create a UPP for your callback function, using the
NewComponentRoutineUPP (page 344) function, as shown here:

ComponentRoutineUPP MyComponentRoutineUPP;
MyComponentRoutineUPP =
NewComponentRoutineUPP(&MyComponentRoutineProc)

You then pass MyComponentRoutineUPP to the Component Manager when you register your component.
The Component Manager will call your function each time your component receives a request. If you wish
to call your component function yourself, you can use theInvokeComponentRoutineUPP (page 342) function.

result = InvokeComponentRoutineUPP &myParams, myStorage,
MyComponentRoutineUPP)

When you are finished with your component callback function, you should dispose of the universal procedure
pointer associated with it, using the DisposeComponentRoutineUPP (page 333) function.

DisposeComponentRoutineUPP(MyComponentRoutineUPP);

To provide a component, you define a component function and supply the appropriate registration
information. You store your component function in a code resource and typically store your component’s
registration information as resources in a component file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetMissingComponentResourceProcPtr

typedef OSErr (*GetMissingComponentResourceProcPtr) (
 Component c,
 OSType resType,
 short resID,
 void * refCon,
 Handle * resource
);

If you name your function MyGetMissingComponentResourceProc, you would declare it like this:

OSErr GetMissingComponentResourceProcPtr (
 Component c,
 OSType resType,

Callbacks 359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

 short resID,
 void * refCon,
 Handle * resource
);

Parameters
c
resType
resource

Return Value
A result code. See “Component Manager Result Codes” (page 380).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Data Types

ComponentAliasResource

struct ComponentAliasResource {
 ComponentResource cr;
 ComponentDescription aliasCD;
};
typedef struct ComponentAliasResource ComponentAliasResource;

Fields
cr
aliasCD

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

360 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

ComponentDependencyArray

struct ComponentDependencyArray {
 SInt32 count;
 ComponentDescription descArray[1];
};

Fields
count
descArray

ComponentDescription

struct ComponentDescription {
 OSType componentType;
 OSType componentSubType;
 OSType componentManufacturer;
 unsigned long componentFlags;
 unsigned long componentFlagsMask;
};
typedef struct ComponentDescription ComponentDescription;

Fields
componentType

A four-character code that identifies the type of component. All components of a particular type must
support a common set of interface functions. For example, drawing components all have a component
type of 'draw'.

If you are developing an application which uses components, you can use this field to search for
components of a given type by specifying the component type in this field of the component
description structure you supply to the FindNextComponent (page 333) function or the
CountComponents (page 330) function. A value of 0 operates as a wildcard.

If you are developing a component, it must support all of the standard functions for the component
type specified by this field. Type codes with all lowercase characters are reserved for definition by
Apple. You can define your own component type code as long as you register it with Apple’s
Component Registry Group.

componentSubType
A four-character code that identifies the subtype of the component. Different subtypes of a component
type may support additional features or provide interfaces that extend beyond the standard functions
for a given component type. For example, the subtype of drawing components indicates the type of
object the component draws. Drawing components that draw ovals have a subtype of 'oval'.

If you are developing an application which uses components, you can use the componentSubType
field to perform a more specific lookup operation than is possible using only the componentType
field. By specifying particular values for both fields in the component description structure that you
supply to the FindNextComponent or CountComponents function, your application retrieves
information about only those components that meet both of these search criteria. A value of 0 operates
as a wildcard.

If you are developing a component, you may use this field to indicate more specific information about
the capabilities of the component. There are no restrictions on the content you assign to this field. If
no additional information is appropriate for your component type, you may set thecomponentSubType
field to 0.

Data Types 361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

componentManufacturer
A four-character code that identifies the manufacturer of the component. This field allows for further
differentiation between individual components. For example, components made by a specific
manufacturer may support an extended feature set. Components provided by Apple use a manufacturer
value of 'appl'.

If you are developing an application which uses components, you can use this field to find components
from a certain manufacturer. Specify the appropriate manufacturer code in this field of the component
description structure you supply to the FindNextComponent or CountComponents function. A value
of 0 operates as a wildcard.

If you are developing a component, you obtain your manufacturer code, which can be the same as
your application signature, from Apple’s Component Registry Group.

componentFlags
A 32-bit field that provides additional information about a particular component.

The high-order 8 bits are reserved for definition by the Component Manager. If you are developing
an application, you should usually set these bits to 0.

The low-order 24 bits are specific to each component type. These flags can be used to indicate the
presence of features or capabilities in a given component.

If you are developing an application which uses components, you can use these flags to further narrow
the search criteria applied by the FindNextComponent or CountComponents function. If you use
the componentFlags field in a component search, you use the componentFlagsMask field to
indicate which flags are to be considered in the search.

If you are developing a component, you can use these flags to indicate any special capabilities or
features of your component. You may use all 24 bits, as appropriate to its component type. You must
set all unused bits to 0.

componentFlagsMask
A 32-bit field that indicates which flags in the componentFlags field are relevant to a particular
component search operation.

If you are developing an application which uses components, your application should set each bit
which corresponds to a flag in the componentFlags field that is to be considered as a search criterion
by the FindNextComponent or CountComponents function to 1. The Component Manager considers
only these flags during the search. You specify the desired flag value (either 0 or 1) in the
componentFlags field.

For example, to look for a component with a specific control flag that is set to 0, set the appropriate
bit in the ComponentFlags field to 0 and the same bit in the ComponentFlagsMask field to 1. To
look for a component with a specific control flag that is set to 1, set the bit in the ComponentFlags
field to 1 and the same bit in the ComponentFlagsMask field to 1. To ignore a flag, set the bit in the
ComponentFlagsMask field to 0.

If you are developing a component, your component must set the componentFlagsMask field in its
component description structure to 0.

Discussion
The ComponentDescription structure identifies the characteristics of a component, including the type of
services offered by the component and its manufacturer.

Applications and components use component description structures in different ways. An application that
uses components specifies the selection criteria for a component in a component description structure. The
functions FindNextComponent (page 333) , CountComponents (page 330) , and GetComponentInfo (page
335) all use the component description structure to specify the criteria for their search.

362 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

A component uses the component description structure to specify its registration information and capabilities
and identify itself to the Component Manager. If your component is stored in a component resource, the
information in the component description structure must be part of that resource. See the description of the
component ‘thng’ resource. If you have developed an application that registers your component, that
application must supply a component description structure to the RegisterComponent (page 348) function.
See “Registering Components” for information about registering components.

The ComponentDescription data type defines the component description structure. Note that the valid
values of fields in the component description structure are determined by the component type specification.
For example, all image compressor components must use the componentSubType field to specify the
compression algorithm used by the compressor.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentFunctionUPP

typedef UniversalProcPtr ComponentFunctionUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentInstanceRecord

struct ComponentInstanceRecord {
 long data[1];
};
typedef struct ComponentInstanceRecord ComponentInstanceRecord;
typedef ComponentInstanceRecord * ComponentInstance;

Fields
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Data Types 363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

ComponentMPWorkFunctionHeaderRecord

struct ComponentMPWorkFunctionHeaderRecord {
 UInt32 headerSize;
 UInt32 recordSize;
 UInt32 workFlags;
 UInt16 processorCount;
 UInt8 unused;
 UInt8 isRunning;
};
typedef struct ComponentMPWorkFunctionHeaderRecord
ComponentMPWorkFunctionHeaderRecord;
typedef ComponentMPWorkFunctionHeaderRecord *
ComponentMPWorkFunctionHeaderRecordPtr;

Fields
headerSize
recordSize
workFlags
processorCount
unused
isRunning

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentMPWorkFunctionUPP

typedef ComponentMPWorkFunctionProcPtr ComponentMPWorkFunctionUPP;

Discussion
For more information, see the description of the ComponentMPWorkFunctionUPP callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

364 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

ComponentParameters

struct ComponentParameters {
 UInt8 flags;
 UInt8 paramSize;
 short what;
 long params[1];
};
typedef struct ComponentParameters ComponentParameters;

Fields
flags

Reserved for use by Apple.

paramSize
Specifies the number of bytes of parameter data for this request. The actual parameters are stored in
the params field.

what
Specifies the type of request. Component designers define the meaning of positive values and assign
them to requests that are supported by components of a given type. Negative values are reserved
for definition by Apple. See “Result Codes” for Apple-defined request code values.

params
An array that contains the parameters specified by the application that called your component. You
can use the CallComponentRoutine or CallComponentRoutineWithStorage function to convert
this array into a Pascal-style invocation of a subroutine in your component.

Discussion
The Component Manager uses the component parameters structure to pass information to your component
about a request from an application. Functions which use this data type are CallComponentFunction (page
321) , CallComponentFunctionWithStorage (page 322) , and DelegateComponentCall (page 331).The
information in this structure completely defines the request. Your component services the request as
appropriate.

The ComponentParameters data type defines the component parameters structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentPlatformInfo

struct ComponentPlatformInfo {
 long componentFlags;
 ResourceSpec component;
 short platformType;
};
typedef struct ComponentPlatformInfo ComponentPlatformInfo;

Fields
component

Availability
Available in Mac OS X v10.0 and later.

Data Types 365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Declared In
Components.h

ComponentPlatformInfoArray

struct ComponentPlatformInfoArray {
 long count;
 ComponentPlatformInfo platformArray[1];
};
typedef struct ComponentPlatformInfoArray ComponentPlatformInfoArray;

Fields
platformArray

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentRecord

struct ComponentRecord {
 long data[1];
};
typedef struct ComponentRecord ComponentRecord;
typedef ComponentRecord * Component;

Fields
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentResource

struct ComponentResource {
 ComponentDescription cd;
 ResourceSpec component;
 ResourceSpec componentName;
 ResourceSpec componentInfo;
 ResourceSpec componentIcon;
};
typedef struct ComponentResource ComponentResource;
typedef ComponentResource * ComponentResourcePtr;

Fields
cd

A ComponentDescription (page 361) structure that specifies the characteristics of the component.

366 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

component
A resource specification structure that specifies the type and ID of the component code resource. The
resType field of the resource specification structure may contain any value. The component’s main
entry point must be at offset 0 in the resource.

componentName
A resource specification structure that specifies the resource type and ID for the name of the
component. This is a Pascal string. Typically, the name is stored in a resource of type 'STR '.

componentInfo
A resource specification structure that specifies the resource type and ID for the information string
that describes the component. This is a Pascal string. Typically, the information string is stored in a
resource of type 'STR '. You might use the information stored in this resource in a Get Info dialog
box.

componentIcon
A resource specification structure that specifies the resource type and ID for the icon for a component.
Component icons are stored as 32-by-32 bit maps. Typically, the icon is stored in a resource of type
'ICON'. Note that this icon is not used by the Finder you supply an icon only so that other components
or applications can display your component’s icon in a dialog box if needed.

Discussion
The ComponentResource data type defines the structure of a component resource. You can also optionally
append to the end of this structure the information defined by the ComponentResourceExtension (page
367) data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentResourceExtension

struct ComponentResourceExtension {
 long componentVersion;
 long componentRegisterFlags;
 short componentIconFamily;
};
typedef struct ComponentResourceExtension ComponentResourceExtension;

Fields
componentVersion

The version number of the component. If you specify the componentDoAutoVersion flag in
componentRegisterFlags, the Component Manager must obtain the version number of your
component when your component is registered. Either you can provide a version number in your
component’s resource, or you can specify a value of 0 for its version number. If you specify 0, the
Component Manager sends your component a version request to get the version number of your
component.

componentRegisterFlags
A set of flags containing additional registration information. See Component Resource Extension
Flags (page 372) for the flag values.

Data Types 367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

componentIconFamily
The resource ID of an icon family. You can provide an icon family in addition to the icon provided in
the componentIcon field. Note that members of this icon family are not used by the Finder you
supply an icon family only so that other components or applications can display your component’s
icon in a dialog box if needed.

Discussion
You can optionally include in your component resource the information defined by the
ComponentResourceExtension data type:

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentResult

typedef long ComponentResult;

Discussion

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ComponentRoutineUPP

typedef ComponentRoutineProcPtr ComponentRoutineUPP;

Discussion
For more information, see the description of the ComponentRoutineUPP callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

368 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

ExtComponentResource

struct ExtComponentResource {
 ComponentDescription cd;
 ResourceSpec component;
 ResourceSpec componentName;
 ResourceSpec componentInfo;
 ResourceSpec componentIcon;
 long componentVersion;
 long componentRegisterFlags;
 short componentIconFamily;
 long count;
 ComponentPlatformInfo platformArray[1];
};
typedef struct ExtComponentResource ExtComponentResource;
typedef ExtComponentResource * ExtComponentResourcePtr;

Fields
cd
component
componentName
componentInfo
componentIcon
platformArray

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

GetMissingComponentResourceUPP

typedef GetMissingComponentResourceProcPtr GetMissingComponentResourceUPP;

Discussion
For more information, see the description of the GetMissingComponentResourceUPP callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Data Types 369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

RegisteredComponentInstanceRecord

struct RegisteredComponentInstanceRecord {
 long data[1];
};
typedef struct RegisteredComponentInstanceRecord RegisteredComponentInstanceRecord;
typedef RegisteredComponentInstanceRecord * RegisteredComponentInstanceRecordPtr;

Fields
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

RegisteredComponentRecord

struct RegisteredComponentRecord {
 long data[1];
};
typedef struct RegisteredComponentRecord RegisteredComponentRecord;
typedef RegisteredComponentRecord * RegisteredComponentRecordPtr;

Fields
data

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

ResourceSpec

struct ResourceSpec {
 OSType resType;
 short resID;
};
typedef struct ResourceSpec ResourceSpec;

Fields
resType

The type of the resource.

resID
The ID of the resource.

Discussion
The ComponentResource (page 366) structure uses the resource specification structure, defined by the
ResourceSpec data type, to describe the component’s code, name, information string, or icon. The resources
specified by the resource specification structures must reside in the same resource file as the component
resource itself.

370 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Components.h

Constants

cmpAliasNoFlags

enum {
 cmpAliasNoFlags = 0,
 cmpAliasOnlyThisFile = 1
};

Constants
cmpAliasNoFlags

Available in Mac OS X v10.0 and later.

Declared in Components.h.

cmpAliasOnlyThisFile
Available in Mac OS X v10.0 and later.

Declared in Components.h.

cmpIsMissing

enum {
 cmpThreadSafe = 1L << 28,
 cmpIsMissing = 1L << 29,
 cmpWantsRegisterMessage = 1L << 31
};

Constants
cmpThreadSafe

Available in Mac OS X v10.3 and later.

Declared in Components.h.

cmpIsMissing
Available in Mac OS X v10.0 and later.

Declared in Components.h.

cmpWantsRegisterMessage
The setting of the cmpWantsRegisterMessage bit determines whether the Component Manager
calls this component during registration. Set this bit to 1 if your component should be called when
it is registered; otherwise, set this bit to 0.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

Constants 371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Discussion
These values are used by the componentFlags field of the ComponentDescription (page 361) structure
to provide additional information about a component.

Component Resource Extension Flags

enum {
 componentDoAutoVersion = (1 << 0),
 componentWantsUnregister = (1 << 1),
 componentAutoVersionIncludeFlags = (1 << 2),
 componentHasMultiplePlatforms = (1 << 3),
 componentLoadResident = (1 << 4)
};

Constants
componentDoAutoVersion

Specify this flag if you want the Component Manager to resolve conflicts between different versions
of the same component. If you specify this flag, the Component Manager registers your component
only if there is no later version available. If an older version is already registered, the Component
Manager unregisters it. If a newer version of the same component is registered after yours, the
Component Manager automatically unregisters your component. You can use this automatic version
control feature to make sure that the most recent version of your component is registered, regardless
of the number of versions that are installed

Available in Mac OS X v10.0 and later.

Declared in Components.h.

componentWantsUnregister
Specify this flag if you want your component to receive an unregister request when it is unregistered.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

componentAutoVersionIncludeFlags
Specify this flag if you want the Component Manager to include the componentFlags field of the
component description structure when it searches for identical components in the process of
performing automatic version control for your component. If you do not specify this flag, the
Component Manager searches only the componentType, componentSubType, and
componentManufacturer fields.

Note that the setting of the componentAutoVersionIncludeFlags flag affects automatic version
control only and does not affect the search operations performed by FindNextComponent and
CountComponents.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

componentHasMultiplePlatforms
Available in Mac OS X v10.0 and later.

Declared in Components.h.

componentLoadResident
Available in Mac OS X v10.0 and later.

Declared in Components.h.

372 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Discussion
These values are used in the ComponentResourceExtension (page 367) structure to specify additional
information about component registration.

CSComponentsThreadMode

typedef UInt32 CSComponentsThreadMode;
enum {
 kCSAcceptAllComponentsMode = 0,
 kCSAcceptThreadSafeComponentsOnlyMode = 1
};

Constants
kCSAcceptAllComponentsMode

Available in Mac OS X v10.3 and later.

Declared in Components.h.

kCSAcceptThreadSafeComponentsOnlyMode
Available in Mac OS X v10.3 and later.

Declared in Components.h.

kAnyComponentType

enum {
 kAnyComponentType = 0,
 kAnyComponentSubType = 0,
 kAnyComponentManufacturer = 0,
 kAnyComponentFlagsMask = 0
};

Constants
kAnyComponentType

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kAnyComponentSubType
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kAnyComponentManufacturer
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kAnyComponentFlagsMask
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Constants 373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

kAppleManufacturer

enum {
 kAppleManufacturer = 'appl',
 kComponentResourceType = 'thng',
 kComponentAliasResourceType = 'thga'
};

Constants
kAppleManufacturer

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentResourceType
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentAliasResourceType
Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagDoWork

enum {
 mpWorkFlagDoWork = (1 << 0),
 mpWorkFlagDoCompletion = (1 << 1),
 mpWorkFlagCopyWorkBlock = (1 << 2),
 mpWorkFlagDontBlock = (1 << 3),
 mpWorkFlagGetProcessorCount = (1 << 4),
 mpWorkFlagGetIsRunning = (1 << 6)
};

Constants
mpWorkFlagDoWork

Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagDoCompletion
Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagCopyWorkBlock
Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagDontBlock
Available in Mac OS X v10.0 and later.

Declared in Components.h.

mpWorkFlagGetProcessorCount
Available in Mac OS X v10.0 and later.

Declared in Components.h.

374 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

mpWorkFlagGetIsRunning
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platform68k

enum {
 platform68k = 1,
 platformPowerPC = 2,
 platformInterpreted = 3,
 platformWin32 = 4,
 platformPowerPCNativeEntryPoint = 5,
 platformIA32NativeEntryPoint = 6
};

Constants
platform68k

Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformPowerPC
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformInterpreted
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformWin32
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformPowerPCNativeEntryPoint
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformIA32NativeEntryPoint
Available in Mac OS X v10.3 and later.

Declared in Components.h.

Constants 375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Discussion

platformIRIXmips

enum {
 platformIRIXmips = 1000,
 platformSunOSsparc = 1100,
 platformSunOSintel = 1101,
 platformLinuxppc = 1200,
 platformLinuxintel = 1201,
 platformAIXppc = 1300,
 platformNeXTIntel = 1400,
 platformNeXTppc = 1401,
 platformNeXTsparc = 1402,
 platformNeXT68k = 1403,
 platformMacOSx86 = 1500
};

Constants
platformIRIXmips

Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformSunOSsparc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformSunOSintel
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformLinuxppc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformLinuxintel
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformAIXppc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformNeXTIntel
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformNeXTppc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformNeXTsparc
Available in Mac OS X v10.0 and later.

Declared in Components.h.

376 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

platformNeXT68k
Available in Mac OS X v10.0 and later.

Declared in Components.h.

platformMacOSx86
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Register Component Resource flags

enum {
 registerComponentGlobal = 1,
 registerComponentNoDuplicates = 2,
 registerComponentAfterExisting = 4,
 registerComponentAliasesOnly = 8
};

Constants
registerComponentGlobal

Specify this flag to indicate that this component should be made available to other applications and
clients as well as the one performing the registration. If you do not specify this flag, the component
is available for use only by the registering application or component (that is, the component is local
to the A5 world of the registering program).

Available in Mac OS X v10.0 and later.

Declared in Components.h.

registerComponentNoDuplicates
Specify this flag to indicate that if a component with identical characteristics to the one being registered
already exists, then the new one should not be registered (RegisterComponent returns 0 in this
situation). If you do not specify this flag, the component is registered even if a component with
identical characteristics to the one being registered already exists.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

registerComponentAfterExisting
Specify this flag to indicate that this component should be registered after all other components with
the same component type. Usually components are registered before others with identical descriptions;
specifying this flag overrides that behavior.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

registerComponentAliasesOnly
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Discussion
The functions RegisterComponent (page 348) , RegisterComponentResource (page 352) , and
RegisterComponentResourceFile (page 352) use these flags in the global parameter.

Constants 377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Request Codes

enum {
 kComponentOpenSelect = -1,
 kComponentCloseSelect = -2,
 kComponentCanDoSelect = -3,
 kComponentVersionSelect = -4,
 kComponentRegisterSelect = -5,
 kComponentTargetSelect = -6,
 kComponentUnregisterSelect = -7,
 kComponentGetMPWorkFunctionSelect = -8,
 kComponentExecuteWiredActionSelect = -9,
 kComponentGetPublicResourceSelect = -10
};

Constants
kComponentOpenSelect

A request to open a connection. Your component must respond to this request code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentCloseSelect
A request to close a connection. Your component must respond to this request code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentCanDoSelect
A request to determine whether your component supports a particular request. Your component
must respond to this request code

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentVersionSelect
A request to return your component’s version number. Your component must respond to this request
code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentRegisterSelect
A request to determine whether your component can operate in the current environment. Your
component may or may not respond to this request code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentTargetSelect
A request to call another component whenever your component would call itself. Your component
may or may not respond to this request code.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

378 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

kComponentUnregisterSelect
A request to perform any operations necessary as a result of your component being unregistered.
Your component may or may not respond to this request code

Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentGetMPWorkFunctionSelect
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentExecuteWiredActionSelect
Available in Mac OS X v10.0 and later.

Declared in Components.h.

kComponentGetPublicResourceSelect
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Discussion
These values are used in the ComponentParameters (page 365) structure to specify the type of a request
to a component. Apple has defined these request codes:

Set Default Component Flags

enum {
 defaultComponentIdentical = 0,
 defaultComponentAnyFlags = 1,
 defaultComponentAnyManufacturer = 2,
 defaultComponentAnySubType = 4,
 defaultComponentAnyFlagsAnyManufacturer = (defaultComponentAnyFlags +
defaultComponentAnyManufacturer),
 defaultComponentAnyFlagsAnyManufacturerAnySubType = (defaultComponentAnyFlags
 + defaultComponentAnyManufacturer + defaultComponentAnySubType)
};

Constants
defaultComponentIdentical

The Component Manager places the component specified in the call to SetDefaultComponent in
front of all other components that have the same component description.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

defaultComponentAnyFlags
The Component Manager ignores the value of the componentFlags field during the reorder operation.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

defaultComponentAnyManufacturer
The Component Manager ignores the value of the componentManufacturer field during the reorder
operation.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

Constants 379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

defaultComponentAnySubType
The Component Manager ignores the value of the componentSubType field during the reorder
operation.

Available in Mac OS X v10.0 and later.

Declared in Components.h.

defaultComponentAnyFlagsAnyManufacturer
Available in Mac OS X v10.0 and later.

Declared in Components.h.

defaultComponentAnyFlagsAnyManufacturerAnySubType
Available in Mac OS X v10.0 and later.

Declared in Components.h.

Discussion
The SetDefaultComponent (page 356) function uses these values in the flags parameter to control which
component description fields the Component Manager examines during the reorder operation.

Result Codes

The result codes defined by the Component Manager are listed below.

DescriptionValueResult Code

Invalid component ID.-3000invalidComponentID

Available in Mac OS X v10.0 and later.

This component has open connections.-3001validInstancesExist

Available in Mac OS X v10.0 and later.

This component has not been captured.-3002componentNotCaptured

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-3003componentDontRegister

Available in Mac OS X v10.0 and later.-3004unresolvedComponentDLLErr

Available in Mac OS X v10.0 and later.-3005retryComponentRegistrationErr

Component does not support the specified request
code.

0x80008002badComponentSelector

Available in Mac OS X v10.0 and later.

Invalid component passed to Component Manager.0x80008001badComponentInstance

Available in Mac OS X v10.0 and later.

380 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Gestalt Constants

You can check for version and feature availability information by using the Component Manager selectors
defined in the Gestalt Manager. For more information, see Gestalt Manager Reference.

Gestalt Constants 381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

382 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Component Manager Reference

Framework: CoreServices/CoreServices.h

Declared in DateTimeUtils.h
UTCUtils.h

Overview

You can use the Date, Time, and Measurement Utilities to manipulate the date-time information and
geographic location data used by a Macintosh computer. A Macintosh computer contains a battery-operated
clock chip that maintains information on the current date-time. In Mac OS 9, the date and time were retrieved
from this clock chip. In Mac OS X, the date and time are retrieved through the BSD/CoreFoundation level.

You can use the routines provided by the Date, Time, and Measurement Utilities to

 ■ get the current date and time

 ■ set the current date and time, if necessary

 ■ convert between internal date-time structures

 ■ get and set the geographic location and time-zone information

 ■ determine the number of elapsed microseconds since system startup

Please note, setting the time or geographical location requires authorization by using Authorization Services.
See Authorization Concepts for more information.

To make the best use of the Date, Time, and Measurement Utilities, you should be familiar with the international
resources, especially the numeric-format and long-date-format resources, and the Script Manager.

Carbon supports the majority of the Date, Time, and Measurement Utilities. However, obsolete functions that
are prefixed with “iu” or “IU” (such as IUDateString and IUTimeString) are not supported.

Functions by Task

Converting Between Date-Time Formats

DateToSeconds (page 390) Deprecated in Mac OS X v10.3
Converts a date and time to a number of seconds elapsed since midnight, January 1, 1904. (Deprecated.
Use the CFCalendarRef data type and the functions that operate on it instead.)

Overview 383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities
Reference

SecondsToDate (page 397) Deprecated in Mac OS X v10.3
Converts a number of seconds elapsed since midnight, January 1, 1904 to a date and time. (Deprecated.
Use the CFCalendarRef data type and the functions that operate on it instead.)

Converting Between Long Date-Time Format

LongDateToSeconds (page 395) Deprecated in Mac OS X v10.3
Converts a date and time to the number of seconds elapsed since midnight, January 1, 1904.
(Deprecated. Use the CFCalendarRef data type and the functions that operate on it instead.)

LongSecondsToDate (page 395) Deprecated in Mac OS X v10.3
Converts the number of seconds elapsed since midnight, January 1, 1904 to a date and time.
(Deprecated. Use the CFCalendarRef data type and the functions that operate on it instead.)

Converting Date and Time Strings Into Numeric Representations

InitDateCache (page 393) Deprecated in Mac OS X v10.3
Initializes the date cache structure, which is used to store data for use by the StringToDate and
StringToTime functions. (Deprecated. There is no replacement.)

StringToDate (page 400) Deprecated in Mac OS X v10.3
Parses a string for a date and converts the date information into values in a date-time structure.
(Deprecated. Use CFDateFormatterCreateDateFromString instead.)

StringToTime (page 401) Deprecated in Mac OS X v10.3
Parses a string for a time specification and converts the date information into values in a date-time
structure. (Deprecated. Use CFDateFormatterCreateDateFromString instead.)

Converting Long Date and Time Values Into Strings

LongDateString (page 394) Deprecated in Mac OS X v10.3
Converts a date that is specified as a LongDateTime value into a Pascal string, making use of the
date formatting information in the specified resource. (Deprecated. Use
CFDateFormatterCreateStringWithDate instead.)

LongTimeString (page 396) Deprecated in Mac OS X v10.3
Converts a time that is specified as a LongDateTime value into a Pascal string, making use of the
time formatting information in the specified resource. (Deprecated. Use
CFDateFormatterCreateStringWithDate instead.)

Converting Numeric Representations Into Date and Time Strings

DateString (page 389) Deprecated in Mac OS X v10.3
Converts a date in the standard date-time representation into a Pascal string, making use of the date
formatting information in the specified resource. (Deprecated. Use
CFDateFormatterCreateStringWithDate instead.)

384 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

TimeString (page 402) Deprecated in Mac OS X v10.3
Converts a time in the standard date-time representation into a string, making use of the time
formatting information in the specified resource. (Deprecated. Use
CFDateFormatterCreateStringWithDate instead.)

Converting Between CF and Carbon Time Types

UCConvertCFAbsoluteTimeToUTCDateTime (page 406)
Converts a value of type CFAbsoluteTime to UTCDateTime.

UCConvertCFAbsoluteTimeToSeconds (page 405)
Converts a value of type CFAbsoluteTime to seconds.

UCConvertCFAbsoluteTimeToLongDateTime (page 405)
Converts a value of type CFAbsoluteTime to LongDateTime.

UCConvertLongDateTimeToCFAbsoluteTime (page 406)
Converts a value of type LongDateTime to CFAbsoluteTime.

UCConvertSecondsToCFAbsoluteTime (page 407)
Converts a value from the normal seconds time representation to CFAbsoluteTime.

UCConvertUTCDateTimeToCFAbsoluteTime (page 408)
Converts a value of type UTCDateTime time to CFAbsoluteTime.

Converting Between UTC and Local Time

ConvertLocalTimeToUTC (page 386) Deprecated in Mac OS X v10.4
Converts local time to UTC. (Deprecated. Use CFTimeZoneGetSecondsFromGMT instead.)

ConvertLocalToUTCDateTime (page 387) Deprecated in Mac OS X v10.4
Converts local date and time to UTC date and time. (Deprecated. Use
CFTimeZoneGetSecondsFromGMT instead.)

ConvertUTCToLocalDateTime (page 388) Deprecated in Mac OS X v10.4
Converts UTC date and time to local date and time. (Deprecated. Use
CFTimeZoneGetSecondsFromGMT instead.)

ConvertUTCToLocalTime (page 388) Deprecated in Mac OS X v10.4
Converts UTC time to local time. (Deprecated. Use CFTimeZoneGetSecondsFromGMT instead.)

Getting the Current Date and Time

GetTime (page 392)
Obtains the current date-time information, expressed as a date and time. (Deprecated. Use
CFAbsoluteTimeGetCurrent instead.)

GetDateTime (page 390) Deprecated in Mac OS X v10.3
Obtains the current date-time information, expressed as the number of seconds elapsed since midnight,
January 1, 1904. (Deprecated. Use CFAbsoluteTimeGetCurrent instead.)

ReadDateTime (page 397) Deprecated in Mac OS X v10.3
Reads time information from the system. (Deprecated. Use CFAbsoluteTimeGetCurrent instead.)

Functions by Task 385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

GetLocalDateTime (page 391) Deprecated in Mac OS X v10.4
Gets the local date and time. (Deprecated. Use CFAbsoluteTimeGetCurrent and
CFTimeZoneGetSecondsFromGMT instead.)

GetUTCDateTime (page 392) Deprecated in Mac OS X v10.4
Gets the UTC date and time. (Deprecated. Use CFAbsoluteTimeGetCurrent instead.)

Modifying and Verifying Long Date-Time Records

ToggleDate (page 403) Deprecated in Mac OS X v10.3
Modifies a date and time, by modifying one specific component of a date and time (day, hour, minute,
seconds, day of week, and so on). (Deprecated. Use the CFCalendarRef data type and the functions
that operate on it instead.)

ValidDate (page 408) Deprecated in Mac OS X v10.3
Verifies specific date and time values in a long date-time structure. (Deprecated. Use the
CFCalendarRef data type and the functions that operate on it instead.)

Setting the Current Date and Time

SetDateTime (page 398) Deprecated in Mac OS X v10.3
Changes the date-time information stored by the system to the specified value, expressed as the
number of seconds elapsed since midnight, January 1, 1904. (Deprecated. There is no replacement.)

SetTime (page 399) Deprecated in Mac OS X v10.3
Changes the date-time information in the system to the specified value, expressed as a date and time.
(Deprecated. There is no replacement.)

SetLocalDateTime (page 398) Deprecated in Mac OS X v10.4
Sets the local date and time. (Deprecated. There is no replacement.)

SetUTCDateTime (page 400) Deprecated in Mac OS X v10.4
Sets the UTC date and time. (Deprecated. Use settimeofday(2) instead.)

Functions

ConvertLocalTimeToUTC
Converts local time to UTC. (Deprecated in Mac OS X v10.4. Use CFTimeZoneGetSecondsFromGMT instead.)

OSStatus ConvertLocalTimeToUTC (
 UInt32 localSeconds,
 UInt32 *utcSeconds
);

Parameters
localSeconds

A value of type UInt32 containing the local time.

386 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

utcSeconds
A pointer to a value of type UInt32. On return, this points to the UTC value corresponding to the
given time in localSeconds.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
Given a local time in localSeconds, the function will place the corresponding UTC value in utcSeconds.
This function returns noErr if the conversion is successful. Otherwise, it may return kUTCUnderflowErr or
kUTCOverflowErr.

Special Considerations

For information on using CFTimeZoneGetSecondsFromGMT, see Dates and Times Programming Guide for
Core Foundation andCFTimeZone Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
UTCUtils.h

ConvertLocalToUTCDateTime
Converts local date and time to UTC date and time. (Deprecated in Mac OS X v10.4. Use
CFTimeZoneGetSecondsFromGMT instead.)

OSStatus ConvertLocalToUTCDateTime (
 const LocalDateTime *localDateTime,
 UTCDateTime *utcDateTime
);

Parameters
localDateTime

A value of type LocalDateTime containing the local date and time.

utcDateTime
A pointer to a value of type UTCDateTime. On return, this points to the UTC value corresponding to
the given date and time in localDateTime.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
Given a local date and time in the localDateTime parameter, this function places the corresponding UTC
value in utcDateTime. This function returns noErr if the conversion is successful. Otherwise, it may return
kUTCUnderflowErr, kUTCOverflowErr, or paramErr if utcDateTime is NULL.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Declared In
UTCUtils.h

ConvertUTCToLocalDateTime
Converts UTC date and time to local date and time. (Deprecated in Mac OS X v10.4. Use
CFTimeZoneGetSecondsFromGMT instead.)

OSStatus ConvertUTCToLocalDateTime (
 const UTCDateTime *utcDateTime,
 LocalDateTime *localDateTime
);

Parameters
utcDateTime

A value of type UTCDateTime specifying the UTC date and time.

localDateTime
A pointer to a value of type LocalDateTime. On return, this points to the local value corresponding
to the given date and time in utcDateTime.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
Given a UTC date and time in utcDateTime, this function places the corresponding local value in
localDateTime. This function returns noErr if the conversion is successful. Otherwise, it may return
kUTCUnderflowErr, kUTCOverflowErr, or paramErr if localDateTime is NULL.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
UTCUtils.h

ConvertUTCToLocalTime
Converts UTC time to local time. (Deprecated in Mac OS X v10.4. Use CFTimeZoneGetSecondsFromGMT
instead.)

OSStatus ConvertUTCToLocalTime (
 UInt32 utcSeconds,
 UInt32 *localSeconds
);

Parameters
utcSeconds

A value of type UInt32 specifying UTC time in seconds.

localSeconds
A pointer to a value of type UInt32. On return, this points to the local time corresponding to the UTC
time specified in utcSeconds.

388 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
Given a UTC time in utcSeconds this function places the corresponding local value in localSeconds. This
function returns noErr if the conversion is successful. Otherwise, it may return kUTCUnderflowErr or
kUTCOverflowErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
UTCUtils.h

DateString
Converts a date in the standard date-time representation into a Pascal string, making use of the date formatting
information in the specified resource. (Deprecated in Mac OS X v10.3. Use
CFDateFormatterCreateStringWithDate instead.)

void DateString (
 SInt32 dateTime,
 DateForm longFlag,
 Str255 result,
 Handle intlHandle
);

Parameters
dateTime

The date-time value in the representation returned by the GetDateTime function. The numeric
representation used in these functions is the standard date-time representation: a 32-bit integer value
that is returned by the GetDateTime function. This is a long integer value that represents the number
of seconds between midnight, January 1, 1904, and the time at which GetDateTime was called.

longFlag
A flag that indicates the desired format for the date string. This is one of the three values defined as
the DateForm type.

The string produced by DateString is in one of three standard date formats used on the Macintosh,
depending on which of the three DateForm values that you specify for the longFlag parameter:
shortDate, abbrevDate, or longDate. The information in the supplied resource defines how month
and day names are written and provides for calendars with more than 7 days and more than 12
months.

For the Roman script system’s resource, the date January 31, 1992, produces the following three
strings: “1/31/92“, “Fri, Jan 31, 1992“, and “Friday, January 31, 1992“(for DateForm values shortDate,
abbrevDate, and longDate, respectively).

result
On output, contains the string representation of the date in the format indicated by the longFlag
parameter.

Functions 389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

intlHandle
A handle to a numeric-format or a long-date-format resource that specifies date formatting information
for use in the conversion. If you specify NULL as the value of the resource handle parameter,
DateString uses information from the current script. The numeric-format ('itl0') resource specifies
the short date formats and the long-date-format ('itl1') resource specifies the long date formats.

DateString formats its data according to the information in the specified numeric-format resource
(for short date formats) or long-date-format resource (for long date formats). If you specify shortDate,
the intlHandle value should be the handle to a numeric-format resource; if you specify abbrevDate
or longDate, it should be the handle to a long-date-format resource.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

DateToSeconds
Converts a date and time to a number of seconds elapsed since midnight, January 1, 1904. (Deprecated in
Mac OS X v10.3. Use the CFCalendarRef data type and the functions that operate on it instead.)

void DateToSeconds (
 const DateTimeRec *d,
 unsigned long *secs
);

Parameters
d

The date-time structure containing the date and time to convert.

secs
On return, the number of seconds elapsed between midnight, January 1, 1904, and the time specified
in the d parameter. For example, specifying a date and time of 11:33 A.M. on January 1, 1904 results
in 41580 being returned in this parameter.

Special Considerations

For information on using the CFCalendarRef data type, see Data Formatting Guide for Core Foundation and
CFCalendar Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

GetDateTime
Obtains the current date-time information, expressed as the number of seconds elapsed since midnight,
January 1, 1904. (Deprecated in Mac OS X v10.3. Use CFAbsoluteTimeGetCurrent instead.)

390 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

void GetDateTime (
 unsigned long *secs
);

Parameters
secs

On return, the number of seconds elapsed since midnight, January 1, 1904.

Discussion
The low-memory copy of the date and time information is also accessible through the global variable Time.

If an application disables interrupts for longer than a second, the date-time information returned by the
GetDateTime function might not be exact. The GetDateTime function is intended to provide fairly accurate
time information, but not scientifically precise data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

GetLocalDateTime
Gets the local date and time. (Deprecated in Mac OS X v10.4. Use CFAbsoluteTimeGetCurrent and
CFTimeZoneGetSecondsFromGMT instead.)

OSStatus GetLocalDateTime (
 LocalDateTime *localDateTime,
 OptionBits options
);

Parameters
localDateTime

A pointer to a value of type LocalDateTime. On return, the value this parameter points to is the
current local date and time.

options
A value of type OptionBits. Pass kUTCDefaultOptions for the default behavior.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
This API returns the current date and time in localTime. Otherwise, it is set to 0. Use kUTCDefaultOptions
in the options parameter for default behavior. Different behavior may be specified through this parameter
in the future. If the operation is successful noErr is returned. If a NULL pointer is passed in the localDateTime
parameter, paramErr is returned.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Declared In
UTCUtils.h

GetTime
Obtains the current date-time information, expressed as a date and time. (Deprecated. Use
CFAbsoluteTimeGetCurrent instead.)

void GetTime (
 DateTimeRec *d
);

Parameters
d

On return, the fields of the date-time structure contain the current date and time.

Discussion
The GetTime function first calls the GetDateTime function to obtain the number of seconds elapsed since
midnight, January 1, 1904. It then calls the SecondsToDate function to convert the number of seconds into
a date and time.

As an alternative to using the GetTime procedure, you can pass the value of the global variable Time to the
SecondsToDate (page 397) function; a SecondsToDate(Time) function call is identical to a GetTime(d)
function call.

If an application disables interrupts for longer than a second, the date-time information returned by the
GetTime function might not be exact. The GetTime function is intended to provide fairly accurate time
information, but not scientifically precise data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickTimeComponents.k.h

GetUTCDateTime
Gets the UTC date and time. (Deprecated in Mac OS X v10.4. Use CFAbsoluteTimeGetCurrent instead.)

OSStatus GetUTCDateTime (
 UTCDateTime *utcDateTime,
 OptionBits options
);

Parameters
utcDateTime

A pointer to a value of type UTCDateTime. On return, the value this parameter points to is the current
UTC date and time.

options
A value of type OptionBits. Pass kUTCDefaultOptions for the default behavior.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

392 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Discussion
This API returns the current date and time as UTC in utcDateTime. Otherwise, it is set to 0. Use
kUTCDefaultOptions in the options for default behavior. Different behavior may be specified through this
parameter in the future. If the operation is successful noErr is returned. If a NULL pointer is passed in
utcDateTime, paramErr is returned.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
UTCUtils.h

InitDateCache
Initializes the date cache structure, which is used to store data for use by the StringToDate and
StringToTime functions. (Deprecated in Mac OS X v10.3. There is no replacement.)

OSErr InitDateCache (
 DateCachePtr theCache
);

Parameters
theCache

A pointer to a date cache structure. This parameter can be a local variable, a pointer, or a locked
handle.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
You must call InitDateCache to initialize the date cache structure before using either the
StringToDate (page 400) or StringToTime (page 401) functions. You must pass a pointer to a date cache
structure. You have to declare the structure as a variable or allocate it in the heap.

If you are writing an application that allows the use of global variables, you can make your date cache structure
a global variable and initialize it once, when you perform other global initialization.

InitDateCache calls the GetResource and LoadResource functions and it can also return the error codes
they produce.

Special Considerations

You no longer need to initialize the data cache in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

Functions 393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

LongDateString
Converts a date that is specified as a LongDateTime value into a Pascal string, making use of the date
formatting information in the specified resource. (Deprecated in Mac OS X v10.3. Use
CFDateFormatterCreateStringWithDate instead.)

void LongDateString (
 const LongDateTime *dateTime,
 DateForm longFlag,
 Str255 result,
 Handle intlHandle
);

Parameters
dateTime

A pointer to a 64-bit, signed representation of the number of seconds since Jan. 1, 1904. This allows
coverage of a much longer span of time (plus or minus approximately 30,000 years) than the standard,
32-bit representation.

longFlag
A flag that indicates the desired format for the date string. This is one of the three values defined as
the DateForm type.

The string produced by LongDateString is in one of three standard date formats used on the
Macintosh, depending on which of the three DateForm values that you specify for the longFlag
parameter: shortDate, abbrevDate, or longDate. The information in the supplied resource defines
how month and day names are written and provides for calendars with more than 7 days and more
than 12 months.

For the U.S. resource, the date January 31, 1992, produces the following three strings: “1/31/92“, “Fri,
Jan 31, 1992“, and “Friday, January 31, 1992“(for DateForm values shortDate, abbrevDate, and
longDate, respectively).

result
On output, contains the string representation of the date in the format indicated by the longFlag
parameter.

intlHandle
A handle to a numeric-format or long-date-format resource that specifies date formatting information
for use in the conversion. If you specify NULL as the value of the resource handle parameter,
LongDateString uses information from the current script. The numeric-format ('itl0') resource
specifies the short date formats and the long-date-format ('itl1') resource specifies the long date
formats.

If you specify shortDate in the longFlag parameter, the intlHandle value should be the handle
to a numeric-format resource; if you specify abbrevDate or longDate, it should be the handle to a
long-date-format resource.

Discussion
You can use the LongSecondsToDate and LongDateToSeconds functions to convert between the
LongDateRec (as produced by the StringToDate function) and LongDateTime data types.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

394 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

LongDateToSeconds
Converts a date and time to the number of seconds elapsed since midnight, January 1, 1904. (Deprecated
in Mac OS X v10.3. Use the CFCalendarRef data type and the functions that operate on it instead.)

void LongDateToSeconds (
 const LongDateRec *lDate,
 LongDateTime *lSecs
);

Parameters
lDate

The long date-time structure containing the date and time to convert.

lSecs
On return, the number of seconds elapsed since midnight, January 1, 1904, and the time specified in
the lDate parameter. The number of seconds are returned as a long date-time value.

Special Considerations

For information on using the CFCalendarRef data type, see Data Formatting Guide for Core Foundation and
CFCalendar Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

LongSecondsToDate
Converts the number of seconds elapsed since midnight, January 1, 1904 to a date and time. (Deprecated
in Mac OS X v10.3. Use the CFCalendarRef data type and the functions that operate on it instead.)

void LongSecondsToDate (
 const LongDateTime *lSecs,
 LongDateRec *lDate
);

Parameters
lSecs

The number of seconds elapsed since midnight, January 1, 1904.

lDate
On return, the fields of the long date-time structure that contain the date and time corresponding to
the value indicated in the lSecs parameter. For example, specifying the number of seconds 41580
results in the date and time 11:33 A.M. on January 1, 1904 being returned in this parameter.

Special Considerations

For information on using the CFCalendarRef data type, see Data Formatting Guide for Core Foundation and
CFCalendar Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Functions 395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Not available to 64-bit applications.

Declared In
DateTimeUtils.h

LongTimeString
Converts a time that is specified as a LongDateTime value into a Pascal string, making use of the time
formatting information in the specified resource. (Deprecated in Mac OS X v10.3. Use
CFDateFormatterCreateStringWithDate instead.)

void LongTimeString (
 const LongDateTime *dateTime,
 Boolean wantSeconds,
 Str255 result,
 Handle intlHandle
);

Parameters
dateTime

A pointer to a 64-bit, signed representation of the number of seconds since Jan. 1, 1904. This allows
coverage of a much longer span of time (plus or minus approximately 30,000 years) than the standard,
32-bit representation.

wantSeconds
A flag that indicates whether the seconds are to be included in the resulting string. LongTimeString
produces a string that includes the seconds if you set this parameter to TRUE.

result
On output, contains the string representation of the time.

intlHandle
A handle to a numeric-format ('itl0') resource that specifies time formatting information for use
in the conversion. If you specify NULL as the value of the resource handle parameter, LongTimeString
uses information from the current script.

The numeric-format resource specifies whether or not to use leading zeros for the time values, whether
to use a 12- or 24-hour time cycle, and how to specify morning or evening if a 12-hour time cycle is
used.

Discussion
You can use the LongSecondsToDate and LongDateToSeconds functions to convert between the
LongDateRec (as produced by the StringToTime (page 401) function) and LongDateTime data types.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

396 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

ReadDateTime
Reads time information from the system. (Deprecated in Mac OS X v10.3. Use CFAbsoluteTimeGetCurrent
instead.)

OSErr ReadDateTime (
 unsigned long *time
);

Parameters
time

On return, the current time expressed as the number of seconds elapsed since midnight, January 1,
1904.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421). If the clock chip cannot
be read, ReadDateTime returns the clkRdErr result code. The operation might fail if the clock chip is
damaged. Otherwise, the function returns the noErr result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

SecondsToDate
Converts a number of seconds elapsed since midnight, January 1, 1904 to a date and time. (Deprecated in
Mac OS X v10.3. Use the CFCalendarRef data type and the functions that operate on it instead.)

void SecondsToDate (
 unsigned long secs,
 DateTimeRec *d
);

Parameters
secs

The number of seconds elapsed since midnight, January 1, 1904.

d
On return, the fields of the date-time structure that contain the date and time corresponding to the
value indicated in the s parameter.

Special Considerations

For information on using the CFCalendarRef data type, see Data Formatting Guide for Core Foundation and
CFCalendar Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Functions 397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Declared In
DateTimeUtils.h

SetDateTime
Changes the date-time information stored by the system to the specified value, expressed as the number of
seconds elapsed since midnight, January 1, 1904. (Deprecated in Mac OS X v10.3. There is no replacement.)

OSErr SetDateTime (
 unsigned long time
);

Parameters
time

The number of seconds elapsed since midnight, January 1, 1904; this value is written to the system.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421). The SetDateTime function
attempts to verify the value written by reading it back in and comparing it to the value in the low-memory
copy. If a problem occurs, the SetDateTime function returns either the clkRdErr result code, because the
clock chip could not be read, or the clkWrErr result code, because the time written to the clock chip could
not be verified. Otherwise, the function returns the noErr result code.

Special Considerations

Only the root user can set the time in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

SetLocalDateTime
Sets the local date and time. (Deprecated in Mac OS X v10.4. There is no replacement.)

OSStatus SetLocalDateTime (
 const LocalDateTime *localDateTime,
 OptionBits options
);

Parameters
localDateTime

A pointer to a value of type LocalDateTime specifying the current local date and time.

options
A value of type OptionBits. Pass kUTCDefaultOptions for the default behavior.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

398 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Discussion
Use this call to set the clock to the date and time passed in the localDateTime parameter. Use
kUTCDefaultOptions in the options for default behavior. Different behavior may be specified through this
parameter in the future. If successful noErr is returned. Other errors include kIllegalClockValueErr,
paramErr if localDateTime is NULL, or clkWrErr due to a failed attempt to write the value to the system.

Special Considerations

Only the root user can set the time in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
UTCUtils.h

SetTime
Changes the date-time information in the system to the specified value, expressed as a date and time.
(Deprecated in Mac OS X v10.3. There is no replacement.)

void SetTime (
 const DateTimeRec *d
);

Parameters
d

The date and time to which to set in the system.

Discussion
The SetTime function first converts the date and time to the number of seconds elapsed since midnight,
January 1, 1904 by calling the DateToSeconds function. It then writes these seconds to the system and to
the system global variable Time by calling the SetDateTime function.

The SetTime function does not return a result code. If you need to know whether an attempt to change the
date and time information in the system is successful, you must use the SetDateTime function.

As an alternative to using the SetTime procedure, you can use the DateToSeconds (page 390) and
SetDateTime (page 398) functions.

Special Considerations

Only the root user can set the time in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

Functions 399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

SetUTCDateTime
Sets the UTC date and time. (Deprecated in Mac OS X v10.4. Use settimeofday(2) instead.)

OSStatus SetUTCDateTime (
 const UTCDateTime *utcDateTime,
 OptionBits options
);

Parameters
utcDateTime

A pointer to a value of type UTCDateTime specifying the current UTC date and time.

options
A value of type OptionBits. Pass kUTCDefaultOptions for the default behavior.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
Use this call to set the clock to the date and time passed in the utcDateTime parameter. Use
kUTCDefaultOptions in the options for default behavior. Different behavior may be specified through this
parameter in the future. If successful noErr is returned. Other errors include kIllegalClockValueErr,
kUTCUnderflowErr, kUTCOverflowErr, and paramErr if NULL is passed for utcDateTime. It may also
return clkWrErr due to a failed attempt to write the value to the system.

Special Considerations

Only the root user can set the time in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
UTCUtils.h

StringToDate
Parses a string for a date and converts the date information into values in a date-time structure. (Deprecated
in Mac OS X v10.3. Use CFDateFormatterCreateDateFromString instead.)

StringToDateStatus StringToDate (
 Ptr textPtr,
 SInt32 textLen,
 DateCachePtr theCache,
 SInt32 *lengthUsed,
 LongDateRec *dateTime
);

Parameters
textPtr

A pointer to the text string to be parsed. StringToDate expects a date specification, in a format
defined by the current script, at the beginning of the string.

400 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

textLen
The number of bytes in the text string.

theCache
A pointer to the date cache structure initialized by the InitDateCache (page 393) function with data
that is used during the conversion process.

lengthUsed
On output, contains a pointer to the number of bytes of the string that were parsed for the date. Use
this value to compute the starting location of the text that you can pass to StringToTime (page
401). Alternatively, you can use them in reverse order.

dateTime
On output, a pointer to the LongDateRec structure, which contains the year, month, day, and day
of the week parsed for the date.

Return Value
A set of bit values that indicate confidence levels, with higher numbers indicating low confidence in how
closely the input string matched what the function expected. For example, specifying a date with nonstandard
separators may work, but it returns a message indicating that the separator was not standard. See the
description of the StringToDateStatus data type.

Discussion
StringToDate parses the text string until it has finished finding all date information or until it has examined
the number of bytes specified by textLen.

Note that StringToDate fills in only the year, month, day, and day of the week; StringToTime fills in the
hour, minute, and second. You can use these two functions sequentially to fill in all of the values in a
LongDateRec structure.

When one of the date components is missing, such as the year, the current date value is used as a default.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

StringToTime
Parses a string for a time specification and converts the date information into values in a date-time structure.
(Deprecated in Mac OS X v10.3. Use CFDateFormatterCreateDateFromString instead.)

Functions 401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

StringToDateStatus StringToTime (
 Ptr textPtr,
 SInt32 textLen,
 DateCachePtr theCache,
 SInt32 *lengthUsed,
 LongDateRec *dateTime
);

Parameters
textPtr

A pointer to the text string to be parsed. At the beginning of the string, StringToTime expects a
time specification in a format defined by the current script.

textLen
The number of bytes in the text string.

theCache
A pointer to the date cache structure initialized by the InitDateCache function with data that is
used during the conversion process.

lengthUsed
On output, contains a pointer to the length, in bytes, of the string that was parsed for the time.

dateTime
On output, a pointer to the LongDateRec structure, which contains the hour, minute, and second
values that were parsed for the time.

Return Value
StringToTime returns a status value that indicates the confidence level for the success of the conversion.
This is the same status value indicator type as does StringToDate: a set of bit values that indicate confidence
levels, with higher numbers indicating low confidence in how closely the input string matched what the
function expected. See the description of the StringToDateStatus data type.

Discussion
StringToTime parses the string until it has finished finding all time information or until it has examined
the number of bytes specified by textLen.

Note that StringToTime fills in only the hour, minute, and second; StringToDate (page 400) fills in the
year, month, day, and day of the week. You can use these two functions sequentially to fill in all of the values
in a LongDateRec structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

TimeString
Converts a time in the standard date-time representation into a string, making use of the time formatting
information in the specified resource. (Deprecated in Mac OS X v10.3. Use
CFDateFormatterCreateStringWithDate instead.)

402 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

void TimeString (
 SInt32 dateTime,
 Boolean wantSeconds,
 Str255 result,
 Handle intlHandle
);

Parameters
dateTime

The date-time value in the representation returned by the Operating System function GetDateTime.
The numeric representation used in these functions is the standard date-time representation: a 32-bit
integer value that is returned by the GetDateTime function. This is a long integer value that represents
the number of seconds between midnight, January 1, 1904, and the time at which GetDateTime was
called.

wantSeconds
A flag that indicates whether the seconds are to be included in the resulting string.

result
On output, contains the string representation of the time.

intlHandle
A handle to a numeric-format ('itl0') resource that specifies time formatting information for use
in the conversion. If you specify NULL as the value of the resource handle parameter, TimeString
uses information from the current script.

The numeric-format resource specifies whether or not to use leading zeros for the time values, whether
to use a 12- or 24-hour time cycle, and how to specify morning or evening if a 12-hour time cycle is
used.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

ToggleDate
Modifies a date and time, by modifying one specific component of a date and time (day, hour, minute,
seconds, day of week, and so on). (Deprecated in Mac OS X v10.3. Use the CFCalendarRef data type and
the functions that operate on it instead.)

ToggleResults ToggleDate (
 LongDateTime *lSecs,
 LongDateField field,
 DateDelta delta,
 short ch,
 const TogglePB *params
);

Parameters
lSecs

The date-time information to modify, expressed as the number of seconds elapsed since midnight,
January 1, 1904.

Functions 403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

field
The name of the field in the date-time structure you want modify. Use one of the Long Date Mask
Constants (page 418) for the value of this parameter.

delta
A signed byte specifying the action you want to perform on the value specified in the field parameter.
Set delta to 1, to increase the value in the field by 1. Set delta to -1, to decrease the value of the
field by 1. Set delta to 0. If you want to set the value of the field explicitly; pass the new value through
the ch field.

ch
If the value in the delta field is 0, the value of the field in the date-time structure (specified by the
field parameter) is set to the value in the ch parameter. If the value in the delta field is not equal
to 0, the value in the ch parameter is ignored.

params
The user-defined settings of the toggle parameter block settings.

Return Value
See the description of the ToggleResults data type.

Discussion
The relevant fields of the toggle parameter block are:

 ■ togFlags A value of type SInt32. On input, the fields to be checked by the ValidDate function.

 ■ amChars A value of type ResType. On input, A.M. characters from 'itl0' resource.

 ■ pmChars A value of type ResType. On input, P.M. characters from 'itl0' resource.

 ■ reserved An array of SInt32 values. Reserved; on input, set each element to 0.

You must supply values for all input parameters.

The ToggleDate function first converts the number of seconds and makes each component of the date and
time available through a long date-time structure. The ToggleDate function then modifies the value of the
field, specified by the field parameter. If the value in the delta field is greater than 0, the value of the field
increases by 1; if the value in the delta field is less than 0, the value of the field decreases by 1; and if the
value of delta is 0, the value of the field is explicitly set to the value specified in the ch field. After the
ToggleDate function modifies the field, it calls the ValidDate function. The ValidDate function checks
the long date-time structure for correctness. If any of the structure fields are invalid, the ValidDate function
returns a LongDateField value corresponding to the field in error. Otherwise, it returns the result code for
validDateFields. Note that ValidDate reports only the least significant erroneous field.

After the ToggleDate function checks the validity of the modified field, it converts the modified date and
time back into a number of seconds and returns these seconds in the lSecs parameter.

The ToggleDate function was previously available with the Script Manager.

For more information on the LongDateRec structure, see LongDateRec (page 413). The toggle parameter
block structure is described in TogglePB (page 415).

For more information about the GetIntlResource function, see the Script Manager. For details on the
UppercaseText function, see Text Utilities.

Special Considerations

For information on using the CFCalendarRef data type, see Data Formatting Guide for Core Foundation and
CFCalendar Reference.

404 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

UCConvertCFAbsoluteTimeToLongDateTime
Converts a value of type CFAbsoluteTime to LongDateTime.

OSStatus UCConvertCFAbsoluteTimeToLongDateTime (
 CFAbsoluteTime iCFTime,
 LongDateTime *oLongDate
);

Parameters
iCFTime

A CFAbsoluteTime value that represents the time from which you wish to convert.

oLongDate
A pointer to a value of type LongDateTime. On successful return, this will contain the converted time
from the CFAbsoluteTime input.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
UseUCConvertCFAbsoluteTimeToLongDateTime to convert from aCFAbsoluteTime to aLongDateTime.
Remember that the epoch for LongDateTime is January 1, 1904 while the epoch for CFAbsoluteTime is
January 1, 2001.

Availability
Available in Mac OS X v10.2 and later.

Declared In
DateTimeUtils.h

UCConvertCFAbsoluteTimeToSeconds
Converts a value of type CFAbsoluteTime to seconds.

OSStatus UCConvertCFAbsoluteTimeToSeconds (
 CFAbsoluteTime iCFTime,
 UInt32 *oSeconds
);

Parameters
iCFTime

A CFAbsoluteTime value that represents the time from which you wish to convert.

Functions 405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

oSeconds
A pointer to a value of type UInt32. On successful return, this contains the converted time from the
CFAbsoluteTime input.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
UseUCConvertCFAbsoluteTimeToSeconds to convert from aCFAbsoluteTime to aUInt32 representation
of seconds. Remember that the epoch for seconds is January 1, 1904 while the epoch for CFAbsoluteTime is
January 1, 2001.

Availability
Available in Mac OS X v10.2 and later.

Declared In
DateTimeUtils.h

UCConvertCFAbsoluteTimeToUTCDateTime
Converts a value of type CFAbsoluteTime to UTCDateTime.

OSStatus UCConvertCFAbsoluteTimeToUTCDateTime (
 CFAbsoluteTime iCFTime,
 UTCDateTime *oUTCDate
);

Parameters
iCFTime

A CFAbsoluteTime value that represents the time from which you wish to convert.

oUTCDate
A pointer to a UTCDateTime. On successful return, this will contain the converted time from the
CFAbsoluteTime input.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
Use UCConvertCFAbsoluteTimeToUTCDateTime to convert from a CFAbsoluteTime to a UTCDateTime.
Remember that the epoch for UTCDateTime is January 1, 1904 while the epoch for CFAbsoluteTime is
January 1, 2001.

Availability
Available in Mac OS X v10.2 and later.

Declared In
DateTimeUtils.h

UCConvertLongDateTimeToCFAbsoluteTime
Converts a value of type LongDateTime to CFAbsoluteTime.

406 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

OSStatus UCConvertLongDateTimeToCFAbsoluteTime (
 LongDateTime iLongTime,
 CFAbsoluteTime *oCFTime
);

Parameters
iLongTime

A LongDateTime value that represents the time from which you wish to convert.

oCFTime
A pointer to a CFAbsoluteTime. On successful return, this will contain the converted time from the
input time type.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
UseUCConvertLongDateTimeToCFAbsoluteTime to convert from aLongDateTime to aCFAbsoluteTime.
Remember that the epoch for LongDateTime is January 1, 1904 while the epoch for CFAbsoluteTime is
January 1, 2001.

Availability
Available in Mac OS X v10.2 and later.

Declared In
DateTimeUtils.h

UCConvertSecondsToCFAbsoluteTime
Converts a value from the normal seconds time representation to CFAbsoluteTime.

OSStatus UCConvertSecondsToCFAbsoluteTime (
 UInt32 iSeconds,
 CFAbsoluteTime *oCFTime
);

Parameters
iSeconds

A UInt32 value that represents the time from which you wish to convert.

oCFTime
A pointer to a CFAbsoluteTime. On successful return, this will contain the converted time from the
input time type.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
Use UCConvertSecondsToCFAbsoluteTime to convert from the normal seconds representation of time
to a CFAbsoluteTime. Remember that the epoch for seconds is January 1, 1904 while the epoch for
CFAbsoluteTime is January 1, 2001.

Keep in mind that this function converts local time (that is, the time in the local time zone) to GMT/UTC.

Availability
Available in Mac OS X v10.2 and later.

Functions 407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Declared In
DateTimeUtils.h

UCConvertUTCDateTimeToCFAbsoluteTime
Converts a value of type UTCDateTime time to CFAbsoluteTime.

OSStatus UCConvertUTCDateTimeToCFAbsoluteTime (
 const UTCDateTime *iUTCDate,
 CFAbsoluteTime *oCFTime
);

Parameters
iUTCDate

A pointer to a UTCDateTime structure that represents the time from which you wish to convert.

oCFTime
A pointer to a CFAbsoluteTime. On successful return, this contains the converted time from the
input time type.

Return Value
A result code. See “Date, Time, and Measurement Utilities Result Codes” (page 421).

Discussion
Use UCConvertUTCDateTimeToCFAbsoluteTime to convert from a UTCDDateTime to a CFAbsoluteTime.
Remember that the epoch for UTCDateTime is January 1, 1904 while the epoch for CFAbsoluteTime is
January 1, 2001.

Availability
Available in Mac OS X v10.2 and later.

Declared In
DateTimeUtils.h

ValidDate
Verifies specific date and time values in a long date-time structure. (Deprecated in Mac OS X v10.3. Use the
CFCalendarRef data type and the functions that operate on it instead.)

short ValidDate (
 const LongDateRec *vDate,
 long flags,
 LongDateTime *newSecs
);

Parameters
vDate

The long date-time structure whose fields you want to verify.

flags
The fields that you want to verify in the long date-time structure. For a description of the values you
can use in this parameter, see Long Date Mask Constants (page 418).

newSecs
The date-time information, passed by the ToggleDate function, that you want to verify.

408 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Return Value
If any of the specified fields contain invalid values, the ValidDate function returns a LongDateField value
indicating the field in error. Otherwise, it returns the constant validDateFields. ValidDate reports only
the least significant erroneous field.

Discussion
For more information on the LongDateRec structure, see LongDateRec (page 413). The toggle parameter
block structure is described in TogglePB (page 415).

Special Considerations

For information on using the CFCalendarRef data type, see Data Formatting Guide for Core Foundation and
CFCalendar Reference.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
DateTimeUtils.h

Data Types

DateCacheRecord
struct DateCacheRecord {
 short hidden[256];
};
typedef struct DateCacheRecord DateCacheRecord;
typedef DateCacheRecord * DateCachePtr;

Fields
hidden

The storage used for converting dates and times.

Discussion
The StringToDate and StringToTime functions use the date cache, defined by the DateCacheStructure
data type, as an area to store date conversion data that is used by the date conversion functions. This structure
must be initialized by a call to the InitDateCache (page 393) function. The data in this structure is
private—you should not attempt to access it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DateTimeUtils.h

Data Types 409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

DateDelta
typedef SInt8 DateDelta;

Availability
Available in Mac OS X v10.0 and later.

Declared In
DateTimeUtils.h

DateTimeRec
struct DateTimeRec {
 short year;
 short month;
 short day;
 short hour;
 short minute;
 short second;
 short dayOfWeek;
};
typedef struct DateTimeRec DateTimeRec;

Fields
year

The year, ranging from 1904 to 2040. Note that to indicate the year 1984, this field would store the
integer 1984, not just 84. This field accepts input of 0 or negative values, but these values produce
unpredictable results in the year, month, and day fields when you use the SecondsToDate and
DateToSeconds functions. In addition, using SecondsToDate and DateToSecondswith year values
greater than 2040 causes a wraparound to 1904 plus the number of years over 2040. For example,
setting the year to 2045 returns a value of 1909, and the other fields in this record return unpredictable
results.

month
The month of the year, where 1 represents January, and 12 represents December. Values greater than
12 cause a wraparound to a future year and month. This field accepts input of 0 or negative values,
but these values produce unpredictable results in the year, month, and day fields when you use the
SecondsToDate and DateToSeconds functions.

day
The day of the month, ranging from 1 to 31. Values greater than the number of days in a given month
cause a wraparound to a future month and day. This feature is useful for working with leap years. For
example, the 366th day of January in 1992 (1992 was a leap year) evaluates as December 31, 1992,
and the 367th day of that year evaluates as January 1, 1993.

This field accepts 0 or negative values, but when you use the SecondsToDate and DateToSeconds
procedures, a value of 0 in this field returns the last day of the previous month. For example, a month
value of 2 and a day value of 0 return 1 and 31, respectively.

Using SecondsToDate and DateToSeconds with a negative number in this field subtracts that
number of days from the last day in the previous month. For example, a month value of 5 and a day
value of –1 return 4 for the month and 29 for the day a month value of 2 and a day value of –15 return
1 and 16, respectively.

410 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

hour
The hour of the day, ranging from 0 to 23, where 0 represents midnight and 23 represents 11:00 P.M.
Values greater than 23 cause a wraparound to a future day and hour. This field accepts input of
negative values, but these values produce unpredictable results in the month, day, hour, and minute
fields you use the SecondsToDate and DateToSeconds procedures.

minute
The minute of the hour, ranging from 0 to 59. Values greater than 59 cause a wraparound to a future
hour and minute. When you use the SecondsToDate and DateToSeconds procedures, a negative
value in this field has the effect of subtracting that number from the beginning of the given hour.
For example, an hour value of 1 and a minute value of –10 return 0 hours and 50 minutes. However,
if the negative value causes the hour value to be less than 0, for example hour = 0, minute = –61,
unpredictable results occur.

second
The second of the minute, ranging from 0 to 59. Values greater than 59 cause a wraparound to a
future minute and second. When you use the SecondsToDate and DateToSeconds procedures, a
negative value in this field has the effect of subtracting that number from the beginning of the given
minute. For example, a minute value of 1 and a second value of –10 returns 0 minutes and 50 seconds.
However, if the negative value causes the hour value to be less than 0, for example hour = 0, minute
= 0, and second = –61, unpredictable results occur.

dayOfWeek
The day of the week, where 1 indicates Sunday and 7 indicates Saturday. This field accepts 0, negative
values, or values greater than 7. When you use the SecondsToDate and DateToSeconds procedures,
you get correct values because this field is automatically calculated from the values in the year,
month, and day fields.

Discussion
The date-time record describes the date-time information as a date and time. The Date, Time, and Measurement
Utilities use a date-time record to read and write date-time information to and from the system.

The date-time record can be used to hold date and time values only for a Gregorian calendar. The long
date-time record, LongDateRec (page 413), can be used for a Gregorian calendar as well as other calendar
systems.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DateTimeUtils.h

Data Types 411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

LocalDateTime
struct LocalDateTime {
 UInt16 highSeconds;
 UInt32 lowSeconds;
 UInt16 fraction;
};
typedef struct LocalDateTime LocalDateTime;
typedef LocalDateTime * LocalDateTimePtr;
typedef LocalDateTimePtr * LocalDateTimeHandle;

Discussion
UTCDateTime and LocalDateTime are both 64 bits wide. The first 48 bits represent the number of seconds
since 1904. The remaining 16 bits are used to indicate a fractional seconds value, which has no inherent
precision. Each unit of this 16-bit value represents 1/65535 of a second. Developers may apply the appropriate
arithmetic to derive milliseconds or microseconds.

Note that the decision to have the lowSeconds field divided between the high and low 32 bits of the 64 bit
structure was intentional. The structure above is perfect for performing 64 bit math and logical comparisons.
Having the lowSeconds field in the low or high 32 bits would have been easier for the compilers to handle
and probably execute faster, however it would have rendered the structure unusable for 64 bit math and
logical comparisons.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UTCUtils.h

LongDateCvt
union LongDateCvt {
 SInt64 c
 struct {
 UInt32 lHigh;
 UInt32 lLow;
 } hl;
};
typedef union LongDateCvt LongDateCvt;

Fields
c

The date and time, specified in seconds relative to midnight, January 1, 1904, as a signed, 64-bit
integer in SANE comp format. The high-order bit of this field represents the sign of the 64-bit integer.
Negative values allow you to indicate dates and times prior to midnight, January 1, 1904.

hl
The high-order 32 bits when converting from a standard date-time value. Set this field to 0.

Discussion
The Date, Time, and Measurement Utilities provide the LongDateCvt structure to help in setting up
LongDateTime values.

Availability
Available in Mac OS X v10.0 and later.

412 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Declared In
DateTimeUtils.h

LongDateRec
union LongDateRec {
 struct {
 short era;
 short year;
 short month;
 short day;
 short hour;
 short minute;
 short second;
 short dayOfWeek;
 short dayOfYear;
 short weekOfYear;
 short pm;
 short res1;
 short res2;
 short res3;
 } ld;
 short list[14]
 struct {
 short eraAlt;
 DateTimeRec oldDate;
 } od;
};
typedef union LongDateRec LongDateRec;

Fields
era

The value 0 represents A.D. and -1 represents B.C

year
The year, from 30081 B.C. to 29940 A.D.

month
The month (1 = January and 12 = December).

day
The day of the month, from 1 to 31.

hour
The hour, from 0 to 23.

minute
The minute, from 0 to 59.

second
The second., from 0 to 59

dayOfWeek
The day of the week (1 through 7).

dayOfYear
The day of the year, from 1 to 365.

Data Types 413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

weekOfYear
The week of the year. from 1 through 52.

pm
The value 0 represents AM and the value 1 represents PM.

res1
Reserved.

res2
Reserved.

res3
Reserved.

list
An array [0 . . 13] whose values indicate which of the fields in a long date-time record need to
be verified.

eraAlt
Indicates the era, used only for conversion from a date-time record to a long date-time record.

oldDate
Used only for conversion from a date-time record to a long date-time record.

Discussion
In addition to the date-time record, system software provides the long date-time record, which extends the
date-time record format by adding several more fields. This format lets you use dates and times with a much
longer span (30,000 B.C. to 30,000 A.D.). In addition, the long date-time record allows conversions to different
calendar systems, such as a lunar calendar.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DateTimeUtils.h

LongDateTime
typedef SInt64 LongDateTime;

Discussion
The long date-time value specifies the date and time as seconds relative to midnight, January 1, 1904. But
where the standard date-time value is an unsigned, 32-bit long integer, the long date-time value is a signed,
64-bit integer in SANE comp format. This format lets you use dates and times with a much longer span—roughly
500 billion years. You can use this value to represent dates and times prior to midnight, January 1, 1904. The
LongDateTime data type defines the long date-time value.

When storing a long date-time value in files, you can use a 5-byte or 6-byte format for a range of roughly
35,000 years. You should sign extend this value to restore it to a comp format. Use the LongDateCvt (page
412) structure to help you in setting up a LongDateTime value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DateTimeUtils.h

414 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

String2DateStatus
typedef StringToDateStatus String2DateStatus;

Availability
Available in Mac OS X v10.0 and later.

Declared In
DateTimeUtils.h

StringToDateStatus
typedef short StringToDateStatus;

Availability
Available in Mac OS X v10.0 and later.

Declared In
DateTimeUtils.h

TogglePB
struct TogglePB {
 long togFlags;
 ResType amChars;
 ResType pmChars;
 long reserved[4];
};
typedef struct TogglePB TogglePB;

Fields
togFlags

The high-order word of this field contains flags that specify special conditions for the ToggleDate
function.

The low-order word of this field contains masks representing fields to be checked by the ValidDate
function. Each mask corresponds to a value in the enumerated type LongDateField. See Long Date
Mask Constants (page 418) for a description of the values which you can use in this field. You can set
this field to check the era through second fields by using the predeclared constant dateStdMask.

amChars
The trailing string to display for morning (for example, A.M.). This string is read from the numeric-format
resource (resource type 'itl0') of the current script system.

pmChars
The trailing to display for evening (for example, P.M.). This string is read from the numeric-format
resource (resource type 'itl0') of the current script system.

reserved
Reserved. Set each of the three elements of this field to 0.

Discussion
The ToggleDate function exchanges information with your application using the toggle parameter block,
defined by the TogglePB data type.

Data Types 415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
DateTimeUtils.h

UTCDateTime
struct UTCDateTime {
 UInt16 highSeconds;
 UInt32 lowSeconds;
 UInt16 fraction;
};
typedef struct UTCDateTime UTCDateTime;
typedef UTCDateTime * UTCDateTimePtr;
typedef UTCDateTimePtr * UTCDateTimeHandle;

Discussion
UTCDateTime and LocalDateTime are both 64 bits wide. The first 48 bits represent the number of seconds
since 1904. The remaining 16 bits are used to indicate a fractional seconds value, which has no inherent
precision. Each unit of this 16-bit value represents 1/65535 of a second. Developers may apply the appropriate
arithmetic to derive milliseconds or microseconds.

Note that the decision to divide the lowSeconds field between the high and low 32 bits of the 64 bit structure
was intentional. You can use the structure to perform 64 bit math and logical comparisons. Having the
lowSeconds field in the low or high 32 bits would have been easier for the compilers to handle and probably
execute faster, however it would have rendered the structure unusable for 64 bit math and logical comparisons.

Important: You cannot access this structure as a UInt64 data type. Doing so on systems that use little-endian
byte odering may produce the wrong result.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UTCUtils.h

416 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Constants

Date Form Constants
typedef SInt8 DateForm;
enum {
 shortDate = 0,
 longDate = 1,
 abbrevDate = 2
};

Default Options
Options for use with the functions SetDateTime and GetDateTime.

Constants 417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

enum {
 kUTCDefaultOptions = 0
};

Error Codes
enum {
 fatalDateTime = 0x8000,
 longDateFound = 1,
 leftOverChars = 2,
 sepNotIntlSep = 4,
 fieldOrderNotIntl = 8,
 extraneousStrings = 16,
 tooManySeps = 32,
 sepNotConsistent = 64,
 tokenErr = 0x8100,
 cantReadUtilities = 0x8200,
 dateTimeNotFound = 0x8400,
 dateTimeInvalid = 0x8800
};

Long Date Field Constants
typedef SInt8 LongDateField;
enum {
 eraField = 0,
 yearField = 1,
 monthField = 2,
 dayField = 3,
 hourField = 4,
 minuteField = 5,
 secondField = 6,
 dayOfWeekField = 7,
 dayOfYearField = 8,
 weekOfYearField = 9,
 pmField = 10,
 res1Field = 11,
 res2Field = 12,
 res3Field = 13
};

Long Date Mask Constants
enum {
 eraMask = 0x0001,
 yearMask = 0x0002,
 monthMask = 0x0004,
 dayMask = 0x0008,
 hourMask = 0x0010,
 minuteMask = 0x0020,
 secondMask = 0x0040,
 dayOfWeekMask = 0x0080,
 dayOfYearMask = 0x0100,

418 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

 weekOfYearMask = 0x0200,
 pmMask = 0x0400,
 dateStdMask = 0x007F
};

Constants
eraMask

Verify the era.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

yearMask
Verify the year.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

monthMask
Verify the month.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

dayMask
Verify the day

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

hourMask
Verify the hour.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

minuteMask
Verify the minute.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

secondMask
Verify the second.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

dayOfWeekMask
Verify the day of the week.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

dayOfYearMask
Verify the day of the year.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

Constants 419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

weekOfYearMask
Verify the week of the year.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

pmMask
Verify the evening (P.M.).

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

dateStdMask
Verify the era through the second.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

Discussion
These constants are used in the field parameter of the ToggleDate (page 403) function to specify the
LongDateRec fields for the ValidDate function to check.

Flags
enum {
 smallDateBit = 31,
 togChar12HourBit = 30,
 togCharZCycleBit = 29,
 togDelta12HourBit = 28,
 genCdevRangeBit = 27,
 validDateFields = -1,
 maxDateField = 10
};

Constants
smallDateBit

If this bit is set, the valid date and time are restricted to the range of the system global variable
Time—that is, between midnight on January 1, 1904 and 6:28:15 A.M. on February 6, 2040.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

togChar12HourBit
If this bit is set, modifying the hour by character is limited to the 12-hour range defined by
togCharZCycleBit, mapped to the appropriate half of the 24-hour range, as determined by the pm
field. This bit works with system software version 6.0.4 and later.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

togCharZCycleBit
If this bit is set, the input character is treated as if it modifies an hour whose value is in the range
0–11. If this bit is not set, the input character is treated as if it modifies an hour whose value is in the
range 12, 1–11. This bit works with system software version 6.0.4 and later.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

420 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

togDelta12HourBit
If this bit is set, modifying the hour up or down is limited to a 12-hour range. For example, increasing
by one from 11 produces 0, increasing by one from 23 produces 12, and so on. This bit works with
system software version 6.0.4 and later.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

genCdevRangeBit
If this bit is set in addition to smallDateBit, then the date range is restricted to that used by the
General Controls control panel—January 1, 1920 to December 31, 2019 in the Gregorian calendar
(the routine works correctly for other calendars as well). For dates outside this range but within the
range specified by the system global variable Time—January 1, 1904 to February 6, 2040 in the
Gregorian calendar—ToggleDate adds or subtracts 100 years to bring the dates into the range of
the General Controls control panel if these bits are set. The ToggleDate function returns an error if
the smallDateBit is set and the date is outside the range specified by the system global variable
Time. This bit works with system software version 6.0.4 and later.

Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

validDateFields
Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

maxDateField
Available in Mac OS X v10.0 and later.

Declared in DateTimeUtils.h.

Toggle Results
typedef SInt16 ToggleResults;
enum {
 toggleUndefined = 0,
 toggleOK = 1,
 toggleBadField = 2,
 toggleBadDelta = 3,
 toggleBadChar = 4,
 toggleUnknown = 5,
 toggleBadNum = 6,
 toggleOutOfRange = 7,
 toggleErr3 = 7,
 toggleErr4 = 8,
 toggleErr5 = 9
};

Result Codes

The most common result codes returned by Date, Time, and Measurement Utilities are listed below.

Result Codes 421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

DescriptionValueResult Code

Unable to read the same clock value twice.-85clkRdErr

Available in Mac OS X v10.0 and later.

The time written did not verify.-86clkWrErr

Available in Mac OS X v10.0 and later.

An underflow error occurred.-8850kUTCUnderflowErr

Available in Mac OS X v10.0 and later.

An overflow error occurred.-8851kUTCOverflowErr

Available in Mac OS X v10.0 and later.

An illegal clock value was encountered.-8852kIllegalClockValueErr

Available in Mac OS X v10.0 and later.

422 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

Date, Time, and Measurement Utilities Reference

Framework: CoreServices/CoreServices.h

Declared in Debugging.h

Overview

Debugger Services is a Carbon API that provides standard exception handling and assertion functions to
assist you in debugging Mac OS applications.

Functions by Task

Using Debugger Services

NewDebugComponent (page 429)
Registers a component with Debugger Services.

NewDebugOption (page 429)
Registers a new debug option with Debugger Services.

GetDebugComponentInfo (page 426)
Returns the signature and name of a registered component.

GetDebugOptionInfo (page 426)
Returns information about the debug option of a registered component.

SetDebugOptionValue (page 430)
Modifies the setting of a registered debug option.

DisposeDebugComponent (page 425)
Removes a component registration and all related debug options.

DebugAssert (page 424)
Displays an assertion messsage using the current output handler.

InstallDebugAssertOutputHandler (page 427)
Installs an output handler for DebugAssert to call in place of DebugStr, the default handler.

TaskLevel (page 431)
Provides information about the task interrupt level, if the task is running at interrupt-time.

Overview 423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

Managing Callback UPPs

NewDebugAssertOutputHandlerUPP (page 428)

InvokeDebugAssertOutputHandlerUPP (page 428)

DisposeDebugAssertOutputHandlerUPP (page 425)

NewDebugComponentCallbackUPP (page 429)

InvokeDebugComponentCallbackUPP (page 428)

DisposeDebugComponentCallbackUPP (page 426)

Functions

DebugAssert
Displays an assertion messsage using the current output handler.

void DebugAssert (
 OSType componentSignature,
 UInt32 options,
 const char *assertionString,
 const char *exceptionLabelString,
 const char *errorString,
 const char *fileName,
 long lineNumber,
 void *value
);

Parameters
componentSignature

The unique signature of the component causing the assertion.

options
Reserved for use by Apple.

assertionString
A pointer to a string containing the assertion, or NULL.

exceptionLabelString
A pointer to a string containing the exceptionLabel, or NULL.

errorString
A pointer to the error string, or NULL.

fileName
A pointer to the file name or path name generated by the preprocessor __FILE__ identifier, or NULL.

424 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

lineNumber
The line number in the file (generated by the preprocessor __LINE__ identifier), or 0 (zero).

value
A value associated with the assertion, or NULL.

Discussion
The DEBUGASSERTMSG macro calls this function (by default) to display assertion messages. To redirect the
output from this function, use InstallDebugAssertOutputHandler (page 427) to install a custom output
handler.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

DisposeDebugAssertOutputHandlerUPP

void DisposeDebugAssertOutputHandlerUPP (
 DebugAssertOutputHandlerUPP userUPP
);

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

DisposeDebugComponent
Removes a component registration and all related debug options.

OSStatus DisposeDebugComponent (
 OSType componentSignature
);

Parameters
componentSignature

The unique signature of a component.

Return Value
A result code. If the result is non-zero, the Notification Manager cannot remove the debug options.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Debugging.h

Functions 425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

DisposeDebugComponentCallbackUPP

void DisposeDebugComponentCallbackUPP (
 DebugComponentCallbackUPP userUPP
);

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

GetDebugComponentInfo
Returns the signature and name of a registered component.

OSStatus GetDebugComponentInfo (
 UInt32 index,
 OSType *componentSignature,
 Str255 componentName
);

Parameters
index

An index into a list of registered components (one-based).

componentSignature
A pointer to an OSType, provided by the caller to receive the unique signature of the specified
component.

componentName
A string buffer, provided by the caller to receive the component name.

Return Value
A result code. If index is not valid, the result code is debuggingNoMatchErr.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

GetDebugOptionInfo
Returns information about the debug option of a registered component.

426 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

OSStatus GetDebugOptionInfo (
 UInt32 index,
 OSType componentSignature,
 SInt32 *optionSelectorNum,
 Str255 optionName,
 Boolean *optionSetting
);

Parameters
index

An index into a list of registered debug options (zero-based). You should use the constant
kComponentDebugOption (page 435).

componentSignature
The unique signature of your registered component.

optionSelectorNum
A pointer to an integer, provided by the caller to receive the option selector number.

optionName
A string buffer, provided by the caller to receive the option name.

optionSetting
A pointer to a Boolean, provided by the caller to receive the current option setting.

Return Value
A result code. Debugger Services returns debuggingNoMatchErr if the index is not valid,
debuggingInvalidSignatureErr if the component is not registered, or noErr.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

InstallDebugAssertOutputHandler
Installs an output handler for DebugAssert to call in place of DebugStr, the default handler.

void InstallDebugAssertOutputHandler (
 DebugAssertOutputHandlerUPP handler
);

Parameters
handler

The custom output handler to install, or NULL to switch back to DebugStr.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

Functions 427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

InvokeDebugAssertOutputHandlerUPP

void InvokeDebugAssertOutputHandlerUPP (
 OSType componentSignature,
 UInt32 options,
 const char *assertionString,
 const char *exceptionLabelString,
 const char *errorString,
 const char *fileName,
 long lineNumber,
 void *value,
 ConstStr255Param outputMsg,
 DebugAssertOutputHandlerUPP userUPP
);

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

InvokeDebugComponentCallbackUPP

void InvokeDebugComponentCallbackUPP (
 SInt32 optionSelectorNum,
 UInt32 command,
 Boolean *optionSetting,
 DebugComponentCallbackUPP userUPP
);

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

NewDebugAssertOutputHandlerUPP

DebugAssertOutputHandlerUPP NewDebugAssertOutputHandlerUPP (
 DebugAssertOutputHandlerProcPtr userRoutine
);

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

428 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

NewDebugComponent
Registers a component with Debugger Services.

OSStatus NewDebugComponent (
 OSType componentSignature,
 ConstStr255Param componentName,
 DebugComponentCallbackUPP componentCallback
);

Parameters
componentSignature

The unique signature of a new component.

componentName
A displayable string that names the new component.

componentCallback
A universal procedure pointer (UPP) to a debug component callback function, provided by the caller
for working with options.

Return Value
A result code. See Debugger Services Result Codes (page 436).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

NewDebugComponentCallbackUPP

DebugComponentCallbackUPP NewDebugComponentCallbackUPP (
 DebugComponentCallbackProcPtr userRoutine
);

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

NewDebugOption
Registers a new debug option with Debugger Services.

Functions 429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

OSStatus NewDebugOption (
 OSType componentSignature,
 SInt32 optionSelectorNum,
 ConstStr255Param optionName
);

Parameters
componentSignature

The unique signature of a registered component.

optionSelectorNum
The selector number of the new debug option.

optionName
A displayable string that names this debug option.

Return Value
A result code. See Debugger Services Result Codes (page 436).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

SetDebugOptionValue
Modifies the setting of a registered debug option.

OSStatus SetDebugOptionValue (
 OSType componentSignature,
 SInt32 optionSelectorNum,
 Boolean newOptionSetting
);

Parameters
componentSignature

The unique signature of a registered component.

optionSelectorNum
The selector number of a registered debug option.

newOptionSetting
The new setting for the option.

Return Value
A result code. Debugger Services returns debuggingInvalidOptionErr if the selector number is not valid,
debuggingInvalidSignatureErr if the component is not registered, or noErr.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

430 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

TaskLevel
Provides information about the task interrupt level, if the task is running at interrupt-time.

UInt32 TaskLevel (
 void
);

Return Value
The current task interrupt level. If the return value is 0, the task is (probably) running at non-interrupt time.
Otherwise, one of the TaskLevel masks can be used to learn more.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X version 10.0 and later.

Declared In
Debugging.h

Callbacks

DebugAssertOutputHandlerProcPtr
Defines a pointer to a function that handles the output from DebugAssert (page 424).

typedef void (*DebugAssertOutputHandlerProcPtr)
(
 OSType componentSignature,
 UInt32 options,
 const char * assertionString,
 const char * exceptionLabelString,
 const char * errorString,
 const char * fileName,
 long lineNumber,
 void * value,
 ConstStr255Param outputMsg
);

If you name your function MyDebugAssertOutputHandler, you would declare it like this:

void MyDebugAssertOutputHandler (
 OSType componentSignature,
 UInt32 options,
 const char * assertionString,
 const char * exceptionLabelString,
 const char * errorString,
 const char * fileName,
 long lineNumber,
 void * value,
 ConstStr255Param outputMsg
);

Callbacks 431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

Parameters
componentSignature

The unique signature of the component causing the assertion.

options
Reserved for use by Apple.

assertionString
The name of the assertion, or NULL.

exceptionLabelString
The exception label, or NULL.

errorString
The description of an error condition, or NULL.

fileName
The file or path name (generated by the preprocessor __FILE__ identifier), or NULL.

fileName
The file or path name (generated by the preprocessor __FILE__ identifier), or NULL.

lineNumber
The line number in the file (generated by the preprocessor __LINE__ identifier), or 0 (zero).

value
A value associated with the assertion, or NULL.

outputMsg
The string that the caller (DebugAssert) normally passes to DebugStrwhen a custom output handler
isn't installed.

Discussion
The parameters (excluding outputMsg) are the raw values passed to DebugAssert when an exception
occurs. A custom output handler can safely ignore these parameters and simply redirect the output message
(for example, to a log file).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Debugging.h

DebugComponentCallbackProcPtr
Defines a pointer to a function that Debugger Services calls to read or modify the debug option settings
defined by a component.

typedef void (*DebugComponentCallbackProcPtr)
(
 SInt32 optionSelectorNum,
 UInt32 command,
 Boolean * optionSetting
);

If you name your function MyDebugComponentCallback, you would declare it like this:

void MyDebugComponentCallback (
 SInt32 optionSelectorNum,

432 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

 UInt32 command,
 Boolean * optionSetting
);

Parameters
optionSelectorNum

A component debug option, previously defined by calling NewDebugOption (page 429).

command
Specifies the operation to be performed—kGetDebugOption to get current setting, or
kSetDebugOption to modify the setting.

optionSetting
A pointer to a Boolean that Debugger Services uses to

 ■ pass in the new setting, if command is kSetDebugOption

 ■ receive the result of the operation, if command is kGetDebugOption

Availability
Available in Mac OS X v10.0 and later.

Declared In
Debugging.h

Data Types

DebugAssertOutputHandlerUPP
Defines a universal procedure pointer (UPP) type for a custom assertion output handler.

typedef DebugAssertOutputHandlerProcPtr DebugAssertOutputHandlerUPP;

Discussion
For information about custom assertion output handlers, see DebugAssertOutputHandlerProcPtr (page
431).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Debugging.h

DebugComponentCallbackUPP
Defines a universal procedure pointer (UPP) type for a custom component debug option callback.

typedef DebugComponentCallbackProcPtr DebugComponentCallbackUPP;

Discussion
For information about custom component debug option callbacks, see
DebugComponentCallbackProcPtr (page 432).

Data Types 433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Debugging.h

Constants

Interrupt Level Masks
Masks to determine what kind of tasks are executing at interrupt time.

enum {
 k68kInterruptLevelMask = 0x00000007,
 kInVBLTaskMask = 0x00000010,
 kInDeferredTaskMask = 0x00000020,
 kInSecondaryIntHandlerMask = 0x00000040,
 kInNestedInterruptMask = 0x00000080
};

Constants
k68kInterruptLevelMask

68K interrupt levels 0 through 7.

Available in Mac OS X v10.0 and later.

Declared in Debugging.h.

kInVBLTaskMask
VBLs are executing.

Available in Mac OS X v10.0 and later.

Declared in Debugging.h.

kInDeferredTaskMask
Deferred tasks are executing.

Available in Mac OS X v10.0 and later.

Declared in Debugging.h.

kInSecondaryIntHandlerMask
Secondary interrupt handlers are executing.

Available in Mac OS X v10.0 and later.

Declared in Debugging.h.

kInNestedInterruptMask
The operating system is handling an interrupt.

Available in Mac OS X v10.0 and later.

Declared in Debugging.h.

Discussion
For more information, see TaskLevel (page 431).

434 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

Unmapped Addresses
Addresses not mapped in Mac OS 8 or 9.

enum {
 kBlessedBusErrorBait = 0x68F168F1
};

Constants
kBlessedBusErrorBait

An address that will never be mapped in Mac OS 8 or 9.

Available in Mac OS X v10.0 and later.

Declared in Debugging.h.

Discussion
An exception occurs when an application tries to access the address kBlessedBusErrorBait in Mac OS 8
or 9, which makes it a good value to use when initializing pointers.

In Mac OS X, you should use 0x00000000 for this purpose.

Debug Option Types
Defines the debug option types supported by Debugger Services.

enum {
 kComponentDebugOption = 0
};

Constants
kComponentDebugOption

Specifies the component debug option type.

Available in Mac OS X v10.0 and later.

Declared in Debugging.h.

Discussion
For information about how this constant is used, see GetDebugOptionInfo (page 426).

Commands for Debug Option Callbacks
Defines the commands (or operations) that a debug option callback needs to implement.

enum {
 kGetDebugOption = 1,
 kSetDebugOption = 2
};

Constants
kGetDebugOption

The callback should return the current Boolean value of the specified debug option.

Available in Mac OS X v10.0 and later.

Declared in Debugging.h.

Constants 435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

kSetDebugOption
The callback should modify the Boolean value of the specified debug option.

Available in Mac OS X v10.0 and later.

Declared in Debugging.h.

Result Codes

The most common result codes returned by Debugger Services are listed in the table below.

DescriptionValueResult Code

routine cannot be called at this time-13880debuggingExecutionContextErr

Available in Mac OS X v10.0 and later.

componentSignature already registered-13881debuggingDuplicateSignatureErr

Available in Mac OS X v10.0 and later.

optionSelectorNum already registered-13882debuggingDuplicateOptionErr

Available in Mac OS X v10.0 and later.

componentSignature not registered-13883debuggingInvalidSignatureErr

Available in Mac OS X v10.0 and later.

optionSelectorNum is not registered-13884debuggingInvalidOptionErr

Available in Mac OS X v10.0 and later.

componentName or optionName is invalid (NULL)-13885debuggingInvalidNameErr

Available in Mac OS X v10.0 and later.

debugging component has no callback-13886debuggingNoCallbackErr

Available in Mac OS X v10.0 and later.

debugging component or option not found at this index-13887debuggingNoMatchErr

Available in Mac OS X v10.0 and later.

436 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Debugger Services Reference

Framework: CoreServices/CoreServices.h

Declared in Files.h

Overview

The File Manager is a core service in Mac OS X that manages the organization, reading, and writing of data
located on physical data storage devices such as disk drives. The File Manager provides an abstraction layer
that hides lower-level implementation details such as different file systems and volume formats. If you want
your application to have the same view of the file system seen in the Mac OS X user interface, the File Manager
is an appropriate tool. For example, the File Manager is often used in application frameworks such as Carbon
and Cocoa to implement file-related operations.

The File Manager API provides a large number of functions for performing various operations on files,
directories, and volumes. The requirements of your application will dictate which of these functions you need
to use. Many applications simply need to open files, read and write the data in those files, and then close the
files. Other applications might provide more capabilities, such as the ability to copy or move a file to another
directory. A few programs, such as the Mac OS X Finder, perform more extensive file operations and hence
need to use some of the advanced functions provided by the File Manager.

A number of deprecated functions in the File Manager were inherited from earlier versions of Mac OS and
have been carried along to facilitate porting legacy applications to Mac OS X. You should avoid using these
deprecated functions. In particular, you should avoid any function or data structure that uses the FSSpec
data type. This reference document clearly marks every deprecated function and, in most cases, provides a
recommended replacement.

Functions by Task

Accessing Information About Files and Directories

FSGetCatalogInfo (page 494)
Returns catalog information about a file or directory. You can use this function to map an FSRef to
an FSSpec.

PBGetCatalogInfoSync (page 647)
Returns catalog information about a file or directory. You can use this function to map from an FSRef
to an FSSpec.

PBGetCatalogInfoAsync (page 643)
Returns catalog information about a file or directory. You can use this function to map from an FSRef
to an FSSpec.

Overview 437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSSetCatalogInfo (page 540)
Sets catalog information about a file or directory.

PBSetCatalogInfoSync (page 753)
Sets the catalog information about a file or directory.

PBSetCatalogInfoAsync (page 751)
Sets the catalog information about a file or directory.

FSpGetFInfo (page 530) Deprecated in Mac OS X v10.4
Obtains the Finder information for a file. (Deprecated. Use FSGetCatalogInfo (page 494) instead.)

FSpSetFInfo (page 535) Deprecated in Mac OS X v10.4
Sets the Finder information about a file. (Deprecated. Use FSSetCatalogInfo (page 540) instead.)

HGetFInfo (page 551) Deprecated in Mac OS X v10.4
Obtains the Finder information for a file. (Deprecated. Use FSGetCatalogInfo (page 494) instead.)

HSetFInfo (page 557) Deprecated in Mac OS X v10.4
Sets the Finder information for a file. (Deprecated. Use FSSetCatalogInfo (page 540) instead.)

PBGetCatInfoAsync (page 648) Deprecated in Mac OS X v10.4
Returns catalog information about a file or directory. (Deprecated. Use
PBGetCatalogInfoAsync (page 643) instead.)

PBGetCatInfoSync (page 651) Deprecated in Mac OS X v10.4
Returns catalog information about a file or directory. (Deprecated. Use PBGetCatalogInfoSync (page
647) instead.)

PBHGetFInfoAsync (page 682) Deprecated in Mac OS X v10.4
Obtains information about a file. (Deprecated. Use PBGetCatalogInfoAsync (page 643) instead.)

PBHGetFInfoSync (page 683) Deprecated in Mac OS X v10.4
Obtains information about a file. (Deprecated. Use PBGetCatalogInfoSync (page 647) instead.)

PBHSetFInfoAsync (page 721) Deprecated in Mac OS X v10.4
Sets information for a file. (Deprecated. Use PBSetCatalogInfoAsync (page 751) instead.)

PBHSetFInfoSync (page 722) Deprecated in Mac OS X v10.4
Sets information for a file. (Deprecated. Use PBSetCatalogInfoSync (page 753) instead.)

PBSetCatInfoAsync (page 754) Deprecated in Mac OS X v10.4
Modifies catalog information for a file or directory. (Deprecated. Use PBSetCatalogInfoAsync (page
751) instead.)

PBSetCatInfoSync (page 755) Deprecated in Mac OS X v10.4
Modifies catalog information for a file or directory. (Deprecated. Use PBSetCatalogInfoSync (page
753) instead.)

Accessing the Desktop Database

PBDTAddAPPLAsync (page 602) Deprecated in Mac OS X v10.4
Adds an application to the desktop database. (Deprecated. There is no replacement function.)

PBDTAddAPPLSync (page 603) Deprecated in Mac OS X v10.4
Adds an application to the desktop database. (Deprecated. There is no replacement function.)

PBDTAddIconAsync (page 604) Deprecated in Mac OS X v10.4
Adds an icon definition to the desktop database. (Deprecated. There is no replacement function.)

438 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBDTAddIconSync (page 605) Deprecated in Mac OS X v10.4
Adds an icon definition to the desktop database. (Deprecated. There is no replacement function.)

PBDTCloseDown (page 606) Deprecated in Mac OS X v10.4
Closes the desktop database, though your application should never do this itself. (Deprecated. There
is no replacement function.)

PBDTDeleteAsync (page 607) Deprecated in Mac OS X v10.4
Removes the desktop database. Unless you are manipulating the desktop database in the absence
of the Finder, you should never use this function. (Deprecated. There is no replacement function.)

PBDTDeleteSync (page 608) Deprecated in Mac OS X v10.4
Removes the desktop database. Unless you are manipulating the desktop database in the absence
of the Finder, you should never use this function. (Deprecated. There is no replacement function.)

PBDTFlushAsync (page 609) Deprecated in Mac OS X v10.4
Saves your changes to the desktop database. (Deprecated. There is no replacement function.)

PBDTFlushSync (page 610) Deprecated in Mac OS X v10.4
Saves your changes to the desktop database. (Deprecated. There is no replacement function.)

PBDTGetAPPLAsync (page 611) Deprecated in Mac OS X v10.4
Identifies the application that can open a file with a given creator. (Deprecated. There is no replacement
function.)

PBDTGetAPPLSync (page 612) Deprecated in Mac OS X v10.4
Identifies the application that can open a file with a given creator. (Deprecated. There is no replacement
function.)

PBDTGetCommentAsync (page 613) Deprecated in Mac OS X v10.4
Retrieves the user comments for a file or directory. (Deprecated. There is no replacement function.)

PBDTGetCommentSync (page 614) Deprecated in Mac OS X v10.4
Retrieves the user comments for a file or directory. (Deprecated. There is no replacement function.)

PBDTGetIconAsync (page 615) Deprecated in Mac OS X v10.4
Retrieves an icon definition. (Deprecated. There is no replacement function.)

PBDTGetIconInfoAsync (page 616) Deprecated in Mac OS X v10.4
Retrieves an icon type and the associated file type supported by a given creator in the desktop
database. (Deprecated. There is no replacement function.)

PBDTGetIconInfoSync (page 618) Deprecated in Mac OS X v10.4
Retrieves an icon type and the associated file type supported by a given creator in the desktop
database. (Deprecated. There is no replacement function.)

PBDTGetIconSync (page 619) Deprecated in Mac OS X v10.4
Retrieves an icon definition. (Deprecated. There is no replacement function.)

PBDTGetInfoAsync (page 620) Deprecated in Mac OS X v10.4
Determines information about the location and size of the desktop database on a particular volume.
(Deprecated. There is no replacement function.)

PBDTGetInfoSync (page 621) Deprecated in Mac OS X v10.4
Determines information about the location and size of the desktop database on a particular volume.
(Deprecated. There is no replacement function.)

PBDTGetPath (page 622) Deprecated in Mac OS X v10.4
Gets the reference number of the specified desktop database. (Deprecated. There is no replacement
function.)

Functions by Task 439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBDTOpenInform (page 623) Deprecated in Mac OS X v10.4
Gets the reference number of the specified desktop database, reporting whether the desktop database
was empty when it was opened. (Deprecated. There is no replacement function.)

PBDTRemoveAPPLAsync (page 624) Deprecated in Mac OS X v10.4
Removes an application from the desktop database. (Deprecated. There is no replacement function.)

PBDTRemoveAPPLSync (page 625) Deprecated in Mac OS X v10.4
Removes an application from the desktop database. (Deprecated. There is no replacement function.)

PBDTRemoveCommentAsync (page 626) Deprecated in Mac OS X v10.4
Removes a user comment associated with a file or directory from the desktop database. (Deprecated.
There is no replacement function.)

PBDTRemoveCommentSync (page 627) Deprecated in Mac OS X v10.4
Removes a user comment associated with a file or directory from the desktop database. (Deprecated.
There is no replacement function.)

PBDTResetAsync (page 627) Deprecated in Mac OS X v10.4
Removes information from the desktop database. Unless you are manipulating the desktop database
in the absence of the Finder, you should never use this function. (Deprecated. There is no replacement
function.)

PBDTResetSync (page 628) Deprecated in Mac OS X v10.4
Removes information from the desktop database. Unless you are manipulating the desktop database
in the absence of the Finder, you should never use this function. (Deprecated. There is no replacement
function.)

PBDTSetCommentAsync (page 629) Deprecated in Mac OS X v10.4
Adds a user comment for a file or a directory to the desktop database. (Deprecated. There is no
replacement function.)

PBDTSetCommentSync (page 630) Deprecated in Mac OS X v10.4
Adds a user comment for a file or a directory to the desktop database. (Deprecated. There is no
replacement function.)

Allocating Storage for Files

FSAllocateFork (page 470)
Allocates space on a volume to an open fork.

PBAllocateForkSync (page 567)
Allocates space on a volume to an open fork.

PBAllocateForkAsync (page 565)
Allocates space on a volume to an open fork.

Allocate (page 459) Deprecated in Mac OS X v10.4
Allocates additional space on a volume to an open file. (Deprecated. Use FSAllocateFork (page
470) instead.)

AllocContig (page 461) Deprecated in Mac OS X v10.4
Allocates additional contiguous space on a volume to an open file. (Deprecated. Use
FSAllocateFork (page 470) instead.)

PBAllocateAsync (page 564) Deprecated in Mac OS X v10.4
Allocates additional space on a volume to an open file. (Deprecated. Use PBAllocateForkAsync (page
565) instead.)

440 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBAllocateSync (page 568) Deprecated in Mac OS X v10.4
Allocates additional space on a volume to an open file. (Deprecated. Use PBAllocateForkSync (page
567) instead.)

PBAllocContigAsync (page 569) Deprecated in Mac OS X v10.4
Allocates additional contiguous space on a volume to an open file. (Deprecated. Use
PBAllocateForkAsync (page 565) instead.)

PBAllocContigSync (page 570) Deprecated in Mac OS X v10.4
Allocates additional contiguous space on a volume to an open file. (Deprecated. Use
PBAllocateForkSync (page 567) instead.)

Closing Files

FSCloseFork (page 475)
Closes an open fork.

PBCloseForkSync (page 583)
Closes an open fork.

PBCloseForkAsync (page 582)
Closes an open fork.

FSClose (page 474)
Closes an open file. (Deprecated. Use FSCloseFork (page 475) instead.)

PBCloseAsync (page 582) Deprecated in Mac OS X v10.5
Closes an open file. (Deprecated. Use PBCloseForkAsync (page 582) instead.)

PBCloseSync (page 585) Deprecated in Mac OS X v10.5
Closes an open file. (Deprecated. Use PBCloseForkSync (page 583) instead.)

Comparing File System References

FSCompareFSRefs (page 476)
Determines whether two FSRef structures refer to the same file or directory.

PBCompareFSRefsSync (page 586)
Determines whether two FSRef structures refer to the same file or directory.

PBCompareFSRefsAsync (page 586)
Determines whether two FSRef structures refer to the same file or directory.

Controlling Directory Access

PBHGetDirAccessAsync (page 680) Deprecated in Mac OS X v10.5
Returns the access control information for a directory or file. (Deprecated. Use
FSGetCatalogInfo (page 494) instead.)

PBHGetDirAccessSync (page 681) Deprecated in Mac OS X v10.5
Returns the access control information for a directory or file. (Deprecated. Use
FSGetCatalogInfo (page 494) instead.)

Functions by Task 441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHSetDirAccessAsync (page 719) Deprecated in Mac OS X v10.5
Changes the access control information for a directory. (Deprecated. Use FSSetCatalogInfo (page
540) instead.)

PBHSetDirAccessSync (page 720) Deprecated in Mac OS X v10.5
Changes the access control information for a directory. (Deprecated. Use FSSetCatalogInfo (page
540) instead.)

Controlling Login Access

PBHMapIDAsync (page 696) Deprecated in Mac OS X v10.5
Determines the name of a user or group given the user or group ID. (Deprecated. There is no
replacement function.)

PBHMapIDSync (page 698) Deprecated in Mac OS X v10.5
Determines the name of a user or group given the user or group ID. (Deprecated. There is no
replacement function.)

PBHMapNameAsync (page 698) Deprecated in Mac OS X v10.5
Determines the user ID or group ID from a user or group name. (Deprecated. There is no replacement
function.)

PBHMapNameSync (page 700) Deprecated in Mac OS X v10.5
Determines the user ID or group ID from a user or group name. (Deprecated. There is no replacement
function.)

PBHGetLogInInfoAsync (page 685) Deprecated in Mac OS X v10.4
Determines the login method used to log on to a particular shared volume. (Deprecated. There is no
replacement function.)

Converting Between Paths and FSRef Structures

FSRefMakePath (page 539)
Converts an FSRef structure into a POSIX-style pathname.

FSPathMakeRef (page 519)
Converts a POSIX-style pathname into an FSRef structure.

FSPathMakeRefWithOptions (page 520)
Converts a POSIX-style pathname into an FSRef structure with options.

Copying and Moving Files

PBFSCopyFileSync (page 643)
Duplicates a file and optionally renames it.

PBFSCopyFileAsync (page 643)
Duplicates a file and optionally renames it.

PBHCopyFileAsync (page 673) Deprecated in Mac OS X v10.5
Duplicates a file and optionally renames it. (Deprecated. Use PBFSCopyFileAsync (page 643) instead.)

PBHCopyFileSync (page 675) Deprecated in Mac OS X v10.5
Duplicates a file and optionally renames it. (Deprecated. Use PBFSCopyFileSync (page 643) instead.)

442 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHMoveRenameAsync (page 701) Deprecated in Mac OS X v10.4
Moves a file or directory and optionally renames it. (Deprecated. Use FSMoveObjectAsync (page
511) instead.)

PBHMoveRenameSync (page 702) Deprecated in Mac OS X v10.4
Moves a file or directory and optionally renames it. (Deprecated. Use FSMoveObjectSync (page 512)
instead.)

Copying and Moving Objects Using Asynchronous High-Level File
Operations

FSFileOperationCreate (page 488)
Creates an object that represents an asynchronous file operation.

FSFileOperationCancel (page 487)
Cancels an asynchronous file operation.

FSFileOperationGetTypeID (page 489)
Returns the Core Foundation type identifier for the FSFileOperation opaque type.

FSFileOperationScheduleWithRunLoop (page 489)
Schedules an asynchronous file operation with the specified run loop and mode.

FSFileOperationUnscheduleFromRunLoop (page 490)
Unschedules an asynchronous file operation from the specified run loop and mode.

FSCopyObjectAsync (page 477)
Starts an asynchronous file operation to copy a source object to a destination directory.

FSMoveObjectAsync (page 511)
Starts an asynchronous file operation to move a source object to a destination directory.

FSMoveObjectToTrashAsync (page 513)
Starts an asynchronous file operation to move a source object to the Trash.

FSPathCopyObjectAsync (page 517)
Starts an asynchronous file operation to copy a source object to a destination directory using
pathnames.

FSPathMoveObjectAsync (page 521)
Starts an asynchronous file operation to move a source object to a destination directory using
pathnames.

FSPathMoveObjectToTrashAsync (page 523)
Starts an asynchronous file operation to move a source object, specified using a pathname, to the
Trash.

FSFileOperationCopyStatus (page 487)
Gets a copy of the current status information for an asynchronous file operation.

FSPathFileOperationCopyStatus (page 518)
Gets a copy of the current status information for an asynchronous file operation that uses pathnames.

Copying and Moving Objects Using Synchronous High-Level File Operations

FSCopyObjectSync (page 478)
Copies a source object to a destination directory.

Functions by Task 443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSMoveObjectSync (page 512)
Moves a source object to a destination directory.

FSMoveObjectToTrashSync (page 514)
Moves a source object to the Trash.

FSPathCopyObjectSync (page 518)
Copies a source object to a destination directory using pathnames.

FSPathMoveObjectSync (page 522)
Moves a source object to a destination directory using pathnames.

FSPathMoveObjectToTrashSync (page 524)
Moves a source object, specified using a pathname, to the Trash.

Creating a File System Reference (FSRef)

FSMakeFSRefUnicode (page 504)
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

PBMakeFSRefUnicodeSync (page 733)
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

PBMakeFSRefUnicodeAsync (page 733)
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

FSpMakeFSRef (page 531) Deprecated in Mac OS X v10.5
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated. There is no replacement
function.)

PBMakeFSRefAsync (page 731) Deprecated in Mac OS X v10.5
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated. Use
PBMakeFSRefUnicodeAsync (page 733) instead.)

PBMakeFSRefSync (page 732) Deprecated in Mac OS X v10.5
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated. Use
PBMakeFSRefUnicodeSync (page 733) instead.)

Creating and Deleting File ID References

PBCreateFileIDRefAsync (page 590) Deprecated in Mac OS X v10.5
Establishes a file ID reference for a file. (Deprecated. Use FSGetCatalogInfo (page 494) instead.)

PBCreateFileIDRefSync (page 591) Deprecated in Mac OS X v10.5
Establishes a file ID reference for a file. (Deprecated. Use FSGetCatalogInfo (page 494) instead.)

PBDeleteFileIDRefAsync (page 596) Deprecated in Mac OS X v10.5
Deletes a file ID reference. (Deprecated. There is no replacement function.)

PBDeleteFileIDRefSync (page 597) Deprecated in Mac OS X v10.5
Deletes a file ID reference. (Deprecated. There is no replacement function.)

444 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Creating and Deleting Named Forks

FSCreateFork (page 482)
Creates a named fork for a file or directory.

PBCreateForkSync (page 595)
Creates a named fork for a file or directory.

PBCreateForkAsync (page 594)
Creates a named fork for a file or directory.

FSDeleteFork (page 483)
Deletes a named fork from a file or directory.

PBDeleteForkSync (page 598)
Deletes a named fork from a file or directory.

PBDeleteForkAsync (page 597)
Deletes a named fork of a file or directory.

Creating Directories

FSCreateDirectoryUnicode (page 479)
Creates a new directory (folder) with a Unicode name.

PBCreateDirectoryUnicodeSync (page 589)
Creates a new directory (folder) with a Unicode name.

PBCreateDirectoryUnicodeAsync (page 587)
Creates a new directory (folder) with a Unicode name.

DirCreate (page 463) Deprecated in Mac OS X v10.4
Creates a new directory. (Deprecated. Use FSCreateDirectoryUnicode (page 479) instead.)

FSpDirCreate (page 527) Deprecated in Mac OS X v10.4
Creates a new directory. (Deprecated. Use FSCreateDirectoryUnicode (page 479) instead.)

PBDirCreateAsync (page 600) Deprecated in Mac OS X v10.4
Creates a new directory. (Deprecated. Use PBCreateDirectoryUnicodeAsync (page 587) instead.)

PBDirCreateSync (page 601) Deprecated in Mac OS X v10.4
Creates a new directory. (Deprecated. Use PBCreateDirectoryUnicodeSync (page 589) instead.)

Creating File System Specifications

FSMakeFSSpec (page 505) Deprecated in Mac OS X v10.4
Creates an FSSpec structure describing a file or directory. (Deprecated. Use
FSMakeFSRefUnicode (page 504) instead.)

PBMakeFSSpecAsync (page 734) Deprecated in Mac OS X v10.4
Creates an FSSpec structure for a file or directory. (Deprecated. Use
PBMakeFSRefUnicodeAsync (page 733) instead.)

PBMakeFSSpecSync (page 736) Deprecated in Mac OS X v10.4
Creates an FSSpec structure for a file or directory. (Deprecated. Use PBMakeFSRefUnicodeSync (page
733) instead.)

Functions by Task 445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Creating Files

FSCreateFileUnicode (page 481)
Creates a new file with a Unicode name.

PBCreateFileUnicodeSync (page 593)
Creates a new file with a Unicode name.

PBCreateFileUnicodeAsync (page 591)
Creates a new file with a Unicode name.

FSpCreate (page 525) Deprecated in Mac OS X v10.4
Creates a new file. (Deprecated. Use FSCreateFileUnicode (page 481) instead.)

HCreate (page 550) Deprecated in Mac OS X v10.4
Creates a new file. (Deprecated. Use FSCreateFileUnicode (page 481) instead.)

PBHCreateAsync (page 676) Deprecated in Mac OS X v10.4
Creates a new file. (Deprecated. Use PBCreateFileUnicodeAsync (page 591) instead.)

PBHCreateSync (page 677) Deprecated in Mac OS X v10.4
Creates a new file. (Deprecated. Use PBCreateFileUnicodeSync (page 593) instead.)

Creating, Calling, and Deleting Universal Procedure Pointers

NewIOCompletionUPP (page 563)
Creates a new universal procedure pointer (UPP) to your I/O completion callback function.

NewFNSubscriptionUPP (page 562)
Creates a new universal procedure pointer (UPP) to your directory change callback function.

NewFSVolumeEjectUPP (page 562)
Creates a new universal procedure pointer (UPP) to your volume ejection callback function.

NewFSVolumeMountUPP (page 563)
Creates a new universal procedure pointer (UPP) to your volume mount callback function.

NewFSVolumeUnmountUPP (page 563)
Creates a new universal procedure pointer (UPP) to your volume unmount callback function.

InvokeIOCompletionUPP (page 561)
Calls your I/O completion callback function.

InvokeFNSubscriptionUPP (page 559)
Calls your directory change callback function.

InvokeFSVolumeEjectUPP (page 560)
Calls your volume ejection callback function.

InvokeFSVolumeMountUPP (page 560)
Calls your volume mount callback function.

InvokeFSVolumeUnmountUPP (page 561)
Calls your volume unmount callback function.

DisposeIOCompletionUPP (page 465)
Deletes a universal procedure pointer (UPP) to your I/O completion callback function.

DisposeFNSubscriptionUPP (page 464)
Deletes a universal procedure pointer (UPP) to your directory change callback function.

446 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DisposeFSVolumeEjectUPP (page 464)
Deletes a universal procedure pointer (UPP) to your volume ejection callback function.

DisposeFSVolumeMountUPP (page 465)
Deletes a universal procedure pointer (UPP) to your volume mount callback function.

DisposeFSVolumeUnmountUPP (page 465)
Deletes a universal procedure pointer (UPP) to your volume unmount callback function.

Deleting Files and Directories

FSDeleteObject (page 484)
Deletes a file or an empty directory.

PBDeleteObjectSync (page 600)
Deletes a file or an empty directory.

PBDeleteObjectAsync (page 599)
Deletes a file or an empty directory.

FSpDelete (page 527) Deprecated in Mac OS X v10.4
Deletes a file or directory. (Deprecated. Use FSDeleteObject (page 484) instead.)

HDelete (page 551) Deprecated in Mac OS X v10.4
Deletes a file or directory. (Deprecated. Use FSDeleteObject (page 484) instead.)

PBHDeleteAsync (page 678) Deprecated in Mac OS X v10.4
Deletes a file or directory. (Deprecated. Use PBDeleteObjectAsync (page 599) instead.)

PBHDeleteSync (page 679) Deprecated in Mac OS X v10.4
Deletes a file or directory. (Deprecated. Use PBDeleteObjectSync (page 600) instead.)

Determining the Unicode Names of the Data and Resource Forks

FSGetDataForkName (page 497)
Returns a Unicode string constant for the name of the data fork.

FSGetResourceForkName (page 500)
Returns a Unicode string constant for the name of the resource fork.

Exchanging the Contents of Two Files

FSExchangeObjects (page 486)
Swaps the contents of two files.

PBExchangeObjectsSync (page 636)
Swaps the contents of two files.

PBExchangeObjectsAsync (page 635)
Swaps the contents of two files.

FSpExchangeFiles (page 528) Deprecated in Mac OS X v10.4
Exchanges the data stored in two files on the same volume. (Deprecated. Use
FSExchangeObjects (page 486) instead.)

Functions by Task 447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBExchangeFilesAsync (page 631) Deprecated in Mac OS X v10.4
Exchanges the data stored in two files on the same volume. (Deprecated. Use
PBExchangeObjectsAsync (page 635) instead.)

PBExchangeFilesSync (page 633) Deprecated in Mac OS X v10.4
Exchanges the data stored in two files on the same volume. (Deprecated. Use
PBExchangeObjectsSync (page 636) instead.)

Getting and Setting Volume Information

FSGetVolumeInfo (page 500)
Returns information about a volume.

PBGetVolumeInfoSync (page 671)
Returns information about a volume.

PBGetVolumeInfoAsync (page 670)
Returns information about a volume.

FSSetVolumeInfo (page 543)
Sets information about a volume.

PBSetVolumeInfoSync (page 768)
Sets information about a volume.

PBSetVolumeInfoAsync (page 767)
Sets information about a volume.

FSCopyDiskIDForVolume (page 476)
Returns a copy of the disk ID for a volume.

FSCopyURLForVolume (page 479)
Returns a copy of the URL for a volume.

GetVRefNum (page 549) Deprecated in Mac OS X v10.4
Gets a volume reference number from a file reference number. (Deprecated. Use
FSGetCatalogInfo (page 494) instead.)

PBHGetVInfoAsync (page 686) Deprecated in Mac OS X v10.4
Gets detailed information about a volume. (Deprecated. Use PBGetVolumeInfoAsync (page 670)
instead.)

PBHGetVInfoSync (page 690) Deprecated in Mac OS X v10.4
Gets detailed information about a volume. (Deprecated. Use PBGetVolumeInfoSync (page 671)
instead.)

PBSetVInfoAsync (page 765) Deprecated in Mac OS X v10.4
Changes information about a volume. (Deprecated. Use PBSetVolumeInfoAsync (page 767) instead.)

PBSetVInfoSync (page 766) Deprecated in Mac OS X v10.4
Changes information about a volume. (Deprecated. Use PBSetVolumeInfoSync (page 768) instead.)

PBXGetVolInfoAsync (page 779) Deprecated in Mac OS X v10.4
Returns information about a volume, including size information for volumes up to 2 terabytes.
(Deprecated. Use FSGetVolumeInfo (page 500) instead.)

PBXGetVolInfoSync (page 782) Deprecated in Mac OS X v10.4
Returns information about a volume, including size information for volumes up to 2 terabytes.
(Deprecated. Use FSGetVolumeInfo (page 500) instead.)

448 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Getting Volume Attributes

FSGetVolumeParms (page 503)
Retrieves information about the characteristics of a volume.

PBHGetVolParmsAsync (page 694) Deprecated in Mac OS X v10.5
Returns information about the characteristics of a volume. (Deprecated. Use FSGetVolumeParms (page
503) instead.)

PBHGetVolParmsSync (page 695) Deprecated in Mac OS X v10.5
Returns information about the characteristics of a volume. (Deprecated. Use FSGetVolumeParms (page
503) instead.)

Iterating Over Named Forks

FSIterateForks (page 503)
Determines the name and size of every named fork belonging to a file or directory.

PBIterateForksSync (page 727)
Determines the name and size of every named fork belonging to a file or directory.

PBIterateForksAsync (page 726)
Determines the name and size of every named fork belonging to a file or directory.

Locking and Unlocking File Ranges

FSLockRange (page 504)
Locks a range of bytes of the specified fork.

PBXLockRangeSync (page 785)
Locks a range of bytes of the specified fork.

PBXLockRangeAsync (page 785)
Locks a range of bytes of the specified fork.

FSUnlockRange (page 543)
Unlocks a range of bytes of the specified fork.

PBXUnlockRangeSync (page 786)
Unlocks a range of bytes of the specified fork.

PBXUnlockRangeAsync (page 785)
Unlocks a range of bytes of the specified fork.

PBLockRangeAsync (page 728) Deprecated in Mac OS X v10.4
Locks a portion of a file. (Deprecated. Use PBXLockRangeAsync (page 785) instead.)

PBLockRangeSync (page 730) Deprecated in Mac OS X v10.4
Locks a portion of a file. (Deprecated. Use PBXLockRangeSync (page 785) or FSLockRange (page
504) instead.)

PBUnlockRangeAsync (page 770) Deprecated in Mac OS X v10.4
Unlocks a portion of a file. (Deprecated. Use PBXUnlockRangeAsync (page 785) instead.)

PBUnlockRangeSync (page 771) Deprecated in Mac OS X v10.4
Unlocks a portion of a file. (Deprecated. Use PBXUnlockRangeSync (page 786) or
FSUnlockRange (page 543) instead.)

Functions by Task 449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Locking and Unlocking Files and Directories

FSpRstFLock (page 534) Deprecated in Mac OS X v10.4
Unlocks a file or directory. (Deprecated. Use FSSetCatalogInfo (page 540) instead.)

FSpSetFLock (page 535) Deprecated in Mac OS X v10.4
Locks a file or directory. (Deprecated. Use FSSetCatalogInfo (page 540) instead.)

HRstFLock (page 556) Deprecated in Mac OS X v10.4
Unlocks a file or directory. (Deprecated. Use FSSetCatalogInfo (page 540) instead.)

HSetFLock (page 558) Deprecated in Mac OS X v10.4
Locks a file or directory. (Deprecated. Use FSSetCatalogInfo (page 540) instead.)

PBHRstFLockAsync (page 717) Deprecated in Mac OS X v10.4
Unlocks a file or directory. (Deprecated. Use PBSetCatalogInfoAsync (page 751) instead.)

PBHRstFLockSync (page 718) Deprecated in Mac OS X v10.4
Unlocks a file or directory. (Deprecated. Use PBSetCatalogInfoSync (page 753) instead.)

PBHSetFLockAsync (page 723) Deprecated in Mac OS X v10.4
Locks a file or directory. (Deprecated. Use PBSetCatalogInfoAsync (page 751) instead.)

PBHSetFLockSync (page 724) Deprecated in Mac OS X v10.4
Locks a file or directory. (Deprecated. Use PBSetCatalogInfoSync (page 753) instead.)

Manipulating File and Fork Size

FSGetForkSize (page 499)
Returns the size of an open fork.

PBGetForkSizeSync (page 665)
Returns the size of an open fork.

PBGetForkSizeAsync (page 664)
Returns the size of an open fork.

FSSetForkSize (page 542)
Changes the size of an open fork.

PBSetForkSizeSync (page 762)
Changes the size of an open fork.

PBSetForkSizeAsync (page 761)
Changes the size of an open fork.

GetEOF (page 548) Deprecated in Mac OS X v10.4
Determines the current logical size of an open file. (Deprecated. Use FSGetForkSize (page 499)
instead.)

PBGetEOFAsync (page 654) Deprecated in Mac OS X v10.4
Determines the current logical size of an open file. (Deprecated. Use PBGetForkSizeAsync (page
664) instead.)

PBGetEOFSync (page 655) Deprecated in Mac OS X v10.4
Determines the current logical size of an open file. (Deprecated. Use PBGetForkSizeSync (page 665)
instead.)

PBSetEOFAsync (page 757) Deprecated in Mac OS X v10.4
Sets the logical size of an open file. (Deprecated. Use PBSetForkSizeAsync (page 761) instead.)

450 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBSetEOFSync (page 758) Deprecated in Mac OS X v10.4
Sets the logical size of an open file. (Deprecated. Use PBSetForkSizeSync (page 762) instead.)

SetEOF (page 786) Deprecated in Mac OS X v10.4
Sets the logical size of an open file. (Deprecated. Use FSSetForkSize (page 542) instead.)

Manipulating File Position

FSGetForkPosition (page 499)
Returns the current position of an open fork.

PBGetForkPositionSync (page 663)
Returns the current position of an open fork.

PBGetForkPositionAsync (page 663)
Returns the current position of an open fork.

FSSetForkPosition (page 541)
Sets the current position of an open fork.

PBSetForkPositionSync (page 760)
Sets the current position of an open fork.

PBSetForkPositionAsync (page 759)
Sets the current position of an open fork.

GetFPos (page 548) Deprecated in Mac OS X v10.4
Returns the current position of the file mark. (Deprecated. Use FSGetForkPosition (page 499)
instead.)

PBGetFPosAsync (page 666) Deprecated in Mac OS X v10.4
Returns the current position of the file mark. (Deprecated. Use PBGetForkPositionAsync (page
663) instead.)

PBGetFPosSync (page 666) Deprecated in Mac OS X v10.4
Returns the current position of the file mark. (Deprecated. Use PBGetForkPositionSync (page 663)
instead.)

PBSetFPosAsync (page 763) Deprecated in Mac OS X v10.4
Sets the position of the file mark. (Deprecated. Use PBSetForkPositionAsync (page 759) instead.)

PBSetFPosSync (page 764) Deprecated in Mac OS X v10.4
Sets the position of the file mark. (Deprecated. Use PBSetForkPositionSync (page 760) instead.)

SetFPos (page 787) Deprecated in Mac OS X v10.4
Sets the position of the file mark. (Deprecated. Use FSSetForkPosition (page 541) instead.)

Manipulating the Default Volume

HGetVol (page 552) Deprecated in Mac OS X v10.4
Determines the current default volume and default directory. (Deprecated. There is no replacement
function.)

HSetVol (page 559) Deprecated in Mac OS X v10.4
Sets the default volume and the default directory. (Deprecated. There is no replacement function.)

PBHGetVolAsync (page 693) Deprecated in Mac OS X v10.4
Determines the default volume and default directory. (Deprecated. There is no replacement function.)

Functions by Task 451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHGetVolSync (page 695) Deprecated in Mac OS X v10.4
Determines the default volume and default directory. (Deprecated. There is no replacement function.)

PBHSetVolAsync (page 725) Deprecated in Mac OS X v10.4
Sets the default volume and the default directory. (Deprecated. There is no replacement function.)

PBHSetVolSync (page 726) Deprecated in Mac OS X v10.4
Sets the default volume and the default directory. (Deprecated. There is no replacement function.)

Mounting and Unmounting Volumes

FSMountLocalVolumeSync (page 507)
Mounts a volume.

FSMountServerVolumeSync (page 509)
Mounts a server volume.

FSUnmountVolumeSync (page 545)
Unmounts a volume.

FSEjectVolumeSync (page 486)
Ejects a volume.

FSCreateVolumeOperation (page 483)
Returns an FSVolumeOperation which can be used for an asynchronous volume operation.

FSCancelVolumeOperation (page 471)
Cancels an outstanding asynchronous volume mounting operation.

FSDisposeVolumeOperation (page 484)
Releases the memory associated with a volume operation.

FSMountLocalVolumeAsync (page 506)
Mounts a volume asynchronously.

FSMountServerVolumeAsync (page 508)
Mounts a server volume asynchronously.

FSUnmountVolumeAsync (page 544)
Unmounts a volume asynchronously.

FSEjectVolumeAsync (page 485)
Asynchronously ejects a volume.

FSGetAsyncMountStatus (page 492)
Returns the current status of an asynchronous mount operation.

FSGetAsyncUnmountStatus (page 493)
Returns the current status of an asynchronous unmount operation.

FSGetAsyncEjectStatus (page 491)
Returns the current status of an asynchronous eject operation.

PBUnmountVol (page 772) Deprecated in Mac OS X v10.4
Unmounts a volume. (Deprecated. Use FSEjectVolumeSync (page 486) or
FSUnmountVolumeSync (page 545) instead.)

UnmountVol (page 787) Deprecated in Mac OS X v10.4
Unmounts a volume that isn’t currently being used. (Deprecated. Use FSUnmountVolumeSync (page
545) instead.)

452 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Mounting Remote Volumes

FSGetVolumeMountInfoSize (page 502)
Determines the size of the mounting information associated with the specified volume.

FSGetVolumeMountInfo (page 502)
Retrieves the mounting information associated with the specified volume.

FSVolumeMount (page 545)
Mounts a volume using the specified mounting information.

PBGetVolMountInfo (page 668) Deprecated in Mac OS X v10.5
Retrieves a record containing all the information needed to mount a volume, except for passwords.
(Deprecated. Use FSVolumeMount (page 545) instead.)

PBGetVolMountInfoSize (page 669) Deprecated in Mac OS X v10.5
Determines how much space to allocate for a volume mounting information structure. (Deprecated.
Use FSVolumeMount (page 545) instead.)

PBVolumeMount (page 773) Deprecated in Mac OS X v10.5
Mounts a volume. (Deprecated. Use FSVolumeMount (page 545) instead.)

Moving and Renaming Files or Directories

FSMoveObject (page 510)
Moves a file or directory into a different directory.

PBMoveObjectSync (page 738)
Moves a file or directory into a different directory.

PBMoveObjectAsync (page 737)
Moves a file or directory into a different directory.

FSRenameUnicode (page 539)
Renames a file or folder.

PBRenameUnicodeSync (page 748)
Renames a file or folder.

PBRenameUnicodeAsync (page 748)
Renames a file or folder.

CatMove (page 462) Deprecated in Mac OS X v10.4
Moves files or directories from one directory to another on the same volume. (Deprecated. Use
FSMoveObject (page 510) instead.)

FSpCatMove (page 524) Deprecated in Mac OS X v10.4
Moves a file or directory from one location to another on the same volume. (Deprecated. Use
FSMoveObject (page 510) instead.)

FSpRename (page 533) Deprecated in Mac OS X v10.4
Renames a file or directory. (Deprecated. Use FSRenameUnicode (page 539) instead.)

HRename (page 555) Deprecated in Mac OS X v10.4
Renames a file, directory, or volume. (Deprecated. Use FSRenameUnicode (page 539) instead.)

PBCatMoveAsync (page 575) Deprecated in Mac OS X v10.4
Moves files or directories from one directory to another on the same volume. (Deprecated. Use
PBMoveObjectAsync (page 737) instead.)

Functions by Task 453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBCatMoveSync (page 576) Deprecated in Mac OS X v10.4
Moves files or directories from one directory to another on the same volume. (Deprecated. Use
PBMoveObjectSync (page 738) instead.)

PBHRenameAsync (page 715) Deprecated in Mac OS X v10.4
Renames a file, directory, or volume. (Deprecated. Use PBRenameUnicodeAsync (page 748) instead.)

PBHRenameSync (page 716) Deprecated in Mac OS X v10.4
Renames a file, directory, or volume. (Deprecated. Use PBRenameUnicodeSync (page 748) instead.)

Obtaining File and Directory Information Using a Catalog Iterator on HFS
Plus Volumes

FSGetCatalogInfoBulk (page 495)
Returns information about one or more objects from a catalog iterator. This function can return
information about multiple objects in a single call.

PBGetCatalogInfoBulkSync (page 646)
Returns information about one or more objects from a catalog iterator. This function can return
information about multiple objects in a single call.

PBGetCatalogInfoBulkAsync (page 644)
Returns information about one or more objects from a catalog iterator. This function can return
information about multiple objects in a single call.

Obtaining File Control Block Information

PBGetFCBInfoAsync (page 656) Deprecated in Mac OS X v10.4
Gets information about an open file from the file control block. (Deprecated. Use
PBGetForkCBInfoAsync (page 660) instead.)

PBGetFCBInfoSync (page 658) Deprecated in Mac OS X v10.4
Gets information about an open file from the file control block. (Deprecated. Use
PBGetForkCBInfoSync (page 661) instead.)

Obtaining Fork Control Block Information

FSGetForkCBInfo (page 497)
Returns information about a specified open fork, or about all open forks.

PBGetForkCBInfoSync (page 661)
Returns information about a specified open fork, or about all open forks.

PBGetForkCBInfoAsync (page 660)
Returns information about a specified open fork, or about all open forks.

Opening Files

FSOpenFork (page 514)
Opens any fork of a file or directory for streaming access.

454 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBOpenForkSync (page 740)
Opens any fork of a file or directory for streaming access.

PBOpenForkAsync (page 739)
Opens any fork of a file or directory for streaming access.

FSpOpenDF (page 531) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use FSOpenFork (page 514) instead.)

FSpOpenRF (page 532) Deprecated in Mac OS X v10.4
Opens the resource fork of a file. (Deprecated. Use FSOpenFork (page 514) instead.)

HOpen (page 553) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use FSOpenFork (page 514) instead.)

HOpenDF (page 554) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use FSOpenFork (page 514) instead.)

HOpenRF (page 554) Deprecated in Mac OS X v10.4
Opens the resource fork of a file. (Deprecated. Use FSOpenFork (page 514) instead.)

PBHOpenAsync (page 703) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use PBOpenForkAsync (page 739) instead.)

PBHOpenDFAsync (page 706) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use PBOpenForkAsync (page 739) instead.)

PBHOpenDFSync (page 708) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use PBOpenForkSync (page 740) instead.)

PBHOpenRFAsync (page 709) Deprecated in Mac OS X v10.4
Opens the resource fork of a file. (Deprecated. Use PBOpenForkAsync (page 739) instead.)

PBHOpenRFSync (page 713) Deprecated in Mac OS X v10.4
Opens the resource fork of a file. (Deprecated. Use PBOpenForkSync (page 740) instead.)

PBHOpenSync (page 714) Deprecated in Mac OS X v10.4
Opens the data fork of a file. (Deprecated. Use PBOpenForkSync (page 740) instead.)

Opening Files While Denying Access

PBHOpenDenyAsync (page 704) Deprecated in Mac OS X v10.5
Opens a file’s data fork using the access deny modes. (Deprecated. Use PBOpenForkAsync (page
739) with deny modes in the permissions field.)

PBHOpenDenySync (page 705) Deprecated in Mac OS X v10.5
Opens a file’s data fork using the access deny modes. (Deprecated. Use PBOpenForkSync (page 740)
with deny modes in the permissions field.)

PBHOpenRFDenyAsync (page 710) Deprecated in Mac OS X v10.5
Opens a file’s resource fork using the access deny modes. (Deprecated. Use PBOpenForkAsync (page
739) with deny modes in the permissions field.)

PBHOpenRFDenySync (page 711) Deprecated in Mac OS X v10.5
Opens a file’s resource fork using the access deny modes. (Deprecated. Use PBOpenForkSync (page
740) with deny modes in the permissions field.)

Functions by Task 455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Reading and Writing Files

FSReadFork (page 537)
Reads data from an open fork.

PBReadForkSync (page 745)
Reads data from an open fork.

PBReadForkAsync (page 744)
Reads data from an open fork.

FSWriteFork (page 546)
Writes data to an open fork.

PBWriteForkSync (page 777)
Writes data to an open fork.

PBWriteForkAsync (page 776)
Writes data to an open fork.

PBReadAsync (page 743) Deprecated in Mac OS X v10.5
Reads any number of bytes from an open file. (Deprecated. Use PBReadForkAsync (page 744) instead.)

PBReadSync (page 746) Deprecated in Mac OS X v10.5
Reads any number of bytes from an open file. (Deprecated. Use PBReadForkSync (page 745) instead.)

PBWriteAsync (page 775) Deprecated in Mac OS X v10.5
Writes any number of bytes to an open file. (Deprecated. Use PBWriteForkAsync (page 776) instead.)

PBWriteSync (page 779) Deprecated in Mac OS X v10.5
Writes any number of bytes to an open file. (Deprecated. Use PBWriteForkSync (page 777) instead.)

FSRead (page 536) Deprecated in Mac OS X v10.4
Reads any number of bytes from an open file. (Deprecated. Use FSReadFork (page 537) instead.)

FSWrite (page 546) Deprecated in Mac OS X v10.4
Writes any number of bytes to an open file. (Deprecated. Use FSWriteFork (page 546) instead.)

Resolving File ID References

PBResolveFileIDRefAsync (page 749) Deprecated in Mac OS X v10.5
Retrieves the filename and parent directory ID of a file given its file ID. (Deprecated. Use
FSGetCatalogInfo (page 494) instead.)

PBResolveFileIDRefSync (page 750) Deprecated in Mac OS X v10.5
Retrieves the filename and parent directory ID of a file given its file ID. (Deprecated. Use
FSGetCatalogInfo (page 494) instead.)

Searching a Volume

PBCatSearchAsync (page 577) Deprecated in Mac OS X v10.4
Searches a volume’s catalog file using a set of search criteria that you specify. (Deprecated. Use
PBCatalogSearchAsync (page 572) instead.)

PBCatSearchSync (page 580) Deprecated in Mac OS X v10.4
Searches a volume’s catalog file using a set of search criteria that you specify. (Deprecated. Use
PBCatalogSearchSync (page 573) instead.)

456 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Searching a Volume Using a Catalog Iterator

FSOpenIterator (page 515)
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

PBOpenIteratorSync (page 742)
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

PBOpenIteratorAsync (page 741)
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

FSCatalogSearch (page 472)
Searches for objects traversed by a catalog iterator that match a given set of criteria.

PBCatalogSearchSync (page 573)
Searches for objects traversed by a catalog iterator that match a given set of criteria.

PBCatalogSearchAsync (page 572)
Searches for objects traversed by a catalog iterator that match a given set of criteria.

FSCloseIterator (page 475)
Closes a catalog iterator.

PBCloseIteratorSync (page 584)
Closes a catalog iterator.

PBCloseIteratorAsync (page 584)
Closes a catalog iterator.

Updating Files

FSFlushFork (page 490)
Causes all data written to an open fork to be written to disk.

PBFlushForkSync (page 639)
Causes all data written to an open fork to be written to disk.

PBFlushForkAsync (page 638)
Causes all data written to an open fork to be written to disk.

PBFlushFileAsync (page 636) Deprecated in Mac OS X v10.4
Writes the contents of a file’s access path buffer to the disk. (Deprecated. Use
PBFlushForkAsync (page 638) instead.)

PBFlushFileSync (page 637) Deprecated in Mac OS X v10.4
Writes the contents of a file’s access path buffer to the disk. (Deprecated. Use PBFlushForkSync (page
639) instead.)

Updating Volumes

FSFlushVolume (page 491)
For the specified volume, writes all open and modified files in the current process to permanent
storage.

PBFlushVolumeSync (page 642)
For the specified volume, writes all open and modified files in the current process to permanent
storage.

Functions by Task 457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBFlushVolumeAsync (page 642)
For the specified volume, writes all open and modified files in the current process to permanent
storage.

FlushVol (page 466) Deprecated in Mac OS X v10.5
Writes the contents of the volume buffer and updates information about the volume. (Deprecated.
Use FSFlushVolume (page 491) instead.)

PBFlushVolAsync (page 640) Deprecated in Mac OS X v10.5
Writes the contents of the volume buffer and updates information about the volume. (Deprecated.
Use PBFlushVolumeAsync (page 642) instead.)

PBFlushVolSync (page 641) Deprecated in Mac OS X v10.5
Writes the contents of the volume buffer and updates information about the volume. (Deprecated.
Use PBFlushVolumeSync (page 642) instead.)

Using Change Notifications

FNNotify (page 467)
Broadcasts notification of changes to the specified directory.

FNNotifyAll (page 468)
Broadcasts notification of changes to the filesystem.

FNNotifyByPath (page 468)
Broadcasts notification of changes to the specified directory.

FNSubscribe (page 469)
Subscribes to change notifications for the specified directory.

FNSubscribeByPath (page 469)
Subscribes to change notifications for the specified directory.

FNUnsubscribe (page 470)
Releases a subscription which is no longer needed.

FNGetDirectoryForSubscription (page 466)
Fetches the directory for which this subscription was originally entered.

Not Recommended
This section lists functions that are not recommended and you should no longer use.

PBWaitIOComplete (page 775) Deprecated in Mac OS X v10.5
Keeps the system idle until either an interrupt occurs or the specified timeout value is reached.
(Deprecated. There is no replacement function.)

PBGetForeignPrivsAsync (page 659) Deprecated in Mac OS X v10.4
Determines the native access-control information for a file or directory stored on a volume managed
by a foreign file system. (Deprecated. There is no replacement function.)

PBGetForeignPrivsSync (page 660) Deprecated in Mac OS X v10.4
Determines the native access-control information for a file or directory stored on a volume managed
by a foreign file system. (Deprecated. There is no replacement function.)

PBGetUGEntryAsync (page 667) Deprecated in Mac OS X v10.4
Gets a user or group entry from the list of User and Group names and IDs on the local file server.
(Deprecated. There is no replacement function.)

458 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBGetUGEntrySync (page 668) Deprecated in Mac OS X v10.4
Gets a user or group entry from the list of User and Group names and IDs on a local file server.
(Deprecated. There is no replacement function.)

PBGetXCatInfoAsync (page 672) Deprecated in Mac OS X v10.4
Returns the short name (MS-DOS format name) and the ProDOS information for a file or directory.
(Deprecated. There is no replacement function.)

PBGetXCatInfoSync (page 673) Deprecated in Mac OS X v10.4
Returns the short name (MS-DOS format name) and the ProDOS information for a file or directory.
(Deprecated. There is no replacement function.)

PBHGetLogInInfoSync (page 686) Deprecated in Mac OS X v10.4
Determines the login method used to log on to a particular shared volume. (Deprecated. There is no
replacement function.)

PBSetForeignPrivsAsync (page 759) Deprecated in Mac OS X v10.4
Changes the native access-control information for a file or directory stored on a volume managed by
a foreign file system. (Deprecated. There is no replacement function.)

PBSetForeignPrivsSync (page 759) Deprecated in Mac OS X v10.4
Changes the native access-control information for a file or directory stored on a volume managed by
a foreign file system. (Deprecated. There is no replacement function.)

PBShareAsync (page 769) Deprecated in Mac OS X v10.4
Establishes a local volume or directory as a share point. (Deprecated. There is no replacement function.)

PBShareSync (page 769) Deprecated in Mac OS X v10.4
Establishes a local volume or directory as a share point. (Deprecated. There is no replacement function.)

PBUnshareAsync (page 773) Deprecated in Mac OS X v10.4
Makes a share point unavailable on the network. (Deprecated. There is no replacement function.)

PBUnshareSync (page 773) Deprecated in Mac OS X v10.4
Makes a share point unavailable on the network. (Deprecated. There is no replacement function.)

Functions

Allocate
Allocates additional space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
FSAllocateFork (page 470) instead.)

OSErr Allocate (
 FSIORefNum refNum,
 SInt32 *count
);

Parameters
refNum

The file reference number of the open file.

count
On input, a pointer to the number of additional bytes to allocate to the file. On return, a pointer to
the number of bytes actually allocated, rounded up to the nearest multiple of the allocation block
size.

Functions 459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The Allocate function adds the specified number of bytes to the file and sets the physical end-of-file to 1
byte beyond the last block allocated. If there isn’t enough empty space on the volume to satisfy the allocation
request, Allocate allocates the rest of the space on the volume and returns dskFulErr as its function
result.

The Allocate function always attempts to allocate contiguous blocks. If the total number of requested
bytes is unavailable, Allocate allocates whatever space, contiguous or not, is available. To force the allocation
of the entire requested space as a contiguous piece, call AllocContig (page 461) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the Allocate or AllocContig function to preallocate file blocks. This is most
useful if you know in advance how big a file is likely to become.

When the File Manager allocates (or deallocates) file blocks automatically, it always adds (or removes) blocks
in clumps. The Allocate function allows you to add blocks in allocation blocks, which may be smaller than
clumps.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 786) function, or by writing data to the
file with the FSWrite (page 546) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 786)
function, or one of the related parameter block calls, PBSetEOFSync (page 758) and PBSetEOFAsync (page
757).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 470) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 567) and
PBAllocateForkAsync (page 565).

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, if there is not enough space left on the volume to allocate the requested
number of bytes, the Allocate function does not return the number of bytes actually allocated. Your
application should not rely on the value returned in the count parameter.

To determine the remaining space on a volume before calling Allocate, use the functions
PBXGetVolInfoSync or PBXGetVolInfoAsync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

460 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

AllocContig
Allocates additional contiguous space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
FSAllocateFork (page 470) instead.)

OSErr AllocContig (
 FSVolumeRefNum refNum,
 SInt32 *count
);

Parameters
refNum

The file reference number of an open file.

count
On input, a pointer to the number of additional bytes to allocate to the file; on return, a pointer to
the number of bytes allocated, rounded up to the nearest multiple of the allocation block size.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The AllocContig function is identical to the Allocate (page 459) function except that if there isn’t enough
contiguous empty space on the volume to satisfy the allocation request, AllocContig does nothing and
returns dskFulErr as its function result. If you want to allocate whatever space is available, even when the
entire request cannot be filled by the allocation of a contiguous piece, call Allocate (page 459) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the AllocContig function to preallocate file blocks. This is most useful if you
know in advance how big a file is likely to become.

When the File Manager allocates (or deallocates) file blocks automatically, it always adds (or removes) blocks
in clumps. The AllocContig function allows you to add blocks in allocation blocks, which may be smaller
than clumps.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 786) function, or by writing data to the
file with the FSWrite (page 546) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 786)
function, or one of the related parameter block calls, PBSetEOFSync (page 758) and PBSetEOFAsync (page
757).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 470) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 567) and
PBAllocateForkAsync (page 565).

Functions 461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, when there is not enough space to allocate the requested number of
bytes, AllocContig does not return 0 in the count parameter, so your application cannot rely upon this
value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

CatMove
Moves files or directories from one directory to another on the same volume. (Deprecated in Mac OS X v10.4.
Use FSMoveObject (page 510) instead.)

OSErr CatMove (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param oldName,
 SInt32 newDirID,
 ConstStr255Param newName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The parent directory ID of the file or directory to move.

oldName
The existing name of the file or directory to move.

newDirID
If the newName parameter is empty, the directory ID of the destination directory; otherwise, the parent
directory ID of the destination directory.

newName
The name of the destination directory. If a valid directory name is provided in this parameter, the
destination directory’s parent directory is specified in the newDirID parameter. However, you can
specify an empty name for newName, in which case newDirID should be set to the directory ID of
the destination directory.

It is usually simplest to specify the destination directory by passing its directory ID in the newDirID
parameter and by setting newName to an empty name. To specify an empty name, set newName to
':'.

Return Value
A result code. See “File Manager Result Codes” (page 943). This function returns permErr if called on a locked
file.

462 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
CatMove is strictly a file catalog operation; it does not actually change the location of the file or directory
on the disk.

The CatMove function cannot move a file or directory to another volume (that is, the vRefNum parameter is
used in specifying both the source and the destination). Also, you cannot use it to rename files or directories;
to rename a file or directory, use HRename (page 555).

If you need to move files or directories with named forks other than the data and resource forks, with long
Unicode names, or files larger than 2GB, you should use the FSMoveObject (page 510) function, or one of
the corresponding parameter block calls, PBMoveObjectSync (page 738) and PBMoveObjectAsync (page
737).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

DirCreate
Creates a new directory. (Deprecated in Mac OS X v10.4. Use FSCreateDirectoryUnicode (page 479)
instead.)

OSErr DirCreate (
 FSVolumeRefNum vRefNum,
 SInt32 parentDirID,
 ConstStr255Param directoryName,
 SInt32 *createdDirID
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

parentDirID
The directory ID of the parent directory. If the parent directory ID is 0 and the volume specified in the
vRefNum parameter is the default volume, the new directory is placed in the default directory of the
volume. If the parent directory ID is 0 and the volume specified in the vRefNum parameter is a volume
other than the default volume, the new directory is placed in the root directory of the volume. To
create a directory at the root of a volume, regardless of whether that volume is the current default
volume, pass the constant fsRtDirID(2) in this parameter.

directoryName
The name of the new directory.

createdDirID
On return, a pointer to the directory ID of the new directory. Note that a directory ID, unlike a volume
reference number, is a long integer.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Functions 463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The date and time of the new directory’s creation and last modification are set to the current date and time.

To create a directory with a Unicode name, use the function FSCreateDirectoryUnicode (page 479) , or
one of the corresponding parameter block calls, PBCreateDirectoryUnicodeSync (page 589) and
PBCreateDirectoryUnicodeAsync (page 587).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

DisposeFNSubscriptionUPP
Deletes a universal procedure pointer (UPP) to your directory change callback function.

void DisposeFNSubscriptionUPP (
 FNSubscriptionUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your directory change
callback function.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

DisposeFSVolumeEjectUPP
Deletes a universal procedure pointer (UPP) to your volume ejection callback function.

void DisposeFSVolumeEjectUPP (
 FSVolumeEjectUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your volume ejection
callback function.

464 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

DisposeFSVolumeMountUPP
Deletes a universal procedure pointer (UPP) to your volume mount callback function.

void DisposeFSVolumeMountUPP (
 FSVolumeMountUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your volume mount
callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

DisposeFSVolumeUnmountUPP
Deletes a universal procedure pointer (UPP) to your volume unmount callback function.

void DisposeFSVolumeUnmountUPP (
 FSVolumeUnmountUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your volume unmount
callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

DisposeIOCompletionUPP
Deletes a universal procedure pointer (UPP) to your I/O completion callback function.

Functions 465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void DisposeIOCompletionUPP (
 IOCompletionUPP userUPP
);

Parameters
userUPP

The UPP to delete.

Discussion
You should use this function to delete the UPP after the File Manager is finished calling your I/O completion
callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FlushVol
Writes the contents of the volume buffer and updates information about the volume. (Deprecated in Mac
OS X v10.5. Use FSFlushVolume (page 491) instead.)

OSErr FlushVol (
 ConstStr63Param volName,
 FSVolumeRefNum vRefNum
);

Parameters
volName

The name of the mounted volume to flush.

vRefNum
The volume reference number, drive number, or 0 for the default volume.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
For the specified volume, the FlushVol function writes the contents of the associated volume buffer and
descriptive information about the volume. Information which has changed since the last time FlushVol
was called is written to the volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

FNGetDirectoryForSubscription
Fetches the directory for which this subscription was originally entered.

466 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSStatus FNGetDirectoryForSubscription (
 FNSubscriptionRef subscription,
 FSRef *ref
);

Parameters
subscription

The subscription previously returned from the functions FNSubscribe or FNSubscribeByPath.

ref
On return, a file system reference to the directory for which this subscription was created.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
There is no path variant because paths are fragile, and the path may have changed. If the caller does not
care about this subtlety, she can call FSRefMakePath to get a path from the returned reference.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FNNotify
Broadcasts notification of changes to the specified directory.

OSStatus FNNotify (
 const FSRef *ref,
 FNMessage message,
 OptionBits flags
);

Parameters
ref

A file system reference describing the directory for which to broadcast the notification.

message
An indication of what happened to the target directory.

flags
Options regarding the delivery of the notification. Specify kNilOptions for the default behavior.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FNNotifyAll
Broadcasts notification of changes to the filesystem.

OSStatus FNNotifyAll (
 FNMessage message,
 OptionBits flags
);

Parameters
message

An indication of what happened.

flags
Options regarding the delivery of the notification. Specify kNilOptions for the default behavior.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function should only be used by installers or programs which make lots of changes and only send one
broadcast.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FNNotifyByPath
Broadcasts notification of changes to the specified directory.

OSStatus FNNotifyByPath (
 const UInt8 *path,
 FNMessage message,
 OptionBits flags
);

Parameters
path

The path to the directory for which to broadcast the notification.

message
An indication of what happened to the target directory.

flags
Options regarding the delivery of the notification. Specify kNilOptions for the default behavior.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

468 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FNSubscribe
Subscribes to change notifications for the specified directory.

OSStatus FNSubscribe (
 const FSRef *directoryRef,
 FNSubscriptionUPP callback,
 void *refcon,
 OptionBits flags,
 FNSubscriptionRef *subscription
);

Parameters
directoryRef

A file system reference describing the directory for which the caller wants notifications.

callback
A pointer to the function to call when a notification arrives.

refcon
A pointer to user state carried with the subscription.

flags
Specify kNilOptions, or one of the options described in “Notification Subscription Options” (page
925).

subscription
A subscription token for subsequent query or unsubscription.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FNSubscribeByPath
Subscribes to change notifications for the specified directory.

OSStatus FNSubscribeByPath (
 const UInt8 *directoryPath,
 FNSubscriptionUPP callback,
 void *refcon,
 OptionBits flags,
 FNSubscriptionRef *subscription
);

Parameters
directoryPath

A path to the directory for which the caller wants notifications.

callback
The function to call when a notification arrives.

refcon
A pointer to the user state carried with the subscription.

Functions 469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

flags
Specify kNilOptions, or one of the options described in “Notification Subscription Options” (page
925).

subscription
A subscription token for subsequent query or unsubscription.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FNUnsubscribe
Releases a subscription which is no longer needed.

OSStatus FNUnsubscribe (
 FNSubscriptionRef subscription
);

Parameters
subscription

A subscription previously returned from the FNSubscribe orFNSubscribeByPath functions.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FSAllocateFork
Allocates space on a volume to an open fork.

OSErr FSAllocateFork (
 FSIORefNum forkRefNum,
 FSAllocationFlags flags,
 UInt16 positionMode,
 SInt64 positionOffset,
 UInt64 requestCount,
 UInt64 *actualCount
);

Parameters
forkRefNum

The reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 514) function, or with one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

470 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

flags
A constant indicating how the new space should be allocated. See “Allocation Flags” (page 887) for a
description of the constants which you can use in this parameter.

positionMode
A constant specifying the base location for the start of the allocation. See “Position Mode
Constants” (page 928) for more information on the constants which you can use to specify the base
location.

positionOffset
The offset from the base location of the start of the allocation.

requestCount
The number of bytes to allocate.

actualCount
On return, a pointer to the number of bytes actually allocated to the file. The value returned in here
may be smaller than the number specified in the requestCount parameter if some of the space was
already allocated. The value pointed to by the actualCount parameter does not reflect any additional
bytes that may have been allocated because space is allocated in terms of fixed units such as allocation
blocks, or the use of a clump size to reduce fragmentation.

The actualCount output is optional if you don’t want the number of allocated bytes returned, set
actualCount to NULL.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The FSAllocateFork function attempts to allocate requestCount bytes of physical storage starting at
the offset specified by the positionMode and positionOffset parameters. For volume formats that
support preallocated space, you can later write to this range of bytes (including extending the size of the
fork) without requiring an implicit allocation.

Any extra space allocated but not used will be deallocated when the fork is closed, using FSCloseFork (page
475) , PBCloseForkSync (page 583) , or PBCloseForkAsync (page 582) ; or when the fork is flushed, using
FSFlushFork (page 490) , PBFlushForkSync (page 639) , or PBFlushForkAsync (page 638).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCancelVolumeOperation
Cancels an outstanding asynchronous volume mounting operation.

OSStatus FSCancelVolumeOperation (
 FSVolumeOperation volumeOp
);

Parameters
volumeOp

The asynchronous volume operation to cancel.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Functions 471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

This function currently is only supported for server mounts.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSCatalogSearch
Searches for objects traversed by a catalog iterator that match a given set of criteria.

OSErr FSCatalogSearch (
 FSIterator iterator,
 const FSSearchParams *searchCriteria,
 ItemCount maximumObjects,
 ItemCount *actualObjects,
 Boolean *containerChanged,
 FSCatalogInfoBitmap whichInfo,
 FSCatalogInfo *catalogInfos,
 FSRef *refs,
 FSSpecPtr specs,
 HFSUniStr255 *names
);

Parameters
iterator

The iterator to use. Objects traversed by this iterator are matched against the criteria specified by the
searchCriteria parameter. You can obtain a catalog iterator with the function
FSOpenIterator (page 515), or with one of the related parameter block calls,
PBOpenIteratorSync (page 742) and PBOpenIteratorAsync (page 741). Currently, this iterator
must be created with the kFSIterateSubtree option and the container must be the root directory
of a volume. See FSIterator (page 835) for more information on the FSIterator data type.

472 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

searchCriteria
A pointer to a structure containing the search criteria.

You can match against the object’s name in Unicode and by the fields in an FSCatalogInfo (page
826) structure. You may use the same search bits as passed in the ioSearchBits field to the
PBCatSearchSync (page 580) and PBCatSearchAsync (page 577) functions; they control the
corresponding FSCatalogInfo fields. See “Catalog Search Masks” (page 900) for a description of the
search bits.

There are a few new search criteria supported by FSCatalogSearch but not by PBCatSearchSync
and PBCatSearchAsync. These new search criteria are indicated by the constants described in
“Catalog Search Constants” (page 899).

If the searchTime field of this structure is non-zero, it is interpreted as a Time Manager duration; the
search may terminate after this duration even if maximumObjects objects have not been returned
and the entire catalog has not been scanned. If searchTime is zero, there is no time limit for the
search.

If you are searching by any criteria other than name, you must set the searchInfo1 and searchInfo2
fields of the structure in this parameter to point to FSCatalogInfo structures containing the values
to match against.

See FSSearchParams (page 839) for a description of the FSSearchParams data type.

maximumObjects
The maximum number of items to return for this call.

actualObjects
On return, a pointer to the actual number of items found for this call.

containerChanged
On return, a pointer to a Boolean value indicating whether the container’s contents have changed.
If true, the container’s contents changed since the previous FSCatalogSearch call. Objects may
still be returned even though the container changed. Note that if the container has changed, then
the total set of items returned may be incorrect; some items may be returned multiple times, and
some items may not be returned at all.

This parameter is optional if you don’t want this information, pass a NULL pointer.

whichInfo
A bitmap specifying the catalog information fields to return for each item. If you don’t wish any catalog
information returned, pass the constant kFSCatInfoNone in this parameter. See “Catalog Information
Bitmap Constants” (page 891) for a description of the bits in this parameter.

catalogInfos
A pointer to an array of catalog information structures; one for each found item. On input, the
catalogInfosparameter should point to an array ofmaximumObjects catalog information structures.

This parameter is optional; if you do not wish any catalog information returned, pass NULL here.

See FSCatalogInfo (page 826) for a description of the FSCatalogInfo data type.

refs
A pointer to an array of FSRef structures; one for each returned item. If you want an FSRef for each
item found, set this parameter to point to an array of maximumObjectsFSRef structures. Otherwise,
set it to NULL. See FSRef (page 837) for a description of the FSRef data type.

Functions 473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

specs
names

A pointer to an array of filenames; one for each returned item. If you want the Unicode filename for
each item found, set this parameter to point to an array of maximumObjectsHFSUniStr255 structures.
Otherwise, set it to NULL. See HFSUniStr255 (page 855) for a description of the HFSUniStr255 data
type.

Return Value
A result code. See “File Manager Result Codes” (page 943). When the entire volume has been searched,
errFSNoMoreItems is returned.

Discussion
A single search may span more than one call to FSCatalogSearch. The call may complete with no error
before scanning the entire volume. This typically happens because the time limit (searchTime) has been
reached or maximumObjects items have been returned. If the search is not completed, you can continue
the search by making another call to FSCatalogSearch and passing the updated iterator returned by the
previous call in the iterator parameter.

Before calling this function, you should determine that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSClose
Closes an open file. (Deprecated in Mac OS X v10.4. Use FSCloseFork (page 475) instead.)

OSErr FSClose (
 FSIORefNum refNum
);

Parameters
refNum

The file reference number of the open file.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The FSClose function removes the access path for the specified file and writes the contents of the volume
buffer to the volume.

The FSClose function calls the PBFlushFileSync function internally to write the file’s bytes onto the
volume. To ensure that the file’s catalog entry is updated, you should call FlushVol (page 466) after you call
FSClose.

Special Considerations

Make sure that you do not call FSClose with a file reference number of a file that has already been closed.
Attempting to close the same file twice may result in loss of data on a volume.

Availability
Available in Mac OS X v10.0 and later.

474 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSCloseFork
Closes an open fork.

OSErr FSCloseFork (
 FSIORefNum forkRefNum
);

Parameters
forkRefNum

The reference number of the fork to close. After the call to this function, the reference number in this
parameter is invalid.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The FSCloseFork function causes all data written to the fork to be written to disk, in the same manner as
the FSFlushFork (page 490) function, before it closes the fork.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCloseIterator
Closes a catalog iterator.

OSErr FSCloseIterator (
 FSIterator iterator
);

Parameters
iterator

The catalog iterator to be closed. FSCloseIterator releases memory and other system resources
used by the iterator, making the iterator invalid. See FSIterator (page 835) for a description of the
FSIterator data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function releases memory and other system resources used by the iterator. The iterator becomes invalid.

Availability
Available in Mac OS X v10.0 and later.

Functions 475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Related Sample Code
QTCarbonShell

Declared In
Files.h

FSCompareFSRefs
Determines whether two FSRef structures refer to the same file or directory.

OSErr FSCompareFSRefs (
 const FSRef *ref1,
 const FSRef *ref2
);

Parameters
ref1

A pointer to the first FSRef to compare. For a description of the FSRef data type, see FSRef (page
837).

ref2
A pointer to the second FSRef to compare.

Return Value
A result code. See “File Manager Result Codes” (page 943). If the two FSRef structures refer to the same file
or directory, then noErr is returned. If they refer to objects on different volumes, then diffVolErr is
returned. If they refer to different files or directories on the same volume, then errFSRefsDifferent is
returned. This function may return other errors, including nsvErr, fnfErr, dirNFErr, and volOffLinErr.

Discussion
You must use FSCompareFSRefs, or one of the corresponding parameter block functions,
PBCompareFSRefsSync (page 586) and PBCompareFSRefsAsync (page 586) , to compare FSRef structures.
It is not possible to compare the FSRef structures directly since some bytes may be uninitialized,
case-insensitive text, or contain hint information.

Some volume formats may be able to tell that two FSRef structures would refer to two different files or
directories, without having to actually find those objects. In this case, the volume format may return
errFSRefsDifferent even if one or both objects no longer exist. Similarly, if the FSRef structures are for
objects on different volumes, the File Manager will return diffVolErr even if one or both volumes are no
longer mounted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCopyDiskIDForVolume
Returns a copy of the disk ID for a volume.

476 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSStatus FSCopyDiskIDForVolume (
 FSVolumeRefNum vRefNum,
 CFStringRef *diskID
);

Parameters
vRefNum

The volume reference number of the target volume.

diskID
A pointer to a Core Foundation string. On return, the string contains the disk ID associated with the
target volume. The caller is responsible for releasing the string.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSCopyObjectAsync
Starts an asynchronous file operation to copy a source object to a destination directory.

OSStatus FSCopyObjectAsync (
 FSFileOperationRef fileOp,
 const FSRef *source,
 const FSRef *destDir,
 CFStringRef destName,
 OptionBits flags,
 FSFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this copy operation.

source
A pointer to the source object to copy. The object can be a file or a directory.

destDir
A pointer to the destination directory.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

flags
One or more file operation option flags. See “File Operation Options” (page 917).

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 788). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

Functions 477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. For more information, see
FSFileOperationClientContext (page 829). This parameter is optional; pass NULL if you don’t
need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If you specify a status callback function, status callbacks will occur in one of the run loop and mode
combinations with which you scheduled the file operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSCopyObjectSync
Copies a source object to a destination directory.

OSStatus FSCopyObjectSync (
 const FSRef *source,
 const FSRef *destDir,
 CFStringRef destName,
 FSRef *target,
 OptionBits options
);

Parameters
source

A pointer to the source object to copy. The object can be a file or a directory.

destDir
A pointer to the destination directory.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

target
A pointer to an FSRef variable that, on output, refers to the new object in the destination directory.
This parameter is optional; pass NULL if you don’t need to refer to the new object.

options
One or more file operation option flags. See “File Operation Options” (page 917).

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function could take a significant amount of time to execute. To avoid blocking your user interface, you
should either call this function in a thread other than the main thread or use FSCopyObjectAsync (page
477) instead.

478 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSCopyURLForVolume
Returns a copy of the URL for a volume.

OSStatus FSCopyURLForVolume (
 FSVolumeRefNum vRefNum,
 CFURLRef *url
);

Parameters
vRefNum

The volume reference number of the target volume.

url
A pointer to a CFURLRef variable allocated by the caller. On return, a Core Foundation URL that
specifies the location of the target volume. The caller is responsible for releasing the URL.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Files.h

FSCreateDirectoryUnicode
Creates a new directory (folder) with a Unicode name.

OSErr FSCreateDirectoryUnicode (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo,
 FSRef *newRef,
 FSSpecPtr newSpec,
 UInt32 *newDirID
);

Parameters
parentRef

A pointer to an FSRef specifying the parent directory where the new directory is to be created. See
FSRef (page 837) for a description of the FSRef data type.

nameLength
The length of the new directory's Unicode name.

Functions 479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

name
A pointer to the Unicode name of the new directory.

whichInfo
A bitmap specifying which catalog information fields to set for the new directory. Specify the values
for these fields in the catalogInfo parameter.

If you do not wish to set catalog information for the new directory, specify the constant
kFSCatInfoNone. See “Catalog Information Bitmap Constants” (page 891) for a description of the
bits defined for this parameter.

catalogInfo
A pointer to the FSCatalogInfo structure which specifies the values for the catalog information
fields for the new directory. Specify which fields to set in the whichInfo parameter.

This parameter is optional; specify NULL if you do not wish to set catalog information for the new
directory.

See FSCatalogInfo (page 826) for a description of the FSCatalogInfo data type.

newRef
On return, a pointer to the FSRef for the new directory. This parameter is optional; specify NULL if
you do not want the FSRef returned.

newSpec
On return, a pointer to the FSSpec for the new directory. This parameter is optional; specify NULL if
you do not want the FSSpec returned. See FSSpec (page 840) for a description of the FSSpec data
type.

newDirID
On return, a pointer to the directory ID of the directory. This parameter is optional; specify NULL if
you do not want the directory ID returned.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
You may optionally set catalog information for the new directory using the whichInfo and catalogInfo
parameters; this is equivalent to callingFSSetCatalogInfo (page 540) , or one of the corresponding parameter
block functions, PBSetCatalogInfoSync (page 753) and PBSetCatalogInfoAsync (page 751) , after
creating the directory.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catalogInfo parameter. This will be used by the volume format when converting the Unicode filename to
other encodings.

Special Considerations

If the FSCreateDirectoryUnicode function is present, but is not implemented by a particular volume, the
File Manager will emulate this function by making the appropriate call to PBDirCreateSync (page 601).
However, if the function is not directly supported by the volume, you will not be able to use the long Unicode
directory names, or other features added with HFS Plus.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest

480 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

FSCreateFileUnicode
Creates a new file with a Unicode name.

OSErr FSCreateFileUnicode (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo,
 FSRef *newRef,
 FSSpecPtr newSpec
);

Parameters
parentRef

A pointer to an FSRef for the directory where the file is to be created. See FSRef (page 837) for a
description of the FSRef data type.

nameLength
The length of the file's name.

name
A pointer to the Unicode name for the new file.

whichInfo
A bitmap specifying which catalog information fields to set for the new file. You specify the values
for these fields in the catalogInfo parameter. If you do not wish to set catalog information for the
new file, pass the constant kFSCatInfoNone. See “Catalog Information Bitmap Constants” (page 891)
for a description of the bits defined for this parameter.

catalogInfo
A pointer to the FSCatalogInfo structure which specifies the values of the new file’s catalog
information. Specify which fields to set in the whichInfo parameter.

This parameter is optional; specify NULL if you do not wish to set catalog information for the new file.

newRef
On return, a pointer to the FSRef for the new file. If you do not want the FSRef returned, specify
NULL.

newSpec
On return, a pointer to the FSSpec for the new file. If you do not want the FSSpec returned, specify
NULL. See FSSpec (page 840) for a description of the FSSpec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
You may optionally set catalog information for the new file using the whichInfo and catalogInfo
parameters; this is equivalent to callingFSSetCatalogInfo (page 540) , or one of the corresponding parameter
block functions, PBSetCatalogInfoSync (page 753) and PBSetCatalogInfoAsync (page 751) , after
creating the file.

Functions 481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catalogInfo parameter. This will be used by the volume format when converting the Unicode filename to
other encodings.

Special Considerations

If the FSCreateFileUnicode function is present, but is not implemented by a particular volume, the File
Manager will emulate this function by making the appropriate call to PBHCreateSync (page 677). However,
if the function is not directly supported by the volume, you will not be able to use the long Unicode filenames,
or other features added with HFS Plus.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CarbonSketch
QTCarbonShell

Declared In
Files.h

FSCreateFork
Creates a named fork for a file or directory.

OSErr FSCreateFork (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName
);

Parameters
ref

A pointer to an FSRef specifying the file or directory. See FSRef (page 837) for a description of the
FSRef data type.

forkNameLength
The length of the name of the new fork.

forkName
A pointer to the Unicode name of the fork.

Return Value
A result code. See “File Manager Result Codes” (page 943). If the named fork already exists, the function returns
errFSForkExists. If the fork name is syntactically invalid or otherwise unsupported for the given volume,
FSCreateFork returns errFSBadForkName or errFSNameTooLong.

Discussion
A newly created fork has zero length (that is, its logical end-of-file is zero). The data and resource forks of a
file are automatically created and deleted as needed. This is done for compatibility with older APIs, and
because data and resource forks are often handled specially. If a given fork always exists for a given volume
format (such as data and resource forks for HFS and HFS Plus, or data forks for most other volume formats),
an attempt to create that fork when a zero-length fork already exists should return noErr; if a non-empty
fork already exists then errFSForkExists should be returned.

482 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCreateVolumeOperation
Returns an FSVolumeOperation which can be used for an asynchronous volume operation.

OSStatus FSCreateVolumeOperation (
 FSVolumeOperation *volumeOp
);

Parameters
volumeOp

The new FSVolumeOperation.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
When the operation is completed the FSVolumeOperation should be disposed of to free the memory
associated with the operation using FSDisposeVolumeOperation.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSDeleteFork
Deletes a named fork from a file or directory.

OSErr FSDeleteFork (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName
);

Parameters
ref

A pointer to an FSRef for the file or directory from which to delete the fork. See FSRef (page 837) for
a description of the FSRef data type.

forkNameLength
The length of the Unicode name of the fork name.

forkName
A pointer to the Unicode name of the fork to delete.

Return Value
A result code. See “File Manager Result Codes” (page 943). If the named fork does not exist, the function
returns errFSForkNotFound.

Functions 483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
Any storage allocated to the fork is released. If a given fork always exists for a given volume format (such as
data and resource forks for HFS and HFS Plus, or data forks for most other volume formats), this is equivalent
to setting the logical size of the fork to zero.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSDeleteObject
Deletes a file or an empty directory.

OSErr FSDeleteObject (
 const FSRef *ref
);

Parameters
ref

A pointer to an FSRef specifying the file or directory to be deleted. If the object to be deleted is a
directory, it must be empty (it must contain no files or folders). See FSRef (page 837) for a description
of the FSRef data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you attempt to delete a folder for which there
is an open catalog iterator, this function succeeds and returns noErr. Iteration, however, will continue to
work until the iterator is closed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CarbonSketch
QTCarbonShell

Declared In
Files.h

FSDisposeVolumeOperation
Releases the memory associated with a volume operation.

OSStatus FSDisposeVolumeOperation (
 FSVolumeOperation volumeOp
);

Parameters
volumeOp

The FSVolumeOperation to release.

484 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943). This function will return paramErr if the
FSVolumeOperation is in use.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSEjectVolumeAsync
Asynchronously ejects a volume.

OSStatus FSEjectVolumeAsync (
 FSVolumeRefNum vRefNum,
 OptionBits flags,
 FSVolumeOperation volumeOp,
 void *clientData,
 FSVolumeEjectUPP callback,
 CFRunLoopRef runloop,
 CFStringRef runloopMode
);

Parameters
vRefNum

The volume reference number of the volume to eject.

flags
Options for future use.

volumeOp
An FSVolumeOperation returned by FSCreateVolumeOperation.

clientData
A pointer to client data associated with the operation. This parameter can be NULL.

callback
The function to call when eject is complete.

runloop
The runloop to run on.

runloopMode
The mode for the runloop.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function starts the process of ejecting the volume specified by the vRefNum parameter. If a callback
function is provided, that function will be called when the eject operation is complete. Once this function
returns noErr the status of the operation can be found using FSGetAsyncEjectStatus.

Availability
Available in Mac OS X v10.2 and later.

Functions 485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

FSEjectVolumeSync
Ejects a volume.

OSStatus FSEjectVolumeSync (
 FSVolumeRefNum vRefNum,
 OptionBits flags,
 pid_t *dissenter
);

Parameters
vRefNum

The volume reference number of the volume to eject.

flags
Options for future use.

dissenter
On return, a pointer to the pid of the process which denied the unmount if the eject is denied.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function ejects the volume specified by the vRefNum parameter. If the volume cannot be ejected the
pid of the process which denied the unmount will be returned in the dissenter parameter. This function
returns after the eject is complete. Ejecting a volume will result in the unmounting of other volumes on the
same device.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSExchangeObjects
Swaps the contents of two files.

OSErr FSExchangeObjects (
 const FSRef *ref,
 const FSRef *destRef
);

Parameters
ref

A pointer to an FSRef for the first file. See FSRef (page 837) for a description of the FSRef data type.

destRef
A pointer to an FSRef for the second file.

Return Value
A result code. See “File Manager Result Codes” (page 943).

486 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The FSExchangeObjects function allows programs to implement a “safe save” operation by creating and
writing a complete new file and swapping the contents. An alias, FSSpec, or FSRef that refers to the old file
will now access the new data. The corresponding information in in-memory data structures are also exchanged.

Either or both files may have open access paths. After the exchange, the access path will refer to the opposite
file’s data (that is, to the same data it originally referred, which is now part of the other file).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSFileOperationCancel
Cancels an asynchronous file operation.

OSStatus FSFileOperationCancel (
 FSFileOperationRef fileOp
);

Parameters
fileOp

The file operation to cancel.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function makes the specified file operation ineligible to run on any run loop. You may call this function
at any time during the operation. Typically, you would use this function if the user cancels the operation.
Note that to release your file operation object, you still need to call CFRelease.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFileOperationCopyStatus
Gets a copy of the current status information for an asynchronous file operation.

Functions 487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSStatus FSFileOperationCopyStatus (
 FSFileOperationRef fileOp,
 FSRef *currentItem,
 FSFileOperationStage *stage,
 OSStatus *error,
 CFDictionaryRef *statusDictionary,
 void **info
);

Parameters
fileOp

The file operation to access.

currentItem
A pointer to an FSRef variable. On output, the variable contains the object currently being moved
or copied. If the operation is complete, this parameter refers to the target (the new object
corresponding to the source object in the destination directory).

stage
A pointer to a file operation stage variable. On output, the variable contains the current stage of the
file operation.

error
A pointer to an error status variable. On output, the variable contains the current error status of the
file operation.

statusDictionary
A pointer to a dictionary variable. On output, the variable contains a dictionary with more detailed
status information. For information about the contents of the dictionary, see “File Operation
Status Dictionary Keys” (page 919). You should release the dictionary when you are finished
using it.

info
A pointer to a generic pointer. On output, the generic pointer refers to user-defined data associated
with this file operation.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFileOperationCreate
Creates an object that represents an asynchronous file operation.

FSFileOperationRef FSFileOperationCreate (
 CFAllocatorRef alloc
);

Parameters
alloc

The allocator to use. Pass NULL for the default allocator.

488 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A new FSFileOperation object, or NULL if the object could not be created. When you no longer need the
object, you should release it by calling CFRelease.

Discussion
Before passing a file operation object to a function that starts an asynchronous copy or move operation, you
should schedule the file operation using the function FSFileOperationScheduleWithRunLoop (page
489).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFileOperationGetTypeID
Returns the Core Foundation type identifier for the FSFileOperation opaque type.

CFTypeID FSFileOperationGetTypeID (
 void
);

Return Value
The type identifier for the FSFileOperation opaque type. For information about this type, see
FSFileOperationRef (page 830).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFileOperationScheduleWithRunLoop
Schedules an asynchronous file operation with the specified run loop and mode.

OSStatus FSFileOperationScheduleWithRunLoop (
 FSFileOperationRef fileOp,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
fileOp

The file operation to schedule.

runLoop
The run loop in which to schedule the operation. For information about Core Foundation run loops,
see Run Loops.

runLoopMode
The run loop mode in which to schedule the operation. In most cases, you may specify
kCFRunLoopCommonModes.

Functions 489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
To run, a file operation must be scheduled with at least one run loop. A file operation can be scheduled with
multiple run loop and mode combinations.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFileOperationUnscheduleFromRunLoop
Unschedules an asynchronous file operation from the specified run loop and mode.

OSStatus FSFileOperationUnscheduleFromRunLoop (
 FSFileOperationRef fileOp,
 CFRunLoopRef runLoop,
 CFStringRef runLoopMode
);

Parameters
fileOp

The file operation to unschedule.

runLoop
The run loop on which to unschedule the operation.

runLoopMode
The run loop mode in which to unschedule the operation.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSFlushFork
Causes all data written to an open fork to be written to disk.

OSErr FSFlushFork (
 FSIORefNum forkRefNum
);

Parameters
forkRefNum

The reference number of the fork to flush.

Return Value
A result code. See “File Manager Result Codes” (page 943).

490 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The FSFlushFork function causes the actual fork contents to be written to disk, as well as any other volume
structures needed to access the fork. On HFS and HFS Plus, this includes the catalog, extents, and attribute
B-trees; the volume bitmap; and the volume header and alternate volume header (the MDB and alternate
MDB on HFS volumes), as needed.

On volumes that do not support FSFlushFork directly, the entire volume is flushed to be sure all volume
structures associated with the fork are written to disk.

You do not, need to use FSFlushFork to flush a file fork before it is closed; the file is automatically flushed
when it is closed and all cache blocks associated with it are removed from the cache.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSFlushVolume
For the specified volume, writes all open and modified files in the current process to permanent storage.

OSStatus FSFlushVolume (
 FSVolumeRefNum vRefNum
);

Parameters
vRefNum

The volume reference number of the volume to flush.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSGetAsyncEjectStatus
Returns the current status of an asynchronous eject operation.

Functions 491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSStatus FSGetAsyncEjectStatus (
 FSVolumeOperation volumeOp,
 FSEjectStatus *status,
 OSStatus *volumeOpStatus,
 FSVolumeRefNum *volumeRefNum,
 pid_t *dissenter,
 void **clientData
);

Parameters
volumeOp

The asynchronous volume operation to get status about.

status
On return, a pointer to the status of the operation.

volumeOpStatus
If the status parameter is kAsyncEjectComplete then this contains the result code (OSStatus)
for the operation on return.

volumeRefNum
On return, the volume reference number of the volume being ejected.

dissenter
On return, a pointer to the pid of the process which denied the unmount if the eject is denied.

clientData
On return, a pointer to client data associated with the original FSMountServerVolumeAsync
operation.

Return Value
A result code. See “File Manager Result Codes” (page 943). A return value of noErr signifies that the status
parameter has been filled with valid information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSGetAsyncMountStatus
Returns the current status of an asynchronous mount operation.

OSStatus FSGetAsyncMountStatus (
 FSVolumeOperation volumeOp,
 FSMountStatus *status,
 OSStatus *volumeOpStatus,
 FSVolumeRefNum *mountedVolumeRefNum,
 void **clientData
);

Parameters
volumeOp

The asynchronous volume operation to get status about.

status
On return, a pointer to the status of the operation.

492 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

volumeOpStatus
If the status is kAsyncMountComplete then this parameter contains the result code for the operation
on return.

mountedVolumeRefNum
If the status is kAsyncMountComplete and the volumeOpStatus parameter is noErr then this is
the volume reference number for the newly mounted volume, on return.

clientData
On return, a pointer to client data associated with the original FSMountServerVolumeAsync
operation.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
A return value of noErr signifies that the status parameter has been filled with valid information. If the
status is kAsyncMountComplete then the rest of data returned is valid. If the status is anything else then
the volumeOpStatus and mountedVolumeRefNum parameters are invalid, but the clientData parameter
is valid.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSGetAsyncUnmountStatus
Returns the current status of an asynchronous unmount operation.

OSStatus FSGetAsyncUnmountStatus (
 FSVolumeOperation volumeOp,
 FSUnmountStatus *status,
 OSStatus *volumeOpStatus,
 FSVolumeRefNum *volumeRefNum,
 pid_t *dissenter,
 void **clientData
);

Parameters
volumeOp

The asynchronous volume operation to get status about.

status
On return, a pointer to the status of the operation.

volumeOpStatus
If the status is kAsyncUnmountComplete then this parameter contains a pointer to the result code
(OSStatus) for the operation on return.

volumeRefNum
On return, a pointer to the volume reference number of the volume being unmounted.

dissenter
On return, a pointer to the pid of the process which denied the unmount if the unmount is denied.

Functions 493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

clientData
On return, a pointer to client data associated with the original FSMountServerVolumeAsync
operation.

Return Value
A result code. See “File Manager Result Codes” (page 943). A return value of noErr signifies that the status
parameter has been filled with valid information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSGetCatalogInfo
Returns catalog information about a file or directory. You can use this function to map an FSRef to an FSSpec.

OSErr FSGetCatalogInfo (
 const FSRef *ref,
 FSCatalogInfoBitmap whichInfo,
 FSCatalogInfo *catalogInfo,
 HFSUniStr255 *outName,
 FSSpecPtr fsSpec,
 FSRef *parentRef
);

Parameters
ref

A pointer to an FSRef specifying the file or directory for which to retrieve information. See FSRef (page
837) for a description of the FSRef data type.

whichInfo
A bitmap specifying the catalog information fields to return. If you don’t want any catalog information,
set whichInfo to the constant kFSCatInfoNone. See “Catalog Information Bitmap Constants” (page
891) for a description of the bits in this parameter.

catalogInfo
On return, a pointer to a catalog information structure containing the information about the file or
directory. Only the information specified in the whichInfo parameter is returned. If you don’t want
any catalog information, pass NULL here. See FSCatalogInfo (page 826) for a description of the
FSCatalogInfo data type.

outName
On return, a pointer to the Unicode name of the file or directory is returned here. This parameter is
optional; if you do not wish the name returned, pass NULL here. See HFSUniStr255 (page 855) for a
description of the HFSUniStr255 data type.

fsSpec
On return, a pointer to the FSSpec for the file or directory. This parameter is optional; if you do not
wish the FSSpec returned, pass NULL here. See FSSpec (page 840) for a description of the FSSpec
data type.

494 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

parentRef
On return, a pointer to the FSRef for the object's parent directory. This parameter is optional; if you
do not wish the parent directory returned, pass NULL here.

If the object specified in the ref parameter is a volume’s root directory, then the FSRef returned
here will not be a valid FSRef, since the root directory has no parent object.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
QTCarbonShell

Declared In
Files.h

FSGetCatalogInfoBulk
Returns information about one or more objects from a catalog iterator. This function can return information
about multiple objects in a single call.

OSErr FSGetCatalogInfoBulk (
 FSIterator iterator,
 ItemCount maximumObjects,
 ItemCount *actualObjects,
 Boolean *containerChanged,
 FSCatalogInfoBitmap whichInfo,
 FSCatalogInfo *catalogInfos,
 FSRef *refs,
 FSSpecPtr specs,
 HFSUniStr255 *names
);

Parameters
iterator

The iterator to use. You can obtain a catalog iterator with the function FSOpenIterator (page 515),
or with one of the related parameter block calls, PBOpenIteratorSync (page 742) and
PBOpenIteratorAsync (page 741). Currently, the iterator must be created with the kFSIterateFlat
option. See FSIterator (page 835) for a description of the FSIterator data type.

maximumObjects
The maximum number of items to return for this call.

actualObjects
On return, a pointer to the actual number of items found for this call.

Functions 495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

containerChanged
On return, a pointer to a value indicating whether or not the container’s contents have changed since
the previous FSGetCatalogInfoBulk call. If true, the contents have changed. Objects may still be
returned, even though the container has changed. If so, note that if the container has changed, then
the total set of items returned may be incorrect: some items may be returned multiple times, and
some items may not be returned at all.

This parameter is optional if you don’t want this information returned, pass a NULL pointer.

In Mac OS X version 10.2 and later, this parameter is always set to false. To find out whether the
container has changed since the last call to FSGetCatalogInfoBulk, check the modification date
of the container.

whichInfo
A bitmap specifying the catalog information fields to return for each item. If you don’t wish any catalog
information returned, pass the constant kFSCatInfoNone in this parameter. For a description of the
bits in this parameter, see “Catalog Information Bitmap Constants” (page 891).

catalogInfos
A pointer to an array of catalog information structures; one for each returned item. On input, the
catalogInfosparameter should point to an array ofmaximumObjects catalog information structures.

This parameter is optional; if you do not wish any catalog information returned, pass NULL here.

refs
A pointer to an array of FSRef structures; one for each returned item. On input, this parameter should
to point to an array of maximumObjectsFSRef structures.

This parameter is optional; if you do not wish any FSRef structures returned, pass NULL here.

specs
A pointer to an array of FSSpec structures; one for each returned item. On input, this parameter
should to point to an array of maximumObjectsFSSpec structures.

This parameter is optional; if you do not wish any FSSpec structures returned, pass NULL here.

names
A pointer to an array of names; one for each returned item. If you want the Unicode name for each
item found, set this parameter to point to an array of maximumObjectsHFSUniStr255 structures.
Otherwise, set it to NULL.

Return Value
A result code. See “File Manager Result Codes” (page 943). When all of the iterator’s objects have been returned,
the call will return errFSNoMoreItems.

Discussion
The FSGetCatalogInfoBulk call may complete and return noErrwith fewer than maximumObjects items
returned. This may be due to various reasons related to the internal implementation. In this case, you may
continue to make FSGetCatalogInfoBulk calls using the same iterator.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Files.h

496 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSGetDataForkName
Returns a Unicode string constant for the name of the data fork.

OSErr FSGetDataForkName (
 HFSUniStr255 *dataForkName
);

Parameters
dataForkName

On input, a pointer to an HFSUniStr255 structure. On return, this structure contains the Unicode
name of the data fork. Currently, this is the empty string. See HFSUniStr255 (page 855) for a description
of the HFSUniStr255 data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
There is no parameter block-based form of this call since it is not dispatched to individual volume formats,
and does not require any I/O.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetForkCBInfo
Returns information about a specified open fork, or about all open forks.

OSErr FSGetForkCBInfo (
 FSIORefNum desiredRefNum,
 FSVolumeRefNum volume,
 short *iterator,
 FSIORefNum *actualRefNum,
 FSForkInfo *forkInfo,
 FSRef *ref,
 HFSUniStr255 *outForkName
);

Parameters
desiredRefNum

If you want information on a specific fork, set this parameter to that fork’s reference number, and
pass NULL in the iterator parameter. If you pass a non-zero value in this parameter, the function
attempts to get information on the fork specified by that reference number.

Pass zero in this parameter to iterate over all open forks. You can limit this iteration to a specific
volume with the volume parameter.

Functions 497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

volume
The volume to search, when iterating over multiple forks. To iterate over all open forks on a single
volume, specify the volume reference number in this parameter. To iterate over all open forks on all
volumes, set this parameter to the constant kFSInvalidVolumeRefNum.

This parameter is ignored if you specify a fork reference number in the desiredRefNum parameter.
Set desiredRefNum to zero if you wish to iterate over multiple forks.

See FSVolumeRefNum (page 847) for a description of the FSVolumeRefNum data type.

iterator
A pointer to an iterator. If the desiredRefNum parameter is 0, the iterator maintains state between
calls to FSGetForkCBInfo. Set the iterator parameter to 0 before you begin iterating, on the first
call to FSGetForkCBInfo. On return, the iterator will be updated; pass this updated iterator in the
iterator parameter of the next call to FSIterateForks to continue iterating.

actualRefNum
On return, a pointer to the reference number of the open fork. This parameter is optional if you do
not wish to retrieve the fork’s reference number, pass NULL.

forkInfo
On return, a pointer to an FSForkInfo structure containing information about the open fork. This
parameter is optional; if you do not wish this information returned, set forkInfo to NULL. See
FSForkInfo (page 832) for a description of the FSForkInfo data type.

On OS X, the value returned by FSGetForkCBInfo in the physicalEOF field of the FSForkInfo
structure may differ from the physical file length reported by FSGetCatalogInfo, PBGetCatInfo,
and related functions. When a write causes a file to grow in size, the physical length reported by
FSGetCatalogInfo and similar calls increases by the clump size, which is a multiple of the allocation
block size. However, the physical length returned by FSGetForkCBInfo changes according to the
allocation block size and the file lengths returned by the respective functions get out of sync.

ref
On return, a pointer to the FSRef for the file or directory that contains the fork. This parameter is
optional; if you do not wish to retrieve the FSRef, set ref to NULL. See FSRef (page 837) for a
description of the FSRef data type.

outForkName
On return, a pointer to the name of the fork. This parameter is optional; if you do not wish the name
returned, set outForkName to NULL. See HFSUniStr255 (page 855) for a description of the
HFSUniStr255 data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you are iterating over multiple forks, the function
returns errFSNoMoreItems if there are no more open forks to return.

Discussion
Carbon applications are no longer guaranteed access to the FCB table. Instead, applications should use
FSGetForkCBInfo, or one of the related parameter block functions, PBGetForkCBInfoSync (page 661)
and PBGetForkCBInfoAsync (page 660) , to access information about a fork control block.

Special Considerations

Returning the fork information in the forkInfo parameter generally does not require a disk access; returning
the information in the ref or forkName parameters may cause disk access for some volume formats.

Availability
Available in Mac OS X v10.0 and later.

498 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

FSGetForkPosition
Returns the current position of an open fork.

OSErr FSGetForkPosition (
 FSIORefNum forkRefNum,
 SInt64 *position
);

Parameters
forkRefNum

The reference number of a fork previously opened by the FSOpenFork (page 514) function or one of
its corresponding parameter block calls, PBOpenForkSync (page 740) and PBOpenForkAsync (page
739).

position
On return, a pointer to the current position of the fork. The returned fork position is relative to the
start of the fork (that is, it is an absolute offset in bytes).

Return Value
A result code. See “File Manager Result Codes” (page 943).

Special Considerations

Before calling the FSGetForkPosition function, call the Gestalt function with the gestaltFSAttr
selector to determine if FSGetForkPosition is available. If the function is available, but is not directly
supported by a volume, the File Manager will automatically call PBGetFPosSync (page 666); however, you
will not be able to determine the fork position of a named fork other than the data or resource fork, or of a
fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetForkSize
Returns the size of an open fork.

OSErr FSGetForkSize (
 FSIORefNum forkRefNum,
 SInt64 *forkSize
);

Parameters
forkRefNum

The reference number of the open fork. You can obtain this fork reference number with the
FSOpenFork (page 514) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

Functions 499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

forkSize
On return, a pointer to the logical size (the logical end-of-file) of the fork, in bytes. The size returned
is the total number of bytes that can be read from the fork; the amount of space actually allocated
on the volume (the physical size) will probably be larger.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Special Considerations

To determine whether the FSGetForkSize function is present, call the Gestalt function. If FSGetForkSize
is present, but is not directly supported by a volume, the File Manager will call PBGetEOFSync (page 655);
however, you will not be able to determine the size of a fork other than the data or resource fork, or of a fork
larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetResourceForkName
Returns a Unicode string constant for the name of the resource fork.

OSErr FSGetResourceForkName (
 HFSUniStr255 *resourceForkName
);

Parameters
resourceForkName

On input, a pointer to an HFSUniStr255 structure. On return, this structure contains the Unicode
name of the resource fork. Currently, this is “RESOURCE_FORK”. See HFSUniStr255 (page 855) for a
description of the HFSUniStr255 data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
There is no parameter block-based form of this call since it is not dispatched to individual volume formats,
and does not require any I/O.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetVolumeInfo
Returns information about a volume.

500 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSGetVolumeInfo (
 FSVolumeRefNum volume,
 ItemCount volumeIndex,
 FSVolumeRefNum *actualVolume,
 FSVolumeInfoBitmap whichInfo,
 FSVolumeInfo *info,
 HFSUniStr255 *volumeName,
 FSRef *rootDirectory
);

Parameters
volume

If you wish to obtain information on a particular volume, pass that volume’s reference number here.
If you wish to index through the list of mounted volumes, pass the constant
kFSInvalidVolumeRefNum in this parameter. See FSVolumeRefNum (page 847) for a description of
the FSVolumeRefNum data type.

volumeIndex
The index of the desired volume, or 0 to use the volume reference number in the volume parameter.

actualVolume
On return, a pointer to the volume reference number of the volume. This is useful when indexing
over all mounted volumes. If you don’t want this information (if, for instance, you supplied a particular
volume reference number in the volume) parameter, set actualVolume to NULL.

whichInfo
A bitmap specifying which volume information fields to get and return in the info parameter. If you
don’t want information about the volume returned in the info parameter, set whichInfo to
kFSVolInfoNone. See “Volume Information Bitmap Constants” (page 938) for a description of the
bits in this parameter.

info
On return, a pointer to the volume information. If you don’t want this output, set this parameter to
NULL. See FSVolumeInfo (page 842) for a description of the FSVolumeInfo data type.

volumeName
On return, a pointer to the Unicode name of the volume. If you do not wish the name returned, pass
NULL. See HFSUniStr255 (page 855) for a description of the HFSUniStr255 data type.

rootDirectory
On return, a pointer to the FSRef for the volume’s root directory. If you do not wish the root directory
returned, pass NULL. See FSRef (page 837) for a description of the FSRef data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
You can specify a particular volume or index through the list of mounted volumes. To get information on a
particular volume, pass the volume reference number of the desired volume in the volume parameter and
set the volumeIndex parameter to zero. To index through the list of mounted volumes, pass
kFSInvalidVolumeRefNum in the volume parameter and set volumeIndex to the index, starting at 1 with
the first call to FSGetVolumeInfo.

When indexing through the list of mounted volumes, you may encounter an error with a particular volume.
The terminating error code for full traversal of this list is nsvErr. In order to completely traverse the entire
list, you may have to bump the index count when encountering other errors (for example, ioErr).

Functions 501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

To get information about the root directory of a volume, use the FSGetCatalogInfo (page 494) function,
or one of the corresponding parameter block calls, PBGetCatalogInfoSync (page 647) and
PBGetCatalogInfoAsync (page 643).

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to FSGetVolumeInfo returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to
retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSGetVolumeMountInfo
Retrieves the mounting information associated with the specified volume.

OSStatus FSGetVolumeMountInfo (
 FSVolumeRefNum volume,
 BytePtr buffer,
 ByteCount bufferSize,
 ByteCount *actualSize
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSGetVolumeMountInfoSize
Determines the size of the mounting information associated with the specified volume.

OSStatus FSGetVolumeMountInfoSize (
 FSVolumeRefNum volume,
 ByteCount *size
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

502 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSGetVolumeParms
Retrieves information about the characteristics of a volume.

OSStatus FSGetVolumeParms (
 FSVolumeRefNum volume,
 GetVolParmsInfoBuffer *buffer,
 ByteCount bufferSize
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSIterateForks
Determines the name and size of every named fork belonging to a file or directory.

OSErr FSIterateForks (
 const FSRef *ref,
 CatPositionRec *forkIterator,
 HFSUniStr255 *forkName,
 SInt64 *forkSize,
 UInt64 *forkPhysicalSize
);

Parameters
ref

A pointer to an FSRef specifying the file or directory to iterate. See FSRef (page 837) for a description
of the FSRef data type.

forkIterator
A pointer to a structure which maintains state between calls to FSIterateForks. Before the first
call, set the initialize field of the structure to 0. The fork iterator will be updated after the call
completes; the updated iterator should be passed into the next call. See CatPositionRec (page 801)
for a description of the CatPositionRec data type.

forkName
On return, a pointer to the Unicode name of the fork. This parameter is optional; if you do not wish
the name returned, pass a NULL pointer. See HFSUniStr255 (page 855) for a description of the
HFSUniStr255 data type.

forkSize
On return, a pointer to the logical size of the fork, in bytes. This parameter is optional; if you do not
wish to retrieve the logical fork size, pass a NULL pointer.

forkPhysicalSize
On return, a pointer to the physical size of the fork (that is, to the amount of space allocated on disk),
in bytes. This parameter is optional; if you do not wish to retrieve the physical fork size, pass a NULL
pointer.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Functions 503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
Since information is returned about one fork at a time, several calls may be required to iterate through all
the forks. There is no guarantee about the order in which forks are returned; the order may vary between
iterations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSLockRange
Locks a range of bytes of the specified fork.

OSStatus FSLockRange (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 UInt64 requestCount,
 UInt64 *rangeStart
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSMakeFSRefUnicode
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

OSErr FSMakeFSRefUnicode (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 TextEncoding textEncodingHint,
 FSRef *newRef
);

Parameters
parentRef

A pointer to the FSRef of the parent directory of the file or directory for which to create a new FSRef.
See FSRef (page 837) for a description of the FSRef data type.

nameLength
The length of the file or directory name.

name
A pointer to the Unicode name for the file or directory. The name must be a leaf name; partial or full
pathnames are not allowed. If you have a partial or full pathname in Unicode, you will have to parse
it yourself and make multiple calls to FSMakeFSRefUnicode.

504 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

textEncodingHint
The suggested text encoding to use when converting the Unicode name of the file or directory to
some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager will use
a default value.

newRef
On return, if the function returns a result of noErr, a pointer to the new FSRef.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
CarbonSketch
QTCarbonShell

Declared In
Files.h

FSMakeFSSpec
Creates an FSSpec structure describing a file or directory. (Deprecated in Mac OS X v10.4. Use
FSMakeFSRefUnicode (page 504) instead.)

OSErr FSMakeFSSpec (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 FSSpec *spec
);

Parameters
vRefNum

A volume specification for the volume containing the file or directory. This parameter can contain a
volume reference number, a drive number, or 0 to specify the default volume.

dirID
The parent directory ID of the target object. If the directory is sufficiently specified in the fileName
parameter, the dirID parameter can be set to 0. If the fileName parameter contains an empty string,
FSMakeFSSpec creates an FSSpec structure for the directory specified by the dirID parameter.

fileName
A full or partial pathname. If the fileName parameter specifies a full pathname, FSMakeFSSpec
ignores both the vRefNum and dirID parameters. A partial pathname might identify only the final
target, or it might include one or more parent directory names. If fileName specifies a partial
pathname, then vRefNum, dirID, or both must be valid.

Functions 505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

spec
A pointer to a file system specification to be filled in by FSMakeFSSpec. The FSMakeFSSpec function
fills in the fields of the file system specification using the information contained in the other three
parameters. If your application receives any result code other than noErr or fnfErr, all fields of the
resulting FSSpec structure are set to 0.

The file system specification structure that you pass in this parameter should not share storage space
with the input pathname; the name field may be initialized to the empty string before the pathname
has been processed. For example, fileName should not refer to the name field of the output file
system specification.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
You should call FSMakeFSSpec, or one of the corresponding parameter block functions,
PBMakeFSSpecSync (page 736) and PBMakeFSSpecAsync (page 734) , whenever you want to create an
FSSpec structure. You should not create an FSSpec by filling in the fields of the structure yourself.

If the specified volume is mounted and the specified parent directory exists, but the target file or directory
doesn’t exist in that location, FSMakeFSSpec fills in the structure and then returns fnfErr instead of noErr.
The structure is valid, but it describes a target that doesn’t exist. You can use the structure for other operations,
such as creating a file with the FSpCreate (page 525) function.

Carbon Porting Notes

Non-Carbon applications can also specify a working directory reference number in the vRefNum parameter.
However, because working directories are not supported in Carbon, you cannot specify a working directory
reference number if you wish your application to be Carbon-compatible.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTMetaData
Simple DrawSprocket

Declared In
Files.h

FSMountLocalVolumeAsync
Mounts a volume asynchronously.

506 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSStatus FSMountLocalVolumeAsync (
 CFStringRef diskID,
 CFURLRef mountDir,
 FSVolumeOperation volumeOp,
 void *clientData,
 OptionBits flags,
 FSVolumeMountUPP callback,
 CFRunLoopRef runloop,
 CFStringRef runloopMode
);

Parameters
diskID

The disk to mount.

mountDir
Pass in NULL ; currently only NULL is supported.

volumeOp
An FSVolumeOperation returned by FSCreateVolumeOperation

clientData
A pointer to client data associated with the operation. This parameter can be NULL.

flags
Options for future use.

callback
The function to call when mount is complete. This parameter can be NULL.

runloop
The runloop to run on.

runloopMode
The mode for the runloop.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function starts the process to mount the disk specified by the diskID parameter at the location specified
by the mountDir parameter. If mountDir is NULL, the default location is used. If a callback function is
provided, that function will be called when the mount operation is complete. Once this function returns
noErr the status of the operation can be found using the FSGetAsyncMountStatus function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSMountLocalVolumeSync
Mounts a volume.

Functions 507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSStatus FSMountLocalVolumeSync (
 CFStringRef diskID,
 CFURLRef mountDir,
 FSVolumeRefNum *mountedVolumeRefNum,
 OptionBits flags
);

Parameters
diskID

The disk to mount.

mountDir
Pass in NULL; currently only NULL is supported.

mountedVolumeRefNum
On return, a pointer to the volume reference number of the newly mounted volume.

flags
Options for future use.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function mounts the disk specified by the diskID parameter at the location specified by the mountDir
parameter. If mountDir is NULL, the default location is used. This function returns after the mount is complete.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSMountServerVolumeAsync
Mounts a server volume asynchronously.

OSStatus FSMountServerVolumeAsync (
 CFURLRef url,
 CFURLRef mountDir,
 CFStringRef user,
 CFStringRef password,
 FSVolumeOperation volumeOp,
 void *clientData,
 OptionBits flags,
 FSVolumeMountUPP callback,
 CFRunLoopRef runloop,
 CFStringRef runloopMode
);

Parameters
url

The server to mount.

mountDir
The directory to mount the server to. If this parameter is NULL, the default location is used.

508 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

user
A string to pass as the user for authentication. This parameter can be NULL.

password
A string to pass as the password for authenticated log in. This parameter can be NULL.

volumeOp
An FSVolumeOperation returned by the FSCreateVolumeOperation function.

clientData
A pointer to client data associated with the operation. This parameter can be NULL.

flags
Options for future use.

callback
A function to call when the mount is complete. This parameter can be NULL.

runloop
The runloop to run on.

runloopMode
The mode for the runloop.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function will start the process to mount the server specified by the url parameter at the location specified
by the mountDir parameter. If mountDir is NULL, the default location is used. An optional user and password
can be passed in for authentication. If no user or password is provided then the underlying file system will
handle authentication if required. If a callback function is provided, that function will be called when the
mount operation is complete. Once this function returns noErr the status of the operation can be found
using the FSGetAsyncMountStatus function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSMountServerVolumeSync
Mounts a server volume.

OSStatus FSMountServerVolumeSync (
 CFURLRef url,
 CFURLRef mountDir,
 CFStringRef user,
 CFStringRef password,
 FSVolumeRefNum *mountedVolumeRefNum,
 OptionBits flags
);

Parameters
url

The server to mount.

Functions 509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

mountDir
The directory to mount the server to. If this parameter is NULL, the default location is used.

user
A string to pass as the user for authentication.

password
A string to pass as the password for authenticated log in.

mountedVolumeRefNum
On return, a pointer to the volume reference number of the newly mounted volume.

flags
Options for future use.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function will mount the server specified by the url parameter at the location specified by the mountDir
parameter. If mountDir is NULL, the default location is used. An optional user and password can be passed
in for authentication. If no user or password is provided then the underlying file system will handle
authentication if required. This function returns after the mount is complete.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSMoveObject
Moves a file or directory into a different directory.

OSErr FSMoveObject (
 const FSRef *ref,
 const FSRef *destDirectory,
 FSRef *newRef
);

Parameters
ref

A pointer to an FSRef specifying the file or directory to move. See FSRef (page 837) for a description
of the FSRef data type.

destDirectory
A pointer to an FSRef specifying the directory into which the file or directory indicated by the ref
parameter will be moved.

newRef
On return, a pointer to the new FSRef for the file or directory in its new location. This parameter is
optional; if you do not wish the FSRef returned, pass NULL.

Return Value
A result code. See “File Manager Result Codes” (page 943). If the destDirectory parameter specifies a
non-existent object, dirNFErr is returned; if it refers to a file, errFSNotAFolder is returned. If the directory
specified in the destDirectory parameter is on a different volume than the file or directory indicated in
the ref parameter, diffVolErr is returned.

510 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
Moving an object may change its FSRef. If you want to continue to refer to the object, you should pass a
non- NULL pointer in the newRef parameter and use the FSRef returned there to refer to the object after
the move. The original FSRef passed in the ref parameter may or may not be usable after the move. The
newRef parameter may point to the same storage as the destDirectory or ref parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSMoveObjectAsync
Starts an asynchronous file operation to move a source object to a destination directory.

OSStatus FSMoveObjectAsync (
 FSFileOperationRef fileOp,
 const FSRef *source,
 const FSRef *destDir,
 CFStringRef destName,
 OptionBits flags,
 FSFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this move operation.

source
A pointer to the source object to move. The object can be a file or a directory.

destDir
A pointer to the destination directory. If the destination directory is not on the same volume as the
source object, the source object is copied and then deleted.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

flags
One or more file operation option flags. See “File Operation Options” (page 917). If you specify the
kFSFileOperationDoNotMoveAcrossVolumes flag and the destination directory is not on the
same volume as the source object, this function does nothing and returns an error.

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 788). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

Functions 511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

clientContext
User-defined data to associate with this operation. For more information, see
FSFileOperationClientContext (page 829). This parameter is optional; pass NULL if you don’t
need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If you specify a status callback function, status callbacks will occur in one of the run loop and mode
combinations with which you scheduled the file operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSMoveObjectSync
Moves a source object to a destination directory.

OSStatus FSMoveObjectSync (
 const FSRef *source,
 const FSRef *destDir,
 CFStringRef destName,
 FSRef *target,
 OptionBits options
);

Parameters
source

A pointer to the source object to move. The object can be a file or a directory. On output, the source
object is no longer valid; if you want to refer to the moved object, you should use the FSRef variable
passed back in the target parameter.

destDir
A pointer to the destination directory. If the destination directory is not on the same volume as the
source object, the source object is copied and then deleted.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

target
A pointer to an FSRef variable that, on output, refers to the new object in the destination directory.
This parameter is optional; pass NULL if you don’t need to refer to the new object.

options
One or more file operation option flags. See “File Operation Options” (page 917). If you specify the
kFSFileOperationDoNotMoveAcrossVolumes flag and the destination directory is not on the
same volume as the source object, this function does nothing and returns an error.

Return Value
A result code. See “File Manager Result Codes” (page 943).

512 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
If the destination directory is on the same volume as the source object, this is a fast operation. If the move
is across volumes, this function could take a significant amount of time to execute; you should either call it
in a thread other than the main thread or use FSMoveObjectAsync (page 511) instead.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSMoveObjectToTrashAsync
Starts an asynchronous file operation to move a source object to the Trash.

OSStatus FSMoveObjectToTrashAsync (
 FSFileOperationRef fileOp,
 const FSRef *source,
 OptionBits flags,
 FSFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this move operation. For more information, see the function
FSFileOperationCreate (page 488).

source
A pointer to the source object to move. The object can be a file or a directory.

flags
One or more file operation option flags. See “File Operation Options” (page 917).

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 788). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. This data is passed to the function you specify in
the callbackparameter. For more information, see FSFileOperationClientContext (page 829).
This parameter is optional; pass NULL if you don’t need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function starts an asynchronous file operation to move the object specified by the source parameter
to the Trash. If the source volume does not support a trash folder, the operation will fail and return an error
to the status callback specified in the callback parameter. (This is the same circumstance that triggers the
delete immediately behavior in the Finder.)

Functions 513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Status callbacks occur on one of the runloop and mode combinations on which the operation was scheduled.
Upon successful completion of the operation, the last currentItem parameter (passed to the last status
callback or retrieved by calling FSFileOperationCopyStatus (page 487)) is the object in the Trash.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSMoveObjectToTrashSync
Moves a source object to the Trash.

OSStatus FSMoveObjectToTrashSync (
 const FSRef *source,
 FSRef *target,
 OptionBits options
);

Parameters
source

A pointer to the source object to move. The object can be a file or a directory. On output, the source
object is no longer valid; if you want to refer to the moved object, you should use the value passed
back in the target parameter.

target
A pointer to the target object that, on output, resides in a trash folder. This parameter is optional;
pass NULL if you don’t need to refer to this object.

options
One or more file operation option flags. See “File Operation Options” (page 917).

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function moves a file or directory to the Trash, adjusting the object’s name if necessary. The appropriate
trash folder is chosen based on the source volume and the current user. If the source volume does not support
a trash folder, this function does nothing and returns an error. (This is the same circumstance that triggers
the delete immediately behavior in the Finder.)

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSOpenFork
Opens any fork of a file or directory for streaming access.

514 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSOpenFork (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName,
 SInt8 permissions,
 FSIORefNum *forkRefNum
);

Parameters
ref

A pointer to an FSRef specifying the file or directory owning the fork to open. See FSRef (page 837)
for a description of the FSRef data type.

forkNameLength
The length of the fork name in Unicode characters.

forkName
A pointer to the Unicode name of the fork to open. You can obtain the string constants for the data
fork and resource fork names using the FSGetDataForkName (page 497) and
FSGetResourceForkName (page 500) functions. All volume formats should support data and resource
forks; other named forks may be supported by some volume formats.

permissions
A constant indicating the type of access which you wish to have to the fork via the returned fork
reference. This parameter is the same as the permission parameter passed to the FSpOpenDF and
FSpOpenRF functions. For a description of the types of access which you can request, see “File Access
Permission Constants” (page 908).

forkRefNum
On return, a pointer to the fork reference number for accessing the open fork.

Return Value
A result code. See “File Manager Result Codes” (page 943). On some file systems, FSOpenFork will return the
error eofErr if you try to open the resource fork of a file for which no resource fork exists with read-only
access.

Discussion
When you use this function to open a file on a local volume and pass in a permissions value of fsCurPerm,
fsWrPerm, or fsRdWrPerm , Mac OS X does not guarantee exclusive file access. Before making any assumptions
about the underlying file access, you should always check to see whether the Supports Exclusive Locks feature
is available. If this feature is not available, your application cannot know whether another application has
access to the same file. For more information, see ADC Technical Note TN2037.

To access named forks or forks larger than 2GB, you must use the FSOpenFork function or one of the
corresponding parameter block calls: PBOpenForkSync and PBOpenForkAsync. To determine if the
FSOpenFork function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSOpenIterator
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

Functions 515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

http://developer.apple.com/technotes/tn/tn2037.html

OSErr FSOpenIterator (
 const FSRef *container,
 FSIteratorFlags iteratorFlags,
 FSIterator *iterator
);

Parameters
container

A pointer to an FSRef for the directory to iterate. The set of items to iterate over can either be the
objects directly contained in the directory, or all items directly or indirectly contained in the directory
(in which case, the specified directory is the root of the subtree to iterate). See FSRef (page 837) for
a description of the FSRef data type.

iteratorFlags
A set of flags which controls whether the iterator iterates over subtrees or just the immediate children
of the container. See “Iterator Flags” (page 924) for a description of the flags defined for this parameter.

Iteration over subtrees which do not originate at the root directory of a volume are not currently
supported, and passing the kFSIterateSubtree flag in this parameter returns
errFSBadIteratorFlags. To determine whether subtree iterators are supported, check that the
bSupportsSubtreeIterators bit returned by PBHGetVolParmsSync (page 695) or
PBHGetVolParmsAsync (page 694) is set.

iterator
On return, a pointer to the new FSIterator. You can pass this iterator to the
FSGetCatalogInfoBulk (page 495) or FSCatalogSearch (page 472) functions and their parameter
block-based counterparts.

The iterator is automatically initialized so that the next use of the iterator returns the first item. The
order that items are returned in is volume format dependent and may be different for two different
iterators created with the same container and flags.

See FSIterator (page 835) for a description of the FSIterator data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Catalog iterators must be closed when you are done using them, whether or not you have iterated over all
the items. Iterators are automatically closed upon process termination, just like open files. However, you
should use the FSCloseIterator (page 475) function, or one of the related parameter block functions,
PBCloseIteratorSync (page 584) and PBCloseIteratorAsync (page 584) , to close an iterator to free up
any system resources allocated to the iterator.

Before calling this function, you should check that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Files.h

516 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSPathCopyObjectAsync
Starts an asynchronous file operation to copy a source object to a destination directory using pathnames.

OSStatus FSPathCopyObjectAsync (
 FSFileOperationRef fileOp,
 const char *sourcePath,
 const char *destDirPath,
 CFStringRef destName,
 OptionBits flags,
 FSPathFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this copy operation.

sourcePath
The UTF-8 pathname of the source object to copy. The object can be a file or a directory.

destDirPath
The UTF-8 pathname of the destination directory.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

flags
One or more file operation option flags. See “File Operation Options” (page 917).

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 788). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. For more information, see
FSFileOperationClientContext (page 829). This parameter is optional; pass NULL if you don’t
need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If you specify a status callback function, status callbacks will occur in one of the run loop and mode
combinations with which you scheduled the file operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

Functions 517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSPathCopyObjectSync
Copies a source object to a destination directory using pathnames.

OSStatus FSPathCopyObjectSync (
 const char *sourcePath,
 const char *destDirPath,
 CFStringRef destName,
 char **targetPath,
 OptionBits options
);

Parameters
sourcePath

The UTF-8 pathname of the source object to copy. The object can be a file or a directory.

destDirPath
The UTF-8 pathname of the destination directory.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

targetPath
A pointer to a char* variable that, on output, refers to the UTF-8 pathname of the new object in the
destination directory. If the operation fails, the pathname is set to NULL. When you no longer need
the pathname, you should free it. This parameter is optional; pass NULL if you don’t need the pathname.

options
One or more file operation option flags. See “File Operation Options” (page 917).

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function could take a significant amount of time to execute. To avoid blocking your user interface, you
should either call this function in a thread other than the main thread or use FSPathCopyObjectAsync (page
517) instead.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathFileOperationCopyStatus
Gets a copy of the current status information for an asynchronous file operation that uses pathnames.

518 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSStatus FSPathFileOperationCopyStatus (
 FSFileOperationRef fileOp,
 char **currentItem,
 FSFileOperationStage *stage,
 OSStatus *error,
 CFDictionaryRef *statusDictionary,
 void **info
);

Parameters
fileOp

The file operation to access.

currentItem
A pointer to a char* variable. On output, the variable refers to the UTF-8 pathname of the object
currently being moved or copied. If the operation is complete, this parameter refers to the target (the
new object corresponding to the source object in the destination directory). You should free the
pathname when you are finished using it.

stage
A pointer to a file operation stage variable. On output, the variable contains the current stage of the
file operation.

error
A pointer to an error status variable. On output, the variable contains the current error status of the
file operation.

statusDictionary
A pointer to a dictionary variable. On output, the variable contains a dictionary with more detailed
status information. For information about the contents of the dictionary, see “File Operation
Status Dictionary Keys” (page 919). You should release the dictionary when you are finished
using it.

info
A pointer to a generic pointer. On output, the generic pointer refers to user-defined data associated
with this file operation.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathMakeRef
Converts a POSIX-style pathname into an FSRef structure.

Functions 519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSStatus FSPathMakeRef (
 const UInt8 *path,
 FSRef *ref,
 Boolean *isDirectory
);

Parameters
path

A UTF-8 C string that contains the pathname to convert.

ref
A pointer to an FSRef structure allocated by the caller. On output, the FSRef structure refers to the
object whose location is specified by the path parameter.

isDirectory
A pointer to a Boolean variable allocated by the caller. On output, true indicates the object is a
directory. This parameter is optional and may be NULL.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaDVDPlayer

Declared In
Files.h

FSPathMakeRefWithOptions
Converts a POSIX-style pathname into an FSRef structure with options.

OSStatus FSPathMakeRefWithOptions (
 const UInt8 *path,
 OptionBits options,
 FSRef *ref,
 Boolean *isDirectory
);

Parameters
path

A UTF-8 C string that contains the pathname to convert.

options
One or more conversion flags. See “Path Conversion Options” (page 928).

ref
A pointer to an FSRef structure allocated by the caller. On output, the FSRef structure refers to the
object whose location is specified by the path parameter. If the object is a symbolic link, the options
parameter determines whether the FSRef structure refers to the link itself or to the linked object.

isDirectory
A pointer to a Boolean variable allocated by the caller. On output, true indicates the object is a
directory. This parameter is optional and may be NULL.

520 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathMoveObjectAsync
Starts an asynchronous file operation to move a source object to a destination directory using pathnames.

OSStatus FSPathMoveObjectAsync (
 FSFileOperationRef fileOp,
 const char *sourcePath,
 const char *destDirPath,
 CFStringRef destName,
 OptionBits flags,
 FSPathFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this move operation.

sourcePath
The UTF-8 pathname of the source object to move. The object can be a file or a directory.

destDirPath
The UTF-8 pathname of the destination directory. If the destination directory is not on the same
volume as the source object, the source object is copied and then deleted.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

flags
One or more file operation option flags. See “File Operation Options” (page 917). If you specify the
kFSFileOperationDoNotMoveAcrossVolumes flag and the destination directory is not on the
same volume as the source object, this function does nothing and returns an error.

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 788). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. For more information, see
FSFileOperationClientContext (page 829). This parameter is optional; pass NULL if you don’t
need to supply a client context.

Functions 521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If you specify a status callback function, status callbacks will occur in one of the run loop and mode
combinations with which you scheduled the file operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathMoveObjectSync
Moves a source object to a destination directory using pathnames.

OSStatus FSPathMoveObjectSync (
 const char *sourcePath,
 const char *destDirPath,
 CFStringRef destName,
 char **targetPath,
 OptionBits options
);

Parameters
sourcePath

The UTF-8 pathname of the source object to move. The object can be a file or a directory.

destDirPath
The UTF-8 pathname of the destination directory. If the destination directory is not on the same
volume as the source object, the source object is copied and then deleted.

destName
The name for the new object in the destination directory. Pass NULL to use the name of the source
object.

targetPath
A pointer to a char* variable that, on output, refers to the UTF-8 pathname of the new object in the
destination directory. When you no longer need the pathname, you should free it. If the operation
fails, the pathname is set to NULL. This parameter is optional; pass NULL if you don’t need the
pathname.

options
One or more file operation option flags. See “File Operation Options” (page 917). If you specify the
kFSFileOperationDoNotMoveAcrossVolumes flag and the destination directory is not on the
same volume as the source object, this function does nothing and returns an error.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If the destination directory is on the same volume as the source object, this is a fast operation. If the move
is across volumes, this function could take a significant amount of time to execute; you should call it in a
thread other than the main thread or use FSPathMoveObjectAsync (page 521) instead.

522 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSPathMoveObjectToTrashAsync
Starts an asynchronous file operation to move a source object, specified using a pathname, to the Trash.

OSStatus FSPathMoveObjectToTrashAsync (
 FSFileOperationRef fileOp,
 const char *sourcePath,
 OptionBits flags,
 FSPathFileOperationStatusProcPtr callback,
 CFTimeInterval statusChangeInterval,
 FSFileOperationClientContext *clientContext
);

Parameters
fileOp

The file operation object you created for this move operation. For more information, see the function
FSFileOperationCreate (page 488).

sourcePath
The UTF-8 pathname of the source object to move. The object can be a file or a directory.

flags
One or more file operation option flags. See “File Operation Options” (page 917).

callback
A callback function to receive status updates as the file operation proceeds. For more information,
see “File Operation Callbacks” (page 788). This parameter is optional; pass NULL if you don’t need to
supply a status callback.

statusChangeInterval
The minimum time in seconds between callbacks within a single stage of an operation.

clientContext
User-defined data to associate with this operation. This data is passed to the function you specify in
the callbackparameter. For more information, see FSFileOperationClientContext (page 829).
This parameter is optional; pass NULL if you don’t need to supply a client context.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function starts an asynchronous file operation to move the object specified by the sourcePath parameter
to the Trash. If the source volume does not support a trash folder, the operation will fail and return an error
to the status callback specified in the callback parameter. (This is the same circumstance that triggers the
delete immediately behavior in the Finder.)

Status callbacks occur on one of the runloop and mode combinations on which the operation was scheduled.
Upon successful completion of the operation, the last currentItem parameter (passed to the last status
callback or retrieved by calling FSFileOperationCopyStatus (page 487)) is the object in the Trash.

Functions 523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSPathMoveObjectToTrashSync
Moves a source object, specified using a pathname, to the Trash.

OSStatus FSPathMoveObjectToTrashSync (
 const char *sourcePath,
 char **targetPath,
 OptionBits options
);

Parameters
sourcePath

The UTF-8 pathname of the source object to move. The object can be a file or a directory.

targetPath
A pointer to a char* variable that, on output, refers to the UTF-8 pathname of the target object in the
Trash. When you no longer need the pathname, you should free it. If the operation fails, the pathname
is set to NULL. This parameter is optional; pass NULL if you don’t need the pathname.

options
One or more file operation option flags. See “File Operation Options” (page 917).

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function moves a file or directory to the Trash, adjusting the object’s name if necessary. The appropriate
trash folder is chosen based on the source volume and the current user. If the source volume does not support
a trash folder, this function does nothing and returns an error. (This is the same circumstance that triggers
the delete immediately behavior in the Finder.)

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

FSpCatMove
Moves a file or directory from one location to another on the same volume. (Deprecated in Mac OS X v10.4.
Use FSMoveObject (page 510) instead.)

524 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSpCatMove (
 const FSSpec *source,
 const FSSpec *dest
);

Parameters
source

A pointer to an FSSpec structure specifying the name and location of the file or directory to move.
See FSSpec (page 840) for a description of the FSSpec data type.

dest
A pointer to an FSSpec structure specifying the name and location of the directory into which the
source file or directory is to be moved. The directory ID specified in the parID field of this FSSpec is
the directory ID of the parent of the directory into which you want to move the source file or directory.
The name field of this FSSpec specifies the name of the directory into which you want to move the
source file or directory.

If you don’t already know the parent directory ID of the destination directory, it might be easier to
use the PBCatMoveSync or PBCatMoveAsync function, which allow you to specify only the directory
ID of the destination directory.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The FSpCatMove function is strictly a file catalog operation; it does not actually change the location of the
file or directory on the disk. You cannot use FSpCatMove to move a file or directory to another volume (that
is, the vRefNum field in both FSSpec structures in the source and dest parameters must be the same).
Also, you cannot use FSpCatMove to rename files or directories; to rename a file or directory, use
FSpRename (page 533).

If you need to move files or directories with named forks other than the data and resource forks, with long
Unicode names, or files larger than 2GB, you should use the FSMoveObject (page 510) function, or one of
the corresponding parameter block calls, PBMoveObjectSync (page 738) and PBMoveObjectAsync (page
737).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpCreate
Creates a new file. (Deprecated in Mac OS X v10.4. Use FSCreateFileUnicode (page 481) instead.)

Functions 525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSpCreate (
 const FSSpec *spec,
 OSType creator,
 OSType fileType,
 ScriptCode scriptTag
);

Parameters
spec

A pointer to an FSSpec structure specifying the file to be created. See FSSpec (page 840) for a
description of the FSSpec data type.

creator
The creator of the new file. See the documentation for the Finder Interface for more information on
file creators.

fileType
The file type of the new file. See the documentation for the Finder Interface for more information on
file types.

scriptTag
The code of the script system in which the filename is to be displayed. If you have established the
name and location of the new file using either the NavAskSaveChanges or
NavCustomAskSaveChanges function, specify the script code returned in the reply structure.
Otherwise, specify the system script by setting the scriptTag parameter to the value
smSystemScript.

For more information about the functions NavAskSaveChanges and NavCustomAskSaveChanges,
see Programming With Navigation Services. See the Script Manager Reference for a description of the
smSystemScript constant.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The FSpCreate function creates a new file (both data and resource forks) with the specified type, creator,
and script code. The new file is unlocked and empty. The date and time of creation and last modification are
set to the current date and time.

Files created using FSpCreate are not automatically opened. If you want to write data to the new file, you
must first open the file using one of the file access functions, FSpOpenDF (page 531) , HOpenDF (page 554) ,
PBHOpenDFSync (page 708) or PBHOpenDFAsync (page 706).

The resource fork of the new file exists but is empty. You’ll need to call one of the Resource Manager functions
HCreateResFile or FSpCreateResFile to create a resource map in the file before you can open it by
calling one of the Resource Manager functions HOpenResFile or FSpOpenResFile).

Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpCreate is not available, you can use the function HCreate (page 550) instead. To create a file with a
Unicode filename, use the functionFSCreateFileUnicode (page 481) , or one of the corresponding parameter
block calls, PBCreateFileUnicodeSync (page 593) and PBCreateFileUnicodeAsync (page 591).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

526 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

FSpDelete
Deletes a file or directory. (Deprecated in Mac OS X v10.4. Use FSDeleteObject (page 484) instead.)

OSErr FSpDelete (
 const FSSpec *spec
);

Parameters
spec

A pointer to an FSSpec structure specifying the file or directory to delete. See FSSpec (page 840) for
a description of the FSSpec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you attempt to delete an open file or a non-empty
directory, FSpDelete returns the result code fBsyErr. FSpDelete also returns the result code fBsyErr if
the directory has an open working directory associated with it.

Discussion
If the specified target is a file, both forks of the file are deleted. The file ID reference, if any, is removed. A file
must be closed before you can delete it. Similarly, a directory must be empty before you can delete it.

Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpDelete is not available, you can use the function HDelete (page 551) instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Files.h

FSpDirCreate
Creates a new directory. (Deprecated in Mac OS X v10.4. Use FSCreateDirectoryUnicode (page 479)
instead.)

Functions 527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSpDirCreate (
 const FSSpec *spec,
 ScriptCode scriptTag,
 SInt32 *createdDirID
);

Parameters
spec

A pointer to an FSSpec structure specifying the directory to be created.

Note that if the parent directory ID for the directory described by this FSSpec is 0 and the volume
specified in this FSSpec is the default volume, the new directory is placed in the default directory of
the volume. If the parent directory ID is 0 and the specified volume is a volume other than the default
volume, the new directory is placed in the root directory of the volume. To create a directory at the
root of a volume, regardless of whether that volume is the current default volume, set the parent
directory ID to the constant fsRtDirID(2).

scriptTag
The code of the script system in which the directory name is to be displayed. If you have established
the name and location of the new directory using either the NavAskSaveChanges or
NavCustomAskSaveChanges function, specify the script code returned in the reply structure.
Otherwise, specify the system script by setting the scriptTag parameter to the value
smSystemScript.

For more information on the functions NavAskSaveChanges and NavCustomAskSaveChanges, see
Programming With Navigation Services. For a description of the smSystemScript constant, see the
Script Manager Reference.

createdDirID
On return, a pointer to the directory ID of the directory that was created.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The FSpDirCreate function sets the date and time of creation and last modification to the current date
and time.

Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpDirCreate is not available, you can use the function DirCreate (page 463) instead. To create a directory
with a Unicode name, use the functionFSCreateDirectoryUnicode (page 479) , or one of the corresponding
parameter block calls, PBCreateDirectoryUnicodeSync (page 589) and
PBCreateDirectoryUnicodeAsync (page 587).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpExchangeFiles
Exchanges the data stored in two files on the same volume. (Deprecated in Mac OS X v10.4. Use
FSExchangeObjects (page 486) instead.)

528 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSpExchangeFiles (
 const FSSpec *source,
 const FSSpec *dest
);

Parameters
source

A pointer to an FSSpec for the first file to swap. The contents of this file and its file information are
placed in the file specified in the dest parameter. See FSSpec (page 840) for a description of the
FSSpec data type.

dest
A pointer to an FSSpec for the second file to swap. The contents of this file and its file information
are placed in the file specified in the source parameter.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The FSpExchangeFiles function swaps the data in two files by changing the information in the volume’s
catalog and, if either of the files are open, in the file control blocks. The following fields in the catalog entries
for the files are exchanged:

 ■ ioFlStBlk

 ■ ioFlLgLen

 ■ ioFlPyLen

 ■ ioFlRStBlk

 ■ ioFlRLgLen

 ■ ioFlRPyLen

 ■ ioFlMdDat

In the file control blocks, the fcbFlNum, fcbDirID, and fcbCName fields are exchanged.

You should use FSpExchangeFiles when updating an existing file, so that the file ID remains valid in case
the file is being tracked through its file ID. The FSpExchangeFiles function changes the fields in the catalog
entries that record the location of the data and the modification dates. It swaps both the data forks and the
resource forks.

The FSpExchangeFiles function works on both open and closed files. If either file is open,
FSpExchangeFiles updates any file control blocks associated with the file. Exchanging the contents of two
files requires essentially the same access permissions as opening both files for writing.

The files whose data is to be exchanged must both reside on the same volume. If they do not,
FSpExchangeFiles returns the result code diffVolErr.

To exchange the contents of files with named forks other than the data and resource forks, or of files larger
than 2 GB, use the FSExchangeObjects (page 486) , PBExchangeObjectsSync (page 636) , or
PBExchangeObjectsAsync (page 635) function.

Functions 529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

The “compatibility code,” by which FSpExchangeFiles attempted to perform the file exchange itself if it
suspected that the underlying filesystem did not have Exchange capability, has been removed in Mac OS 9
and X.

Because other programs may have access paths open to one or both of the files exchanged, your application
should have exclusive read/write access permission (fsRdWrPerm) to both files before calling
FSpExchangeFiles. Exclusive read/write access to both files will ensure that FSpExchangeFiles doesn't
affect another application because it prevents other applications from obtaining write access to one or both
of the files exchanged.

FSpExchangeFiles does not respect the file-locked attribute; it will perform the exchange even if one or
both of the files are locked. Obtaining exclusive read/write access to both files before calling
FSpExchangeFiles ensures that the files are unlocked because locked files cannot be opened with write
access.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpGetFInfo
Obtains the Finder information for a file. (Deprecated in Mac OS X v10.4. Use FSGetCatalogInfo (page 494)
instead.)

OSErr FSpGetFInfo (
 const FSSpec *spec,
 FInfo *fndrInfo
);

Parameters
spec

A pointer to an FSSpec structure specifying the file. See FSSpec (page 840) for a description of the
FSSpec data type.

fndrInfo
On return, a pointer to information used by the Finder. The FSpGetFInfo function returns the Finder
information from the volume catalog entry for the specified file. The function provides only the original
Finder information—the information in the FInfo or DInfo structures, not the information in the
FXInfo or DXInfo structures. For a description of the FInfo structure, see the Finder Interface
Reference.

Return Value
A result code. If the specified object is a folder, this function returns fnfErr. For other possible return values,
see “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

530 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Related Sample Code
QTCarbonShell

Declared In
Files.h

FSpMakeFSRef
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

OSErr FSpMakeFSRef (
 const FSSpec *source,
 FSRef *newRef
);

Parameters
source

A pointer to the FSSpec for the file or directory. This parameter must point to a valid FSSpec for an
existing file or directory; if it does not, the call will return fnfErr. See FSSpec (page 840) for a
description of the FSSpec data type.

newRef
On input, a pointer to an FSRef structure. On return, a pointer to the FSRef for the file or directory
specified in the FSSpec pointed to in the source parameter.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
To obtain an FSSpec from an FSRef, use the FSGetCatalogInfo (page 494) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Files.h

FSpOpenDF
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 514) instead.)

Functions 531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSpOpenDF (
 const FSSpec *spec,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
spec

A pointer to an FSSpec structure specifying the file whose data fork is to be opened. See FSSpec (page
840) for a description of the FSSpec data type.

permission
A constant indicating the type of access with which to open the file’s data fork. In most cases, you
can simply set the permission parameter to fsCurPerm. Some applications request fsRdWrPerm,
to ensure that they can both read from and write to a file. For a description of the types of access that
you can request, see “File Access Permission Constants” (page 908).

refNum
On return, a pointer to the file reference number for accessing the open data fork.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpOpenDF is not available, you can use the function HOpenDF (page 554) instead.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 514) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739). If you try to open a fork larger than 2GB
with the FSpOpenDF function, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpOpenRF
Opens the resource fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 514) instead.)

OSErr FSpOpenRF (
 const FSSpec *spec,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
spec

A pointer to an FSSpec structure specifying the file whose resource fork is to be opened. See
FSSpec (page 840) for a description of the FSSpec data type.

532 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

permission
A constant indicating the type of access with which to open the file’s resource fork. For a description
of the types of access you can request, see “File Access Permission Constants” (page 908).

refNum
On return, a pointer to the file reference number for accessing the open resource fork.

Return Value
A result code. See “File Manager Result Codes” (page 943). On some file systems, FSpOpenRF will return the
error eofErr if you try to open the resource fork of a file for which no resource fork exists with read-only
access.

Discussion
Before calling this function, you should call the Gestalt function to check that the function is available. If
FSpOpenRF is not available, you can use the function HOpenRF (page 554) instead.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 514) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 740) or PBOpenForkAsync (page 739). If you try to open a fork larger than 2GB with
the FSpOpenRF function, you will receive an error message.

Special Considerations

Generally, your application should use Resource Manager functions rather than File Manager functions to
access a file’s resource fork. The FSpOpenRF function does not read the resource map into memory and is
generally useful only for applications (such as utilities that copy files) that need block-level access to a resource
fork.

You should not use the resource fork of a file to hold non-resource data. Many parts of the system software
assume that a resource fork always contains resource data.

Because there is no support for locking and unlocking file ranges on local disks in Mac OS X, regardless of
whether File Sharing is enabled, you cannot open more than one path to a resource fork with read/write
permission. If you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission,
only the first attempt will succeed. Subsequent attempts will return an invalid reference number and the
ResError function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpRename
Renames a file or directory. (Deprecated in Mac OS X v10.4. Use FSRenameUnicode (page 539) instead.)

Functions 533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSpRename (
 const FSSpec *spec,
 ConstStr255Param newName
);

Parameters
spec

A pointer to an FSSpec structure specifying the file or directory to rename. See FSSpec (page 840)
for a description of the FSSpec data type.

newName
The new name of the file or directory.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If a file ID reference for the specified file exists, it remains with the renamed file.

If you want to change the name of a new copy of an existing file, you should use the
FSpExchangeFiles (page 528) function instead. To rename a file or directory using a long Unicode name,
use the FSRenameUnicode (page 539) function or one of the corresponding parameter block calls,
PBRenameUnicodeSync (page 748) and PBRenameUnicodeAsync (page 748).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpRstFLock
Unlocks a file or directory. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 540) instead.)

OSErr FSpRstFLock (
 const FSSpec *spec
);

Parameters
spec

A pointer to an FSSpec structure specifying the file to unlock. See FSSpec (page 840) for a description
of the FSSpec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If the PBHGetVolParmsSync (page 695) or PBHGetVolParmsAsync (page 694) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
FSpRstFLock to unlock a directory. Otherwise, you can only use this function to unlock a file.

You can lock a file or directory with the FSpSetFLock (page 535) , HSetFLock (page 558) ,
PBHSetFLockSync (page 724) , and PBHSetFLockAsync (page 723) functions.

534 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSpSetFInfo
Sets the Finder information about a file. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 540)
instead.)

OSErr FSpSetFInfo (
 const FSSpec *spec,
 const FInfo *fndrInfo
);

Parameters
spec

A pointer to an FSSpec structure specifying the file for which to set the Finder information. See
FSSpec (page 840) for a description of the FSSpec data type.

fndrInfo
A pointer to the new Finder information. For a description of the FInfo data type, see the Finder
Interface Reference.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The FSpSetFInfo function changes the Finder information in the volume catalog entry for the specified
file. FSpSetFInfo allows you to set only the original Finder information—the information in the FInfo or
DInfo structures, not the information in the FXInfo or DXInfo structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Files.h

FSpSetFLock
Locks a file or directory. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 540) instead.)

Functions 535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSpSetFLock (
 const FSSpec *spec
);

Parameters
spec

A pointer to an FSSpec structure specifying the file or directory to lock. See FSSpec (page 840) for a
description of the FSSpec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If the PBHGetVolParmsSync (page 695) or PBHGetVolParmsAsync (page 694) functions indicate that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
FSpSetFLock to lock a directory. Otherwise, you can only use this function to lock a file.

After you lock a file, all new access paths to that file are read-only. This function has no effect on existing
access paths.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSRead
Reads any number of bytes from an open file. (Deprecated in Mac OS X v10.4. Use FSReadFork (page 537)
instead.)

OSErr FSRead (
 FSIORefNum refNum,
 SInt32 *count,
 void *buffPtr
);

Parameters
refNum

The file reference number of the open file from which to read.

count
On input, a pointer to the number of bytes to read; on output, a pointer to the number of bytes
actually read.

buffPtr
A pointer to the data buffer into which the data will be read. This buffer is allocated by your application
and must be at least as large as the count parameter.

Return Value
A result code. See “File Manager Result Codes” (page 943).

536 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
Because the read operation begins at the current mark, you might want to set the mark first by calling the
SetFPos (page 787) function. If you try to read past the logical end-of-file, FSRead reads in all the data up
to the end-of-file, moves the mark to the end-of-file, and returns eofErr as its function result. Otherwise,
FSRead moves the file mark to the byte following the last byte read and returns noErr.

The low-level functions PBReadSync and PBReadAsync let you set the mark without having to call SetFPos.
Furthermore, if you want to read data in newline mode, you must use PBReadSync or PBReadAsync instead
of FSRead.

If you wish to read from named forks other than the data or resource forks, or from files larger than 2GB, you
must use the FSReadFork (page 537) function, or one of its corresponding parameter block calls,
PBReadForkSync (page 745) and PBReadForkAsync (page 744). If you attempt to use FSRead to read from
a file larger than 2GB, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSReadFork
Reads data from an open fork.

OSErr FSReadFork (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 ByteCount requestCount,
 void *buffer,
 ByteCount *actualCount
);

Parameters
forkRefNum

The reference number of the fork to read from. You should have previously opened this fork using
the FSOpenFork (page 514) call, or one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

Functions 537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

positionMode
A constant specifying the base location within the fork for the start of the read. See “Position Mode
Constants” (page 928) for a description of the constants which you can use to specify the base location.

The caller can also use this parameter to hint to the File Manager whether the data being read should
or should not be cached. Caching reads appropriately can be important in ensuring that your program
access files efficiently.

If you add the forceReadMask constant to the value you pass in this parameter, this tells the File
Manager to force the data to be read directly from the disk. This is different from adding the
noCacheMask constant since forceReadMask tells the File Manager to flush the appropriate part
of the cache first, then ignore any data already in the cache. However, data that is read may be placed
in the cache for future reads. The forceReadMask constant is also passed to the device driver,
indicating that the driver should avoid reading from any device caches.

See “Cache Constants” (page 889) for further description of the constants that you can use to indicate
your preference for caching the read.

positionOffset
The offset from the base location for the start of the read.

requestCount
The number of bytes to read.

buffer
A pointer to the buffer where the data will be returned.

actualCount
On return, a pointer to the number of bytes actually read. The value pointed to by the actualCount
parameter should be equal to the value in the requestCount parameter unless there was an error
during the read operation.

This parameter is optional; if you don’t want this information returned, set actualCount to NULL.

Return Value
A result code. See “File Manager Result Codes” (page 943). If there are fewer than requestCount bytes from
the specified position to the logical end-of-file, then all of those bytes are read, and eofErr is returned.

Discussion
FSReadFork reads data starting at the position specified by the positionMode and positionOffset
parameters. The function reads up to requestCountbytes into the buffer pointed to by the bufferparameter
and sets the fork’s current position to the byte immediately after the last byte read (that is, the initial position
plus actualCount).

To verify that data previously written has been correctly transferred to disk, read it back in using the
forceReadMask constant in the positionMode parameter and compare it with the data you previously
wrote.

When reading data from a fork, it is important to pay attention to that way that your program accesses the
fork, because this can have a significant performance impact. For best results, you should use an I/O size of
at least 4KB and block align your read requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

538 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSRefMakePath
Converts an FSRef structure into a POSIX-style pathname.

OSStatus FSRefMakePath (
 const FSRef *ref,
 UInt8 *path,
 UInt32 maxPathSize
);

Parameters
ref

A pointer to the FSRef structure to convert.

path
A pointer to a character buffer allocated by the caller. On output, the buffer contains a UTF-8 C string
that specifies the absolute path to the object referred to by the ref parameter. The File Manager
uses the maxPathSize parameter to make sure it does not overrun the buffer.

maxPathSize
The maximum number of bytes to copy into the buffer.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest

Declared In
Files.h

FSRenameUnicode
Renames a file or folder.

OSErr FSRenameUnicode (
 const FSRef *ref,
 UniCharCount nameLength,
 const UniChar *name,
 TextEncoding textEncodingHint,
 FSRef *newRef
);

Parameters
ref

A pointer to an FSRef for the file or directory to rename. See FSRef (page 837) for a description of
the FSRef data type.

nameLength
The length of the new name in Unicode characters.

name
A pointer to the new Unicode name of the file or directory.

Functions 539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

textEncodingHint
The suggested text encoding to use when converting the Unicode name of the file or directory to
some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager will use
a default value.

newRef
On return, a pointer to the new FSRef for the file or directory. This parameter is optional; if you do
not wish the FSRef returned, pass NULL.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Because renaming an object may change its FSRef, you should pass a non- NULL pointer in the newRef
parameter and use the FSRef returned there to access the object after the renaming, if you wish to continue
to refer to the object. The FSRef passed in the ref parameter may or may not be usable after the object is
renamed. The FSRef returned in the newRef parameter may point to the same storage as the FSRef passed
in ref.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSetCatalogInfo
Sets catalog information about a file or directory.

OSErr FSSetCatalogInfo (
 const FSRef *ref,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo
);

Parameters
ref

A pointer to an FSRef specifying the file or directory whose information is to be changed. See
FSRef (page 837) for a description of the FSRef data type.

whichInfo
A bitmap specifying which catalog information fields to set. Only some of the catalog information
fields may be set. These fields are given by the constant kFSCatInfoSettableInfo; no other bits
may be set in the whichInfo parameter. See “Catalog Information Bitmap Constants” (page 891) for
a description of the bits in this parameter.

To set the user ID (UID) and group ID (GID), specify the kFSCatInfoSetOwnership flag in this
parameter. The File Manager attempts to set the user and group ID to the values specified in the
permissions field of the catalog information structure. If FSSetCatalogInfo cannot set the user
and group IDs, it returns an error.

540 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

catalogInfo
A pointer to the structure containing the new catalog information. Only some of the catalog information
fields may be set. The fields which may be set are:

 ■ createDate

 ■ contentModDate

 ■ attributeModDate

 ■ accessDate

 ■ backupDate

 ■ permissions

 ■ finderInfo

 ■ extFinderInfo

 ■ textEncodingHint

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest

Declared In
Files.h

FSSetForkPosition
Sets the current position of an open fork.

OSErr FSSetForkPosition (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset
);

Parameters
forkRefNum

The reference number of a fork previously opened by the FSOpenFork (page 514),
PBOpenForkSync (page 740), or PBOpenForkAsync (page 739) function.

positionMode
A constant specifying the base location within the fork for the new position. If this parameter is equal
to fsAtMark, then the positionOffset parameter is ignored. See “Position Mode Constants” (page
928) for a description of the constants you can use to specify the base location.

positionOffset
The offset of the new position from the base location specified in the positionMode parameter.

Return Value
A result code. See “File Manager Result Codes” (page 943). This function returns the result code posErr if
you attempt to set the current position of the fork to an offset before the start of the file.

Functions 541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

To determine if the FSSetForkPosition function is present, call the Gestalt function with the
gestaltFSAttr selector. If the FSSetForkPosition function is present, but the volume does not directly
support it, the File Manager will automatically call the PBSetFPosSync (page 764) function. However, if the
volume does not directly support the FSSetForkPosition function, you can only set the file position for
the data and resource forks, and you cannot grow these files beyond 2GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSetForkSize
Changes the size of an open fork.

OSErr FSSetForkSize (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset
);

Parameters
forkRefNum

The reference number of the open fork. You can obtain this fork reference number with the
FSOpenFork (page 514) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

positionMode
A constant indicating the base location within the fork for the new size. See “Position Mode
Constants” (page 928) for more information about the constants you can use to specify the base
location.

positionOffset
The offset of the new size from the base location specified in the positionMode parameter.

Return Value
A result code. See “File Manager Result Codes” (page 943). If there is not enough space on the volume to
extend the fork, then dskFulErr is returned and the fork’s size is unchanged.

Discussion
The FSSetForkSize function sets the logical end-of-file to the position indicated by the positionMode
and positionOffset parameters. The fork’s new size may be less than, equal to, or greater than the fork’s
current size. If the fork’s new size is greater than the fork’s current size, then the additional bytes, between
the old and new size, will have an undetermined value.

If the fork’s current position is larger than the fork’s new size, then the current position will be set to the new
fork size the current position will be equal to the logical end-of-file.

Special Considerations

You do not need to check that the volume supports the FSSetForkSize function. If a volume does not
support the FSSetForkSize function, but the FSSetForkSize function is present, the File Manager
automatically calls the PBSetEOFSync (page 758) function and translates between the calls appropriately.

542 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Note, however, that if the volume does not support the FSSetForkSize function, you can only access the
data and resource forks, and you cannot grow the fork beyond 2GB. To check that the FSSetForkSize
function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSetVolumeInfo
Sets information about a volume.

OSErr FSSetVolumeInfo (
 FSVolumeRefNum volume,
 FSVolumeInfoBitmap whichInfo,
 const FSVolumeInfo *info
);

Parameters
volume

The volume reference number of the volume whose information is to be changed. See
FSVolumeRefNum (page 847) for a description of the FSVolumeRefNum data type.

whichInfo
A bitmap specifying which information to set. Only some of the volume information fields may be
set. The settable fields are given by the constant kFSVolInfoSettableInfo; no other bits may be
set in whichInfo. The fields which may be set are the backupDate, finderInfo, and flags fields. See
“Volume Information Bitmap Constants” (page 938) for a description of the bits in this parameter.

info
A pointer to the new volume information. See FSVolumeInfo (page 842) for a description of the
FSVolumeInfo data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
To set information about the root directory of a volume, use the FSSetCatalogInfo (page 540) function,
or one of the corresponding parameter block calls, PBSetCatalogInfoSync (page 753) and
PBSetCatalogInfoAsync (page 751).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSUnlockRange
Unlocks a range of bytes of the specified fork.

Functions 543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSStatus FSUnlockRange (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 UInt64 requestCount,
 UInt64 *rangeStart
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSUnmountVolumeAsync
Unmounts a volume asynchronously.

OSStatus FSUnmountVolumeAsync (
 FSVolumeRefNum vRefNum,
 OptionBits flags,
 FSVolumeOperation volumeOp,
 void *clientData,
 FSVolumeUnmountUPP callback,
 CFRunLoopRef runloop,
 CFStringRef runloopMode
);

Parameters
vRefNum

The volume reference number of the volume to unmount.

flags
Options for future use.

volumeOp
An FSVolumeOperation returned by the FSCreateVolumeOperation function.

clientData
A pointer to client data associated with the operation.

callback
The function to call when the unmount is complete.

runloop
The runloop to run on.

runloopMode
The mode for the runloop.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function starts the process of unmounting the volume specified by the vRefNum parameter. If a callback
function is provided, that function will be called when the unmount operation is complete. Once this function
returns noErr the status of the operation can be found using the FSGetAsyncUnmountStatus function.

544 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSUnmountVolumeSync
Unmounts a volume.

OSStatus FSUnmountVolumeSync (
 FSVolumeRefNum vRefNum,
 OptionBits flags,
 pid_t *dissenter
);

Parameters
vRefNum

The volume reference number of the volume to unmount.

flags
Options for future use.

dissenter
On return, a pointer to the pid of the process which denied the unmount if the unmount is denied.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
This function unmounts the volume specified by the vRefNum parameter. If the volume cannot be unmounted
the pid of the process which denied the unmount will be returned in the dissenter parameter. This function
returns after the unmount is complete.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeMount
Mounts a volume using the specified mounting information.

OSStatus FSVolumeMount (
 BytePtr buffer,
 FSVolumeRefNum *mountedVolume
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

Functions 545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSWrite
Writes any number of bytes to an open file. (Deprecated in Mac OS X v10.4. Use FSWriteFork (page 546)
instead.)

OSErr FSWrite (
 FSIORefNum refNum,
 SInt32 *count,
 const void *buffPtr
);

Parameters
refNum

The file reference number of the open file to which to write.

count
On input, a pointer to the number of bytes to write to the file. Passing 0 in this parameter will return
a paramErr error.

On output, a pointer to the number of bytes actually written.

buffPtr
A pointer to the data buffer containing the data to write.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The FSWrite function takes the specified number of bytes from the data buffer and attempts to write them
to the file. Because the write operation begins at the current mark, you might want to set the mark first by
calling the SetFPos (page 787) function.

If the write operation completes successfully, FSWrite moves the file mark to the byte following the last
byte written and returns noErr. If you try to write past the logical end-of-file, FSWrite moves the logical
end-of-file. If you try to write past the physical end-of-file, FSWrite adds one or more clumps to the file and
moves the physical end-of-file accordingly.

The low-level functions PBWriteSync and PBWriteAsync let you set the mark without having to call
SetFPos.

If you wish to write to named forks other than the data or resource forks, or grow files larger than 2GB, you
must use the FSWriteFork (page 546) function, or one of its corresponding parameter block calls,
PBWriteForkSync (page 777) and PBWriteForkAsync (page 776). If you attempt to use FSWrite to write
to a file larger than 2GB, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

FSWriteFork
Writes data to an open fork.

546 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr FSWriteFork (
 FSIORefNum forkRefNum,
 UInt16 positionMode,
 SInt64 positionOffset,
 ByteCount requestCount,
 const void *buffer,
 ByteCount *actualCount
);

Parameters
forkRefNum

The reference number of the fork to which to write. You should have previously opened the fork using
the FSOpenFork (page 514) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

positionMode
A constant specifying the base location within the fork for the start of the write. See “Position Mode
Constants” (page 928) for a description of the constants which you can use to specify the base location.

The caller can also use this parameter to hint to the File Manager whether the data being written
should or should not be cached. See “Cache Constants” (page 889) for further description of the
constants that you can use to indicate your preference for caching.

positionOffset
The offset from the base location for the start of the write.

requestCount
The number of bytes to write.

buffer
A pointer to a buffer containing the data to write.

actualCount
On return, a pointer to the number of bytes actually written. The value pointed to by the actualCount
parameter will be equal to the value in the requestCount parameter unless there was an error during
the write operation.

This parameter is optional; if you don’t want this information, set actualCount to NULL.

Return Value
A result code. See “File Manager Result Codes” (page 943). If there is not enough space on the volume to
write requestCount bytes, then dskFulErr is returned.

Discussion
FSWriteFork writes data starting at the position specified by the positionMode and positionOffset
parameters. The function attempts to write requestCount bytes from the buffer pointed at by the buffer
parameter and sets the fork’s current position to the byte immediately after the last byte written (that is, the
initial position plus actualCount).

When writing data to a fork, it is important to pay attention to that way that your program accesses the fork,
because this can have a significant performance impact. For best results, you should use an I/O size of at
least 4KB and block align your write requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

GetEOF
Determines the current logical size of an open file. (Deprecated in Mac OS X v10.4. Use FSGetForkSize (page
499) instead.)

OSErr GetEOF (
 FSIORefNum refNum,
 SInt32 *logEOF
);

Parameters
refNum

The file reference number of an open file.

logEOF
On return, a pointer to the logical size (the logical end-of-file) of the given file.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
To determine the size of a named fork other than the data or resource forks, or of a fork larger than 2 GB,
use the FSGetForkSize (page 499) function, or one of the corresponding parameter block functions,
PBGetForkSizeSync (page 665) and PBGetForkSizeAsync (page 664).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

GetFPos
Returns the current position of the file mark. (Deprecated in Mac OS X v10.4. Use FSGetForkPosition (page
499) instead.)

OSErr GetFPos (
 FSIORefNum refNum,
 SInt32 *filePos
);

Parameters
refNum

The file reference number of an open file.

filePos
On return, a pointer to the current position of the mark. The position value is zero-based; that is, the
value of filePos is 0 if the file mark is positioned at the beginning of the file.

Return Value
A result code. See “File Manager Result Codes” (page 943).

548 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
Because the read and write operations performed by the functions FSRead (page 536) and FSWrite (page
546) begin at the current mark, you should call GetFPos, or one of the parameter block functions,
PBGetFPosSync (page 666) and PBGetFPosAsync (page 666) , to determine the current position of the file
mark before reading from or writing to the file.

To determine the current position of a named fork, or of a fork larger than 2GB, use the
FSGetForkPosition (page 499) function, or one of the corresponding parameter block calls,
PBGetForkPositionSync (page 663) and PBGetForkPositionAsync (page 663).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

GetVRefNum
Gets a volume reference number from a file reference number. (Deprecated in Mac OS X v10.4. Use
FSGetCatalogInfo (page 494) instead.)

OSErr GetVRefNum (
 FSIORefNum fileRefNum,
 FSVolumeRefNum *vRefNum
);

Parameters
fileRefNum

The file reference number of an open file.

vRefNum
On return, a pointer to the volume reference number of the volume containing the file specified in
the refNum parameter.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If you also want to determine the directory ID of the specified file’s parent directory, call the
PBGetFCBInfoSync (page 658) or PBGetFCBInfoAsync (page 656) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Functions 549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

HCreate
Creates a new file. (Deprecated in Mac OS X v10.4. Use FSCreateFileUnicode (page 481) instead.)

OSErr HCreate (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 OSType creator,
 OSType fileType
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID of the directory in which to create the new file.

fileName
The name of the new file. This can be a full or partial pathname.

You should not allow users to give files names that begin with a period (.). This ensures that files can
be successfully opened by applications calling HOpen (page 553) instead of HOpenDF (page 554).

creator
The creator of the new file. For more information on a file’s creator, see the Finder Interface
documentation.

fileType
The file type of the new file. For more information on a file’s type, see the Finder Interface
documentation.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The HCreate function creates a new file (both data and resource forks) with the specified name, creator, and
file type. The new file is unlocked and empty. The date and time of its creation and last modification are set
to the current date and time.

Files created using HCreate are not automatically opened. If you want to write data to the new file, you
must first open the file using a file access function.

The resource fork of the new file exists but is empty. You’ll need to call one of the Resource Manager functions
HCreateResFile or FSpCreateResFile to create a resource map in the file before you can open it (by
calling one of the Resource Manager functions HOpenResFile or FSpOpenResFile).

To create a file with a Unicode filename, use the function FSCreateFileUnicode (page 481) , or one of the
corresponding parameter block calls, PBCreateFileUnicodeSync (page 593) and
PBCreateFileUnicodeAsync (page 591).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

550 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

HDelete
Deletes a file or directory. (Deprecated in Mac OS X v10.4. Use FSDeleteObject (page 484) instead.)

OSErr HDelete (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID of the parent directory of the file or directory to delete.

fileName
The name of the file or directory to delete. This can be a full or partial pathname.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you attempt to delete an open file or a non-empty
directory, HDelete returns the result code fBsyErr. HDelete also returns the result code fBsyErr if the
directory has an open working directory associated with it.

Discussion
If the specified target is a file, both the data and the resource fork of the file are deleted. In addition, if a file
ID reference for the specified file exists, that reference is removed. A file must be closed before you can delete
it. Similarly, you cannot delete a directory unless it’s empty.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HGetFInfo
Obtains the Finder information for a file. (Deprecated in Mac OS X v10.4. Use FSGetCatalogInfo (page 494)
instead.)

OSErr HGetFInfo (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 FInfo *fndrInfo
);

Parameters
vRefNum

The volume reference number, drive number, or 0 for the default volume.

dirID
The parent directory ID of the file.

Functions 551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

fileName
The name of the file.

fndrInfo
On return, a pointer to the Finder information stored in the specified volume’s catalog. The function
returns only the original Finder information—that contained in an FInfo structure, not that in an
FXInfo structure.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HGetVol
Determines the current default volume and default directory. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

OSErr HGetVol (
 StringPtr volName,
 FSVolumeRefNum *vRefNum,
 SInt32 *dirID
);

Parameters
volName

On return, a pointer to the name of the default volume. If you do not want the name of the default
volume returned, set this parameter to NULL.

vRefNum
On return, a pointer to the volume reference number of the default volume.

dirID
On return, a pointer to the directory ID of the default directory.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Version Notes
When CarbonLib is not present, the HGetVol function returns a working directory reference number in the
vRefNum parameter if the previous call to HSetVol (page 559) (or one of the corresponding parameter block
calls) passed in a working directory reference number.

Carbon Porting Notes

Carbon applications should use HGetVol and HSetVol to get and set the default directory. the functions
GetVol and SetVol, as well as working directories, are no longer supported.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

552 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Not available to 64-bit applications.

Declared In
Files.h

HOpen
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 514) instead.)

OSErr HOpen (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID of the file’s parent directory.

fileName
The name of the file.

permission
A constant specifying the type of access with which to open the file’s data fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 908).

refNum
On return, a pointer to the file reference number for accessing the open fork.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If you use HOpen to try to open a file whose name begins with a period, you might mistakenly open a driver
instead; subsequent attempts to write data might corrupt data on the target device. To avoid these problems,
you should always use HOpenDF instead of HOpen.

Special Considerations

If you use HOpen to try to open a file whose name begins with a period, you might mistakenly open a driver
instead; subsequent attempts to write data might corrupt data on the target device. To avoid these problems,
you should always use HOpenDF (page 554) instead of HOpen.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Functions 553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

HOpenDF
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 514) instead.)

OSErr HOpenDF (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID of the file’s parent directory.

fileName
The name of the file.

permission
A constant specifying the type of access with which to open the file’s data fork. For a description of
the types of access which you can request, see “File Access Permission Constants” (page 908).

refNum
On return, a pointer to the file reference number for accessing the open data fork.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 514) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 740) or PBOpenForkAsync (page 739). If you try to open a fork larger than 2GB with
the HOpenDF function, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HOpenRF
Opens the resource fork of a file. (Deprecated in Mac OS X v10.4. Use FSOpenFork (page 514) instead.)

554 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr HOpenRF (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 SInt8 permission,
 FSIORefNum *refNum
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The directory ID for the file’s parent directory.

fileName
The name of the file.

permission
A constant specifying the type of access with which to open the file’s resource fork. For a description
of the types of access you can request, see “File Access Permission Constants” (page 908).

refNum
On return, a pointer to the file reference number for accessing the open resource fork.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you try to open the resource fork of a file for
which no resource fork exists with read-only access, HOpenRF returns the error eofErr.

Discussion
Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 514) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 740) or PBOpenForkAsync (page 739). If you try to open a fork larger than 2GB with
the HOpenRF function, you will receive an error message.

Special Considerations

Generally, your application should use Resource Manager functions rather than File Manager functions to
access a file’s resource fork. The HOpenRF function does not read the resource map into memory and is
generally useful only for applications (such as utilities that copy files) that need block-level access to a resource
fork.

You should not use the resource fork of a file to hold non-resource data. Many parts of the system software
assume that a resource fork always contains resource data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HRename
Renames a file, directory, or volume. (Deprecated in Mac OS X v10.4. Use FSRenameUnicode (page 539)
instead.)

Functions 555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr HRename (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param oldName,
 ConstStr255Param newName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
A directory ID.

oldName
An existing filename, directory name, or volume name.

newName
The new filename, directory name, or volume name.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Given the name of a file or directory in the oldName parameter, HRename changes it to the name in the
newName parameter. Given a volume name in the oldName parameter or a volume reference number in the
vRefNum parameter, HRename changes the name of the volume to the name in newName. Access paths
currently in use aren’t affected by this function.

If a file ID reference exists for a file you are renaming, the file ID remains with the renamed file.

To rename a file or directory using a long Unicode name, use the FSRenameUnicode (page 539) function or
one of the corresponding parameter block calls, PBRenameUnicodeSync (page 748) and
PBRenameUnicodeAsync (page 748).

Special Considerations

You cannot use HRename to change the directory in which a file resides. To move a file or directory, use the
FSpCatMove (page 524), PBCatMoveSync (page 576), or PBCatMoveAsync (page 575) functions.

If you’re renaming a volume, make sure that both names end with a colon.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HRstFLock
Unlocks a file or directory. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 540) instead.)

556 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr HRstFLock (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The parent directory ID of the file or directory to unlock.

fileName
The name of the file or directory.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If the PBHGetVolParmsSync (page 695) or PBHGetVolParmsAsync (page 694) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
HRstFLock to unlock a directory. Otherwise, you can only use this function to unlock a file.

You can lock a file or directory with the FSpSetFLock (page 535) , HSetFLock (page 558) ,
PBHSetFLockSync (page 724) , and PBHSetFLockAsync (page 723) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HSetFInfo
Sets the Finder information for a file. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 540)
instead.)

OSErr HSetFInfo (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName,
 const FInfo *fndrInfo
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The parent directory ID of the file.

fileName
The name of the file.

Functions 557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

fndrInfo
A pointer to the new Finder information. The function changes the Finder information stored in the
volume’s catalog. HSetFInfo changes only the original Finder information—that contained in an
FInfo structure, not that contained in an FXInfo structure. For a description of the FInfo data type,
see the Finder Interface Reference.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

HSetFLock
Locks a file or directory. (Deprecated in Mac OS X v10.4. Use FSSetCatalogInfo (page 540) instead.)

OSErr HSetFLock (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 ConstStr255Param fileName
);

Parameters
vRefNum

A volume reference number, drive number, or 0 for the default volume.

dirID
The parent directory ID of the file or directory to lock.

fileName
The name of the file or directory.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If the PBHGetVolParmsSync (page 695) or PBHGetVolParmsAsync (page 694) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
HSetFLock to lock a directory. Otherwise, you can only use this function to lock a file.

After you lock a file, all new access paths to that file are read-only. This function has no effect on existing
access paths.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

558 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

HSetVol
Sets the default volume and the default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr HSetVol (
 ConstStr63Param volName,
 FSVolumeRefNum vRefNum,
 SInt32 dirID
);

Parameters
volName

The name of a mounted volume or the partial pathname of a directory. This parameter can be NULL.

vRefNum
A volume reference number, drive number, or 0 for the default volume.

dirID
A directory ID.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The HSetVol function lets you specify the default directory by volume reference number or by directory ID.

Both the default volume and the default directory are used in calls made with no volume name, a volume
reference number of 0, and a directory ID of 0.

Special Considerations

Use of the HSetVol function is discouraged if your application may execute in system software versions
prior to version 7.0. Because the specified directory might not itself be a working directory, HSetVol records
the default volume and directory separately, using the volume reference number of the volume and the
actual directory ID of the specified directory. Subsequent calls to GetVol (or PBGetVolSync or
PBGetVolAsync) return only the volume reference number, which will cause that volume’s root directory
(rather than the default directory, as expected) to be accessed.

Carbon Porting Notes

Carbon applications should use HGetVol and HSetVol to get and set the default directory. the functions
GetVol and SetVol, as well as working directories, are no longer supported.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

InvokeFNSubscriptionUPP
Calls your directory change callback function.

Functions 559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void InvokeFNSubscriptionUPP (
 FNMessage message,
 OptionBits flags,
 void *refcon,
 FNSubscriptionRef subscription,
 FNSubscriptionUPP userUPP
);

Discussion
The File Manager calls this function to invoke the directory change function which you have provided for
use after an asynchronous call has been completed. You should not need to use this function yourself. For
more information on directory change functions, see FNSubscriptionProcPtr (page 789).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

InvokeFSVolumeEjectUPP
Calls your volume ejection callback function.

void InvokeFSVolumeEjectUPP (
 FSVolumeOperation volumeOp,
 void *clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter,
 FSVolumeEjectUPP userUPP
);

Discussion
The File Manager calls this function to invoke the volume ejection function which you have provided for use
after an asynchronous call has been completed. You should not need to use this function yourself. For more
information on change notification functions, see FSVolumeEjectProcPtr (page 792).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

InvokeFSVolumeMountUPP
Calls your volume mount callback function.

560 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void InvokeFSVolumeMountUPP (
 FSVolumeOperation volumeOp,
 void *clientData,
 OSStatus err,
 FSVolumeRefNum mountedVolumeRefNum,
 FSVolumeMountUPP userUPP
);

Discussion
The File Manager calls this function to invoke the volume mount function which you have provided for use
after an asynchronous call has been completed. You should not need to use this function yourself. For more
information on change notification functions, see FSVolumeMountProcPtr (page 792).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

InvokeFSVolumeUnmountUPP
Calls your volume unmount callback function.

void InvokeFSVolumeUnmountUPP (
 FSVolumeOperation volumeOp,
 void *clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter,
 FSVolumeUnmountUPP userUPP
);

Discussion
The File Manager calls this function to invoke the volume unmount function which you have provided for
use after an asynchronous call has been completed. You should not need to use this function yourself. For
more information on change notification functions, see FSVolumeUnmountProcPtr (page 793).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

InvokeIOCompletionUPP
Calls your I/O completion callback function.

Functions 561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void InvokeIOCompletionUPP (
 ParmBlkPtr paramBlock,
 IOCompletionUPP userUPP
);

Discussion
The File Manager calls this function to invoke the I/O completion function which you have provided for use
after an asynchronous call has been completed. You should not need to use this function yourself. For more
information on I/O completion functions, see IOCompletionProcPtr (page 794).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

NewFNSubscriptionUPP
Creates a new universal procedure pointer (UPP) to your directory change callback function.

FNSubscriptionUPP NewFNSubscriptionUPP (
 FNSubscriptionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a directory change callback function. For more information, see
FNSubscriptionProcPtr (page 789).

Return Value
A UPP to your directory change callback function.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

NewFSVolumeEjectUPP
Creates a new universal procedure pointer (UPP) to your volume ejection callback function.

FSVolumeEjectUPP NewFSVolumeEjectUPP (
 FSVolumeEjectProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a volume ejection callback function. For more information, see
FSVolumeEjectProcPtr (page 792).

Return Value
A UPP to your volume ejection callback function.

562 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

NewFSVolumeMountUPP
Creates a new universal procedure pointer (UPP) to your volume mount callback function.

FSVolumeMountUPP NewFSVolumeMountUPP (
 FSVolumeMountProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a volume mount callback function. For more information, see
FSVolumeEjectProcPtr (page 792).

Return Value
A UPP to your volume mount callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

NewFSVolumeUnmountUPP
Creates a new universal procedure pointer (UPP) to your volume unmount callback function.

FSVolumeUnmountUPP NewFSVolumeUnmountUPP (
 FSVolumeUnmountProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a volume unmount callback function. For more information, see
FSVolumeUnmountProcPtr (page 793).

Return Value
A UPP to your volume unmount callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

NewIOCompletionUPP
Creates a new universal procedure pointer (UPP) to your I/O completion callback function.

Functions 563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

IOCompletionUPP NewIOCompletionUPP (
 IOCompletionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your I/O completion callback function. For more information, see
IOCompletionProcPtr (page 794).

Return Value
A UPP to your I/O completion callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBAllocateAsync
Allocates additional space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
PBAllocateForkAsync (page 565) instead.)

OSErr PBAllocateAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the file to which to allocate additional blocks.

ioReqCount
On input, the number of bytes to allocate.

ioActCount
On output, the number of bytes actually allocated, rounded up to the nearest multiple of the allocation
block size.

564 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

The PBAllocateAsync function adds ioReqCount bytes to the specified file and sets the physical end-of-file
to 1 byte beyond the last block allocated. If there isn’t enough empty space on the volume to satisfy the
allocation request, PBAllocateAsync allocates the rest of the space on the volume and returns dskFulErr
as its function result.

If the total number of requested bytes is unavailable, PBAllocateAsync allocates whatever space, contiguous
or not, is available. To force the allocation of the entire requested space as a contiguous piece, call
PBAllocContigAsync (page 569) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the PBAllocateAsync function to preallocate file blocks. This is most useful
if you know in advance how big a file is likely to become.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 786) function, or by writing data to the
file with the FSWrite (page 546) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 786)
function, or one of the related parameter block calls, PBSetEOFSync (page 758) and PBSetEOFAsync (page
757).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 470) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 567) and
PBAllocateForkAsync (page 565).

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, if there is not enough space left on the volume to allocate the requested
number of bytes, the PBAllocateAsync function does not return the number of bytes actually allocated in
the ioActCount field.

To determine the remaining space on a volume before calling PBAllocateAsync, use the functions
PBXGetVolInfoSync or PBXGetVolInfoAsync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBAllocateForkAsync
Allocates space on a volume to an open fork.

Functions 565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void PBAllocateForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 514) function, or with one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

allocationFlags
On input, a constant indicating how the new space should be allocated. See “Allocation Flags” (page
887) for a description of the constants which you can use in this field.

positionMode
On input, a constant specifying the base location within the fork for the start of the allocation. See
“Position Mode Constants” (page 928) for more information on the constants which you can use to
specify the base location.

positionOffset
On input, the offset from the base location of the start of the allocation.

allocationAmount
On input, the number of bytes to allocate. On output, the number of bytes actually allocated to the
file. The number of bytes allocated may be smaller than the requested amount if some of the space
was already allocated. The value returned in this field does not reflect any additional bytes that may
have been allocated because space is allocated in terms of fixed units such as allocation blocks, or
the use of a clump size to reduce fragmentation.

The PBAllocateForkAsync function attempts to allocate the number of requested bytes of physical storage
starting at the offset specified by the positionMode and positionOffset fields. For volume formats that
support preallocated space, you can later write to this range of bytes (including extending the size of the
fork) without requiring an implicit allocation.

Any extra space allocated but not used will be deallocated when the fork is closed, using FSCloseFork (page
475) , PBCloseForkSync (page 583) , or PBCloseForkAsync (page 582) ; or when flushed, using
FSFlushFork (page 490) , PBFlushForkSync (page 639) , or PBFlushForkAsync (page 638).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

566 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBAllocateForkSync
Allocates space on a volume to an open fork.

OSErr PBAllocateForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 514) function, or with one of the corresponding parameter block functions,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

allocationFlags
On input, a constant indicating how the new space should be allocated. See “Allocation Flags” (page
887) for a description of the constants you can use in this field.

positionMode
On input, a constant specifying the base location within the fork for the start of the allocation. See
“Position Mode Constants” (page 928) for more information on the constants which you can use to
specify the base location.

positionOffset
On input, the offset from the base location of the start of the allocation.

allocationAmount
On input, the number of bytes to allocate. On output, the number of bytes actually allocated to the
file. The number of bytes allocated may be smaller than the requested amount if some of the space
was already allocated. The value returned in this field does not reflect any additional bytes that may
have been allocated because space is allocated in terms of fixed units such as allocation blocks, or
the use of a clump size to reduce fragmentation.

The PBAllocateForkSync function attempts to allocate the number of requested bytes of physical storage
starting at the offset specified by the positionMode and positionOffset fields. For volume formats that
support preallocated space, you can later write to this range of bytes (including extending the size of the
fork) without requiring an implicit allocation.

Any extra space allocated but not used will be deallocated when the fork is closed, using FSCloseFork (page
475) , PBCloseForkSync (page 583) , or PBCloseForkAsync (page 582) ; or when flushed, using
FSFlushFork (page 490) , PBFlushForkSync (page 639) , or PBFlushForkAsync (page 638).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBAllocateSync
Allocates additional space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
PBAllocateForkSync (page 567) instead.)

OSErr PBAllocateSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the file to which to allocate additional blocks.

ioReqCount
On input, the number of bytes to allocate.

ioActCount
On output, the number of bytes actually allocated, rounded up to the nearest multiple of the allocation
block size.

The PBAllocateSync function adds ioReqCount bytes to the specified file and sets the physical end-of-file
to 1 byte beyond the last block allocated. If there isn’t enough empty space on the volume to satisfy the
allocation request, PBAllocateSync allocates the rest of the space on the volume and returns dskFulErr
as its function result.

If the total number of requested bytes is unavailable, PBAllocateSync allocates whatever space, contiguous
or not, is available. To force the allocation of the entire requested space as a contiguous piece, call
PBAllocContigSync (page 570) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the PBAllocateSync function to preallocate file blocks. This is most useful
if you know in advance how big a file is likely to become.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 786) function, or by writing data to the
file with the FSWrite (page 546) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 786)
function, or one of the related parameter block calls, PBSetEOFSync (page 758) and PBSetEOFAsync (page
757).

568 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 470) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 567) and
PBAllocateForkAsync (page 565).

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, if there is not enough space left on the volume to allocate the requested
number of bytes, the PBAllocateSync function does not return the number of bytes actually allocated in
the ioActCount field.

To determine the remaining space on a volume before calling PBAllocateSync, use the functions
PBXGetVolInfoSync or PBXGetVolInfoAsync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBAllocContigAsync
Allocates additional contiguous space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
PBAllocateForkAsync (page 565) instead.)

OSErr PBAllocContigAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the open file.

ioReqCount
On input, the number of bytes to allocate.

ioActCount
On output, the number of bytes actually allocated, rounded up to the nearest multiple of the allocation
block size.

Functions 569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

The PBAllocContigAsync function is identical to the PBAllocateAsync (page 564) function except that
if there isn’t enough contiguous empty space on the volume to satisfy the allocation request,
PBAllocContigAsync does nothing and returns dskFulErr as its function result. If you want to allocate
whatever space is available, even when the entire request cannot be filled by the allocation of a contiguous
piece, call PBAllocateAsync (page 564) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the PBAllocContigAsync function to preallocate file blocks. This is most
useful if you know in advance how big a file is likely to become.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 786) function, or by writing data to the
file with the FSWrite (page 546) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 786)
function, or one of the related parameter block calls, PBSetEOFSync (page 758) and PBSetEOFAsync (page
757).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 470) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 567) and
PBAllocateForkAsync (page 565).

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, when there is not enough space to allocate the requested number of
bytes, PBAllocContigAsync does not return 0 in the ioActCount field, so your application cannot rely
upon this value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBAllocContigSync
Allocates additional contiguous space on a volume to an open file. (Deprecated in Mac OS X v10.4. Use
PBAllocateForkSync (page 567) instead.)

570 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBAllocContigSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the open file.

ioReqCount
On input, the number of bytes to allocate.

ioActCount
On output, the number of bytes actually allocated, rounded up to the nearest multiple of the allocation
block size.

The PBAllocContigSync function is identical to the PBAllocateSync (page 568) function except that if
there isn’t enough contiguous empty space on the volume to satisfy the allocation request,
PBAllocContigSync does nothing and returns dskFulErr as its function result. If you want to allocate
whatever space is available, even when the entire request cannot be filled by the allocation of a contiguous
piece, call PBAllocateSync (page 568) instead.

The File Manager automatically allocates file blocks if you move the logical end-of-file past the physical
end-of-file, and it automatically deallocates unneeded blocks from a file if you move the logical end-of-file
to a position more than one allocation block before the current physical end-of-file. Consequently, you do
not in general need to be concerned with allocating or deallocating file blocks. However, you can improve
file block contiguity if you use the PBAllocContigSync function to preallocate file blocks. This is most
useful if you know in advance how big a file is likely to become.

The space allocated with this function is not permanently assigned to the file until the file’s logical end-of-file
is changed to include the allocated space. When a file (or volume) is closed, the space beyond the file’s logical
EOF is made available for other purposes, even if previously allocated to the file with a call to this function.
You can change the end-of-file by setting it with the SetEOF (page 786) function, or by writing data to the
file with the FSWrite (page 546) function.

This function is not supported by all file systems; for example, volumes mounted by the AppleShare file
system do not support this function. To allocate space for a file on any volume, use the SetEOF (page 786)
function, or one of the related parameter block calls, PBSetEOFSync (page 758) and PBSetEOFAsync (page
757).

To allocate space for a file beyond 2 GB, use the FSAllocateFork (page 470) function, or one of the
corresponding parameter block functions, PBAllocateForkSync (page 567) and
PBAllocateForkAsync (page 565).

Functions 571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

In Mac OS 7.5.5 through Mac OS 8.5, when there is not enough space to allocate the requested number of
bytes, PBAllocContigSync does not return 0 in the ioActCount field, so your application cannot rely
upon this value.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBCatalogSearchAsync
Searches for objects traversed by a catalog iterator that match a given set of criteria.

void PBCatalogSearchAsync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 824) for a
description of the FSCatalogBulkParam data type.

Discussion
The relevant fields of this parameter are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. When the entire volume has been searched,
errFSNoMoreItems is returned.

iterator
On input, the iterator to use. Objects traversed by this iterator are matched against the criteria specified
by the searchParams field. You can obtain a catalog iterator with the function
FSOpenIterator (page 515) , or with one of the related parameter block calls,
PBOpenIteratorSync (page 742) and PBOpenIteratorAsync (page 741). Currently, this iterator
must be created with the kFSIterateSubtree option and the container must be the root directory
of a volume. See FSIterator (page 835) for more information on the FSIterator data type.

searchParams
On input, a pointer to an FSSearchParams (page 839) structure containing the search criteria. You
can match against the object’s name in Unicode and by the fields in an FSCatalogInfo (page 826)
structure. You may use the same search bits as passed in the ioSearchBits field to the
PBCatSearchSync (page 580) and PBCatSearchAsync (page 577) functions; they control the
corresponding FSCatalogInfo fields. See “Catalog Search Masks” (page 900) for a description of the
search bits. There are a few new search criteria supported by PBCatalogSearchAsync but not by
PBCatSearchSync and PBCatSearchAsync. These new search criteria are indicated by the constants
described in “Catalog Search Constants” (page 899).If the searchTime field of this structure is non-zero,

572 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

it is interpreted as a Time Manager duration; the search may terminate after this duration even if
maximumItems objects have not been returned and the entire catalog has not been scanned. If
searchTime is zero, there is no time limit for the search. If you are searching by any criteria other
than name, you must set the searchInfo1 and searchInfo2 fields of the structure in this field to
point to FSCatalogInfo structures containing the values to match against.

maximumItems
On input, the maximum number of items to return for this call.

actualItems
On output, the actual number of items returned for this call.

containerChanged
On output, a Boolean value indicating whether the container’s contents have changed. If true, the
container’s contents changed since the previous PBCatalogSearchAsync call. Objects may still be
returned even though the container changed. Note that if the container has changed, then the total
set of items returned may be incorrect; some items may be returned multiple times, and some items
may not be returned at all.

whichInfo
On input, a bitmap specifying the catalog information fields to return for each item. If you don’t wish
any catalog information returned, pass the constant kFSCatInfoNone in this field. See “Catalog
Information Bitmap Constants” (page 891) for a description of the bits in this field.

catalogInfo
On output, a pointer to an array of FSCatalogInfo (page 826) structures; one for each found item.
On input, the catalogInfo field should point to an array of maximumItems catalog information
structures. This field is optional; if you do not wish any catalog information returned, pass NULL here.

refs
On output, a pointer to an array of FSRef (page 837) structures; one for each returned item. On input,
if you want an FSRef for each item found, pass a pointer to an array of maximumItems FSRef
structures. Otherwise, pass NULL.

names
On output, a pointer to an array of filenames; one for each returned item. On input, if you want the
Unicode filename for each item found, pass a pointer to an array of maximumItems
HFSUniStr255 (page 855) structures. Otherwise, pass NULL.

A single search may span more than one call to PBCatalogSearchAsync. The call may complete with no
error before scanning the entire volume. This typically happens because the time limit (searchTime) has
been reached or maximumItems items have been returned. If the search is not completed, you can continue
the search by making another call to PBCatalogSearchAsync and passing the updated iterator returned
by the previous call in the iterator field.

Before calling this function, you should determine that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCatalogSearchSync
Searches for objects traversed by a catalog iterator that match a given set of criteria.

Functions 573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBCatalogSearchSync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 824) for a
description of the FSCatalogBulkParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). When the entire volume has been searched,
errFSNoMoreItems is returned.

Discussion
The relevant fields of this parameter are:

iterator
On input, the iterator to use. Objects traversed by this iterator are matched against the criteria specified
by the searchParams field. You can obtain a catalog iterator with the function
FSOpenIterator (page 515) , or with one of the related parameter block calls,
PBOpenIteratorSync (page 742) and PBOpenIteratorAsync (page 741). Currently, this iterator
must be created with the kFSIterateSubtree option and the container must be the root directory
of a volume. See FSIterator (page 835) for more information on the FSIterator data type.

searchParams
On input, a pointer to an FSSearchParams (page 839) structure containing the search criteria. You
can match against the object’s name in Unicode and by the fields in an FSCatalogInfo (page 826)
structure. You may use the same search bits as passed in the ioSearchBits field to the
PBCatSearchSync (page 580) and PBCatSearchAsync (page 577) functions; they control the
corresponding FSCatalogInfo fields. See “Catalog Search Masks” (page 900) for a description of the
search bits. There are a few new search criteria supported by PBCatalogSearchSync but not by
PBCatSearchSync and PBCatSearchAsync. These new search criteria are indicated by the constants
described in “Catalog Search Constants” (page 899).If the searchTime field of this structure is non-zero,
it is interpreted as a Time Manager duration; the search may terminate after this duration even if
maximumItems objects have not been returned and the entire catalog has not been scanned. If
searchTime is zero, there is no time limit for the search. If you are searching by any criteria other
than name, you must set the searchInfo1 and searchInfo2 fields of the structure in this field to
point to FSCatalogInfo structures containing the values to match against.

maximumItems
On input, the maximum number of items to return for this call.

actualItems
On output, the actual number of items returned for this call.

containerChanged
On output, a Boolean value indicating whether the container’s contents have changed. If true, the
container’s contents changed since the previous PBCatalogSearchSync call. Objects may still be
returned even though the container changed. Note that if the container has changed, then the total
set of items returned may be incorrect; some items may be returned multiple times, and some items
may not be returned at all.

whichInfo
On input, a bitmap specifying the catalog information fields to return for each item. If you don’t wish
any catalog information returned, pass the constant kFSCatInfoNone in this field. See “Catalog
Information Bitmap Constants” (page 891) for a description of the bits in this field.

574 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

catalogInfo
On output, a pointer to an array of FSCatalogInfo (page 826) structures; one for each found item.
On input, the catalogInfo field should point to an array of maximumItems catalog information
structures. This field is optional; if you do not wish any catalog information returned, pass NULL here.

refs
On output, a pointer to an array of FSRef (page 837) structures; one for each returned item. On input,
if you want an FSRef for each item found, pass a pointer to an array of maximumItems FSRef
structures. Otherwise, pass NULL.

names
On output, a pointer to an array of filenames; one for each returned item. On input, if you want the
Unicode filename for each item found, pass a pointer to an array of maximumItems
HFSUniStr255 (page 855) structures. Otherwise, pass NULL.

A single search may span more than one call to PBCatalogSearchSync. The call may complete with no
error before scanning the entire volume. This typically happens because the time limit (searchTime) has
been reached or maximumItems items have been returned. If the search is not completed, you can continue
the search by making another call to PBCatalogSearchSync and passing the updated iterator returned by
the previous call in the iterator field.

Before calling this function, you should determine that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCatMoveAsync
Moves files or directories from one directory to another on the same volume. (Deprecated in Mac OS X v10.4.
Use PBMoveObjectAsync (page 737) instead.)

OSErr PBCatMoveAsync (
 CMovePBPtr paramBlock
);

Parameters
paramBlock

A pointer to a catalog move parameter block. See CMovePBRec (page 802) for a description of the
CMovePBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). This function returns permErr if called on a locked
file.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

Functions 575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
On input, a pointer to the name of the file or directory to move.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioNewName
On input, a pointer to the name of the destination directory. Pass NULL in this field if you wish to
specify the destination directory by its directory ID.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, this is the parent directory ID of the directory into which the file or directory is to be
moved. It is usually simplest to specify the destination directory by passing its directory ID in the
ioNewDirID field and by setting ioNewName to NULL.

ioDirID
On input, the parent directory ID of the file or directory to move.

PBCatMoveAsync is strictly a file catalog operation; it does not actually change the location of the file or
directory on the disk. If a file ID reference exists for the file, the file ID reference remains with the moved file.

The PBCatMoveAsync function cannot move a file or directory to another volume (that is, the value in the
ioVRefNum field is used in specifying both the source and the destination). Also, you cannot use it to rename
files or directories; to rename a file or directory, use FSpRename (page 533) , PBHRenameSync (page 716) , or
PBHRenameAsync (page 715) .

If you need to move files or directories with named forks other than the data and resource forks, with long
Unicode names, or files larger than 2GB, you should use the FSMoveObject (page 510) function, or one of
the corresponding parameter block calls, PBMoveObjectSync (page 738) and PBMoveObjectAsync (page
737).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBCatMoveSync
Moves files or directories from one directory to another on the same volume. (Deprecated in Mac OS X v10.4.
Use PBMoveObjectSync (page 738) instead.)

OSErr PBCatMoveSync (
 CMovePBPtr paramBlock
);

Parameters
paramBlock

A pointer to a catalog move parameter block. See CMovePBRec (page 802) for a description of the
CMovePBRec data type.

576 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943). This function returns permErr if called on a locked
file.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file or directory to move.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioNewName
On input, a pointer to the name of the destination directory. Pass NULL in this field if you wish to
specify the destination directory by its directory ID.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, this is the parent directory ID of the destination directory. It is usually simplest to specify
the destination directory by passing its directory ID in the ioNewDirID field and by setting ioNewName
to NULL.

ioDirID
On input, the parent directory ID of the file or directory to move.

PBCatMoveSync is strictly a file catalog operation; it does not actually change the location of the file or
directory on the disk. If a file ID reference exists for the file, the file ID reference remains with the moved file.

The PBCatMoveSync function cannot move a file or directory to another volume (that is, the value in the
ioVRefNum field is used in specifying both the source and the destination). Also, you cannot use it to rename
files or directories; to rename a file or directory, use FSpRename (page 533) , PBHRenameSync (page 716) , or
PBHRenameAsync (page 715).

If you need to move files or directories with named forks other than the data and resource forks, with long
Unicode names, or files larger than 2GB, you should use the FSMoveObject (page 510) function, or one of
the corresponding parameter block calls, PBMoveObjectSync (page 738) and PBMoveObjectAsync (page
737).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBCatSearchAsync
Searches a volume’s catalog file using a set of search criteria that you specify. (Deprecated in Mac OS X v10.4.
Use PBCatalogSearchAsync (page 572) instead.)

Functions 577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBCatSearchAsync (
 CSParamPtr paramBlock
);

Parameters
paramBlock

A pointer to a CSParam (page 807) variant of an HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. When PBCatSearchAsync has searched the entire volume,
it returns eofErr. If it exits because it either spends the maximum time allowed in the ioSearchTime
field or finds the maximum number of matches allowed in the ioReqMatchCount field, it returns
noErr.

ioNamePtr
On input, a pointer to the name of the volume to search.

ioVRefNum
On input, a volume reference number or drive number for the volume to search; or 0 for the default
volume.

ioMatchPtr
On input, a pointer to an array of FSSpec (page 840) structure to hold the matches found by this
function. On return, the FSSpec structures in this array identify the files and directories that match
the criteria.

ioReqMatchCount
On input, the maximum number of matches to return.

ioActMatchCount
On output, the actual number of matches returned.

ioSearchBits
On input, a bitmap specifying the fields in the criteria structures to match against. See “Catalog Search
Masks” (page 900) for a description of the bits in this field.

ioSearchInfo1
On input, a pointer to a CInfoPBRec (page 802) union containing search information. For values that
match by mask and value (Finder information, for example), set the bits in the structure passed in
ioSearchInfo2, and set the matching value in this structure. For values that match against a range
(such as dates), set the lower bounds for the range in this structure.

ioSearchInfo2
On input, a pointer to a CInfoPBRec (page 802) union containing search information. For values that
match by mask and value (Finder information, for example), set the bits in this structure, and set the
matching value in the structure passed in the ioSearchInfo1 field. For values that match against
a range (such as dates), set the upper bounds for the range in this structure.

578 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioSearchTime
On input, the maximum allowed search time. If you pass 0 in this field, no time limit is set.

ioCatPosition
The current catalog position, specified as a CatPositionRec (page 801) structure. You can use this
field, along with the ioSearchTime field, to search a volume in segments. To search a volume in
segments, set a time limit for the search in the ioSearchTime field and set the initialize field of
the CatPositionRec structure to the location for the start of the search (0 if you wish to start
searching at the beginning of the volume). On return, the catalog position will be updated. You can
then pass this updated CatPositionRec structure to the next call to PBCatSearchSync to continue
searching at the place where you left off.

ioOptBuffer
On input, a pointer to an optional read buffer.

ioOptBufSize
On input, the length of the optional read buffer.

If the catalog file changes between two timed calls to PBCatSearchAsync (that is, when you are using
ioSearchTime and ioCatPosition to search a volume in segments and the catalog file changes between
searches), PBCatSearchAsync returns a result code of catChangedErr and no matches. Depending on
what has changed on the volume, ioCatPosition might be invalid, most likely by a few entries in one
direction or another. You can continue the search, but you risk either skipping some entries or reading some
twice.

Special Considerations

Not all volumes support the PBCatSearchAsync function. Before you call PBCatSearchAsync to search a
particular volume, you should call the PBHGetVolParmsAsync (page 694) function to determine whether
that volume supports PBCatSearchAsync. If the bHasCatSearch bit is set in the vMAttrib field, then the
volume supports PBCatSearchAsync.

Even though AFP volumes support PBCatSearchSync, they do not support all of its features that are available
on local volumes. These restrictions apply to AFP volumes:

 ■ AFP volumes do not use the ioSearchTime field. Current versions of the AppleShare server software
search for 1 second or until 4 matches are found. The AppleShare workstation software keeps requesting
the appropriate number of matches until the server returns either the number specified in the
ioReqMatchCount field or an error.

 ■ AFP volumes do not support both logical and physical fork lengths. If you request a search using the
length of a fork, the actual minimum length used is the smallest of the values in the logical and physical
fields of the ioSearchInfo1 structure and the actual maximum length used is the largest of the values
in the logical and physical fields of the ioSearchInfo2 structure.

 ■ The fsSBNegate bit of the ioSearchBits field is ignored during searches of remote volumes that
support AFP version 2.1.

 ■ If the AFP server returns afpCatalogChanged, the catalog position structure returned to your application
(in the ioCatPosition field) is the same one you passed to PBCatSearchAsync. You should clear the
initialize field of that structure to restart the search from the beginning.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBCatSearchSync
Searches a volume’s catalog file using a set of search criteria that you specify. (Deprecated in Mac OS X v10.4.
Use PBCatalogSearchSync (page 573) instead.)

OSErr PBCatSearchSync (
 CSParamPtr paramBlock
);

Parameters
paramBlock

A pointer to a CSParam (page 807) variant of an HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). When PBCatSearchSync has searched the entire
volume, it returns eofErr. If it exits because it either spends the maximum time allowed in the ioSearchTime
field or finds the maximum number of matches allowed in the ioReqMatchCount field, it returns noErr.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the volume to search.

ioVRefNum
On input, a volume reference number or drive number for the volume to search; or 0 for the default
volume.

ioMatchPtr
On input, a pointer to an array of FSSpec (page 840) structure to hold the matches found by this
function. On return, the FSSpec structures in this array identify the files and directories that match
the criteria.

ioReqMatchCount
On input, the maximum number of matches to return.

ioActMatchCount
On output, the actual number of matches returned.

ioSearchBits
On input, a bitmap specifying the fields in the criteria structures to match against. See “Catalog Search
Masks” (page 900) for a description of the bits in this field.

ioSearchInfo1
On input, a pointer to a CInfoPBRec (page 802) union containing search information. For values that
match by mask and value (Finder information, for example), set the bits in the structure passed in
ioSearchInfo2, and set the matching value in this structure. For values that match against a range
(such as dates), set the lower bounds for the range in this structure.

ioSearchInfo2
On input, a pointer to a CInfoPBRec (page 802) union containing search information. For values that
match by mask and value (Finder information, for example), set the bits in this structure, and set the

580 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

matching value in the structure passed in the ioSearchInfo1 field. For values that match against
a range (such as dates), set the upper bounds for the range in this structure.

ioSearchTime
On input, the maximum allowed search time. If you pass 0 in this field, no time limit is set.

ioCatPosition
The current catalog position, specified as a CatPositionRec (page 801) structure. You can use this
field, along with the ioSearchTime field, to search a volume in segments. To search a volume in
segments, set a time limit for the search in the ioSearchTime field and set the initialize field of
the CatPositionRec structure to the location for the start of the search (0 if you wish to start
searching at the beginning of the volume). On return, the catalog position will be updated. You can
then pass this updated CatPositionRec structure to the next call to PBCatSearchSync to continue
searching at the place where you left off.

ioOptBuffer
On input, a pointer to an optional read buffer.

ioOptBufSize
On input, the length of the optional read buffer.

If the catalog file changes between two timed calls to PBCatSearchSync (that is, when you are using
ioSearchTime and ioCatPosition to search a volume in segments and the catalog file changes between
searches), PBCatSearchSync returns a result code of catChangedErr and no matches. Depending on what
has changed on the volume, ioCatPosition might be invalid, most likely by a few entries in one direction
or another. You can continue the search, but you risk either skipping some entries or reading some twice.

Special Considerations

Not all volumes support the PBCatSearchSync function. Before you call PBCatSearchSync to search a
particular volume, you should call the PBHGetVolParmsSync (page 695) function to determine whether that
volume supports PBCatSearchSync.If the bHasCatSearch bit is set in the vMAttrib field, then the volume
supports PBCatSearchSync.

Even though AFP volumes support PBCatSearchSync, they do not support all of its features that are available
on local volumes. These restrictions apply to AFP volumes:

 ■ AFP volumes do not use the ioSearchTime field. Current versions of the AppleShare server software
search for 1 second or until 4 matches are found. The AppleShare workstation software keeps requesting
the appropriate number of matches until the server returns either the number specified in the
ioReqMatchCount field or an error.

 ■ AFP volumes do not support both logical and physical fork lengths. If you request a search using the
length of a fork, the actual minimum length used is the smallest of the values in the logical and physical
fields of the ioSearchInfo1 structure and the actual maximum length used is the largest of the values
in the logical and physical fields of the ioSearchInfo2 structure.

 ■ The fsSBNegate bit of the ioSearchBits field is ignored during searches of remote volumes that
support AFP version 2.1.

 ■ If the AFP server returns afpCatalogChanged, the catalog position structure returned to your application
(in the ioCatPosition field) is the same one you passed to PBCatSearchSync. You should clear the
initialize field of that structure to restart the search from the beginning.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBCloseAsync
Closes an open file. (Deprecated in Mac OS X v10.5. Use PBCloseForkAsync (page 582) instead.)

OSErr PBCloseAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine.

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number to the file to close.

The PBCloseAsync function writes the contents of the access path buffer specified by the ioRefNum field
to the volume and removes the access path.

Special Considerations

Some information stored on the volume won’t be updated until PBFlushVolAsync is called.

Do not call PBCloseAsync with a file reference number of a file that has already been closed. Attempting
to close the same file twice may result in loss of data on a volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBCloseForkAsync
Closes an open fork.

582 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void PBCloseForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of the fork to close. After the call to this function, the reference
number in this parameter is invalid.

The PBCloseForkAsync function causes all data written to the fork to be written to disk, in the same manner
as the PBFlushForkAsync (page 638) function, before it closes the fork.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCloseForkSync
Closes an open fork.

OSErr PBCloseForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant field of the parameter block is:

forkRefNum
On input, the reference number of the fork to close. After the call to this function, the reference
number in this parameter is invalid.

The PBCloseForkSync function causes all data written to the fork to be written to disk, in the same manner
as the PBFlushForkSync (page 639) function, before it closes the fork.

Functions 583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCloseIteratorAsync
Closes a catalog iterator.

void PBCloseIteratorAsync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 824) for a
description of the FSCatalogBulkParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

iterator
On input, the catalog iterator to close. PBCloseIteratorAsync releases memory and other system
resources used by the iterator, making the iterator invalid. See FSIterator (page 835) for a description
of the FSIterator data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCloseIteratorSync
Closes a catalog iterator.

OSErr PBCloseIteratorSync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 824) for a
description of the FSCatalogBulkParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

584 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant field of the parameter block is:

iterator
On input, the catalog iterator to close. PBCloseIteratorSync releases memory and other system
resources used by the iterator, making the iterator invalid. See FSIterator (page 835) for a description
of the FSIterator data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCloseSync
Closes an open file. (Deprecated in Mac OS X v10.5. Use PBCloseForkSync (page 583) instead.)

OSErr PBCloseSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant field of the parameter block is:

ioRefNum
On input, a file reference number to the file to close.

The PBCloseSync function writes the contents of the access path buffer specified by the ioRefNum field to
the volume and removes the access path.

Special Considerations

Some information stored on the volume won’t be updated until PBFlushVolSync is called.

Do not call PBCloseSync with a file reference number of a file that has already been closed. Attempting to
close the same file twice may result in loss of data on a volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Functions 585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBCompareFSRefsAsync
Determines whether two FSRef structures refer to the same file or directory.

void PBCompareFSRefsAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information about completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If the two FSRef structures refer to the same file or directory,
then noErr is returned. If they refer to objects on different volumes, then diffVolErr is returned.
If they refer to different files or directories on the same volume, then errFSRefsDifferent is
returned. This call may return other errors, including nsvErr, fnfErr, dirNFErr, and volOffLinErr.
See “File Manager Result Codes”.

ref
On input, a pointer to the first FSRef to compare. See FSRef (page 837) for a description of the FSRef
data type.

parentRef
On input, a pointer to the second FSRef to compare.

You must use FSCompareFSRefs (page 476) , or one of the corresponding parameter block functions,
PBCompareFSRefsSync (page 586) and PBCompareFSRefsAsync, to compare FSRef structures. It is not
possible to compare the FSRef structures directly since some bytes may be uninitialized, case-insensitive
text, or contain hint information.

Some volume formats may be able to tell that two FSRef structures would refer to two different files or
directories, without having to actually find those objects. In this case, the volume format may return
errFSRefsDifferent even if one or both objects no longer exist. Similarly, if the FSRef structures are for
objects on different volumes, the File Manager will return diffVolErr even if one or both volumes are no
longer mounted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCompareFSRefsSync
Determines whether two FSRef structures refer to the same file or directory.

586 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBCompareFSRefsSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If the two FSRef structures refer to the same file
or directory, then noErr is returned. If they refer to objects on different volumes, then diffVolErr is
returned. If they refer to different files or directories on the same volume, then errFSRefsDifferent is
returned. This function may return other errors, including nsvErr, fnfErr, dirNFErr, and volOffLinErr.

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to the first FSRef to compare. See FSRef (page 837) for a description of the FSRef
data type.

parentRef
On input, a pointer to the second FSRef to compare.

You must use FSCompareFSRefs (page 476) , or one of the corresponding parameter block functions,
PBCompareFSRefsSync and PBCompareFSRefsAsync (page 586) , to compare FSRef structures. It is not
possible to compare the FSRef structures directly since some bytes may be uninitialized, case-insensitive
text, or contain hint information.

Some volume formats may be able to tell that two FSRef structures would refer to two different files or
directories, without having to actually find those objects. In this case, the volume format may return
errFSRefsDifferent even if one or both objects no longer exist. Similarly, if the FSRef structures are for
objects on different volumes, the File Manager will return diffVolErr even if one or both volumes are no
longer mounted.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateDirectoryUnicodeAsync
Creates a new directory (folder) with a Unicode name.

void PBCreateDirectoryUnicodeAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Functions 587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information about completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ref
On input, a pointer to an FSRef (page 837) for the parent directory where the new directory is to be
created.

nameLength
On input, the number of Unicode characters in the new directory's name.

name
On input, a pointer to the Unicode name of the new directory.

whichInfo
On input, a bitmap specifying which catalog information fields to set for the new directory. Specify
the values for these fields in the catInfo field. If you do not wish to set catalog information for the
new directory, specify the constant kFSCatInfoNone. See “Catalog Information Bitmap
Constants” (page 891) for a description of the bits defined for this field.

catInfo
On input, a pointer to the FSCatalogInfo (page 826) structure which specifies the values of the new
directory’s catalog information fields. Specify which fields to set in the whichInfo field. Specify NULL
if you do not wish to set catalog information for the new directory.

newRef
On output, a pointer to the FSRef for the new directory. If you do not want the FSRef returned, pass
NULL on input.

spec
On output, a pointer to the FSSpec (page 840) for the new directory. If you do not want the FSSpec
returned, pass NULL on input.

ioDirID
On output, the directory ID of the new directory.

You may optionally set catalog information for the new directory using the whichInfo and catInfo fields;
this is equivalent to calling FSSetCatalogInfo (page 540) , or one of the corresponding parameter block
functions, PBSetCatalogInfoSync (page 753) and PBSetCatalogInfoAsync (page 751) , after creating
the directory.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catInfo field. This will be used by the volume format when converting the Unicode filename to other
encodings.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

588 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBCreateDirectoryUnicodeSync
Creates a new directory (folder) with a Unicode name.

OSErr PBCreateDirectoryUnicodeSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 837) for the parent directory where the new directory is to be
created.

nameLength
On input, the number of Unicode characters in the new directory's name.

name
On input, a pointer to the Unicode name of the new directory.

whichInfo
On input, a bitmap specifying which catalog information fields to set for the new directory. Specify
the values for these fields in the catInfo field. If you do not wish to set catalog information for the
new directory, specify the constant kFSCatInfoNone. See “Catalog Information Bitmap
Constants” (page 891) for a description of the bits defined for this field.

catInfo
On input, a pointer to the FSCatalogInfo (page 826) structure which specifies the values of the new
directory’s catalog information fields. Specify which fields to set in the whichInfo field. Specify NULL
if you do not wish to set catalog information for the new directory.

newRef
On output, a pointer to the FSRef for the new directory. If you do not want the FSRef returned, pass
NULL on input.

spec
On output, a pointer to the FSSpec (page 840) for the new directory. If you do not want the FSSpec
returned, pass NULL on input.

ioDirID
On output, the directory ID of the new directory.

You may optionally set catalog information for the new directory using the whichInfo and catInfo fields;
this is equivalent to calling FSSetCatalogInfo (page 540) , or one of the corresponding parameter block
functions, PBSetCatalogInfoSync (page 753) and PBSetCatalogInfoAsync (page 751) , after creating
the directory.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catInfo field. This will be used by the volume format when converting the Unicode filename to other
encodings.

Functions 589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateFileIDRefAsync
Establishes a file ID reference for a file. (Deprecated in Mac OS X v10.5. Use FSGetCatalogInfo (page 494)
instead.)

OSErr PBCreateFileIDRefAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 818) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

Given a volume reference number, filename, and parent directory ID, the PBCreateFileIDRefAsync function
creates a structure to hold the name and parent directory ID of the specified file. The relevant fields of the
parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. PBCreateFileIDRefAsync returns the result code
fidExists if a file ID reference already exists for the file.

ioNamePtr
On input, a pointer to the file’s name.

ioVRefNum
On input, a volume reference number for the volume containing the file.

ioSrcDirID
On input, the file’s parent directory ID.

ioFileID
On output, a file ID. If a file ID reference already exists for the file, PBCreateFileIDRefAsync supplies
the file ID but returns the result code fidExists.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

590 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBCreateFileIDRefSync
Establishes a file ID reference for a file. (Deprecated in Mac OS X v10.5. Use FSGetCatalogInfo (page 494)
instead.)

OSErr PBCreateFileIDRefSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 818) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).PBCreateFileIDRefSync returns the result code
fidExists if a file ID reference already exists for the file.

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

Given a volume reference number, filename, and parent directory ID, the PBCreateFileIDRefSync function
creates a structure to hold the name and parent directory ID of the specified file. The relevant fields of the
parameter block are:

ioNamePtr
On input, a pointer to the file’s name.

ioVRefNum
On input, a volume reference number for the volume containing the file.

ioSrcDirID
On input, the file’s parent directory ID.

ioFileID
On output, a file ID. If a file ID reference already exists for the file, PBCreateFileIDRefSync supplies
the file ID but returns the result code fidExists.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBCreateFileUnicodeAsync
Creates a new file with a Unicode name.

Functions 591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void PBCreateFileUnicodeAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ref
On input, a pointer to an FSRef (page 837) for the directory where the file is to be created.

nameLength
On input, the number of Unicode characters in the file's name.

name
On input, a pointer to the Unicode name of the new file.

whichInfo
On input, a bitmap specifying which catalog information fields to set for the new file. Specify the
values for these fields in the catInfo field. If you do not wish to set catalog information for the new
file, pass the constant kFSCatInfoNone here. See “Catalog Information Bitmap Constants” (page
891) for a description of the bits defined for this field.

catInfo
On input, a pointer to the FSCatalogInfo (page 826) structure which specifies the values of the new
file’s catalog information fields. Specify which fields to set in the whichInfo field. This field is optional;
specify NULL if you do not wish to set catalog information for the new file.

newRef
On output, a pointer to the FSRef for the new file. If you do not want the FSRef returned, pass NULL
on input.

spec
On output, a pointer to the FSSpec for the new file. If you do not want the FSSpec (page 840) returned,
pass NULL on input.

You may optionally set catalog information for the file using the whichInfo and catInfo fields; this is
equivalent to calling FSSetCatalogInfo (page 540) , or one of the corresponding parameter block functions,
PBSetCatalogInfoSync (page 753) and PBSetCatalogInfoAsync (page 751) , after creating the file.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catInfo field. This will be used by the volume format when converting the Unicode filename to other
encodings.

592 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

If the PBCreateFileUnicodeAsync function is present, but is not implemented by a particular volume, the
File Manager will emulate this function by making the appropriate call to PBHCreateAsync (page 676).
However, if the function is not directly supported by the volume, you will not be able to use the long Unicode
filenames, or other features added with HFS Plus.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateFileUnicodeSync
Creates a new file with a Unicode name.

OSErr PBCreateFileUnicodeSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 837) for the directory where the file is to be created.

nameLength
On input, the number of Unicode characters in the file's name.

name
On input, a pointer to the Unicode name of the new file.

whichInfo
On input, a bitmap specifying which catalog information fields to set for the new file. Specify the
values for these fields in the catInfo field. If you do not wish to set catalog information for the new
file, pass the constant kFSCatInfoNone here. See “Catalog Information Bitmap Constants” (page
891) for a description of the bits defined for this field.

catInfo
On input, a pointer to the FSCatalogInfo (page 826) structure which specifies the values of the new
file’s catalog information fields. Specify which fields to set in the whichInfo field. This field is optional;
specify NULL if you do not wish to set catalog information for the new file.

newRef
On output, a pointer to the FSRef for the new file. If you do not want the FSRef returned, set this
field to NULL on input.

Functions 593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

spec
On output, a pointer to the FSSpec (page 840) for the new file. If you do not want the FSSpec returned,
set this field to NULL on input.

You may optionally set catalog information for the new file using the whichInfo and catInfo fields; this
is equivalent to calling FSSetCatalogInfo (page 540) , or one of the corresponding parameter block
functions, PBSetCatalogInfoSync (page 753) and PBSetCatalogInfoAsync (page 751) , after creating
the file.

If possible, you should set the textEncodingHint field of the catalog information structure specified in the
catInfo field. This will be used by the volume format when converting the Unicode filename to other
encodings.

Special Considerations

If the PBCreateFileUnicodeSync function is present, but is not implemented by a particular volume, the
File Manager will emulate this function by making the appropriate call to PBHCreateSync (page 677). However,
if the function is not directly supported by the volume, you will not be able to use the long Unicode filenames,
or other features added with HFS Plus.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateForkAsync
Creates a named fork for a file or directory.

void PBCreateForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If the named fork already exists, the function returns
errFSForkExists. If the fork name is syntactically invalid or otherwise unsupported for the given
volume, PBCreateForkAsync returns errFSBadForkName or errFSNameTooLong.

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory.

forkNameLength
On input, the length of the Unicode name of the new fork.

594 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

forkName
On input, a pointer to the Unicode name of the fork.

A newly created fork has zero length (that is, its logical end-of-file is zero). The data and resource forks of a
file are automatically created and deleted as needed. This is done for compatibility with older APIs, and
because data and resource forks are often handled specially. If a given fork always exists for a given volume
format (such as data and resource forks for HFS and HFS Plus, or data forks for most other volume formats),
an attempt to create that fork when a zero-length fork already exists should return noErr; if a non-empty
fork already exists then errFSForkExists should be returned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBCreateForkSync
Creates a named fork for a file or directory.

OSErr PBCreateForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). . If the named fork already exists, the function
returns errFSForkExists. If the fork name is syntactically invalid or otherwise unsupported for the given
volume, PBCreateForkSync returns errFSBadForkName or errFSNameTooLong.

Discussion
The relevant fields of the parameter block are:

ioResult
On output, the result code of the function. If the named fork already exists, the function returns
errFSForkExists. If the fork name is syntactically invalid or otherwise unsupported for the given
volume, PBCreateForkAsync returns errFSBadForkName or errFSNameTooLong.

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory.

forkNameLength
On input, the length of the Unicode name of the new fork.

forkName
On input, a pointer to the Unicode name of the fork.

A newly created fork has zero length (that is, its logical end-of-file is zero). The data and resource forks of a
file are automatically created and deleted as needed. This is done for compatibility with older APIs, and
because data and resource forks are often handled specially. If a given fork always exists for a given volume
format (such as data and resource forks for HFS and HFS Plus, or data forks for most other volume formats),
an attempt to create that fork when a zero-length fork already exists should return noErr; if a non-empty
fork already exists then errFSForkExists should be returned.

Functions 595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBDeleteFileIDRefAsync
Deletes a file ID reference. (Deprecated in Mac OS X v10.5. There is no replacement function.)

OSErr PBDeleteFileIDRefAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 818) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification for the volume containing the file.

ioFileID
On input, the file ID reference to delete. After it has invalidated a file ID reference, the File Manager
can no longer resolve that ID reference to a filename and parent directory ID.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

596 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBDeleteFileIDRefSync
Deletes a file ID reference. (Deprecated in Mac OS X v10.5. There is no replacement function.)

OSErr PBDeleteFileIDRefSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 818) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification for the volume containing the file.

ioFileID
On input, the file ID reference to delete. After it has invalidated a file ID reference, the File Manager
can no longer resolve that ID reference to a filename and parent directory ID.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBDeleteForkAsync
Deletes a named fork of a file or directory.

void PBDeleteForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Functions 597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If the named fork does not exist, the function returns
errFSForkNotFound.

ref
On input, a pointer to an FSRef (page 837) for the file or directory from which to delete the fork.

forkNameLength
On input, the length of the fork’s Unicode name.

forkName
On input, a pointer to the Unicode name of the fork to delete.

The permissions, forkRefNum, positionMode, and positionOffset fields of the parameter block may
be modified by this call.

Any storage allocated to the fork is released. If a given fork always exists for a given volume format (such as
data and resource forks for HFS and HFS Plus, or data forks for most other volume formats), this is equivalent
to setting the logical size of the fork to zero.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBDeleteForkSync
Deletes a named fork from a file or directory.

OSErr PBDeleteForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If the named fork does not exist, the function
returns errFSForkNotFound.

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 837) for the file or directory from which to delete the fork.

598 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

forkNameLength
On input, the length of the fork’s Unicode name.

forkName
On input, a pointer to the Unicode name of the fork to delete.

The permissions, forkRefNum, positionMode, and positionOffset fields of the parameter block may
be modified by this call.

Any storage allocated to the fork is released. If a given fork always exists for a given volume format (such as
data and resource forks for HFS and HFS Plus, or data forks for most other volume formats), this is equivalent
to setting the logical size of the fork to zero.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBDeleteObjectAsync
Deletes a file or an empty directory.

void PBDeleteObjectAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
A result code. See “File Manager Result Codes” (page 943). If you attempt to delete a folder for which
there is an open catalog iterator, this function succeeds and returns noErr. Iteration, however, will
continue to work until the iterator is closed.

ref
On input, a pointer to the FSRef (page 837) for the file or directory to be deleted. If the object to be
deleted is a directory, it must be empty (it must contain no files or folders).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBDeleteObjectSync
Deletes a file or an empty directory.

OSErr PBDeleteObjectSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you attempt to delete a folder for which there
is an open catalog iterator, this function succeeds and returns noErr. Iteration, however, will continue to
work until the iterator is closed.

Discussion
The relevant field of the parameter block is:

ref
On input, a pointer to the FSRef (page 837) for the file or directory to be deleted. If the object to be
deleted is a directory, it must be empty (it must contain no files or folders).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBDirCreateAsync
Creates a new directory. (Deprecated in Mac OS X v10.4. Use PBCreateDirectoryUnicodeAsync (page
587) instead.)

OSErr PBDirCreateAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

600 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name for the new directory.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID. If the parent directory ID is 0 and the volume specified in the
ioVRefNum field is the default volume, the new directory is placed in the default directory of the
volume. If the parent directory ID is 0 and the volume specified in the ioVRefNum field is a volume
other than the default volume, the new directory is placed in the root directory of the volume. To
create a directory at the root of a volume, regardless of whether that volume is the current default
volume, pass the constant fsRtDirID (2) in this field. On output, the directory ID of the new directory.
Note that a directory ID, unlike a volume reference number, is a long integer.

The PBDirCreateAsync function is identical to PBHCreateAsync (page 676) except that it creates a new
directory instead of a file. The date and time of the directory’s creation and last modification are set to the
current date and time.

To create a directory with a Unicode name, use the function FSCreateDirectoryUnicode (page 479) , or
one of the corresponding parameter block calls, PBCreateDirectoryUnicodeSync (page 589) and
PBCreateDirectoryUnicodeAsync (page 587).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDirCreateSync
Creates a new directory. (Deprecated in Mac OS X v10.4. Use PBCreateDirectoryUnicodeSync (page 589)
instead.)

OSErr PBDirCreateSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name for the new directory.

Functions 601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID. If the parent directory ID is 0 and the volume specified in the
ioVRefNum field is the default volume, the new directory is placed in the default directory of the
volume. If the parent directory ID is 0 and the volume specified in the ioVRefNum field is a volume
other than the default volume, the new directory is placed in the root directory of the volume. To
create a directory at the root of a volume, regardless of whether that volume is the current default
volume, pass the constant fsRtDirID (2) in this field. On output, the directory ID of the new directory.
Note that a directory ID, unlike a volume reference number, is a long integer.

The PBDirCreateSync function is identical to PBHCreateSync (page 677) except that it creates a new
directory instead of a file. The date and time of the directory’s creation and last modification are set to the
current date and time.

To create a directory with a Unicode name, use the function FSCreateDirectoryUnicode (page 479) , or
one of the corresponding parameter block calls, PBCreateDirectoryUnicodeSync (page 589) and
PBCreateDirectoryUnicodeAsync (page 587).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTAddAPPLAsync
Adds an application to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTAddAPPLAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

602 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
On input, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database to which you wish to add
an application.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDirID
On input, the ID of the application’s parent directory.

ioFileCreator
On input, the application’s signature.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTAddAPPLSync
Adds an application to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTAddAPPLSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database to which you wish to add
an application.

ioTagInfo
Reserved; on input, this field must be set to 0.

Functions 603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDirID
On input, the ID of the application’s parent directory.

ioFileCreator
On input, the application’s signature.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTAddIconAsync
Adds an icon definition to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTAddIconAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number of the database to which you wish to add an icon.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTBuffer
On input, a pointer to the buffer holding the icon’s bitmap.

ioDTReqCount
On input, the size in bytes of the buffer that you’ve allocated for the icon’s bitmap. This value depends
on the icon type. Be sure to allocate enough storage for the icon data 1024 bytes is the largest amount

604 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

required for any icon in System 7. For a description of the values you can use to indicate the icon’s
size, see “Icon Size Constants” (page 921).

ioIconType
On input, the icon type. See “Icon Type Constants” (page 922) for a description of the values you can
use in this field.

ioFileCreator
On input, the icon’s file creator.

ioFileType
On input, the icon’s file type.

If the database already contains an icon definition for an icon of that type, file type, and file creator, the new
definition replaces the old.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTAddIconSync
Adds an icon definition to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTAddIconSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioDTRefNum
On input, the desktop database reference number of the database to which you wish to add an icon.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTBuffer
On input, a pointer to the buffer holding the icon’s bitmap.

Functions 605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDTReqCount
On input, the size in bytes of the buffer that you’ve allocated for the icon’s bitmap. This value depends
on the icon type. Be sure to allocate enough storage for the icon data 1024 bytes is the largest amount
required for any icon in System 7 For a description of the values you can use to indicate the icon’s
size, see “Icon Size Constants” (page 921).

ioIconType
On input, the icon type. See “Icon Type Constants” (page 922) for a description of the values you can
use in this field.

ioFileCreator
On input, the icon’s file creator.

ioFileType
On input, the icon’s file type.

If the database already contains an icon definition for an icon of that type, file type, and file creator, the new
definition replaces the old.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTCloseDown
Closes the desktop database, though your application should never do this itself. (Deprecated in Mac OS X
v10.4. There is no replacement function.)

OSErr PBDTCloseDown (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant field of the parameter block for this function is:

ioDTRefNum
On input, the desktop database reference number.

606 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

System software uses the PBDTCloseDown function to close the desktop database; your application should
never use this function, which is described here only for completeness. The system software closes the
database when the volume is unmounted.

PBDTCloseDown runs synchronously only, and though it will not close down the desktop databases of remote
volumes, it will invalidate all local desktop database reference values for remote desktop databases.

When the PBDTCloseDown function closes the database, it frees all resources allocated by
PBDTOpenInform (page 623) or PBDTGetPath (page 622).

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTDeleteAsync
Removes the desktop database. Unless you are manipulating the desktop database in the absence of the
Finder, you should never use this function. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTDeleteAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBDTDeleteAsync function removes the desktop database from a local volume. You can call
PBDTDeleteAsync only when the database is closed. Your application should not call PBDTDeleteAsync
unless absolutely necessary.

The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioVRefNum
On input, the volume reference number of the desktop database to remove.

Functions 607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioIndex
Reserved; on input, this field must be set to 0.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTDeleteSync
Removes the desktop database. Unless you are manipulating the desktop database in the absence of the
Finder, you should never use this function. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTDeleteSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBDTDeleteSync function removes the desktop database from a local volume. You can call
PBDTDeleteSync only when the database is closed. Your application should not call PBDTDeleteSync
unless absolutely necessary.

The relevant fields of the parameter block for this function are:

ioVRefNum
On input, the volume reference number of the desktop database to remove.

ioIndex
Reserved; on input, this field must be set to 0.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

608 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBDTFlushAsync
Saves your changes to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTFlushAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If your application adds information to or removes information from the desktop database, use the
PBDTFlushAsync function to save your changes. The PBDTFlushAsync function writes the contents of the
desktop database specified in the ioDTRefNum field to the volume.

The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number of the desktop database to flush.

You must call PBDTFlushAsync or PBDTFlushSync (page 610) to update the copy of the desktop database
stored on the volume if your application has manipulated information in the database using any of the
following functions:

 ■ PBDTAddIconSync (page 605)

 ■ PBDTAddIconAsync (page 604)

 ■ PBDTAddAPPLSync (page 603)

 ■ PBDTAddAPPLAsync (page 602)

 ■ PBDTSetCommentSync (page 630)

 ■ PBDTSetCommentAsync (page 629)

 ■ PBDTRemoveAPPLSync (page 625)

 ■ PBDTRemoveAPPLAsync (page 624)

 ■ PBDTRemoveCommentSync (page 627)

 ■ PBDTRemoveCommentAsync (page 626)

Functions 609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTFlushSync
Saves your changes to the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTFlushSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If your application adds information to or removes information from the desktop database, use the
PBDTFlushSync function to save your changes. The PBDTFlushSync function writes the contents of the
desktop database specified in the ioDTRefNum field to the volume.

The relevant field of the parameter block for this function is:

ioDTRefNum
On input, the desktop database reference number of the desktop database to flush.

You must call PBDTFlushSync or PBDTFlushAsync (page 609) to update the copy of the desktop database
stored on the volume if your application has manipulated information in the database using any of the
following functions:

 ■ PBDTAddIconSync (page 605)

 ■ PBDTAddIconAsync (page 604)

 ■ PBDTAddAPPLSync (page 603)

 ■ PBDTAddAPPLAsync (page 602)

 ■ PBDTSetCommentSync (page 630)

 ■ PBDTSetCommentAsync (page 629)

 ■ PBDTRemoveAPPLSync (page 625)

 ■ PBDTRemoveAPPLAsync (page 624)

610 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

 ■ PBDTRemoveCommentSync (page 627)

 ■ PBDTRemoveCommentAsync (page 626)

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetAPPLAsync
Identifies the application that can open a file with a given creator. (Deprecated in Mac OS X v10.4. There is
no replacement function.)

OSErr PBDTGetAPPLAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code. See “File Manager Result Codes”.

ioNamePtr
On output, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database containing the specified
application.

ioIndex
On input, an index into the application list.

ioTagInfo
On output, the application’s creation date.

Functions 611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFileCreator
On input, the signature of the application.

ioAPPLParID
On output, the application’s parent directory.

A single call, with the ioIndex field set to 0, finds the application file with the most recent creation date. If
you want to retrieve information about all copies of the application with the given signature, start with
ioIndex set to 1 and increment this value by 1 with each call to PBDTGetAPPLAsync until the result code
afpItemNotFound is returned in the ioResult field; when called multiple times in this fashion,
PBDTGetAPPLAsync returns information about all the application’s copies, including the file with the most
recent creation date, in arbitrary order.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetAPPLSync
Identifies the application that can open a file with a given creator. (Deprecated in Mac OS X v10.4. There is
no replacement function.)

OSErr PBDTGetAPPLSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On output, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database containing the specified
application.

ioIndex
On input, an index into the application list.

612 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioTagInfo
On output, the application’s creation date.

ioFileCreator
On input, the signature of the application.

ioAPPLParID
On output, the application’s parent directory.

A single call, with the ioIndex field set to 0, finds the application file with the most recent creation date. If
you want to retrieve information about all copies of the application with the given signature, start with
ioIndex set to 1 and increment this value by 1 with each call to PBDTGetAPPLSync until the result code
afpItemNotFound is returned in the ioResult field; when called multiple times in this fashion,
PBDTGetAPPLSync returns information about all the application’s copies, including the file with the most
recent creation date, in arbitrary order.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetCommentAsync
Retrieves the user comments for a file or directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTGetCommentAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

Functions 613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
On input, a pointer to the name of the file or directory for which you want to retrieve comments.

ioDTRefNum
On input, the desktop database reference number of the database in which the specified file or
directory is found.

ioDTBuffer
On input, a pointer to a buffer allocated to hold the comment text. On output, a pointer to the
comment text. Allocate a buffer at least 255 bytes in size. The PBDTGetCommentAsync function places
up to ioDTReqCount bytes of the comment into the buffer as a plain text string and places the actual
length of the comment in the ioDTActCount field.

ioDTReqCount
On input, the size of the buffer allocated to hold the comment.

ioDTActCount
On output, the comment size.

ioDirID
On input, the parent directory of the file or directory.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetCommentSync
Retrieves the user comments for a file or directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTGetCommentSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the name of the file or directory for which you want to retrieve comments.

614 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDTRefNum
On input, the desktop database reference number of the database in which the specified file or
directory is found.

ioDTBuffer
On input, a pointer to a buffer allocated to hold the comment text. On output, a pointer to the
comment text. Allocate a buffer at least 255 bytes in size. The PBDTGetCommentSync function places
up to ioDTReqCount bytes of the comment into the buffer as a plain text string and places the actual
length of the comment in the ioDTActCount field.

ioDTReqCount
On input, the size of the buffer allocated to hold the comment.

ioDTActCount
On output, the comment size.

ioDirID
On input, the parent directory of the file or directory.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetIconAsync
Retrieves an icon definition. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetIconAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBDTGetIconAsync function returns the bitmap for an icon that represents a file of a given type and
creator. For example, to get the icon for a file of file type 'SFWR' created by the application with a signature
of 'WAVE', specify these two values in the ioFileType and ioFileCreator fields.

The relevant fields of the parameter block for this function are:

Functions 615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTBuffer
On input, a pointer to a buffer to hold the icon’s data. On return, a pointer to the bitmap returned in
the buffer.

ioDTReqCount
On input, the requested size of the icon’s bitmap. Pass the size in bytes of the buffer that you’ve
allocated for the icon’s bitmap pointed to by the ioDTBuffer field; this value depends on the icon
type. Be sure to allocate enough storage for the icon data; 1024 bytes is the largest amount required
for any icon in System 7. You can use the constants described in “Icon Size Constants” (page 921) to
indicate the amount of memory you have provided for the icon’s data.

ioDTActCount
On return, the actual size of the icon’s bitmap. If this value is larger than the value specified in the
ioDTReqCount field, only the amount of data allowed by the value in the ioDTReqCount field is
valid.

ioIconType
On input, the icon type. For a description of the constants which you can use in this field, see “Icon
Type Constants” (page 922).

ioFileCreator
On input, the icon’s file creator.

ioFileType
On input, the icon’s file type.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetIconInfoAsync
Retrieves an icon type and the associated file type supported by a given creator in the desktop database.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

616 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBDTGetIconInfoAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number.

ioIndex
On input, an index into the icon list.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTActCount
On output, the size of the icon’s bitmap.

ioIconType
On output, the icon type, including the icon size and color depth. For a description of the values
which may be returned in this field, see “Icon Type Constants” (page 922). Ignore any values returned
in ioIconType that are not listed there; they represent special icons and information used only by
the Finder.

ioFileCreator
On input, the icon’s file creator.

ioFileType
On output, the icon’s file type.

To step through a list of the icon types and file types supported by an application, make repeated calls to
PBDTGetIconInfoAsync, specifying a creator and an index value in the ioIndex field for each call. Set the
index to 1 on the first call, and increment it on each subsequent call until the result code afpItemNotFound
is returned in the ioResult field.

To get a list of file types that an application can natively open, you can use the Translation Manager function,
GetFileTypesThatAppCanNativelyOpen. For a description of this function, see the TranslationManager
Reference .

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Functions 617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetIconInfoSync
Retrieves an icon type and the associated file type supported by a given creator in the desktop database.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetIconInfoSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioDTRefNum
On input, the desktop database reference number.

ioIndex
On input, an index into the icon list.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTActCount
On output, the size of the icon’s bitmap.

ioIconType
On output, the icon type, including the icon size and color depth. For a description of the values
which may be returned in this field, see “Icon Type Constants” (page 922). Ignore any values returned
in ioIconType that are not listed there; they represent special icons and information used only by
the Finder.

ioFileCreator
On input, the icon’s file creator.

ioFileType
On output, the icon’s file type.

To step through a list of the icon types and file types supported by an application, make repeated calls to
PBDTGetIconInfoSync, specifying a creator and an index value in the ioIndex field for each call. Set the
index to 1 on the first call, and increment it on each subsequent call until the result code afpItemNotFound
is returned in the ioResult field.

618 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

To get a list of file types that an application can natively open, you can use the Translation Manager function,
GetFileTypesThatAppCanNativelyOpen. For a description of this function, see the TranslationManager
Reference .

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetIconSync
Retrieves an icon definition. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetIconSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBDTGetIconSync function returns the bitmap for an icon that represents a file of a given type and
creator. For example, to get the icon for a file of file type 'SFWR' created by the application with a signature
of 'WAVE', specify these two values in the ioFileType and ioFileCreator fields.

The relevant fields of the parameter block for this function are:

ioDTRefNum
On input, the desktop database reference number.

ioTagInfo
Reserved; on input, this field must be set to 0.

ioDTBuffer
On input, a pointer to a buffer to hold the icon’s data. On return, a pointer to the bitmap returned in
the buffer.

ioDTReqCount
On input, the requested size of the icon’s bitmap. Pass the size in bytes of the buffer that you’ve
allocated for the icon’s bitmap, pointed to by the ioDTBuffer field; this value depends on the icon
type. Be sure to allocate enough storage for the icon data; 1024 bytes is the largest amount required
for any icon in System 7. You can use the constants described in “Icon Size Constants” (page 921) to
indicate the amount of memory you have provided for the icon’s data.

Functions 619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDTActCount
On output, the actual size of the icon’s bitmap. If this value is larger than the value specified in the
ioDTReqCount field, only the amount of data allowed by ioDTReqCount is valid.

ioIconType
On input, the icon type. For a description of the constants which you can use in this field, see “Icon
Type Constants” (page 922).

ioFileCreator
On input, the icon’s file creator.

ioFileType
On input, the icon’s file type.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetInfoAsync
Determines information about the location and size of the desktop database on a particular volume.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetInfoAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion function. For more information on completion functions, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioVRefNum
On output, the volume reference number of the volume where the database files are stored.

620 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDTRefNum
On input, the desktop database reference number of the database which you wish to obtain information
about.

ioIndex
On output, the number of files comprising the desktop database on the volume.

ioDirID
On output, the parent directory ID of the desktop database.

ioDTLgLen
On output, the logical length of the database files (the sum of the logical lengths of the files that
constitute the desktop database for a given volume).

ioDTPyLen
On output, the physical length of the database files (the sum of the physical lengths of the files that
constitute the desktop database for a given volume).

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetInfoSync
Determines information about the location and size of the desktop database on a particular volume.
(Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTGetInfoSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioVRefNum
On output, the volume reference number of the volume where the database files are stored.

ioDTRefNum
On input, the desktop database reference number of the database which you wish to obtain information
about.

Functions 621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioIndex
On output, the number of files comprising the desktop database on the volume.

ioDirID
On output, the parent directory ID of the desktop database.

ioDTLgLen
On output, the logical length of the database files (the sum of the logical lengths of the files that
constitute the desktop database for a given volume).

ioDTPyLen
On output, the physical length of the database files (the sum of the physical lengths of the files that
constitute the desktop database for a given volume).

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTGetPath
Gets the reference number of the specified desktop database. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

OSErr PBDTGetPath (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the name of the volume associated with the desktop database or the full
pathname of the desktop database.

ioVRefNum
On input, the volume reference number of the volume associated with the desktop database.

ioDTRefNum
On output, the desktop database reference number, which represents the access path to the database.
You cannot use the desktop reference number as a file reference number in any File Manager functions
other than the desktop database functions. If PBDTGetPath fails, it sets this field to 0.

622 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

If the desktop database is not already open, PBDTGetPath opens it and then returns the reference number.
If the desktop database doesn’t exist, PBDTGetPath creates it .

Special Considerations

PBDTGetPath allocates memory in the system heap; do not call it at interrupt time.

This function executes synchronously only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTOpenInform
Gets the reference number of the specified desktop database, reporting whether the desktop database was
empty when it was opened. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBDTOpenInform (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the name of the volume associated with the desktop database or the full
pathname of the desktop database.

ioVRefNum
On input, the volume reference number of the volume associated with the desktop database.

ioDTRefNum
On output, the desktop database reference number, which represents the access path to the database.
You cannot use the desktop reference number as a file reference number in any File Manager functions
other than the desktop database functions. If PBDTOpenInform fails, it sets this field to 0.

ioTagInfo
On output, the return flag (in the low bit of this field). If the desktop database was just created in
response to PBDTOpenInform (and is therefore empty), PBDTOpenInform sets the low bit in this
field to 0. If the desktop database had been created before you called PBDTOpenInform,
PBDTOpenInform sets the low bit in this field to 1.

Functions 623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

This function executes synchronously only.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTRemoveAPPLAsync
Removes an application from the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTRemoveAPPLAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). When called on an HFS CD volume,
PBDTRemoveAPPL returns an afpItemNotFound error, instead of the expected volume locked error (wPrErr).

Discussion
The PBDTRemoveAPPLAsync function removes the mapping information for an application from the database
specified in the ioDTRefNum field. You can call PBDTRemoveAPPLAsync even if the application is not present
on the volume.

The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioNamePtr
On input, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database containing the application.

ioDirID
On input, the application’s parent directory.

624 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFileCreator
On input, the application’s signature.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTRemoveAPPLSync
Removes an application from the desktop database. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBDTRemoveAPPLSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBDTRemoveAPPLSync function removes the mapping information for an application from the database
specified in the ioDTRefNum field. You can call PBDTRemoveAPPLSync even if the application is not present
on the volume.

The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the application’s name.

ioDTRefNum
On input, the desktop database reference number of the desktop database containing the application.

ioDirID
On input, the application’s parent directory.

ioFileCreator
On input, the application’s signature.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Functions 625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTRemoveCommentAsync
Removes a user comment associated with a file or directory from the desktop database. (Deprecated in Mac
OS X v10.4. There is no replacement function.)

OSErr PBDTRemoveCommentAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioNamePtr
On input, a pointer to the filename or directory name.

ioDTRefNum
On input, the desktop database reference number of the database in which the specified file or
directory is found.

ioDirID
On input, the parent directory ID of the file or directory.

You cannot remove a comment if the file or directory it is associated with is not present on the volume. If
no comment was stored for the file, PBDTRemoveCommentAsync returns an error.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

626 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBDTRemoveCommentSync
Removes a user comment associated with a file or directory from the desktop database. (Deprecated in Mac
OS X v10.4. There is no replacement function.)

OSErr PBDTRemoveCommentSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the filename or directory name.

ioDTRefNum
On input, the desktop database reference number of the database in which the specified file or
directory is found.

ioDirID
On input, the parent directory ID of the file or directory.

You cannot remove a comment if the file or directory it is associated with is not present on the volume. If
no comment was stored for the file, PBDTRemoveCommentSync returns an error.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTResetAsync
Removes information from the desktop database. Unless you are manipulating the desktop database in the
absence of the Finder, you should never use this function. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

Functions 627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBDTResetAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBDTResetAsync function removes all icons, application mappings, and comments from the desktop
database specified in the ioDTRefNum field. You can call PBDTResetAsync only when the database is open.
It remains open after the data is cleared. Your application should not call PBDTResetAsync unless absolutely
necessary.

The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioDTRefNum
On input, the desktop database reference number of the desktop database to clear.

ioIndex
Reserved; on input, this field must be set to 0.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTResetSync
Removes information from the desktop database. Unless you are manipulating the desktop database in the
absence of the Finder, you should never use this function. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

628 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBDTResetSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBDTResetSync function removes all icons, application mappings, and comments from the desktop
database specified in the ioDTRefNum field. You can call PBDTResetSync only when the database is open.
It remains open after the data is cleared. Your application should not call PBDTResetSync unless absolutely
necessary.

The relevant fields of the parameter block for this function are:

ioDTRefNum
On input, the desktop database reference number of the desktop database to clear.

ioIndex
Reserved; on input, this field must be set to 0.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTSetCommentAsync
Adds a user comment for a file or a directory to the desktop database. (Deprecated in Mac OS X v10.4. There
is no replacement function.)

OSErr PBDTSetCommentAsync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Functions 629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block for this function are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. See “File Manager Result Codes”.

ioNamePtr
On input, a pointer to the name of the file or directory.

ioDTRefNum
On input, the desktop database reference number for the desktop database to which to add the user
comment.

ioDTBuffer
On input, a pointer to the buffer containing the comment text. Put the comment in the buffer as a
plain text string.

ioDTReqCount
On input, the length of the buffer (in bytes) containing the comment text. The maximum length of a
comment is 200 bytes; longer comments are truncated. Since the comment is a plain text string and
not a Pascal string, the File Manager relies on the value in the ioDTReqCount field for determining
the length of the buffer.

ioDirID
On input, the parent directory ID of the file or directory.

If the specified object already has a comment in the database, the new comment replaces the old.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBDTSetCommentSync
Adds a user comment for a file or a directory to the desktop database. (Deprecated in Mac OS X v10.4. There
is no replacement function.)

630 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBDTSetCommentSync (
 DTPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a desktop database parameter block. See DTPBRec (page 813) for a description of the
DTPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block for this function are:

ioNamePtr
On input, a pointer to the name of the file or directory.

ioDTRefNum
On input, the desktop database reference number for the desktop database to which to add the user
comment.

ioDTBuffer
On input, a pointer to the buffer containing the comment text. Put the comment in the buffer as a
plain text string.

ioDTReqCount
On input, the length of the buffer containing the comment text, in bytes. The maximum length of a
comment is 200 bytes; longer comments are truncated. Since the comment is a plain text string and
not a Pascal string, the File Manager relies on the value in the ioDTReqCount field for determining
the length of the buffer.

ioDirID
On input, the parent directory ID of the file or directory.

If the specified object already has a comment in the database, the new comment replaces the old.

Special Considerations

All of the desktop database functions may move or purge memory blocks in the application heap or for some
other reason should not be called from within an interrupt.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBExchangeFilesAsync
Exchanges the data stored in two files on the same volume. (Deprecated in Mac OS X v10.4. Use
PBExchangeObjectsAsync (page 635) instead.)

Functions 631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBExchangeFilesAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 818) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the first file to swap.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDestNamePtr
On input, a pointer to the name of the second file to swap.

ioDestDirID
On input, the second file’s parent directory ID.

ioSrcDirID
On input, the first file’s parent directory ID.

Typically, you use PBExchangeFilesAsync after creating a new file during a safe save. The
PBExchangeFilesAsync function changes the fields in the catalog entries that record the location of the
data and the modification dates. It swaps both the data forks and the resource forks.

The PBExchangeFilesAsync function works on either open or closed files. PBExchangeFilesAsync swaps
the data in two files by changing some of the information in the volume catalog. If either file is open,
PBExchangeFilesAsync updates any file control blocks associated with the file. Exchanging the contents
of two files requires essentially the same access privileges as opening both files for writing.

The following fields in the catalog entries for the files are exchanged:

 ■ ioFlStBlk

 ■ ioFlLgLen

 ■ ioFlPyLen

 ■ ioFlRStBlk

 ■ ioFlRLgLen

 ■ ioFlRPyLen

 ■ ioFlMdDat

632 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

In the file control blocks, the fcbFlNum, fcbDirID, and fcbCName fields are exchanged.

You should use PBExchangeFilesAsync to preserve the file ID when updating an existing file, in case the
file is being tracked through its file ID. The PBExchangeFilesAsync function does not require that file ID
references exist for the files being exchanged.

To exchange the contents of files with named forks other than the data and resource forks, or of files larger
than 2 GB, use the FSExchangeObjects (page 486) , PBExchangeObjectsSync (page 636) , or
PBExchangeObjectsAsync (page 635) function.

Special Considerations

Your application will have to swap any open reference numbers to the two files because the file's name and
parent directory ID are exchanged in the file control blocks.

Because other programs may have access paths open to one or both of the files exchanged, your application
should have exclusive read/write access permission (fsRdWrPerm) to both files before calling
PBExchangeFilesAsync. Exclusive read/write access to both files will ensure that PBExchangeFilesAsync
doesn't affect another application because it prevents other applications from obtaining write access to one
or both of the files exchanged.

PBExchangeFilesAsync does not respect the file-locked attribute; it will perform the exchange even if one
or both of the files are locked. Obtaining exclusive read/write access to both files before calling
PBExchangeFilesAsync ensures that the files are unlocked because locked files cannot be opened with
write access.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBExchangeFilesSync
Exchanges the data stored in two files on the same volume. (Deprecated in Mac OS X v10.4. Use
PBExchangeObjectsSync (page 636) instead.)

OSErr PBExchangeFilesSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the FIDParam (page 818) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

Functions 633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
On input, a pointer to the name of the first file to swap.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDestNamePtr
On input, a pointer to the name of the second file to swap.

ioDestDirID
On input, the second file’s parent directory ID.

ioSrcDirID
On input, the first file’s parent directory ID.

Typically, you use PBExchangeFilesSync after creating a new file during a safe save. The
PBExchangeFilesSync function changes the fields in the catalog entries that record the location of the
data and the modification dates. It swaps both the data forks and the resource forks.

The PBExchangeFilesSync function works on either open or closed files. PBExchangeFilesSync swaps
the data in two files by changing some of the information in the volume catalog. If either file is open,
PBExchangeFilesSync updates any file control blocks associated with the file. Exchanging the contents
of two files requires essentially the same access privileges as opening both files for writing.

The following fields in the catalog entries for the files are exchanged:

 ■ ioFlStBlk

 ■ ioFlLgLen

 ■ ioFlPyLen

 ■ ioFlRStBlk

 ■ ioFlRLgLen

 ■ ioFlRPyLen

 ■ ioFlMdDat

In the file control blocks, the fcbFlNum, fcbDirID, and fcbCName fields are exchanged.

You should use PBExchangeFilesSync to preserve the file ID when updating an existing file, in case the
file is being tracked through its file ID. The PBExchangeFilesSync function does not require that file ID
references exist for the files being exchanged.

To exchange the contents of files with named forks other than the data and resource forks, or of files larger
than 2 GB, use the FSExchangeObjects (page 486) , PBExchangeObjectsSync (page 636) , or
PBExchangeObjectsAsync (page 635) function.

Special Considerations

Your application will have to swap any open reference numbers to the two files because the file's name and
parent directory ID are exchanged in the file control blocks.

Because other programs may have access paths open to one or both of the files exchanged, your application
should have exclusive read/write access permission (fsRdWrPerm) to both files before calling
PBExchangeFilesSync. Exclusive read/write access to both files will ensure that PBExchangeFilesSync
doesn't affect another application because it prevents other applications from obtaining write access to one
or both of the files exchanged.

634 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBExchangeFilesSync does not respect the file-locked attribute; it will perform the exchange even if one
or both of the files are locked. Obtaining exclusive read/write access to both files before calling
PBExchangeFilesSync ensures that the files are unlocked because locked files cannot be opened with
write access.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBExchangeObjectsAsync
Swaps the contents of two files.

void PBExchangeObjectsAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ref
On input, a pointer to an FSRef (page 837) for the first file.

parentRef
On input, a pointer to an FSRef for the second file.

The PBExchangeObjectsAsync function allows programs to implement a “safe save” operation by creating
and writing a complete new file and swapping the contents. An alias, FSSpec, or FSRef that refers to the
old file will now access the new data. The corresponding information in in-memory data structures are also
exchanged.

Either or both files may have open access paths. After the exchange, the access path will refer to the opposite
file’s data (that is, to the same data it originally referred, which is now part of the other file).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBExchangeObjectsSync
Swaps the contents of two files.

OSErr PBExchangeObjectsSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 837) for the first file.

parentRef
On input, a pointer to an FSRef for the second file.

The PBExchangeObjectsSync function allows programs to implement a “safe save” operation by creating
and writing a complete new file and swapping the contents. An alias, FSSpec, or FSRef that refers to the
old file will now access the new data. The corresponding information in in-memory data structures are also
exchanged.

Either or both files may have open access paths. After the exchange, the access path will refer to the opposite
file’s data (that is, to the same data it originally referred, which is now part of the other file).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBFlushFileAsync
Writes the contents of a file’s access path buffer to the disk. (Deprecated in Mac OS X v10.4. Use
PBFlushForkAsync (page 638) instead.)

OSErr PBFlushFileAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

636 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the file to flush.

After writing the contents of the file to the volume, the PBFlushFileAsync function updates the file’s entry
in the volume catalog.

In the event of a system crash, all cached data not yet written to disk is lost. If you have made changes to
space that already exists within a file (you are overwriting existing data before the file’s end-of-file), you must
use PBFlushFileAsync to ensure that everything written to the file will be written to disk. If you flush the
fork’s cached blocks using PBFlushFileAsync, the only possible data loss in a system crash will be the file’s
modification date.

You do not, however, need to use PBFlushFileAsync to flush a file fork before it is closed; the file is
automatically flushed when it is closed and all cache blocks associated with it are removed from the cache.

PBFlushFileSync flushes an open fork’s dirty cached blocks, but may not flush catalog information associated
with the file. To flush catalog information, call FlushVol (page 466) , or one of the related parameter block
calls, PBFlushVolSync (page 641) and PBFlushVolAsync (page 640).

To update a file larger than 2GB, or a named fork other than the data and resource forks, you must use the
FSFlushFork (page 490) function, or one of the corresponding parameter block calls,PBFlushForkSync (page
639) and PBFlushForkAsync (page 638).

Special Considerations

Some information stored on the volume won’t be correct until PBFlushVolAsync is called.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBFlushFileSync
Writes the contents of a file’s access path buffer to the disk. (Deprecated in Mac OS X v10.4. Use
PBFlushForkSync (page 639) instead.)

Functions 637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBFlushFileSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant field of the parameter block is:

ioRefNum
On input, a file reference number for the file to flush.

After writing the contents of the file to the volume, the PBFlushFileSync function updates the file’s entry
in the volume catalog.

In the event of a system crash, all cached data not yet written to disk is lost. If you have made changes to
space that already exists within a file (you are overwriting existing data before the file’s end-of-file), you must
use PBFlushFileSync to ensure that everything written to the file will be written to disk. If you flush the
fork’s cached blocks using PBFlushFileSync, the only possible data loss in a system crash will be the file’s
modification date.

You do not, however, need to use PBFlushFileSync to flush a file fork before it is closed; the file is
automatically flushed when it is closed and all cache blocks associated with it are removed from the cache.

PBFlushFileSync flushes an open fork’s dirty cached blocks, but may not flush catalog information associated
with the file. To flush catalog information, call FlushVol (page 466) , or one of the related parameter block
calls, PBFlushVolSync (page 641) and PBFlushVolAsync (page 640).

To update a file larger than 2GB, or a named fork other than the data and resource forks, you must use the
FSFlushFork (page 490) function, or one of the corresponding parameter block calls,PBFlushForkSync (page
639) and PBFlushForkAsync (page 638).

Special Considerations

Some information stored on the volume won’t be correct until PBFlushVolSync is called.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBFlushForkAsync
Causes all data written to an open fork to be written to disk.

638 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void PBFlushForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for more information on the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of the fork to flush.

The PBFlushForkAsync function causes the actual fork contents to be written to disk, as well as any other
volume structures needed to access the fork. On HFS and HFS Plus, this includes the catalog, extents, and
attribute B-trees; the volume bitmap; and the volume header and alternate volume header (the MDB and
alternate MDB on HFS volumes), as needed.

On volumes that do not support PBFlushForkAsync directly, the entire volume is flushed to be sure all
volume structures associated with the fork are written to disk.

You do not, need to use PBFlushForkAsync to flush a file fork before it is closed; the file is automatically
flushed when it is closed and all cache blocks associated with it are removed from the cache.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBFlushForkSync
Causes all data written to an open fork to be written to disk.

OSErr PBFlushForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for more information on the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant field of the parameter block is:

Functions 639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

forkRefNum
On input, the reference number of the fork to flush.

The PBFlushForkSync function causes the actual fork contents to be written to disk, as well as any other
volume structures needed to access the fork. On HFS and HFS Plus, this includes the catalog, extents, and
attribute B-trees; the volume bitmap; and the volume header and alternate volume header (the MDB and
alternate MDB on HFS volumes), as needed.

On volumes that do not support PBFlushForkSync directly, the entire volume is flushed to be sure all
volume structures associated with the fork are written to disk.

You do not, need to use PBFlushForkSync to flush a file fork before it is closed; the file is automatically
flushed when it is closed and all cache blocks associated with it are removed from the cache.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBFlushVolAsync
Writes the contents of the volume buffer and updates information about the volume. (Deprecated in Mac
OS X v10.5. Use PBFlushVolumeAsync (page 642) instead.)

OSErr PBFlushVolAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the VolumeParam (page 873) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the volume to flush.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

PBFlushVolAsync flushes all open files on the volume, and then flushes all volume data structures. On the
volume specified byioNamePtrorioVRefNum, thePBFlushVolAsync function writes descriptive information
about the volume, the contents of the associated volume buffer, and all access path buffers for the volume
(if they’ve changed since the last time PBFlushVolAsync was called).

640 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

The date and time of the last modification to the volume are set when the modification is made, not when
the volume is flushed.

To ensure that all changes to a volume are flushed to the volume, use PBFlushVolAsync. You do not,
however, need to flush a volume before unmounting it, ejecting it, or putting it offline; this is done
automatically.

If changes are made to a file that affect the file’s end-of-file, the file’s name, the file’s Finder information, or
the file’s location on the volume, then you must use PBFlushVolAsync, or one of the other two volume
flush functions in this section, to ensure that these changes are written to disk.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBFlushVolSync
Writes the contents of the volume buffer and updates information about the volume. (Deprecated in Mac
OS X v10.5. Use PBFlushVolumeSync (page 642) instead.)

OSErr PBFlushVolSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the VolumeParam (page 873) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the volume to flush.

ioVRefNum
On input, the volume reference number, drive number, or 0 for the default volume.

PBFlushVolSync flushes all open files on the volume, and then flushes all volume data structures. On the
volume specified by ioNamePtr or ioVRefNum, the PBFlushVolSync function writes descriptive information
about the volume, the contents of the associated volume buffer, and all access path buffers for the volume
(if they’ve changed since the last time PBFlushVolSync was called).

The date and time of the last modification to the volume are set when the modification is made, not when
the volume is flushed.

To ensure that all changes to a volume are flushed to the volume, use PBFlushVolSync. You do not, however,
need to flush a volume before unmounting it, ejecting it, or putting it offline; this is done automatically.

Functions 641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

If changes are made to a file that affect the file’s end-of-file, the file’s name, the file’s Finder information, or
the file’s location on the volume, then you must use PBFlushVolSync, or one of the other two volume flush
functions in this section, to ensure that these changes are written to disk.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBFlushVolumeAsync
For the specified volume, writes all open and modified files in the current process to permanent storage.

OSStatus PBFlushVolumeAsync (
 FSRefParamPtr paramBlock
);

Parameters
paramBlock

A parameter block containing the volume reference number of the volume to flush. See
FSRefParam (page 837).

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

PBFlushVolumeSync
For the specified volume, writes all open and modified files in the current process to permanent storage.

OSStatus PBFlushVolumeSync (
 FSRefParamPtr paramBlock
);

Parameters
paramBlock

A parameter block containing the volume reference number of the volume to flush. See
FSRefParam (page 837).

Return Value
A result code. See “File Manager Result Codes” (page 943).

Availability
Available in Mac OS X v10.5 and later.

642 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBFSCopyFileAsync
Duplicates a file and optionally renames it.

OSStatus PBFSCopyFileAsync (
 FSRefParamPtr paramBlock
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

PBFSCopyFileSync
Duplicates a file and optionally renames it.

OSStatus PBFSCopyFileSync (
 FSRefParamPtr paramBlock
);

Availability
Available in Mac OS X v10.5 and later.

Declared In
Files.h

PBGetCatalogInfoAsync
Returns catalog information about a file or directory. You can use this function to map from an FSRef to an
FSSpec.

void PBGetCatalogInfoAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) fro s description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

Functions 643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
On output, the result code of the function.

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory for which to retrieve
information.

whichInfo
On input, a bitmap specifying the catalog information fields to return. If you don’t want any catalog
information, set whichInfo to the constant kFSCatInfoNone. See “Catalog Information Bitmap
Constants” (page 891) for a description of the bits in this field.

catInfo
On output, a pointer to an FSCatalogInfo (page 826) structure containing the information about
the file or directory. Only the information specified in the whichInfo field is returned. If you don’t
want any catalog information, pass NULL here.

spec
On output, a pointer to the FSSpec (page 840) for the file or directory. This output is optional; if you
do not wish the FSSpec returned, pass NULL here.

parentRef
On output, a pointer to the FSRef for the object's parent directory. This output is optional; if you do
not wish the parent directory returned, pass NULL here. If the object specified in the ref field is a
volume’s root directory, then the FSRef returned in this field will not be a valid FSRef, since the root
directory has no parent object.

outName
On output, a pointer to the Unicode name of the file or directory. On input, pass a pointer to an
HFSUniStr255 (page 855) structure if you wish the name returned; otherwise, pass NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetCatalogInfoBulkAsync
Returns information about one or more objects from a catalog iterator. This function can return information
about multiple objects in a single call.

void PBGetCatalogInfoBulkAsync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 824) for a
description of the FSCatalogBulkParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

644 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
On output, the result code of the function. When all of the iterator’s objects have been returned, the
call will return errFSNoMoreItems.

iterator
On input, the iterator to use. You can obtain a catalog iterator with the function
FSOpenIterator (page 515) , or with one of the related parameter block calls,
PBOpenIteratorSync (page 742) and PBOpenIteratorAsync (page 741). Currently, the iterator
must be created with the kFSIterateFlat option. See FSIterator (page 835) for a description of
the FSIterator data type.

maximumItems
On input, the maximum number of items to return for this call.

actualItems
On output, the actual number of items found for this call.

containerChanged
On output, a value indicating whether or not the container’s contents have changed since the previous
PBGetCatalogInfoBulkAsync call. If true, the contents have changed. Objects may still be returned,
even though the container has changed. If so, note that if the container has changed, then the total
set of items returned may be incorrect: some items may be returned multiple times, and some items
may not be returned at all.

whichInfo
On input, a bitmap specifying the catalog information fields to return for each item. If you don’t wish
any catalog information returned, pass the constant kFSCatInfoNone in this field. For a description
of the bits in this field, see “Catalog Information Bitmap Constants” (page 891).

catalogInfo
On output, a pointer to an array of catalog information structures; one for each returned item. On
input, thecatalogInfo field should point to an array ofmaximumItems catalog information structures.
This field is optional; if you do not wish any catalog information returned, pass NULL here. See
FSCatalogInfo (page 826) for a description of the FSCatalogInfo data type.

refs
On input, a pointer to an array of maximumItems FSRef (page 837) structures. On output, an FSRef
is filled out for each returned item. This field is optional; if you do not wish any FSRef structures
returned, pass NULL here.

names
On output, a pointer to an array of names; one for each returned item. If you want the Unicode name
for each item found, set this field to point to an array of maximumItems HFSUniStr255 (page 855)
structures. Otherwise, set it to NULL.

specs
On input, a pointer to an array of maximumItems FSSpec structures. On output, an FSSpec structure
is filled out for each returned item. This field is optional; if you do not wish any FSSpec structures
returned, pass NULL here.

The PBGetCatalogInfoBulkAsync call may complete and return noErr with fewer than maximumItems
items returned. This may be due to various reasons related to the internal implementation. In this case, you
may continue to make PBGetCatalogInfoBulkSync calls using the same iterator.

Before calling this function, you should determine whether it is available, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Functions 645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBGetCatalogInfoBulkSync
Returns information about one or more objects from a catalog iterator. This function can return information
about multiple objects in a single call.

OSErr PBGetCatalogInfoBulkSync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 824) for a
description of the FSCatalogBulkParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). When all of the iterator’s objects have been returned,
the call will return errFSNoMoreItems.

Discussion
The relevant fields of the parameter block are:

iterator
On input, the iterator to use. You can obtain a catalog iterator with the function
FSOpenIterator (page 515) , or with one of the related parameter block calls,
PBOpenIteratorSync (page 742) and PBOpenIteratorAsync (page 741). Currently, the iterator
must be created with the kFSIterateFlat option. See FSIterator (page 835) for a description of
the FSIterator data type.

maximumItems
On input, the maximum number of items to return for this call.

actualItems
On output, the actual number of items found for this call.

containerChanged
On output, a value indicating whether or not the container’s contents have changed since the previous
PBGetCatalogInfoBulkSync call. If true, the contents have changed. Objects may still be returned,
even though the container has changed. If so, note that if the container has changed, then the total
set of items returned may be incorrect: some items may be returned multiple times, and some items
may not be returned at all.

whichInfo
On input, a bitmap specifying the catalog information fields to return for each item. If you don’t wish
any catalog information returned, pass the constant kFSCatInfoNone in this field. For a description
of the bits in this field, see “Catalog Information Bitmap Constants” (page 891).

catalogInfo
On output, a pointer to an array of catalog information structures; one for each returned item. On
input, thecatalogInfo field should point to an array ofmaximumItems catalog information structures.
This field is optional; if you do not wish any catalog information returned, pass NULL here. See
FSCatalogInfo (page 826) for a description of the FSCatalogInfo data type.

646 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

refs
On input, a pointer to an array of maximumItems HFSUniStr255 (page 855) structures. On output,
an FSRef is filled out for each returned item. This field is optional; if you do not wish any FSRef
structures returned, pass NULL here.

names
On output, a pointer to an array of names; one for each returned item. If you want the Unicode name
for each item found, set this field to point to an array of maximumItems HFSUniStr255 (page 855)
structures. Otherwise, set it to NULL.

specs
On input, a pointer to an array of maximumItems FSSpec structures. On output, an FSSpec structure
is filled out for each returned item. This field is optional; if you do not wish any FSSpec structures
returned, pass NULL here.

The PBGetCatalogInfoBulkSync call may complete and return noErr with fewer than maximumItems
items returned. This may be due to various reasons related to the internal implementation. In this case, you
may continue to make PBGetCatalogInfoBulkSync calls using the same iterator.

Before calling this function, you should determine whether it is available, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetCatalogInfoSync
Returns catalog information about a file or directory. You can use this function to map from an FSRef to an
FSSpec.

OSErr PBGetCatalogInfoSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory for which to retrieve
information.

whichInfo
On input, a bitmap specifying the catalog information fields to return. If you don’t want any catalog
information, set whichInfo to the constant kFSCatInfoNone. See “Catalog Information Bitmap
Constants” (page 891) for a description of the bits in this field.

Functions 647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

catInfo
On output, a pointer to an FSCatalogInfo (page 826) structure containing the information about
the file or directory. Only the information specified in the whichInfo field is returned. If you don’t
want any catalog information, pass NULL here.

spec
On output, a pointer to the FSSpec (page 840) for the file or directory. This output is optional; if you
do not wish the FSSpec returned, pass NULL here.

parentRef
On output, a pointer to the FSRef for the object's parent directory. This output is optional; if you do
not wish the parent directory returned, pass NULL here. If the object specified in the ref field is a
volume’s root directory, then the FSRef returned in this field will not be a valid FSRef, since the root
directory has no parent object.

outName
On output, a pointer to the Unicode name of the file or directory. On input, pass a pointer to an
HFSUniStr255 (page 855) structure if you wish the name returned; otherwise, pass NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetCatInfoAsync
Returns catalog information about a file or directory. (Deprecated in Mac OS X v10.4. Use
PBGetCatalogInfoAsync (page 643) instead.)

OSErr PBGetCatInfoAsync (
 CInfoPBPtr paramBlock
);

Parameters
paramBlock

A pointer to an HFS catalog information parameter block. See CInfoPBRec (page 802) for a description
of the CInfoPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBGetCatInfoAsync function returns information about a file or directory, depending on the values
you specify in the ioFDirIndex, ioNamePtr, ioVRefNum, and ioDirID or ioDrDirID fields. If you need
to determine whether the information returned is for a file or a directory, you can test bit 4 of the ioFlAttrib
field; if that bit is set, the information returned describes a directory.

The PBGetCatInfoAsync function selects a file or directory according to these rules:

 ■ If the value of ioFDirIndex is positive, ioNamePtr is not used as an input parameter and
PBGetCatInfoAsync returns information about the file or directory whose directory index is
ioFDirIndex in the directory specified by ioDirID (or ioDrDirID) on the volume specified by
ioVRefNum (this will be the root directory if ioVRefNum is a volume reference number or a drive
number and ioDirID is 0). If ioNamePtr is not NULL, then it must point to a Str31 buffer where the
file or directory name will be returned.

648 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

 ■ If the value of ioFDirIndex is 0, PBGetCatInfoAsync returns information about the file or directory
specified by ioNamePtr in the directory specified by ioDirID (or ioDrDirID) on the volume specified
by ioVRefNum (again, this will be the root directory if ioVRefNum is a volume reference number or a
drive number and ioDirID is 0).

 ■ If the value of ioFDirIndex is negative, PBGetCatInfoAsync ignores the ioNamePtr field and returns
information about the directory specified in the ioDrDirID field. If ioNamePtr is not NULL, then it must
point to a Str31 buffer where the directory name will be returned.

With files, PBGetCatInfoAsync is similar to PBHGetFInfoAsync (page 682) but returns some additional
information. If the object is a file, the relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. On output, the name of the file is returned in this field, if the file
is open. If you do not want the name of the file returned, pass NULL in this field.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFRefNum
On output, a file reference number. If the file is open, the reference number of the first access path
found is returned here .

ioFDirIndex
On input, a directory index.

ioFlAttrib
On output, the file attributes. See “File Attribute Constants” (page 914) for the meaning of the file
attributes.

ioFlFndrInfo
On output, information used by the Finder.

ioDirID
On input, a directory ID. On output, the file ID. You might need to save the value of ioDirID before
calling PBGetCatInfoAsync if you make subsequent calls with the same parameter block.

ioFlStBlk
On output, the first allocation block of the data fork.

ioFlLgLen
On output, the logical size (the logical end-of-file) of the data fork, in bytes.

ioFlPyLen
On output, the physical size (the physical end-of-file) of the data fork, in bytes.

ioFlRStBlk
On output, the first allocation block of the resource fork.

ioFlRLgLen
On output, the logical size of the resource fork, in bytes.

ioFlRPyLen
On output, the physical size of the resource fork, in bytes.

Functions 649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFlCrDat
On output, the date and time of the file’s creation. Note that file systems other than AFP, HFS and
HFS Plus do not generally support creation dates. For file systems which do not support creation
dates, the File Manager sets the ioFlCrDat field to 0.

ioFlMdDat
On output, the date and time of the file’s last modification.

ioFlBkDat
On output, the date and time of the file’s last backup. Note that file systems other than AFP, HFS and
HFS Plus do not generally support backup dates. For file systems which do not support backup dates,
the File Manager sets the ioFlBkDat field to 0.

ioFlXFndrInfo
On output, additional information used by the Finder.

ioFlParID
On output, the directory ID of the file’s parent directory.

ioFlClpSiz
On output, the file’s clump size.

You can also use PBGetCatInfoAsync to determine whether a file has a file ID reference. The value of the
file ID is returned in the ioDirID field. Because that parameter could also represent a directory ID, call
PBResolveFileIDRefAsync (page 749) to see if the value is a real file ID. If you want to determine whether
a file ID reference exists for a file and create one if it doesn’t, use PBCreateFileIDRefAsync (page 590) ,
which will either create a file ID or return fidExists.

If the object is a directory, the relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. On output, a pointer to the directory name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFDirIndex
On input, a directory index.

ioFlAttrib
On output, the directory attributes. See “File Attribute Constants” (page 914) for the meaning of the
bits in this field. The bits in this field for directories are read-only. You cannot alter directory attributes
by setting these bits using the functionsPBSetCatInfoSync (page 755) orPBSetCatInfoAsync (page
754). Instead, you can call the PBHSetFLockSync (page 724) and PBHRstFLockSync (page 718)
functions to lock and unlock a directory, and the PBShareSync (page 769) and PBUnshareSync (page
773) functions to enable and disable file sharing on local directories.

ioACUser
On output, the directory access rights. The PBGetCatInfoAsync function returns the information
in this field only for shared volumes. As a result, you should set this field to 0 before calling
PBGetCatInfoAsync.PBGetCatInfoAsync does not return the blank access privileges bit in this
field; to determine whether a directory has blank access privileges, use the

650 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHGetDirAccessAsync (page 680) function. See “User Privileges Constants” (page 930) for a
description of the constants that may be returned in this field.

ioDrUsrWds
On output, information used by the Finder.

ioDrDirID
On input, if you wish to obtain information about a specific directory, that directory’s ID. Otherwise,
if the object returned is a directory, this field contains the directory ID on output.

ioDrNmFls
On output, the number of files in the directory.

ioDrCrDat
On output, the date and time of the directory’s creation. Note that file systems other than AFP, HFS
and HFS Plus do not generally support creation dates. For file systems which do not support creation
dates, the File Manager sets the ioDrCrDat field to 0.

ioDrMdDat
On output, the date and time of the directory’s last modification.

ioDrBkDat
On output, the date and time of the directory’s last backup. Note that file systems other than AFP,
HFS and HFS Plus do not generally support backup dates. For file systems which do not support
backup dates, the File Manager sets the ioDrBkDat field to 0.

ioDrFndrInfo
On output, additional information used by the Finder.

ioDrParID
On output, the directory ID of the directory’s parent directory.

To get information on a file or directory with named forks, or on a file larger than 2GB, use one of the
FSGetCatalogInfo (page 494) , PBGetCatalogInfoSync (page 647) , or PBGetCatalogInfoAsync (page
643) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetCatInfoSync
Returns catalog information about a file or directory. (Deprecated in Mac OS X v10.4. Use
PBGetCatalogInfoSync (page 647) instead.)

OSErr PBGetCatInfoSync (
 CInfoPBPtr paramBlock
);

Parameters
paramBlock

A pointer to an HFS catalog information parameter block. See CInfoPBRec (page 802) for a description
of the CInfoPBRec data type.

Functions 651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBGetCatInfoSync function returns information about a file or directory, depending on the values you
specify in the ioFDirIndex, ioNamePtr, ioVRefNum, and ioDirID or ioDrDirID fields. If you need to
determine whether the information returned is for a file or a directory, you can test bit 4 of the ioFlAttrib
field; if that bit is set, the information returned describes a directory.

The PBGetCatInfoSync function selects a file or directory according to these rules:

 ■ If the value of ioFDirIndex is positive, ioNamePtr is not used as an input parameter and
PBGetCatInfoSync returns information about the file or directory whose directory index isioFDirIndex
in the directory specified by ioDirID (or ioDrDirID) on the volume specified by ioVRefNum (this
will be the root directory if ioVRefNum is a volume reference number or a drive number and ioDirID
is 0). If ioNamePtr is not NULL, then it must point to a Str31 buffer where the file or directory name
will be returned.

 ■ If the value of ioFDirIndex is 0, PBGetCatInfoSync returns information about the file or directory
specified by ioNamePtr in the directory specified by ioDirID (or ioDrDirID) on the volume specified
by ioVRefNum (again, this will be the root directory if ioVRefNum is a volume reference number or a
drive number and ioDirID is 0).

 ■ If the value of ioFDirIndex is negative, PBGetCatInfoSync ignores the ioNamePtr field and returns
information about the directory specified in the ioDrDirID field. If ioNamePtr is not NULL, then it must
point to a Str31 buffer where the directory name will be returned.

With files, PBGetCatInfoSync is similar to PBHGetFInfoSync (page 683) but returns some additional
information. If the object is a file, the relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. On output, the name of the file is returned in this field, if the file
is open. If you do not want the name of the file returned, pass NULL in this field.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFRefNum
On output, a file reference number. If the file is open, the reference number of the first access path
found is returned here.

ioFDirIndex
On input, a directory index.

ioFlAttrib
On output, the file attributes. See “File Attribute Constants” (page 914) for the meaning of the file
attributes.

ioFlFndrInfo
On output, information used by the Finder.

ioDirID
On input, a directory ID. On output, the file ID. You might need to save the value of ioDirID before
calling PBGetCatInfoSync if you make subsequent calls with the same parameter block.

ioFlStBlk
On output, the first allocation block of the data fork.

652 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFlLgLen
On output, the logical size (the logical end-of-file) of the data fork, in bytes.

ioFlPyLen
On output, the physical size (the physical end-of-file) of the data fork, in bytes.

ioFlRStBlk
On output, the first allocation block of the resource fork.

ioFlRLgLen
On output, the logical size of the resource fork, in bytes.

ioFlRPyLen
On output, the physical size of the resource fork, in bytes.

ioFlCrDat
On output, the date and time of the file’s creation. Note that file systems other than AFP, HFS and
HFS Plus do not generally support creation dates. For file systems which do not support creation
dates, the File Manager sets the ioFlCrDat field to 0.

ioFlMdDat
On output, the date and time of the file’s last modification.

ioFlBkDat
On output, the date and time of the file’s last backup. Note that file systems other than AFP, HFS and
HFS Plus do not generally support backup dates. For file systems which do not support backup dates,
the File Manager sets the ioFlBkDat field to 0.

ioFlXFndrInfo
On output, additional information used by the Finder.

ioFlParID
On output, the directory ID of the file’s parent directory.

ioFlClpSiz
On output, the file’s clump size.

You can also use PBGetCatInfoSync to determine whether a file has a file ID reference. The value of the
file ID is returned in the ioDirID field. Because that parameter could also represent a directory ID, call
PBResolveFileIDRefSync (page 750) to see if the value is a real file ID. If you want to determine whether
a file ID reference exists for a file and create one if it doesn’t, use PBCreateFileIDRefSync (page 591) ,
which will either create a file ID or return fidExists.

If the object is a directory, the relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. On output, a pointer to the directory’s name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFDirIndex
On input, a directory index.

ioFlAttrib
On output, the directory attributes. See “File Attribute Constants” (page 914) for the meaning of the
bits in this field. The bits in this field for directories are read-only. You cannot alter directory attributes
by setting these bits using the functionsPBSetCatInfoSync (page 755) orPBSetCatInfoAsync (page
754). Instead, you can call the PBHSetFLockSync (page 724) and PBHRstFLockSync (page 718)
functions to lock and unlock a directory, and the PBShareSync (page 769) and PBUnshareSync (page
773) functions to enable and disable file sharing on local directories.

Functions 653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioACUser
On output, the directory access rights. The PBGetCatInfoSync function returns the information in
this field only for shared volumes. As a result, you should set this field to 0 before calling
PBGetCatInfoSync. PBGetCatInfoSync does not return the blank access privileges bit in this field;
to determine whether a directory has blank access privileges, use the PBHGetDirAccessSync (page
681) function. See “User Privileges Constants” (page 930) for a description of the constants that may
be returned here.

ioDrUsrWds
On output, information used by the Finder.

ioDrDirID
On input, if you wish to obtain information about a specific directory, that directory’s ID. Otherwise,
if the object returned is a directory, this field contains the directory ID on output.

ioDrNmFls
On output, the number of files in the directory.

ioDrCrDat
On output, the date and time of the directory’s creation. Note that file systems other than AFP, HFS
and HFS Plus do not generally support creation dates. For file systems which do not support creation
dates, the File Manager sets the ioDrCrDat field to 0.

ioDrMdDat
On output, the date and time of the directory’s last modification.

ioDrBkDat
On output, the date and time of the directory’s last backup. Note that file systems other than AFP,
HFS and HFS Plus do not generally support backup dates. For file systems which do not support
backup dates, the File Manager sets the ioDrBkDat field to 0.

ioDrFndrInfo
On output, additional information used by the Finder.

ioDrParID
On output, the directory ID of the directory’s parent directory.

To get information on a file or directory with named forks, or on a file larger than 2GB, use one of the
FSGetCatalogInfo (page 494) , PBGetCatalogInfoSync (page 647) , or PBGetCatalogInfoAsync (page
643) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetEOFAsync
Determines the current logical size of an open file. (Deprecated in Mac OS X v10.4. Use
PBGetForkSizeAsync (page 664) instead.)

654 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBGetEOFAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the open file.

ioMisc
On output, the logical size (the logical end-of-file) of the given file. Because the ioMisc field is of
type Ptr, you’ll need to coerce the value to a long integer to interpret the value correctly.

To determine the size of a named fork other than the data or resource forks, or of a fork larger than 2 GB,
use the FSGetForkSize (page 499) function, or one of the corresponding parameter block functions,
PBGetForkSizeSync (page 665) and PBGetForkSizeAsync (page 664).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetEOFSync
Determines the current logical size of an open file. (Deprecated in Mac OS X v10.4. Use
PBGetForkSizeSync (page 665) instead.)

OSErr PBGetEOFSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Functions 655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the open file.

ioMisc
On output, a pointer to the logical size (the logical end-of-file) of the given file. Because the ioMisc
field is of type Ptr, you’ll need to coerce the value to a long integer to interpret the value correctly.

To determine the size of a named fork other than the data or resource forks, or of a fork larger than 2 GB,
use the FSGetForkSize (page 499) function, or one of the corresponding parameter block functions,
PBGetForkSizeSync (page 665) and PBGetForkSizeAsync (page 664).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetFCBInfoAsync
Gets information about an open file from the file control block. (Deprecated in Mac OS X v10.4. Use
PBGetForkCBInfoAsync (page 660) instead.)

OSErr PBGetFCBInfoAsync (
 FCBPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a file control block parameter block. See FCBPBRec (page 816) for a description of the
FCBPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. You should pass a pointer to a Str31 value if you want the name
of the file returned. If you pass NULL, no filename is returned. On output, if PBGetFCBInfoAsync
executes successfully, a pointer to the name of the specified open file.

656 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVRefNum
On input, a volume specification. If you specify a valid index number in the ioFCBIndx field, the File
Manager returns information on the file having that index in the FCB buffer on the volume specified
in this field. This field may contain a drive number or volume reference number. If the value of
ioVRefNum is 0, all open files are indexed; otherwise, only open files on the specified volume are
indexed.

ioRefNum
On input, if the ioFCBIndx field is 0, the file reference number of the file to get information about.
If the value of ioFCBIndx is positive, the ioRefNum field is ignored on input and contains the file
reference number on output.

ioFCBIndx
On input, an index. If the value of ioFCBIndx is positive, the File Manager returns information about
the file whose index in the FCB buffer is ioFCBIndx and that is located on the volume specified in
the ioVRefNum field. If the value of ioFCBIndx is 0, the File Manager returns information about the
file whose file reference number is specified by the ioRefNum field.

ioFCBFlNm
On output, the file ID.

ioFCBFlags
On output, file status flags. See “FCB Flags” (page 906) for a description of the bits in this field.

ioFCBStBlk
On output, the first allocation block of the file.

ioFCBEOF
On output, the logical size (the logical end-of-file) of the file.

ioFCBPLen
On output, the physical size (the physical end-of-file) of the file.

ioFCBCrPs
On output, the position of the file mark.

ioFCBVRefNum
On output, the volume reference number.

ioFCBClpSiz
On output, the file clump size.

ioFCBParID
On output, the directory ID of the file’s parent directory.

To get information about a fork control block, use one of the functions, FSGetForkCBInfo (page 497) ,
PBGetForkCBInfoSync (page 661) , or PBGetForkCBInfoAsync (page 660).

Special Considerations

On OS X, the value returned by PBGetFCBInfoAsync in the ioFCBPLen field may differ from the physical
file length reported by FSGetCatalogInfo, PBGetCatInfo, and related functions. When a write causes a
file to grow in size, the physical length reported by FSGetCatalogInfo and similar calls increases by the
clump size, which is a multiple of the allocation block size. However, the physical length returned by
PBGetFCBInfoAsync changes according to the allocation block size and the file lengths returned by the
respective functions get out of sync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBGetFCBInfoSync
Gets information about an open file from the file control block. (Deprecated in Mac OS X v10.4. Use
PBGetForkCBInfoSync (page 661) instead.)

OSErr PBGetFCBInfoSync (
 FCBPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a file control block parameter block. See FCBPBRec (page 816) for a description of the
FCBPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. You should pass a pointer to a Str31 value if you want the name
of the file returned. If you pass NULL, no filename is returned. On output, if PBGetFCBInfoSync
executes successfully, a pointer to the name of the specified open file.

ioVRefNum
On input, a volume specification. If you specify a valid index number in the ioFCBIndx field, the File
Manager returns information on the file having that index in the FCB buffer on the volume specified
in this field. This field may contain a drive number or volume reference number. If the value of
ioVRefNum is 0, all open files are indexed; otherwise, only open files on the specified volume are
indexed.

ioRefNum
On input, if the ioFCBIndx field is 0, the file reference number of the file to get information about. If
the value of ioFCBIndx is positive, the ioRefNum field is ignored on input and contains the file
reference number on output.

ioFCBIndx
On input, an index. If the value of ioFCBIndx is positive, the File Manager returns information about
the file whose index in the FCB buffer is ioFCBIndx and that is located on the volume specified in
the ioVRefNum field. If the value of ioFCBIndx is 0, the File Manager returns information about the
file whose file reference number is specified by the ioRefNum field.

ioFCBFlNm
On output, the file ID.

ioFCBFlags
On output, file status flags. See “FCB Flags” (page 906) for a description of the bits in this field.

ioFCBStBlk
On output, the first allocation block of the file.

ioFCBEOF
On output, the logical size (the logical end-of-file) of the file.

658 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFCBPLen
On output, the physical size (the physical end-of-file) of the file.

ioFCBCrPs
On output, the current position of the file mark.

ioFCBVRefNum
On output, the volume reference number.

ioFCBClpSiz
On output, the file clump size.

ioFCBParID
On output, the directory ID of the file’s parent directory.

To get information about a fork control block, use one of the functions, FSGetForkCBInfo (page 497) ,
PBGetForkCBInfoSync (page 661) , or PBGetForkCBInfoAsync (page 660).

Special Considerations

On OS X, the value returned by PBGetFCBInfoSync in the ioFCBPLen field may differ from the physical
file length reported by FSGetCatalogInfo, PBGetCatInfo, and related functions. When a write causes a
file to grow in size, the physical length reported by FSGetCatalogInfo and similar calls increases by the
clump size, which is a multiple of the allocation block size. However, the physical length returned by
PBGetFCBInfoSync changes according to the allocation block size and the file lengths returned by the
respective functions get out of sync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetForeignPrivsAsync
Determines the native access-control information for a file or directory stored on a volume managed by a
foreign file system. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetForeignPrivsAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Functions 659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBGetForeignPrivsSync
Determines the native access-control information for a file or directory stored on a volume managed by a
foreign file system. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetForeignPrivsSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetForkCBInfoAsync
Returns information about a specified open fork, or about all open forks.

void PBGetForkCBInfoAsync (
 FSForkCBInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork control block parameter block. See FSForkCBInfoParam (page 830) for a description
of the FSForkCBInfoParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

desiredRefNum
On input, if you want information on a specific fork, set this field to that fork’s reference number. If
you pass a non-zero value in this parameter, the function attempts to get information on the fork
specified by that reference number the field is unchanged on output. Pass zero in this field to iterate
over all open forks; on output, this field contains the fork's reference number. You can limit this
iteration to a specific volume with the volumeRefNum field.

volumeRefNum
On input, the volume to search, when iterating over multiple forks. To iterate over all open forks on
a single volume, specify the volume reference number in this field. To iterate over all open forks on
all volumes, set this field to the constant kFSInvalidVolumeRefNum. This field is ignored if you
specify a fork reference number in the desiredRefNum parameter. Set desiredRefNum to zero if

660 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

you wish to iterate over multiple forks. See FSVolumeRefNum (page 847) for a description of the
FSVolumeRefNum data type.

iterator
On input, an iterator. If the desiredRefNum parameter is 0, the iterator maintains state between calls
to PBGetForkCBInfoAsync. Set the iterator field to 0 before you begin iterating, on the first call
to PBGetForkCBInfoAsync. On return, the iterator will be updated; pass this updated iterator in
the iterator field of the next call to PBGetForkCBInfoAsync to continue iterating.

actualRefNum
On output, the actual reference number of the open fork that was found.

ref
On output, a pointer to the FSRef (page 837) for the file or directory that contains the fork. This
information is optional; if you do not wish to the FSRef, set ref to NULL.

forkInfo
On output, a pointer to an FSForkInfo (page 832) structure containing information about the open
fork. This information is optional; if you do not wish it returned, set forkInfo to NULL.

forkName
On output, a pointer to the name of the fork. This field is optional; if you do not wish the name
returned, set forkName to NULL. See HFSUniStr255 (page 855) for a description of the HFSUniStr255
data type.

Carbon applications are no longer guaranteed access to the FCB table. Instead, applications should use
FSGetForkCBInfo (page 497) , or one of the related parameter block functions,PBGetForkCBInfoSync (page
661) and PBGetForkCBInfoAsync, to access information about a fork control block.

Special Considerations

Returning the fork information in the forkInfo field generally does not require a disk access; returning the
information in the ref or forkName fields may cause disk access for some volume formats.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetForkCBInfoSync
Returns information about a specified open fork, or about all open forks.

OSErr PBGetForkCBInfoSync (
 FSForkCBInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork control block parameter block. See FSForkCBInfoParam (page 830) for a description
of the FSForkCBInfoParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you are iterating over multiple forks, the function
returns errFSNoMoreItems if there are no more open forks to return.

Functions 661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

desiredRefNum
On input, if you want information on a specific fork, set this field to that fork’s reference number. If
you pass a non-zero value in this parameter, the function attempts to get information on the fork
specified by that reference number the field is unchanged on output. Pass zero in this field to iterate
over all open forks; on output, this field contains the fork's reference number. You can limit this
iteration to a specific volume with the volumeRefNum field.

volumeRefNum
On input, the volume to search, when iterating over multiple forks. To iterate over all open forks on
a single volume, specify the volume reference number in this field. To iterate over all open forks on
all volumes, set this field to the constant kFSInvalidVolumeRefNum. This field is ignored if you
specify a fork reference number in the desiredRefNum parameter. Set desiredRefNum to zero if
you wish to iterate over multiple forks. See FSVolumeRefNum (page 847) for a description of the
FSVolumeRefNum data type.

iterator
On input, an iterator. If the desiredRefNum parameter is 0, the iterator maintains state between calls
to PBGetForkCBInfoSync. Set the iterator field to 0 before you begin iterating, on the first call
to PBGetForkCBInfoSync. On return, the iterator will be updated; pass this updated iterator in the
iterator field of the next call to PBGetForkCBInfoSync to continue iterating.

actualRefNum
On output, the actual reference number of the open fork that was found.

ref
On output, a pointer to the FSRef (page 837) for the file or directory that contains the fork. This
information is optional; if you do not wish to the FSRef, set ref to NULL.

forkInfo
On output, a pointer to an FSForkInfo (page 832) structure containing information about the open
fork. This information is optional; if you do not wish it returned, set forkInfo to NULL.

forkName
On output, a pointer to the name of the fork. This field is optional; if you do not wish the name
returned, set forkName to NULL. See HFSUniStr255 (page 855) for a description of the HFSUniStr255
data type.

Carbon applications are no longer guaranteed access to the FCB table. Instead, applications should use
FSGetForkCBInfo (page 497) , or one of the related parameter block functions, PBGetForkCBInfoSync
and PBGetForkCBInfoAsync (page 660) , to access information about a fork control block.

Special Considerations

Returning the fork information in the forkInfo field generally does not require a disk access; returning the
information in the ref or forkName fields may cause disk access for some volume formats.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

662 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBGetForkPositionAsync
Returns the current position of an open fork.

void PBGetForkPositionAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of a fork previously opened by the FSOpenFork (page 514) ,
PBOpenForkSync (page 740) , or PBOpenForkAsync (page 739) function.

positionOffset
On output, the current position of the fork. The returned fork position is relative to the start of the
fork (that is, it is an absolute offset in bytes).

Special Considerations

Before calling the PBGetForkPositionAsync function, call the Gestalt function with the gestaltFSAttr
selector to determine if PBGetForkPositionAsync is available. If the function is available, but is not directly
supported by a volume, the File Manager will automatically call PBGetFPosAsync (page 666); however, you
will not be able to determine the fork position of a named fork other than the data or resource fork, or of a
fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetForkPositionSync
Returns the current position of an open fork.

OSErr PBGetForkPositionSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Functions 663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of a fork previously opened by the FSOpenFork (page 514) ,
PBOpenForkSync (page 740) or PBOpenForkAsync (page 739) function.

positionOffset
On output, the current position of the fork. The returned fork position is relative to the start of the
fork (that is, it is an absolute offset in bytes).

Special Considerations

Before calling the PBGetForkPositionSync function, call the Gestalt function with the gestaltFSAttr
selector to determine if PBGetForkPositionSync is available. If the function is available, but is not directly
supported by a volume, the File Manager will automatically call PBGetFPosSync (page 666); however, you
will not be able to determine the fork position of a named fork other than the data or resource fork, or of a
fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetForkSizeAsync
Returns the size of an open fork.

void PBGetForkSizeAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

forkRefNum
On input, the reference number of the open fork. You can obtain this fork reference number with the
FSOpenFork (page 514) function, or with one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

664 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

positionOffset
On output, the logical size (the logical end-of-file) of the fork, in bytes. The size returned is the total
number of bytes that can be read from the fork; the amount of space actually allocated on the volume
(the physical size) will probably be larger.

Special Considerations

To determine whether the PBGetForkSizeAsync function is present, call the Gestalt function. If
PBGetForkSizeAsync is present, but is not directly supported by a volume, the File Manager will call
PBGetEOFAsync (page 654); however, you will not be able to determine the size of a fork other than the data
or resource fork, or of a fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetForkSizeSync
Returns the size of an open fork.

OSErr PBGetForkSizeSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of the open fork. You can obtain this fork reference number with the
FSOpenFork (page 514) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

positionOffset
On output, the logical size (the logical end-of-file) of the fork, in bytes. The size returned is the total
number of bytes that can be read from the fork; the amount of space actually allocated on the volume
(the physical size) will probably be larger.

Special Considerations

To determine whether the PBGetForkSizeSync function is present, call the Gestalt function. If
PBGetForkSizeSync is present, but is not directly supported by a volume, the File Manager will call
PBGetEOFSync (page 655); however, you will not be able to determine the size of a fork other than the data
or resource fork, or of a fork larger than 2 GB.

Availability
Available in Mac OS X v10.0 and later.

Functions 665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBGetFPosAsync
Returns the current position of the file mark. (Deprecated in Mac OS X v10.4. Use
PBGetForkPositionAsync (page 663) instead.)

OSErr PBGetFPosAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information about completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioRefNum
On input, the file reference number of an open file.

ioPosOffset
On output, the current position of the mark. The value returned in ioPosOffset is zero-based. Thus,
a call to PBGetFPosAsync returns 0 if you call it when the file mark is positioned at the beginning
of the file. The ioReqCount, ioActCount, and ioPosMode fields of the parameter block are all set
to 0 on output. To determine the current position of a named fork, or of a fork larger than 2GB, use
the FSGetForkPosition (page 499) function, or one of the corresponding parameter block calls,
PBGetForkPositionSync (page 663) and PBGetForkPositionAsync (page 663).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetFPosSync
Returns the current position of the file mark. (Deprecated in Mac OS X v10.4. Use
PBGetForkPositionSync (page 663) instead.)

666 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBGetFPosSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, the file reference number of an open file.

ioPosOffset
On output, the current position of the mark. The value returned in ioPosOffset is zero-based. Thus,
a call to PBGetFPosSync returns 0 if you call it when the file mark is positioned at the beginning of
the file.

The ioReqCount, ioActCount, and ioPosMode fields of the parameter block are all set to 0 on output.

To determine the current position of a named fork, or of a fork larger than 2GB, use the
FSGetForkPosition (page 499) function, or one of the corresponding parameter block calls,
PBGetForkPositionSync (page 663) and PBGetForkPositionAsync (page 663).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetUGEntryAsync
Gets a user or group entry from the list of User and Group names and IDs on the local file server. (Deprecated
in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetUGEntryAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBGetUGEntrySync
Gets a user or group entry from the list of User and Group names and IDs on a local file server. (Deprecated
in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetUGEntrySync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetVolMountInfo
Retrieves a record containing all the information needed to mount a volume, except for passwords. (Deprecated
in Mac OS X v10.5. Use FSVolumeMount (page 545) instead.)

OSErr PBGetVolMountInfo (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname

ioVRefNum
On input, a volume specification. This field can contain a volume reference number, drive number,
or 0 for the default volume.

ioBuffer
On input, a pointer to a buffer to hold the mounting information. The length of the buffer is specified
by the value pointed to by the ioBuffer field in a previous call to PBGetVolMountInfoSize (page
669). On output, the mounting information for the specified volume. You can later pass this structure

668 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

to the PBVolumeMount (page 773) function to mount the volume. The mounting information for an
AppleShare volume is stored as an AFP mounting record. The PBGetVolMountInfo function does
not return the user password or volume password in the AFPVolMountInfo structure. Your application
should solicit these passwords from the user and fill in the structure before attempting to mount the
remote volume.

This function allows your application to record the mounting information for a volume and then to mount
the volume later. This programmatic mounting function stores the mounting information in a structure called
the AFPVolMountInfo (page 797) structure.

Special Considerations

This function executes synchronously. You should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBGetVolMountInfoSize
Determines how much space to allocate for a volume mounting information structure. (Deprecated in Mac
OS X v10.5. Use FSVolumeMount (page 545) instead.)

OSErr PBGetVolMountInfoSize (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname

ioVRefNum
On input, a volume specification. This field can contain a volume reference number, drive number,
or 0 for the default volume.

ioBuffer
On input, a pointer to storage for the size information, which is of type Integer (2 bytes). If
PBGetVolMountInfoSize returns noErr, that integer contains the size of the volume mounting
information structure on output.

You should call this function before you call PBGetVolMountInfo (page 668) , to obtain the size of the
volume mounting information for which you must allocate storage. Then call PBGetVolMountInfo to retrieve
the actual volume mounting information.

Functions 669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

This function executes synchronously. You should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBGetVolumeInfoAsync
Returns information about a volume.

void PBGetVolumeInfoAsync (
 FSVolumeInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a volume information parameter block. See FSVolumeInfoParam (page 845) for a
description of the FSVolumeInfoParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioVRefNum
On input, the volume whose information is to be returned. For information on a particular volume,
pass that volume’s reference number and set the volumeIndex field to 0. To index through the list
of mounted volumes, pass the constant kFSInvalidVolumeRefNum.On output, the volume reference
number of the volume. This is useful when indexing over all mounted volumes, when you have not
specified a particular volume reference number on input.

volumeIndex
On input, the index of the desired volume, or 0 to use the volume reference number in the ioVRefNum
field.

whichInfo
On input, a bitmap specifying which volume information fields to return in the volumeInfo field. If
you don’t want the information about the volume returned in the volumeInfo field, set whichInfo
to kFSVolInfoNone. See “Volume Information Bitmap Constants” (page 938) for a description of the
bits in this field.

volumeInfo
On output, a pointer to the volume information, as described by the FSVolumeInfo (page 842) data
type. If you don’t want this output, set this field to NULL.

670 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

volumeName
On output, a pointer to the Unicode name of the volume. If you do not wish the name returned, pass
NULL. Otherwise, pass a pointer to an HFSUniStr255 (page 855) structure.

ref
On output, a pointer to the FSRef (page 837) for the volume’s root directory. If you do not wish the
root directory returned, pass NULL.

You can specify a particular volume or index through the list of mounted volumes. To get information on a
particular volume, pass the volume reference number of the desired volume in the ioVRefNum field and set
the volumeIndex field to zero. To index through the list of mounted volumes, pass
kFSInvalidVolumeRefNum in the ioVRefNum field and set volumeIndex to the index, starting at 1 with
the first call to PBGetVolumeInfoAsync.

To get information about the root directory of a volume, use the FSGetCatalogInfo (page 494) function,
or one of the corresponding parameter block calls, PBGetCatalogInfoSync (page 647) and
PBGetCatalogInfoAsync (page 643).

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBGetVolumeInfoAsync returns the updated amount. This is because the
File Manager caches and periodically updates file system information, to reduce the number of calls made
to retrieve the information from the file system. Currently, the File Manager updates its information every
15 seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by
this in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetVolumeInfoSync
Returns information about a volume.

OSErr PBGetVolumeInfoSync (
 FSVolumeInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a volume information parameter block. See FSVolumeInfoParam (page 845) for a
description of the FSVolumeInfoParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioVRefNum
On input, the volume whose information is to be returned. For information on a particular volume,
pass that volume’s reference number and set the volumeIndex field to 0. To index through the list
of mounted volumes, pass the constant kFSInvalidVolumeRefNum.On output, the volume reference

Functions 671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

number of the volume. This is useful when indexing over all mounted volumes, when you have not
specified a particular volume reference number on input.

volumeIndex
On input, the index of the desired volume, or 0 to use the volume reference number in the ioVRefNum
field.

whichInfo
On input, a bitmap specifying which volume information fields to return in the volumeInfo field. If
you don’t want the information about the volume returned in the volumeInfo field, set whichInfo
to kFSVolInfoNone. See “Volume Information Bitmap Constants” (page 938) for a description of the
bits in this field.

volumeInfo
On output, a pointer to the volume information, as described by the FSVolumeInfo (page 842) data
type. If you don’t want this output, set this field to NULL.

volumeName
On output, a pointer to the Unicode name of the volume. If you do not wish the name returned, pass
NULL. Otherwise, pass a pointer to an HFSUniStr255 (page 855) structure.

ref
On output, a pointer to the FSRef (page 837) for the volume’s root directory. If you do not wish the
root directory returned, pass NULL.

You can specify a particular volume or index through the list of mounted volumes. To get information on a
particular volume, pass the volume reference number of the desired volume in the ioVRefNum field and set
the volumeIndex field to zero. To index through the list of mounted volumes, pass
kFSInvalidVolumeRefNum in the ioVRefNum field and set volumeIndex to the index, starting at 1 with
the first call to PBGetVolumeInfoSync.

To get information about the root directory of a volume, use the FSGetCatalogInfo (page 494) function,
or one of the corresponding parameter block calls, PBGetCatalogInfoSync (page 647) and
PBGetCatalogInfoAsync (page 643).

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBGetVolumeInfoSync returns the updated amount. This is because the
File Manager caches and periodically updates file system information, to reduce the number of calls made
to retrieve the information from the file system. Currently, the File Manager updates its information every
15 seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by
this in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBGetXCatInfoAsync
Returns the short name (MS-DOS format name) and the ProDOS information for a file or directory. (Deprecated
in Mac OS X v10.4. There is no replacement function.)

672 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBGetXCatInfoAsync (
 XCInfoPBPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBGetXCatInfoSync
Returns the short name (MS-DOS format name) and the ProDOS information for a file or directory. (Deprecated
in Mac OS X v10.4. There is no replacement function.)

OSErr PBGetXCatInfoSync (
 XCInfoPBPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHCopyFileAsync
Duplicates a file and optionally renames it. (Deprecated in Mac OS X v10.5. Use PBFSCopyFileAsync (page
643) instead.)

OSErr PBHCopyFileAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a CopyParam (page 806) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Functions 673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the source file.

ioVRefNum
On input, the volume reference number or drive number for the volume containing the source file.
Pass 0 for the default volume.

ioDstVRefNum
On input, the reference number or drive number of the destination volume. Pass 0 for the default
volume.

ioNewName
On input, a pointer to the partial pathname for the destination directory. If ioNewName is NULL, the
destination directory is the directory having the ID specified in the ioNewDirID field.

ioCopyName
On input, a pointer to the file’s new name. The string pointed to by this field must be a filename, not
a partial pathname. If you do not wish to rename the file, pass NULL in this field.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, the parent directory ID of the destination directory.

ioDirID
On input, the directory ID of the source directory.

This function is especially useful when you want to copy or move files located on a remote volume, because
it allows you to forgo transmitting large amounts of data across a network. This function is used internally
by the Finder; most applications do not need to use it.

Special Considerations

This is an optional call for AppleShare file servers. Your application should examine the information returned
by the PBHGetVolParmsAsync (page 694) function to see if the volume supports PBHCopyFileAsync. If
the bHasCopyFile bit is set in the vMAttrib field of the GetVolParmsInfoBuffer structure, then the
volume supports PBHCopyFileAsync.

For AppleShare file servers, the source and destination pathnames must indicate the same file server; however,
the parameter block may specify different source and destination volumes on that file server. A useful way
to tell if two file server volumes are on the same file server is to call the PBHGetVolParmsAsync (page 694)
function for each volume and compare the server addresses returned. The server opens source files with
read/deny write enabled and destination files with write/deny read and write enabled.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

674 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBHCopyFileSync
Duplicates a file and optionally renames it. (Deprecated in Mac OS X v10.5. Use PBFSCopyFileSync (page
643) instead.)

OSErr PBHCopyFileSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a CopyParam (page 806) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the source file.

ioVRefNum
On input, the volume reference number or drive number for the volume containing the source file.
Pass 0 for the default volume.

ioDstVRefNum
On input, the reference number or drive number of the destination volume. Pass 0 for the default
volume.

ioNewName
On input, a pointer to the partial pathname for the destination directory. If ioNewName is NULL, the
destination directory is the directory having the ID specified in the ioNewDirID field.

ioCopyName
On input, a pointer to the file’s new name. The string pointed to by this field must be a filename, not
a partial pathname. If you do not wish to rename the file, pass NULL in this field.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, the parent directory ID of the destination directory.

ioDirID
On input, the directory ID of the source directory.

This function is especially useful when you want to copy or move files located on a remote volume, because
it allows you to forgo transmitting large amounts of data across a network. This function is used internally
by the Finder; most applications do not need to use it.

Functions 675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

This is an optional call for AppleShare file servers. Your application should examine the information returned
by the PBHGetVolParmsSync (page 695) function to see if the volume supports PBHCopyFileSync. If the
bHasCopyFile bit is set in the vMAttrib field of the GetVolParmsInfoBuffer structure, then the volume
supports PBHCopyFileSync.

For AppleShare file servers, the source and destination pathnames must indicate the same file server; however,
the parameter block may specify different source and destination volumes on that file server. A useful way
to tell if two file server volumes are on the same file server is to call the PBHGetVolParmsSync (page 695)
function for each volume and compare the server addresses returned. The server opens source files with
read/deny write enabled and destination files with write/deny read and write enabled.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHCreateAsync
Creates a new file. (Deprecated in Mac OS X v10.4. Use PBCreateFileUnicodeAsync (page 591) instead.)

OSErr PBHCreateAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion functions, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name for the new file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the parent directory of the new file.

676 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

The PBHCreateAsync function creates both forks of the file the new file is unlocked and empty. The date
and time of its creation and last modification are set to the current date and time. If the file created isn’t
temporary (that is, if it will exist after the user quits the application), the application should call
PBHSetFInfoAsync (page 721) , after the call to PBHCreateAsync, to fill in the information needed by the
Finder.

Files created using PBHCreateAsync are not automatically opened. If you want to write data to the new
file, you must first open the file using one of the file access functions, FSpOpenDF (page 531) , HOpenDF (page
554) , PBHOpenDFSync (page 708) or PBHOpenDFAsync (page 706).

The resource fork of the new file exists but is empty. You’ll need to call one of the Resource Manager
procedures HCreateResFile or FSpCreateResFile to create a resource map in the file before you can
open it (by calling one of the Resource Manager functions HOpenResFile or FSpOpenResFile).

To create a file with a Unicode filename, use the function FSCreateFileUnicode (page 481) , or one of the
corresponding parameter block calls, PBCreateFileUnicodeSync (page 593) and
PBCreateFileUnicodeAsync (page 591).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHCreateSync
Creates a new file. (Deprecated in Mac OS X v10.4. Use PBCreateFileUnicodeSync (page 593) instead.)

OSErr PBHCreateSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name for the new file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

Functions 677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDirID
On input, the directory ID of the parent directory of the new file.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

The PBHCreateSync function creates both the data and resource fork of the file the new file is unlocked
and empty. The date and time of its creation and last modification are set to the current date and time. If
the file created isn’t temporary (that is, if it will exist after the user quits the application), the application
should call PBHSetFInfoSync (page 722) after the call to PBHCreateSync to fill in the information needed
by the Finder.

Files created using PBHCreateSync are not automatically opened. If you want to write data to the new file,
you must first open the file using one of the file access functions, FSpOpenDF (page 531) , HOpenDF (page
554) , PBHOpenDFSync (page 708) or PBHOpenDFAsync (page 706).

The resource fork of the new file exists but is empty. You’ll need to call one of the Resource Manager
procedures HCreateResFile or FSpCreateResFile to create a resource map in the file before you can
open it (by calling one of the Resource Manager functions HOpenResFile or FSpOpenResFile).

To create a file with a Unicode filename, use the function FSCreateFileUnicode (page 481) , or one of the
corresponding parameter block calls, PBCreateFileUnicodeSync (page 593) and
PBCreateFileUnicodeAsync (page 591).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHDeleteAsync
Deletes a file or directory. (Deprecated in Mac OS X v10.4. Use PBDeleteObjectAsync (page 599) instead.)

OSErr PBHDeleteAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

678 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
On output, the result code of the function. If you attempt to delete an open file or a non-empty
directory, PBHDeleteAsync returns the result code fBsyErr. PBHDeleteAsync also returns fBsyErr
if you attempt to delete a directory that has an open working directory associated with it.

ioNamePtr
On input, a pointer to the name of the file or directory to delete.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the parent directory of the file or directory to delete.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the specified target is a file, both the data and the resource fork of the file are deleted. In addition, if a file
ID reference for the specified file exists, that file ID reference is also removed. A file must be closed before
you can delete it. Similarly, you cannot delete a directory unless it’s empty.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHDeleteSync
Deletes a file or directory. (Deprecated in Mac OS X v10.4. Use PBDeleteObjectSync (page 600) instead.)

OSErr PBHDeleteSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you attempt to delete an open file or a non-empty
directory, PBHDeleteSync returns the result code fBsyErr. PBHDeleteSync also returns fBsyErr if you
attempt to delete a directory that has an open working directory associated with it.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file or directory to delete.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

Functions 679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDirID
On input, the directory ID of the parent directory of the file or directory to delete.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the specified target is a file, both the data and the resource fork of the file are deleted. In addition, if a file
ID reference for the specified file exists, that file ID reference is also removed. A file must be closed before
you can delete it. Similarly, you cannot delete a directory unless it’s empty.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetDirAccessAsync
Returns the access control information for a directory or file. (Deprecated in Mac OS X v10.5. Use
FSGetCatalogInfo (page 494) instead.)

OSErr PBHGetDirAccessAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 795) variant of an HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname for the directory or file.

ioVRefNum
On input, a volume specification for the volume containing the directory or file. This field can contain
a volume reference number, drive number, or 0 for the default volume.

ioACOwnerID
On output, the user ID for the owner of the directory or file.

680 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioACGroupID
On output, the primary group ID of the directory or file.

ioACAccess
On output, the access rights for the directory or file. See “File and Folder Access Privilege
Constants” (page 910) for more information on these access rights.

ioDirID
On input, the directory ID.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetDirAccessSync
Returns the access control information for a directory or file. (Deprecated in Mac OS X v10.5. Use
FSGetCatalogInfo (page 494) instead.)

OSErr PBHGetDirAccessSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 795) variant of an HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname for the directory or file.

ioVRefNum
On input, a volume specification for the volume containing the directory or file. This field can contain
a volume reference number, drive number, or 0 for the default volume.

ioACOwnerID
On output, the user ID for the owner of the directory or file.

ioACGroupID
On output, the primary group ID of the directory or file.

ioACAccess
On output, the access rights for the directory or file. See “File and Folder Access Privilege
Constants” (page 910) for more information on these access rights.

ioDirID
On input, the directory ID.

Functions 681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetFInfoAsync
Obtains information about a file. (Deprecated in Mac OS X v10.4. Use PBGetCatalogInfoAsync (page 643)
instead.)

OSErr PBHGetFInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. If the value of the ioFDirIndex field is negative or 0,
PBHGetFInfoAsync returns information about the file in the volume specified by the reference
number in the ioVRefNum field and having the name given here. On output, a pointer to the name
of the file, if the file is open. If you do not wish the name returned, pass NULL here.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file, or 0 for the
default volume.

ioFRefNum
On output, the reference number of the first access path found, if the file is open and if the
ioFDirIndex field is negative or 0; if the ioFDirIndex field is positive...

ioFDirIndex
On input, a directory index. If this value is positive, the function returns information about the file
having the directory index specified here, on the volume specified in the ioVRefNum field and in the
directory specified in the ioDirID field. If this value is negative or 0, the function returns information
about the file on the specified volume, having the name pointed to in the ioNamePtr field.

682 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFlAttrib
On output, the file attributes. See “File Attribute Constants” (page 914) for a description of the file
attributes.

ioFlFndrInfo
On output, Finder information about the file. For a description of the FInfo structure, see the Finder
Interface Reference .

ioDirID
On input, the parent directory ID of the file. On output, the file’s file ID.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

ioFlStBlk
On output, the first allocation block of the data fork.

ioFlLgLen
On output, the logical size (the logical end-of-file) of the file’s data fork, in bytes.

ioFlPyLen
On output, the physical size (the physical end-of-file) of the file’s data fork, in bytes.

ioFlRStBlk
On output, the first allocation block of the resource fork.

ioFlRLgLen
On output, the logical size of the file’s resource fork, in bytes.

ioFlRPyLen
On output, the physical size of the file’s resource fork, in bytes.

ioFlCrDat
On output, the date and time of the file’s creation.

ioFlMdDat
On output, the date and time of the file’s last modification.

You should call PBHGetFInfoAsync just before PBHSetFInfoAsync (page 721) , so that the current
information is present in the parameter block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetFInfoSync
Obtains information about a file. (Deprecated in Mac OS X v10.4. Use PBGetCatalogInfoSync (page 647)
instead.)

Functions 683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBHGetFInfoSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. If the value of the ioFDirIndex field is negative or 0,
PBHGetFInfoSync returns information about the file in the volume specified by the reference number
in the ioVRefNum field and having the name given here. On output, a pointer to the name of the file,
if the file is open. If you do not wish the name returned, pass NULL here.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file, or 0 for the
default volume.

ioFRefNum
On output, the reference number of the first access path found, if the file is open and if the
ioFDirIndex field is negative or 0; if the ioFDirIndex field is positive...

ioFDirIndex
On input, a directory index. If this value is positive, the function returns information about the file
having the directory index specified here, on the volume specified in the ioVRefNum field and in the
directory specified in the ioDirID field. If this value is negative or 0, the function returns information
about the file on the specified volume, having the name pointed to in the ioNamePtr field.

ioFlAttrib
On output, the file attributes. See “File Attribute Constants” (page 914) for a description of the file
attributes.

ioFlFndrInfo
On output, Finder information about the file. For a description of the FInfo data type, see the Finder
Interface Reference .

ioDirID
On input, the parent directory ID of the file. On output, the file’s file ID.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

ioFlStBlk
On output, the first allocation block of the data fork.

ioFlLgLen
On output, the logical size (the logical end-of-file) of the file’s data fork, in bytes.

ioFlPyLen
On output, the physical size (the physical end-of-file) of the file’s data fork, in bytes.

684 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFlRStBlk
On output, the first allocation block of the resource fork.

ioFlRLgLen
On output, the logical size of the resource fork, in bytes.

ioFlRPyLen
On output, the physical size of the resource fork, in bytes.

ioFlCrDat
On output, the date and time of the file’s creation.

ioFlMdDat
On output, the date and time of the file’s last modification.

You should call PBHGetFInfoSync just before PBHSetFInfoSync (page 722) , so that the current information
is present in the parameter block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetLogInInfoAsync
Determines the login method used to log on to a particular shared volume. (Deprecated in Mac OS X v10.4.
There is no replacement function.)

OSErr PBHGetLogInInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 865) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname

Functions 685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVRefNum
On input, a volume specification for the shared volume. This field can contain a volume reference
number, drive number, or 0 for the default volume.

ioObjType
On output, the login method type. See “Authentication Method Constants” (page 888) for the values
that are recognized. Values in the range 7–127 are reserved for future use by Apple Computer, Inc.
Values in the range 128–255 are available to your application as user-defined values.

ioObjNamePtr
On output, a pointer to the user name used to establish the session. The login user name is returned
as a Pascal string. The maximum size of the user name is 31 characters.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetLogInInfoSync
Determines the login method used to log on to a particular shared volume. (Deprecated in Mac OS X v10.4.
There is no replacement function.)

OSErr PBHGetLogInInfoSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetVInfoAsync
Gets detailed information about a volume. (Deprecated in Mac OS X v10.4. Use PBGetVolumeInfoAsync (page
670) instead.)

686 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBHGetVInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HVolumeParam (page 859) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a buffer. If you specify a negative number in the ioVolIndex field, this buffer
should hold the name of the volume for which to return information. On output, a pointer to the
volume’s name. You should pass a pointer to a Str31 value if you want the name returned. If you
pass NULL, no volume name is returned.

ioVRefNum
On input, a volume specification for the volume for which to return information. If the ioVolIndex
field is negative, the File Manager uses the value in the ioNamePtr field, along with the value specified
in the ioVRefNum field, to determine the volume. If the value in ioVolIndex is 0, the File Manager
attempts to access the volume using only the value in this field. On output, the volume reference
number.

ioVolIndex
On input, an index used for indexing through all mounted volumes. If this value is positive, the File
Manager uses it to find the volume for which to return information. For instance, if the value of
ioVolIndex is 2, the File Manager attempts to access the second mounted volume in the VCB queue.
If ioVolIndex is negative, the File Manager uses the values in the ioNamePtr and ioVRefNum fields
to access the requested volume. If ioVolIndex is 0, the File Manager uses only the value in the
ioVRefNum field.

ioVCrDate
On output, the date and time of the volume’s initialization.

ioVLsMod
On output, the date and time of the volume’s last modification.

ioVAtrb
On output, the volume attributes. See “Volume Information Attribute Constants” (page 937) for a
description of the volume attributes returned by this function.

ioVNmFls
On output, the number of files in the root directory of the volume. For performance reasons, the
Carbon File Manager does not return the number of files in this field; instead, it sets ioVNmFls to
0.To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoAsync (page 648) for the root directory. The number of files in the root directory is
returned in the ioDrNmFls field.

Functions 687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVBitMap
On output, the first block of the volume bitmap.

ioVAllocPtr
On output, the block at which the search for the next new file allocation should start.

ioVNmAlBlks
On output, the number of allocation blocks on the volume.

ioVAlBlkSiz
On output, the size of the allocation blocks.

ioVClpSiz
On output, the default clump size.

ioAlBlSt
On output, the first block in the volume block map.

ioVNxtCNID
On output, the next unused catalog node ID.

ioVFrBlk
On output, the number of unused allocation blocks.

ioVSigWord
On output, the volume signature. For HFS volumes, this is ‘BD’ for HFS Plus volumes, this is ‘H+’.

ioVDrvInfo
On output, the drive number. You can determine whether the given volume is online by inspecting
the value of this field. For online volumes, the ioVDrvInfo field contains the drive number of the
drive containing the specified volume and hence is always greater than 0. If the value returned in
ioVDrvInfo is 0, the volume is either offline or ejected.

Mac OS X does not support drive numbers; in Mac OS X, the File Manager always returns a value of
1 in this field.

ioVDRefNum
On output, the driver reference number. You can determine whether the volume is offline or ejected
by inspecting the value of this field. If the volume is offline, the value of ioVDRefNum is the negative
of the drive number (which is cleared when the volume is placed offline; hence the ioVDrvInfo field
for an offline volume is zero), and is a negative number. If the volume is ejected, the value of
ioVDRefNum is the drive number itself, and thus is a positive number. For online volumes, ioVDRefNum
contains a driver reference number; these numbers are always less than 0.

ioVFSID
On output, the file system handling this volume.

ioVBkUp
On output, the date and time of the volume’s last backup.

ioVSeqNum
Used internally.

ioVWrCnt
On output, the volume write count.

ioVFilCnt
On output, the number of files on the volume.

ioVDirCnt
On output, the number of directories on the volume.

688 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVFndrInfo
On output, Finder information for the volume.

You can get information about all the online volumes by making repeated calls to PBHGetVInfoAsync,
starting with the value of the ioVolIndex field set to 1 and incrementing that value until PBHGetVInfoAsync
returns nsvErr.

If you need to obtain information about HFS Plus volumes, you should use the FSGetVolumeInfo (page
500) function, or one of the corresponding parameter block calls, PBGetVolumeInfoSync (page 671) and
PBGetVolumeInfoAsync (page 670). ThePBHGetVInfoAsync function is still supported for HFS Plus volumes,
but there is additional information returned by the FSGetVolumeInfo function (such as the date and time
that the volume was last checked for consistency).

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBHGetVInfoAsync returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to
retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

If the value of ioVolIndex is negative, the File Manager uses ioNamePtr and ioVRefNum in the standard
way to determine the volume. However, because PBHGetVInfoAsync returns the volume name in the buffer
whose address you passed in ioNamePtr, your input pathname will be modified. If you don't want your
input pathname modified, make a copy of it and pass the copy to PBHGetVInfoAsync.

The volume name returned by PBHGetVInfoAsync is not a full pathname to the volume because it does
not contain a colon.

For compatibility with older programs, some values returned by PBHGetVInfoAsync are not what is stored
in the volume's Volume Control Block (VCB). Specifically:

 ■ ioVNmAlBlks and ioVFrBlk are pinned to values which, when multiplied by ioVAlBlkSiz, are always
less than 2 Gigabytes.

 ■ ioVNmAlBlks may not include the allocation blocks used by the catalog and extents overflow files.

 ■ $4244 is returned in ioVSigWord for both HFS and HFS Plus volumes.

For unpinned total and free byte counts, and for the real ioVSigWord, use PBXGetVolInfoAsync (page
779) instead of PBHGetVInfoAsync.

Version Notes
In non-Carbon applications, you may pass a working directory reference in the ioVRefNum field; if you pass
a working directory reference in that field, the number of files and directories in the specified directory is
returned in the ioVNmFls field.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Functions 689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHGetVInfoSync
Gets detailed information about a volume. (Deprecated in Mac OS X v10.4. Use PBGetVolumeInfoSync (page
671) instead.)

OSErr PBHGetVInfoSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HVolumeParam (page 859) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a buffer. If you specify a negative number in the ioVolIndex field, this buffer
should hold the name of the volume for which to return information. On output, a pointer to the
volume’s name. You should pass a pointer to a Str31 value if you want the name returned. If you
pass NULL, no volume name is returned.

ioVRefNum
On input, a volume reference number or drive number for the volume for which to return information;
or 0 for the default volume. If the ioVolIndex field is negative, the File Manager uses the value in
the ioNamePtr field, along with the value specified in the ioVRefNum field, to determine the volume.
If the value in ioVolIndex is 0, the File Manager attempts to access the volume using only the value
in this field. On output, the volume reference number.

ioVolIndex
On input, an index used for indexing through all mounted volumes. If this value is positive, the File
Manager uses it to find the volume for which to return information. For instance, if the value of
ioVolIndex is 2, the File Manager attempts to access the second mounted volume in the VCB queue.
If ioVolIndex is negative, the File Manager uses the values in the ioNamePtr and ioVRefNum fields
to access the requested volume. If ioVolIndex is 0, the File Manager uses only the value in the
ioVRefNum field.

ioVCrDate
On output, the date and time of the volume’s initialization.

ioVLsMod
On output, the date and time of the volume’s last modification.

ioVAtrb
On output, the volume attributes. See “Volume Information Attribute Constants” (page 937) for a
description of the volume attributes returned by this function.

ioVNmFls
On output, the number of files in the root directory of the volume. For performance reasons, the
Carbon File Manager does not return the number of files in this field; instead, it sets ioVNmFls to
0.To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoSync (page 651) for the root directory. The number of files in the root directory is
returned in the ioDrNmFls field.

690 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVBitMap
On output, the first block of the volume bitmap.

ioVAllocPtr
On output, the block at which the search for the next new file allocation should start.

ioVNmAlBlks
On output, the number of allocation blocks on the volume.

ioVAlBlkSiz
On output, the size of the allocation blocks.

ioVClpSiz
On output, the default clump size.

ioAlBlSt
On output, the first block in the volume block map.

ioVNxtCNID
On output, the next unused catalog node ID.

ioVFrBlk
On output, the number of unused allocation blocks.

ioVSigWord
On output, the volume signature. For HFS volumes, this is ‘BD’ for HFS Plus volumes, this is ‘H+’.

ioVDrvInfo
On output, the drive number. You can determine whether the given volume is online by inspecting
the value of this field. For online volumes, the ioVDrvInfo field contains the drive number of the
drive containing the specified volume and hence is always greater than 0. If the value returned in
ioVDrvInfo is 0, the volume is either offline or ejected.

Mac OS X does not support drive numbers; in Mac OS X, the File Manager always returns a value of
1 in this field.

ioVDRefNum
On output, the driver reference number. You can determine whether the volume is offline or ejected
by inspecting the value of this field. If the volume is offline, the value of ioVDRefNum is the negative
of the drive number (which is cleared when the volume is placed offline; hence the ioVDrvInfo field
for an offline volume is zero), and is a negative number. If the volume is ejected, the value of
ioVDRefNum is the drive number itself, and thus is a positive number. For online volumes, ioVDRefNum
contains a driver reference number; these numbers are always less than 0.

ioVFSID
On output, the file system handling this volume.

ioVBkUp
On output, the date and time of the volume’s last backup.

ioVSeqNum
Used internally.

ioVWrCnt
On output, the volume write count.

ioVFilCnt
On output, the number of files on the volume.

ioVDirCnt
On output, the number of directories on the volume.

Functions 691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVFndrInfo
On output, Finder information for the volume.

You can get information about all the online volumes by making repeated calls to PBHGetVInfoSync, starting
with the value of the ioVolIndex field set to 1 and incrementing that value until PBHGetVInfoSync returns
nsvErr.

If you need to obtain information about HFS Plus volumes, you should use the FSGetVolumeInfo (page
500) function, or one of the corresponding parameter block calls, PBGetVolumeInfoSync (page 671) and
PBGetVolumeInfoAsync (page 670). The PBHGetVInfoSync function is still supported for HFS Plus volumes,
but there is additional information returned by the FSGetVolumeInfo function (such as the date and time
that the volume was last checked for consistency).

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBHGetVInfoSync returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to
retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

If the value of ioVolIndex is negative, the File Manager uses ioNamePtr and ioVRefNum in the standard
way to determine the volume. However, because PBHGetVInfoSync returns the volume name in the buffer
whose address you passed in ioNamePtr, your input pathname will be modified. If you don't want your
input pathname modified, make a copy of it and pass the copy to PBHGetVInfoSync.

The volume name returned by PBHGetVInfoSync is not a full pathname to the volume because it does not
contain a colon.

For compatibility with older programs, some values returned by PBHGetVInfoSync are not what is stored
in the volume's Volume Control Block (VCB). Specifically:

 ■ ioVNmAlBlks and ioVFrBlk are pinned to values which, when multiplied by ioVAlBlkSiz, are always
less than 2 Gigabytes.

 ■ ioVNmAlBlks may not include the allocation blocks used by the catalog and extents overflow files.

 ■ $4244 is returned in ioVSigWord for both HFS and HFS Plus volumes.

For unpinned total and free byte counts, and for the real ioVSigWord, use PBXGetVolInfoSync (page 782)
instead of PBHGetVInfoSync.

Version Notes
In non-Carbon applications, you may pass a working directory reference in the ioVRefNum field; if you pass
a working directory reference in that field, the number of files and directories in the specified directory is
returned in the ioVNmFls field.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

692 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHGetVolAsync
Determines the default volume and default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBHGetVolAsync (
 WDPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a working directory parameter block. See WDPBRec (page 877) for a description of the
WDPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBHGetVolAsync function returns the default volume and directory last set by a call to HSetVol (page
559) or PBHSetVolSync (page 726). The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On output, a pointer to the default volume’s name. You should pass a pointer to a Str31 value if you
want that name returned. If you pass NULL in this field, no volume name is returned.

ioVRefNum
On output, the volume reference number of the default volume.

ioWDProcID
On output, the working directory user identifier.

ioWDVRefNum
On output, the volume reference number of the volume on which the default directory exists.

ioWDDirID
On output, the directory ID of the default directory.

Version Notes
When CarbonLib is not present, the PBHGetVolAsync function returns a working directory reference number
in the ioVRefNumparameter if the previous call to HSetVol (page 559) (or one of the corresponding parameter
block calls) passed in a working directory reference number.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Functions 693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHGetVolParmsAsync
Returns information about the characteristics of a volume. (Deprecated in Mac OS X v10.5. Use
FSGetVolumeParms (page 503) instead.)

OSErr PBHGetVolParmsAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 855) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the volume’s name. You can use a either a name or a volume specification to
specify the volume. If you use a volume specification to specify the volume, you should set the
ioNamePtr field to NULL.

ioVRefNum
On input, a volume specification. You can use a either a name or a volume specification to specify
the volume. A volume specification can be a volume reference number, drive number, or 0 for the
default volume.

ioBuffer
On input, a pointer to a GetVolParmsInfoBuffer (page 847) record; you must allocate this memory
to hold the returned attributes. On return, the PBHGetVolParmsAsync function places the attributes
information in the buffer. Volumes that implement the HFS Plus APIs must use version 3 (or newer)
of the GetVolParmsInfoBuffer structure. If the version of the GetVolParmsInfoBuffer is 2 or
less, or the bSupportsHFSPlusAPIs bit is clear, then the volume does not implement the HFS Plus
APIs and they are being emulated for that volume by the File Manager.

ioReqCount
On input, the size, in bytes, of the buffer area pointed to in the ioBuffer field.

ioActCount
On output, the size of the data actually returned.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

694 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHGetVolParmsSync
Returns information about the characteristics of a volume. (Deprecated in Mac OS X v10.5. Use
FSGetVolumeParms (page 503) instead.)

OSErr PBHGetVolParmsSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 855) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the volume’s name. You can use a either a name or a volume specification to
specify the volume. If you use a volume specification to specify the volume, you should set the
ioNamePtr field to NULL.

ioVRefNum
On input, a volume specification. You can use a either a name or a volume specification to specify
the volume. A volume specification can be a volume reference number, drive number, or 0 for the
default volume.

ioBuffer
On input, a pointer to a GetVolParmsInfoBuffer (page 847) record; you must allocate this memory
to hold the returned attributes. On return, the PBHGetVolParmsSync function places the attributes
information in the buffer. Volumes that implement the HFS Plus APIs must use version 3 (or newer)
of the GetVolParmsInfoBuffer structure. If the version of the GetVolParmsInfoBuffer is 2 or
less, or the bSupportsHFSPlusAPIs bit is clear, then the volume does not implement the HFS Plus
APIs and they are being emulated for that volume by the File Manager.

ioReqCount
On input, the size, in bytes, of the buffer area pointed to in the ioBuffer field.

ioActCount
On output, the size of the data actually returned.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHGetVolSync
Determines the default volume and default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

Functions 695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBHGetVolSync (
 WDPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a working directory parameter block. See WDPBRec (page 877) for a description of the
WDPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBHGetVolSync function returns the default volume and directory last set by a call to HSetVol (page
559) or PBHSetVolSync (page 726). The relevant fields of the parameter block are:

ioNamePtr
On output, a pointer to the default volume’s name. Pass a pointer to a Str31 value if you want that
name returned. If you pass NULL in this field, no volume name is returned.

ioVRefNum
On output, the volume reference number of the default volume.

ioWDProcID
On output, the working directory user identifier.

ioWDVRefNum
On output, the volume reference number of the volume on which the default directory exists.

ioWDDirID
On output, the directory ID of the default directory.

Version Notes
When CarbonLib is not present, the PBHGetVolSync function returns a working directory reference number
in the ioVRefNumparameter if the previous call to HSetVol (page 559) (or one of the corresponding parameter
block calls) passed in a working directory reference number.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHMapIDAsync
Determines the name of a user or group given the user or group ID. (Deprecated in Mac OS X v10.5. There
is no replacement function.)

696 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBHMapIDAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 865) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification.

ioObjType
On input, the mapping function code its value is 1 if you’re mapping a user ID to a user name or 2 if
you’re mapping a group ID to a group name. See “Mapping Code Constants” (page 926) for more
information about the values you can use in this field.

ioObjNamePtr
On output, a pointer to the user or group name; the maximum size of the name is 31 characters
(preceded by a length byte).

ioObjID
On input, the user or group ID to be mapped. AppleShare uses the value 0 to signify Any User.

Special Considerations

See the BSD functions getpwnam and getpwuid, which correspond to this function on a conceptual level.

Version Notes
Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you might not need to
specify a value in the ioObjType field.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Functions 697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHMapIDSync
Determines the name of a user or group given the user or group ID. (Deprecated in Mac OS X v10.5. There
is no replacement function.)

OSErr PBHMapIDSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 865) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification.

ioObjType
On input, the mapping function code its value is 1 if you’re mapping a user ID to a user name or 2 if
you’re mapping a group ID to a group name. See “Mapping Code Constants” (page 926) for more
information about the values you can use in this field.

ioObjNamePtr
On output, a pointer to the user or group name; the maximum size of the name is 31 characters
(preceded by a length byte).

ioObjID
On input, the user or group ID to be mapped. AppleShare uses the value 0 to signify Any User.

Special Considerations

See the BSD functions getpwnam and getpwuid, which correspond to this function on a conceptual level.

Version Notes
Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you might not need to
specify a value in the ioObjType field.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHMapNameAsync
Determines the user ID or group ID from a user or group name. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

698 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBHMapNameAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 865) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification.

ioObjType
On input, the mapping function code its value is 3 if you’re mapping a user name to a user ID or 4 if
you’re mapping a group name to a group ID. See “Mapping Code Constants” (page 926) for more
information on the values you can use in this field.

ioObjNamePtr
On input, a pointer to the user or group name. The maximum size of the name is 31 characters. If
NULL is passed, the ID returned is always 0.

ioObjID
On output, the mapped user or group ID.

Special Considerations

See the BSD functions getpwnam and getpwuid, which correspond to this function on a conceptual level.

Version Notes
Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you might need to set the
ioObjType field to determine which database (user or group) to search first. If both a user and a group have
the same name, this field determines which kind of ID you receive.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Functions 699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHMapNameSync
Determines the user ID or group ID from a user or group name. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

OSErr PBHMapNameSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the ObjParam (page 865) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification.

ioObjType
On input, the mapping function code its value is 3 if you’re mapping a user name to a user ID or 4 if
you’re mapping a group name to a group ID. See “Mapping Code Constants” (page 926) for more
information on the values you can use in this field.

ioObjNamePtr
On input, a pointer to the user or group name. The maximum size of the name is 31 characters. If
NULL is passed, the ID returned is always 0.

ioObjID
On output, the mapped user or group ID.

Special Considerations

See the BSD functions getpwnam and getpwuid, which correspond to this function on a conceptual level.

Version Notes
Because user and group IDs are interchangeable under AFP 2.1 and later volumes, you might need to set the
ioObjType field to determine which database (user or group) to search first. If both a user and a group have
the same name, this field determines which kind of ID you receive.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

700 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHMoveRenameAsync
Moves a file or directory and optionally renames it. (Deprecated in Mac OS X v10.4. Use
FSMoveObjectAsync (page 511) instead.)

OSErr PBHMoveRenameAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a CopyParam (page 806) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBHMoveRenameAsync function allows you to move (not copy) a file or directory. The source and
destination pathnames must point to the same file server volume. This function is especially useful when
you want to copy or move files located on a remote volume, because it allows you to forgo transmitting
large amounts of data across a network. This function is used internally by the Finder; most applications do
not need to use it.

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the pathname for the source file or directory.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the source file or
directory. Pass 0 for the default volume.

ioNewName
On input, a pointer to the destination pathname. If ioNewName is NULL, the destination directory is
the directory having the ID specified in the ioNewDirID field. If ioNewName is not NULL, the destination
directory is the directory having the partial pathname pointed to by ioNewName in the directory
having ID ioNewDirID on the specified volume.

ioCopyName
On input, a pointer to the file’s new name. The string pointed to by this field must be a filename, not
a partial pathname. If you do not wish to rename the file, pass NULL in this field.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, the parent directory ID of the destination directory.

ioDirID
On input, the directory ID of the source directory.

Special Considerations

This function is not implemented in Mac OS X.

Functions 701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHMoveRenameSync
Moves a file or directory and optionally renames it. (Deprecated in Mac OS X v10.4. Use
FSMoveObjectSync (page 512) instead.)

OSErr PBHMoveRenameSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a CopyParam (page 806) variant of the HFS parameter block. See HParamBlockRec (page
857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBHMoveRenameSync function allows you to move (not copy) a file or directory. The source and destination
pathnames must point to the same file server volume. This function is especially useful when you want to
copy or move files located on a remote volume, because it allows you to forgo transmitting large amounts
of data across a network. This function is used internally by the Finder; most applications do not need to use
it.

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the pathname for the source file or directory.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the source file or
directory. Pass 0 for the default volume.

ioNewName
On input, a pointer to the destination pathname. If ioNewName is NULL, the destination directory is
the directory having the ID specified in the ioNewDirID field. If ioNewName is not NULL, the destination
directory is the directory having the partial pathname pointed to by ioNewName in the directory
having ID ioNewDirID on the specified volume.

ioCopyName
On input, a pointer to the file’s new name. The string pointed to by this field must be a filename, not
a partial pathname. If you do not wish to rename the file, pass NULL in this field.

ioNewDirID
On input, if the ioNewName field is NULL, the directory ID of the destination directory. If ioNewName
is not NULL, the parent directory ID of the destination directory.

702 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDirID
On input, the directory ID of the source directory.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenAsync
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkAsync (page 739) instead.)

OSErr PBHOpenAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic HFS parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If you attempt to open a locked file for writing,
PBHOpenAsync returns the result code permErr. If you request exclusive read/write permission but
another access path is already open, PBHOpenAsync returns the reference number of the existing
access path in ioRefNum and opWrErr as its function result.

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, a file reference number for accessing the open data fork. If you request exclusive read/write
permission but another access path is already open, PBHOpenAsync returns the reference number
of the existing access path. You should not use this reference number unless your application originally
opened the file.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 908). You can open

Functions 703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

a path for writing even if it accesses a file on a locked volume, and no error is returned until a
PBWriteAsync, PBSetEOFAsync (page 757) , or PBAllocateAsync (page 564) call is made.

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If you use PBHOpenAsync to try to open a file whose name begins with a period, you might mistakenly open
a driver instead; subsequent attempts to write data might corrupt data on the target device. To avoid these
problems, you should always use PBHOpenDFAsync (page 706) instead of PBHOpenAsync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenDenyAsync
Opens a file’s data fork using the access deny modes. (Deprecated in Mac OS X v10.5. Use
PBOpenForkAsync (page 739) with deny modes in the permissions field.)

OSErr PBHOpenDenyAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic HFS parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. The function returns the result code opWrErr if you’ve
requested write permission and you have already opened the file for writing in that case, the existing
file reference number is returned in ioRefNum. You should not use this reference number unless your
application originally opened the file.

ioNamePtr
On input, a pointer to a pathname for the file.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file. Pass 0 to
indicate the default volume.

704 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioRefNum
On output, the file reference number for the file.

ioDenyModes
On input, the type of access you are requesting to the fork. See “File Access Permission Constants” (page
908) for a description of the types of access that you can request.

ioDirID
On input, the parent directory ID of the file.

You should use thePBHOpenDenyAsync andPBHOpenRFDenyAsync (page 710) functions (or their synchronous
counterparts, PBHOpenDenySync (page 705) and PBHOpenRFDenySync (page 711)) if you want to ensure
that you get the access permissions and deny-mode permissions that you request. PBHOpenDenyAsync is
not retried in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict
is returned and the ioRefNum field is set to 0.

You can check that the volume supports AFP deny-mode permissions by checking that the bHasOpenDeny
bit is set in the vMAttrib field returned by the PBHGetVolParmsSync (page 695) or
PBHGetVolParmsAsync (page 694) function. If you don’t want to special case volumes that support AFP
deny mode permissions, you can use the File Manager permissions. See “File Access Permission
Constants” (page 908) for a description of how File Manager permissions are translated to AFP deny-mode
permissions.

To open a file’s resource fork with access deny permissions, use the PBHOpenRFDenySync (page 711) or
PBHOpenRFDenyAsync (page 710) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenDenySync
Opens a file’s data fork using the access deny modes. (Deprecated in Mac OS X v10.5. Use
PBOpenForkSync (page 740) with deny modes in the permissions field.)

OSErr PBHOpenDenySync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 795) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). The function returns the result code opWrErr if
you’ve requested write permission and you have already opened the file for writing in that case, the existing
file reference number is returned in ioRefNum. You should not use this reference number unless your
application originally opened the file.

Functions 705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname for the file.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file. Pass 0 to
indicate the default volume.

ioRefNum
On output, the file reference number for the file.

ioDenyModes
On input, the type of access you are requesting to the fork. See “File Access Permission Constants” (page
908) for a description of the types of access that you can request.

ioDirID
On input, the parent directory ID of the file.

You should use the PBHOpenDenySync and PBHOpenRFDenySync (page 711) functions (or their asynchronous
counterparts, PBHOpenDenyAsync (page 704) and PBHOpenRFDenyAsync (page 710)) if you want to ensure
that you get the access permissions and deny-mode permissions that you request. PBHOpenDenySync is
not retried in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict
is returned and the ioRefNum field is set to 0.

You can check that the volume supports AFP deny-mode permissions by checking that the bHasOpenDeny
bit is set in the vMAttrib field returned by the PBHGetVolParmsSync (page 695) or
PBHGetVolParmsAsync (page 694) function. If you don’t want to special case volumes that support AFP
deny mode permissions, you can use the File Manager permissions. See “File Access Permission
Constants” (page 908) for a description of how File Manager permissions are translated to AFP deny-mode
permissions.

To open a file’s resource fork with access deny permissions, use the PBHOpenRFDenySync (page 711) or
PBHOpenRFDenyAsync (page 710) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenDFAsync
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkAsync (page 739) instead.)

OSErr PBHOpenDFAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 855) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

706 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
You should use PBHOpenDFAsync instead of the PBHOpenAsync (page 703) function; PBHOpenDFAsync
allows you to safely open a file whose name begins with a period (.).

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If you attempt to open a locked file for writing,
PBHOpenDFAsync returns the result code permErr. If you request exclusive read/write permission
but another access path is already open, PBHOpenDFAsync returns the reference number of the
existing access path in ioRefNum and opWrErr as its function result.

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, the file reference number for accessing the open data fork. If you request exclusive
read/write permission but another access path is already open, PBHOpenDFAsync returns the reference
number of the existing access path. You should not use this reference number unless your application
originally opened the file.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 908). You can open
a path for writing even if it accesses a file on a locked volume, and no error is returned until a
PBWriteAsync, PBSetEOFAsync (page 757) , or PBAllocateAsync (page 564) call is made.

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 514) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 740) or PBOpenForkAsync (page 739). If you try to open a fork larger than 2GB with
the PBHOpenDFAsync function, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Functions 707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHOpenDFSync
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkSync (page 740) instead.)

OSErr PBHOpenDFSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 855) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). . If you attempt to open a locked file for writing,
PBHOpenDFSync returns the result code permErr. If you request exclusive read/write permission but another
access path is already open, PBHOpenDFSync returns the reference number of the existing access path in
ioRefNum and opWrErr as its function result.

Discussion
You should use PBHOpenDFSync instead of the PBHOpenSync (page 714) function; PBHOpenDFSync allows
you to safely open a file whose name begins with a period (.).

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, the file reference number for accessing the open data fork. If you request exclusive
read/write permission but another access path is already open, PBHOpenDFSync returns the reference
number of the existing access path. You should not use this reference number unless your application
originally opened the file.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 908). You can open
a path for writing even if it accesses a file on a locked volume, and no error is returned until a
PBWriteSync, PBSetEOFSync (page 758) , or PBAllocateSync (page 568) call is made.

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 514) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 740) or PBOpenForkAsync (page 739). If you try to open a fork larger than 2GB with
the PBHOpenDFSync function, you will receive an error message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

708 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Not available to 64-bit applications.

Declared In
Files.h

PBHOpenRFAsync
Opens the resource fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkAsync (page 739) instead.)

OSErr PBHOpenRFAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 855) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. On some file systems, PBHOpenRFAsync will return the
error eofErr if you try to open the resource fork of a file for which no resource fork exists with
read-only access.

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, a file reference number for accessing the open resource fork.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 908).

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 514) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 740) or PBOpenForkAsync (page 739). If you try to open a fork larger than 2GB with
the PBHOpenRFAsync function, you will receive an error message.

Functions 709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

Generally your application should use Resource Manager functions rather than File Manager functions to
access a file’s resource fork. The PBHOpenRFAsync function does not read the resource map into memory
and is generally useful only for applications (such as utilities that copy files) that need block-level access to
a resource fork.

You should not use the resource fork of a file to hold non-resource data. Many parts of the system software
assume that a resource fork always contains resource data.

Because there is no support for locking and unlocking file ranges in Mac OS X, regardless of whether File
Sharing is enabled, you cannot open more than one path to a resource fork with read/ write permission. If
you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission, only the first
attempt will succeed. Subsequent attempts will return an invalid reference number and the ResError
function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenRFDenyAsync
Opens a file’s resource fork using the access deny modes. (Deprecated in Mac OS X v10.5. Use
PBOpenForkAsync (page 739) with deny modes in the permissions field.)

OSErr PBHOpenRFDenyAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 795) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. The function returns the result code opWrErr if you’ve
requested write permission and you have already opened the file for writing in that case, the existing
file reference number is returned in ioRefNum. You should not use this reference number unless your
application originally opened the file.

ioNamePtr
On input, a pointer to a pathname for the file.

710 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file. Pass 0 to
indicate the default volume.

ioRefNum
On output, the file reference number for the file.

ioDenyModes
On input, the type of access you are requesting to the fork. See “File Access Permission Constants” (page
908) for a description of the types of access that you can request.

ioDirID
On input, the parent directory ID of the file.

You should use thePBHOpenRFDenyAsync andPBHOpenDenyAsync (page 704) functions (or their synchronous
counterparts, PBHOpenRFDenySync (page 711) and PBHOpenDenySync (page 705)) if you want to ensure
that you get the access permissions and deny-mode permissions that you request. PBHOpenRFDenyAsync
is not retried in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict
is returned and the ioRefNum field is set to 0.

You can check that the volume supports AFP deny-mode permissions by checking that the bHasOpenDeny
bit is set in the vMAttrib field returned by the PBHGetVolParmsSync (page 695) or
PBHGetVolParmsAsync (page 694) function. If you don’t want to special case volumes that support AFP
deny mode permissions, you can use the File Manager permissions. See “File Access Permission
Constants” (page 908) for a description of how File Manager permissions are translated to AFP deny-mode
permissions.

To open a file’s data fork with access deny permissions, use the PBHOpenDenySync (page 705) or
PBHOpenDenyAsync (page 704) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenRFDenySync
Opens a file’s resource fork using the access deny modes. (Deprecated in Mac OS X v10.5. Use
PBOpenForkSync (page 740) with deny modes in the permissions field.)

OSErr PBHOpenRFDenySync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the AccessParam (page 795) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Functions 711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943). The function returns the result code opWrErr if
you’ve requested write permission and you have already opened the file for writing in that case, the existing
file reference number is returned in ioRefNum. You should not use this reference number unless your
application originally opened the file.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function.

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname for the file.

ioVRefNum
On input, a volume reference number or drive number for the volume containing the file. Pass 0 to
indicate the default volume.

ioRefNum
On output, the file reference number for the file.

ioDenyModes
On input, the type of access you are requesting to the fork. See “File Access Permission Constants” (page
908) for a description of the types of access that you can request.

ioDirID
On input, the parent directory ID of the file.

You should use the PBHOpenRFDenySync and PBHOpenDenySync (page 705) functions (or their asynchronous
counterparts, PBHOpenRFDenyAsync (page 710) and PBHOpenDenyAsync (page 704)) if you want to ensure
that you get the access permissions and deny-mode permissions that you request. PBHOpenRFDenySync is
not retried in any way. If the file cannot be opened because of a deny conflict, the error afpDenyConflict
is returned and the ioRefNum field is set to 0.

You can check that the volume supports AFP deny-mode permissions by checking that the bHasOpenDeny
bit is set in the vMAttrib field returned by the PBHGetVolParmsSync (page 695) or
PBHGetVolParmsAsync (page 694) function. If you don’t want to special case volumes that support AFP
deny mode permissions, you can use the File Manager permissions. See “File Access Permission
Constants” (page 908) for a description of how File Manager permissions are translated to AFP deny-mode
permissions.

To open a file’s data fork with access deny permissions, use the PBHOpenDenySync (page 705) or
PBHOpenDenyAsync (page 704) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

712 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBHOpenRFSync
Opens the resource fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkSync (page 740) instead.)

OSErr PBHOpenRFSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 855) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). On some file systems, PBHOpenRFSync will return
the error eofErr if you try to open the resource fork of a file for which no resource fork exists with read-only
access.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, a file reference number for accessing the open resource fork.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 908).

ioDirID
On input, the directory ID of the file’s parent directory.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Note that if you wish to access named forks other than the data and resource forks, or forks larger than 2GB,
you will need to use the FSOpenFork (page 514) function, or one of its corresponding parameter block calls,
PBOpenForkSync (page 740) or PBOpenForkAsync (page 739). If you try to open a fork larger than 2GB with
the PBOpenRFSync function, you will receive an error message.

Special Considerations

Generally your application should use Resource Manager functions rather than File Manager functions to
access a file’s resource fork. The PBHOpenRFSync function does not read the resource map into memory and
is generally useful only for applications (such as utilities that copy files) that need block-level access to a
resource fork.

You should not use the resource fork of a file to hold non-resource data. Many parts of the system software
assume that a resource fork always contains resource data.

Functions 713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Because there is no support for locking and unlocking file ranges on local disks in Mac OS X, regardless of
whether File Sharing is enabled, you cannot open more than one path to a resource fork with read/ write
permission. If you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission,
only the first attempt will succeed. Subsequent attempts will return an invalid reference number and the
ResError function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHOpenSync
Opens the data fork of a file. (Deprecated in Mac OS X v10.4. Use PBOpenForkSync (page 740) instead.)

OSErr PBHOpenSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 855) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you attempt to open a locked file for writing,
PBHOpenSync returns the result code permErr. If you request exclusive read/write permission but another
access path is already open, PBHOpenSync returns the reference number of the existing access path in
ioRefNum and opWrErr as its function result.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioRefNum
On output, a file reference number for accessing the open data fork. If you request exclusive read/write
permission but another access path is already open, PBHOpenSync returns the reference number of
the existing access path. You should not use this reference number unless your application originally
opened the file.

ioPermssn
On input, a constant specifying the type of access with which to open the fork. For a description of
the types of access you can request, see “File Access Permission Constants” (page 908). You can open
a path for writing even if it accesses a file on a locked volume, and no error is returned until a
PBWriteSync, PBSetEOFSync (page 758) , or PBAllocateSync (page 568) call is made.

ioDirID
On input, the directory ID of the file’s parent directory.

714 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If you use PBHOpenSync to try to open a file whose name begins with a period, you might mistakenly open
a driver instead; subsequent attempts to write data might corrupt data on the target device. To avoid these
problems, you should always use PBHOpenDFSync (page 708) instead of PBHOpenSync.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHRenameAsync
Renames a file, directory, or volume. (Deprecated in Mac OS X v10.4. Use PBRenameUnicodeAsync (page
748) instead.)

OSErr PBHRenameAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 855) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the existing filename, directory name, or volume name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioMisc
On input, a pointer to the new name for the file, directory or volume.

ioDirID
On input, the parent directory ID of the file or directory to rename.

Functions 715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Given a pointer to the name of a file or directory in the ioNamePtr field, PBHRenameAsync changes it to
the name pointed to in the ioMisc field. Given a pointer to a volume name in ioNamePtr or a volume
reference number in ioVRefNum, the function changes the name of the volume to the name pointed to in
ioMisc.

If a file ID reference exists for the file being renamed, the file ID remains with the file.

To rename a file or directory using a long Unicode name, use the FSRenameUnicode (page 539) function or
one of the corresponding parameter block calls, PBRenameUnicodeSync (page 748) and
PBRenameUnicodeAsync (page 748).

Special Considerations

You cannot use PBHRenameAsync to change the directory in which a file is located. To move a file or directory,
use the FSpCatMove (page 524), PBCatMoveSync (page 576), or PBCatMoveAsync (page 575) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHRenameSync
Renames a file, directory, or volume. (Deprecated in Mac OS X v10.4. Use PBRenameUnicodeSync (page 748)
instead.)

OSErr PBHRenameSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HIOParam (page 855) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the existing filename, directory name, or volume name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioMisc
On input, a pointer to the new name for the file, directory or volume.

716 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDirID
On input, the parent directory ID of the file or directory to rename.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Given a pointer to the name of a file or directory in the ioNamePtr field, PBHRenameSync changes it to the
name pointed to in the ioMisc field. Given a pointer to a volume name in ioNamePtr or a volume reference
number in ioVRefNum, the function changes the name of the volume to the name pointed to in ioMisc.

If a file ID reference exists for the file being renamed, the file ID remains with the file.

To rename a file or directory using a long Unicode name, use the FSRenameUnicode (page 539) function or
one of the corresponding parameter block calls, PBRenameUnicodeSync (page 748) and
PBRenameUnicodeAsync (page 748).

Special Considerations

You cannot use PBHRenameSync to change the directory in which a file is located. To move a file or directory,
use the FSpCatMove (page 524), PBCatMoveSync (page 576), or PBCatMoveAsync (page 575) functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHRstFLockAsync
Unlocks a file or directory. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoAsync (page 751) instead.)

OSErr PBHRstFLockAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

Functions 717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
On input, a pointer to the name for the file or directory o unlock.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID of the file or directory to unlock.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the PBHGetVolParmsSync (page 695) or PBHGetVolParmsAsync (page 694) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
PBHRstFLockAsync to unlock a directory. Otherwise, you can only use this function to unlock a file.

Access paths currently in use aren’t affected by this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHRstFLockSync
Unlocks a file or directory. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoSync (page 753) instead.)

OSErr PBHRstFLockSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name for the file or directory to unlock.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID of the file or directory to unlock.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

718 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

If the PBHGetVolParmsSync (page 695) or PBHGetVolParmsAsync (page 694) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
PBHRstFLockSync to unlock a directory. Otherwise, you can only use this function to unlock a file.

Access paths currently in use aren’t affected by this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetDirAccessAsync
Changes the access control information for a directory. (Deprecated in Mac OS X v10.5. Use
FSSetCatalogInfo (page 540) instead.)

OSErr PBHSetDirAccessAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to an AccessParam (page 795) variant of an HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification for the volume containing the directory. This field can contain a
volume reference number, drive number, or 0 for the default volume.

ioACOwnerID
On input, the owner ID.

ioACGroupID
On input, the group ID.

ioACAccess
On input, the directory’s access rights. You cannot set the owner or user rights bits of the ioACAccess
field directly; if you try to do this, PBHSetDirAccessAsync returns the result code paramErr. Only

Functions 719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

the blank access privileges can be set for a directory using this function. See “File and Folder Access
Privilege Constants” (page 910) for more information on directory access privileges.

ioDirID
On input, the directory ID.

To change the owner or group, you should set the ioACOwnerID or ioACGroupID field to the appropriate
ID. You must be the owner of the directory to change the owner or group ID. A guest on a server can
manipulate the privileges of any directory owned by the guest.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetDirAccessSync
Changes the access control information for a directory. (Deprecated in Mac OS X v10.5. Use
FSSetCatalogInfo (page 540) instead.)

OSErr PBHSetDirAccessSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to an AccessParam (page 795) variant of an HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume specification for the volume containing the directory. This field can contain a
volume reference number, drive number, or 0 for the default volume.

ioACOwnerID
On input, the owner ID.

ioACGroupID
On input, the group ID.

ioACAccess
On input, the directory’s access rights. You cannot set the owner or user rights bits of the ioACAccess
field directly; if you try to do this, PBHSetDirAccessSync returns the result code paramErr. Only
the blank access privileges can be set for a directory using this function. See “File and Folder Access
Privilege Constants” (page 910) for more information on directory access privileges.

720 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDirID
On input, the directory ID.

To change the owner or group, you should set the ioACOwnerID or ioACGroupID field to the appropriate
ID. You must be the owner of the directory to change the owner or group ID. A guest on a server can
manipulate the privileges of any directory owned by the guest.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetFInfoAsync
Sets information for a file. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoAsync (page 751) instead.)

OSErr PBHSetFInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, the volume reference number or drive number for the volume containing the file; or 0 for
the default volume.

ioFlFndrInfo
On input, Finder information for the file. For a description of the FInfo data type, see the Finder
Interface Reference .

ioDirID
On input, the parent directory ID for the file.

Functions 721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

ioFlCrDat
On input, the date and time of the file’s creation.

ioFlMdDat
On input, the date and time of the file’s last modification.

You should call the PBHGetFInfoAsync (page 682) function just before calling PBHSetFInfoAsync, so that
the current information is present in the parameter block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetFInfoSync
Sets information for a file. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoSync (page 753) instead.)

OSErr PBHSetFInfoSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file.

ioVRefNum
On input, the volume reference number or drive number for the volume containing the file; or 0 for
the default volume.

ioFlFndrInfo
On input, Finder information for the file. For a description of the FInfo data type, see the Finder
Interface Reference .

ioDirID
On input, the parent directory ID of the file.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

722 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFlCrDat
On input, the date and time of the file’s creation.

ioFlMdDat
On input, the date and time of the file’s last modification.

You should call the PBHGetFInfoSync (page 683) function just before calling PBHSetFInfoSync, so that
the current information is present in the parameter block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetFLockAsync
Locks a file or directory. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoAsync (page 751) instead.)

OSErr PBHSetFLockAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a name for the file or directory to lock.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID of the file or directory to lock.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

Functions 723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

If the PBHGetVolParmsSync (page 695) or PBHGetVolParmsAsync (page 694) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
PBHSetFLockAsync to lock a directory. Otherwise, you can only use this function to lock a file.

After you lock a file, all new access paths to that file are read-only. Access paths currently in use aren’t affected.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBHSetFLockSync
Locks a file or directory. (Deprecated in Mac OS X v10.4. Use PBSetCatalogInfoSync (page 753) instead.)

OSErr PBHSetFLockSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HFileParam (page 852) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a name for the file or directory to lock.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDirID
On input, the parent directory ID of the file or directory to lock.

ioFVersNum
On input, this field should be initialized to zero; if this field is not zero, the call will fall through to the
now-obsolete Macintosh File System (MFS) code if the volume accessed is an MFS volume.

If the PBHGetVolParmsSync (page 695) or PBHGetVolParmsAsync (page 694) function indicates that the
volume supports folder locking (that is, the bHasFolderLock bit of the vMAttrib field is set), you can use
PBHSetFLockSync to lock a directory. Otherwise, you can only use this function to lock a file.

After you lock a file, all new access paths to that file are read-only. Access paths currently in use aren’t affected.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

724 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBHSetVolAsync
Sets the default volume and the default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBHSetVolAsync (
 WDPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a working directory parameter block. See WDPBRec (page 877) for a description of the
WDPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname. If this field specifies a full pathname, the default volume is set to
the volume whose name is contained in that pathname. (A full pathname overrides the ioVRefNum
field.)If this field contains a partial pathname and the ioVRefNum field specifies a volume reference
number, then the default directory is set to the directory having the partial pathname specified here,
in the directory given in the ioWDDirID field. If this field is NULL, then the default directory is set to
the directory having the ID specified in the ioWDDirID field.

ioVRefNum
On input, a volume reference number for the default volume. This field is ignored if the ioNamePtr
field specifies a full pathname.

ioWDDirID
On input, a directory ID. If the ioVRefNum field contains a volume reference number and ioNamePtr
contains a partial pathname, this field contains the directory ID of the directory containing the default
directory. If ioNamePtr is NULL, this field contains the directory ID of the default directory.

Both the default volume and the default directory are used in calls made with no volume name, a volume
reference number of 0, and a directory ID of 0.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBHSetVolSync
Sets the default volume and the default directory. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBHSetVolSync (
 WDPBPtr paramBlock
);

Parameters
paramBlock

A pointer to a working directory parameter block. See WDPBRec (page 877) for a description of the
WDPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. If this field specifies a full pathname, the default volume is set to
the volume whose name is contained in that pathname. (A full pathname overrides the ioVRefNum
field.)If this field contains a partial pathname and the ioVRefNum field specifies a volume reference
number, then the default directory is set to the directory having the partial pathname specified here,
in the directory given in the ioWDDirID field. If this field is NULL, then the default directory is set to
the directory having the ID specified in the ioWDDirID field.

ioVRefNum
On input, the volume reference number for the default volume. This field is ignored if the ioNamePtr
field specifies a full pathname.

ioWDDirID
On input, a directory ID. If the ioVRefNum field contains a volume reference number and ioNamePtr
contains a partial pathname, this field contains the directory ID of the directory containing the default
directory. If ioNamePtr is NULL, this field contains the directory ID of the default directory.

Both the default volume and the default directory are used in calls made with no volume name, a volume
reference number of 0, and a directory ID of 0.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBIterateForksAsync
Determines the name and size of every named fork belonging to a file or directory.

726 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void PBIterateForksAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for more information on the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory to iterate.

forkIterator
A pointer to a structure which maintains state between calls to PBIterateForksAsync. Before the
first call, set the initialize field of this structure to 0. The fork iterator will be updated after the
call completes; the updated iterator should be passed into the next call. See CatPositionRec (page
801) for a description of the structure pointed to in this field.

outForkName
On output, a pointer to the Unicode name of the fork.

positionOffset
On output, the logical size of the fork, in bytes.

allocationAmount
On output, the fork’s physical size (that is, the amount of space allocated on disk), in bytes.

Since information is returned about one fork at a time, several calls may be required to iterate through all
the forks. There is no guarantee about the order in which forks are returned; the order may vary between
iterations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBIterateForksSync
Determines the name and size of every named fork belonging to a file or directory.

Functions 727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBIterateForksSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for more information on the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory to iterate.

forkIterator
A pointer to a structure which maintains state between calls to PBIterateForksSync. Before the
first call, set the initialize field of this structure to 0. The fork iterator will be updated after the
call completes; the updated iterator should be passed into the next call. See CatPositionRec (page
801) for a description of the structure pointed to in this field.

outForkName
On output, a pointer to the Unicode name of the fork.

positionOffset
On output, the logical size of the fork, in bytes.

allocationAmount
On output, the fork’s physical size (that is, the amount of space allocated on disk), in bytes.

Since information is returned about one fork at a time, several calls may be required to iterate through all
the forks. There is no guarantee about the order in which forks are returned; the order may vary between
iterations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBLockRangeAsync
Locks a portion of a file. (Deprecated in Mac OS X v10.4. Use PBXLockRangeAsync (page 785) instead.)

OSErr PBLockRangeAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

728 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If you call PBLockRangeAsync on a file system that does
not implement it—for example, SMB—PBLockRangeAsync returns noErr and does nothing.

ioRefNum
On input, the file reference number of the file owning the range to lock.

ioReqCount
On input, the number of bytes in the range. Set ioReqCount to –1 to lock the maximum number of
bytes from the position specified in the ioPosOffset field.

ioPosMode
On input, a constant specifying the base location for the start of the locked range. See “Position Mode
Constants” (page 928) for more information on the constants you can use to specify the base location.

You should not use the fsFromLEOF constant when locking a file range. PBLockRangeAsync does
not return the start of the locked range; thus, there is no way to determine what range was actually
locked when you specify fsFromLEOF.

ioPosOffset
On input, the offset from the base location specified in the ioPosMode field for the start of the locked
range.

The PBLockRangeAsync function locks a portion of a file that was opened with shared read/write permission.
The beginning of the range to be locked is determined by the ioPosMode and ioPosOffset fields. The end
of the range to be locked is determined by the beginning of the range and the ioReqCount field. For example,
to lock the first 50 bytes in a file, set ioReqCount to 50, ioPosMode to fsFromStart, and ioPosOffset
to 0.

The PBLockRangeAsync function uses the same parameters as both PBReadAsync and PBWriteAsync;
by calling it immediately before PBReadAsync, you can use the information in the parameter block for the
PBReadAsync call.

When you’re finished with the data (typically after a call to PBWriteSync), you can call
PBUnlockRangeAsync (page 770) to free that portion of the file for subsequent read and write calls. Closing
a file also releases all locked ranges in that file.

Special Considerations

The PBLockRangeAsync function does nothing if the file specified in the ioRefNum field is open with shared
read/write permission but is not located on a remote server volume or is not located under a share point on
a sharable local volume. To check whether file sharing is currently on, check that the
bHasPersonalAccessPrivileges bit in the vMAttrib field of the GetVolParmsInfoBuffer (page 847)
returned by the PBHGetVolParmsSync (page 695) function is set.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBLockRangeSync
Locks a portion of a file. (Deprecated in Mac OS X v10.4. Use PBXLockRangeSync (page 785) or
FSLockRange (page 504) instead.)

OSErr PBLockRangeSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you call PBLockRangeSync on a file system that
does not implement it—for example, SMB—PBLockRangeSync returns noErr and does nothing.

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, the file reference number of the file owning the range to lock.

ioReqCount
On input, the number of bytes in the range. Set ioReqCount to –1 to lock the maximum number of
bytes from the position specified in the ioPosOffset field.

ioPosMode
On input, a constant specifying the base location for the start of the locked range. See “Position Mode
Constants” (page 928) for more information about the constants you can use to specify the base
location.

You should not use the fsFromLEOF constant when locking a file range. PBLockRangeSync does
not return the start of the locked range; thus, there is no way to determine what range was actually
locked when you specify fsFromLEOF.

ioPosOffset
On input, the offset from the base location specified in the ioPosMode field for the start of the locked
range.

The PBLockRangeSync function locks a portion of a file that was opened with shared read/write permission.
The beginning of the range to be locked is determined by the ioPosMode and ioPosOffset fields. The end
of the range to be locked is determined by the beginning of the range and the ioReqCount field. For example,
to lock the first 50 bytes in a file, set ioReqCount to 50, ioPosMode to fsFromStart, and ioPosOffset
to 0.

The PBLockRangeSync function uses the same parameters as both PBReadSync and PBWriteSync; by
calling it immediately before PBReadSync, you can use the information in the parameter block for the
PBReadSync call.

When you’re finished with the data (typically after a call to PBWriteSync), you can call
PBUnlockRangeSync (page 771) to free that portion of the file for subsequent read and write calls. Closing
a file also releases all locked ranges in that file.

730 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

The PBLockRangeSync function does nothing if the file specified in the ioRefNum field is open with shared
read/write permission but is not located on a remote server volume or is not located under a share point on
a sharable local volume. To check whether file sharing is currently on, check that the
bHasPersonalAccessPrivileges bit in the vMAttrib field of the GetVolParmsInfoBuffer (page 847)
returned by the PBHGetVolParmsSync (page 695) function is set.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBMakeFSRefAsync
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated in Mac OS X v10.5. Use
PBMakeFSRefUnicodeAsync (page 733) instead.)

void PBMakeFSRefAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Discussion
For the parameter block based calls, the fields of the source FSSpec are passed as separate parameters (in
the ioNamePtr, ioVRefNum, and ioDirID fields). This allows the call to be dispatched to external file systems
the same way as other FSp calls are.

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the file or directory for which you wish to create an FSRef.

ioVRefNum
On input, a volume specification for the volume containing the file or directory. This can be a volume
reference number, a drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the file or directory’s parent directory.

newRef
On input, a pointer to an FSRef structure. On output, this FSRef refers to the specified file or
directory.

Functions 731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

To obtain an FSSpec from an FSRef, use the PBGetCatalogInfoAsync (page 643) call.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBMakeFSRefSync
Creates an FSRef for a file or directory, given an FSSpec. (Deprecated in Mac OS X v10.5. Use
PBMakeFSRefUnicodeSync (page 733) instead.)

OSErr PBMakeFSRefSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
For the parameter block based calls, the fields of the source FSSpec are passed as separate parameters (in
the ioNamePtr, ioVRefNum, and ioDirID fields). This allows the call to be dispatched to external file systems
the same way as other FSp calls are.

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to the name of the file or directory for which you wish to create an FSRef.

ioVRefNum
On input, a volume specification for the volume containing the file or directory. This can be a volume
reference number, a drive number, or 0 for the default volume.

ioDirID
On input, the directory ID of the file or directory’s parent directory.

newRef
On input, a pointer to an FSRef structure. On output, this FSRef refers to the specified file or
directory.

To obtain an FSSpec from an FSRef, use the PBGetCatalogInfoSync (page 647) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

732 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBMakeFSRefUnicodeAsync
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

void PBMakeFSRefUnicodeAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ref
On input, a pointer to the FSRef of the parent directory of the file or directory for which to create a
new FSRef. See FSRef (page 837) for a description of the FSRef data type.

nameLength
On input, the length of the file or directory name.

name
On input, a pointer to the Unicode name for the file or directory. The name must be a leaf name;
partial or full pathnames are not allowed. If you have a partial or full pathname in Unicode, you will
have to parse it yourself and make multiple calls to PBMakeFSRefUnicodeAsync.

textEncodingHint
On input, the suggested text encoding to use when converting the Unicode name of the file or
directory to some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager
will use a default value.

newRef
On output, if the function returns a result of noErr, a pointer to the new FSRef

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBMakeFSRefUnicodeSync
Constructs an FSRef for a file or directory, given a parent directory and a Unicode name.

Functions 733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBMakeFSRefUnicodeSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to the FSRef of the parent directory of the file or directory for which to create a
new FSRef. See FSRef (page 837) for a description of the FSRef data type.

nameLength
On input, the length of the file or directory name.

name
On input, a pointer to the Unicode name for the file or directory. The name must be a leaf name;
partial or full pathnames are not allowed. If you have a partial or full pathname in Unicode, you will
have to parse it yourself and make multiple calls to PBMakeFSRefUnicodeSync.

textEncodingHint
On input, the suggested text encoding to use when converting the Unicode name of the file or
directory to some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager
will use a default value.

newRef
On output, if the function returns a result of noErr, a pointer to the new FSRef

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBMakeFSSpecAsync
Creates an FSSpec structure for a file or directory. (Deprecated in Mac OS X v10.4. Use
PBMakeFSRefUnicodeAsync (page 733) instead.)

OSErr PBMakeFSSpecAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic HFS parameter block. See HParamBlockRec (page 857) for a description of the
HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

734 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

If the specified volume is mounted and the specified parent directory exists, but the target file or directory
doesn’t exist in that location, PBMakeFSSpecAsync fills in the structure and returns fnfErr instead of noErr.
The structure is valid, but it describes a target that doesn’t exist. You can use the structure for another
operation, such as creating a file.

PBMakeFSSpecAsync can return a number of different File Manager error codes. When PBMakeFSSpecAsync
returns any result other than noErr or fnfErr, all fields of the resulting FSSpec structure are set to 0.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. When PBMakeFSSpecAsync returns any result other than
noErr or fnfErr, all fields of the resulting FSSpec structure are set to 0. See “File Manager Result
Codes”.

ioNamePtr
On input, a pointer to a full or partial pathname specifying the file or directory for which to create an
FSSpec. If the ioNamePtr field specifies a full pathname, PBMakeFSSpecAsync ignores both the
ioVRefNum and ioDirID fields. A partial pathname might identify only the final target, or it might
include one or more parent directory names. If ioNamePtr specifies a partial pathname, then
ioVRefNum, ioDirID, or both must be valid.

ioVRefNum
On input, a volume specification for the volume containing the file or directory. This field can contain
a volume reference number, a drive number, or 0 to specify the default volume.

ioMisc
On input, a pointer to an FSSpec (page 840) structure. Given a complete specification for a file or
directory, the PBMakeFSSpecAsync function fills in this FSSpec structure to identify the file or
directory. On output, this field points to the initialized FSSpec. The file system specification structure
that you pass in this field should not share storage space with the input pathname; the name field
may be initialized to the empty string before the pathname has been processed. For example,
ioNamePtr should not refer to the name field of the output file system specification.

ioDirID
On input, a directory ID. This field usually specifies the parent directory ID of the target object. If the
directory is sufficiently specified by the ioNamePtr field, the ioDirID field can be set to 0. If the
ioNamePtr field contains an empty string, PBMakeFSSpecAsync creates an FSSpec structure for
the directory specified by the ioDirID field.

If the specified volume is mounted and the specified parent directory exists, but the target file or directory
doesn’t exist in that location, PBMakeFSSpecAsync fills in the structure and returns fnfErr instead of noErr.
The structure is valid, but it describes a target that doesn’t exist. You can use the structure for another
operation, such as creating a file.

Carbon Porting Notes

Non-Carbon applications can also specify a working directory reference number in the ioVRefNum field.
However, because working directories are not supported in Carbon, you cannot specify a working directory
reference number if you wish your application to be Carbon-compatible.

Availability
Available in Mac OS X v10.0 and later.

Functions 735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBMakeFSSpecSync
Creates an FSSpec structure for a file or directory. (Deprecated in Mac OS X v10.4. Use
PBMakeFSRefUnicodeSync (page 733) instead.)

OSErr PBMakeFSSpecSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic HFS parameter block. See HParamBlockRec (page 857) for a description of the
HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). When PBMakeFSSpecSync returns any result other
than noErr or fnfErr, all fields of the resulting FSSpec structure are set to 0.

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a full or partial pathname specifying the file or directory for which to create an
FSSpec. If the ioNamePtr field specifies a full pathname, PBMakeFSSpecSync ignores both the
ioVRefNum and ioDirID fields. A partial pathname might identify only the final target, or it might
include one or more parent directory names. If ioNamePtr specifies a partial pathname, then
ioVRefNum, ioDirID, or both must be valid.

ioVRefNum
On input, a volume specification for the volume containing the file or directory. This field can contain
a volume reference number, a drive number, or 0 to specify the default volume.

ioMisc
On input, a pointer to an FSSpec (page 840) structure. Given a complete specification for a file or
directory, the PBMakeFSSpecSync function fills in this FSSpec structure to identify the file or directory.
On output, this field points to the initialized FSSpec. The file system specification structure that you
pass in this field should not share storage space with the input pathname; the name field may be
initialized to the empty string before the pathname has been processed. For example, ioNamePtr
should not refer to the name field of the output file system specification.

ioDirID
On input, a directory ID. This field usually specifies the parent directory ID of the target object. If the
directory is sufficiently specified by the ioNamePtr field, the ioDirID field can be set to 0. If the
ioNamePtr field contains an empty string, PBMakeFSSpecSync creates an FSSpec structure for the
directory specified by the ioDirID field.

736 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

If the specified volume is mounted and the specified parent directory exists, but the target file or directory
doesn’t exist in that location, PBMakeFSSpecSync fills in the structure and returns fnfErr instead of noErr.
The structure is valid, but it describes a target that doesn’t exist. You can use the structure for another
operation, such as creating a file.

Carbon Porting Notes

Non-Carbon applications can also specify a working directory reference number in the ioVRefNum field.
However, because working directories are not supported in Carbon, you cannot specify a working directory
reference number if you wish your application to be Carbon-compatible.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBMoveObjectAsync
Moves a file or directory into a different directory.

void PBMoveObjectAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If the parentRef field specifies a non-existent object,
dirNFErr is returned; if it refers to a file, then errFSNotAFolder is returned. If the directory specified
in parentRef is on a different volume than the file or directory indicated by the ref field, diffVolErr
is returned.

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory to move.

parentRef
On input, a pointer to an FSRef specifying the directory into which the file or directory given in the
ref field will be moved.

newRef
On output, a pointer to the new FSRef for the file or directory in its new location. This field is optional;
if you do not wish the FSRef returned, pass NULL here.

Functions 737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Moving an object may change its FSRef. If you want to continue to refer to the object, you should pass a
non- NULL pointer in the newRef field and use the FSRef returned there to refer to the object after the
move. The original FSRef passed in the ref field may or may not be usable after the move. The newRef
field may point to the same storage as the parentRef or ref fields.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBMoveObjectSync
Moves a file or directory into a different directory.

OSErr PBMoveObjectSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If the the parentRef field of the parameter block
specifies a non-existent object, dirNFErr is returned; if it refers to a file, errFSNotAFolder is returned. If
the directory specified in the parentRef field is on a different volume than the file or directory indicated in
the ref field, diffVolErr is returned.

Discussion
The relevant fields of the parameter block are:

ioResult
On output, the result code of the function. If the parentRef field specifies a non-existent object,
dirNFErr is returned; if it refers to a file, then errFSNotAFolder is returned. If the directory specified
in parentRef is on a different volume than the file or directory indicated by the ref field, diffVolErr
is returned.

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory to move.

parentRef
On input, a pointer to an FSRef specifying the directory into which the file or directory given in the
ref field will be moved.

newRef
On output, a pointer to the new FSRef for the file or directory in its new location. This field is optional;
if you do not wish the FSRef returned, pass NULL here.

Moving an object may change its FSRef. If you want to continue to refer to the object, you should pass a
non- NULL pointer in the newRef field and use the FSRef returned there to refer to the object after the
move. The original FSRef passed in the ref field may or may not be usable after the move. The newRef
field may point to the same storage as the parentRef or ref fields.

738 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBOpenForkAsync
Opens any fork of a file or directory for streaming access.

void PBOpenForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. On some file systems, PBOpenForkAsync will return the
error eofErr if you try to open the resource fork of a file for which no resource fork exists with
read-only access.

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory that owns the fork to open.

forkNameLength
On input, the length of the fork’s Unicode name.

forkName
On input, a pointer to the Unicode name of the fork to open. You can obtain the string constants for
the data and resource fork names using the FSGetDataForkName (page 497) and
FSGetResourceForkName (page 500) functions. All volume formats should support data and resource
forks; other named forks may be supported by some volume formats.

permissions
On input, a constant indicating the type of access that you wish to have to the fork via the returned
fork reference. This parameter is the same as the permission parameter passed to the FSpOpenDF
and FSpOpenRF functions. For a description of the types of access which you can request, see “File
Access Permission Constants” (page 908).

forkRefNum
On output, the fork reference number for accessing the open fork.

If you wish to access named forks or forks larger than 2GB you must use the FSOpenFork function or one
of the corresponding parameter block calls, PBOpenForkSync and PBOpenForkAsync. To determine if the
PBOpenForkSync function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Functions 739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

PBOpenForkSync
Opens any fork of a file or directory for streaming access.

OSErr PBOpenForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). On some file systems, PBOpenForkSyncwill return
the error eofErr if you try to open the resource fork of a file for which no resource fork exists with read-only
access.

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory that owns the fork to open.

forkNameLength
On input, the length of the fork’s Unicode name.

forkName
On input, a pointer to the Unicode name of the fork to open. You can obtain the string constants for
the data and resource fork names using the FSGetDataForkName (page 497) and
FSGetResourceForkName (page 500) functions. All volume formats should support data and resource
forks; other named forks may be supported by some volume formats.

permissions
On input, a constant indicating the type of access that you wish to have to the fork via the returned
fork reference. This parameter is the same as the permission parameter passed to the FSpOpenDF
and FSpOpenRF functions. For a description of the types of access which you can request, see “File
Access Permission Constants” (page 908).

forkRefNum
On output, the fork reference number for accessing the open fork.

If you wish to access named forks or forks larger than 2GB you must use the FSOpenFork function or one
of the corresponding parameter block calls, PBOpenForkSync and PBOpenForkAsync. To determine if the
PBOpenForkSync function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

740 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBOpenIteratorAsync
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

void PBOpenIteratorAsync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 824) for a
description of the FSCatalogBulkParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

iterator
On output, the new FSIterator (page 835). You can pass this iterator to the
FSGetCatalogInfoBulk (page 495) or FSCatalogSearch (page 472) functions and their parameter
block-based counterparts. The iterator is automatically initialized so that the next use of the iterator
returns the first item. The order that items are returned in is volume format dependent and may be
different for two different iterators created with the same container and flags.

iteratorFlags
On input, a set of flags which controls whether the iterator iterates over subtrees or just the immediate
children of the container. See “Iterator Flags” (page 924) for a description of the flags defined for this
field. Iteration over subtrees which do not originate at the root directory of a volume are not currently
supported, and passing the kFSIterateSubtree flag in this field returns errFSBadIteratorFlags.
To determine whether subtree iterators are supported, check that the bSupportsSubtreeIterators
bit returned by PBHGetVolParmsAsync (page 694) is set.

container
On input, a pointer to an FSRef (page 837) for the directory to iterate. The set of items to iterate over
can either be the objects directly contained in the directory, or all items directly or indirectly contained
in the directory (in which case, the specified directory is the root of the subtree to iterate).

Catalog iterators must be closed when you are done using them, whether or not you have iterated over all
the items. Iterators are automatically closed upon process termination, just like open files. However, you
should use the FSCloseIterator (page 475) function, or one of the related parameter block functions,
PBCloseIteratorSync (page 584) and PBCloseIteratorAsync (page 584) , to close an iterator to free up
any system resources allocated to the iterator.

Before calling this function, you should check that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBOpenIteratorSync
Creates a catalog iterator that can be used to iterate over the contents of a directory or volume.

OSErr PBOpenIteratorSync (
 FSCatalogBulkParam *paramBlock
);

Parameters
paramBlock

A pointer to a catalog information parameter block. See FSCatalogBulkParam (page 824) for a
description of the FSCatalogBulkParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

iterator
On output, the new FSIterator (page 835). You can pass this iterator to the
FSGetCatalogInfoBulk (page 495) or FSCatalogSearch (page 472) functions and their parameter
block-based counterparts. The iterator is automatically initialized so that the next use of the iterator
returns the first item. The order that items are returned in is volume format dependent and may be
different for two different iterators created with the same container and flags.

iteratorFlags
On input, a set of flags which controls whether the iterator iterates over subtrees or just the immediate
children of the container. See “Iterator Flags” (page 924) for a description of the flags defined for this
field. Iteration over subtrees which do not originate at the root directory of a volume are not currently
supported, and passing the kFSIterateSubtree flag in this field returns errFSBadIteratorFlags.
To determine whether subtree iterators are supported, check that the bSupportsSubtreeIterators
bit returned by PBHGetVolParmsSync (page 695) is set.

container
On input, a pointer to an FSRef (page 837) for the directory to iterate. The set of items to iterate over
can either be the objects directly contained in the directory, or all items directly or indirectly contained
in the directory (in which case, the specified directory is the root of the subtree to iterate).

Catalog iterators must be closed when you are done using them, whether or not you have iterated over all
the items. Iterators are automatically closed upon process termination, just like open files. However, you
should use the FSCloseIterator (page 475) function, or one of the related parameter block functions,
PBCloseIteratorSync (page 584) and PBCloseIteratorAsync (page 584) , to close an iterator to free up
any system resources allocated to the iterator.

Before calling this function, you should check that it is present, by calling the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

742 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBReadAsync
Reads any number of bytes from an open file. (Deprecated in Mac OS X v10.5. Use PBReadForkAsync (page
744) instead.)

OSErr PBReadAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine.

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for an open file to be read.

ioBuffer
On input, a pointer to a data buffer into which the bytes are read.

ioReqCount
On input, the number of bytes requested. The value that you pass in this field should be greater than
zero.

ioActCount
On output, the number of bytes actually read.

ioPosMode
On input, the positioning mode.

ioPosOffset
On input, the positioning offset. On output, the new position of the mark.

This function attempts to read ioReqCount bytes from the open file whose access path is specified in the
ioRefNum field and transfer them to the data buffer pointed to by the ioBuffer field. The position of the
mark is specified by ioPosMode and ioPosOffset. If your application tries to read past the logical end-of-file,
PBReadAsync reads the data, moves the mark to the end-of-file, and returns eofErr as its function result.
Otherwise, PBReadAsync moves the file mark to the byte following the last byte read and returns noErr.

You can specify that PBReadAsync read the file data 1 byte at a time until the requested number of bytes
have been read or until the end-of-file is reached. To do so, set bit 7 of the ioPosMode field. Similarly, you
can specify that PBReadAsync should stop reading data when it reaches an application-defined newline
character. To do so, place the ASCII code of that character into the high-order byte of the ioPosMode field;
you must also set bit 7 of that field to enable newline mode.

When reading data in newline mode, PBReadAsync returns the newline character as part of the data read
and sets ioActCount to the actual number of bytes placed into the buffer (which includes the newline
character).

Functions 743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBReadForkAsync
Reads data from an open fork.

void PBReadForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If there are fewer than requestCount bytes from the
specified position to the logical end-of-file, then all of those bytes are read, and eofErr is returned.

forkRefNum
On input, the reference number of the fork to read from. You should have previously opened this fork
using the FSOpenFork (page 514) call, or one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

positionMode
On input, a constant specifying the base location within the fork for the start of the read. See “Position
Mode Constants” (page 928) for a description of the constants which you can use to specify the base
location. The caller can also use this parameter to hint to the File Manager whether the data being
read should or should not be cached. Caching reads appropriately can be important in ensuring that
your program access files efficiently. If you add the forceReadMask constant to the value you pass
in this parameter, this tells the File Manager to force the data to be read directly from the disk. This
is different from adding the noCacheMask constant since forceReadMask tells the File Manager to
flush the appropriate part of the cache first, then ignore any data already in the cache. However, data
that is read may be placed in the cache for future reads. The forceReadMask constant is also passed
to the device driver, indicating that the driver should avoid reading from any device caches. See
“Cache Constants” (page 889) for further description of the constants that you can use to indicate your
preference for caching the read.

positionOffset
On input, the offset from the base location for the start of the read.

744 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

requestCount
On input, the number of bytes to read. The value that you pass in this field should be greater than
zero.

buffer
A pointer to the buffer where the data will be returned.

actualCount
On output, the number of bytes actually read. The value in this field should be equal to the value in
the requestCount field unless there was an error during the read operation.

PBReadForkAsync reads data starting at the position specified by the positionMode and positionOffset
fields. The function reads up to requestCount bytes into the buffer pointed to by the buffer field and sets
the fork’s current position to the byte immediately after the last byte read (that is, the initial position plus
actualCount).

To verify that data previously written has been correctly transferred to disk, read it back in using the
forceReadMask constant in the positionMode field and compare it with the data you previously wrote.

When reading data from a fork, it is important to pay attention to that way that your program accesses the
fork, because this can have a significant performance impact. For best results, you should use an I/O size of
at least 4KB and block align your read requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBReadForkSync
Reads data from an open fork.

OSErr PBReadForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If there are fewer than requestCount bytes from
the specified position to the logical end-of-file, then all of those bytes are read, and eofErr is returned.

Discussion
The relevant fields of the parameter block are:

forkRefNum
On input, the reference number of the fork to read from. You should have previously opened this fork
using the FSOpenFork (page 514) call, or one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

Functions 745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

positionMode
On input, a constant specifying the base location within the fork for the start of the read. See “Position
Mode Constants” (page 928) for a description of the constants which you can use to specify the base
location. The caller can also use this parameter to hint to the File Manager whether the data being
read should or should not be cached. Caching reads appropriately can be important in ensuring that
your program access files efficiently. If you add the forceReadMask constant to the value you pass
in this parameter, this tells the File Manager to force the data to be read directly from the disk. This
is different from adding the noCacheMask constant since forceReadMask tells the File Manager to
flush the appropriate part of the cache first, then ignore any data already in the cache. However, data
that is read may be placed in the cache for future reads. The forceReadMask constant is also passed
to the device driver, indicating that the driver should avoid reading from any device caches. See
“Cache Constants” (page 889) for further description of the constants that you can use to indicate your
preference for caching the read.

positionOffset
On input, the offset from the base location for the start of the read.

requestCount
On input, the number of bytes to read. The value that you pass in this field should be greater than
zero.

buffer
A pointer to the buffer where the data will be returned.

actualCount
On output, the number of bytes actually read. The value in this field should be equal to the value in
the requestCount field unless there was an error during the read operation.

PBReadForkSync reads data starting at the position specified by the positionMode and positionOffset
fields. The function reads up to requestCount bytes into the buffer pointed to by the buffer field and sets
the fork’s current position to the byte immediately after the last byte read (that is, the initial position plus
actualCount).

To verify that data previously written has been correctly transferred to disk, read it back in using the
forceReadMask constant in the positionMode field and compare it with the data you previously wrote.

When reading data from a fork, it is important to pay attention to that way that your program accesses the
fork, because this can have a significant performance impact. For best results, you should use an I/O size of
at least 4KB and block align your read requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBReadSync
Reads any number of bytes from an open file. (Deprecated in Mac OS X v10.5. Use PBReadForkSync (page
745) instead.)

746 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBReadSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for an open file to be read.

ioBuffer
On input, a pointer to a data buffer into which the bytes are read.

ioReqCount
On input, the number of bytes requested. The value that you pass in this field should be greater than
zero.

ioActCount
On output, the number of bytes actually read.

ioPosMode
On input, the positioning mode.

ioPosOffset
On input, the positioning offset. On output, the new position of the mark.

This function attempts to read ioReqCount bytes from the open file whose access path is specified in the
ioRefNum field and transfer them to the data buffer pointed to by the ioBuffer field. The position of the
mark is specified by ioPosMode and ioPosOffset. If your application tries to read past the logical end-of-file,
PBReadSync reads the data, moves the mark to the end-of-file, and returns eofErr as its function result.
Otherwise, PBReadSync moves the file mark to the byte following the last byte read and returns noErr.

You can specify that PBReadSync read the file data 1 byte at a time until the requested number of bytes
have been read or until the end-of-file is reached. To do so, set bit 7 of the ioPosMode field. Similarly, you
can specify that PBReadSync should stop reading data when it reaches an application-defined newline
character. To do so, place the ASCII code of that character into the high-order byte of the ioPosMode field;
you must also set bit 7 of that field to enable newline mode.

When reading data in newline mode, PBReadSync returns the newline character as part of the data read
and sets ioActCount to the actual number of bytes placed into the buffer (which includes the newline
character).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

Functions 747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBRenameUnicodeAsync
Renames a file or folder.

void PBRenameUnicodeAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ref
On input, a pointer to an FSRef (page 837) for the file or directory to rename.

nameLength
On input, the length of the new name in Unicode characters.

name
On input, a pointer to the new Unicode name of the file or directory.

textEncodingHint
On input, the suggested text encoding to use when converting the Unicode name of the file or
directory to some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager
will use a default value.

newRef
On output, a a pointer to the new FSRef for the file or directory. This field is optional; if you do not
wish the FSRef returned, pass NULL.

Because renaming an object may change its FSRef, you should pass a non- NULL pointer in the newRef field
and use the FSRef returned there to access the object after the renaming, if you wish to continue to refer
to the object. The FSRef passed in the ref field may or may not be usable after the object is renamed. The
FSRef returned in the newRef field may point to the same storage as the FSRef passed in ref.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBRenameUnicodeSync
Renames a file or folder.

748 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBRenameUnicodeSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 837) for the file or directory to rename.

nameLength
On input, the length of the new name in Unicode characters.

name
On input, a pointer to the new Unicode name of the file or directory.

textEncodingHint
On input, the suggested text encoding to use when converting the Unicode name of the file or
directory to some other encoding. If you pass the constant kTextEncodingUnknown, the File Manager
will use a default value.

newRef
On output, a a pointer to the new FSRef for the file or directory. This field is optional; if you do not
wish the FSRef returned, pass NULL.

Because renaming an object may change its FSRef, you should pass a non- NULL pointer in the newRef field
and use the FSRef returned there to access the object after the renaming, if you wish to continue to refer
to the object. The FSRef passed in the ref field may or may not be usable after the object is renamed. The
FSRef returned in the newRef field may point to the same storage as the FSRef passed in ref.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBResolveFileIDRefAsync
Retrieves the filename and parent directory ID of a file given its file ID. (Deprecated in Mac OS X v10.5. Use
FSGetCatalogInfo (page 494) instead.)

OSErr PBResolveFileIDRefAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to an FIDParam (page 818) variant of the HFS parameter block. See HParamBlockRec (page
857) for more information on the HParamBlockRec data type.

Functions 749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDS internally as part of its search
algorithms for finding the target of an alias record.

The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. A return code of fidNotFound means that the specified
file ID reference has become invalid, either because the file was deleted or because the file ID reference
was destroyed by PBDeleteFileIDRefSync (page 597) or PBDeleteFileIDRefAsync (page 596).

ioNamePtr
On input, a pointer to a pathname. If the name string is NULL, PBResolveFileIDRefAsync doe s
not return the filename, but returns only the parent directory ID of the file in the ioSrcDirID field.
If the name string is not NULL but is only a volume name, PBResolveFileIDRefAsync ignores the
value in the ioVRefNum field and uses the volume name instead. On output, a pointer to the filename
for the file with the given file ID.

ioVRefNum
On input, a volume specification for the volume containing the file. This field can contain a volume
reference number, a drive number, or 0 for the default volume.

ioSrcDirID
On output, the file’s parent directory ID.

ioFileID
On input, a file ID for the file to retrieve information about.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBResolveFileIDRefSync
Retrieves the filename and parent directory ID of a file given its file ID. (Deprecated in Mac OS X v10.5. Use
FSGetCatalogInfo (page 494) instead.)

750 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBResolveFileIDRefSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to an FIDParam (page 818) variant of the HFS parameter block. See HParamBlockRec (page
857) for more information on the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). A return code of fidNotFound means that the
specified file ID reference has become invalid, either because the file was deleted or because the file ID
reference was destroyed by PBDeleteFileIDRefSync (page 597) or PBDeleteFileIDRefAsync (page
596).

Discussion
Most applications do not need to use this function. In general, you should track files using alias records, as
described in the Alias Manager documentation. The Alias Manager uses file IDs internally as part of its search
algorithms for finding the target of an alias record.

The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname. If the name string is NULL, PBResolveFileIDRefSync doe s not
return the filename, but returns only the parent directory ID of the file in the ioSrcDirID field. If the
name string is not NULL but is only a volume name, PBResolveFileIDRefSync ignores the value
in the ioVRefNum field and uses the volume name instead. On output, a pointer to the filename of
the file with the given file ID.

ioVRefNum
On input, a volume specification for the volume containing the file. This field can contain a volume
reference number, drive number, or 0 for the default volume.

ioSrcDirID
On output, the file’s parent directory ID.

ioFileID
On input, a file ID for the file to retrieve information about.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBSetCatalogInfoAsync
Sets the catalog information about a file or directory.

Functions 751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

void PBSetCatalogInfoAsync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) for a description of
the FSRefParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory whose information is to be
changed.

whichInfo
On input, a bitmap specifying which catalog information fields to set. Only some of the catalog
information fields may be set. These fields are given by the constant kFSCatInfoSettableInfo;
no other bits may be set in the whichInfo field. See “Catalog Information Bitmap Constants” (page
891) for a description of the bits in this field.

To set the user ID (UID) and group ID (GID), specify the kFSCatInfoSetOwnership flag in this field.
The File Manager attempts to set the user and group ID to the values specified in the permissions
field of the catalog information structure. If PBSetCatalogInfoAsync cannot set the user and group
IDs, it returns an error.

catInfo
On input, a pointer to theFSCatalogInfo (page 826) structure containing the new catalog information.
Only some of the catalog information fields may be set. The fields which may be set are:

 ■ createDate

 ■ contentModDate

 ■ attributeModDate

 ■ accessDate

 ■ backupDate

 ■ permissions

 ■ finderInfo

 ■ extFinderInfo

 ■ textEncodingHint

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

752 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBSetCatalogInfoSync
Sets the catalog information about a file or directory.

OSErr PBSetCatalogInfoSync (
 FSRefParam *paramBlock
);

Parameters
paramBlock

A pointer to a file system reference parameter block. See FSRefParam (page 837) fro s description of
the FSRefParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ref
On input, a pointer to an FSRef (page 837) specifying the file or directory whose information is to be
changed.

whichInfo
On input, a bitmap specifying which catalog information fields to set. Only some of the catalog
information fields may be set. These fields are given by the constant kFSCatInfoSettableInfo;
no other bits may be set in the whichInfo field. See “Catalog Information Bitmap Constants” (page
891) for a description of the bits in this field.

To set the user ID (UID) and group ID (GID), specify the kFSCatInfoSetOwnership flag in this field.
The File Manager attempts to set the user and group ID to the values specified in the permissions
field of the catalog information structure. If PBSetCatalogInfoSync cannot set the user and group
IDs, it returns an error.

catInfo
On input, a pointer to theFSCatalogInfo (page 826) structure containing the new catalog information.
Only some of the catalog information fields may be set. The fields which may be set are:

 ■ createDate

 ■ contentModDate

 ■ attributeModDate

 ■ accessDate

 ■ backupDate

 ■ permissions

 ■ finderInfo

 ■ extFinderInfo

 ■ textEncodingHint

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Functions 753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBSetCatInfoAsync
Modifies catalog information for a file or directory. (Deprecated in Mac OS X v10.4. Use
PBSetCatalogInfoAsync (page 751) instead.)

OSErr PBSetCatInfoAsync (
 CInfoPBPtr paramBlock
);

Parameters
paramBlock

A pointer to an HFS catalog information parameter block. See CInfoPBRec (page 802) for a description
of the CInfoPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The PBSetCatInfoAsync function sets information about a file or directory. When used to set information
about a file, it works much as PBHSetFInfoAsync (page 721) does, but lets you set some additional
information.

If the object is a file, the relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFlFndrInfo
On input, Finder information for the file.

ioDirID
On input, the parent directory ID of the file.

ioFlCrDat
On input, the date and time of the file’s creation.

ioFlMdDat
On input, the date and time of the file’s last modification.

ioFlBkDat
On input, the date and time of the file’s last backup.

ioFlXFndrInfo
On input, extended Finder information.

If the object is a directory, the relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion function. For more information on completion routines, see
IOCompletionProcPtr (page 794).

754 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDrUsrWds
On input, information used by the Finder.

ioDrDirID
On input, the directory ID.

ioDrCrDat
On input, the date and time of the directory’s creation.

ioDrMdDat
On input, the date and time of the directory’s last modification.

ioDrBkDat
On input, the date and time of the directory’s last backup.

ioDrFndrInfo
On input, additional information used by the Finder.

To modify the catalog information for a named fork other than the data and resource fork, or to modify other
catalog information maintained on HFS Plus volumes that is not modifiable through PBSetCatInfoAsync,
use one of the functions, FSSetCatalogInfo (page 540) , PBSetCatalogInfoSync (page 753) , or
PBSetCatalogInfoAsync (page 751).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetCatInfoSync
Modifies catalog information for a file or directory. (Deprecated in Mac OS X v10.4. Use
PBSetCatalogInfoSync (page 753) instead.)

OSErr PBSetCatInfoSync (
 CInfoPBPtr paramBlock
);

Parameters
paramBlock

A pointer to an HFS catalog information parameter block. See CInfoPBRec (page 802) for a description
of the CInfoPBRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Functions 755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The PBSetCatInfoSync function sets information about a file or directory. When used to set information
about a file, it works much as PBHSetFInfoSync (page 722) does, but lets you set some additional information.

If the object is a file, the relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioFlFndrInfo
On input, Finder information for the file.

ioDirID
On input, the parent directory ID of the file.

ioFlCrDat
On input, the date and time of the file’s creation.

ioFlMdDat
On input, the date and time of the file’s last modification.

ioFlBkDat
On input, the date and time of the file’s last backup.

ioFlXFndrInfo
On input, extended Finder information.

If the object is a directory, the relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a pathname.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume.

ioDrUsrWds
On input, information used by the Finder.

ioDrDirID
On input, the directory ID.

ioDrCrDat
On input, the date and time of the directory’s creation.

ioDrMdDat
On input, the date and time of the directory’s last modification.

ioDrBkDat
On input, the date and time of the directory’s last backup.

ioDrFndrInfo
On input, additional information used by the Finder.

To modify the catalog information for a named fork other than the data and resource fork, or to modify other
catalog information maintained on HFS Plus volumes that is not modifiable through PBSetCatInfoSync,
use one of the functions, FSSetCatalogInfo (page 540) , PBSetCatalogInfoSync (page 753) , or
PBSetCatalogInfoAsync (page 751).

Availability
Available in Mac OS X v10.0 and later.

756 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetEOFAsync
Sets the logical size of an open file. (Deprecated in Mac OS X v10.4. Use PBSetForkSizeAsync (page 761)
instead.)

OSErr PBSetEOFAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the open file.

ioMisc
On input, the new logical size (the logical end-of-file) of the given file. Because the ioMisc field is of
type Ptr, you must coerce the desired value from a long integer to type Ptr. If the value of the
ioMisc field is 0, all space occupied by the file on the volume is released. The file still exists, but it
contains 0 bytes. Setting a file fork’s end-of-file to 0 is therefore not the same as deleting the file,
which removes both file forks at once.

If you attempt to set the logical end-of-file beyond the current physical end-of-file, another allocation block
is added to the file if there isn’t enough space on the volume, no change is made and PBSetEOFAsync
returns dskFulErr as its function result.

To ensure that your changes to the file are written to disk, call one of the functions, FlushVol (page 466) ,
PBFlushVolSync (page 641) , or PBFlushVolAsync (page 640). To set the size of a named fork other than
the data and resource forks, or to grow the size of a file beyond 2GB, you must use the FSSetForkSize (page
542) function, or one of the corresponding parameter block calls, PBSetForkSizeSync (page 762) and
PBSetForkSizeAsync (page 761).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Not available to 64-bit applications.

Declared In
Files.h

PBSetEOFSync
Sets the logical size of an open file. (Deprecated in Mac OS X v10.4. Use PBSetForkSizeSync (page 762)
instead.)

OSErr PBSetEOFSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the open file.

ioMisc
On input, the new logical size (the logical end-of-file) of the given file. Because the ioMisc field is of
type Ptr, you must coerce the desired value from a long integer to type Ptr. If the value of the
ioMisc field is 0, all space occupied by the file on the volume is released. The file still exists, but it
contains 0 bytes. Setting a file fork’s end-of-file to 0 is therefore not the same as deleting the file,
which removes both file forks at once.

If you attempt to set the logical end-of-file beyond the current physical end-of-file, another allocation block
is added to the file if there isn’t enough space on the volume, no change is made and PBSetEOFSync returns
dskFulErr as its function result.

To ensure that your changes to the file are written to disk, call one of the functions, FlushVol (page 466) ,
PBFlushVolSync (page 641) , or PBFlushVolAsync (page 640). To set the size of a named fork other than
the data and resource forks, or to grow the size of a file beyond 2GB, you must use the FSSetForkSize (page
542) function, or one of the corresponding parameter block calls, PBSetForkSizeSync (page 762) and
PBSetForkSizeAsync (page 761).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

758 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBSetForeignPrivsAsync
Changes the native access-control information for a file or directory stored on a volume managed by a foreign
file system. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBSetForeignPrivsAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetForeignPrivsSync
Changes the native access-control information for a file or directory stored on a volume managed by a foreign
file system. (Deprecated in Mac OS X v10.4. There is no replacement function.)

OSErr PBSetForeignPrivsSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetForkPositionAsync
Sets the current position of an open fork.

void PBSetForkPositionAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Functions 759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. This function returns the result code posErr if you attempt
to set the current position of the fork to an offset before the start of the file.

forkRefNum
On input, the reference number of a fork previously opened by the FSOpenFork (page 514) ,
PBOpenForkSync (page 740) , or PBOpenForkAsync (page 739) function.

positionMode
On input, a constant specifying the base location within the fork for the new position. If this field is
equal to fsAtMark, then the positionOffset field is ignored. See “Position Mode Constants” (page
928) for a description of the constants you can use to specify the base location.

positionOffset
On input, the offset of the new position from the base location specified in the positionMode field.

Special Considerations

To determine if the PBSetForkPositionAsync function is present, call the Gestalt function with the
gestaltFSAttr selector. If the PBSetForkPositionAsync function is present, but the volume does not
directly support it, the File Manager will automatically call the PBSetFPosAsync (page 763) function. However,
if the volume does not directly support the PBSetForkPositionAsync function, you can only set the file
position for the data and resource forks, and you cannot grow these files beyond 2GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetForkPositionSync
Sets the current position of an open fork.

OSErr PBSetForkPositionSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). This function returns the result code posErr if
you attempt to set the current position of the fork to an offset before the start of the file.

Discussion
The relevant fields of the parameter block are:

760 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

forkRefNum
On input, the reference number of a fork previously opened by the FSOpenFork (page 514) ,
PBOpenForkSync (page 740) , or PBOpenForkAsync (page 739) function.

positionMode
On input, a constant specifying the base location within the fork for the new position. If this field is
equal to fsAtMark, then the positionOffset field is ignored. See “Position Mode Constants” (page
928) for a description of the constants you can use to specify the base location.

positionOffset
On input, the offset of the new position from the base location specified in the positionMode field.

Special Considerations

To determine if the PBSetForkPositionSync function is present, call the Gestalt function with the
gestaltFSAttr selector. If the PBSetForkPositionSync function is present, but the volume does not
directly support it, the File Manager will automatically call the PBSetFPosSync (page 764) function. However,
if the volume does not directly support the PBSetForkPositionSync function, you can only set the file
position for the data and resource forks, and you cannot grow these files beyond 2GB.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetForkSizeAsync
Changes the size of an open fork.

void PBSetForkSizeAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If there is not enough space on the volume to extend the
fork, then dskFulErr is returned and the fork’s size is unchanged.

forkRefNum
On input, the reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 514) function, or with one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

Functions 761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

positionMode
On input, a constant indicating the base location within the fork for the new size. See “Position Mode
Constants” (page 928) for more information about the constants you can use to specify the base
location.

positionOffset
On input, the offset of the new size from the base location specified in the positionMode field.

The PBSetForkSizeAsync function sets the logical end-of-file to the position indicated by the positionMode
and positionOffset fields. The fork’s new size may be less than, equal to, or greater than the fork’s current
size. If the fork’s new size is greater than the fork’s current size, then the additional bytes, between the old
and new size, will have an undetermined value.

If the fork’s current position is larger than the fork’s new size, then the current position will be set to the new
fork size. That is, the current position will be equal to the logical end of file.

Special Considerations

You do not need to check that the volume supports the PBSetForkSizeAsync function. If a volume does
not support the PBSetForkSizeAsync function, but the PBSetForkSizeAsync function is present, the
File Manager automatically calls the PBSetEOFAsync (page 757) function and translates between the calls
appropriately.

Note, however, that if the volume does not support the PBSetForkSizeAsync function, you can only access
the data and resource forks, and you cannot grow the fork beyond 2GB. To check that the
PBSetForkSizeAsync function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetForkSizeSync
Changes the size of an open fork.

OSErr PBSetForkSizeSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If there is not enough space on the volume to
extend the fork, then dskFulErr is returned and the fork’s size is unchanged.

Discussion
The relevant fields of the parameter block are:

762 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

forkRefNum
On input, the reference number of the open fork. You can obtain a fork reference number with the
FSOpenFork (page 514) function, or one of the corresponding parameter block calls,
PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

positionMode
On input, a constant indicating the base location within the fork for the new size. See “Position Mode
Constants” (page 928) for more information about the constants you can use to specify the base
location.

positionOffset
On input, the offset of the new size from the base location specified in the positionMode field.

The PBSetForkSizeSync function sets the logical end-of-file to the position indicated by the positionMode
and positionOffset fields. The fork’s new size may be less than, equal to, or greater than the fork’s current
size. If the fork’s new size is greater than the fork’s current size, then the additional bytes, between the old
and new size, will have an undetermined value.

If the fork’s current position is larger than the fork’s new size, then the current position will be set to the new
fork size. That is, the current position will be equal to the logical end-of-file.

Special Considerations

You do not need to check that the volume supports the PBSetForkSizeSync function. If a volume does
not support the PBSetForkSizeSync function, but the PBSetForkSizeSync function is present, the File
Manager automatically calls the PBSetEOFSync (page 758) function and translates between the calls
appropriately.

Note, however, that if the volume does not support the PBSetForkSizeSync function, you can only access
the data and resource forks, and you cannot grow the fork beyond 2GB. To check that the
PBSetForkSizeSync function is present, call the Gestalt function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetFPosAsync
Sets the position of the file mark. (Deprecated in Mac OS X v10.4. Use PBSetForkPositionAsync (page
759) instead.)

OSErr PBSetFPosAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

Functions 763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

ioRefNum
On input, the file reference number for an open file.

ioPosMode
On input, a constant indicating how to position the mark; this field must contain one of the values
described in “Position Mode Constants” (page 928).

ioPosOffset
On input, the offset from the base location specified by the ioPosMode field for the file mark. If you
specify fsAtMark in the ioPosMode field, the mark is left wherever it’s currently positioned and the
value in the ioPosOffset field is ignored. If you specify fsFromLEOF, the value in ioPosOffset
must be less than or equal to 0. On output, the position at which the mark was actually set.

The PBSetFPosAsync function sets the mark of the specified file to the position specified by the ioPosMode
and ioPosOffset fields. If you try to set the mark past the logical end-of-file, PBSetFPosAsync moves the
mark to the end-of-file and returns eofErr as its function result.

To set the file mark position for a named fork other than the data and resource forks, or to position the file
mark at a point more than 2GB into the file, use the FSSetForkPosition (page 541) function, or one of the
corresponding parameter block calls, PBSetForkPositionSync (page 760) and
PBSetForkPositionAsync (page 759).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetFPosSync
Sets the position of the file mark. (Deprecated in Mac OS X v10.4. Use PBSetForkPositionSync (page 760)
instead.)

OSErr PBSetFPosSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

764 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioRefNum
On input, the file reference number for an open file.

ioPosMode
On input, a constant indicating how to position the file mark; this field must contain one of the values
described in “Position Mode Constants” (page 928).

ioPosOffset
On input, the offset from the base location specified by the ioPosMode field for the file mark. If you
specify fsAtMark in the ioPosMode field, the mark is left wherever it’s currently positioned and the
value in the ioPosOffset field is ignored. If you specify fsFromLEOF, the value in ioPosOffset
must be less than or equal to 0. On output, the position at which the mark was actually set.

The PBSetFPosSync function sets the mark of the specified file to the position specified by the ioPosMode
and ioPosOffset fields. If you try to set the mark past the logical end-of-file, PBSetFPosSync moves the
mark to the end-of-file and returns eofErr as its function result.

To set the file mark position for a named fork other than the data and resource forks, or to position the file
mark at a point more than 2GB into the file, use the FSSetForkPosition (page 541) function, or one of the
corresponding parameter block calls, PBSetForkPositionSync (page 760) and
PBSetForkPositionAsync (page 759).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetVInfoAsync
Changes information about a volume. (Deprecated in Mac OS X v10.4. Use PBSetVolumeInfoAsync (page
767) instead.)

OSErr PBSetVInfoAsync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HVolumeParam (page 859) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function.

Functions 765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
On input, a pointer to the volume’s name. You can specify a new name for the volume here. You
cannot specify the volume by name you must use either the volume reference number or the drive
number.

ioVRefNum
On input, a volume reference number or drive number for the volume whose information is to be
changed; or 0 for the default volume.

ioVCrDate
On input, the date and time of the volume’s initialization.

ioVLsMod
On input, the date and time of the volume’s last modification.

ioVAtrb
On input, the volume attributes. Only bit 15 of the ioVAtrb field can be changed; setting it locks the
volume. See “Volume Information Attribute Constants” (page 937) for a description of the volume
attributes.

ioVBkUp
On input, the date and time of the volume’s last backup.

ioVSeqNum
Used internally.

ioVFndrInfo
On input, Finder information for the volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetVInfoSync
Changes information about a volume. (Deprecated in Mac OS X v10.4. Use PBSetVolumeInfoSync (page
768) instead.)

OSErr PBSetVInfoSync (
 HParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the HVolumeParam (page 859) variant of the basic HFS parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

766 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
On input, a pointer to the volume’s name. You can specify a new name for the volume here. You
cannot specify the volume by name you must use either the volume reference number or the drive
number.

ioVRefNum
On input, a volume reference number or drive number for the volume whose information is to be
changed; or 0 for the default volume.

ioVCrDate
On input, the date and time of the volume’s initialization.

ioVLsMod
On input, the date and time of the volume’s last modification.

ioVAtrb
On input, the volume attributes. Only bit 15 of the ioVAtrb field can be changed; setting it locks the
volume. See “Volume Information Attribute Constants” (page 937) for a description of the volume
attributes.

ioVBkUp
On input, the date and time of the volume’s last backup.

ioVSeqNum
Used internally.

ioVFndrInfo
On input, Finder information for the volume.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBSetVolumeInfoAsync
Sets information about a volume.

void PBSetVolumeInfoAsync (
 FSVolumeInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a volume information parameter block. See FSVolumeInfoParam (page 845) for a
description of the FSVolumeInfoParam data type.

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

Functions 767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
On output, the result code of the function.

ioVRefNum
On input, the volume reference number of the volume whose information is to be changed.

whichInfo
On input, a bitmap specifying which information to set. Only some of the volume information fields
may be set. The settable fields are given by the constant kFSVolInfoSettableInfo; no other bits
may be set in whichInfo. The fields which may be set are the backupDate, finderInfo, and flags
fields. See “Volume Information Bitmap Constants” (page 938) for a description of the bits in this
parameter.

volumeInfo
On input, the new volume information. See FSVolumeInfo (page 842) for more information about
the volume information structure.

To set information about the root directory of a volume, use the FSSetCatalogInfo (page 540) function,
or one of the corresponding parameter block calls, PBSetCatalogInfoSync (page 753) and
PBSetCatalogInfoAsync (page 751).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBSetVolumeInfoSync
Sets information about a volume.

OSErr PBSetVolumeInfoSync (
 FSVolumeInfoParam *paramBlock
);

Parameters
paramBlock

A pointer to a volume information parameter block. See FSVolumeInfoParam (page 845) for a
description of the FSVolumeInfoParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioVRefNum
On input, the volume reference number of the volume whose information is to be changed.

whichInfo
On input, a bitmap specifying which information to set. Only some of the volume information fields
may be set. The settable fields are given by the constant kFSVolInfoSettableInfo; no other bits
may be set in whichInfo. The fields which may be set are the backupDate, finderInfo, and flags
fields. See “Volume Information Bitmap Constants” (page 938) for a description of the bits in this
parameter.

768 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

volumeInfo
On input, the new volume information. See FSVolumeInfo (page 842) for more information about
the volume information structure.

To set information about the root directory of a volume, use the FSSetCatalogInfo (page 540) function,
or one of the corresponding parameter block calls, PBSetCatalogInfoSync (page 753) and
PBSetCatalogInfoAsync (page 751).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBShareAsync
Establishes a local volume or directory as a share point. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBShareAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBShareSync
Establishes a local volume or directory as a share point. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBShareSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Functions 769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBUnlockRangeAsync
Unlocks a portion of a file. (Deprecated in Mac OS X v10.4. Use PBXUnlockRangeAsync (page 785) instead.)

OSErr PBUnlockRangeAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If you call PBUnlockRangeAsync on a file system that
does not implement it—for example, SMB—PBUnlockRangeAsync returns noErr and does nothing.

ioRefNum
On input, the file reference number of the file owning the range to unlock.

ioReqCount
On input, the number of bytes in the range.

ioPosMode
On input, a constant specifying the base location for the start of the locked range. See “Position Mode
Constants” (page 928) for more information on the constants you can use to indicate the base location.

ioPosOffset
On input, the offset from the base location specified in the ioPosMode field for the start of the locked
range.

The PBUnlockRangeAsync function unlocks a portion of a file that you locked with PBLockRangeSync (page
730) or PBLockRangeAsync (page 728). The beginning of the range to be unlocked is determined by the
ioPosMode and ioPosOffset fields. The end of the range to be unlocked is determined by the beginning
of the range and the ioReqCount field. For example, to unlock the first 50 bytes in a file, set ioReqCount
to 50, ioPosMode to fsFromStart, and ioPosOffset to 0. The range of bytes to be unlocked must be the
exact same range locked by a previous call to PBLockRangeSync (page 730) or PBLockRangeAsync (page
728).

If for some reason you need to unlock a range whose beginning or length is unknown, you can simply close
the file. When a file is closed, all locked ranges held by the user are unlocked.

Special Considerations

The PBUnlockRangeAsync function does nothing if the file specified in the ioRefNum field is open with
shared read/write permission but is not located on a remote server volume or is not located under a share
point on a local volume. To check whether file sharing is currently on, check that the
bHasPersonalAccessPrivileges bit in the vMAttrib field of the GetVolParmsInfoBuffer (page 847)
returned by the PBHGetVolParmsSync (page 695) function is set.

770 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBUnlockRangeSync
Unlocks a portion of a file. (Deprecated in Mac OS X v10.4. Use PBXUnlockRangeSync (page 786) or
FSUnlockRange (page 543) instead.)

OSErr PBUnlockRangeSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943). If you call PBUnlockRangeSync on a file system
that does not implement it—for example, SMB—PBUnlockRangeSync returns noErr and does nothing.

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, the file reference number of the file owning the range to unlock.

ioReqCount
On input, the number of bytes in the range.

ioPosMode
On input, a constant specifying the base location for the start of the locked range. See “Position Mode
Constants” (page 928) for more information on the constants you can use to indicate the base location.

ioPosOffset
On input, the offset from the base location specified in the ioPosMode field for the start of the locked
range.

The PBUnlockRangeSync function unlocks a portion of a file that you locked with PBLockRangeSync (page
730) or PBLockRangeAsync (page 728). The beginning of the range to be unlocked is determined by the
ioPosMode and ioPosOffset fields. The end of the range to be unlocked is determined by the beginning
of the range and the ioReqCount field. For example, to unlock the first 50 bytes in a file, set ioReqCount
to 50, ioPosMode to fsFromStart, and ioPosOffset to 0. The range of bytes to be unlocked must be the
exact same range locked by a previous call to PBLockRangeSync (page 730) or PBLockRangeAsync (page
728).

If for some reason you need to unlock a range whose beginning or length is unknown, you can simply close
the file. When a file is closed, all locked ranges held by the user are unlocked.

Functions 771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Special Considerations

The PBUnlockRangeSync function does nothing if the file specified in the ioRefNum field is open with
shared read/write permission but is not located on a remote server volume or is not located under a share
point on a local volume. To check whether file sharing is currently on, check that the
bHasPersonalAccessPrivileges bit in the vMAttrib field of the GetVolParmsInfoBuffer (page 847)
returned by the PBHGetVolParmsSync (page 695) function is set.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBUnmountVol
Unmounts a volume. (Deprecated in Mac OS X v10.4. Use FSEjectVolumeSync (page 486) or
FSUnmountVolumeSync (page 545) instead.)

OSErr PBUnmountVol (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the VolumeParam (page 873) variant of the basic File Manager parameter block. See
ParamBlockRec (page 866) for a description of the ParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioResult
On output, the result code of the function.

ioNamePtr
On input, a pointer to the name of the volume.

ioVRefNum
On input, the volume reference number of the volume to unmount, or 0 for the default volume.

This function calls PBFlushVolSync to flush the specified volume, unmounts and ejects the volume, and
releases the memory used for the volume. Prior to calling this function, all user files on the volume must be
closed. Ejecting a volume results in the unmounting of other volumes on the same device.

The PBUnmountVol function always executes synchronously.

Special Considerations

Don’t unmount the startup volume. Doing so will cause a system crash.

Availability
Available in Mac OS X v10.0 and later.

772 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBUnshareAsync
Makes a share point unavailable on the network. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBUnshareAsync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBUnshareSync
Makes a share point unavailable on the network. (Deprecated in Mac OS X v10.4. There is no replacement
function.)

OSErr PBUnshareSync (
 HParmBlkPtr paramBlock
);

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBVolumeMount
Mounts a volume. (Deprecated in Mac OS X v10.5. Use FSVolumeMount (page 545) instead.)

Functions 773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBVolumeMount (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the IOParam (page 862) variant of the basic File Manager parameter block. See
HParamBlockRec (page 857) for a description of the HParamBlockRec data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioVRefNum
On output, a volume reference number for the mounted volume.

ioBuffer
On input, a pointer to mounting information. You can use the volume mounting information returned
by the PBGetVolMountInfo (page 668) function or you can use a volume mounting information
structure filled in by your application. If you’re mounting an AppleShare volume, place the volume’s
AFP mounting information structure in the buffer pointed to by the ioBuffer field.

This function allows your application to record the mounting information for a volume and then to mount
the volume later.

The PBGetVolMountInfo function does not return the user and volume passwords they’re returned blank.
Typically, your application asks the user for any necessary passwords and fills in those fields just before calling
PBVolumeMount. If you want to mount a volume with guest status, pass an empty string as the user password.

If you have enough information about the volume, you can fill in the mounting structure yourself and call
PBVolumeMount, even if you did not save the mounting information while the volume was mounted. To
mount an AFP volume, you must fill in the structure with at least the zone name, server name, user name,
user password, and volume password. You can lay out the fields in any order within the data field, as long
as you specify the correct offsets.

In general, it is easier to mount remote volumes by creating and then resolving alias records that describe
those volumes. The Alias Manager displays the standard user interface for user authentication when resolving
alias records for remote volumes. As a result, this function is primarily of interest for applications that need
to mount remote volumes with no user interface or with some custom user interface.

Special Considerations

AFP volumes currently ignore the user authentication method passed in the uamType field of the volume
mounting information structure whose address is passed in the ioBuffer field of the parameter block. The
most secure available method is used by default, except when a user mounts the volume as Guest and uses
the kNoUserAuthentication authentication method.

This function executes synchronously. You should not call it at interrupt time.

Version Notes
The File Sharing workstation software introduced in system software version 7.0 does not currently pass the
volume password. The AppleShare 3.0 workstation software does, however, pass the volume password.

Availability
Available in Mac OS X v10.0 and later.

774 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBWaitIOComplete
Keeps the system idle until either an interrupt occurs or the specified timeout value is reached. (Deprecated
in Mac OS X v10.5. There is no replacement function.)

OSErr PBWaitIOComplete (
 ParmBlkPtr paramBlock,
 Duration timeout
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

timeout
The maximum length of time you want the system to be kept idle.

Return Value
A result code. If the timeout value is reached, returns kMPTimeoutErr.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBWriteAsync
Writes any number of bytes to an open file. (Deprecated in Mac OS X v10.5. Use PBWriteForkAsync (page
776) instead.)

OSErr PBWriteAsync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Functions 775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine.

ioResult
On output, the result code of the function.

ioRefNum
On input, a file reference number for the open file to which to write.

ioBuffer
On input, a pointer to a data buffer containing the bytes to write.

ioReqCount
On input, the number of bytes requested.

ioActCount
On output, the number of bytes actually written.

ioPosMode
On input, the positioning mode.

ioPosOffset
On input, the positioning offset. On output, the new position of the mark.

The PBWriteAsync function takes ioReqCount bytes from the buffer pointed to by ioBuffer and attempts
to write them to the open file whose access path is specified by ioRefNum. The position of the mark is
specified by ioPosMode and ioPosOffset. If the write operation completes successfully, PBWriteAsync
moves the file mark to the byte following the last byte written and returns noErr. If you try to write past the
logical end-of-file, PBWriteAsyncmoves the logical end-of-file. If you try to write past the physical end-of-file,
PBWriteAsync adds one or more clumps to the file and moves the physical end-of-file accordingly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBWriteForkAsync
Writes data to an open fork.

void PBWriteForkAsync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam.

Discussion
The relevant fields of the parameter block are:

776 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the result code of the function. If there is not enough space on the volume to write
requestCount bytes, then dskFulErr is returned.

forkRefNum
On input, the reference number of the fork to which to write. You should have previously opened
the fork using the FSOpenFork (page 514) function, or one of the corresponding parameter block
calls, PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

positionMode
On input, a constant specifying the base location within the fork for the start of the write. See “Position
Mode Constants” (page 928) for a description of the constants which you can use to specify the base
location. The caller can also use this parameter to hint to the File Manager whether the data being
written should or should not be cached. See “Cache Constants” (page 889) for further description of
the constants that you can use to indicate your preference for caching.

positionOffset
On input, the offset from the base location for the start of the write.

requestCount
On input, the number of bytes to write.

buffer
A pointer to a buffer containing the data to write.

actualCount
On output, the number of bytes actually written. The value in the actualCount field will be equal
to the value in the requestCount field unless there was an error during the write operation.

PBWriteForkAsyncwrites data starting at the position specified by thepositionMode andpositionOffset
fields. The function attempts to write requestCount bytes from the buffer pointed to by the buffer field
and sets the fork’s current position to the byte immediately after the last byte written (that is, the initial
position plus actualCount).

When writing data to a fork, it is important to pay attention to that way that your program accesses the fork,
because this can have a significant performance impact. For best results, you should use an I/O size of at
least 4KB and block align your write requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

PBWriteForkSync
Writes data to an open fork.

Functions 777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBWriteForkSync (
 FSForkIOParam *paramBlock
);

Parameters
paramBlock

A pointer to a fork I/O parameter block. See FSForkIOParam (page 833) for a description of the
FSForkIOParam.

Return Value
A result code. See “File Manager Result Codes” (page 943). If there is not enough space on the volume to
write requestCount bytes, then dskFulErr is returned.

Discussion
The relevant fields of the parameter block are:

ioResult
On output, the result code of the function. If there is not enough space on the volume to write
requestCount bytes, then dskFulErr is returned.

forkRefNum
On input, the reference number of the fork to which to write. You should have previously opened
the fork using the FSOpenFork (page 514) function, or one of the corresponding parameter block
calls, PBOpenForkSync (page 740) and PBOpenForkAsync (page 739).

positionMode
On input, a constant specifying the base location within the fork for the start of the write. See “Position
Mode Constants” (page 928) for a description of the constants which you can use to specify the base
location. The caller can also use this parameter to hint to the File Manager whether the data being
written should or should not be cached. See “Cache Constants” (page 889) for further description of
the constants that you can use to indicate your preference for caching.

positionOffset
On input, the offset from the base location for the start of the write.

requestCount
On input, the number of bytes to write.

buffer
A pointer to a buffer containing the data to write.

actualCount
On output, the number of bytes actually written. The value in the actualCount field will be equal
to the value in the requestCount field unless there was an error during the write operation.

PBWriteForkSyncwrites data starting at the position specified by the positionMode and positionOffset
fields. The function attempts to write requestCount bytes from the buffer pointed to by the buffer field
and sets the fork’s current position to the byte immediately after the last byte written (that is, the initial
position plus actualCount).

When writing data to a fork, it is important to pay attention to that way that your program accesses the fork,
because this can have a significant performance impact. For best results, you should use an I/O size of at
least 4KB and block align your write requests. In Mac OS X, you should align your requests to 4KB boundaries.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

778 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBWriteSync
Writes any number of bytes to an open file. (Deprecated in Mac OS X v10.5. Use PBWriteForkSync (page
777) instead.)

OSErr PBWriteSync (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to a basic File Manager parameter block.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioRefNum
On input, a file reference number for the open file to which to write.

ioBuffer
On input, a pointer to a data buffer containing the bytes to write.

ioReqCount
On input, the number of bytes requested.

ioActCount
On output, the number of bytes actually written.

ioPosMode
On input, the positioning mode.

ioPosOffset
On input, the positioning offset. On output, the new position of the mark.

The PBWriteSync function takes ioReqCount bytes from the buffer pointed to by ioBuffer and attempts
to write them to the open file whose access path is specified by ioRefNum. The position of the mark is
specified by ioPosMode and ioPosOffset. If the write operation completes successfully, PBWriteSync
moves the file mark to the byte following the last byte written and returns noErr. If you try to write past the
logical end-of-file, PBWriteSyncmoves the logical end-of-file. If you try to write past the physical end-of-file,
PBWriteSync adds one or more clumps to the file and moves the physical end-of-file accordingly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Files.h

PBXGetVolInfoAsync
Returns information about a volume, including size information for volumes up to 2 terabytes. (Deprecated
in Mac OS X v10.4. Use FSGetVolumeInfo (page 500) instead.)

Functions 779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr PBXGetVolInfoAsync (
 XVolumeParamPtr paramBlock
);

Parameters
paramBlock

A pointer to an extended volume parameter block. See XVolumeParam (page 882) for a description
of the XVolumeParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioCompletion
On input, a pointer to a completion routine. For more information on completion routines, see
IOCompletionProcPtr (page 794).

ioResult
On output, the function result.

ioNamePtr
On input, a pointer to a buffer. You should pass a pointer to a Str31 value if you want the volume
name returned; otherwise, pass NULL. If you specify a negative number in the ioVolIndex field, this
buffer should hold the name of the volume for which to return information. On output, a pointer to
the volume’s name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume. If the value in the
ioVolIndex field is negative, the File Manager uses the name in the ioNamePtr field, along with
the value in the ioVRefNum field, to determine the volume. If the value in ioVolIndex is 0, the File
Manager attempts to access the volume using only the value in this field. On output, the volume
reference number.

ioXVersion
On input, the version of the extended volume parameter block. Currently, this value is 0.

ioVolIndex
On input, an index used for indexing through all the mounted volumes. If this value is positive, the
File Manager uses it to find the volume for which to return information. For instance, if the value of
ioVolIndex is 2, the File Manager attempts to access the second mounted volume in the VCB queue.
If ioVolIndex is negative, the File Manager uses the values in the ioNamePtr and ioVRefNum fields
to access the requested volume. If ioVolIndex is 0, the File Manager uses only the value in the
ioVRefNum field.

ioVCrDate
On output, the date and time of the volume’s creation (initialization).

ioVLsMod
On output, the date and time that the volume was last modified.

ioVAtrb
On output, the volume attributes. See “Volume Information Attribute Constants” (page 937) for a
description of these attributes.

ioVNmFls
On output, the number of files in the root directory of the volume. For performance reasons, the
Carbon File Manager does not return the number of files in this field; instead, it sets ioVNmFls to

780 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

0.To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoAsync (page 648) for the root directory. The number of files in the root directory is
returned in the ioDrNmFls field.

ioVBitMap
On output, the first block of the volume bitmap.

ioVAllocPtr
On output, the block where the next new file allocation search should start.

ioVNmAlBlks
On output, the number of allocation blocks on the volume.

ioVAlBlkSiz
On output, the allocation block size for the volume.

ioVClpSiz
On output, the volume’s default clump size.

ioAlBlSt
On output, the first block in the volume block map.

ioVNxtCNID
On output, the next unused catalog node ID.

ioVFrBlk
On output, the number of free (unused) allocation blocks on the volume.

ioVSigWord
On output, the volume signature. For HFS volumes, this is ‘BD’ for HFS Plus volumes, this is ‘H+’.

ioVDrvInfo
On output, the drive number. You can determine whether the given volume is online by inspecting
the value of this field. For online volumes, the ioVDrvInfo field contains the drive number of the
drive containing the specified volume and hence is always greater than 0. If the value returned in
ioVDrvInfo is 0, the volume is either offline or ejected.

ioVDRefNum
On output, the driver reference number. You can determine whether the volume is offline or ejected
by inspecting the value of this field. If the volume is offline, the value of ioVDRefNum is the negative
of the drive number (which is cleared when the volume is placed offline; hence the ioVDrvInfo field
for an offline volume is zero), and is a negative number. If the volume is ejected, the value of
ioVDRefNum is the drive number itself, and thus is a positive number. For online volumes, ioVDRefNum
contains a driver reference number; these numbers are always less than 0.

ioVFSID
On output, the file system ID for the file system handling this volume.

ioVBkUp
On output, the date and time that the volume was last backed up.

ioVSeqNum
Used internally.

ioVWrCnt
On output, the volume write count.

ioVFilCnt
On output, the number of files on the volume.

ioVDirCnt
On output, the number of directories on the volume.

Functions 781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVFndrInfo
On output, Finder information for the volume.

ioVTotalBytes
On output, the total number of bytes on the volume.

ioVFreeBytes
On output, the number of free bytes on the volume.

The PBXGetVolInfoAsync function is similar to the PBHGetVInfoAsync (page 686) function except that
it returns additional volume space information in 64-bit integers and does not modify the information copied
from the volume’s volume control block (VCB). Systems that support PBXGetVolInfoAsync will have the
gestaltFSSupports2TBVols bit set in the response returned by the gestaltFSAttr Gestalt selector.
See Inside Mac OS X: Gestalt Manager Reference for a description of the gestaltFSAttr selector and of the
bits that may be returned in the response.

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBXGetVolInfoAsync returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to
retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBXGetVolInfoSync
Returns information about a volume, including size information for volumes up to 2 terabytes. (Deprecated
in Mac OS X v10.4. Use FSGetVolumeInfo (page 500) instead.)

OSErr PBXGetVolInfoSync (
 XVolumeParamPtr paramBlock
);

Parameters
paramBlock

A pointer to an extended volume parameter block. See XVolumeParam (page 882) for a description
of the XVolumeParam data type.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
The relevant fields of the parameter block are:

ioNamePtr
On input, a pointer to a buffer. You should pass a pointer to a Str31 value if you want the volume
name returned; otherwise, pass NULL. If you specify a negative number in the ioVolIndex field, this

782 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

buffer should hold the name of the volume for which to return information. On output, a pointer to
the volume’s name.

ioVRefNum
On input, a volume reference number, drive number, or 0 for the default volume. If the value in the
ioVolIndex field is negative, the File Manager uses the name in the ioNamePtr field, along with
the value in the ioVRefNum field, to determine the volume. If the value in ioVolIndex is 0, the File
Manager attempts to access the volume using only the value in this field. On output, the volume
reference number.

ioXVersion
On input, the version of the extended volume parameter block. Currently, this value is 0.

ioVolIndex
On input, an index used for indexing through all the mounted volumes. If this value is positive, the
File Manager uses it to find the volume for which to return information. For instance, if the value of
ioVolIndex is 2, the File Manager attempts to access the second mounted volume in the VCB queue.
If ioVolIndex is negative, the File Manager uses the values in the ioNamePtr and ioVRefNum fields
to access the requested volume. If ioVolIndex is 0, the File Manager uses only the value in the
ioVRefNum field.

ioVCrDate
On output, the date and time of the volume’s creation (initialization).

ioVLsMod
On output, the date and time that the volume was last modified.

ioVAtrb
On output, the volume attributes. See “Volume Information Attribute Constants” (page 937) for a
description of these attributes.

ioVNmFls
On output, the number of files in the root directory of the volume. For performance reasons, the
Carbon File Manager does not return the number of files in this field; instead, it sets ioVNmFls to
0.To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoSync (page 651) for the root directory. The number of files in the root directory is
returned in the ioDrNmFls field.

ioVBitMap
On output, the first block of the volume bitmap.

ioVAllocPtr
On output, the block where the next new file allocation search should start.

ioVNmAlBlks
On output, the number of allocation blocks on the volume.

ioVAlBlkSiz
On output, the allocation block size for the volume.

ioVClpSiz
On output, the volume’s default clump size.

ioAlBlSt
On output, the first block in the volume block map.

ioVNxtCNID
On output, the next unused catalog node ID.

ioVFrBlk
On output, the number of free (unused) allocation blocks on the volume.

Functions 783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVSigWord
On output, the volume signature. For HFS volumes, this is ‘BD’ for HFS Plus volumes, this is ‘H+’.

ioVDrvInfo
On output, the drive number. You can determine whether the given volume is online by inspecting
the value of this field. For online volumes, the ioVDrvInfo field contains the drive number of the
drive containing the specified volume and hence is always greater than 0. If the value returned in
ioVDrvInfo is 0, the volume is either offline or ejected.

ioVDRefNum
On output, the driver reference number. You can determine whether the volume is offline or ejected
by inspecting the value of this field. If the volume is offline, the value of ioVDRefNum is the negative
of the drive number (which is cleared when the volume is placed offline; hence the ioVDrvInfo field
for an offline volume is zero), and is a negative number. If the volume is ejected, the value of
ioVDRefNum is the drive number itself, and thus is a positive number. For online volumes, ioVDRefNum
contains a driver reference number; these numbers are always less than 0.

ioVFSID
On output, the file system ID for the file system handling this volume.

ioVBkUp
On output, the date and time that the volume was last backed up.

ioVSeqNum
Used internally.

ioVWrCnt
On output, the volume write count.

ioVFilCnt
On output, the number of files on the volume.

ioVDirCnt
On output, the number of directories on the volume.

ioVFndrInfo
On output, Finder information for the volume.

ioVTotalBytes
On output, the total number of bytes on the volume.

ioVFreeBytes
On output, the number of free bytes on the volume.

The PBXGetVolInfoSync function is similar to the PBHGetVInfoSync (page 690) function except that it
returns additional volume space information in 64-bit integers and does not modify the information copied
from the volume’s volume control block (VCB). Systems that support PBXGetVolInfoSync will have the
gestaltFSSupports2TBVols bit set in the response returned by the gestaltFSAttr Gestalt selector.
See Inside Mac OS X: Gestalt Manager Reference for a description of the gestaltFSAttr selector and of the
bits that may be returned in the response.

Special Considerations

After an operation that changes the amount of free space on the volume—such as deleting a file—there
may be a delay before a call to PBXGetVolInfoSync returns the updated amount. This is because the File
Manager caches and periodically updates file system information, to reduce the number of calls made to
retrieve the information from the file system. Currently, the File Manager updates its information every 15
seconds. This primarily affects NFS volumes. DOS, SMB, UFS and WebDAV volumes were also affected by this
in previous versions of Mac OS X, but behave correctly in Mac OS X version 10.3 and later.

784 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

PBXLockRangeAsync
Locks a range of bytes of the specified fork.

OSStatus PBXLockRangeAsync (
 FSRangeLockParamPtr paramBlock
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

PBXLockRangeSync
Locks a range of bytes of the specified fork.

OSStatus PBXLockRangeSync (
 FSRangeLockParamPtr paramBlock
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

PBXUnlockRangeAsync
Unlocks a range of bytes of the specified fork.

OSStatus PBXUnlockRangeAsync (
 FSRangeLockParamPtr paramBlock
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

Functions 785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

PBXUnlockRangeSync
Unlocks a range of bytes of the specified fork.

OSStatus PBXUnlockRangeSync (
 FSRangeLockParamPtr paramBlock
);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

SetEOF
Sets the logical size of an open file. (Deprecated in Mac OS X v10.4. Use FSSetForkSize (page 542) instead.)

OSErr SetEOF (
 FSIORefNum refNum,
 SInt32 logEOF
);

Parameters
refNum

The file reference number of an open file.

logEOF
The new logical size (the logical end-of-file) of the given file. If you set the logEOF parameter to 0,
all space occupied by the file on the volume is released. The file still exists, but it contains 0 bytes.
Setting a file fork’s end-of-file to 0 is therefore not the same as deleting the file, which removes both
file forks at once.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
If you attempt to set the logical end-of-file beyond the physical end-of-file, the physical end-of-file is set 1
byte beyond the end of the next free allocation block if there isn’t enough space on the volume, no change
is made, and SetEOF returns dskFulErr as its function result.

To ensure that your changes to the file are written to disk, call one of the functions, FlushVol (page 466) ,
PBFlushVolSync (page 641) , or PBFlushVolAsync (page 640). To set the size of a named fork other than
the data and resource forks, or to grow the size of a file beyond 2GB, you must use the FSSetForkSize (page
542) function, or one of the corresponding parameter block calls, PBSetForkSizeSync (page 762) and
PBSetForkSizeAsync (page 761).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

786 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

SetFPos
Sets the position of the file mark. (Deprecated in Mac OS X v10.4. Use FSSetForkPosition (page 541)
instead.)

OSErr SetFPos (
 FSIORefNum refNum,
 SInt16 posMode,
 SInt32 posOff
);

Parameters
refNum

The file reference number of an open file.

posMode
A constant specifying how to position the file mark; this parameter must contain one of the values
described in “Position Mode Constants” (page 928).

posOff
The offset from the base location specified by the posMode parameter for the new file mark position.
If you specify fsFromLEOF in the posMode parameter, the value in the posOff parameter must be
less than or equal to 0. If you specify fsAtMark, the value in the posOff parameter is ignored.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
Because the read and write operations performed by the functions FSRead (page 536) and FSWrite (page
546) begin at the current mark, you may want to call SetFPos to reposition the file mark before reading from
or writing to the file.

To set the file mark position for a named fork other than the data and resource forks, or to position the file
mark at a point more than 2GB into the file, use the FSSetForkPosition (page 541) function, or one of the
corresponding parameter block calls, PBSetForkPositionSync (page 760) and
PBSetForkPositionAsync (page 759).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

UnmountVol
Unmounts a volume that isn’t currently being used. (Deprecated in Mac OS X v10.4. Use
FSUnmountVolumeSync (page 545) instead.)

Functions 787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

OSErr UnmountVol (
 ConstStr63Param volName,
 FSVolumeRefNum vRefNum
);

Parameters
volName

The name of a mounted volume. This parameter may be NULL.

vRefNum
The volume reference number, drive number, or 0 for the default volume.

Return Value
A result code. See “File Manager Result Codes” (page 943).

Discussion
All files on the volume (except those opened by the Operating System) must be closed before you call
UnmountVol, which does not eject the volume.

Most applications do not need to use this function, because the user typically ejects (and possibly also
unmounts) a volume in the Finder.

Special Considerations

Don’t unmount the startup volume. Doing so will cause a system crash.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Files.h

Callbacks by Task

File Operation Callbacks

FSFileOperationStatusProcPtr (page 790)
Defines a status callback function for an asynchronous file operation on an FSRef object.

FSPathFileOperationStatusProcPtr (page 791)
Defines a status callback function for an asynchronous file operation on an object specified with a
pathname.

Miscellaneous Callbacks

FNSubscriptionProcPtr (page 789)
Callback delivered for directory notifications.

FSVolumeEjectProcPtr (page 792)

788 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSVolumeMountProcPtr (page 792)

FSVolumeUnmountProcPtr (page 793)

IOCompletionProcPtr (page 794)
Defines a pointer to a completion function. Your completion function is executed by the File Manager
after the completion of an asynchronous File Manager function call.

Callbacks

FNSubscriptionProcPtr
Callback delivered for directory notifications.

typedef void (*FNSubscriptionProcPtr) (
 FNMessage message,
 OptionBits flags,
 void * refcon,
 FNSubscriptionRef subscription
);

If you name your function MyFNSubscriptionProc, you would declare it like this:

void MyFNSubscriptionProc (
 FNMessage message,
 OptionBits flags,
 void * refcon,
 FNSubscriptionRef subscription
);

Parameters
message

An indication of what happened.

flags
Options regarding the delivery of the notification; typically kNilOptions.

refcon
A pointer to a user reference supplied with subscription.

subscription
A subscription corresponding to this notification.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

Callbacks 789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSFileOperationStatusProcPtr
Defines a status callback function for an asynchronous file operation on an FSRef object.

typedef void (*FSFileOperationStatusProcPtr) (
 FSFileOperationRef fileOp,
 const FSRef *currentItem,
 FSFileOperationStage stage,
 OSStatus error,
 CFDictionaryRef statusDictionary,
 void *info
);

If you name your function MyFSFileOperationStatusProc, you would declare it like this:

void MyFSFileOperationStatusProc (
 FSFileOperationRef fileOp,
 const FSRef *currentItem,
 FSFileOperationStage stage,
 OSStatus error,
 CFDictionaryRef statusDictionary,
 void *info
);

Parameters
fileOp

The file operation.

currentItem
A pointer to an FSRef variable. On output, the variable contains the object currently being moved
or copied. If the operation is complete, this parameter refers to the target (the new object
corresponding to the source object in the destination directory).

stage
The current stage of the operation.

error
The current error status of the operation.

statusDictionary
A dictionary with more detailed status information. For information about the contents of the dictionary,
see“File Operation Status Dictionary Keys” (page 919). You are not responsible for releasing
the dictionary.

info
A pointer to user-defined data associated with this operation.

Discussion
When you call FSCopyObjectAsync (page 477), FSMoveObjectAsync (page 511), or
FSMoveObjectToTrashAsync (page 513), you can specify a status callback function of this type. The function
you provide is called by the File Manager whenever the file operation changes stages (including failing due
to an error), or as updated information is available limited by the status change interval of the operation. If
you need to save any of the status information beyond the scope of the callback, you should make a copy
of the information.

Availability
Available in Mac OS X v10.4 and later.

790 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

FSPathFileOperationStatusProcPtr
Defines a status callback function for an asynchronous file operation on an object specified with a pathname.

typedef void (*FSPathFileOperationStatusProcPtr) (
 FSFileOperationRef fileOp,
 const char *currentItem,
 FSFileOperationStage stage,
 OSStatus error,
 CFDictionaryRef statusDictionary,
 void *info
);

If you name your function MyFSPathFileOperationStatusProc, you would declare it like this:

void MyFSPathFileOperationStatusProc (
 FSFileOperationRef fileOp,
 const char *currentItem,
 FSFileOperationStage stage,
 OSStatus error,
 CFDictionaryRef statusDictionary,
 void *info
);

Parameters
fileOp

The file operation.

currentItem
The UTF-8 pathname of the object currently being moved or copied. If the operation is complete, this
parameter refers to the target (the new object corresponding to the source object in the destination
directory).

stage
The current stage of the operation.

error
The current error status of the operation.

statusDictionary
A dictionary with more detailed status information. For information about the contents of the dictionary,
see“File Operation Status Dictionary Keys” (page 919). You are not responsible for releasing
the dictionary.

info
A pointer to user-defined data associated with this operation.

Discussion
When you call FSPathCopyObjectAsync (page 517), FSPathMoveObjectAsync (page 521), or
FSPathMoveObjectToTrashAsync (page 523), you can specify a status callback function of this type. The
function you provide is called by the File Manager whenever the file operation changes stages (including
failing due to an error), or as updated information is available limited by the status change interval of the
operation. If you need to save any of the status information beyond the scope of the callback, you should
make a copy of the information.

Callbacks 791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSVolumeEjectProcPtr

typedef void (*FSVolumeEjectProcPtr) (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter
);

If you name your function MyFSVolumeEjectProc, you would declare it like this:

void MyFSVolumeEjectProc (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter
);

Parameters
volumeOp
clientData
err
volumeRefNum
dissenter

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeMountProcPtr

typedef void (*FSVolumeMountProcPtr) (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum mountedVolumeRefNum
);

If you name your function MyFSVolumeMountProc, you would declare it like this:

void MyFSVolumeMountProc (
 FSVolumeOperation volumeOp,

792 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

 void * clientData,
 OSStatus err,
 FSVolumeRefNum mountedVolumeRefNum
);

Parameters
volumeOp
clientData
err
mountedVolumeRefNum

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeUnmountProcPtr

typedef void (*FSVolumeUnmountProcPtr) (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter
);

If you name your function MyFSVolumeUnmountProc, you would declare it like this:

void MyFSVolumeUnmountProc (
 FSVolumeOperation volumeOp,
 void * clientData,
 OSStatus err,
 FSVolumeRefNum volumeRefNum,
 pid_t dissenter
);

Parameters
volumeOp
clientData
err
volumeRefNum
dissenter

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

Callbacks 793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

IOCompletionProcPtr
Defines a pointer to a completion function. Your completion function is executed by the File Manager after
the completion of an asynchronous File Manager function call.

typedef void (*IOCompletionProcPtr) (
 ParmBlkPtr paramBlock
);

If you name your function MyIOCompletionProc, you would declare it like this:

void MyIOCompletionProc (
 ParmBlkPtr paramBlock
);

Parameters
paramBlock

A pointer to the parameter block that was passed to the asynchronous File Manager function.

Return Value
Discussion
When you execute an asynchronous File Manager function (an Async function), you can specify a completion
routine by passing the routine’s address in the ioCompletion field of the parameter block passed to the
function. Because you requested asynchronous execution, the File Manager places an I/O request in the file
I/O queue and returns control to your application—possibly even before the actual I/O operation is completed.
The File Manager takes requests from the queue one at a time and processes them meanwhile, your application
is free to do other processing.

A function executed asynchronously returns control to your application with the result code noErr as soon
as the call is placed in the file I/O queue. This result code does not indicate that the call has successfully
completed, but simply indicates that the call was successfully placed in the queue. To determine when the
call is actually completed, you can inspect the ioResult field of the parameter block. This field is set to a
positive number when the call is made and set to the actual result code when the call is completed. If you
specify a completion routine, it is executed after the result code is placed in ioResult.

The File Manager, when the File Sharing or AppleShare file server is active, will execute requests in arbitrary
order. That means that if there is a request that depends on the completion of a previous request, it is an
error for your program to issue the second request until the completion of the first request. For example,
issuing a write request and then issuing a read request for the same data isn't guaranteed to read back what
was written unless the read request isn't made until after the write request completes.

Request order can also change if a call results in a disk switch dialog to bring an offline volume back online.

Special Considerations

Because a completion routine is executed at interrupt time, it should not allocate, move, or purge memory
(either directly or indirectly) and should not depend on the validity of handles to unlocked blocks.

If your completion routine uses application global variables, it must also ensure that register A5 contains the
address of the boundary between your application global variables and your application parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

794 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Data Types

AccessParam
Defines a parameter block used by low-level HFS file and directory access rights manipulation functions.

struct AccessParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short filler3;
 short ioDenyModes;
 short filler4;
 SInt8 filler5;
 SInt8 ioACUser;
 long filler6;
 long ioACOwnerID;
 long ioACGroupID;
 long ioACAccess;
 long ioDirID;
};
typedef struct AccessParam AccessParam;
typedef AccessParam * AccessParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

Data Types 795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler3
Reserved.

ioDenyModes
Access mode information.

filler4
Reserved.

filler5
Reserved.

ioACUser
The user’s access rights for the specified directory.

filler6
Reserved.

ioACOwnerID
The owner ID.

ioACGroupID
The group ID.

ioACAccess
The directory access privileges.

ioDirID

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

AFPAlternateAddress
Defines a block of tagged addresses for AppleShare clients.

struct AFPAlternateAddress {
 UInt8 fVersion;
 UInt8 fAddressCount;
 UInt8 fAddressList[1];
};
typedef struct AFPAlternateAddress AFPAlternateAddress;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

796 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

AFPTagData
Defines a structure which contains tagged address information for AppleShare clients.

struct AFPTagData {
 UInt8 fLength;
 UInt8 fType;
 UInt8 fData[1];
};
typedef struct AFPTagData AFPTagData;

Fields
fLength

The length, in bytes, of this data tag, including the fLength field itself. See “AFP Tag Length
Constants” (page 885).

fType
The type of the data tag. See “AFP Tag Type Constants” (page 886) for the constants which you can
use here.

fData
Variable length data, containing the address.

Discussion
The new tagged data format for addressing allows for changes in addressing formats, allowing AppleShare
clients to support new addressing standards without changing the interface. The
AFPAlternateAddress (page 796) data structure uses the AFPTagData structure to specify a tagged address.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

AFPVolMountInfo
Defines a volume mounting structure for an AppleShare server.

Data Types 797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct AFPVolMountInfo {
 short length;
 VolumeType media;
 short flags;
 SInt8 nbpInterval;
 SInt8 nbpCount;
 short uamType;
 short zoneNameOffset;
 short serverNameOffset;
 short volNameOffset;
 short userNameOffset;
 short userPasswordOffset;
 short volPasswordOffset;
 char AFPData[144];
};
typedef struct AFPVolMountInfo AFPVolMountInfo;
typedef AFPVolMountInfo * AFPVolMountInfoPtr;

Fields
length

The length of the AFPVolMountInfo structure (that is, the total length of the structure header
described here plus the variable-length location data).

media
The volume type of the remote volume. The value AppleShareMediaType (a constant that translates
to 'afpm') represents an AppleShare volume.

flags
If bit 0 is set, no greeting message from the server is displayed.

nbpInterval
The NBP retransmit interval, in units of 8 ticks.

nbpCount
The NBP retransmit count. This field specifies the total number of times a packet should be transmitted,
including the first transmission.

uamType
The user authentication method used by the remote volume. AppleShare uses four methods, defined
by the constants described in “Authentication Method Constants” (page 888).

zoneNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the AppleShare zone.

serverNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the AppleShare server.

volNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the volume.

userNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the user.

userPasswordOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the user’s password (as a pascal string).

798 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

volPasswordOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the volume’s password (as a pascal string). Some versions of the AppleShare software do not pass
the information in this field to the server.

AFPData
The actual volume mounting information, offsets to which are contained in the preceding six fields.
To mount an AFP volume, you must fill in the structure with at least the zone name, server name,
user name, user password, and volume password. You can lay out the data in any order within this
data field, as long as you specify the correct offsets in the offset fields.

Discussion
The only volumes that currently support the programmatic mounting functions are AppleShare servers,
which use a volume mounting structure of type AFPVolMountInfo.

To mount an AppleShare server, fill out an AFPVolMountInfo structure using the PBGetVolMountInfo
function and then pass this structure to the PBVolumeMount function to mount the volume.

Version Notes
AppleShare clients prior to version 3.7 mount volumes over AppleTalk only. For maximum compatibility set
the uamType field to 1 for guest login or 3 for login using a password.

To mount volumes using IP addresses and other address formats, use the AFPXVolMountInfo (page 799)
structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

AFPXVolMountInfo
Defines a volume mounting structure for an AppleShare server, for AppleShare 3.7 and later.

Data Types 799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct AFPXVolMountInfo {
 short length;
 VolumeType media;
 short flags;
 SInt8 nbpInterval;
 SInt8 nbpCount;
 short uamType;
 short zoneNameOffset;
 short serverNameOffset;
 short volNameOffset;
 short userNameOffset;
 short userPasswordOffset;
 short volPasswordOffset;
 short extendedFlags;
 short uamNameOffset;
 short alternateAddressOffset;
 char AFPData[176];
};
typedef struct AFPXVolMountInfo AFPXVolMountInfo;
typedef AFPXVolMountInfo * AFPXVolMountInfoPtr;

Fields
length

The length of the AFPXVolMountInfo structure (that is, the total length of the structure header
described here plus the variable-length location data).

media
The volume type of the remote volume. The value AppleShareMediaType (a constant that translates
to 'afpm') represents an AppleShare volume.

flags
Volume mount flags. See “Volume Mount Flags” (page 942) for a description of the bits in this field.
In order to use the new features of the extended AFP volume mount structure, you must set the
volMountExtendedFlagsBit bit.

nbpInterval
The NBP retransmit interval, in units of 8 ticks.

nbpCount
The NBP retransmit count. This field specifies the total number of times a packet should be transmitted,
including the first transmission.

uamType
The user authentication method used by the remote volume. AppleShare uses four methods, defined
by the constants described in “Authentication Method Constants” (page 888).

zoneNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the AppleShare zone.

serverNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the AppleShare server.

volNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the volume.

800 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

userNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the name (as a pascal string) of the user.

userPasswordOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the user’s password (as a pascal string).

volPasswordOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the volume’s password (as a pascal string). Some versions of the AppleShare software do not pass
the information in this field to the server.

extendedFlags
Extended flags. See “Extended AFP Volume Mounting Information Flag” (page 903).

uamNameOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
the user authentication module name (as a pascal string).

alternateAddressOffset
The offset in bytes from the beginning of the structure to the entry in the AFPData field containing
IP addresses, specified as a block of tagged data. This block of tagged data begins with a version byte
and a count byte, followed by up to 255 tagged addresses. See AFPAlternateAddress (page 796).

AFPData
The actual volume mounting information, offsets to which are contained in the preceding fields. To
mount an AFP volume, you must fill in the structure with at least the zone name, server name, user
name, user password, and volume password. You can lay out the data in any order within this data
field, as long as you specify the correct offsets in the offset fields.

Discussion
To mount an AppleShare server, fill out an AFPXVolMountInfo structure using the PBGetVolMountInfo
function and then pass this structure to the PBVolumeMount function to mount the volume.

The extended AFP volume mount information structure requires AppleShare client 3.7 and later. The new
fields and flag bits allow you to specify the information needed to support TCP/IP and User Authentication
Modules.

Note that, for all fields specifying an offset, if you wish to leave the string field in the AFPData field empty,
you must specify an empty string and have the offset in the corresponding offset field point to that empty
string. You cannot simply pass 0 as the offset.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

CatPositionRec
Defines a catalog position structure, which maintains the current position of a catalog search between calls
to PBCatSearchSync or PBCatSearchAsync.

Data Types 801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct CatPositionRec {
 long initialize;
 short priv[6];
};
typedef struct CatPositionRec CatPositionRec;

Fields
initialize

The starting point of the catalog search. To start searching at the beginning of a catalog, specify 0 in
this field. To resume a previous search, pass the value returned by the previous call to
PBCatSearchSync or PBCatSearchAsync.

priv
An array of integers that is used internally by PBCatSearchSync and PBCatSearchAsync.

Discussion
When you call the PBCatSearchSync or PBCatSearchAsync function to search a volume’s catalog file,
you can specify, in the ioCatPosition field of the parameter block passed to PBCatSearchSync and
PBCatSearchAsync, a catalog position structure. If a catalog search consumes more time than is allowed
by the ioSearchTime field, PBCatSearchSync and PBCatSearchAsync store a directory-location index
in that structure; when you call PBCatSearchSync or PBCatSearchAsync again, it uses that structure to
resume searching where it left off.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

CInfoPBRec
Defines a catalog information parameter block for file and directory information.

union CInfoPBRec {
 HFileInfo hFileInfo;
 DirInfo dirInfo;
};
typedef union CInfoPBRec CInfoPBRec;
typedef CInfoPBRec * CInfoPBPtr;

Fields
hFileInfo
dirInfo

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

CMovePBRec
Defines a parameter block, used with the functions PBCatMoveSync and PBCatMoveAsync.

802 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct CMovePBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler1;
 StringPtr ioNewName;
 long filler2;
 long ioNewDirID;
 long filler3[2];
 long ioDirID;
};
typedef struct CMovePBRec CMovePBRec;
typedef CMovePBRec * CMovePBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type (This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler1
Reserved.

ioNewName
The name of the directory into which the specified file or directory is to be moved.

filler2
Reserved.

Data Types 803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNewDirID
The directory ID of the directory into which the specified file or directory is to be moved.

filler3
Reserved.

ioDirID
The current directory ID of the file or directory to be moved (used in conjunction with the ioVRefNum
and ioNamePtr fields).

Discussion
The low-level HFS function PBCatMove uses the catalog move parameter block defined by the CMovePBRec
data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

CntrlParam
Defines a parameter block used by control and status functions in the classic Device Manager.

struct CntrlParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioCRefNum;
 short csCode;
 short csParam[11];
};
typedef struct CntrlParam CntrlParam;
typedef CntrlParam * CntrlParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

804 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioCRefNum
The driver reference number for the I/O operation.

csCode
A value identifying the type of control or status request. Each driver may interpret this number
differently.

csParam
The control or status information passed to or from the driver. This field is declared generically as an
array of eleven integers. Each driver may interpret the contents of this field differently. Refer to the
driver's documentation for specific information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

ConstFSSpecPtr
Defines a pointer to an FSSpec structure.

typedef const FSSpec* ConstFSSpecPtr;

Discussion
The only difference between “const FSSpec*” and the ConstFSSpecPtr data type is that, as a parameter,
a ConstFSSpecPtr data type is allowed to be NULL. See FSSpec (page 840).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Data Types 805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ConstHFSUniStr255Param
Defines a pointer to an HFSUniStr255 structure.

typedef const HFSUniStr255* ConstHFSUniStr255Param;

Discussion
See HFSUniStr255 (page 855).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

CopyParam
Defines a parameter block used by low-level HFS file copying functions.

struct CopyParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioDstVRefNum;
 short filler8;
 StringPtr ioNewName;
 StringPtr ioCopyName;
 long ioNewDirID;
 long filler14;
 long filler15;
 long ioDirID;
};
typedef struct CopyParam CopyParam;
typedef CopyParam * CopyParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

806 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioDstVRefNum
A volume reference number for the destination volume.

filler8
Reserved.

ioNewName
A pointer to the destination pathname.

ioCopyName
A pointer to an optional name.

ioNewDirID
A destination directory ID.

filler14
Reserved.

filler15
Reserved.

ioDirID
A directory ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

CSParam
Defines a parameter block used by low-level HFS catalog search functions.

Data Types 807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct CSParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 FSSpecPtr ioMatchPtr;
 long ioReqMatchCount;
 long ioActMatchCount;
 long ioSearchBits;
 CInfoPBPtr ioSearchInfo1;
 CInfoPBPtr ioSearchInfo2;
 long ioSearchTime;
 CatPositionRec ioCatPosition;
 Ptr ioOptBuffer;
 long ioOptBufSize;
};
typedef struct CSParam CSParam;
typedef CSParam * CSParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

808 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioMatchPtr
A pointer to an array of FSSpec (page 840) structures in which the file and directory names that match
the selection criteria are returned. The array must be large enough to hold the largest possible number
of FSSpec structures, as determined by the ioReqMatchCount field.

ioReqMatchCount
The maximum number of matches to return. This number should be the number of FSSpec structures
that will fit in the memory pointed to by the ioMatchPtr field. You can use this field to avoid a
possible excess of matches for criteria that prove to be too general (or to limit the length of a search
if the ioSearchTime field isn’t used).

ioActMatchCount
The number of actual matches found.

ioSearchBits
The fields of the parameter blocks in the ioSearchInfo1 and ioSearchInfo2 fields that are relevant
to the search. See “Catalog Search Bits” (page 896) for more information.

ioSearchInfo1
A pointer to a CInfoPBRec parameter block that contains the search information. For values that
match by mask and value (Finder information, for example), set the bits in the structure passed in the
ioSearchInfo2 field, and set the matching values in this structure. For values that match against a
range (such as dates), set the lower bounds for the range in this structure.

ioSearchInfo2
A pointer to a second CInfoPBRec parameter block that contains the search information. For values
that match by mask and value (Finder information, for example), set the bits in this structure, and set
the matching values in the structure passed in the ioSearchInfo1 field. For values that match
against a range (such as dates), set the upper bounds for the range in this structure.

ioSearchTime
A time limit on a search, in Time Manager format. Use this field to limit the run time of a single call
to PBCatSearchSync or PBCatSearchAsync. A value of 0 imposes no time limit. If the value of this
field is positive, it is interpreted as milliseconds. If the value of this field is negative, it is interpreted
as negated microseconds.

ioCatPosition
A position in the catalog where searching should begin. Use this field to keep an index into the catalog
when breaking down the PBCatSearchSync or PBCatSearchAsync search into a number of smaller
searches. This field is valid whenever PBCatSearchSync or PBCatSearchAsync exits because it
either spends the maximum time allowed by ioSearchTime or finds the maximum number of
matches allowed by ioReqMatchCount.

To start at the beginning of the catalog, set the initialize field of ioCatPosition to 0. Before
exiting after an interrupted search, PBCatSearchSync or PBCatSearchAsync sets that field to the
next catalog entry to be searched.

To resume where the previous call stopped, pass the entire CatPositionRec (page 801) structure
returned by the previous call as input to the next.

ioOptBuffer
A pointer to an optional read buffer. The ioOptBuffer and ioOptBufSize fields let you specify a
part of memory as a read buffer, increasing search speed.

ioOptBufSize
The size of the buffer pointed to by ioOptBuffer. Buffer size effectiveness varies with models and
configurations, but a 16 KB buffer is likely to be optimal. The size should be at least 1024 bytes and
should be an integral multiple of 512 bytes.

Data Types 809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

DirInfo
Defines a structure which holds catalog information about a directory.

struct DirInfo {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex;
 SInt8 ioFlAttrib;
 SInt8 ioACUser;
 DInfo ioDrUsrWds;
 long ioDrDirID;
 unsigned short ioDrNmFls;
 short filler3[9];
 unsigned long ioDrCrDat;
 unsigned long ioDrMdDat;
 unsigned long ioDrBkDat;
 DXInfo ioDrFndrInfo;
 long ioDrParID;
};
typedef struct DirInfo DirInfo;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

810 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFRefNum
The file reference number of an open file.

ioFVersNum
A file version number. This field is no longer used. File version numbers are an artifact of the obsolete
MFS, and are not supported on HFS volumes. You should always set this field to 0.

filler1
Reserved.

ioFDirIndex
A file and directory index. If this field contains a positive number, PBGetCatInfoSync and
PBGetCatInfoAsync return information about the file or directory having that directory index in
the directory specified by the ioVRefNum field. (If ioVRefNum contains a volume reference number,
the specified directory is that volume’s root directory.)

If this field contains 0, PBGetCatInfoSync and PBGetCatInfoAsync return information about the
file or directory whose name is specified in the ioNamePtr field and that is located in the directory
specified by the ioVRefNum field. (Once again, if ioVRefNum contains a volume reference number,
the specified directory is that volume’s root directory.)

If this field contains a negative number, PBGetCatInfoSync and PBGetCatInfoAsync ignore the
ioNamePtr field and returns information about the directory specified in the ioDirID field. If both
ioDirID and ioVRefNum are set to 0, PBGetCatInfoSync and PBGetCatInfoAsync return
information about the current default directory.

ioFlAttrib
File or directory attributes. See “File Attribute Constants” (page 914) for the meaning of the bits in this
field.

ioACUser
The user’s access rights for the specified directory. See “User Privileges Constants” (page 930) for the
meaning of the bits in this field.

ioDrUsrWds
Information used by the Finder.

ioDrDirID
A directory ID. On input to PBGetCatInfoSync and PBGetCatInfoAsync , this field contains a
directory ID, which is used only if the value of the ioFDirIndex field is negative. On output, this field
contains the directory ID of the specified directory.

ioDrNmFls
The number of files in the directory.

filler3
Reserved.

Data Types 811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioDrCrDat
The date and time of the directory’s creation, in seconds since midnight, January 1, 1904. However,
on Mac OS X, if you set the creation date to a date between January 1, 1904 and January 1, 1970, it
will be clipped to January 1, 1970, and that is the value which will be returned if you later try to retrieve
the creation date.

Note that file systems other than AFP, HFS and HFS Plus do not generally support creation dates.

ioDrMdDat
The date and time of the last modification to the directory, in seconds since midnight, January 1,
1904. However, on Mac OS X, if you set the modification date to a date between January 1, 1904 and
January 1, 1970, it will be clipped to January 1, 1970.

ioDrBkDat
The date and time that the directory was last backed up, in seconds since midnight, January 1, 1904.
However, on Mac OS X, if you set the backup date to a date between January 1, 1904 and January 1,
1970, it will be clipped to January 1, 1970.

Note that file systems other than AFP, HFS and HFS Plus do not generally support backup dates.

ioDrFndrInfo
Additional information used by the Finder.

ioDrParID
The directory ID of the specified directory’s parent directory.

refCon

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

DrvQEl
Defines a drive queue element.

struct DrvQEl {
 QElemPtr qLink;
 short qType;
 short dQDrive;
 short dQRefNum;
 short dQFSID;
 unsigned short dQDrvSz;
 unsigned short dQDrvSz2;
};
typedef struct DrvQEl DrvQEl;
typedef DrvQEl * DrvQElPtr;

Fields
qLink

A pointer to the next entry in the drive queue.

812 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

qType
Used to specify the size of the drive. If the value of this field is 0, the number of logical blocks on the
drive is contained in the dQDrvSz field alone. If the value of this field is 1, both the dQDrvSz field
and the dQDrvSz2 field are used to store the number of blocks; in that case, the dQDrvSz2 field
contains the high-order word of this number and dQDrvSz contains the low-order word.

dQDrive
The drive number of the drive.

dQRefNum
The driver reference number of the driver controlling the device on which the volume is mounted.

dQFSID
An identifier for the file system handling the volume in the drive it’s zero for volumes handled by the
File Manager and nonzero for volumes handled by other file systems.

dQDrvSz
The number of logical blocks on the drive.

dQDrvSz2
An additional field to handle large drives. This field is only used if the qType field is 1.

Discussion
The File Manager maintains a list of all disk drives connected to the computer. It maintains this list in the
drive queue, which is a standard operating system queue. The drive queue is initially created at system startup
time. Elements are added to the queue at system startup time or when you call the AddDrive function. The
drive queue can support any number of drives, limited only by memory space. Each element in the drive
queue contains information about the corresponding drive.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

DTPBRec
Defines the desktop database parameter block used by the desktop database functions.

Data Types 813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct DTPBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioDTRefNum;
 short ioIndex;
 long ioTagInfo;
 Ptr ioDTBuffer;
 long ioDTReqCount;
 long ioDTActCount;
 SInt8 ioFiller1;
 UInt8 ioIconType;
 short ioFiller2;
 long ioDirID;
 OSType ioFileCreator;
 OSType ioFileType;
 long ioFiller3;
 long ioDTLgLen;
 long ioDTPyLen;
 short ioFiller4[14];
 long ioAPPLParID;
};
typedef struct DTPBRec DTPBRec;
typedef DTPBRec * DTPBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

814 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
A pointer to a file, directory, or volume name. Whenever a function description specifies that
ioNamePtr is used—whether for input, output, or both—it’s very important that you set this field
to point to storage for a Str255 value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
The volume reference number.

ioDTRefNum
The desktop database reference number.

ioIndex
The index into icon list.

ioTagInfo
The tag information.

ioDTBuffer
The data buffer.

ioDTReqCount
The requested length of data.

ioDTActCount
The actual length of data.

ioFiller1
Unused.

ioIconType
The icon type.

ioFiller2
Unused.

ioDirID
The parent directory ID.

ioFileCreator
The file creator.

ioFileType
The file type.

ioFiller3
Unused.

ioDTLgLen
The logical length of the desktop database.

ioDTPyLen
The physical length of the desktop database.

ioFiller4
Unused.

ioAPPLParID
The parent directory ID of an application.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Data Types 815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

FCBPBRec
Defines a file control block (FCB) parameter block used by the functions PBGetFCBInfoSync and
PBGetFCBInfoAsync.

struct FCBPBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioRefNum;
 short filler;
 short ioFCBIndx;
 short filler1;
 long ioFCBFlNm;
 short ioFCBFlags;
 unsigned short ioFCBStBlk;
 long ioFCBEOF;
 long ioFCBPLen;
 long ioFCBCrPs;
 short ioFCBVRefNum;
 long ioFCBClpSiz;
 long ioFCBParID;
};
typedef struct FCBPBRec FCBPBRec;
typedef FCBPBRec * FCBPBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

816 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioRefNum
The file reference number of an open file.

filler
Reserved.

ioFCBIndx
An index for use with the PBGetFCBInfoSync and PBGetFCBInfoAsync functions.

filler1
Reserved.

ioFCBFlNm
The file ID.

ioFCBFlags
Flags describing the status of the file. See “FCB Flags” (page 906) for the meanings of the bits in this
field.

ioFCBStBlk
The number of the first allocation block of the file.

ioFCBEOF
The logical length (logical end-of-file) of the file.

ioFCBPLen
The physical length (physical end-of-file) of the file.

ioFCBCrPs
The current position of the file mark.

ioFCBVRefNum
The volume reference number.

ioFCBClpSiz
The file clump size.

ioFCBParID
The file’s parent directory ID.

Discussion
The low-level HFS function PBGetFCBInfo uses the file control block parameter block defined by the
FCBPBRec data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Data Types 817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

FIDParam
Defines a parameter block used by low-level HFS file ID functions.

struct FIDParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler14;
 StringPtr ioDestNamePtr;
 long filler15;
 long ioDestDirID;
 long filler16;
 long filler17;
 long ioSrcDirID;
 short filler18;
 long ioFileID;
};
typedef struct FIDParam FIDParam;
typedef FIDParam * FIDParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

818 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler14
Reserved.

ioDestNamePtr
A pointer to the name of the destination file.

filler15
Reserved.

ioDestDirID
The parent directory ID of the destination file.

filler16
Reserved.

filler17
Reserved.

ioSrcDirID
The parent directory ID of the source file.

filler18
Reserved.

ioFileID
The file ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

FileParam
Defines a parameter block used by low-level functions for getting and setting file information.

Data Types 819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct FileParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex;
 SInt8 ioFlAttrib;
 SInt8 ioFlVersNum;
 FInfo ioFlFndrInfo;
 unsigned long ioFlNum;
 unsigned short ioFlStBlk;
 long ioFlLgLen;
 long ioFlPyLen;
 unsigned short ioFlRStBlk;
 long ioFlRLgLen;
 long ioFlRPyLen;
 unsigned long ioFlCrDat;
 unsigned long ioFlMdDat;
};
typedef struct FileParam FileParam;
typedef FileParam * FileParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

820 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFRefNum
The file reference number of an open file.

ioFVersNum
A file version number. This field is no longer used. File version numbers are an artifact of the obsolete
MFS, and are not supported on HFS volumes. You should always set this field to 0.

filler1
Reserved.

ioFDirIndex
A directory index for use with the PBHGetFInfoSync (page 683) and PBHGetFInfoAsync (page 682)
functions.

ioFlAttrib
File attributes. See “File Attribute Constants” (page 914) for the meaning of the bits in this field.

ioFlVersNum
A file version number. This feature is no longer supported, and you must always set this field to 0.

ioFlFndrInfo
Information used by the Finder.

ioFlNum
A file ID.

ioFlStBlk
The first allocation block of the data fork. This field contains 0 if the file’s data fork is empty.

ioFlLgLen
The logical length (logical end-of-file) of the data fork.

ioFlPyLen
The physical length (physical end-of-file) of the data fork.

ioFlRStBlk
The first allocation block of the resource fork. This field contains 0 if the file’s resource fork is empty.

ioFlRLgLen
The logical length (logical end-of-file) of the resource fork.

ioFlRPyLen
The physical length (physical end-of-file) of the resource fork.

ioFlCrDat
The date and time of the file’s creation, specified in seconds since midnight, January 1, 1904.

ioFlMdDat
The date and time of the last modification to the file, specified in seconds since midnight, January 1,
1904.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

Data Types 821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FNSubscriptionRef

typedef struct OpaqueFNSubscriptionRef * FNSubscriptionRef;

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

FNSubscriptionUPP

typedef FNSubscriptionProcPtr FNSubscriptionUPP;

Availability
Available in Mac OS X v10.1 and later.

Declared In
Files.h

ForeignPrivParam
Defines a parameter block used by low-level HFS foreign privileges functions.

struct ForeignPrivParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long ioFiller21;
 long ioFiller22;
 Ptr ioForeignPrivBuffer;
 long ioForeignPrivActCount;
 long ioForeignPrivReqCount;
 long ioFiller23;
 long ioForeignPrivDirID;
 long ioForeignPrivInfo1;
 long ioForeignPrivInfo2;
 long ioForeignPrivInfo3;
 long ioForeignPrivInfo4;
};
typedef struct ForeignPrivParam ForeignPrivParam;
typedef ForeignPrivParam * ForeignPrivParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

822 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFiller21
Reserved.

ioFiller22
Reserved.

ioForeignPrivBuffer
A pointer to a buffer containing access-control information about the foreign file system.

ioForeignPrivActCount
The size of the buffer pointed to by the ioForeignPrivBuffer field.

ioForeignPrivReqCount
The amount of the buffer pointed to by the ioForeignPrivBuffer field that was actually used to
hold data.

ioFiller23
Reserved.

ioForeignPrivDirID
The parent directory ID of the foreign file or directory.

ioForeignPrivInfo1
A long word that may contain privileges data.

ioForeignPrivInfo2
A long word that may contain privileges data.

ioForeignPrivInfo3
A long word that may contain privileges data.

ioForeignPrivInfo4
A long word that may contain privileges data.

Data Types 823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

FSCatalogBulkParam
Defines a parameter block used to retrieve catalog information in bulk on HFS Plus volumes.

struct FSCatalogBulkParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 Boolean containerChanged;
 UInt8 reserved;
 FSIteratorFlags iteratorFlags;
 FSIterator iterator;
 const FSRef * container;
 ItemCount maximumItems;
 ItemCount actualItems;
 FSCatalogInfoBitmap whichInfo;
 FSCatalogInfo * catalogInfo;
 FSRef * refs;
 FSSpec * specs;
 HFSUniStr255 * names;
 const FSSearchParams * searchParams;
};
typedef struct FSCatalogBulkParam FSCatalogBulkParam;
typedef FSCatalogBulkParam * FSCatalogBulkParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

824 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

containerChanged
A Boolean value indicating whether or not the container has changed since the last call to
PBGetCatalogInfoBulkSync or PBGetCatalogInfoBulkAsync.

reserved
Reserved.

iteratorFlags
A set of flags which specifies how the iterator should iterate over the container. See “Iterator
Flags” (page 924) for the meaning of the constants used here.

iterator
A catalog iterator.

container
An FSRef for the directory or volume to iterate over.

maximumItems
The maximum number of items to return information about.

actualItems
The actual number of items returned.

whichInfo
A bitmap indicating which fields of the catalog information structure to return. See “Catalog Information
Bitmap Constants” (page 891) for the bits defined for this field.

catalogInfo
A pointer to an array of catalog information structures. On input, you should pass a pointer to an
array of maximumItemsFSCatalogInfo (page 826) structures. On return, actualItems structures
will be filled out with the information requested in the whichInfo field. If you do not wish any catalog
information to be returned, pass a NULL pointer in this field and pass the constant kFSCatInfoNone
in the whichInfo field.

refs
A pointer to an array of FSRef structures. On input, you should pass a pointer to maximumItemsFSRef
structures. On return, actualItems structures will be filled out. If you do not wish any FSRef structures
to be returned, pass a NULL pointer in this field.

specs
A pointer to an array of FSSpec structures. On input, you should pass a pointer to maximumItems
file system specifications. On return, actualItemsFSSpec structures will be filled in. If you do not
wish any FSSpec information to be returned, pass a NULL pointer in this field.

names
A pointer to an array of Unicode names. On input, you should pass a pointer to an array of
maximumItemsHFSUniStr255 structures. On return, actualItems structures will contain Unicode
names. If you do not wish any file or directory names to be returned, pass a NULL pointer in this field.

searchParams
A pointer to an FSSearchParams (page 839) structure, specifying the values to match against.

Availability
Available in Mac OS X v10.0 and later.

Data Types 825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

FSCatalogInfo
Holds basic information about a file or directory.

struct FSCatalogInfo {
 UInt16 nodeFlags;
 FSVolumeRefNum volume;
 UInt32 parentDirID;
 UInt32 nodeID;
 UInt8 sharingFlags;
 UInt8 userPrivileges;
 UInt8 reserved1;
 UInt8 reserved2;
 UTCDateTime createDate;
 UTCDateTime contentModDate;
 UTCDateTime attributeModDate;
 UTCDateTime accessDate;
 UTCDateTime backupDate;
 UInt32 permissions[4];
 UInt8 finderInfo[16];
 UInt8 extFinderInfo[16];
 UInt64 dataLogicalSize;
 UInt64 dataPhysicalSize;
 UInt64 rsrcLogicalSize;
 UInt64 rsrcPhysicalSize;
 UInt32 valence;
 TextEncoding textEncodingHint;
};
typedef struct FSCatalogInfo FSCatalogInfo;
typedef FSCatalogInfo * FSCatalogInfoPtr;

Fields
nodeFlags

Node flags. This field has two defined bits that indicate whether an object is a file or folder, and
whether a file is locked (constants kFSNodeIsDirectoryMask and kFSNodeLockedMask). See
“Catalog Information Node Flags” (page 894) for the values you can use here.

volume
The object's volume reference.

parentDirID
The ID of the directory that contains the given object. The root directory of a volume always has ID
fsRtDirID (2); the parent of the root directory is ID fsRtParID (1). Note that there is no object with
ID fsRtParID; this is merely used when the File Manager is asked for the parent of the root directory.

nodeID
The file or directory ID.

sharingFlags
The object’s sharing flags. See “Catalog Information Sharing Flags ” (page 896) for the meaning of the
bits defined for this field.

userPrivileges
The user's effective AFP privileges (same as ioACUser in the old HFileInfo and DirInfo structures).
See “User Privileges Constants” (page 930).

826 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

reserved1
Reserved.

reserved2
Reserved.

createDate
The date and time of the creation of the object. Note that file systems other than AFP, HFS and HFS
Plus do not generally support creation dates. For file systems which do not support creation dates,
FSGetCatalogInfo, PBGetCatalogInfoSync, and PBGetCatalogInfoAsync return 0 in this field.

contentModDate
The date and time that the data or resource fork was last modified.

attributeModDate
The date and time that an attribute of the object (such as a fork other than the data or resource fork)
was last modified.

accessDate
The date and time that the object was last accessed. The Mac OS 9 File Manager does not automatically
update the accessDate field; it exists primarily for use by other operating systems (notably Mac OS
X).

backupDate
The date and time of the object’s last backup. This field is not updated by the File Manager a backup
utility may use this field if it wishes. Note that file systems other than AFP, HFS and HFS Plus do not
generally support backup dates. For file systems which do not support backup dates,
FSGetCatalogInfo, PBGetCatalogInfoSync, and PBGetCatalogInfoAsync return 0 in this field.

permissions
User and group permission information. The Mac OS 8 and 9 File Manager does not use or enforce
this permission information. It could be used by a file server program or other operating system
(primarily Mac OS X). In Mac OS X, this array contains the file system permissions of the returned item.
To use this information, coerce the parameter to a FSPermissionInfo (page 836) structure.

finderInfo
Basic Finder information for the object. This information is available in the catalog information, instead
of in a named fork, for historical reasons. The File Manager does not interpret the contents of these
fields. To use this information, coerce the parameter to a FileInfo (page 2258) or FolderInfo (page
2255) structure.

extFinderInfo
Extended Finder information for the object. This information is available in the catalog information,
instead of in a named fork, for historical reasons. The File Manager does not interpret the contents
of these fields. To use this information, coerce the parameter to an ExtendedFileInfo (page 2257)
or ExtendedFolderInfo (page 2254) structure.

dataLogicalSize
The size of the data fork in bytes (the fork’s logical size). The information in this field is only valid for
files do not rely upon the value returned in this field for folders.

dataPhysicalSize
The amount of disk space, in bytes, occupied by the data fork (the fork’s physical size). The information
in this field is only valid for files do not rely upon the value returned in this field for folders.

rsrcLogicalSize
The size of the resource fork (the fork’s logical size). The information in this field is only valid for files
do not rely upon the value returned in this field for folders.

Data Types 827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

rsrcPhysicalSize
The amount of disk space occupied by the resource fork (the fork’s physical size). The information in
this field is only valid for files do not rely upon the value returned in this field for folders.

valence
For folders only, the number of items (files plus directories) contained within the directory. For files,
it is set to zero. Many volume formats do not store a field containing a directory’s valence. For those
volume formats, this field is very expensive to compute. Think carefully before you ask the File Manager
to return this field.

textEncodingHint
The textEncodingHint field is used in conjunction with the Unicode filename of the object. It is an
optional hint that can be used by the volume format when converting the Unicode to some other
encoding. For example, HFS Plus stores this value and uses it when converting the name to a Mac OS
encoding, such as when the name is returned by PBGetCatInfoSync or PBGetCatInfoAsync. As
another example, HFS volumes use this value to convert the Unicode name to a Mac OS encoded
name stored on disk. If the entire Unicode name can be converted to a single Mac OS encoding, then
that encoding should be used as the textEncodingHint; otherwise, a text encoding corresponding
to the first characters of the name will probably provide the best user experience.

If a textEncodingHint is not supplied when a file or directory is created or renamed, the volume
format will use a default value. This default value may not be the best possible choice for the given
filename. Whenever possible, a client should supply a textEncodingHint.

Discussion
The FSCatalogInfoBitmap type is used to indicate which fields of the FSCatalogInfo should be set or
retrieved. If the bit corresponding to a particular field is not set, then that field is not changed if the
FSCatalogInfo is an output parameter, and that field is ignored if the FSCatalogInfo is an input parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSCatalogInfoBitmap
Describes which fields of the FSCatalogInfo structure you wish to retrieve or set.

typedef UInt32 FSCatalogInfoBitmap;

Discussion
If the bit corresponding to a particular field is not set in the bitmap, then that field is not changed in the
FSCatalogInfo structure if it is an output parameter, and that field is ignored if the FSCatalogInfo
structure is an input parameter. See “Catalog Information Bitmap Constants” (page 891) for a description of
the constants you should use with this data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

828 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSEjectStatus

typedef UInt32 FSEjectStatus;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSFileOperationClientContext
Specifies user-defined data and callbacks associated with an asynchronous file operation.

struct FSFileOperationClientContext {
 CFIndex version;
 void *info;
 CFAllocatorRetainCallBack retain;
 CFAllocatorReleaseCallBack release;
 CFAllocatorCopyDescriptionCallBack copyDescription;
};
typedef struct FSFileOperationClientContext FSFileOperationClientContext;

Fields
version

The version number of the structure; this field should always contain 0.

info
A generic pointer to your user-defined data. This pointer is passed back to your application when you
check the status of the file operation. There are two ways you can ask the File Manager for status
information about a file operation: by supplying a status callback function when you start the operation,
or by calling a file operation status function directly.

retain
An optional callback function that the File Manager can use to retain the user-defined data specified
in the info parameter. If your data is a Core Foundation object, you can simply specify the function
CFRetain. If no callback is needed, set this field to NULL.

release
An optional callback function that the File Manager can use to release the user-defined data specified
in the info parameter. If your data is a Core Foundation object, you can simply specify the function
CFRelease. If no callback is needed, set this field to NULL.

copyDescription
An optional callback function that the File Manager can use to create a descriptive string representation
of your user-defined data for debugging purposes. If no callback is needed, set this field to NULL.

Discussion
You supply a client context when calling functions such as FSCopyObjectAsync (page 477) or
FSMoveObjectAsync (page 511) that start an asynchronous copy or move operation.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

Data Types 829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSFileOperationRef
Defines an opaque type that represents an asynchronous file operation.

typedef struct __FSFileOperation * FSFileOperationRef;

Discussion
You supply a file operation object when calling functions such as FSCopyObjectAsync (page 477) or
FSMoveObjectAsync (page 511) to start an asynchronous copy or move operation. You can also use a file
operation object to check the status of a file operation or to cancel the operation.

To perform an asynchronous file operation:

1. Create a file operation object using the function FSFileOperationCreate (page 488).

2. Pass the object to the function FSFileOperationScheduleWithRunLoop (page 489) to schedule the
operation.

3. Pass the object to one of the asynchronous file operation functions to start the operation.

The FSFileOperationRef opaque type is a standard Core Foundation data type. It is derived from CFType
and inherits the properties that all Core Foundation types have in common. For more information, see CFType
Reference.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSForkCBInfoParam
Defines a parameter block used by low-level HFS Plus fork control block functions.

830 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct FSForkCBInfoParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 SInt16 desiredRefNum;
 SInt16 volumeRefNum;
 SInt16 iterator;
 SInt16 actualRefNum;
 FSRef * ref;
 FSForkInfo * forkInfo;
 HFSUniStr255 * forkName;
};
typedef struct FSForkCBInfoParam FSForkCBInfoParam;
typedef FSForkCBInfoParam * FSForkCBInfoParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

desiredRefNum
A fork reference number.

volumeRefNum
The volume reference number of the volume to match, or zero to match all volumes.

iterator
An iterator. Set to zero to start iteration.

actualRefNum
On return, the actual fork reference number found.

ref
A pointer to an FSRef for the specified fork.

forkInfo
A pointer to a fork information structure, FSForkInfo (page 832).

Data Types 831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

forkName
A pointer to the fork’s Unicode name.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSForkInfo
Contains information about an open fork.

struct FSForkInfo {
 SInt8 flags;
 SInt8 permissions;
 FSVolumeRefNum volume;
 UInt32 reserved2;
 UInt32 nodeID;
 UInt32 forkID;
 UInt64 currentPosition;
 UInt64 logicalEOF;
 UInt64 physicalEOF;
 UInt64 process;
};
typedef struct FSForkInfo FSForkInfo;
typedef FSForkInfo * FSForkInfoPtr;

Fields
flags

Flags describing the status of the fork. See “FCB Flags” (page 906) for a description of the bits in this
field.

permissions
User and group permission information.

volume
A volume specification. This can be a volume reference number, drive number, or 0 for the default
volume.

reserved2
Reserved.

nodeID
The file or directory ID of the file or directory with which the fork is associated.

forkID
The fork ID.

currentPosition
The current position within the fork.

logicalEOF
The logical size of the fork.

physicalEOF
The physical size of the fork.

process
The process which opened the fork.

832 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
This data type is used in the forkInfo parameter of the FSGetForkCBInfo function, and in the forkInfo
field of the FSForkCBInfoParam parameter block passed to the PBGetForkCBInfoSync and
PBGetForkCBInfoAsync functions. When these functions return, the FSForkInfo structure contains
information about the specified open fork.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSForkIOParam
Defines a parameter block used by low-level HFS Plus fork I/O functions.

struct FSForkIOParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 void * reserved1;
 SInt16 reserved2;
 SInt16 forkRefNum;
 UInt8 reserved3;
 SInt8 permissions;
 const FSRef * ref;
 Ptr buffer;
 UInt32 requestCount;
 UInt32 actualCount;
 UInt16 positionMode;
 SInt64 positionOffset;
 FSAllocationFlags allocationFlags;
 UInt64 allocationAmount;
 UniCharCount forkNameLength;
 const UniChar * forkName;
 CatPositionRec forkIterator;
 HFSUniStr255 * outForkName;
};
typedef struct FSForkIOParam FSForkIOParam;
typedef FSForkIOParam * FSForkIOParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

Data Types 833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

reserved1
Reserved.

reserved2
Reserved.

forkRefNum
A reference number for a fork.

reserved3
Reserved.

permissions
The desired type of access to the specified fork. See “File Access Permission Constants” (page 908) for
a description of the types of access that you can request.

ref
An FSRef for the file or directory to open.

buffer
A pointer to a data buffer.

requestCount
The number of bytes requested for the given operation.

actualCount
The actual number of bytes completed by the call.

positionMode
A constant indicating the base location within the file for the start of the operation. See “Position
Mode Constants” (page 928) for the meaning of the constants you can use in this field.

positionOffset
The offset from the base location specified in the positionMode offset for the start of the operation.

allocationFlags
A set of bit flags used by the FSAllocateFork (page 470) function to control how space is allocated.
See “Allocation Flags” (page 887) for a description of the defined flags.

allocationAmount
For the FSAllocateFork (page 470) function, the amount of space, in bytes, to allocate.

forkNameLength
The length of the file or directory name passed in the forkName field, in Unicode characters.

forkName
A pointer to the file or directory’s Unicode name. This field is an input parameter functions which
return the file or directory name in the parameter block use the outForkName field.

forkIterator
A fork iterator.

834 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

outForkName
A pointer to the file or directory’s Unicode name this is an output parameter. For functions which
require the file or directory name as an input argument, you should pass a pointer to that name in
the forkName field and pass the length of the name in the forkNameLength field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSIterator
Refers to a position within the catalog, used when iterating over files and folders in a directory.

typedef struct OpaqueFSIterator * FSIterator;

Discussion
This data type is like a file reference number because it maintains state internally to the File Manager and
must be explicitly opened and closed.

An FSIterator is returned by FSOpenIterator and is passed as input to FSGetCatalogInfoBulk
, FSCatalogSearch and FSCloseIterator .

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSMountStatus

typedef UInt32 FSMountStatus;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

Data Types 835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSPermissionInfo

struct FSPermissionInfo {
 UInt32 userID;
 UInt32 groupID;
 UInt8 reserved1;
 UInt8 userAccess;
 UInt16 mode;
 UInt32 reserved2;
};
typedef struct FSPermissionInfo FSPermissionInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSRangeLockParam
Defines a parameter block for use with 64-bit range locking functions.

struct FSRangeLockParam {
 QElemPtr qLink;
 SInt16 qType;
 SInt16 ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 FSIORefNum forkRefNum;
 UInt64 requestCount;
 UInt16 positionMode;
 SInt64 positionOffset;
 UInt64 rangeStart;
};
typedef struct FSRangeLockParam FSRangeLockParam;

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

FSRangeLockParamPtr
Defines a pointer to a range lock parameter block.

typedef FSRangeLockParam *FSRangeLockParamPtr;

Availability
Available in Mac OS X v10.4 and later.

Declared In
Files.h

836 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSRef
Identifies a directory or file, including a volume’s root directory.

struct FSRef {
 UInt8 hidden[80];
};
typedef struct FSRef FSRef;
typedef FSRef * FSRefPtr;

Discussion
This data type’s purpose is similar to an FSSpec except that an FSRef is completely opaque. An FSRef
contains whatever information is needed to find the given object; the internal structure of an FSRef is likely
to vary based on the volume format, and may vary based on the particular object being identified.

The client of the File Manager cannot examine the contents of an FSRef to extract information about the
parent directory or the object’s name. Similarly, an FSRef cannot be constructed directly by the client; the
FSRef must be constructed and returned via the File Manager. There is no need to call the File Manager to
dispose an FSRef.

To determine the volume, parent directory and name associated with an FSRef, or to get an equivalent
FSSpec, use the FSGetCatalogInfo call.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSRefParam
Defines a parameter block used by low-level HFS Plus functions.

Data Types 837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct FSRefParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 ConstStringPtr ioNamePtr;
 short ioVRefNum;
 SInt16 reserved1;
 UInt8 reserved2;
 UInt8 reserved3;
 const FSRef * ref;
 FSCatalogInfoBitmap whichInfo;
 FSCatalogInfo * catInfo;
 UniCharCount nameLength;
 const UniChar * name;
 long ioDirID;
 FSSpec * spec;
 FSRef * parentRef;
 FSRef * newRef;
 TextEncoding textEncodingHint;
 HFSUniStr255 * outName;
};
typedef struct FSRefParam FSRefParam;
typedef FSRefParam * FSRefParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—you should set this field to point to storage for a Str255 value (if you’re
using a pathname) or to NULL (if you’re not).

838 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVRefNum
A volume reference number, or 0 for the default volume.

reserved1
Reserved.

reserved2
Reserved.

reserved3
Reserved.

ref
The FSRef describing the file or directory which is the target of the call.

whichInfo
An FSCatalogInfoBitmap which describes the fields of the catalog information structure passed
in the catInfo field which are to be retrieved or set.

catInfo
A catalog information structure containing information about the specified file or directory.

nameLength
The length of the file or directory’s name, for the PBCreateSync, PBCreateAsync, PBRenameSync,
and PBRenameAsync functions.

name
A pointer to the file or directory’s Unicode name, for the PBCreateSync, PBCreateAsync,
PBRenameSync, and PBRenameAsync functions.

ioDirID
The directory ID of the specified file or directory’s parent directory.

spec
The target or source FSRef.

parentRef
The secondary or destination FSRef. (Or the ref of the directory to move another file or directory to).

newRef
The output FSRef (ie, a new FSRef).

textEncodingHint
A text encoding hint for the file or directory’s Unicode name, used by the PBMakeFSRefSync,
PBMakeFSRefAsync, PBRenameSync, and PBRenameAsync functions.

outName
On output, a pointer to the Unicode name of the file or directory, used by the PBGetCatalogInfoSync
and PBGetCatalogInfoAsync functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSearchParams
Describes the search criteria for a catalog information search.

Data Types 839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct FSSearchParams {
 Duration searchTime;
 OptionBits searchBits;
 UniCharCount searchNameLength;
 const UniChar * searchName;
 FSCatalogInfo * searchInfo1;
 FSCatalogInfo * searchInfo2;
};
typedef struct FSSearchParams FSSearchParams;
typedef FSSearchParams * FSSearchParamsPtr;

Fields
searchTime

A Time Manager duration for the duration of the search. If you specify a non-zero value in this field,
the search may terminate after the specified time, even if the maximum number of requested objects
has not been returned and the entire catalog has not been scanned.

If this value is negative, the time is interpreted in microseconds; if positive, it is interpreted as
milliseconds. If searchTime is zero, there is no time limit on the search.

searchBits
A set of bits specifying which catalog information fields to search on. See “Catalog Search
Constants” (page 899) for the constants which you can use here.

searchNameLength
The length of the Unicode name to search by.

searchName
A pointer to the Unicode name to search by.

searchInfo1
An FSCatalogInfo (page 826) structure which specifies the values and lower bounds of a search.

searchInfo2
A FSCatalogInfo (page 826) structure which specifies the masks and upper bounds of a search.

Discussion
Used by FSCatalogSearch , PBCatalogSearchSync , and PBCatalogSearchAsync to specify the criteria
for a catalog search.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSpec
Specifies the name and location of a file or directory.

840 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct FSSpec {
 short vRefNum;
 long parID;
 StrFileName name;
};
typedef struct FSSpec FSSpec;
typedef FSSpec * FSSpecPtr;

Fields
vRefNum

The volume reference number of the volume containing the specified file or directory.

parID
The parent directory ID of the specified file or directory (the directory ID of the directory containing
the given file or directory).

name
The name of the specified file or directory. In Carbon, this name must be a leaf name; the name cannot
contain a semicolon.

Discussion
The FSSpec structure can describe only a file or a directory, not a volume. A volume can be identified by its
root directory, although the system software never uses an FSSpec structure to describe a volume. The
directory ID of the root’s parent directory is fsRtParID. The name of the root directory is the same as the
name of the volume.

If you need to convert a file specification into an FSSpec structure, call the function FSMakeFSSpec (page
505) . Do not fill in the fields of an FSSpec structure yourself.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSSpecArrayPtr
Defines a pointer to an array of FSSpec structures.

typedef FSSpecPtr FSSpecArrayPtr;

Discussion
See FSSpec (page 840).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

Data Types 841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSUnmountStatus

typedef UInt32 FSUnmountStatus;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeEjectUPP

typedef FSVolumeEjectProcPtr FSVolumeEjectUPP;

Discussion
For more information, see the description of the FSVolumeEjectProcPtr (page 792) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeInfo
Used when getting or setting information about a volume.

842 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct FSVolumeInfo {
 UTCDateTime createDate;
 UTCDateTime modifyDate;
 UTCDateTime backupDate;
 UTCDateTime checkedDate;
 UInt32 fileCount;
 UInt32 folderCount;
 UInt64 totalBytes;
 UInt64 freeBytes;
 UInt32 blockSize;
 UInt32 totalBlocks;
 UInt32 freeBlocks;
 UInt32 nextAllocation;
 UInt32 rsrcClumpSize;
 UInt32 dataClumpSize;
 UInt32 nextCatalogID;
 UInt8 finderInfo[32];
 UInt16 flags;
 UInt16 filesystemID;
 UInt16 signature;
 UInt16 driveNumber;
 short driverRefNum;
};
typedef struct FSVolumeInfo FSVolumeInfo;
typedef FSVolumeInfo * FSVolumeInfoPtr;

Fields
createDate

The date and time the volume was created. A value of 0 means that the volume creation date is
unknown.

modifyDate
The last time when the volume was modified in any way. A value of 0 means “never” or “unknown.

backupDate
Indicates when the volume was last backed up. This field is for use by backup utilities. A value of 0
means “never” or “unknown.

checkedDate
The last date and time that the volume was checked for consistency. A value of 0 means “never” or
“unknown.

fileCount
The total number of files on the volume, or 0 if unknown.

folderCount
The total number of folders on the volume, or 0 if unknown. Note that no root directory counts.

totalBytes
The size of the volume in bytes.

freeBytes
The number of bytes of free space on the volume.

blockSize
The size of an allocation block, in bytes. This field is only appropriate for volume formats (such as HFS
and HFS Plus) that allocate space in fixed-size pieces; other volume formats may not have a similar
concept, and may set this field to zero.

Data Types 843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

totalBlocks
The total number of allocation blocks on the volume. This field is only appropriate for volume formats
(such as HFS and HFS Plus) that allocate space in fixed-size pieces; other volume formats may not
have a similar concept, and may set this field to zero.

freeBlocks
The number of unused allocation blocks on the volume. This field is only appropriate for volume
formats (such as HFS and HFS Plus) that allocate space in fixed-size pieces; other volume formats may
not have a similar concept, and may set this field to zero.

nextAllocation
A hint for where to start searching for free space during an allocation. This field is only appropriate
for volume formats (such as HFS and HFS Plus) that allocate space in fixed-size pieces; other volume
formats may not have a similar concept, and may set this field to zero.

rsrcClumpSize
Default resource fork clump size. When a fork is automatically grown as it is written, the File Manager
attempts to allocate space that is a multiple of the clump size. This field is zero for volume formats
that don’t support the notion of a clump size.

dataClumpSize
Default data fork clump size. When a fork is automatically grown as it is written, the File Manager
attempts to allocate space that is a multiple of the clump size. This field is zero for volume formats
that don’t support the notion of a clump size.

nextCatalogID
The next unused catalog node ID. Some volume formats (such as HFS and HFS Plus) use a monotonically
increasing number for the catalog node ID (i.e. File ID or Directory ID) of newly created files and
directories. For those volume formats, the nextCatalogID is the next file/directory ID that will be
assigned. For other volume formats, this field will be zero.

finderInfo
Information used by Finder, such as the Directory ID of the System Folder. Some volume formats do
not support Finder information for a volume and will set this field to all zeroes.

flags
This field contains bit flags holding information about the volume. See “Volume Information
Flags” (page 940) for the attribute constants you can use here.

filesystemID
Identifies the filesystem implementation that is handling the volume; this is zero for HFS and HFS Plus
volumes.

signature
This field is used to distinguish between volume formats supported by a single filesystem
implementation.

driveNumber
The drive number for the drive (drive queue element) associated with the volume. Mac OS X does
not support drive numbers; in Mac OS X, the File Manager always returns a value of 1 in this field.

driverRefNum
The driver reference number for the drive (drive queue element) associated with the volume.

Discussion
This structure contains information about a volume as a whole information about a volume’s root directory
would use the FSCatalogInfo (page 826) structure.

Availability
Available in Mac OS X v10.0 and later.

844 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

FSVolumeInfoBitmap
Describes which fields of the FSVolumeInfo structure you wish to retrieve or set.

typedef UInt32 FSVolumeInfoBitmap;

Discussion
If the bit corresponding to a particular field is not set in the bitmap, then that field is not changed in the
FSVolumeInfo structure if it is an output parameter, and that field is ignored if the FSVolumeInfo structure
is an input parameter. See “Volume Information Bitmap Constants” (page 938) for a description of the constants
you should use with this data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSVolumeInfoParam
Defines a parameter block used by low-level HFS Plus volume manipulation functions.

struct FSVolumeInfoParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 FSVolumeRefNum ioVRefNum;
 UInt32 volumeIndex;
 FSVolumeInfoBitmap whichInfo;
 FSVolumeInfo * volumeInfo;
 HFSUniStr255 * volumeName;
 FSRef * ref;
};
typedef struct FSVolumeInfoParam FSVolumeInfoParam;
typedef FSVolumeInfoParam * FSVolumeInfoParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

Data Types 845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a volume name. This field is unused.

ioVRefNum
The volume reference number.

volumeIndex
The volume index. If this field is 0, the value in the ioVRefNum field only is used to identify the target
volume.

whichInfo
A bitmap indicating which volume information fields to retrieve or set in the FSVolumeInfo (page
842) structure passed in the volumeInfo field. See “Volume Information Bitmap Constants” (page
938) for the meaning of the bits in this field.

volumeInfo
A pointer to a volume information structure containing the requested volume information on return,
or the new values of the volume information to set on input. See FSVolumeInfo (page 842).

volumeName
On output, a pointer to the volume’s name.

ref
A pointer to an FSRef for the specified volume’s root directory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSVolumeMountUPP

typedef FSVolumeMountProcPtr FSVolumeMountUPP;

Discussion
For more information, see the description of the FSVolumeMountProcPtr (page 792) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

846 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FSVolumeOperation

typedef struct OpaqueFSVolumeOperation * FSVolumeOperation;

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

FSVolumeRefNum
Identifies a particular mounted volume.

typedef SInt16 FSVolumeRefNum;

Discussion
This data type is the same as the 16-bit volume refnum previously passed in the ioVRefNum fields of a
parameter block; this is simply a new type name for the old data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

FSVolumeUnmountUPP

typedef FSVolumeUnmountProcPtr FSVolumeUnmountUPP;

Discussion
For more information, see the description of the FSVolumeUnmountProcPtr (page 793) callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Files.h

GetVolParmsInfoBuffer
Defines a volume attributes buffer, used by the PBHGetVolParmsSync and PBHGetVolParmAsync functions
to return volume information.

Data Types 847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct GetVolParmsInfoBuffer {
 short vMVersion;
 long vMAttrib;
 Handle vMLocalHand;
 long vMServerAdr;
 long vMVolumeGrade;
 short vMForeignPrivID;
 long vMExtendedAttributes;
 void * vMDeviceID;
 UniCharCount vMMaxNameLength;
};
typedef struct GetVolParmsInfoBuffer GetVolParmsInfoBuffer;

Fields
vMVersion

The version number of the attributes buffer structure. Currently this field returns 1, 2, 3 or 4. Version
3 is introduced to support the HFS Plus APIs.

vMAttrib
A 32-bit quantity that encodes information about the volume attributes. See “Volume Attribute
Constants” (page 931) for the meaning of the bits in this field.

vMLocalHand
A handle to private data for shared volumes. On creation of the VCB (right after mounting), this field
is a handle to a 2-byte block of memory. The Finder uses this for its local window list storage, allocating
and deallocating memory as needed. It is disposed of when the volume is unmounted. Your application
should treat this field as reserved.

vMServerAdr
For AppleTalk server volumes, this field contains the internet address of an AppleTalk server volume.
Your application can inspect this field to tell which volumes belong to which server; the value of this
field is 0 if the volume does not have a server.

vMVolumeGrade
The relative speed rating of the volume. The scale used to determine these values is currently
uncalibrated. In general, lower values indicate faster speeds. A value of 0 indicates that the volume’s
speed is unrated. The buffer version returned in the vMVersion field must be greater than 1 for this
field to be meaningful.

vMForeignPrivID
An integer representing the privilege model supported by the volume. Currently two values are
defined for this field: 0 represents a standard HFS or HFS Plus volume that might or might not support
the AFP privilege model; fsUnixPriv represents a volume that supports the A/UX privilege model.
The buffer version returned in the vMVersion field must be greater than 1 for this field to be
meaningful.

vMExtendedAttributes
Contains bits that describe a volume’s extended attributes. For this field to be meaningful, the
vMVersion must be greater than 2. See “Extended Volume Attributes” (page 903) for the meaning of
the bits in this field.

vMDeviceID
A device name identifying the device in /dev that corresponds to the volume. You can use this string
to build a POSIX path to the device for use with IOKit APIs.

848 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

vMMaxNameLength

Discussion
Volumes that implement the HFS Plus APIs must use version 3 (or newer) of the GetVolParmsInfoBuffer.
Volumes that don’t implement the HFS Plus APIs may still implement version 3 of the
GetVolParmsInfoBuffer. If the version of the GetVolParmsInfoBuffer is 2 or less, or the
bSupportsHFSPlusAPIs bit is clear (zero), then the volume does not implement the HFS Plus APIs, and
they are being emulated for that volume by the File Manager itself.

If a volume does not implement the HFS Plus APIs, and supports version 2 or earlier of the
GetVolParmsInfoBuffer, it cannot itself describe whether it supports the FSCatalogSearch (page 472)
or FSExchangeObjects calls. The compatibility layer will implement the FSCatalogSearch call if the
volume supports the PBCatSearch call (i.e. the bHasCatSearch bit of vMAttrib is set). The compatibility
layer will implement the FSExchangeObjects call if the volume supports PBExchangeFiles (i.e. the
bHasFileIDs bit of vMAttrib is set).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

HFileInfo
Defines a structure which holds catalog information about a file.

Data Types 849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct HFileInfo {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex;
 SInt8 ioFlAttrib;
 SInt8 ioACUser;
 FInfo ioFlFndrInfo;
 long ioDirID;
 unsigned short ioFlStBlk;
 long ioFlLgLen;
 long ioFlPyLen;
 unsigned short ioFlRStBlk;
 long ioFlRLgLen;
 long ioFlRPyLen;
 unsigned long ioFlCrDat;
 unsigned long ioFlMdDat;
 unsigned long ioFlBkDat;
 FXInfo ioFlXFndrInfo;
 long ioFlParID;
 long ioFlClpSiz;
};
typedef struct HFileInfo HFileInfo;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

850 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFRefNum
The file reference number of an open file.

ioFVersNum
A file version number. This field is no longer used. File version numbers are an artifact of the obsolete
MFS, and are not supported on HFS volumes. You should always set this field to 0.

filler1
Reserved.

ioFDirIndex
A file and directory index. If this field contains a positive number, PBGetCatInfoSync and
PBGetCatInfoAsync return information about the file or directory having that directory index in
the directory specified by the ioVRefNum field. (If ioVRefNum contains a volume reference number,
the specified directory is that volume’s root directory.)

If this field contains 0, PBGetCatInfoSync or PBGetCatInfoAsync returns information about the
file or directory whose name is specified in the ioNamePtr field and that is located in the directory
specified by the ioVRefNum field. (Once again, if ioVRefNum contains a volume reference number,
the specified directory is that volume’s root directory.)

If this field contains a negative number, PBGetCatInfoSync or PBGetCatInfoAsync ignores the
ioNamePtr field and returns information about the directory specified in the ioDirID field. If both
ioDirID and ioVRefNum are set to 0, PBGetCatInfoSync or PBGetCatInfoAsync returns
information about the current default directory.

ioFlAttrib
File or directory attributes. See “File Attribute Constants” (page 914) for the meaning of the bits in this
field.

ioACUser
The user’s access rights for the specified directory. See “User Privileges Constants” (page 930) for the
meaning of the bits in this field.

ioFlFndrInfo
Finder information.

ioDirID
A directory ID or file ID. On input to PBGetCatInfoSync or PBGetCatInfoAsync , this field contains
a directory ID (which is used only if the ioFDirIndex field is negative). On output, this field contains
the file ID of the specified file.

ioFlStBlk
The first allocation block of the data fork. This field contains 0 if the file’s data fork is empty.

ioFlLgLen
The logical length (logical end-of-file) of the data fork.

ioFlPyLen
The physical length (physical end-of-file) of the data fork.

ioFlRStBlk
The first allocation block of the resource fork.

Data Types 851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioFlRLgLen
The logical length (logical end-of-file) of the resource fork.

ioFlRPyLen
The physical length (physical end-of-file) of the resource fork.

ioFlCrDat
The date and time of the file’s creation, in seconds since midnight, January 1, 1904. However, on Mac
OS X, if you set the creation date to a date between January 1, 1904 and January 1, 1970, it will be
clipped to January 1, 1970, and that is the value which will be returned if you later try to retrieve the
creation date.

Note that file systems other than AFP, HFS and HFS Plus do not generally support creation dates.

ioFlMdDat
The date and time of the last modification to the file, in seconds since midnight, January 1, 1904.
However, on Mac OS X, if you set the modification date to a date between January 1, 1904 and January
1, 1970, it will be clipped to January 1, 1970.

ioFlBkDat
The date and time that the file was last backed up, in seconds since midnight, January 1, 1904. However,
on Mac OS X, if you set the backup date to a date between January 1, 1904 and January 1, 1970, it
will be clipped to January 1, 1970.

Note that file systems other than AFP, HFS and HFS Plus do not generally support backup dates.

ioFlXFndrInfo
Additional Finder information.

ioFlParID
The directory ID of the file’s parent directory.

ioFlClpSiz
The clump size to be used when writing the file if it’s 0, the volume’s clump size is used when the file
is opened.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

HFileParam
Defines a parameter block used by low-level HFS functions for file creation, deletion, and information retrieval.

852 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct HFileParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioFRefNum;
 SInt8 ioFVersNum;
 SInt8 filler1;
 short ioFDirIndex;
 SInt8 ioFlAttrib;
 SInt8 ioFlVersNum;
 FInfo ioFlFndrInfo;
 long ioDirID;
 unsigned short ioFlStBlk;
 long ioFlLgLen;
 long ioFlPyLen;
 unsigned short ioFlRStBlk;
 long ioFlRLgLen;
 long ioFlRPyLen;
 unsigned long ioFlCrDat;
 unsigned long ioFlMdDat;
};
typedef struct HFileParam HFileParam;
typedef HFileParam * HFileParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

Data Types 853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioFRefNum
The file reference number of an open file.

ioFVersNum
A file version number. This field is no longer used. File version numbers are an artifact of the obsolete
MFS, and are not supported on HFS volumes. You should always set this field to 0.

filler1
Reserved.

ioFDirIndex
A directory index for use with the PBHGetFInfoSync (page 683) and PBHGetFInfoAsync (page 682)
functions.

ioFlAttrib
File attributes. See “File Attribute Constants” (page 914) for the meaning of the bits in this field.

ioFlVersNum
A file version number. This feature is no longer supported, and you must always set this field to 0.

ioFlFndrInfo
Information used by the Finder.

ioDirID
A directory ID.

ioFlStBlk
The first allocation block of the data fork. This field contains 0 if the file’s data fork is empty.

ioFlLgLen
The logical length (logical end-of-file) of the data fork.

ioFlPyLen
The physical length (physical end-of-file) of the data fork.

ioFlRStBlk
The first allocation block of the resource fork. This field contains 0 if the file’s resource fork is empty.

ioFlRLgLen
The logical length (logical end-of-file) of the resource fork.

ioFlRPyLen
The physical length (physical end-of-file) of the resource fork.

ioFlCrDat
The date and time of the file’s creation, specified in seconds since midnight, January 1, 1904.

ioFlMdDat
The date and time of the last modification to the file, specified in seconds since midnight, January 1,
1904.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

854 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

HFSUniStr255
Used by the File Manager to return Unicode strings.

struct HFSUniStr255 {
 UInt16 length;
 UniChar unicode[255];
};
typedef struct HFSUniStr255 HFSUniStr255;

Fields
length

The number of unicode characters in the string.

unicode
The string, in unicode characters.

Discussion
This data type is a string of up to 255 16-bit Unicode characters, with a preceding 16-bit length (number of
characters). Note that only the first length characters have meaningful values; the remaining characters may
be set to arbitrary values. A caller should always assume that the entire structure will be modified, even if
the actual string length is less than 255.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

HIOParam
Defines a parameter block used by low-level HFS I/O functions.

Data Types 855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct HIOParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioRefNum;
 SInt8 ioVersNum;
 SInt8 ioPermssn;
 Ptr ioMisc;
 Ptr ioBuffer;
 long ioReqCount;
 long ioActCount;
 short ioPosMode;
 long ioPosOffset;
};
typedef struct HIOParam HIOParam;
typedef HIOParam * HIOParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioRefNum
The file reference number of an open file.

856 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVersNum
A version number. This field is no longer used and you should always set it to 0.

ioPermssn
The access mode. See “File Access Permission Constants” (page 908).

ioMisc
Depending on the function called, this field contains either a logical end-of-file, a new version number,
a pointer to an access path buffer, or a pointer to a new pathname. Because ioMisc is of type Ptr,
you’ll need to perform type coercion to interpret the value of ioMisc correctly when it contains an
end-of-file (a LongInt value) or version number (a SignedByte value).

ioBuffer
A pointer to a data buffer into which data is written by PBReadSync and PBReadAsync calls, and
from which data is read by PBWriteSync and PBWriteAsync calls.

ioReqCount
The requested number of bytes to be read, written, or allocated.

ioActCount
The number of bytes actually read, written, or allocated.

ioPosMode
The positioning mode (base location) for setting the mark. Bits 0 and 1 of this field indicate how to
position the mark; you can use the constants described in “Position Mode Constants” (page 928) to
set or test their value.

You can also use the constants described in “Cache Constants” (page 889) to indicate whether or not
to cache the data.

ioPosOffset
The offset to be used in conjunction with the base location specified in the ioPosMode field.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

HParamBlockRec
Describes the HFS parameter block.

Data Types 857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

union HParamBlockRec {
 HIOParam ioParam;
 HFileParam fileParam;
 HVolumeParam volumeParam;
 AccessParam accessParam;
 ObjParam objParam;
 CopyParam copyParam;
 WDParam wdParam;
 FIDParam fidParam;
 CSParam csParam;
 ForeignPrivParam foreignPrivParam;
};
typedef union HParamBlockRec HParamBlockRec;
typedef HParamBlockRec * HParmBlkPtr;

Fields
ioParam

A parameter block used by low-level HFS I/O functions. See HIOParam (page 855).

fileParam
A parameter block used by low-level HFS functions for file creation, deletion, and information retrieval.
See HFileParam (page 852).

volumeParam
A parameter block used by low-level HFS volume manipulation functions. See HVolumeParam (page
859).

accessParam
A parameter block used by low-level HFS file and directory access rights manipulation functions. See
AccessParam (page 795).

objParam
A parameter block used by low-level HFS user and group information functions. See ObjParam (page
865).

copyParam
A parameter block used by low-level HFS file copying functions. See CopyParam (page 806).

wdParam
A parameter block used by low-level HFS working directory functions. See WDParam (page 876).

fidParam
A parameter block used by low-level HFS file ID functions. See FIDParam (page 818).

csParam
A parameter block used by low-level HFS catalog search functions. See CSParam (page 807).

foreignPrivParam
A parameter block used by low-level HFS foreign privileges functions. See ForeignPrivParam (page
822).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

858 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

HVolumeParam
Defines a parameter block used by low-level HFS volume manipulation functions.

struct HVolumeParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler2;
 short ioVolIndex;
 unsigned long ioVCrDate;
 unsigned long ioVLsMod;
 short ioVAtrb;
 unsigned short ioVNmFls;
 unsigned short ioVBitMap;
 unsigned short ioAllocPtr;
 unsigned short ioVNmAlBlks;
 unsigned long ioVAlBlkSiz;
 unsigned long ioVClpSiz;
 unsigned short ioAlBlSt;
 unsigned long ioVNxtCNID;
 unsigned short ioVFrBlk;
 unsigned short ioVSigWord;
 short ioVDrvInfo;
 short ioVDRefNum;
 short ioVFSID;
 unsigned long ioVBkUp;
 short ioVSeqNum;
 unsigned long ioVWrCnt;
 unsigned long ioVFilCnt;
 unsigned long ioVDirCnt;
 long ioVFndrInfo[8];
};
typedef struct HVolumeParam HVolumeParam;
typedef HVolumeParam * HVolumeParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

Data Types 859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler2
Reserved.

ioVolIndex
A volume index for use with the PBHGetVInfoSync (page 690) and PBHGetVInfoAsync (page 686)
functions.

ioVCrDate
The date and time of the volume’s initialization.

ioVLsMod
The date and time the volume information was last modified. (This field is not changed when
information is written to a file and does not necessarily indicate when the volume was flushed.

ioVAtrb
The volume attributes. See “Volume Information Attribute Constants” (page 937) for the meanings of
the bits in this field.

ioVNmFls
The number of files in the root directory of the volume. For performance reasons, the Carbon File
Manager does not return the number of files in this field; instead, it sets ioVNmFls to 0.

To determine the number of files in the root directory of a volume in Carbon, call
PBGetCatInfoAsync (page 648) orPBGetCatInfoSync (page 651) for the root directory. The number
of files in the root directory is returned in the ioDrNmFls field.

ioVBitMap
The first block of the volume bitmap.

ioAllocPtr
The block at which the next new file starts. Used internally.

ioVNmAlBlks
The number of allocation blocks.

ioVAlBlkSiz
The size of allocation blocks.

ioVClpSiz
The clump size.

860 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioAlBlSt
The first block in the volume map.

ioVNxtCNID
The next unused catalog node ID.

ioVFrBlk
The number of unused allocation blocks.

ioVSigWord
A signature word identifying the type of volume it’s $D2D7 for MFS volumes and $4244 for volumes
that support HFS calls.

ioVDrvInfo
The drive number of the drive containing the volume.

ioVDRefNum
For online volumes, the reference number of the I/O driver for the drive identified by the ioVDrvInfo
field.

ioVFSID
The file-system identifier. It indicates which file system is servicing the volume it’s zero for File Manager
volumes and nonzero for volumes handled by an external file system.

ioVBkUp
The date and time the volume was last backed up; this is 0 if the volume has never been backed up.

ioVSeqNum
Used internally.

ioVWrCnt
The volume write count.

ioVFilCnt
The total number of files on the volume.

ioVDirCnt
The total number of directories (not including the root directory) on the volume.

ioVFndrInfo
Information used by the Finder.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

IOCompletionUPP
A universal procedure pointer to an application-defined completion function.

typedef IOCompletionProcPtr IOCompletionUPP;

Discussion
See IOCompletionProcPtr (page 794).

Availability
Available in Mac OS X v10.0 and later.

Data Types 861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

IOParam
Defines a parameter block used by low-level I/O functions.

struct IOParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioRefNum;
 SInt8 ioVersNum;
 SInt8 ioPermssn;
 Ptr ioMisc;
 Ptr ioBuffer;
 long ioReqCount;
 long ioActCount;
 short ioPosMode;
 long ioPosOffset;
};
typedef struct IOParam IOParam;
typedef IOParam * IOParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

862 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioRefNum
The file reference number of an open file.

ioVersNum
A version number. This field is no longer used and you should always set it to 0.

ioPermssn
The access mode. See “File Access Permission Constants” (page 908).

ioMisc
Depending on the function called, this field contains either a new logical end-of-file (for the
PBGetEOFSync/ PBGetEOFAsync and PBSetEOFSync/ PBSetEOFAsync functions), a new version
number, or a pointer to a new pathname (for the PBHRenameSync/ PBHRenameAsync functions).
Because ioMisc is of type Ptr, you’ll need to perform type coercion to interpret the value of ioMisc
correctly when it contains an end-of-file (a LongInt value) or version number (a SignedByte value).

ioBuffer
A pointer to a data buffer into which data is written by PBReadSync and PBReadAsync calls; and
from which data is read by PBWriteSync and PBWriteAsync calls.

ioReqCount
The requested number of bytes to be read, written, or allocated.

ioActCount
The number of bytes actually read, written, or allocated.

ioPosMode
The positioning mode (base location) for positioning the file mark. Bits 0 and 1 of this field indicate
how to position the mark; you can use the constants described in “Position Mode Constants” (page
928) to set or test their value.

You can also use the constants described in “Cache Constants” (page 889) to indicate whether the
data should be cached.

ioPosOffset
The offset to be used in conjunction with the base location specified in the ioPosMode field.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

MultiDevParam
Defines a parameter block used by low-level functions in the classic Device Manager to access multiple
devices.

Data Types 863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct MultiDevParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioMRefNum;
 SInt8 ioMVersNum;
 SInt8 ioMPermssn;
 Ptr ioMMix;
 short ioMFlags;
 Ptr ioSEBlkPtr;
};
typedef struct MultiDevParam MultiDevParam;
typedef MultiDevParam * MultiDevParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioMRefNum
The driver reference number.

ioMVersNum
The slot version number.

ioMPermssn
Permissions.

864 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioMMix
Reserved.

ioMFlags
Flags specifying the number of additional fields. You should set the fMulti bit (bit 0) of this field
and clear all of the other bits.

ioSEBlkPtr
A pointer to an external parameter block that is customized for the devices installed in the slot.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

ObjParam
Defines a parameter block used by low-level HFS user and group information functions.

struct ObjParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short filler7;
 short ioObjType;
 StringPtr ioObjNamePtr;
 long ioObjID;
};
typedef struct ObjParam ObjParam;
typedef ObjParam * ObjParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

Data Types 865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler7
Reserved.

ioObjType
A function code. The values passed in this field are determined by the function to which you pass
this parameter block.

ioObjNamePtr
A pointer to the returned creator/group name.

ioObjID
The creator/group ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

ParamBlockRec
Describes the basic File Manager parameter block.

866 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

union ParamBlockRec {
 IOParam ioParam;
 FileParam fileParam;
 VolumeParam volumeParam;
 CntrlParam cntrlParam;
 SlotDevParam slotDevParam;
 MultiDevParam multiDevParam;
};
typedef union ParamBlockRec ParamBlockRec;
typedef ParamBlockRec * ParmBlkPtr;

Fields
ioParam
fileParam
volumeParam
cntrlParam
slotDevParam
multiDevParam

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

SlotDevParam
Defines a parameter block used by low-level functions in the classic Device Manager to access a single slot
device.

struct SlotDevParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioSRefNum;
 SInt8 ioSVersNum;
 SInt8 ioSPermssn;
 Ptr ioSMix;
 short ioSFlags;
 SInt8 ioSlot;
 SInt8 ioID;
};
typedef struct SlotDevParam SlotDevParam;
typedef SlotDevParam * SlotDevParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

Data Types 867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioSRefNum
The driver reference number.

ioSVersNum
The slot version number.

ioSPermssn
Permissions.

ioSMix
Reserved.

ioSFlags
Flags determining the number of additional fields. You should clear all of the bits in this field.

ioSlot
The slot number.

ioID
The slot resource ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

VCB
Defines a volume control block.

868 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct VCB {
 QElemPtr qLink;
 short qType;
 short vcbFlags;
 unsigned short vcbSigWord;
 unsigned long vcbCrDate;
 unsigned long vcbLsMod;
 short vcbAtrb;
 unsigned short vcbNmFls;
 short vcbVBMSt;
 short vcbAllocPtr;
 unsigned short vcbNmAlBlks;
 long vcbAlBlkSiz;
 long vcbClpSiz;
 short vcbAlBlSt;
 long vcbNxtCNID;
 unsigned short vcbFreeBks;
 Str27 vcbVN;
 short vcbDrvNum;
 short vcbDRefNum;
 short vcbFSID;
 short vcbVRefNum;
 Ptr vcbMAdr;
 Ptr vcbBufAdr;
 short vcbMLen;
 short vcbDirIndex;
 short vcbDirBlk;
 unsigned long vcbVolBkUp;
 unsigned short vcbVSeqNum;
 long vcbWrCnt;
 long vcbXTClpSiz;
 long vcbCTClpSiz;
 unsigned short vcbNmRtDirs;
 long vcbFilCnt;
 long vcbDirCnt;
 long vcbFndrInfo[8];
 unsigned short vcbVCSize;
 unsigned short vcbVBMCSiz;
 unsigned short vcbCtlCSiz;
 unsigned short vcbXTAlBlks;
 unsigned short vcbCTAlBlks;
 short vcbXTRef;
 short vcbCTRef;
 Ptr vcbCtlBuf;
 long vcbDirIDM;
 short vcbOffsM;
};
typedef struct VCB VCB;
typedef VCB * VCBPtr;

Fields
qLink

A pointer to the next entry in the VCB queue.

qType
The queue type. When the volume is mounted and the VCB is created, this field is cleared. Thereafter,
bit 7 of this field is set whenever a file on that volume is opened.

Data Types 869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

vcbFlags
Volume flags. Bit 15 is set if the volume information has been changed by a File Manager call since
the volume was last flushed by a FlushVol (page 466) call. See “Volume Control Block Flags” (page
935).

vcbSigWord
The volume signature.

vcbCrDate
The date and time of the volume’s creation (initialization).

vcbLsMod
The date and time of the volume’s last modification. This is not necessarily when the volume was last
flushed.

vcbAtrb
The volume attributes.

vcbNmFls
The number of files in the root directory of the volume.

vcbVBMSt
The first block of the volume bitmap.

vcbAllocPtr
The start block of the next allocation search. This field is used internally.

vcbNmAlBlks
The number of allocation blocks in the volume.

vcbAlBlkSiz
The allocation block size, in bytes. This value must always be a multiple of 512 bytes.

vcbClpSiz
The default clump size.

vcbAlBlSt
The first allocation block in the volume.

vcbNxtCNID
The next unused catalog node ID (directory or file ID).

vcbFreeBks
The number of unused allocation blocks on the volume.

vcbVN
The volume name. Note that a volume name can occupy at most 27 characters; this is an exception
to the normal file and directory name limit of 31 characters.

vcbDrvNum
The drive number of the drive on which the volume is located. When a mounted drive is placed offline
or ejected, this field is set to 0.

vcbDRefNum
The driver reference number of the driver used to access the volume When a volume is ejected, this
field is set to the previous value of the vcbDrvNum field (and hence is a positive number). When a
volume is placed offline, this field is set to the negative of the previous value of the vcbDrvNum field
(and hence is a negative number).

vcbFSID
An identifier for the file system handling the volume it’s zero for volumes handled by the File Manager
and nonzero for volumes handled by other file systems.

870 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

vcbVRefNum
The volume reference number of the volume.

vcbMAdr
Used internally.

vcbBufAdr
Used internally.

vcbMLen
Used internally.

vcbDirIndex
Used internally.

vcbDirBlk
Used internally.

vcbVolBkUp
The date and time that the volume was last backed up.

vcbVSeqNum
Used internally.

vcbWrCnt
The volume write count.

vcbXTClpSiz
The clump size of the extents overflow file.

vcbCTClpSiz
The clump size of the catalog file.

vcbNmRtDirs
The number of directories in the root directory.

vcbFilCnt
The total number of files on the volume.

vcbDirCnt
The total number of directories on the volume.

vcbFndrInfo
Finder information.

vcbVCSize
Used internally.

vcbVBMCSiz
Used internally.

vcbCtlCSiz
Used internally.

vcbXTAlBlks
The size, in allocation blocks, of the extents overflow file.

vcbCTAlBlks
The size, in allocation blocks, of the catalog file.

vcbXTRef
The path reference number for the extents overflow file.

vcbCTRef
The path reference number for the catalog file.

Data Types 871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

vcbCtlBuf
A pointer to the extents and catalog caches.

vcbDirIDM
The directory last searched.

vcbOffsM
The offspring index at the last search.

Discussion
The volume control block queue is a standard operating system queue that’s maintained in the system heap.
It contains a volume control block for each mounted volume. A volume control block is a nonrelocatable
block that contains volume-specific information.

Each time a volume is mounted, the File Manager reads its volume information from the master directory
block and uses the information to build a new volume control block (VCB) in the volume control block queue
(unless an ejected or offline volume is being remounted). The File Manager also creates a volume buffer in
the system heap. When a volume is placed offline, its buffer is released. When a volume is unmounted, its
VCB is removed from the VCB queue as well.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

VolMountInfoHeader
Defines a volume mounting information header structure for remote volumes.

struct VolMountInfoHeader {
 short length;
 VolumeType media;
};
typedef struct VolMountInfoHeader VolMountInfoHeader;
typedef VolMountInfoHeader * VolMountInfoPtr;

Fields
length

The length of the VolMountInfoHeader structure, which is the total length of the structure header
described here, plus the variable-length location data which follows the header.

media
The volume type of the remote volume. The AppleShareMediaType represents an AppleShare
volume.

If you are adding support for the programmatic mounting functions to a non-Macintosh file system,
you should register a four-character identifier for your volumes with DTS.

Discussion
To mount a remote server, fill out an VolMountInfoHeader structure using the PBGetVolMountInfo
function and then pass this structure to the PBVolumeMount function to mount the volume.

Availability
Available in Mac OS X v10.0 and later.

872 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Declared In
Files.h

VolumeMountInfoHeader
Defines an extended volume mounting information header structure for remote volumes.

struct VolumeMountInfoHeader {
 short length;
 VolumeType media;
 short flags;
};
typedef struct VolumeMountInfoHeader VolumeMountInfoHeader;
typedef VolumeMountInfoHeader * VolumeMountInfoHeaderPtr;

Fields
length

The length of the VolumeMountInfoHeader structure, which is the total length of the structure
header described here, plus the variable-length location data which follows the header.

media
The volume type of the remote volume. The AppleShareMediaType represents an AppleShare
volume.

If you are adding support for the programmatic mounting functions to a non-Macintosh file system,
you should register a four-character identifier for your volumes with DTS.

flags
The volume mount flags. See “Volume Mount Flags” (page 942).

Discussion
This volume mount info record supersedes the VolMountInfoHeader (page 872) structure;
VolMountInfoHeader is included for compatibility. The VolumeMountInfoHeader record allows access
to the volume mount flags by foreign filesystem writers.

To mount a remote server, fill out an VolumeMountInfoHeader structure using the PBGetVolMountInfo
function and then pass this structure to the PBVolumeMount function to mount the volume.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

VolumeParam
Defines a parameter block used by low-level volume manipulation functions.

Data Types 873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct VolumeParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler2;
 short ioVolIndex;
 unsigned long ioVCrDate;
 unsigned long ioVLsBkUp;
 unsigned short ioVAtrb;
 unsigned short ioVNmFls;
 unsigned short ioVDirSt;
 short ioVBlLn;
 unsigned short ioVNmAlBlks;
 unsigned long ioVAlBlkSiz;
 unsigned long ioVClpSiz;
 unsigned short ioAlBlSt;
 unsigned long ioVNxtFNum;
 unsigned short ioVFrBlk;
};
typedef struct VolumeParam VolumeParam;
typedef VolumeParam * VolumeParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

874 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler2
Reserved.

ioVolIndex
The volume index.

ioVCrDate
The date and time of the volume’s initialization.

ioVLsBkUp
The date and time the volume information was last modified. (This field is not changed when
information is written to a file and does not necessarily indicate when the volume was flushed.

ioVAtrb
The volume attributes. See “Volume Information Attribute Constants” (page 937) for the meanings of
the bits in this field.

ioVNmFls
The number of files in the root directory.

ioVDirSt
The first block of the volume directory.

ioVBlLn
Length of directory in blocks.

ioVNmAlBlks
The number of allocation blocks.

ioVAlBlkSiz
The size of allocation blocks.

ioVClpSiz
The volume clump size.

ioAlBlSt
The first block in the volume map.

ioVNxtFNum
The next unused file number.

ioVFrBlk
The number of unused allocation blocks.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

VolumeType
Defines the “signature” of the file system.

Data Types 875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

typedef OSType VolumeType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Files.h

WDParam
Defines a parameter block used by low-level HFS working directory functions.

struct WDParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioWDCreated;
 short ioWDIndex;
 long ioWDProcID;
 short ioWDVRefNum;
 short filler10;
 long filler11;
 long filler12;
 long filler13;
 long ioWDDirID;
};
typedef struct WDParam WDParam;
typedef WDParam * WDParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

876 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioWDCreated

ioWDIndex
An index to working directories.

ioWDProcID

ioWDVRefNum
The volume reference number for the working directory.

filler10
Reserved.

filler11
Reserved.

filler12
Reserved.

filler13
The working directory’s directory ID.

ioWDDirID
The working directory’s directory ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

WDPBRec
Defines a working directory parameter block.

Data Types 877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct WDPBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short filler1;
 short ioWDIndex;
 long ioWDProcID;
 short ioWDVRefNum;
 short filler2[7];
 long ioWDDirID;
};
typedef struct WDPBRec WDPBRec;
typedef WDPBRec * WDPBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler1
Reserved.

ioWDIndex
An index.

878 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioWDProcID
An identifier that’s used to distinguish between working directories set up by different users you
should set ioWDProcID to your application’s signature.

ioWDVRefNum
The working directory’s volume reference number.

filler2
Reserved.

ioWDDirID
The working directory’s directory ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

XCInfoPBRec
Defines an extended catalog information parameter block.

struct XCInfoPBRec {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 ProcPtr ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 long filler1;
 StringPtr ioShortNamePtr;
 short filler2;
 short ioPDType;
 long ioPDAuxType;
 long filler3[2];
 long ioDirID;
};
typedef struct XCInfoPBRec XCInfoPBRec;
typedef XCInfoPBRec * XCInfoPBPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

Data Types 879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

filler1
Reserved; set this field to 0.

ioShortNamePtr
A pointer to a Pascal string buffer, of a minimum 13 bytes, which holds the file or directory’s short
name (MS-DOS format name). This field is required and cannot be NULL.

filler2
Reserved; set this field to 0.

ioPDType
The ProDOS file type of the file or directory.

ioPDAuxType
The ProDOS auxiliary type of the file or directory.

filler3
Reserved; set this field to 0.

ioDirID
A directory ID.

Discussion
The PBGetXCatInfoSync and PBGetXCatInfoAsync functions use this parameter block to return the short
name and ProDOS information for files and directories.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

XIOParam
Defines an extended I/O parameter block structure.

880 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct XIOParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 short ioRefNum;
 SInt8 ioVersNum;
 SInt8 ioPermssn;
 Ptr ioMisc;
 Ptr ioBuffer;
 long ioReqCount;
 long ioActCount;
 short ioPosMode;
 wide ioWPosOffset;
};
typedef struct XIOParam XIOParam;
typedef XIOParam * XIOParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioRefNum
The file reference number of an open file.

Data Types 881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVersNum
A version number. This field is no longer used and you should always set it to 0.

ioPermssn
The access mode. See “File Access Permission Constants” (page 908).

ioMisc
Depending on the function called, this field contains either a logical end-of-file, a new version number,
a pointer to an access path buffer, or a pointer to a new pathname. Because ioMisc is of type Ptr,
you’ll need to perform type coercion to interpret the value of ioMisc correctly when it contains an
end-of-file (a LongInt value) or version number (a SignedByte value).

ioBuffer
A pointer to a data buffer into which data is written by _Read calls and from which data is read by
_Write calls.

ioReqCount
The requested number of bytes to be read or written.

ioActCount
The number of bytes actually read or written.

ioPosMode
The positioning mode (base location) for setting the mark. Bits 0 and 1 of this field indicate how to
position the mark; you can use the constants described in “Position Mode Constants” (page 928) to
set or test their value. For the functions which use this parameter block, you must have the
kUseWidePositioning bit set. See “Large Volume Constants” (page 926) for a description of this
and other constants.

You can also use the constants described in “Cache Constants” (page 889) to indicate whether or not
to cache the data.

ioWPosOffset
The wide positioning offset to be used in conjunction with the positioning mode specified in the
ioPosMode field.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

XVolumeParam
Defines an extended volume information parameter block.

882 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

struct XVolumeParam {
 QElemPtr qLink;
 short qType;
 short ioTrap;
 Ptr ioCmdAddr;
 IOCompletionUPP ioCompletion;
 volatile OSErr ioResult;
 StringPtr ioNamePtr;
 short ioVRefNum;
 unsigned long ioXVersion;
 short ioVolIndex;
 unsigned long ioVCrDate;
 unsigned long ioVLsMod;
 short ioVAtrb;
 unsigned short ioVNmFls;
 unsigned short ioVBitMap;
 unsigned short ioAllocPtr;
 unsigned short ioVNmAlBlks;
 unsigned long ioVAlBlkSiz;
 unsigned long ioVClpSiz;
 unsigned short ioAlBlSt;
 unsigned long ioVNxtCNID;
 unsigned short ioVFrBlk;
 unsigned short ioVSigWord;
 short ioVDrvInfo;
 short ioVDRefNum;
 short ioVFSID;
 unsigned long ioVBkUp;
 short ioVSeqNum;
 unsigned long ioVWrCnt;
 unsigned long ioVFilCnt;
 unsigned long ioVDirCnt;
 long ioVFndrInfo[8];
 UInt64 ioVTotalBytes;
 UInt64 ioVFreeBytes;
};
typedef struct XVolumeParam XVolumeParam;
typedef XVolumeParam * XVolumeParamPtr;

Fields
qLink

A pointer to the next entry in the file I/O queue. (This field is used internally by the File Manager to
keep track of asynchronous calls awaiting execution.

qType
The queue type. This field is used internally by the File Manager.

ioTrap
The trap number of the function that was called. This field is used internally by the File Manager.

ioCmdAddr
The address of the function that was called. This field is used internally by the File Manager.

ioCompletion
A universal procedure pointer to a completion routine to be executed at the end of an asynchronous
call. It should be 0 for asynchronous calls with no completion routine and is automatically set to 0 for
all synchronous calls. See IOCompletionProcPtr (page 794) for information about completion
routines.

Data Types 883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioResult
The result code of the function. For synchronous calls, this field is the same as the result code of the
function call itself. To determine when an asynchronous call has actually been completed, your
application can poll this field it’s set to a positive number when the call is made and receives the
actual result code when the call is completed.

ioNamePtr
A pointer to a pathname. Whenever a function description specifies that ioNamePtr is used—whether
for input, output, or both—it’s very important that you set this field to point to storage for a Str255
value (if you’re using a pathname) or to NULL (if you’re not).

ioVRefNum
A volume reference number, 0 for the default volume, or a drive number.

ioXVersion
The version of the XVolumeParam parameter block; currently, this is 0.

ioVolIndex
A volume index for use with the PBXGetVolInfoSync (page 782) and PBXGetVolInfoAsync (page
779) functions.

ioVCrDate
The date and time that the volume was created (initialized).

ioVLsMod
The date and time that the volume information was last modified. This field is not changed when
information is written to a file and does not necessarily indicate when the volume was flushed.

ioVAtrb
The volume attributes. See “Volume Information Attribute Constants” (page 937) for the meanings of
the bits in this field.

ioVNmFls
The number of files in the root directory.

ioVBitMap
The first block of the volume bitmap.

ioAllocPtr
The block at which the next new file starts. Used internally.

ioVNmAlBlks
The number of allocation blocks.

ioVAlBlkSiz
The size of the allocation blocks.

ioVClpSiz
The clump size.

ioAlBlSt
The first block in the volume map.

ioVNxtCNID
The next unused catalog node ID.

ioVFrBlk
The number of unused allocation blocks.

ioVSigWord
A signature word identifying the type of volume it’s $D2D7 for MFS volumes and $4244 for volumes
that support HFS calls.

884 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

ioVDrvInfo
The drive number of the drive containing the volume.

ioVDRefNum
For online volumes, the reference number of the I/O driver for the drive identified by the ioVDrvInfo
field.

ioVFSID
The file-system identifier. It indicates which file system is servicing the volume it’s zero for File Manager
volumes and nonzero for volumes handled by an external file system.

ioVBkUp
The date and time that the volume was last backed up; this is 0 if the volume has never been backed
up.

ioVSeqNum
Used internally.

ioVWrCnt
The volume write count.

ioVFilCnt
The total number of files on the volume.

ioVDirCnt
The total number of directories (not including the root directory) on the volume.

ioVFndrInfo
Information used by the Finder.

ioVTotalBytes
The total number of bytes on the volume.

ioVFreeBytes
The number of free bytes on the volume.

Discussion
The functions PBXGetVolInfoSync and PBXGetVolInfoAsync use this parameter block structure to pass
arguments and return values.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Files.h

Constants

AFP Tag Length Constants
Specify the length of tagged address information for AppleShare volumes.

Constants 885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 kAFPTagLengthIP = 0x06,
 kAFPTagLengthIPPort = 0x08,
 kAFPTagLengthDDP = 0x06
};

Constants
kAFPTagLengthIP

The length of a 4 byte IP address.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kAFPTagLengthIPPort
The length of a 4 byte IP address and a 2 byte port.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kAFPTagLengthDDP
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the fLength field of the AFPTagData (page 797) structure to indicate the length,
in bytes, of the tagged address information. This length includes the fLength field itself.

AFP Tag Type Constants
Specify the type of tagged address information for AppleShare clients.

enum {
 kAFPTagTypeIP = 0x01,
 kAFPTagTypeIPPort = 0x02,
 kAFPTagTypeDDP = 0x03,
 kAFPTagTypeDNS = 0x04
};

Constants
kAFPTagTypeIP

A basic 4 byte IP address, most significant byte first.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kAFPTagTypeIPPort
A 4 byte IP address and a 2 byte port number, most significant byte first.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kAFPTagTypeDDP
Available in Mac OS X v10.0 and later.

Declared in Files.h.

886 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kAFPTagTypeDNS
The address is a DNS name in address:port format. The total length of the DNS name is variable up
to 254 characters.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the fType field of the tagged address structure, AFPTagData (page 797), to
specify the type of address represented by the structure.

Allocation Flags
Indicate how new space is to be allocated.

typedef UInt16 FSAllocationFlags;
enum {
 kFSAllocDefaultFlags = 0x0000,
 kFSAllocAllOrNothingMask = 0x0001,
 kFSAllocContiguousMask = 0x0002,
 kFSAllocNoRoundUpMask = 0x0004,
 kFSAllocReservedMask = 0xFFF8
};

Constants
kFSAllocDefaultFlags

Allocate as much as possible, not necessarily contiguous.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSAllocAllOrNothingMask
This bit is set when an allocation must allocate the total requested amount, or else fail with nothing
allocated; when this bit is not set, the allocation may complete successfully but allocate less than
requested.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSAllocContiguousMask
This bit is set when an allocation should allocate one contiguous range of space on the volume. If
this bit is clear, multiple discontiguous extents may be allocated to fulfill the request.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSAllocNoRoundUpMask
This bit is set when an allocation should no round up to the clump size. If this bit is clear, then additional
space beyond the amount requested may be allocated; this is done by some volume formats (including
HFS and HFS Plus) to avoid many small allocation requests. If the bit is set, no additional allocation is
done (except where required by the volume format, such as rounding up to a multiple of the allocation
block size).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSAllocReservedMask
Reserved; set to zero.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
If the kFSAllocContiguousMask bit is set, then then any newly allocated space must be in one contiguous
extent (preferably contiguous with any space already allocated). If kFSAllocAllOrNothingMask is set,
then the entire requestCount bytes must be allocated for the call to succeed; if not set, as many bytes as
possible will be allocated (without error). If kFSAllocNoRoundUpMask is set, then no additional space is
allocated (such as rounding up to a multiple of a clump size); if clear, the volume format may allocate more
space than requested as an attempt to reduce fragmentation.

AppleShare Volume Signature
Defines the volume signature for AppleShare volumes.

enum {
 AppleShareMediaType = 'afpm'
};

Authentication Method Constants
Define the login methods for remote volumes.

enum {
 kNoUserAuthentication = 1,
 kPassword = 2,
 kEncryptPassword = 3,
 kTwoWayEncryptPassword = 6
};

Constants
kNoUserAuthentication

No password.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kPassword
8-byte password.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kEncryptPassword
Encrypted 8-byte password.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kTwoWayEncryptPassword
Two-way random encryption.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

888 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
These constants are used in the uamType field of an AFPVolMountInfo (page 797) structure and in the
ioObjType field of the parameter block passed to thePBHGetLogInInfoSync andPBHGetLogInInfoAsync
functions to specify the type of user authentication used by a remote volume.

Cache Constants
Indicate whether or not data should be cached.

enum {
 pleaseCacheBit = 4,
 pleaseCacheMask = 0x0010,
 noCacheBit = 5,
 noCacheMask = 0x0020,
 rdVerifyBit = 6,
 rdVerifyMask = 0x0040,
 rdVerify = 64,
 forceReadBit = 6,
 forceReadMask = 0x0040,
 newLineBit = 7,
 newLineMask = 0x0080,
 newLineCharMask = 0xFF00
};

Constants
pleaseCacheBit

Indicates that the data should be cached.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

pleaseCacheMask
Requests that the data be cached, if possible. You should cache reads and writes if you read or write
the same portion of a file multiple times.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

noCacheBit
Indicates that data should not be cached.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

noCacheMask
Requests that the data not be cached, if possible. You should not cache reads and writes if you read
or write data from a file only once.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

rdVerifyBit
Indicates that all reads should come from the source and be verified against the data in memory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

rdVerifyMask
Requests that all reads (not writes) come directly from the source and be verified against the data in
memory. This flushes the cache and sends all read requests to the data source.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

rdVerify
This is the old name of rdVerifyMask. Both request that all reads come directly from the source of
the data and be compared against the data in memory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

forceReadBit
Indicates that reads should come from the disk.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

forceReadMask
Forces reads from disk, bypassing all caches. Clients can use this to verify that data is stored correctly
on the media (for example, to verify after writing) by reading the data into a different buffer while
setting the bit, and then comparing the newly read data with the previously written data.

The forceReadMask is the same as the rdVerifyMask used in the older APIs. The actual
implementation of the rdVerifyMask in the older APIs actually caused the “force read” behavior,
and only compared the data in partial sectors. FSReadFork cleans up this behavior by always letting
the client do all of the compares.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

newLineBit
Indicates that newline mode should be used for reads.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

newLineMask
Requests that newline mode be used for reads. In newline mode, the read stops when one of the
following conditions is met:

 ■ The requested number of bytes have been read.

 ■ The end-of-file is reached.

 ■ The newline character has been read. If the newline character is found, it will be the last character
put into the buffer and the number of bytes read will include it.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

newLineCharMask
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
For the FSReadFork and FSWriteFork functions, and their parameter block equivalents, you may add
either of the pleaseCacheMask or noCacheMask constants to one of the “Position Mode Constants” (page
928) to hint whether the data should be cached or not.

890 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

The pleaseCacheBit and the noCacheBit are mutually exclusive and only one should be set at a time. If
neither bit is set, the program has indicated that it doesn’t care if the data is cached or not.

Catalog Information Bitmap Constants
Specify what file or fork information to get or set.

enum {
 kFSCatInfoNone = 0x00000000,
 kFSCatInfoTextEncoding = 0x00000001,
 kFSCatInfoNodeFlags = 0x00000002,
 kFSCatInfoVolume = 0x00000004,
 kFSCatInfoParentDirID = 0x00000008,
 kFSCatInfoNodeID = 0x00000010,
 kFSCatInfoCreateDate = 0x00000020,
 kFSCatInfoContentMod = 0x00000040,
 kFSCatInfoAttrMod = 0x00000080,
 kFSCatInfoAccessDate = 0x00000100,
 kFSCatInfoBackupDate = 0x00000200,
 kFSCatInfoPermissions = 0x00000400,
 kFSCatInfoFinderInfo = 0x00000800,
 kFSCatInfoFinderXInfo = 0x00001000,
 kFSCatInfoValence = 0x00002000,
 kFSCatInfoDataSizes = 0x00004000,
 kFSCatInfoRsrcSizes = 0x00008000,
 kFSCatInfoSharingFlags = 0x00010000,
 kFSCatInfoUserPrivs = 0x00020000,
 kFSCatInfoUserAccess = 0x00080000,
 kFSCatInfoSetOwnership = 0x00100000,
 kFSCatInfoAllDates = 0x000003E0,
 kFSCatInfoGettableInfo = 0x0003FFFF,
 kFSCatInfoSettableInfo = 0x00001FE3,
 kFSCatInfoReserved = 0xFFFC0000
};

Constants
kFSCatInfoNone

No catalog information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoTextEncoding
Retrieve or set the text encoding hint, in the textEncodingHint field.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoNodeFlags
Retrieve or set the catalog node flags. Currently, you can only set bits 0 and 4. See “Catalog Information
Node Flags” (page 894) for more information on these flags.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSCatInfoVolume
Retrieve the volume reference number of the volume on which the file or directory resides.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoParentDirID
Retrieve the parent directory ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoNodeID
Retrieve the file or directory ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoCreateDate
Retrieve or set the creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoContentMod
Retrieve or set the date that the resource or data fork was last modified.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoAttrMod
Retrieve or set the date that an attribute or named fork was last modified.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoAccessDate
Retrieve or set the date that the fork or file was last accessed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoBackupDate
Retrieve or set the date that the fork or file was last backed up.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoPermissions
Retrieve or set the file or fork’s permissions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoFinderInfo
Retrieve or set the file or fork’s Finder information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

892 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSCatInfoFinderXInfo
Retrieve or set the file or fork’s extended Finder information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoValence
For folders only, retrieve the valence of the folder. For files, this is zero.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoDataSizes
Retrieve the logical and physical size of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoRsrcSizes
Retrieve the logical and physical size of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoSharingFlags
Retrieve the fork or file’s sharing flags: kioFlAttribMountedBit, kioFlAttribSharePointBit.
See “File Attribute Constants” (page 914) for more information on these bits.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoUserPrivs
Retrieve the file’s user privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoUserAccess
Available in Mac OS X v10.1 and later.

Declared in Files.h.

kFSCatInfoSetOwnership
Attempt to set the file’s user and group (UID and GID). If the File Manager cannot set the the user or
group ID, the call fails. (Mac OS X only).

Available in Mac OS X v10.3 and later.

Declared in Files.h.

kFSCatInfoAllDates
Retrieve or set all of the date information for the fork or file: creation date, modification dates, access
date, backup date, etc.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoGettableInfo
Retrieve all gettable data.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSCatInfoSettableInfo
Set all settable data. This includes the flags, dates, permissions, Finder info, and text encoding hint.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSCatInfoReserved
Represents bits that are currently reserved.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the FSCatalogInfoBitmap type to specify what file or fork information to get
or set. If used with the FSGetCatalogInfo or FSGetCatalogInfoBulk functions, these constants tell the
File Manager which fields to return information in. If used with the FSSetCatalogInfo function, these
constants tell the File Manager which fields you’ve filled out with values that it should use to change the fork
or file’s catalog information.

Catalog Information Node Flags
Define the values used in the nodeFlags field of the FSCatalogInfo structure.

enum {
 kFSNodeLockedBit = 0,
 kFSNodeLockedMask = 0x0001,
 kFSNodeResOpenBit = 2,
 kFSNodeResOpenMask = 0x0004,
 kFSNodeDataOpenBit = 3,
 kFSNodeDataOpenMask = 0x0008,
 kFSNodeIsDirectoryBit = 4,
 kFSNodeIsDirectoryMask = 0x0010,
 kFSNodeCopyProtectBit = 6,
 kFSNodeCopyProtectMask = 0x0040,
 kFSNodeForkOpenBit = 7,
 kFSNodeForkOpenMask = 0x0080,
 kFSNodeHardLinkBit = 8,
 kFSNodeHardLinkMask = 0x00000100
};

Constants
kFSNodeLockedBit

Set if the file or directory is locked.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeLockedMask
Indicates that the file or directory is locked.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeResOpenBit
Set if the resource fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

894 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSNodeResOpenMask
Indicates that the resource fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeDataOpenBit
Set if the data fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeDataOpenMask
Indicates that the data fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsDirectoryBit
Set if the object is a directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsDirectoryMask
Indicates that the object is a directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeCopyProtectBit
Set of the file or directory is copy protected.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeCopyProtectMask
Indicates that the file or directory is copy protected.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeForkOpenBit
Set if the file or directory has any open fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeForkOpenMask
Indicates that the file or directory has an open fork of any type.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeHardLinkBit
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kFSNodeHardLinkMask
Available in Mac OS X v10.2 and later.

Declared in Files.h.

Constants 895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Catalog Information Sharing Flags
Indicate the status of a shared directory.

enum {
 kFSNodeInSharedBit = 2,
 kFSNodeInSharedMask = 0x0004,
 kFSNodeIsMountedBit = 3,
 kFSNodeIsMountedMask = 0x0008,
 kFSNodeIsSharePointBit = 5,
 kFSNodeIsSharePointMask = 0x0020
};

Constants
kFSNodeInSharedBit

Set if a directory is within a share point.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeInSharedMask
Indicates that the directory is within a share point.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsMountedBit
Set if a directory is a share point currently mounted by some user.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsMountedMask
Indicates that the directory is a share point currently mounted by some user.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsSharePointBit
Set if a directory is a share point (an exported volume).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSNodeIsSharePointMask
Indicates that the directory is a share point (an exported volume).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
The FSCatalogInfo (page 826) structure uses these constants in its sharingFlags field.

Catalog Search Bits
Indicate the criteria for a catalog search.

896 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 fsSBPartialNameBit = 0,
 fsSBFullNameBit = 1,
 fsSBFlAttribBit = 2,
 fsSBFlFndrInfoBit = 3,
 fsSBFlLgLenBit = 5,
 fsSBFlPyLenBit = 6,
 fsSBFlRLgLenBit = 7,
 fsSBFlRPyLenBit = 8,
 fsSBFlCrDatBit = 9,
 fsSBFlMdDatBit = 10,
 fsSBFlBkDatBit = 11,
 fsSBFlXFndrInfoBit = 12,
 fsSBFlParIDBit = 13,
 fsSBNegateBit = 14,
 fsSBDrUsrWdsBit = 3,
 fsSBDrNmFlsBit = 4,
 fsSBDrCrDatBit = 9,
 fsSBDrMdDatBit = 10,
 fsSBDrBkDatBit = 11,
 fsSBDrFndrInfoBit = 12,
 fsSBDrParIDBit = 13
};

Constants
fsSBPartialNameBit

Indicates a search by a substring of the name.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFullNameBit
Indicates a search by the full name.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlAttribBit
Indicates a search by the file or directory attributes.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlFndrInfoBit
For files only indicates a search by the file’s Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlLgLenBit
For files only; indicates a search by the logical length of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlPyLenBit
For files only; indicates a search by the physical length of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

fsSBFlRLgLenBit
For files only; indicates a search for the logical length of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlRPyLenBit
For files only; indicates a search by the physical length of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlCrDatBit
For files only indicates a search by the file’s creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlMdDatBit
For files only indicates a search by the date of the file’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlBkDatBit
For files only indicates a search by the date of the file’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlXFndrInfoBit
For files only indicates a search by the file’s extended Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlParIDBit
For files only indicates a search by the file’s parent ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBNegateBit
Indicates a search for all non-matches. That is, if a file or directory matches one of the other specified
criteria, it is not returned; if it does not match any of the specified criteria, it is returned.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrUsrWdsBit
For directories only indicates a search by the directory’s Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrNmFlsBit
For directories only; indicates a search by the number of files in the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

898 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

fsSBDrCrDatBit
For directories only indicates a search by the directory’s creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrMdDatBit
For directories only indicates a search by the date of the directory’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrBkDatBit
For directories only indicates a search by the date of the directory’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrFndrInfoBit
For directories only indicates a search by the directory’s additional Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrParIDBit
For directories only indicates a search by the directory’s parent ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Catalog Search Constants
Specify the which catalog information fields to use as search criteria.

enum {
 fsSBNodeID = 0x00008000,
 fsSBAttributeModDate = 0x00010000,
 fsSBAccessDate = 0x00020000,
 fsSBPermissions = 0x00040000,
 fsSBNodeIDBit = 15,
 fsSBAttributeModDateBit = 16,
 fsSBAccessDateBit = 17,
 fsSBPermissionsBit = 18
};

Constants
fsSBNodeID

Search by a range of catalog node ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBAttributeModDate
Search by a range of attribute (fork) modification date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

fsSBAccessDate
Search by a range of access date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBPermissions
Search by a value or mask of permissions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBNodeIDBit
Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBAttributeModDateBit
Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBAccessDateBit
Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBPermissionsBit
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Catalog Search Masks
Specify the criteria for a catalog search.

900 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 fsSBPartialName = 1,
 fsSBFullName = 2,
 fsSBFlAttrib = 4,
 fsSBFlFndrInfo = 8,
 fsSBFlLgLen = 32,
 fsSBFlPyLen = 64,
 fsSBFlRLgLen = 128,
 fsSBFlRPyLen = 256,
 fsSBFlCrDat = 512,
 fsSBFlMdDat = 1024,
 fsSBFlBkDat = 2048,
 fsSBFlXFndrInfo = 4096,
 fsSBFlParID = 8192,
 fsSBNegate = 16384,
 fsSBDrUsrWds = 8,
 fsSBDrNmFls = 16,
 fsSBDrCrDat = 512,
 fsSBDrMdDat = 1024,
 fsSBDrBkDat = 2048,
 fsSBDrFndrInfo = 4096,
 fsSBDrParID = 8192
};

Constants
fsSBPartialName

Search by a substring of the name.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFullName
Search by the full name.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlAttrib
Search by the file or directory attributes. You can use the attributes to specify that you are searching
for a directory, or for a file or directory that is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlFndrInfo
For files only search by the file’s Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlLgLen
For files only; search by the logical length of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlPyLen
For files only; search by the physical length of the data fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

fsSBFlRLgLen
For files only; search for the logical length of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlRPyLen
For files only; search by the physical length of the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlCrDat
For files only search by the file’s creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlMdDat
For files only search by the date of the file’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlBkDat
For files only search by the date of the file’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlXFndrInfo
For files only search by the file’s extended Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBFlParID
For files only search by the file’s parent ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBNegate
Search for all non-matches. That is, if a file or directory matches one of the other specified criteria, it
is not returned; if it does not match any of the specified criteria, it is returned.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrUsrWds
For directories only search by the directory’s Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrNmFls
For directories only; search by the number of files in the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

902 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

fsSBDrCrDat
For directories only search by the directory’s creation date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrMdDat
For directories only search by the date of the directory’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrBkDat
For directories only search by the date of the directory’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrFndrInfo
For directories only search by the directory’s additional Finder info.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsSBDrParID
For directories only search by the directory’s parent ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
Use these constants in the ioSearchBits field of the PBCatSearchSync and PBCatSearchAsync functions
to specify the criteria for your search.

Extended AFP Volume Mounting Information Flag
Specifies a flag used in the extendedFlags field of the AFPXVolMountInfo structure.

enum {
 kAFPExtendedFlagsAlternateAddressMask = 1
};

Constants
kAFPExtendedFlagsAlternateAddressMask

Indicates that the alternateAddressOffset field in the AFPXVolMountInfo record is used.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
See the AFPXVolMountInfo (page 799) structure for more information.

Extended Volume Attributes
Describe a volume’s extended attributes.

Constants 903
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 bIsEjectable = 0,
 bSupportsHFSPlusAPIs = 1,
 bSupportsFSCatalogSearch = 2,
 bSupportsFSExchangeObjects = 3,
 bSupports2TBFiles = 4,
 bSupportsLongNames = 5,
 bSupportsMultiScriptNames = 6,
 bSupportsNamedForks = 7,
 bSupportsSubtreeIterators = 8,
 bL2PCanMapFileBlocks = 9
 bParentModDateChanges = 10,
 bAncestorModDateChanges = 11
 bSupportsSymbolicLinks = 13,
 bIsAutoMounted = 14,
 bAllowCDiDataHandler = 17,
 bSupportsExclusiveLocks = 18
 bSupportsJournaling = 19,
 bNoVolumeSizes = 20,
 bIsCaseSensitive = 22,
 bIsCasePreserving = 23,
 bDoNotDisplay = 24
};

Constants
bIsEjectable

The volume is in an ejectable disk drive .

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsHFSPlusAPIs
The volume supports the HFS Plus APIs directly, i.e., the File Manager does not emulate them.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsFSCatalogSearch
The volume supports the FSCatalogSearch (page 472) operation.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsFSExchangeObjects
The volume supports the FSExchangeObjects (page 486) function.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupports2TBFiles
The volume supports 2 terabyte files.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsLongNames
The volume supports file, directory, and volume names longer than 31 characters.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

904 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

bSupportsMultiScriptNames
The volume supports file, directory, and volume names with characters from multiple script systems.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsNamedForks
The volume supports named forks other than the data and resource forks.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsSubtreeIterators
The volume supports recursive iterators, not at the volume root.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bL2PCanMapFileBlocks
The volume supports the Lg2Phys SPI correctly.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bParentModDateChanges
On this volume, changing a file or folder causes its parent's modification date to change.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bAncestorModDateChanges
On this volume, changing a file or folder causes all ancestor modification dates to change.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsSymbolicLinks
The volume supports the creation and use of symbolic links (Mac OS X only).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bIsAutoMounted
The volume was mounted automatically (Mac OS X only).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bAllowCDiDataHandler
QuickTime's CDi data handler is allowed to examine the volume.

Available in Mac OS X v10.1 and later.

Declared in Files.h.

bSupportsExclusiveLocks
The volume supports exclusive access to files opened for writing.

Available in Mac OS X v10.2 and later.

Declared in Files.h.

Constants 905
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

bSupportsJournaling
The volume supports journaling. This does not indicate whether journaling is currently enabled on
the volume.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

bNoVolumeSizes
The volume is unable to report volume size or free space.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

bIsCaseSensitive
The volume is case-sensitive.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

bIsCasePreserving
The volume is preserves case.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

bDoNotDisplay
The volume should not be displayed in the user interface.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

Discussion
The GetVolParmsInfoBuffer (page 847) structure uses these constants in its vMExtendedAttributes
field.

FCB Flags
Specify flags that describe the state of a file.

906 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 kioFCBWriteBit = 8,
 kioFCBWriteMask = 0x0100,
 kioFCBResourceBit = 9,
 kioFCBResourceMask = 0x0200,
 kioFCBWriteLockedBit = 10,
 kioFCBWriteLockedMask = 0x0400,
 kioFCBLargeFileBit = 11,
 kioFCBLargeFileMask = 0x0800,
 kioFCBSharedWriteBit = 12,
 kioFCBSharedWriteMask = 0x1000,
 kioFCBFileLockedBit = 13,
 kioFCBFileLockedMask = 0x2000,
 kioFCBOwnClumpBit = 14,
 kioFCBOwnClumpMask = 0x4000,
 kioFCBModifiedBit = 15,
 kioFCBModifiedMask = 0x8000
};

Constants
kioFCBWriteBit

Set if data can be written to this file.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBWriteMask
Tests if data can be written to this file.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBResourceBit
Set if this FCB describes a resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBResourceMask
Tests if this FCB describes a resource fork.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBWriteLockedBit
Set if this file has a locked byte range.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBWriteLockedMask
Tests if this file has a locked byte range.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBLargeFileBit
Set if this file may grow beyond 2GB and the cache uses file blocks, not bytes.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 907
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kioFCBLargeFileMask
Tests if this file may grow beyond 2GB and the cache uses file blocks, not bytes.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBSharedWriteBit
Set if this file has shared write permissions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBSharedWriteMask
Tests if this file has shared write permissions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBFileLockedBit
Set if this file is locked (write-protected).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBFileLockedMask
Tests if this file is locked (write-protected).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBOwnClumpBit
Set if this file’s clump size is specified in the FCB.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBOwnClumpMask
Tests if this file’s clump size is specified in the FCB.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBModifiedBit
Set if this file has changed since it was last flushed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFCBModifiedMask
Tests if this file has changed since it was last flushed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioFCBFlags field of the FCBPBRec (page 816) returned by the functions
PBGetFCBInfoSync and PBGetFCBInfoAsync .

File Access Permission Constants
Specify the type of read and write access to a file or fork.

908 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 fsCurPerm = 0x00,
 fsRdPerm = 0x01,
 fsWrPerm = 0x02,
 fsRdWrPerm = 0x03,
 fsRdWrShPerm = 0x04,
 fsRdDenyPerm = 0x10,
 fsWrDenyPerm = 0x20
};

Constants
fsCurPerm

Requests whatever permissions are currently allowed. If write access in unavailable (because the file
is locked or the file is already open with write permission), then read permission is granted. Otherwise
read/write permission is granted.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsRdPerm
Requests permission to read the file.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsWrPerm
Requests permission to write to the file. If write permission is granted, no other access paths are
granted write permission. Note, however, that the File Manager does not support write-only access
to a file. Thus, fsWrPerm is synonymous with fsRdWrPerm.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsRdWrPerm
Requests exclusive read and write permission. If exclusive read/ write permission is granted, no other
users are granted permission to write to the file. Other users may, however, be granted permission
to read the file.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsRdWrShPerm
Requests shared read and write permission. Shared read and write permission allows multiple access
paths for reading and writing. This is safe only if there is some way of locking portions of the file
before writing to them. On volumes that support range locking, you can use the functions
PBLockRangeSync and PBUnlockRangeSync to lock and unlock ranges of bytes within a file.
Applications running in Mac OS X version 10.4 or later should use the functions FSLockRange and
FSUnlockRange for this purpose.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 909
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

fsRdDenyPerm
Requests that any other paths be prevented from having read access. A path cannot be opened if
you request read permission (with the fsRdPerm constant) but some other path has requested
deny-read access. Similarly, the path cannot be opened if you request deny-read permission, but
some other path already has read access. This constant is only supported on volumes which return
the bHasOpenDeny attribute when you call FSGetVolumeParms.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsWrDenyPerm
Requests that any other paths be prevented from having write access. A path cannot be opened if
you request write permission (with the fsWrPerm constant) but some other path has requested
deny-write access. Similarly, the path cannot be opened if you request deny-write permission, but
some other path already has write access. This constant is only supported on volumes which return
the bHasOpenDeny attribute when you call FSGetVolumeParms.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
Use these constants to request a type of access to a file or fork, or to deny a type of access to a file or fork to
other paths that may request access.

Note that it is possible, in Mac OS 8 and 9, to open a file residing on read-only media with write access. In
Mac OS X, however, you cannot open a file with write access on read-only media; the attempt to open the
file fails with a wrPermErr error.

File and Folder Access Privilege Constants
Specify access privileges for files and directories in the ioACAccess field of the AccessParam data type.

910 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 kioACAccessOwnerBit = 31,
 kioACAccessOwnerMask = 0x80000000,
 kioACAccessBlankAccessBit = 28,
 kioACAccessBlankAccessMask = 0x10000000,
 kioACAccessUserWriteBit = 26,
 kioACAccessUserWriteMask = 0x04000000,
 kioACAccessUserReadBit = 25,
 kioACAccessUserReadMask = 0x02000000,
 kioACAccessUserSearchBit = 24,
 kioACAccessUserSearchMask = 0x01000000,
 kioACAccessEveryoneWriteBit = 18,
 kioACAccessEveryoneWriteMask = 0x00040000,
 kioACAccessEveryoneReadBit = 17,
 kioACAccessEveryoneReadMask = 0x00020000,
 kioACAccessEveryoneSearchBit = 16,
 kioACAccessEveryoneSearchMask = 0x00010000,
 kioACAccessGroupWriteBit = 10,
 kioACAccessGroupWriteMask = 0x00000400,
 kioACAccessGroupReadBit = 9,
 kioACAccessGroupReadMask = 0x00000200,
 kioACAccessGroupSearchBit = 8,
 kioACAccessGroupSearchMask = 0x00000100,
 kioACAccessOwnerWriteBit = 2,
 kioACAccessOwnerWriteMask = 0x00000004,
 kioACAccessOwnerReadBit = 1,
 kioACAccessOwnerReadMask = 0x00000002,
 kioACAccessOwnerSearchBit = 0,
 kioACAccessOwnerSearchMask = 0x00000001,
 kfullPrivileges = 0x00070007,
 kownerPrivileges = 0x00000007
};

Constants
kioACAccessOwnerBit

Indicates that the user is the owner of the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerMask
The user is the owner of the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessBlankAccessBit
Indicates that the directory has blank access privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessBlankAccessMask
The directory has blank access privileges. A directory with blank access privileges set ignores the other
access privilege bits and uses the access privilege bits of its parent directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 911
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kioACAccessUserWriteBit
Indicates that the user has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserWriteMask
The user has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserReadBit
Indicates that the user has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserReadMask
The user has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserSearchBit
Indicates that the user has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessUserSearchMask
The user has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneWriteBit
Indicates that everyone has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneWriteMask
Everyone has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneReadBit
Indicates that everyone has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneReadMask
Everyone has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

912 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kioACAccessEveryoneSearchBit
Indicates that everyone has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessEveryoneSearchMask
Everyone has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupWriteBit
Indicates that the group has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupWriteMask
The group has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupReadBit
Indicates that the group has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupReadMask
The group has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupSearchBit
Indicates that the group has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessGroupSearchMask
The group has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerWriteBit
Indicates that the owner has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerWriteMask
The owner has write privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 913
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kioACAccessOwnerReadBit
Indicates that the owner has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerReadMask
The owner has read privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerSearchBit
Indicates that the owner has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACAccessOwnerSearchMask
The owner has search privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kfullPrivileges
Indicates that everyone, including the owner, have all privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kownerPrivileges
Indicates that only the owner has all privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
See AccessParam (page 795).

File Attribute Constants
Define file and directory attributes returned by the PBGetCatInfoSync and PBGetCatInfoAsync functions.

914 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 kioFlAttribLockedBit = 0,
 kioFlAttribLockedMask = 0x01,
 kioFlAttribResOpenBit = 2,
 kioFlAttribResOpenMask = 0x04,
 kioFlAttribDataOpenBit = 3,
 kioFlAttribDataOpenMask = 0x08,
 kioFlAttribDirBit = 4,
 kioFlAttribDirMask = 0x10,
 ioDirFlg = 4,
 ioDirMask = 0x10,
 kioFlAttribCopyProtBit = 6,
 kioFlAttribCopyProtMask = 0x40,
 kioFlAttribFileOpenBit = 7,
 kioFlAttribFileOpenMask = 0x80,
 kioFlAttribInSharedBit = 2,
 kioFlAttribInSharedMask = 0x04,
 kioFlAttribMountedBit = 3,
 kioFlAttribMountedMask = 0x08,
 kioFlAttribSharePointBit = 5,
 kioFlAttribSharePointMask = 0x20
};

Constants
kioFlAttribLockedBit

Indicates that the file or directory is locked. Use the functions PBHSetFLockSync and
PBHSetFLockAsync to lock a file or directory. Use the functions PBHRstFLockSync and
PBHRstFLockAsync to unlock a file or directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribLockedMask
Tests if the file or directory is locked.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribResOpenBit
Indicates that the resource fork is open. On Mac OS X, this bit is not set if the resource fork of the file
has been opened by a process other than the process making the call to PBHGetCatInfo or
PBHGetFInfo.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribResOpenMask
Tests if the resource fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribDataOpenBit
Indicates that the data fork is open. On Mac OS X, this bit is not set if the data fork of the file has been
opened by a process other than the process making the call to PBHGetCatInfo or PBHGetFInfo.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 915
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kioFlAttribDataOpenMask
Tests if the data fork is open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribDirBit
Indicates that this is a directory, not a file. This bit is always clear for files, and is always set for
directories.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribDirMask
Tests if this is a directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

ioDirFlg
Indicates that this is a directory; this is the old name of the kioFlAttribDirBit.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

ioDirMask
Tests if this is a directory; this is the old name of the kioFlAttribDirMask.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribCopyProtBit
Indicates that the file is “copy-protected” by the AppleShare server.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribCopyProtMask
Tests if the file is “copy-protected” by the AppleShare server.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribFileOpenBit
Indicates that the file is open. This bit is set if either the data or the resource fork are open. On Mac
OS X, this bit is not set if the file has been opened by a process other than the process making the
call to PBHGetCatInfo or PBHGetFInfo.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribFileOpenMask
Tests if the file is open. The file is open if either the data or the resource fork are open.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribInSharedBit
Indicates that the directory is within a shared area of the directory hierarchy.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

916 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kioFlAttribInSharedMask
Tests if the directory is within a shared area of the directory hierarchy.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribMountedBit
Indicates that the directory is a share point that is mounted by a user.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribMountedMask
Tests if the directory is a share point that is mounted by a user.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribSharePointBit
Indicates that the directory is a share point.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioFlAttribSharePointMask
Tests if the directory is a share point.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioFlAttrib fields of the HFileInfo (page 849) and DirInfo (page 810)
structures returned by the functions PBGetCatInfoSync and PBGetCatInfoAsync .

File Operation Options
Flags you can use to specify how to perform a file operation.

enum {
 kFSFileOperationDefaultOptions = 0,
 kFSFileOperationOverwrite = 0x01,
 kFSFileOperationSkipSourcePermissionErrors = 0x02,
 kFSFileOperationDoNotMoveAcrossVolumes = 0x04,
 kFSFileOperationSkipPreflight = 0x08
};

Constants
kFSFileOperationDefaultOptions

Use the following default options:

 ■ If the destination directory contains an object with the same name as a source object, abort the
operation.

 ■ If a source object cannot be read, abort the operation.

 ■ If asked to move an object across volume boundaries, perform the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Constants 917
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSFileOperationOverwrite
If the destination directory contains an object with the same name as a source object, overwrite the
destination object.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSFileOperationSkipSourcePermissionErrors
If a source object cannot be read, skip the object and continue the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSFileOperationDoNotMoveAcrossVolumes
If asked to move an object across volume boundaries, abort the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSFileOperationSkipPreflight
Skip the preflight stage for a directory move or copy operation. This option limits the status information
that can be returned during the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Discussion
These flags may be passed to any of the functions that initiate a file operation. For more information, see
“Copying and Moving Objects Using Asynchronous High-Level File Operations” (page 443).

File Operation Stages
Constants used by the File Manager to indicate the current stage of an asynchronous file operation.

typedef UInt32 FSFileOperationStage;
enum {
 kFSOperationStageUndefined = 0,
 kFSOperationStagePreflighting = 1,
 kFSOperationStageRunning = 2,
 kFSOperationStageComplete = 3
};

Constants
kFSOperationStageUndefined

The File Manager has not started the file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationStagePreflighting
The File Manager is performing tasks such as calculating the sizes and number of objects in the
operation, and checking to make sure there is enough space on the destination volume to complete
the operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

918 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSOperationStageRunning
The File Manager is copying or moving the file or directory.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationStageComplete
The file operation is complete.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Discussion
These constants are passed back to your file operation status callback function. For more information, see
“File Operation Callbacks” (page 788). You can also get the current stage of a file operation by calling a status
accessor function such as FSFileOperationCopyStatus (page 487).

File Operation Status Dictionary Keys
Keys used to determine the status of a file operation as reported in a status dictionary.

const CFStringRef kFSOperationTotalBytesKey;
const CFStringRef kFSOperationBytesCompleteKey;
const CFStringRef kFSOperationBytesRemainingKey;
const CFStringRef kFSOperationTotalObjectsKey;
const CFStringRef kFSOperationObjectsCompleteKey;
const CFStringRef kFSOperationObjectsRemainingKey;
const CFStringRef kFSOperationTotalUserVisibleObjectsKey;
const CFStringRef kFSOperationUserVisibleObjectsCompleteKey;
const CFStringRef kFSOperationUserVisibleObjectsRemainingKey;
const CFStringRef kFSOperationThroughputKey;

Constants
kFSOperationTotalBytesKey

The value for this key is a CFNumber that represents the total number of bytes that will be moved or
copied by this file operation. This value is not available for a directory operation if the
kFSFileOperationSkipPreflight (page 918) option flag is specified.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationBytesCompleteKey
The value for this key is a CFNumber that represents the total number of bytes that have already been
moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationBytesRemainingKey
The value for this key is a CFNumber that represents the total number of bytes that remain to be
moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Constants 919
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSOperationTotalObjectsKey
The value for this key is a CFNumber that represents the total number of objects that will be moved
or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationObjectsCompleteKey
The value for this key is a CFNumber that represents the total number of objects that have already
been moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationObjectsRemainingKey
The value for this key is a CFNumber that represents the total number of objects that remain to be
moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationTotalUserVisibleObjectsKey
The value for this key is a CFNumber that represents the total number of user-visible objects that will
be moved or copied by this file operation. In general, an object is user-visible if it is displayed in a
Finder window. For example, a package is counted as a single user-visible object even though it
typically contains many other objects.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationUserVisibleObjectsCompleteKey
The value for this key is a CFNumber that represents the total number of user-visible objects that
have already been moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationUserVisibleObjectsRemainingKey
The value for this key is a CFNumber that represents the total number of user-visible objects that
remain to be moved or copied by this file operation.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSOperationThroughputKey
The value for this key is a CFNumber that represents the current throughput of this file operation in
bytes per second.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Discussion
The status dictionary for a file operation is passed back to your status callback function. For more information,
see “File Operation Callbacks” (page 788). You can also get the status dictionary for a file operation by calling
a status accessor function such as FSFileOperationCopyStatus (page 487).

920 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

FNMessage

typedef UInt32 FNMessage;
enum {
 kFNDirectoryModifiedMessage = 1
};

Constants
kFNDirectoryModifiedMessage

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Foreign Privilege Model Constant
Identifies the A/UX privilege model.

enum {
 fsUnixPriv = 1
};

Constants
fsUnixPriv

Represents a volume that supports the A/UX privilege model.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
Used in the vMForeignPrivID field of the GetVolParmsInfoBuffer (page 847).

Group ID Constant

enum {
 knoGroup = 0
};

Constants
knoGroup

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Icon Size Constants
Specify the sizes of the desktop database icon types.

Constants 921
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 kLargeIconSize = 256,
 kLarge4BitIconSize = 512,
 kLarge8BitIconSize = 1024,
 kSmallIconSize = 64,
 kSmall4BitIconSize = 128,
 kSmall8BitIconSize = 256
};

Constants
kLargeIconSize

Large black-and-white icon with mask. Corresponding resource type: 'ICN#'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kLarge4BitIconSize
Large 4-bit color icon. Corresponding resource type: 'icl4’.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kLarge8BitIconSize
Large 8-bit color icon. Corresponding resource type: 'icl8'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kSmallIconSize
Small black-and-white icon with mask. Corresponding resource type: 'ics#'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kSmall4BitIconSize
Small 4-bit color icon. Corresponding resource type: 'ics4'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kSmall8BitIconSize
Small 8-bit color icon. Corresponding resource type: 'ics8'.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants indicate the amount of storage you should allocate for the icon data for each of the icon
types specified by the “Icon Type Constants” (page 922). The desktop database functions which set or retrieve
icon data–namely, PBDTAddIconSync , PBDTAddIconAsync , PBDTGetIconSync , PBDTGetIconAsync ,
PBDTGetIconInfoSync , and PBDTGetIconInfoAsync –expect a pointer to the the storage in the
ioDTBuffer field of the DTPBRec (page 813) parameter block and the appropriate constant in the
ioDTReqCount field.

Icon Type Constants
Specify the icon types for the desktop database.

922 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 kLargeIcon = 1,
 kLarge4BitIcon = 2,
 kLarge8BitIcon = 3,
 kSmallIcon = 4,
 kSmall4BitIcon = 5,
 kSmall8BitIcon = 6,
 kicnsIconFamily = 239
};

Constants
kLargeIcon

Large black-and-white icon with mask. Corresponding resource type: 'ICN#'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kLarge4BitIcon
Large 4-bit color icon. Corresponding resource type: 'icl4’.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kLarge8BitIcon
Large 8-bit color icon. Corresponding resource type: 'icl8'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kSmallIcon
Small black-and-white icon with mask. Corresponding resource type: 'ics#'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kSmall4BitIcon
Small 4-bit color icon. Corresponding resource type: 'ics4'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kSmall8BitIcon
Small 8-bit color icon. Corresponding resource type: 'ics8'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

kicnsIconFamily
Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Files.h.

Constants 923
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
These constants are used in the ioIconType field of the DTPBRec (page 813) parameter block.

Invalid Volume Reference Constant
Represents an invalid volume reference number.

enum {
 kFSInvalidVolumeRefNum = 0
};

Constants
kFSInvalidVolumeRefNum

Invalid volume reference number.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Iterator Flags
Indicate whether an iterator iterates over subtrees or just the immediate children of the container.

enum {
 kFSIterateFlat = 0,
 kFSIterateSubtree = 1,
 kFSIterateDelete = 2,
 kFSIterateReserved = 0xFFFFFFFC
};
typedef OptionBits FSIteratorFlags;

Constants
kFSIterateFlat

Iterate over the immediate children of the container only.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSIterateSubtree
Iterate over the entire subtree rooted at the container.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSIterateDelete
Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSIterateReserved
Available in Mac OS X v10.0 and later.

Declared in Files.h.

924 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kAsyncMountInProgress

enum {
 kAsyncMountInProgress = 1,
 kAsyncMountComplete = 2,
 kAsyncUnmountInProgress = 3,
 kAsyncUnmountComplete = 4,
 kAsyncEjectInProgress = 5,
 kAsyncEjectComplete = 6
};

Constants
kAsyncMountInProgress

Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncMountComplete
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncUnmountInProgress
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncUnmountComplete
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncEjectInProgress
Available in Mac OS X v10.2 and later.

Declared in Files.h.

kAsyncEjectComplete
Available in Mac OS X v10.2 and later.

Declared in Files.h.

Notification Subscription Options
Options that can be specified at subscription time.

enum {
 kFNNoImplicitAllSubscription = (1 << 0),
 kFNNotifyInBackground = (1 << 1)
};

Constants
kFNNoImplicitAllSubscription

Specify this option if you do not want to receive notifications on this subscription when FNNotifyAll
is called. By default, any subscription is also implicitly a subscription to wildcard notifications.

Available in Mac OS X v10.1 and later.

Declared in Files.h.

Constants 925
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFNNotifyInBackground
Specify this option if you want to receive notifications on this subscription when your application is
in background. By default, notifications will be coalesced and and delivered when your application
becomes foreground.

Available in Mac OS X v10.3 and later.

Declared in Files.h.

kHFSCatalogNodeIDsReusedBit

enum {
 kHFSCatalogNodeIDsReusedBit = 12,
 kHFSCatalogNodeIDsReusedMask = 1 << kHFSCatalogNodeIDsReusedBit
};

Constants
kHFSCatalogNodeIDsReusedBit

Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in HFSVolumes.h.

kHFSCatalogNodeIDsReusedMask
Available in Mac OS X v10.0 through Mac OS X v10.3.

Declared in HFSVolumes.h.

Large Volume Constants

enum {
 kWidePosOffsetBit = 8,
 kUseWidePositioning = (1 << kWidePosOffsetBit),
 kMaximumBlocksIn4GB = 0x007FFFFF
};

Constants
kWidePosOffsetBit

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kUseWidePositioning
Available in Mac OS X v10.0 and later.

Declared in Files.h.

kMaximumBlocksIn4GB
Available in Mac OS X v10.0 and later.

Declared in Files.h.

Mapping Code Constants
Specify the type of object to map or return.

926 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 kOwnerID2Name = 1,
 kGroupID2Name = 2,
 kOwnerName2ID = 3,
 kGroupName2ID = 4,
 kReturnNextUser = 1,
 kReturnNextGroup = 2,
 kReturnNextUG = 3
};

Constants
kOwnerID2Name

Map a user ID to the user name. Used with the PBHMapIDSync or PBHMapIDAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kGroupID2Name
Map a group ID to the group name. Used with the PBHMapIDSync or PBHMapIDAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kOwnerName2ID
Map a user name to the user ID. Used with the PBHMapNameSync or PBHMapNameAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kGroupName2ID
Map a group name to the group ID. Used with the PBHMapNameSync or PBHMapNameAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kReturnNextUser
Return the next user entry.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kReturnNextGroup
Return the next group entry.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kReturnNextUG
Return the next user or group entry.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioObjType field of the ObjParam (page 865) parameter block. The first four
constants are passed to the PBHMapIDSync , PBHMapIDAsync , PBHMapNameSync , and PBHMapNameAsync
functions to specify the mapping to be performed. The last three constants are passed to the
PBGetUGEntrySync or PBGetUGEntryAsync functions to specify the type of object to be returned.

Constants 927
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Path Conversion Options
Specify how a pathname is converted to an FSRef structure by the function
FSPathMakeRefWithOptions (page 520).

enum {
 kFSPathMakeRefDefaultOptions = 0,
 kFSPathMakeRefDoNotFollowLeafSymlink = 0x01
};

Constants
kFSPathMakeRefDefaultOptions

Use the default options.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

kFSPathMakeRefDoNotFollowLeafSymlink
When converting a path that refers to a symbolic link, do not follow the link. The new FSRef should
refer to the link itself.

Available in Mac OS X v10.4 and later.

Declared in Files.h.

Position Mode Constants
Together with an offset, specify a position within a fork.

enum {
 fsAtMark = 0,
 fsFromStart = 1,
 fsFromLEOF = 2,
 fsFromMark = 3
};

Constants
fsAtMark

The starting point is the access path’s current position. The offset is ignored.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsFromStart
The starting point is offset bytes from the start of the fork. The offset must be non-negative.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsFromLEOF
The starting point is offset bytes from the logical end of the fork. The offset must not be positive.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

928 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

fsFromMark
The starting point is offset bytes from the access path’s current position. The offset may be positive
or negative.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioPosMode and positionMode fields and parameters of the HFS and HFS
Plus file access functions. These functions include those for reading from and writing to files or forks, changing
the current position within a file or fork, changing the size of a file or fork, and allocating space to a file or
fork.

For the FSReadFork and FSWriteFork calls, you may also add either of the pleaseCacheMask or
noCacheMask constants to hint whether the data should be cached or not. See “Cache Constants” (page
889).

Root Directory Constants
Specify the directory IDs of the root directory of a volume and its parent.

enum {
 fsRtParID = 1,
 fsRtDirID = 2
};

Constants
fsRtParID

Represents the directory ID of the root directory’s parent directory. The root directory has no parent
this constant is used when specifying the root directory to functions which require the parent directory
ID to identify directories.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

fsRtDirID
Represents the directory ID of the volume’s root directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

User ID Constants
Specify basic user IDs for shared directories.

enum {
 knoUser = 0,
 kadministratorUser = 1
};

Constants
knoUser

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 929
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kadministratorUser
Available in Mac OS X v10.0 and later.

Declared in Files.h.

User Privileges Constants
Specify the user privileges for a directory on a remote volume.

enum {
 kioACUserNoSeeFolderBit = 0,
 kioACUserNoSeeFolderMask = 0x01,
 kioACUserNoSeeFilesBit = 1,
 kioACUserNoSeeFilesMask = 0x02,
 kioACUserNoMakeChangesBit = 2,
 kioACUserNoMakeChangesMask = 0x04,
 kioACUserNotOwnerBit = 7,
 kioACUserNotOwnerMask = 0x80
};

Constants
kioACUserNoSeeFolderBit

Set if the user does not have “See Folders” privileges. Without “See Folders” privileges, the user cannot
see other directories in the specified directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoSeeFolderMask
Tests if the user has “See Folders” privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoSeeFilesBit
Set if the user does not have “See Files” privileges. Without “See Files” privileges, the user cannot
open documents or applications in the specified directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoSeeFilesMask
Tests if the user has “See Files” privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoMakeChangesBit
Set if the user does not have “Make Changes” privileges. Without “Make Changes” privileges, the user
cannot create, modify, rename, or delete any file or directory within the specified directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNoMakeChangesMask
Tests if the user has “Make Changes” privileges.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

930 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kioACUserNotOwnerBit
Set if the user is not the owner of the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioACUserNotOwnerMask
Tests whether the user is the owner of the directory.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioACUser field of the HFileInfo (page 849) and DirInfo (page 810)
structures returned by the PBGetCatInfoSync and PBGetCatInfoAsync functions.

Volume Attribute Constants
Bit position constants that specify volume attributes.

Constants 931
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 bLimitFCBs = 31,
 bLocalWList = 30,
 bNoMiniFndr = 29,
 bNoVNEdit = 28,
 bNoLclSync = 27,
 bTrshOffLine = 26,
 bNoSwitchTo = 25,
 bNoDeskItems = 20,
 bNoBootBlks = 19,
 bAccessCntl = 18,
 bNoSysDir = 17,
 bHasExtFSVol = 16,
 bHasOpenDeny = 15,
 bHasCopyFile = 14,
 bHasMoveRename = 13,
 bHasDesktopMgr = 12,
 bHasShortName = 11,
 bHasFolderLock = 10,
 bHasPersonalAccessPrivileges = 9,
 bHasUserGroupList = 8,
 bHasCatSearch = 7,
 bHasFileIDs = 6,
 bHasBTreeMgr = 5,
 bHasBlankAccessPrivileges = 4,
 bSupportsAsyncRequests = 3,
 bSupportsTrashVolumeCache = 2
};
enum {
 bHasDirectIO = 1
};

Constants
bLimitFCBs

The Finder limits the number of file control blocks used during copying to 8 instead of 16.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bLocalWList
The Finder uses the returned shared volume handle for its local window list.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoMiniFndr
Reserved; always set to 1.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoVNEdit
This volume’s name cannot be edited.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

932 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

bNoLclSync
Don’t let the Finder change the modification date.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bTrshOffLine
Any time this volume goes offline, it is zoomed to the Trash and unmounted.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoSwitchTo
The Finder will not switch launch to any application on this volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoDeskItems
Don’t place objects in this volume on the Finder desktop.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bNoBootBlks
This volume is not a startup volume. The Startup menu item is disabled. Boot blocks are not copied
during copy operations.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bAccessCntl
This volume supports AppleTalk AFP access-control interfaces. The following functions are supported:

 ■ PBHGetLogInInfoSync

 ■ PBHGetLogInInfoAsync

 ■ PBHGetDirAccessSync

 ■ PBHGetDirAccessAsync

 ■ PBHSetDirAccessSync

 ■ PBHSetDirAccessAsync

 ■ PBHMapIDSync

 ■ PBHMapIDAsync

 ■ PBHMapNameSync

 ■ PBHMapNameAsync

Special folder icons are used. The Access Privileges menu command is enabled for disk and folder
items. The ioFlAttrib field of the parameter block passed to the PBGetCatInfoSync and
PBGetCatInfoSync functions is assumed to be valid.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 933
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

bNoSysDir
This volume doesn’t support a system directory. Do not switch launch to this volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasExtFSVol
This volume is an external file system volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasOpenDeny
This volume supports the PBHOpenDenySync , PBHOpenDenyAsync, PBHOpenRFDenySync and
PBHOpenRFDenyAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasCopyFile
This volume supports the PBHCopyFileSync and PBHCopyFileAsync functions, which is used in
copy and duplicate operations if both source and destination volumes have the same server address.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasMoveRename
This volume supports the PBHMoveRenameSync and PBHMoveRenameAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasDesktopMgr
This volume supports all of the desktop functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasShortName
This volume supports AFP short names.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasFolderLock
Folders on the volume can be locked, and so they cannot be deleted or renamed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasPersonalAccessPrivileges
This volume has local file sharing enabled.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasUserGroupList
This volume supports the Users and Groups file and thus the AFP privilege functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

934 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

bHasCatSearch
This volume supports the PBCatSearchSync and PBCatSearchAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasFileIDs
This volume supports the file ID functions, including the PBExchangeFilesSync and
PBExchangeFilesAsync functions.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasBTreeMgr
Reserved for internal use.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bHasBlankAccessPrivileges
This volume supports inherited access privileges for folders (blank access privileges).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsAsyncRequests
This volume correctly handles asynchronous requests at any time.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

bSupportsTrashVolumeCache

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants correspond to bit positions in the vMAttrib field of the GetVolParmsInfoBuffer (page
847) structure returned by the PBHGetVolParmsSync (page 695) and PBHGetVolParmsAsync (page 694)
functions.

Volume Control Block Flags
Used in the vcbFlags field of a volume control block to specify information about a volume.

Constants 935
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 kVCBFlagsIdleFlushBit = 3,
 kVCBFlagsIdleFlushMask = 0x0008,
 kVCBFlagsHFSPlusAPIsBit = 4,
 kVCBFlagsHFSPlusAPIsMask = 0x0010,
 kVCBFlagsHardwareGoneBit = 5,
 kVCBFlagsHardwareGoneMask = 0x0020,
 kVCBFlagsVolumeDirtyBit = 15,
 kVCBFlagsVolumeDirtyMask = 0x8000
};

Constants
kVCBFlagsIdleFlushBit

Indicates that the volume should be flushed at idle time.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsIdleFlushMask
Flushes the volume at idle time.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsHFSPlusAPIsBit
Indicates that the volume directly implements the HFS Plus APIs (rather than emulating them).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsHFSPlusAPIsMask
The volume directly implements the HFS Plus APIs.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsHardwareGoneBit
Indicates that the disk driver returned a hardwareGoneErr in response to a read or write call.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsHardwareGoneMask
Tests if the disk driver returned a hardwareGoneErr in response to a read or write call.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsVolumeDirtyBit
Indicates that the volume information has changed since the last time the volume was flushed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kVCBFlagsVolumeDirtyMask
The volume has changed since the last time the volume was flushed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
See VCB (page 868) for a description of the volume control block.

936 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Volume Information Attribute Constants
Define volume attributes returned by the functions PBHGetVInfoSync, PBHGetVInfoAsync,
PBXGetVolInfoSync, and PBXGetVolInfoAsync.

enum {
 kioVAtrbDefaultVolumeBit = 5,
 kioVAtrbDefaultVolumeMask = 0x0020,
 kioVAtrbFilesOpenBit = 6,
 kioVAtrbFilesOpenMask = 0x0040,
 kioVAtrbHardwareLockedBit = 7,
 kioVAtrbHardwareLockedMask = 0x0080,
 kioVAtrbSoftwareLockedBit = 15,
 kioVAtrbSoftwareLockedMask = 0x8000
};

Constants
kioVAtrbDefaultVolumeBit

Indicates that the volume is the default volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbDefaultVolumeMask
Tests if the volume is the default volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbFilesOpenBit
Indicates that there are open files or iterators.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbFilesOpenMask
Tests if there are open files or iterators.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbHardwareLockedBit
Indicates that the volume is locked by a hardware setting. On Mac OS X, the File Manager only sets
the software locked bit for CDs and other read-only media; it does not set the hardware locked bit.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbHardwareLockedMask
Tests if the volume is locked by a hardware setting.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kioVAtrbSoftwareLockedBit
Indicates that the volume is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 937
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kioVAtrbSoftwareLockedMask
Tests if the volume is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used in the ioVAtrb field of the HVolumeParam (page 859) parameter block returned
by the PBHGetVInfoSync (page 690) and PBHGetVInfoAsync (page 686) functions, and in the ioVAtrb
field of the XVolumeParam (page 882) parameter block returned by the PBXGetVolInfoSync (page 782)
and PBXGetVolInfoAsync (page 779) functions.

Volume Information Bitmap Constants
Indicate what volume information to set or retrieve.

enum {
 kFSVolInfoNone = 0x0000,
 kFSVolInfoCreateDate = 0x0001,
 kFSVolInfoModDate = 0x0002,
 kFSVolInfoBackupDate = 0x0004,
 kFSVolInfoCheckedDate = 0x0008,
 kFSVolInfoFileCount = 0x0010,
 kFSVolInfoDirCount = 0x0020,
 kFSVolInfoSizes = 0x0040,
 kFSVolInfoBlocks = 0x0080,
 kFSVolInfoNextAlloc = 0x0100,
 kFSVolInfoRsrcClump = 0x0200,
 kFSVolInfoDataClump = 0x0400,
 kFSVolInfoNextID = 0x0800,
 kFSVolInfoFinderInfo = 0x1000,
 kFSVolInfoFlags = 0x2000,
 kFSVolInfoFSInfo = 0x4000,
 kFSVolInfoDriveInfo = 0x8000,
 kFSVolInfoGettableInfo = 0xFFFF,
 kFSVolInfoSettableInfo = 0x3004
};

Constants
kFSVolInfoNone

No volume information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoCreateDate
Retrieve the creation date of the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoModDate
Retrieve the date of the volume’s last modification.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

938 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSVolInfoBackupDate
Retrieve or set the date of the volume’s last backup.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoCheckedDate
Retrieve the date that the volume was last checked for consistency.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoFileCount
Retrieve the number of files on the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoDirCount
Retrieve the number of directories on the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoSizes
Retrieve the total number of bytes on the volume and the number of unused bytes on the volume
(in the totalBytes and freeBytes fields).

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoBlocks
Retrieve the block information: the block size, the number of total blocks on the volume, and the
number of free blocks on the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoNextAlloc
Retrieve the address at which to start the next allocation.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoRsrcClump
Retrieve the resource fork clump size.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoDataClump
Retrieve the data fork clump size.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoNextID
Retrieve the next available catalog node ID.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 939
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

kFSVolInfoFinderInfo
Retrieve or set the volume’s Finder information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoFlags
Retrieve or set the volume’s flags. See “Volume Information Flags” (page 940) for more information
on the volume’s flags.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoFSInfo
Retrieve the filesystem ID and signature.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoDriveInfo
Retrieve the drive information: the drive number and driver reference number.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoGettableInfo
Retrieve all of the gettable information.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolInfoSettableInfo
Set all of the settable information. Currently, this is the backup date, Finder information, and flags.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
These constants are used with the FSVolumeInfoBitmap (page 845) data type to indicate what volume
information to set or retrieve with the functions FSSetVolumeInfo (page 543) and FSGetVolumeInfo (page
500) , and their corresponding parameter block calls.

Volume Information Flags
Used by the FSVolumeInfo structure to specify characteristics of a volume.

940 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

enum {
 kFSVolFlagDefaultVolumeBit = 5,
 kFSVolFlagDefaultVolumeMask = 0x0020,
 kFSVolFlagFilesOpenBit = 6,
 kFSVolFlagFilesOpenMask = 0x0040,
 kFSVolFlagHardwareLockedBit = 7,
 kFSVolFlagHardwareLockedMask = 0x0080,
 kFSVolFlagSoftwareLockedBit = 15,
 kFSVolFlagSoftwareLockedMask = 0x8000
};

Constants
kFSVolFlagDefaultVolumeBit

Set if the volume is the default volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagDefaultVolumeMask
Indicates that the volume is the default volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagFilesOpenBit
Set if there are open files or iterators.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagFilesOpenMask
Indicates that there are open files or iterators.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagHardwareLockedBit
Set if the volume is locked by a hardware setting. On Mac OS X, the File Manager only sets the software
locked bit for CDs and other read-only media; it does not set the hardware locked bit.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagHardwareLockedMask
Indicates that the volume is locked by a hardware setting.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagSoftwareLockedBit
Set if the volume is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

kFSVolFlagSoftwareLockedMask
Indicates that the volume is locked by software.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Constants 941
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Discussion
See the flags field of the FSVolumeInfo (page 842) structure.

Volume Mount Flags
Define flags used by the volume mounting information structures.

enum {
 volMountNoLoginMsgFlagBit = 0,
 volMountNoLoginMsgFlagMask = 0x0001,
 volMountExtendedFlagsBit = 7,
 volMountExtendedFlagsMask = 0x0080,
 volMountInteractBit = 15,
 volMountInteractMask = 0x8000,
 volMountChangedBit = 14,
 volMountChangedMask = 0x4000,
 volMountFSReservedMask = 0x00FF,
 volMountSysReservedMask = 0xFF00
};

Constants
volMountNoLoginMsgFlagBit

Indicates that any log-in message or greeting dialog will be suppressed.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountNoLoginMsgFlagMask
Tells the file system to suppress any log-in message or greeting dialog.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountExtendedFlagsBit
Indicates that the mounting information is a AFPXVolMountInfo record for AppleShare Client version
3.7 and later.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountExtendedFlagsMask
Tells the file system that the mounting information is an AFPXVolMountInfo (page 799) record for
AppleShare Client version 3.7 and later.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountInteractBit
Indicates that it's safe for the file system to perform user interaction to mount the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountInteractMask
Tells the file system that it’s safe to perform user interaction to mount the volume.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

942 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

volMountChangedBit
Indicates that the volume was mounted, but the volume mounting information record needs to be
updated.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountChangedMask
Tests if the volume mounting information record needs to be updated.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountFSReservedMask
Reserved.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

volMountSysReservedMask
Reserved.

Available in Mac OS X v10.0 and later.

Declared in Files.h.

Discussion
Bits 0-7 are defined by each file system for its own use; bits 8-15 are reserved for Apple system use. These
constants are used in the flags fields of the AFPVolMountInfo (page 797), AFPXVolMountInfo (page 799)
, and VolumeMountInfoHeader (page 873) structures.

Result Codes

The most common result codes returned by File Manager functions are listed below.

DescriptionValueResult Code

File directory full.-33dirFulErr

Available in Mac OS X v10.0 and later.

Disk or volume full.-34dskFulErr

Available in Mac OS X v10.0 and later.

Volume not found.-35nsvErr

Available in Mac OS X v10.0 and later.

I/O error.-36ioErr

Available in Mac OS X v10.0 and later.

Bad filename or volume name.-37bdNamErr

Available in Mac OS X v10.0 and later.

Result Codes 943
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

File not open.-38fnOpnErr

Available in Mac OS X v10.0 and later.

Logical end-of-file reached.-39eofErr

Available in Mac OS X v10.0 and later.

Attempt to position mark before the start of the file.-40posErr

Available in Mac OS X v10.0 and later.

Memory full (open) or file won't fit (load)-41mFulErr

Available in Mac OS X v10.0 and later.

Too many files open.-42tmfoErr

Available in Mac OS X v10.0 and later.

File or directory not found; incomplete pathname.-43fnfErr

Available in Mac OS X v10.0 and later.

Volume is locked through hardware.-44wPrErr

Available in Mac OS X v10.0 and later.

File is locked.-45fLckdErr

Available in Mac OS X v10.0 and later.

Volume is locked through software.-46vLckdErr

Available in Mac OS X v10.0 and later.

One or more files are open-47fBsyErr

File is busy

Directory is not empty.

Available in Mac OS X v10.0 and later.

Duplicate filename and version-48dupFNErr

Destination file already exists

File found instead of folder

Available in Mac OS X v10.0 and later.

File already open for writing.-49opWrErr

Available in Mac OS X v10.0 and later.

Invalid value passed in a parameter. Your application passed an
invalid parameter for dialog options.

-50paramErr

Available in Mac OS X v10.0 and later.

944 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

Invalid reference number.-51rfNumErr

Available in Mac OS X v10.0 and later.

Error during GetFPos, PBGetFPosSync or PBGetFPosAsync.-52gfpErr

Available in Mac OS X v10.0 and later.

Volume is offline.-53volOffLinErr

Available in Mac OS X v10.0 and later.

Attempt to open locked file for writing-54permErr

Permissions error

Available in Mac OS X v10.0 and later.

Volume already online.-55volOnLinErr

Available in Mac OS X v10.0 and later.

No such drive.-56nsDrvErr

Available in Mac OS X v10.0 and later.

Not a Macintosh disk.-57noMacDskErr

Available in Mac OS X v10.0 and later.

Volume belongs to an external file system.-58extFSErr

Available in Mac OS X v10.0 and later.

Problem during rename.-59fsRnErr

Available in Mac OS X v10.0 and later.

Bad master directory block.-60badMDBErr

Available in Mac OS X v10.0 and later.

Read/ write permission doesn’t allow writing.-61wrPermErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-64lastDskErr

Drive not installed.-64noDriveErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-84firstDskErr

Directory not found or incomplete pathname.-120dirNFErr

Available in Mac OS X v10.0 and later.

Too many working directories open.-121tmwdoErr

Available in Mac OS X v10.0 and later.

Result Codes 945
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

Attempt to move.-122badMovErr

Available in Mac OS X v10.0 and later.

Volume does not support Desktop Manager-123wrgVolTypErr

Not an HFS volume

Available in Mac OS X v10.0 and later.

Server volume has been disconnected.-124volGoneErr

Available in Mac OS X v10.0 and later.

non-hardware internal file system error.-127fsDSIntErr

Available in Mac OS X v10.0 and later.

Foreign file system does not exist.-431fsmFFSNotFoundErr

Available in Mac OS X v10.0 and later.

File system is busy, cannot be removed.-432fsmBusyFFSErr

Available in Mac OS X v10.0 and later.

Name length not 1 <= length <= 31-433fsmBadFFSNameErr

Available in Mac OS X v10.0 and later.

FSD size incompatible with current FSM vers-434fsmBadFSDLenErr

Available in Mac OS X v10.0 and later.

FSID already exists.-435fsmDuplicateFSIDErr

Available in Mac OS X v10.0 and later.

FSM version incompatible with FSD-436fsmBadFSDVersionErr

Available in Mac OS X v10.0 and later.

no alternate stack for HFS CI-437fsmNoAlternateStackErr

Available in Mac OS X v10.0 and later.

unknown message passed to FSM-438fsmUnknownFSMMessageErr

Available in Mac OS X v10.0 and later.

disk driver's hardware was disconnected-503driverHardwareGoneErr

Available in Mac OS X v10.0 and later.

File ID not found-1300fidNotFound

Available in Mac OS X v10.0 and later.

File ID already exists-1301fidExists

Available in Mac OS X v10.0 and later.

946 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

Specified file is a directory-1302notAFileErr

Available in Mac OS X v10.0 and later.

Files on different volumes-1303diffVolErr

Available in Mac OS X v10.0 and later.

Catalog has changed and catalog position record may be invalid-1304catChangedErr

Available in Mac OS X v10.0 and later.

Can’t exchange a file with itself-1306sameFileErr

Available in Mac OS X v10.0 and later.

File ID is dangling or doesn’t match with the file number-1307badFidErr

Available in Mac OS X v10.0 and later.

_Mount allows only remounts and doesn’t get one-1308notARemountErr

Available in Mac OS X v10.0 and later.

File’s EOF, offset, mark or size is too big-1309fileBoundsErr

Available in Mac OS X v10.0 and later.

File or volume is too big for system-1310fsDataTooBigErr

Available in Mac OS X v10.0 and later.

Can’t eject because volume is in use by VM-1311volVMBusyErr

Available in Mac OS X v10.0 and later.

FCBRecPtr is not valid-1327badFCBErr

Available in Mac OS X v10.0 and later.

Selector is not recognized by this file system-1400errFSUnknownCall

Available in Mac OS X v10.0 and later.

An FSRef parameter was invalid. There are several possible
causes:

-1401errFSBadFSRef

The parameter was not optional, but the pointer was NULL.

The volume reference number contained within the FSRef does
not match a currently mounted volume. This can happen if the
volume was unmounted after the FSRef was created.

Some other private field inside the FSRef contains a value that
could never be valid. If the field value could be valid, but doesn’t
happen to match the existing volume or in-memory structures,
a “not found” error would be returned instead.

Available in Mac OS X v10.0 and later.

Result Codes 947
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

A supplied fork name was invalid (i.e., was syntactically illegal
for the given volume). For example, the fork name might contain
characters that cannot be stored on the given volume (such as
a colon on HFS volumes).

-1402errFSBadForkName

Some volume formats do not store fork names in Unicode. These
volume formats will attempt to convert the Unicode name to
the kind of encoding used by the volume format. If the name
could not be converted, errFSBadForkName is returned.

Some volume formats only support a limited set of forks, such
as the data and resource forks on HFS volumes. For those
volumes, if any other fork name is passed, this error is returned.

Available in Mac OS X v10.0 and later.

A non-optional buffer pointer was NULL , or its size was invalid
for the type of data it was expected to contain. In a protected
memory system, this could also mean the buffer space is not
part of the address space for the calling process.

-1403errFSBadBuffer

Available in Mac OS X v10.0 and later.

A file reference number does not correspond to a fork opened
with theFSOpenFork,PBOpenForkSync , orPBOpenForkAsync
functions. This could be because that fork has already been
closed. Or, you may have passed a reference number created
with older APIs (e.g., by the PBHOpenDF functions). A value of
zero is never a valid file reference number.

-1404errFSBadForkRef

Available in Mac OS X v10.0 and later.

A FSCatalogInfoBitmap or FSVolumeInfoBitmap has one
or more reserved or undefined bits set. This error code can also
be returned if a defined bit is set, but the corresponding
FSCatalogInfo or FSVolumeInfo field cannot be operated
on with that call (for example, trying to use FSSetCatalogInfo
to set the valence of a directory).

-1405errFSBadInfoBitmap

Available in Mac OS X v10.0 and later.

A FSCatalogInfo pointer is NULL , but is not optional. Or, the
FSCatalogInfo is optional and NULL, but the corresponding
FSCatalogInfoBitmap is not zero (that is,the bitmap says that
one or more of the FSCatalogInfo fields is being passed, but
the supplied pointer was NULL).

-1406errFSMissingCatInfo

Available in Mac OS X v10.0 and later.

948 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

A parameter was expected to identify a folder, but it identified
some other kind of object (e.g., a file) instead. This implies that
the specified object exists, but is of the wrong type. For example,
one of the parameters to FSCreateFileUnicode is an FSRef
of the directory where the file will be created; if the FSRef
actually refers to a file, this error is returned.

-1407errFSNotAFolder

Available in Mac OS X v10.0 and later.

An attempt to specify a fork of a given file or directory, but that
particular fork does not exist.

-1409errFSForkNotFound

Available in Mac OS X v10.0 and later.

A file or fork name was too long. This means that the given name
could never exist; this is different from a “file not found” or
errFSForkNotFound error.

-1410errFSNameTooLong

Available in Mac OS X v10.0 and later.

A required file or fork name parameter was a NULL pointer, or
the length of a filename was zero.

-1411errFSMissingName

Available in Mac OS X v10.0 and later.

Reserved or invalid bits in a positionMode field were set. For
example, the FSReadFork call does not support newline mode,
so setting the newline bit or a newline character in the
positionMode parameter would cause this error.

-1412errFSBadPosMode

Available in Mac OS X v10.0 and later.

Reserved or invalid bits were set in an FSAllocationFlags
parameter.

-1413errFSBadAllocFlags

Available in Mac OS X v10.0 and later.

There are no more items to return when enumerating a directory
or searching a volume. Note that FSCatalogSearch returns
this error, whereas the PBCatSearch functions would return
eofErr.

-1417errFSNoMoreItems

Available in Mac OS X v10.0 and later.

The maximumObjects parameter to FSGetCatalogInfoBulk
or FSCatalogSearch was zero.

-1418errFSBadItemCount

Available in Mac OS X v10.0 and later.

The search criteria to FSCatalogSearch are invalid or
inconsistent.

-1419errFSBadSearchParams

Available in Mac OS X v10.0 and later.

Result Codes 949
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

The two FSRef structures passed to FSCompareFSRefs are for
different files or directories. Note that a volume format may be
able to compare the FSRef structures without searching for the
files or directories, so this error may be returned even if one or
both of the FSRef structures refers to non-existent objects.

-1420errFSRefsDifferent

Available in Mac OS X v10.0 and later.

An attempt to create a fork, but that fork already exists.-1421errFSForkExists

Available in Mac OS X v10.0 and later.

The flags passed to FSOpenIterator are invalid.-1422errFSBadIteratorFlags

Available in Mac OS X v10.0 and later.

The value of an FSIterator parameter does not correspond
to any currently open iterator.

-1423errFSIteratorNotFound

Available in Mac OS X v10.0 and later.

The iterator flags or container of an FSIterator are not supported
by that call. For example, in the initial release, the
FSCatalogSearch call only supports an iterator whose container
is in the volume’s root directory and whose flags are
kFSIterateSubtree (i.e., an iterator for the entire volume’s
contents). Similarly, in the initial release, FSGetCatalogInfoBulk
only supports an iterator whose flags are kFSIterateFlat.

-1424errFSIteratorNotSupported

Available in Mac OS X v10.0 and later.

The user’s quota of disk blocks has been exhausted.-1425errFSQuotaExceeded

Available in Mac OS X v10.2 and later.

User does not have the correct access to the file-5000afpAccessDenied

Directory cannot be shared

Available in Mac OS X v10.0 and later.

Further information required to complete AFPLogin call.-5001afpAuthContinue

Available in Mac OS X v10.0 and later.

User authentication method is unknown.-5002afpBadUAM

Available in Mac OS X v10.0 and later.

Workstation is using an AFP version that the server doesn’t
recognize.

-5003afpBadVersNum

Available in Mac OS X v10.0 and later.

Bitmap contained bits undefined for call.-5004afpBitmapErr

Available in Mac OS X v10.0 and later.

950 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

Move destination is offspring of source or root was specified.-5005afpCantMove

Available in Mac OS X v10.0 and later.

Requested user permission not possible.-5006afpDenyConflict

Available in Mac OS X v10.0 and later.

Cannot delete non-empty directory.-5007afpDirNotEmpty

Available in Mac OS X v10.0 and later.

Insufficient free space on volume for operation.-5008afpDiskFull

Available in Mac OS X v10.0 and later.

Read beyond logical end-of-file.-5009afpEofError

Available in Mac OS X v10.0 and later.

Cannot delete an open file.-5010afpFileBusy

Available in Mac OS X v10.0 and later.

Cannot create directory on specified volume.-5011afpFlatVol

Available in Mac OS X v10.0 and later.

Unknown user name/ user ID or missing comment / APPL entry.-5012afpItemNotFound

Available in Mac OS X v10.0 and later.

Some or all of requested range is locked by another user.-5013afpLockErr

Available in Mac OS X v10.0 and later.

Unexpected error encountered during execution.-5014afpMiscErr

Available in Mac OS X v10.0 and later.

No more ranges can be locked.-5015afpNoMoreLocks

Available in Mac OS X v10.0 and later.

Server is not responding.-5016afpNoServer

Available in Mac OS X v10.0 and later.

Specified destination file or directory already exists.-5017afpObjectExists

Available in Mac OS X v10.0 and later.

Specified file or directory does not exist.-5018afpObjectNotFound

Available in Mac OS X v10.0 and later.

A specified parameter was out of allowable range.-5019afpParmErr

Available in Mac OS X v10.0 and later.

Result Codes 951
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

Specified range was not locked.-5020afpRangeNotLocked

Available in Mac OS X v10.0 and later.

Part of range is already locked.-5021afpRangeOverlap

Available in Mac OS X v10.0 and later.

Session closed.-5022afpSessClosed

Available in Mac OS X v10.0 and later.

User authentication failed (usually, password is not correct).-5023afpUserNotAuth

Available in Mac OS X v10.0 and later.

Unsupported AFP call was made.-5024afpCallNotSupported

Available in Mac OS X v10.0 and later.

A directory exists with that name-5025afpObjectTypeErr

Directory not found

Folder locking not supported by volume

Object was a file, not a directory

Available in Mac OS X v10.0 and later.

Maximum open file count reached.-5026afpTooManyFilesOpen

Available in Mac OS X v10.0 and later.

Server is shutting down.-5027afpServerGoingDown

Available in Mac OS X v10.0 and later.

AFPRename cannot rename volume.-5028afpCantRename

Available in Mac OS X v10.0 and later.

Unknown directory specified.-5029afpDirNotFound

Available in Mac OS X v10.0 and later.

Icon size specified is different from existing icon size.-5030afpIconTypeError

Available in Mac OS X v10.0 and later.

Volume is read-only.-5031afpVolLocked

Available in Mac OS X v10.0 and later.

Object is M/R/D/W inhibited.-5032afpObjectLocked

Available in Mac OS X v10.0 and later.

The directory contains a share point.-5033afpContainsSharedErr

Available in Mac OS X v10.0 and later.

952 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

File ID not found.-5034afpIDNotFound

Available in Mac OS X v10.0 and later.

File ID already exists.-5035afpIDExists

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-5036afpDiffVolErr

Catalog has changed and search cannot be resumed.-5037afpCatalogChanged

Available in Mac OS X v10.0 and later.

Source and destination files are the same.-5038afpSameObjectErr

Available in Mac OS X v10.0 and later.

File ID not found.-5039afpBadIDErr

Available in Mac OS X v10.0 and later.

Someone tried to change their password to the same password
on a mandatory password change.

-5040afpPwdSameErr

Available in Mac OS X v10.0 and later.

The password being set is too short: there is a minimum length
that must be met or exceeded.

-5041afpPwdTooShortErr

Available in Mac OS X v10.0 and later.

Password has expired on server.-5042afpPwdExpiredErr

Available in Mac OS X v10.0 and later.

The directory is inside a shared directory.-5043afpInsideSharedErr

Available in Mac OS X v10.0 and later.

The folder being shared is inside the trash folder OR the shared
folder is being moved into the trash folder.

-5044afpInsideTrashErr

Available in Mac OS X v10.0 and later.

The password needs to be changed.-5045afpPwdNeedsChangeErr

Available in Mac OS X v10.0 and later.

Password does not conform to server’s password policy.-5046afpPwdPolicyErr

Available in Mac OS X v10.0 and later.

User has been authenticated but is already logged in from
another machine (and that's not allowed on this server).

-5047afpAlreadyLoggedInErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-5048afpCallNotAllowed

Result Codes 953
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

DescriptionValueResult Code

Not a fixed directory ID volume.-5060afpBadDirIDType

Available in Mac OS X v10.0 and later.

Maximum number of volumes has been mounted.-5061afpCantMountMoreSrvre

Available in Mac OS X v10.0 and later.

Volume already mounted.-5062afpAlreadyMounted

Available in Mac OS X v10.0 and later.

Attempt to log on to a server running on the same machine.-5063afpSameNodeErr

Available in Mac OS X v10.0 and later.

954 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

File Manager Reference

Framework: CoreServices/CoreServices.h

Declared in Folders.h

Overview

The Folder Manager allows you to find and search folders, create new folders, and control how files are routed
between folders. Because you can use the Folder Manager to manipulate standard Mac OS folders without
relying on their names, your program is tolerant of changes to folder names and easier to localize.

Carbon supports the Folder Manager, although some functions have been deprecated in Mac OS X. You
should always check the value of gestaltFindFolderAttr in Mac OS X to determine what functionality
is available.

Functions by Task

Describing Folders

GetFolderTypes (page 970)
Obtains the folder types contained in the global descriptor list.

IdentifyFolder (page 971)
Obtains the folder type for the specified folder.

InvalidateFolderDescriptorCache (page 972)
Invalidates any prior FindFolder results for the specified folder.

GetFolderName (page 969) Deprecated in Mac OS X v10.5
Obtains the name of the specified folder.

Manipulating Folders

FSFindFolder (page 966)
Obtains location information for system-related directories.

FindFolder (page 960)
Obtains location information for system-related directories.

FindFolderExtended (page 962) Deprecated in Mac OS X v10.3
Obtains location information for system-related directories. (Deprecated. Use FindFolder (page 960)
instead.)

Overview 955
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

FSFindFolderExtended (page 966) Deprecated in Mac OS X v10.3
Locates a system-related folder and returns a reference to the folder. (Deprecated. Use
FSFindFolder (page 966) instead.)

ReleaseFolder (page 973) Deprecated in Mac OS X v10.3
Releases the Trash folder in preparation for unmounting a server volume. (Deprecated. This function
is not needed in Mac OS X.)

Routing Files

AddFolderRouting (page 958) Deprecated in Mac OS X v10.4
Adds a folder routing structure to the global routing list. (Deprecated. There is no replacement
function.)

FindFolderRouting (page 962) Deprecated in Mac OS X v10.4
Finds the destination folder from a matching folder routing structure for the specified file. (Deprecated.
There is no replacement function.)

GetFolderRoutings (page 970) Deprecated in Mac OS X v10.4
Obtains folder routing information from the global routing list. (Deprecated. There is no replacement
function.)

RemoveFolderRouting (page 975) Deprecated in Mac OS X v10.4
Deletes a folder routing structure from the global routing list. (Deprecated. There is no replacement
function.)

Working With Folder Manager Notification Functions

NewFolderManagerNotificationUPP (page 973)
Creates a new universal procedure pointer (UPP) to a notification function.

DisposeFolderManagerNotificationUPP (page 960)
Disposes of the universal procedure pointer (UPP) to a notification function.

InvokeFolderManagerNotificationUPP (page 973)
Calls your notification function.

FolderManagerRegisterCallNotificationProcs (page 963) Deprecated in Mac OS X v10.3
Calls the registered Folder Manager notification procs. (Deprecated. There is no replacement function.)

FolderManagerRegisterNotificationProc (page 964) Deprecated in Mac OS X v10.3
Registers your notification function with the Folder Manager. (Deprecated. There is no replacement
function.)

FolderManagerUnregisterNotificationProc (page 964) Deprecated in Mac OS X v10.3
Removes your notification function from the Folder Manager's queue. (Deprecated. There is no
replacement function.)

Working With Folder Descriptors

AddFolderDescriptor (page 957)
Copies the supplied information into a new folder descriptor entry in the system folder list.

956 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

RemoveFolderDescriptor (page 974)
Deletes the specified folder descriptor entry from the system folder list.

GetFolderDescriptor (page 968) Deprecated in Mac OS X v10.3
Obtains the folder descriptor information for the specified folder type from the global descriptor list.
(Deprecated. There is no replacement function.)

Finding Files in Special Folders

FSpDetermineIfSpecIsEnclosedByFolder (page 967)
Determines whether a file of type FSSpec (page 840) is enclosed inside a special folder type for the
given domain.

FSDetermineIfRefIsEnclosedByFolder (page 965)
Determines whether a file of type FSRef (page 837) is enclosed inside a special folder type for the
given domain.

DetermineIfPathIsEnclosedByFolder (page 959)
Determines whether a file path is enclosed inside a special folder type for the given domain.

Functions

AddFolderDescriptor
Copies the supplied information into a new folder descriptor entry in the system folder list.

OSErr AddFolderDescriptor (
 FolderType foldType,
 FolderDescFlags flags,
 FolderClass foldClass,
 FolderLocation foldLocation,
 OSType badgeSignature,
 OSType badgeType,
 ConstStrFileNameParam name,
 Boolean replaceFlag
);

Parameters
foldType

Pass a constant identifying the type of the folder you wish the Folder Manager to be able to find. See
Folder Type Constants (page 985).

flags
Set these flags to indicate whether a folder is created during startup, if the folder name is locked, and
if the folder is created invisible; see Folder Descriptor Flags (page 982).

foldClass
Pass the class of the folder which you wish the Folder Manager to be able to find. The folder class
determines how the foldLocation parameter is interpreted. See Folder Descriptor Classes (page
981) for a discussion of relative and special folder classes.

Functions 957
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

foldLocation
For a relative folder, specify the folder type of the parent folder of the target. For a special folder,
specify the location of the folder; see Folder Descriptor Locations (page 984).

badgeSignature
Reserved. Pass 0.

badgeType
Reserved. Pass 0.

name
A string specifying the name of the desired folder. For relative folders, this is the exact name of the
desired folder. For special folders, the actual target folder may have a different name than the name
specified in the folder descriptor. For example, the System Folder is often given a different name, but
it can still be located with FindFolder (page 960).

replaceFlag
Pass a Boolean value indicating whether you wish to replace a folder descriptor that already exists
for the specified folder type. If true, it replaces the folder descriptor for the specified folder type. If
false, it does not replace the folder descriptor for the specified folder type.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001). The result code duplicateFolderDescErr
indicates that a folder descriptor is already installed with the specified folder type and replaceFlag is false.

Discussion
The AddFolderDescriptor function copies the supplied information into a new descriptor entry in the
system folder list. You need to provide folder descriptors for each folder you wish the Folder Manager to be
able to find via the function FindFolder (page 960). For example, a child folder located in a parent folder
needs to have a descriptor created both for it and its parent folder, so that the child can be found. This
function is supported under Mac OS 8 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

AddFolderRouting
Adds a folder routing structure to the global routing list. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

OSErr AddFolderRouting (
 OSType fileType,
 FolderType routeFromFolder,
 FolderType routeToFolder,
 RoutingFlags flags,
 Boolean replaceFlag
);

Parameters
fileType

Pass the OSType of the file to be routed.

958 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

routeFromFolder
Pass the folder type of the “from” folder see Folder Type Constants (page 985) for descriptions of
possible values. An item dropped on the folder specified in this parameter will be routed to the folder
specified in the routeToFolder parameter.

routeToFolder
The folder type of the “to” folder see Folder Type Constants (page 985) for descriptions of possible
values.

flags
Reserved for future use; pass 0.

replaceFlag
Pass a Boolean value indicating whether you wish to replace a folder routing that already exists. If
true, it replaces the folder to which the item is being routed. If false, it leaves the folder to which
the item is being routed.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001). The result codeduplicateRoutingErr indicates
that a folder routing is already installed with the specified folder type and replaceFlag is false.

Discussion
Your application can use the AddFolderRouting function to specify how the Finder routes a given file type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Folders.h

DetermineIfPathIsEnclosedByFolder
Determines whether a file path is enclosed inside a special folder type for the given domain.

OSErr DetermineIfPathIsEnclosedByFolder (
 FSVolumeRefNum domainOrVRefNum,
 OSType folderType,
 const UInt8 *utf8Path,
 Boolean pathIsRealPath,
 Boolean *outResult
);

Parameters
domainOrVRefNum

The domain or volume reference number to check. For information about the possible domains, see
Disk and Domain Constants (page 997). You can also pass 0 to check all domains and volumes, or you
can pass kOnAppropriateDisk to check the appropriate volume for the specified file.

folderType
The special folder type to check. For information about the possible folder types, see Folder Type
Constants (page 985).

utf8Path
A UTF-8 encoded path to the file for which to search.

Functions 959
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

pathIsRealPath
A Boolean value that indicates whether the utf8Path parameter is guaranteed to be a full and
complete path, as opposed to a path containing a symbolic link, an alias, or a relative path.

outResult
A pointer to a Boolean variable. On return, indicates whether or not the file is enclosed inside the
special folder type for the given domain.

Discussion
This function provides an efficient way to check to see if a file (or folder) is inside a special folder for a given
domain. A typical use for this function is to determine if a given file is inside the trash on a volume:

err = DetermineIfPathIsEnclosedByFolder (kOnAppropriateDisk, kTrashFolderType,
 path, false, &result);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Folders.h

DisposeFolderManagerNotificationUPP
Disposes of the universal procedure pointer (UPP) to a notification function.

void DisposeFolderManagerNotificationUPP (
 FolderManagerNotificationUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

FindFolder
Obtains location information for system-related directories.

960 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

OSErr FindFolder (
 FSVolumeRefNum vRefNum,
 OSType folderType,
 Boolean createFolder,
 FSVolumeRefNum *foundVRefNum,
 SInt32 *foundDirID
);

Parameters
vRefNum

Pass the volume reference number of the volume on which you want to locate a directory, or a
constant specifying a disk or domain. The constants which you can use in this parameter are described
in Disk and Domain Constants (page 997).

Note that, on Mac OS X, passing a volume reference number in this parameter does not make sense
for most of the folder type selectors which you can specify in the folderType parameter. On Mac
OS X, folders are "domain-oriented"; because there may be more than one domain on any given
physical volume, asking for these folders on a per-volume basis yields undefined results. For example,
if you were to request the Fonts folder (represented by the selector kFontsFolderType) on volume
-100, are you requesting the folder /System/Library/Fonts, /Library/Fonts, or ~/Fonts? On Mac OS X
you should pass a disk or domain constant in this parameter.

folderType
Pass a four-character folder type, or a constant that represents the type, for the folder you want to
find; see Folder Type Constants (page 985).

createFolder
A value of type Boolean, as defined in Create Folder Flags (page 981). Pass the constant
kCreateFolder to create a directory if it does not already exist; otherwise, pass the constant
kDontCreateFolder. Directories inside the System Folder are created only if the System Folder
directory exists. The FindFolder function will not create a System Folder directory even if you specify
the kCreateFolder constant in the createFolder parameter. Passing kCreateFolder will also
not create a parent folder; if the parent of the target folder does not already exist, attempting to
create the target will fail.

foundVRefNum
A pointer to a value of type short. On return, the value specifies the volume reference number for
the volume containing the directory specified in the folderType parameter.

foundDirID
A pointer to a value of type long. On return, the value specifies the directory ID number for the
directory specified in the folderType parameter.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001). The result code fnfErr indicates that the type
has not been found in the 'fld#' resource, or the disk doesn’t have System Folder support, or the disk does
not have desktop database support for Desktop Folder—in all cases, the folder has not been found. The
result code dupFNErr indicates that a file has been found instead of a folder.

Discussion
As of Mac OS 8 and later, your application can add folders to the System Folder—or nest folders within other
folders—and locate the folders via the FindFolder function. Prior to Mac OS 8, your application could only
use FindFolder to find folders that were immediately inside of the System Folder, and a few other special
folders such as the Trash folder and the System Folder itself. Now, once a folder (and any folders that it is
nested within) is described in a folder descriptor—that is, registered using the function
AddFolderDescriptor (page 957) —your application can use FindFolder to find the folder no matter
where it is located.

Functions 961
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

Those folders you’re most likely to want to access are Preferences and Trash. For example, you might wish
to check for the existence of a user’s configuration file in Preferences or, if your application runs out of disk
storage when trying to save a file, check how much disk storage is taken by items in the Trash directory and
report this to the user.

The specified folder used for a given volume might be located on a different volume; therefore, do not assume
the volume that you specify in vRefNum and the volume returned through foundVRefNum will be the same.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Folders.h

FindFolderExtended
Obtains location information for system-related directories. (Deprecated in Mac OS X v10.3. Use
FindFolder (page 960) instead.)

OSErr FindFolderExtended (
 FSVolumeRefNum vRefNum,
 OSType folderType,
 Boolean createFolder,
 UInt32 flags,
 void *data,
 FSVolumeRefNum *foundVRefNum,
 SInt32 *foundDirID
);

Parameters
foldType
createFolder
flags

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Folders.h

FindFolderRouting
Finds the destination folder from a matching folder routing structure for the specified file. (Deprecated in
Mac OS X v10.4. There is no replacement function.)

962 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

OSErr FindFolderRouting (
 OSType fileType,
 FolderType routeFromFolder,
 FolderType *routeToFolder,
 RoutingFlags *flags
);

Parameters
fileType

Pass the file type specified in the appropriate folder routing structure for the file for which you wish
to find a destination folder.

routeFromFolder
Pass the folder type of the “from” folder for which you wish to find a “to” folder see Folder Type
Constants (page 985) for descriptions of possible values. An item dropped on the folder specified in
this parameter will be routed to the folder specified in the routeToFolder parameter.

routeToFolder
A pointer to a value of type FolderType. On return, the value is set to the folder type of the destination
folder.

flags
Reserved; pass 0.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Discussion
Both the file type and the folder type specified must match those of a folder routing structure in the global
routing list for the FindFolderRouting function to succeed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Folders.h

FolderManagerRegisterCallNotificationProcs
Calls the registered Folder Manager notification procs. (Deprecated in Mac OS X v10.3. There is no replacement
function.)

OSStatus FolderManagerRegisterCallNotificationProcs (
 OSType message,
 void *arg,
 UInt32 options
);

Parameters
message
options

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Functions 963
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Folders.h

FolderManagerRegisterNotificationProc
Registers your notification function with the Folder Manager. (Deprecated in Mac OS X v10.3. There is no
replacement function.)

OSErr FolderManagerRegisterNotificationProc (
 FolderManagerNotificationUPP notificationProc,
 void *refCon,
 UInt32 options
);

Parameters
notificationProc

A UPP to your notification function.

refCon
A pointer to client-defined data. This value is passed to your notification function each time it is called.

options
A value specifying registration options. See FolderManagerCallNotificationProcs Options (page 1000).

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Folders.h

FolderManagerUnregisterNotificationProc
Removes your notification function from the Folder Manager's queue. (Deprecated in Mac OS X v10.3. There
is no replacement function.)

OSErr FolderManagerUnregisterNotificationProc (
 FolderManagerNotificationUPP notificationProc,
 void *refCon
);

Parameters
notificationProc

The UPP to your notification function that you passed to the
FolderManagerRegisterNotificationProc function.

964 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

refCon
A pointer to the same value that you passed to the FolderManagerRegisterNotificationProc
function in the refCon parameter.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Folders.h

FSDetermineIfRefIsEnclosedByFolder
Determines whether a file of type FSRef (page 837) is enclosed inside a special folder type for the given
domain.

OSErr FSDetermineIfRefIsEnclosedByFolder (
 FSVolumeRefNum domainOrVRefNum,
 OSType folderType,
 const FSRef *inRef,
 Boolean *outResult
);

Parameters
domainOrVRefNum

The domain or volume reference number to check. For information about the possible domains, see
Disk and Domain Constants (page 997). You can also pass 0 to check all domains and volumes, or you
can pass kOnAppropriateDisk to check the appropriate volume for the specified file.

folderType
The special folder type to check. For information about the possible folder types, see Folder Type
Constants (page 985).

inRef
The file for which to search.

outResult
A pointer to a Boolean variable. On return, indicates whether or not the file is enclosed inside the
special folder type for the given domain.

Discussion
This function provides an efficient way to check to see if a file (or folder) is inside a special folder for a given
domain. A typical use for this function is to determine if a given file is inside the trash on a volume:

err = FSDetermineIfRefIsEnclosedByFolder (kOnAppropriateDisk, kTrashFolderType,
 &ref, &result);

Availability
Available in Mac OS X v10.4 and later.

Declared In
Folders.h

Functions 965
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

FSFindFolder
Obtains location information for system-related directories.

OSErr FSFindFolder (
 FSVolumeRefNum vRefNum,
 OSType folderType,
 Boolean createFolder,
 FSRef *foundRef
);

Parameters
vRefNum

Pass the volume reference number of the volume on which you want to locate a directory, or a
constant specifying a disk or domain. The constants which you can use in this parameter are described
in Disk and Domain Constants (page 997).

Note that, on Mac OS X, passing a volume reference number in this parameter does not make sense
for most of the folder type selectors which you can specify in the folderType parameter. On Mac
OS X, folders are "domain-oriented"; because there may be more than one domain on any given
physical volume, asking for these folders on a per-volume basis yields undefined results. For example,
if you were to request the Fonts folder (represented by the selector kFontsFolderType)on volume
-100, are you requesting the folder /System/Library/Fonts, /Library/Fonts, or ~/Fonts? On Mac OS X
you should pass a disk or domain constant in this parameter.

folderType
Pass a four-character folder type, or a constant that represents the type, for the folder you want to
find; see Folder Type Constants (page 985).

createFolder
A value of type Boolean, as defined in Create Folder Flags (page 981). Pass the constant
kCreateFolder to create a directory if it does not already exist; otherwise, pass the constant
kDontCreateFolder. Passing kCreateFolder will not create a parent folder; if the parent of the
target folder does not already exist, attempting to create the target will fail.

foundRef
A pointer to a file system reference. On return, the FSRef refers to the directory specified by the
vRefNum and folderType parameters.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest

Declared In
Folders.h

FSFindFolderExtended
Locates a system-related folder and returns a reference to the folder. (Deprecated in Mac OS X v10.3. Use
FSFindFolder (page 966) instead.)

966 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

OSErr FSFindFolderExtended (
 FSVolumeRefNum vRefNum,
 OSType folderType,
 Boolean createFolder,
 UInt32 flags,
 void *data,
 FSRef *foundRef
);

Parameters
vRefNum

The volume reference number or domain in which you want to locate a folder. To specify the startup
disk, use the constant kOnSystemDisk. To specify a domain, use a domain constant such as
kUserDomain. See Disk and Domain Constants (page 997).

foldType
The type of folder you want to find. See Folder Type Constants (page 985).

createFolder
A value of type Boolean, as defined in Create Folder Flags (page 981). Pass the constant
kCreateFolder to create a folder if it does not already exist; otherwise, pass the constant
kDontCreateFolder.

flags
An extended behavior constant. See FSFindFolderExtended Flags (page 999).

data
User data which is interpreted differently depending on the constant specified in the flags parameter.

foundRef
A pointer to a FSRef variable. On return, the variable contains a file system reference to the specified
folder.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Discussion
The specified folder might be relocated in future versions of system software; therefore, do not assume the
volume that you specify in the vRefNum constant and the volume returned in the file system reference will
be the same.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Folders.h

FSpDetermineIfSpecIsEnclosedByFolder
Determines whether a file of type FSSpec (page 840) is enclosed inside a special folder type for the given
domain. (Deprecated in Mac OS X v10.5.)

Functions 967
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

OSErr FSpDetermineIfSpecIsEnclosedByFolder (
 FSVolumeRefNum domainOrVRefNum,
 OSType folderType,
 const FSSpec *inSpec,
 Boolean *outResult
);

Parameters
domainOrVRefNum

The domain or volume reference number to check. For information about the possible domains, see
Disk and Domain Constants (page 997). You can also pass 0 to check all domains and volumes, or you
can pass kOnAppropriateDisk to check the appropriate volume for the specified file.

folderType
The special folder type to check. For information about the possible folder types, see Folder Type
Constants (page 985).

inSpec
The file for which to search.

outResult
A pointer to a Boolean variable. On return, indicates whether or not the file is enclosed inside the
special folder type for the given domain.

Discussion
This function provides an efficient way to check to see if a file (or folder) is inside a special folder for a given
domain. A typical use for this function is to determine if a given file is inside the trash on a volume:

err = FSpDetermineIfSpecIsEnclosedByFolder (kOnAppropriateDisk, kTrashFolderType,
 &spec, &result);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Folders.h

GetFolderDescriptor
Obtains the folder descriptor information for the specified folder type from the global descriptor list.
(Deprecated in Mac OS X v10.3. There is no replacement function.)

OSErr GetFolderDescriptor (
 FolderType foldType,
 Size descSize,
 FolderDesc *foldDesc
);

Parameters
foldType

Pass a constant identifying the type of the folder for which you wish to get descriptor information.
See Folder Type Constants (page 985).

968 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

descSize
Pass the size (in bytes) of the folder descriptor structure for which a pointer is passed in the foldDesc
parameter. This value is needed in order to determine the version of the structure being used.

foldDesc
Pass a pointer to a folder descriptor structure. On return, the folder descriptor structure contains
information from the global descriptor list for the specified folder type.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Folders.h

GetFolderName
Obtains the name of the specified folder. (Deprecated in Mac OS X v10.5.)

OSErr GetFolderName (
 FSVolumeRefNum vRefNum,
 OSType foldType,
 FSVolumeRefNum *foundVRefNum,
 StrFileName name
);

Parameters
vRefNum

Pass the volume reference number (or the constant kOnSystemDisk for the startup disk) of the
volume containing the folder for which you wish the name to be identified.

foldType
Pass a constant identifying the type of the folder for which you wish the name to be identified. See
Folder Type Constants (page 985).

foundVRefNum
On return, a pointer to the volume reference number for the volume containing the folder specified
in the foldType parameter.

name
On return, a string containing the title of the folder specified in the foldType and vRefNumparameters.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Discussion
The GetFolderName function obtains the name of the folder in the folder descriptor, not the name of the
folder on the disk. The names may differ for a few special folders such as the System Folder. For relative
folders, however, the actual name is always returned. You typically do not need to call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 969
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

Not available to 64-bit applications.

Declared In
Folders.h

GetFolderRoutings
Obtains folder routing information from the global routing list. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

OSErr GetFolderRoutings (
 UInt32 requestedRoutingCount,
 UInt32 *totalRoutingCount,
 Size routingSize,
 FolderRouting *theRoutings
);

Parameters
requestedRoutingCount

An unsigned 32-bit value. Pass the number of folder routing structures that can fit in the buffer pointed
to by the theRoutings parameter.

totalRoutingCount
A pointer to an unsigned 32-bit value. On return, the value is set to the number of folder routing
structures in the global list. If this value is less than or equal to requestedRoutingCount, all folder
routing structures were returned to the caller.

routingSize
Pass the size (in bytes) of the FolderRouting structure.

theRoutings
Pass a pointer to an array of FolderRouting (page 978) structures. On return the structure(s) contain
the requested routing information. You may pass null if you do not wish this information.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Discussion
The folder routing information in the global routing list determines how the Finder routes files.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Folders.h

GetFolderTypes
Obtains the folder types contained in the global descriptor list.

970 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

OSErr GetFolderTypes (
 UInt32 requestedTypeCount,
 UInt32 *totalTypeCount,
 FolderType *theTypes
);

Parameters
requestedTypeCount

Pass the number of FolderType values that can fit in the buffer pointed to by the theTypes
parameter; see Folder Type Constants (page 985).

totalTypeCount
Pass a pointer to an unsigned 32-bit integer value. On return, the value is set to the total number of
FolderType values in the list. The totalTypeCount parameter may produce a value that is larger
or smaller than that of the requestedTypeCount parameter. If totalTypeCount is equal to or
smaller than the value passed in for requestedTypeCount and the value produced by the theTypes
parameter is non-null, then all folder types were returned to the caller.

theTypes
Pass a pointer to an array of FolderType values; see Folder Type Constants (page 985). On return,
the array contains the folder types for the installed descriptors. You can step through the array and
call GetFolderDescriptor for each folder type. Pass null if you only want to know the number
of descriptors installed in the system’s global list, rather than the actual folder types of those descriptors.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

IdentifyFolder
Obtains the folder type for the specified folder.

OSErr IdentifyFolder (
 FSVolumeRefNum vRefNum,
 SInt32 dirID,
 FolderType *foldType
);

Parameters
vRefNum

Pass the volume reference number (or the constant kOnSystemDisk for the startup disk) of the
volume containing the folder whose type you wish to identify.

dirID
Pass the directory ID number for the folder whose type you wish to identify.

foldType
Pass a pointer to a value of type FolderType. On return, the value is set to the folder type of the
folder with the specified vRefNum and dirID parameters; see Folder Type Constants (page 985) for
descriptions of possible values.

Functions 971
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Discussion
The folder type is identified for the folder specified by the vRefNum and dirID parameters, if such a folder
exists. Note that if there are multiple folder descriptors that map to an individual folder, IdentifyFolder
returns the folder type of only the first matching descriptor that it finds.

Carbon Porting Notes

This function is not useful on Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

InvalidateFolderDescriptorCache
Invalidates any prior FindFolder results for the specified folder.

OSErr InvalidateFolderDescriptorCache (
 FSVolumeRefNum vRefNum,
 SInt32 dirID
);

Parameters
vRefNum

Pass the volume reference number (or the constant kOnSystemDisk for the startup disk) of the
volume containing the folder for which you wish the descriptor cache to be invalidated. Pass 0 to
completely invalidate all folder cache information.

dirID
Pass the directory ID number for the folder for which you wish the descriptor cache to be invalidated.
Pass 0 to invalidate the cache for all folders on the specified disk.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Discussion
The InvalidateFolderDescriptorCache function searches to see if there is currently a cache of results
from FindFolder calls on the specified folder. If so, it invalidates the cache from the previous calls to the
FindFolder function in order to force the Folder Manager to reexamine the disk when FindFolder is called
again on the specified directory ID or volume reference number.

If you remove a directory on disk which you know is a Folder Manager folder, you should call this function
to update the Folder Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

972 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

InvokeFolderManagerNotificationUPP
Calls your notification function.

OSStatus InvokeFolderManagerNotificationUPP (
 OSType message,
 void *arg,
 void *userRefCon,
 FolderManagerNotificationUPP userUPP
);

Discussion
You should not need to use the InvokeFolderManagerNotificationUPP function, as the system calls
your notification function for you.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

NewFolderManagerNotificationUPP
Creates a new universal procedure pointer (UPP) to a notification function.

FolderManagerNotificationUPP NewFolderManagerNotificationUPP (
 FolderManagerNotificationProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your notification function.

Return Value
The UPP to the notification function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

ReleaseFolder
Releases the Trash folder in preparation for unmounting a server volume. (Deprecated in Mac OS X v10.3.
This function is not needed in Mac OS X.)

Functions 973
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

OSErr ReleaseFolder (
 FSVolumeRefNum vRefNum,
 OSType folderType
);

Parameters
vRefNum

Pass the volume reference number of the server volume on which you want to release the Trash
folder.

folderType
Always pass the kTrashFolderType constant. Other folder types are currently ignored.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Discussion
When you call FindFolder (page 960) with the kTrashFolderType constant, it opens a file on a server
volume that ensures each server volume user gets a unique Trash folder. Because a server volume’s Trash
folder may contain files or folders put there by the user, applications should delete the contents of the server
volume’s Trash folder. To do this, before your application unmounts a server volume, your application should
call ReleaseFolder, or the UnmountVol request could fail with a fBsyErr result code. ReleaseFolder
closes the file FindFolder may have opened and releases the Trash folder on that volume.

Your application should not use this function unless you want to unmount one or more server volumes.
Normally, applications should not unmount servers; they should let users use the Finder to unmount volumes.
In particular, applications should have no need to release the Trash folder explicitly; rather, unmounting
volumes should be left to users to do with the Finder or by restarting.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
Folders.h

RemoveFolderDescriptor
Deletes the specified folder descriptor entry from the system folder list.

OSErr RemoveFolderDescriptor (
 FolderType foldType
);

Parameters
foldType

Pass a constant identifying the type of the folder for which you wish to remove a descriptor. See
Folder Type Constants (page 985).

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Discussion
Once a folder descriptor has been removed, the function FindFolder (page 960) will no longer be able to
locate the folder type.

974 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

RemoveFolderRouting
Deletes a folder routing structure from the global routing list. (Deprecated in Mac OS X v10.4. There is no
replacement function.)

OSErr RemoveFolderRouting (
 OSType fileType,
 FolderType routeFromFolder
);

Parameters
fileType

Pass the file type value contained in the folder routing structure to be removed.

routeFromFolder
Pass the folder type of the “from” folder see Folder Type Constants (page 985) for descriptions of
possible values.

Return Value
A result code. See "Folder Manager Result Codes" (page 1001).

Discussion
Both the file type and the folder type specified must match those of an existing folder routing structure for
the RemoveFolderRouting function to succeed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Folders.h

Callbacks

FolderManagerNotificationProcPtr
Defines a pointer to a notification function, called for all Folder Manager notifications.

typedef OSStatus (*FolderManagerNotificationProcPtr)
(
 OSType message,
 void * arg,
 void * userRefCon);

If you name your function MyFolderManagerNotificationProc, you would declare it like this:

Callbacks 975
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

OSStatus MyFolderManagerNotificationProc
(
 OSType message,
 void * arg,
 void * userRefCon);

Parameters
message

The type of notification (user login, user logout, etc.). See “Notification Messages” (page 999).

arg
A pointer to additional information, if any. For most messages, this is a pointer to a
FindFolderUserRedirectionGlobals structure. If the message is
kFolderManagerNotificationDiscardCachedData, arg is undefined.

userRefCon
A pointer to a value for your own use; this may be any value you want, such as a pointer to your
globals or other state information.

Return Value
A result code. See “Folder Manager Result Codes” (page 1001).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

Data Types

FindFolderUserRedirectionGlobals
Used in the arg parameter of a notification function.

struct FindFolderUserRedirectionGlobals {
 UInt32 version;
 UInt32 flags;
 Str31 userName;
 short userNameScript;
 short currentUserFolderVRefNum;
 long currentUserFolderDirID;
 short remoteUserFolderVRefNum;
 long remoteUserFolderDirID;
};
typedef struct FindFolderUserRedirectionGlobals FindFolderUserRedirectionGlobals;
typedef FindFolderUserRedirectionGlobals * FindFolderUserRedirectionGlobalsPtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Folders.h

976 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

FolderDesc
Used to find existing folder descriptors and create new ones.

struct FolderDesc {
 Size descSize;
 FolderType foldType;
 FolderDescFlags flags;
 FolderClass foldClass;
 FolderType foldLocation;
 OSType badgeSignature;
 OSType badgeType;
 UInt32 reserved;
 StrFileName name;
};
typedef struct FolderDesc FolderDesc;
typedef FolderDesc * FolderDescPtr;

Fields
descSize

The size (in bytes) of this structure.

foldType
A constant of type FolderType that identifies the kind of target folder. See “Folder Type
Constants” (page 985) for a list of possible folder types.

flags
Flags indicating whether a folder is created during startup, if the folder name is locked, and if the
folder created is invisible; see “Folder Descriptor Flags” (page 982).

foldClass
The class indicating whether the folder is relative to the parent folder or special; see “Folder Descriptor
Classes” (page 981).

foldLocation
For a relative folder, the foldLocation field specifies the FolderType of the parent folder of the
target. For special folders, the location of the folder. See “Folder Descriptor Locations” (page 984).

badgeSignature
Reserved. Set this field to 0.

badgeType
Reserved. Set this field to 0.

reserved
Reserved. Set this field to 0.

name
A string specifying the name of the desired folder. For relative folders, this will be the exact name of
the desired folder. For special folders, the actual target folder may have a different name than the
name specified in the folder descriptor. For example, the System Folder is often given a different
name, but it can still be located with FindFolder (page 960).

Discussion
The FolderDesc structure is supported under Mac OS 8 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

Data Types 977
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

FolderManagerNotificationUPP
Defines a universal procedure pointer (UPP) to a notification function.

typedef FolderManagerNotificationProcPtr FolderManagerNotificationUPP;

Discussion
For more information, see the description of the FolderManagerNotificationProcPtr (page 975) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

FolderRouting
Specifies the folder that files are routed to, based on the folder they are routed from.

struct FolderRouting {
 Size descSize;
 OSType fileType;
 FolderType routeFromFolder;
 FolderType routeToFolder;
 RoutingFlags flags;
};
typedef struct FolderRouting FolderRouting;
typedef FolderRouting * FolderRoutingPtr;

Fields
descSize

The size (in bytes) of this structure.

fileType
A constant of type OSType that describes the file type of the item to be routed.

routeFromFolder
The folder type identifying the folder from which an item will be routed. If an item is dropped on the
folder specified in the routeFromFolder field, it will be routed to the folder described in the
routeToFolder field. See “Folder Type Constants” (page 985) for a list of possible values.

routeToFolder
The folder type identifying the folder to which an item will be routed; see “Folder Type Constants” (page
985) for a list of possible values.

flags
Reserved. Set this field to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Folders.h

978 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

MultiUserGestalt

struct MultiUserGestalt {
 short giVersion;
 short giReserved0;
 short giReserved1;
 short giReserved2;
 short giReserved3;
 FSSpec giReserved4;
 short giDocsVRefNum;
 long giDocsDirID;
 short giForceSaves;
 short giForceOpens;
 Str31 giSetupName;
 Str31 giUserName;
 Str31 giFrontAppName;
 short giReserved5;
 short giIsOn;
 short giUserLoggedInType;
 char giUserEncryptPwd[16];
 short giUserEnvironment;
 long giReserved6;
 long giReserved7;
 Boolean giDisableScrnShots;
 Boolean giSupportsAsyncFSCalls;
 short giPrefsVRefNum;
 long giPrefsDirID;
 unsigned long giUserLogInTime;
 Boolean giUsingPrintQuotas;
 Boolean giUsingDiskQuotas;
 Boolean giInSystemAccess;
 Boolean giUserFolderEnabled;
 short giReserved8;
 long giReserved9;
 Boolean giInLoginScreen;
};
typedef struct MultiUserGestalt MultiUserGestalt;
typedef MultiUserGestalt * MultiUserGestaltPtr;

Fields
giVersion

The structure version. A structure version of 0 is invalid.

giReserved0
Obsolete with structure version 3.

giReserved1
Obsolete.

giReserved2
Obsolete with structure version 6.]

giReserved3
Obsolete.

giReserved4
Obsolete with structure version 6.

giDocsVRefNum
The volume reference number associated with the user's documents location.

Data Types 979
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

giDocsDirID
The directory ID of the user's documents folder.

giForceSaves
True if the user is forced to save to their documents folder.

giForceOpens
True if the user is forced to open from their documents folder.

giSetupName
The name of the current setup.

giUserName
The name of the current user.

giFrontAppName
The name of the frontmost application.

giReserved5
Obsolete with structure version 6.

giIsOn
True if Multiple Users or Macintosh Manager is currently on.

giUserLoggedInType
The logged in user type. Zero indicates a normal user, 1 indicates a workgroup administrator, and 2
indicates a global administrator.

giUserEncryptPwd
The encrypted user password.

giUserEnvironment
The environment that the user has logged into.

giReserved6
Obsolete.

giReserved7
Obsolete.

giDisableScrnShots
True if screen shots are not allowed.

giSupportsAsyncFSCalls
The Finder uses this to tell if our patches support asynchronous trap patches.

giPrefsVRefNum
The volume reference number of preferences.

giPrefsDirID
The directory ID of the At Ease Items folder on the preferences volume.

giUserLogInTime
The time in seconds the user has been logged in.

giUsingPrintQuotas
True if the logged in user is using printer quotas.

giUsingDiskQuotas
True if the logged in user has disk quotas active.

giInSystemAccess
True if the system is in System Access, that is the owner is logged in.

980 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

giUserFolderEnabled
True if FindFolder is redirecting folders.

giReserved8
giReserved9
giInLoginScreen

True if no user has logged in, including the owner.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Folders.h

Constants

Create Folder Flags
Indicate whether a folder should be created, if it is not found.

enum {
 kCreateFolder = true,
 kDontCreateFolder = false
};

Constants
kCreateFolder

Specifies that the folder should be created, if it is not found.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kDontCreateFolder
Specifies that the folder should not be created, if it is not found.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Discussion
You can pass these flag constants in the createFolder parameter of the function FSFindFolder (page
966).

Folder Descriptor Classes
Specify how folder location information should be interpreted.

Constants 981
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

enum {
 kRelativeFolder = 'relf',
 kSpecialFolder = 'spcf'
};
typedef OSType FolderClass;

Constants
kRelativeFolder

Relative folders are located in terms of the folders in which they are nested, that is, their parent folders.
This constant indicates that the folder location specified is the folder type of the parent folder, and
the name specified is the name of the folder. Most folder descriptors are for relative folders.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSpecialFolder
Special folders—such as the System Folder and the disk’s root directory—are in set locations that are
not determined relative to any other folder. This constant indicates that the folder is located
algorithmically, according to the constant supplied for the folder location (kBlessedFolder or
kRootFolder). Developers cannot create new folder descriptors of the kSpecialFolder class.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Discussion
Constants of type FolderClass are used to specify how folder location information should be interpreted
in the function AddFolderDescriptor (page 957) and the structure FolderDesc (page 977). The
FolderClass constants are supported under Mac OS 8 and later.

Developers can only create new folder descriptors with a class of kRelativeFolder.

Folder Descriptor Flags
Specify various attributes of a folder.

982 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

enum {
 kCreateFolderAtBoot = 0x00000002,
 kCreateFolderAtBootBit = 1,
 kFolderCreatedInvisible = 0x00000004,
 kFolderCreatedInvisibleBit = 2,
 kFolderCreatedNameLocked = 0x00000008,
 kFolderCreatedNameLockedBit = 3,
 kFolderCreatedAdminPrivs = 0x00000010,
 kFolderCreatedAdminPrivsBit = 4
};enum {
 kFolderInUserFolder = 0x00000020,
 kFolderInUserFolderBit = 5,
 kFolderTrackedByAlias = 0x00000040,
 kFolderTrackedByAliasBit = 6,
 kFolderInRemoteUserFolderIfAvailable = 0x00000080,
 kFolderInRemoteUserFolderIfAvailableBit = 7,
 kFolderNeverMatchedInIdentifyFolder = 0x00000100,
 kFolderNeverMatchedInIdentifyFolderBit = 8,
 kFolderMustStayOnSameVolume = 0x00000200,
 kFolderMustStayOnSameVolumeBit = 9,
 kFolderManagerFolderInMacOS9FolderIfMacOSXIsInstalledMask =
0x00000400,
 kFolderManagerFolderInMacOS9FolderIfMacOSXIsInstalledBit = 10,
 kFolderInLocalOrRemoteUserFolder = kFolderInUserFolder |
kFolderInRemoteUserFolderIfAvailable
};
typedef UInt32 FolderDescFlags;

Constants
kCreateFolderAtBoot

If the bit specified by this mask is set, the folder is created during startup if needed.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kCreateFolderAtBootBit
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFolderCreatedInvisible
If the bit specified by this mask is set, the folder created is invisible.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFolderCreatedInvisibleBit
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFolderCreatedNameLocked
If the bit specified by this mask is set, the name of the folder is locked when the folder is created.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFolderCreatedNameLockedBit
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Constants 983
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kFolderCreatedAdminPrivs
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFolderCreatedAdminPrivsBit
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Discussion
The FolderDescFlags enumeration defines masks your application can use in the
AddFolderDescriptor (page 957) function and the FolderDesc (page 977) structure to specify various
attributes of a folder. All other flag bits are reserved for future use. The FolderDescFlags constants are
supported under Mac OS 8 and later.

Folder Descriptor Locations
Identify special folder locations.

enum {
 kBlessedFolder = 'blsf',
 kRootFolder = 'rotf'
};typedef OSType FolderLocation;

Constants
kBlessedFolder

Indicates that the folder location is the System Folder on the volume.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kRootFolder
Indicates that the folder location is the root directory of the volume.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Discussion
There are two special folder locations that you can specify in folder descriptors via the FolderDesc (page
977) structure and theAddFolderDescriptor (page 957) function. For folders whose class iskSpecialFolder,
you can use the following constants to specify the location of the folder algorithmically. The FolderLocation
constants are supported under Mac OS 8 and later.

kCurrentUserFolderLocation

enum {
 kCurrentUserFolderLocation = 'cusf'
};

Constants
kCurrentUserFolderLocation

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

984 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

Folder Type Constants
Specify a type of folder on a particular volume.

Constants 985
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

enum {
 kSystemFolderType = 'macs',
 kDesktopFolderType = 'desk',
 kSystemDesktopFolderType = 'sdsk',
 kTrashFolderType = 'trsh',
 kSystemTrashFolderType = 'strs',
 kWhereToEmptyTrashFolderType = 'empt',
 kPrintMonitorDocsFolderType = 'prnt',
 kStartupFolderType = 'strt',
 kShutdownFolderType = 'shdf',
 kAppleMenuFolderType = 'amnu',
 kControlPanelFolderType = 'ctrl',
 kSystemControlPanelFolderType = 'sctl',
 kExtensionFolderType = 'extn',
 kFontsFolderType = 'font',
 kPreferencesFolderType = 'pref',
 kSystemPreferencesFolderType = 'sprf',
 kTemporaryFolderType = 'temp'
};
enum {
 kExtensionDisabledFolderType = 'extD',
 kControlPanelDisabledFolderType = 'ctrD',
 kSystemExtensionDisabledFolderType = 'macD',
 kStartupItemsDisabledFolderType = 'strD',
 kShutdownItemsDisabledFolderType = 'shdD',
 kApplicationsFolderType = 'apps',
 kDocumentsFolderType = 'docs'
};
enum {
 kVolumeRootFolderType = 'root',
 kChewableItemsFolderType = 'flnt',
 kApplicationSupportFolderType = 'asup',
 kTextEncodingsFolderType = 'ƒtex',
 kStationeryFolderType = 'odst',
 kOpenDocFolderType = 'odod',
 kOpenDocShellPlugInsFolderType = 'odsp',
 kEditorsFolderType = 'oded',
 kOpenDocEditorsFolderType = 'ƒodf',
 kOpenDocLibrariesFolderType = 'odlb',
 kGenEditorsFolderType = 'ƒedi',
 kHelpFolderType = 'ƒhlp',
 kInternetPlugInFolderType = 'ƒnet',
 kModemScriptsFolderType = 'ƒmod',
 kPrinterDescriptionFolderType = 'ppdf',
 kPrinterDriverFolderType = 'ƒprd',
 kScriptingAdditionsFolderType = 'ƒscr',
 kSharedLibrariesFolderType = 'ƒlib',
 kVoicesFolderType = 'fvoc',
 kControlStripModulesFolderType = 'sdev',
 kAssistantsFolderType = 'astƒ',
 kUtilitiesFolderType = 'utiƒ',
 kAppleExtrasFolderType = 'aexƒ',
 kContextualMenuItemsFolderType = 'cmnu',
 kMacOSReadMesFolderType = 'morƒ',
 kALMModulesFolderType = 'walk',
 kALMPreferencesFolderType = 'trip',
 kALMLocationsFolderType = 'fall',
 kColorSyncProfilesFolderType = 'prof',

986 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

 kThemesFolderType = 'thme',
 kFavoritesFolderType = 'favs',
 kInternetFolderType = 'intƒ',
 kAppearanceFolderType = 'appr',
 kSoundSetsFolderType = 'snds',
 kDesktopPicturesFolderType = 'dtpƒ',
 kInternetSearchSitesFolderType = 'issf',
 kFindSupportFolderType = 'fnds',
 kFindByContentFolderType = 'fbcf',
 kInstallerLogsFolderType = 'ilgf',
 kScriptsFolderType = 'scrƒ',
 kFolderActionsFolderType = 'fasf',
 kLauncherItemsFolderType = 'laun',
 kRecentApplicationsFolderType = 'rapp',
 kRecentDocumentsFolderType = 'rdoc',
 kRecentServersFolderType = 'rsvr',
 kSpeakableItemsFolderType = 'spki',
 kKeychainFolderType = 'kchn',
 kQuickTimeExtensionsFolderType = 'qtex',
 kDisplayExtensionsFolderType = 'dspl',
 kMultiprocessingFolderType = 'mpxf',
 kPrintingPlugInsFolderType = 'pplg'
};
typedef OSType FolderType;

Constants
kSystemFolderType

Specifies the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kDesktopFolderType
Specifies the Desktop Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSystemDesktopFolderType
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kTrashFolderType
Specifies the single-user Trash folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSystemTrashFolderType
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kWhereToEmptyTrashFolderType
Specifies the shared Trash folder on a file server, this indicates the parent directory of all logged-on
users’ Trash subdirectories.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Constants 987
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kPrintMonitorDocsFolderType
Specifies the PrintMonitor Documents folder in the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kStartupFolderType
Specifies the Startup Items folder in the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kShutdownFolderType
Specifies the Shutdown Items folder in the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kAppleMenuFolderType
Specifies the Apple Menu Items folder in the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kControlPanelFolderType
Specifies the Control Panels folder in the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSystemControlPanelFolderType
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kExtensionFolderType
Specifies the Extensions folder in the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFontsFolderType
Specifies the Fonts folder in the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kPreferencesFolderType
Specifies the Preferences folder in the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSystemPreferencesFolderType
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kTemporaryFolderType
Specifies the Temporary folder. This folder exists as an invisible folder at the volume root.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

988 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kExtensionDisabledFolderType
Specifies the Extensions (Disabled) folder in the System Folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kControlPanelDisabledFolderType
Specifies the Control Panels (Disabled) folder in the System Folder. Supported with Mac OS 8 and
later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSystemExtensionDisabledFolderType
Specifies the System Extensions (Disabled) folder in the System Folder. Supported with Mac OS 8 and
later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kStartupItemsDisabledFolderType
Specifies the Startup Items (Disabled) folder in the System Folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kShutdownItemsDisabledFolderType
Specifies the Shutdown Items (Disabled) folder in the System Folder. Supported with Mac OS 8 and
later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kApplicationsFolderType
Specifies the Applications folder installed at the root level of the volume. Supported with Mac OS 8
and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kDocumentsFolderType
Specifies the Documents folder. This folder is created at the volume root. Supported with Mac OS 8
and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kVolumeRootFolderType
Specifies the root folder of a volume. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Constants 989
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kChewableItemsFolderType
Specifies the invisible folder on the system disk called “Cleanup at Startup” whose contents are deleted
when the system is restarted, instead of merely being moved to the Trash. When the FindFolder
function indicates this folder is available (by returning noErr), developers should usually use this
folder for their temporary items, in preference to the Temporary Folder. Supported with Mac OS 8
and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kApplicationSupportFolderType
Specifies the Application Support folder in the System Folder. This folder contains code and data files
needed by third-party applications. These files should usually not be written to after they are installed.
In general, files deleted from this folder remove functionality from an application, unlike files in the
Preferences folder, which should be non-essential. One type of file that could be placed here would
be plug-ins that the user might want to maintain separately from any application, such as for an
image-processing application that has many “fourth-party” plug-ins that the user might want to
upgrade separately from the host application. Another type of file that might belong in this folder
would be application-specific data files that are not preferences, such as for a scanner application
that needs to read description files for specific scanner models according to which are currently
available on the SCSI bus or network. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kTextEncodingsFolderType
Specifies the Text Encodings folder in the System Folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kStationeryFolderType
Specifies the OpenDoc stationery folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kOpenDocFolderType
Specifies the OpenDoc root folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kOpenDocShellPlugInsFolderType
Specifies the OpenDoc shell plug-ins folder in the OpenDoc folder. Supported with Mac OS 8 and
later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kEditorsFolderType
Specifies the OpenDoc editors folder in the Mac OS folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

990 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kOpenDocEditorsFolderType
Specifies the OpenDoc subfolder in the Editors folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kOpenDocLibrariesFolderType
Specifies the OpenDoc libraries folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kGenEditorsFolderType
Specifies a general editors folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kHelpFolderType
Specifies the Help folder in the System Folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kInternetPlugInFolderType
Specifies the Browser Plug-ins folder in the System Folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kModemScriptsFolderType
Specifies the Modem Scripts folder in the Extensions folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kPrinterDescriptionFolderType
Specifies the Printer Descriptions folder in the Extensions folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kPrinterDriverFolderType
Specifies the printer drivers folder. This constant is not currently supported.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kScriptingAdditionsFolderType
Specifies the Scripting Additions folder in the System Folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSharedLibrariesFolderType
Specifies the general shared libraries folder. This constant is not currently supported.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Constants 991
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kVoicesFolderType
Specifies the Voices folder in the Extensions folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kControlStripModulesFolderType
Specifies the Control Strip Modules folder in the System Folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kAssistantsFolderType
Specifies the Assistants folder installed at the root level of the volume. Supported with Mac OS 8 and
later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kUtilitiesFolderType
Specifies the Utilities folder installed at the root level of the volume. Supported with Mac OS 8 and
later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kAppleExtrasFolderType
Specifies the Apple Extras folder installed at the root level of the volume. Supported with Mac OS 8
and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kContextualMenuItemsFolderType
Specifies the Contextual Menu Items folder in the System Folder. Supported with Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kMacOSReadMesFolderType
Specifies the Mac OS Read Me Files folder installed at the root level of the volume. Supported with
Mac OS 8 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kALMModulesFolderType
Specifies the Location Manager Modules folder in the Extensions Folder. Supported with Mac OS 8.1
and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kALMPreferencesFolderType
Specifies the Location Manager Prefs folder in the Preferences folder. Supported with Mac OS 8.1 and
later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

992 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kALMLocationsFolderType
Specifies the Locations folder in the Location Manager Prefs folder. Files containing configuration
information for different locations are stored here. Supported with Mac OS 8.1 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kColorSyncProfilesFolderType
Specifies the ColorSync Profiles folder in the System Folder. Supported with Mac OS 8.1 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kThemesFolderType
Specifies the Theme Files folder in the Appearance folder. Supported with Mac OS 8.1 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFavoritesFolderType
Specifies the Favorites folder in the System Folder. This folder is for storing Internet location files,
aliases, and aliases to other frequently used items. Facilities for adding items into this folder are found
in Contextual Menus, the Finder, Navigation Services, and others. Supported with Mac OS 8.1 and
later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kInternetFolderType
Specifies the Internet folder installed at the root level of the volume. This folder is a location for saving
Internet-related applications, resources, and tools. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kAppearanceFolderType
Specifies the Appearance folder in the System Folder. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSoundSetsFolderType
Specifies the Sound Sets folder in the Appearance folder. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kDesktopPicturesFolderType
Specifies the Desktop Pictures folder in the Appearance folder. This folder is used for storing desktop
picture files. Files of type 'JPEG' are auto-routed into this folder when dropped into the System
Folder. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Constants 993
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kInternetSearchSitesFolderType
Specifies the Internet Search Sites folder in the System Folder. This folder contains Internet search
site specification files used by the Find application when it accesses Internet search sites. Files of type
'issp' are auto-routed to this folder. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFindSupportFolderType
Specifies the Find folder in the Extensions folder. This folder contains files used by the Find application.
Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFindByContentFolderType
Specifies the Find By Content folder installed at the root level of the volume. This folder is invisible
and its use is private to Find By Content. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kInstallerLogsFolderType
Specifies the Installer Logs folder installed at the root level of the volume. You can use this folder to
save installer log files. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kScriptsFolderType
Specifies the Scripts folder in the System Folder. This folder is for saving AppleScript scripts. Supported
with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kFolderActionsFolderType
Specifies the Folder Action Scripts folder in the Scripts folder. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kLauncherItemsFolderType
Specifies the Launcher Items folder in the System Folder. Items in this folder appear in the Launcher
control panel. Items included in folders with names beginning with a bullet (Option-8) character will
appear as a separate panel in the Launcher window. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kRecentApplicationsFolderType
Specifies the Recent Applications folder in the Apple Menu Items folder. Apple Menu Items saves
aliases to recent applications here. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

994 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kRecentDocumentsFolderType
Specifies the Recent Documents folder in the Apple Menu Items folder. Apple Menu Items saves
aliases to recently opened documents here. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kRecentServersFolderType
Specifies the Recent Servers folder in the Apple Menu Items folder. Apple Menu Items saves aliases
to recently mounted servers here. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSpeakableItemsFolderType
Specifies the Speakable Items folder. This folder is for storing scripts and items recognized by speech
recognition. Supported with Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Constants 995
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kDomainTopLevelFolderType

enum {
 kDomainTopLevelFolderType = 'dtop',
 kDomainLibraryFolderType = 'dlib',
 kColorSyncFolderType = 'sync',
 kColorSyncCMMFolderType = 'ccmm',
 kColorSyncScriptingFolderType = 'cscr',
 kPrintersFolderType = 'impr',
 kSpeechFolderType = 'spch',
 kCarbonLibraryFolderType = 'carb',
 kDocumentationFolderType = 'info',
 kDeveloperDocsFolderType = 'ddoc',
 kDeveloperHelpFolderType = 'devh',
 kISSDownloadsFolderType = 'issd',
 kUserSpecificTmpFolderType = 'utmp',
 kCachedDataFolderType = 'cach',
 kFrameworksFolderType = 'fram',
 kPrivateFrameworksFolderType = 'pfrm',
 kClassicDesktopFolderType = 'sdsk',
 kDeveloperFolderType = 'devf',
 kSystemSoundsFolderType = 'ssnd',
 kComponentsFolderType = 'cmpd',
 kQuickTimeComponentsFolderType = 'wcmp',
 kCoreServicesFolderType = 'csrv',
 kPictureDocumentsFolderType = 'pdoc',
 kMovieDocumentsFolderType = 'mdoc',
 kMusicDocumentsFolderType = 'doc',
 kInternetSitesFolderType = 'site',
 kPublicFolderType = 'pubb',
 kAudioSupportFolderType = 'adio',
 kAudioSoundsFolderType = 'asnd',
 kAudioSoundBanksFolderType = 'bank',
 kAudioAlertSoundsFolderType = 'alrt',
 kAudioPlugInsFolderType = 'aplg',
 kAudioComponentsFolderType = 'acmp',
 kKernelExtensionsFolderType = 'kext',
 kDirectoryServicesFolderType = 'dsrv',
 kDirectoryServicesPlugInsFolderType = 'dplg',
 kInstallerReceiptsFolderType = 'rcpt',
 kFileSystemSupportFolderType = 'fsys',
 kAppleShareSupportFolderType = 'shar',
 kAppleShareAuthenticationFolderType = 'auth',
 kMIDIDriversFolderType = 'midi',
 kKeyboardLayoutsFolderType = 'klay',
 kIndexFilesFolderType = 'indx',
 kFindByContentIndexesFolderType = 'fbcx',
 kManagedItemsFolderType = 'mang',
 kBootTimeStartupItemsFolderType = 'empz'
};

kAppleshareAutomountServerAliasesFolderType

enum {
 kAppleshareAutomountServerAliasesFolderType = 'srvƒ',
 kPreMacOS91ApplicationsFolderType = 'åpps',

996 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

 kPreMacOS91InstallerLogsFolderType = 'îlgf',
 kPreMacOS91AssistantsFolderType = 'åstƒ',
 kPreMacOS91UtilitiesFolderType = 'ütiƒ',
 kPreMacOS91AppleExtrasFolderType = 'åexƒ',
 kPreMacOS91MacOSReadMesFolderType = 'orƒ',
 kPreMacOS91InternetFolderType = 'întƒ',
 kPreMacOS91AutomountedServersFolderType = 'ßrvƒ',
 kPreMacOS91StationeryFolderType = 'ødst'
};

kUsersFolderType

enum {
 kUsersFolderType = 'usrs',
 kCurrentUserFolderType = 'cusr',
 kCurrentUserRemoteFolderLocation = 'rusf',
 kCurrentUserRemoteFolderType = 'rusr',
 kSharedUserDataFolderType = 'sdat',
 kVolumeSettingsFolderType = 'vsfd'
};

kLocalesFolderType

enum {
 kLocalesFolderType = 'ƒloc',
 kFindByContentPluginsFolderType = 'fbcp'
};

Disk and Domain Constants
Identify the disk or domain in which to locate a folder.

enum {
 kOnSystemDisk = -32768L,
 kOnAppropriateDisk = -32767,
 kSystemDomain = -32766,
 kLocalDomain = -32765,
 kNetworkDomain = -32764,
 kUserDomain = -32763,
 kClassicDomain = -32762
};
enum {
 kLastDomainConstant = kUserDomain
};

Constants
kOnSystemDisk

Specifies the system disk.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Constants 997
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kOnAppropriateDisk
In most cases, the equivalent of kOnSystemDisk. On Mac OS X, use this constant instead of the
constant kOnSytemDisk to indicate any disk.

Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kSystemDomain
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kLocalDomain
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kNetworkDomain
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kUserDomain
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kClassicDomain
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

kLastDomainConstant
Available in Mac OS X v10.0 and later.

Declared in Folders.h.

Discussion
You can pass this constant in the vRefNum parameter of FSFindFolder (page 966) to locate a folder on the
startup disk.

Notification Options
Specify options for the FolderManagerRegisterNotificationProc function.

enum {
 kDoNotRemoveWhenCurrentApplicationQuitsBit = 0,
 kDoNotRemoveWheCurrentApplicationQuitsBit =
kDoNotRemoveWhenCurrentApplicationQuitsBit
};

Constants
kDoNotRemoveWhenCurrentApplicationQuitsBit

Tells the Folder Manager to not remove your notification function when the current application quits.
Otherwise, a notification function registered within an application's context will be automatically
removed when that application quits. Programs that register notifications at system startup should
set this bit.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Folders.h.

998 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

kDoNotRemoveWheCurrentApplicationQuitsBit
Use kDoNotRemoveWhenCurrentApplicationQuitsBit instead.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Folders.h.

FSFindFolderExtended Flags
Specify additional options for folder searches performed with the FSFindFolderExtended function.

enum {
 kFindFolderExtendedFlagsDoNotFollowAliasesBit = 0,
 kFindFolderExtendedFlagsDoNotUseUserFolderBit = 1,
 kFindFolderExtendedFlagsUseOtherUserRecord = 0x01000000
};

Discussion
These are passed toFSFindFolderExtended (page 966) andFindFolderExtended (page 962) in theflags
field.

FindFolderUserRedirectionGlobals Flags
Used in the flags field of the FindFolderUserRedirectionGlobals structure

enum {
 kFindFolderRedirectionFlagUseDistinctUserFoldersBit = 0,
 kFindFolderRedirectionFlagUseGivenVRefAndDirIDAsUserFolderBit
= 1,
 kFindFolderRedirectionFlagsUseGivenVRefNumAndDirIDAsRemoteUserFolderBit
= 2
};
typedef UInt32 RoutingFlags;

FindFolderUserRedirectionGlobals Structure Version
Represents the current version of the FindFolderUserRedirectionGlobals structure.

enum {
 kFolderManagerUserRedirectionGlobalsCurrentVersion = 1
};

Notification Messages
Define messages sent to your notification function.

Constants 999
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

enum {
 kFolderManagerNotificationMessageUserLogIn = 'log+',
 kFolderManagerNotificationMessagePreUserLogIn = 'logj',
 kFolderManagerNotificationMessageUserLogOut = 'log-',
 kFolderManagerNotificationMessagePostUserLogOut = 'logp',
 kFolderManagerNotificationDiscardCachedData = 'dche',
 kFolderManagerNotificationMessageLoginStartup = 'stup'
};

Constants
kFolderManagerNotificationMessageUserLogIn

Sent when a user has logged in. When you receive this message FindFolderwill return the vRefNum
and dirID of the user's redirected folders until the user logs out. This message can be used to load
the new user's preferences.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Folders.h.

kFolderManagerNotificationMessagePreUserLogIn
Sent just prior to redirecting FindFolder to the user's folders. Calling FindFolder when receiving
this notification will return the vRefNum and dirID of the system folders. This message can be used
to update the owner's preference files prior to FindFolder being redirected.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Folders.h.

kFolderManagerNotificationMessageUserLogOut
Sent when a user has logged out. This is the last time FindFolder will return the user's folders; after
this notification FindFolder will return the vRefNum and dirID of system folders. This message
can be used to update a user's preference files during logout.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Folders.h.

kFolderManagerNotificationMessagePostUserLogOut
Sent just after FindFolder has been restored to return the vRefNum and dirID of system folders.
This message can be used to load the owner's preferences.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Folders.h.

kFolderManagerNotificationDiscardCachedData
Sent by third-party software when the entire Folder Manager cache should be flushed.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Folders.h.

kFolderManagerNotificationMessageLoginStartup
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Folders.h.

FolderManagerCallNotificationProcs Options
Used in the options parameter of FolderManagerCallNotificationProcs.

1000 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

enum {
 kStopIfAnyNotificationProcReturnsErrorBit = 31
};

Result Codes

The most common result codes returned by Folder Manager are listed below.

DescriptionValueResult Code

Invalid folder-4270badFolderDescErr

Available in Mac OS X v10.0 and later.

Duplicate folders for a particular routing-4271duplicateFolderDescErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-4272noMoreFolderDescErr

Invalid folder name-4273invalidFolderTypeErr

Available in Mac OS X v10.0 and later.

Same routing for two folders-4274duplicateRoutingErr

Available in Mac OS X v10.0 and later.

No routing set up for the folder passed in-4275routingNotFoundErr

Available in Mac OS X v10.0 and later.

Incorrect descSize field of the folder routing structure-4276badRoutingSizeErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Folder Manager selectors defined
in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.

Result Codes 1001
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

1002 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Folder Manager Reference

Framework: CoreServices/CoreServices.h

Declared in Gestalt.h

Overview

You can use the Gestalt Manager and other system software facilities to investigate the operating environment.
You need to know about the operating environment if your application takes advantage of hardware or
software that is not available on all Macintosh computers. You can also use the Gestalt Manager to inform
the operating system that your software is present and to find out about other software registered with the
Gestalt Manager.

Carbon supports the Gestalt Manager. However, the results returned by Gestalt functions in Mac OS X are
relevant only to your application's context. In general, the Gestalt function returns a different result when
called from a Carbon application running in Mac OS X than it returns when called from a Classic application
in Mac OS X, because these are different environments. For example, Carbon does not use a ROM, so calling
Gestalt from a Carbon application on a beige G3 Macintosh computer and passing the ROMVersion selector
returns a different result than Gestalt returns for a Classic application on the same computer. In fact,
Gestalt could conceivably return different results for the same call by two Carbon applications.

Because Gestalt operates on a per-context basis in Mac OS X, you can't use it to share information (through
pointers or any other means) among applications.

The ROMVersion and machineType selectors are not supported in Carbon.

In versions of the Mac OS prior to Mac OS X, the NewGestalt and ReplaceGestalt functions make use of
the system heap, so that new or replaced selectors are available to any process. In Mac OS X, however, there
is no system heap, and the selectors are available only on a per-context basis.

Functions by Task

Getting and Setting Gestalt Selector Codes and Values

Gestalt (page 1005)
Obtains information about the operating environment.

NewGestaltValue (page 1008)
Installs a new Gestalt selector code and a value that Gestalt returns for that selector.

Overview 1003
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

SetGestaltValue (page 1010)
Sets the value the function Gestalt will return for a specified selector code, installing the selector if
it was not already installed.

ReplaceGestaltValue (page 1009)
Replaces the value that the function Gestalt returns for a specified selector code with the value
provided to the function.

DeleteGestaltValue (page 1004)
Deletes a Gestalt selector code so that it is no longer recognized by Gestalt.

NewGestalt (page 1007) Deprecated in Mac OS X v10.3
Adds a selector code to those already recognized by Gestalt. (Deprecated. Use
NewGestaltValue (page 1008) instead.)

ReplaceGestalt (page 1009) Deprecated in Mac OS X v10.3
Replaces the selector function associated with an existing selector code. (Deprecated. Use
NewGestaltValue (page 1008) instead.)

Working With Universal Procedure Pointers for Gestalt Selector Functions

NewSelectorFunctionUPP (page 1008)
Creates a universal procedure pointer (UPP) to a selector callback function.

DisposeSelectorFunctionUPP (page 1005)
Disposes of a universal procedure pointer to a selector callback function.

InvokeSelectorFunctionUPP (page 1006)
Invokes a selector callback function.

Functions

DeleteGestaltValue
Deletes a Gestalt selector code so that it is no longer recognized by Gestalt.

OSErr DeleteGestaltValue (
 OSType selector
);

Parameters
selector

The selector code you want to delete. This should be a four-character sequence similar to those
defined in “Gestalt Manager Constants” (page 1012).

Return Value
A result code. See “Gestalt Manager Result Codes” (page 1113).

Discussion
After calling this function, subsequent query or replacement calls for the selector code will fail as if the selector
had never been installed.

In Mac OS X, the selector is on a per-context basis. You cannot use this function to affect another process.

1004 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Gestalt.h

DisposeSelectorFunctionUPP
Disposes of a universal procedure pointer to a selector callback function.

void DisposeSelectorFunctionUPP (
 SelectorFunctionUPP userUPP
);

Parameters
userUPP

The universal procedure pointer you want to dispose of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Gestalt.h

Gestalt
Obtains information about the operating environment.

OSErr Gestalt (
 OSType selector,
 SInt32 *response
);

Parameters
selector

The selector code for the information you need. You can provide any of the four-character sequences
defined in “Gestalt Manager Constants” (page 1012).

response
On input, Gestalt interprets this parameter as an address at which it is to place the result returned
by the selector function. Gestalt ignores any information already at this address.

On return, a pointer to the requested information whose format depends on the selector code specified
in the selector parameter. Note that the Gestalt function returns the response from all selectors in
a long word, which occupies 4 bytes. When not all 4 bytes are needed, the significant information
appears in the low-order byte or bytes.

Return Value
A result code. See “Gestalt Manager Result Codes” (page 1113).

Discussion
The Apple-defined selector codes fall into two categories: environmental selectors, which supply specific
environmental information you can use to control the behavior of your application, and informational selectors,
which can’t supply information you can use to determine what hardware or software features are available.
You can use one of the selector codes defined by Apple or a selector code defined by a third-party product.

Functions 1005
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Selectors with the suffix Attr return a 32-bit response value in which the individual bits represent specific
attributes. The constants listed for these response values represent bit numbers.

Special Considerations

When passed one of the Apple-defined selector codes, the Gestalt function does not move or purge memory
and therefore may be called even at interrupt time. However, selector functions associated with non-Apple
selector codes might move or purge memory, and third-party software can alter the Apple-defined selector
functions. Therefore, it is safest always to assume that Gestalt could move or purge memory.

Version Notes
The ROMVersion and machineType selectors are not supported in Carbon.

In general, the Gestalt function returns a different result when called from a Carbon application running
in Mac OS X than it returns when called from a Classic application in Mac OS X, because these are different
environments. For example, Carbon does not use a ROM, so calling Gestalt from a Carbon application on
a beige G3 Macintosh computer and passing the ROMVersion selector returns a different result than Gestalt
returns for a Classic application on the same computer.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
QTMetaData
SampleScannerApp
SoftVDigX
WhackedTV

Declared In
Gestalt.h

InvokeSelectorFunctionUPP
Invokes a selector callback function.

OSErr InvokeSelectorFunctionUPP (
 OSType selector,
 long *response,
 SelectorFunctionUPP userUPP
);

Parameters
selector

The selector code for the function you want to invoke. You can provide any of the four-character
sequences defined in “Gestalt Manager Constants” (page 1012).

response
On ouput, the value associated with the selector code.

userUPP
A universal procedure pointer to the selector callback function you want to invoke.

Return Value
A result code. See “Gestalt Manager Result Codes” (page 1113).

1006 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Discussion
You should not need to call this function, as the operating system invokes your selecor callback for you.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Gestalt.h

NewGestalt
Adds a selector code to those already recognized by Gestalt. (Deprecated in Mac OS X v10.3. Use
NewGestaltValue (page 1008) instead.)

OSErr NewGestalt (
 OSType selector,
 SelectorFunctionUPP gestaltFunction
);

Parameters
selector

The selector code you want to add. This should be a four-character sequence similar to those defined
in “Gestalt Manager Constants” (page 1012).

gestaltFunction
A universal procedure pointer (UPP) to the selector callback function that Gestalt executes when
it receives the new selector code. See SelectorFunctionProcPtr (page 1011) for more information
on the callback you need to provide.

Return Value
A result code. See “Gestalt Manager Result Codes” (page 1113).

Discussion
The NewGestalt function registers a specified selector code with the Gestalt Manager so that when the
Gestalt function is called with that selector code, the specified selector function is executed. Before calling
NewGestalt, you must define a selector function callback. See SelectorFunctionProcPtr (page 1011) for
a description of how to define your selector function.

Registering with the Gestalt Manager is a way for software such as system extensions to make their presence
known to potential users of their services.

Special Considerations

You should avoid using the NewGestalt function to add a selector code, which requires moving your selector
function into the system heap. Applications do not have access to the system heap in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Gestalt.h

Functions 1007
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

NewGestaltValue
Installs a new Gestalt selector code and a value that Gestalt returns for that selector.

OSErr NewGestaltValue (
 OSType selector,
 SInt32 newValue
);

Parameters
selector

The selector code you want to add. This should be a four-character sequence similar to those defined
in “Gestalt Manager Constants” (page 1012).

newValue
The value to return for the new selector code.

Return Value
A result code. See “Gestalt Manager Result Codes” (page 1113).

Discussion
You call the function NewGestaltValue when the specified selector is not already installed and you don't
want to override an existing value.

In Mac OS X, the new selector and value are on a per-context basis. That means they are available only to
the application or other code that installs them. You cannot use this function to make information available
to another process.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Gestalt.h

NewSelectorFunctionUPP
Creates a universal procedure pointer (UPP) to a selector callback function.

SelectorFunctionUPP NewSelectorFunctionUPP (
 SelectorFunctionProcPtr userRoutine
);

Parameters
userRoutine

The address of the selector callback function.

Return Value
On return, a universal procedure pointer to the selector callback function. See the description of the
SelectorFunctionUPP data type.

Discussion
You use the NewSelectorFunctionUPP function to create a UPP to pass to the NewGestalt or
ReplaceGestalt functions.

Availability
Available in Mac OS X v10.0 and later.

1008 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Declared In
Gestalt.h

ReplaceGestalt
Replaces the selector function associated with an existing selector code. (Deprecated in Mac OS X v10.3. Use
NewGestaltValue (page 1008) instead.)

OSErr ReplaceGestalt (
 OSType selector,
 SelectorFunctionUPP gestaltFunction,
 SelectorFunctionUPP *oldGestaltFunction
);

Parameters
selector

The selector code for the function you want to replace. You must provide the four-character sequence
you provided previously for the function you are replacing.

gestaltFunction
A universal procedure pointer to the replacement selector function. You must obtain the value for
this argument by calling the NewGestaltSelectorFunctionUPP function.

oldGestaltFunction
On output, a universal procedure pointer to the callback function previously associated with the
specified selector. If the function ReplaceGestalt returns an error of any type, then the value of
oldGestaltFunction is undefined.

Return Value
A result code. See “Gestalt Manager Result Codes” (page 1113).

Special Considerations

You should avoid using the ReplaceGestalt function to replace an existing selector callback function,
which also requires your replacement function to reside in the system heap. Applications do not have access
to the system heap in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Gestalt.h

ReplaceGestaltValue
Replaces the value that the function Gestalt returns for a specified selector code with the value provided
to the function.

Functions 1009
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

OSErr ReplaceGestaltValue (
 OSType selector,
 SInt32 replacementValue
);

Parameters
selector

The selector code you want to add. This should be a four-character sequence similar to those defined
in “Gestalt Manager Constants” (page 1012).

replacementValue
The replacement Gestalt value for the selector code.

Return Value
A result code. See “Gestalt Manager Result Codes” (page 1113).

Discussion
You use the function ReplaceGestaltValue to replace an existing value. You should not call this function
to introduce a value that doesn't already exist; instead call the function NewGestaltValue (page 1008).

In Mac OS X, the selector and replacement value are on a per-context basis. That means they are available
only to the application or other code that installs them. You cannot use this function to make information
available to another process.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Gestalt.h

SetGestaltValue
Sets the value the function Gestalt will return for a specified selector code, installing the selector if it was
not already installed.

OSErr SetGestaltValue (
 OSType selector,
 SInt32 newValue
);

Parameters
selector

The selector code you want to set. This should be a four-character sequence similar to those defined
in “Gestalt Manager Constants” (page 1012).

newValue
The new Gestalt value for the selector code.

Return Value
A result code. See “Gestalt Manager Result Codes” (page 1113).

Discussion
You use SetGestaltValue to establish a value for a selector, without regard to whether the selector was
already installed.

1010 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

In Mac OS X, the selector and new value are on a per-context basis. That means they are available only to
the application or other code that installs them. You cannot use this function to make information available
to another process.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Gestalt.h

Callbacks

SelectorFunctionProcPtr
Defines a pointer to a selector callback function that returns information associated with your own selector
code.

typedef OSErr (*SelectorFunctionProcPtr)
(
 OSType selector,
 long * response
);

If you name your function MySelectorFunctionProc, you would declare it like this:

OSErr SelectorFunctionProcPtr (
 OSType selector,
 long * response
);

Parameters
selector

The selector code that triggers the function. This should be a four-character sequence similar to those
defined in “Gestalt Manager Constants” (page 1012).

response
On output, the information associated with the selector code.

Return Value
A result code. See “Gestalt Manager Result Codes” (page 1113).

Discussion
Your selector function places the requested information in the response parameter and returns a result
code. If the information is not available, the selector function returns the appropriate error code, which the
Gestalt function returns as its function result.

A selector function can call Gestalt or even other selector functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Gestalt.h

Callbacks 1011
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Data Types

SelectorFunctionUPP
Defines a universal procedure pointer to a selector function callback.

typedef SelectorFunctionProcPtr SelectorFunctionUPP;

Discussion
You can obtain a SelectorFunctionUPP by calling the function NewSelectorFunctionUPP (page 1008).
For more information, see SelectorFunctionProcPtr (page 1011).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Gestalt.h

Constants

Addressing Mode Attribute Selectors
Specify feature availability information for the addressing mode of the operating system.

enum {
 gestaltAddressingModeAttr = 'addr',
 gestalt32BitAddressing = 0,
 gestalt32BitSysZone = 1,
 gestalt32BitCapable = 2
};

Constants
gestaltAddressingModeAttr

The Gestalt selector you pass to determine the addressing mode attributes that are present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt32BitAddressing
If true, the operating system is using 32-bit addressing mode.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt32BitSysZone
If true, there is a 32-bit compatible system zone.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1012 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestalt32BitCapable
If true, Machine is 32-bit capable.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent on memory, your application should pass the selector
gestaltAddressingModeAttr to the Gestalt function to determine the addressing mode attributes that
are present.

Admin Attribute Selectors
Specify feature availability for Macintosh Manager adminstration software.

enum {
 gestaltAdminFeaturesFlagsAttr = 'fred',
 gestaltFinderUsesSpecialOpenFoldersFile = 0
};

Constants
gestaltAdminFeaturesFlagsAttr

The Gestalt selector you pass to determine the admin features that are present. This selector is
typically used by the system.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFinderUsesSpecialOpenFoldersFile
Specifies that the Finder uses a special file to store the list of open folders.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

AFP Client Selectors
Specify version and feature availability information for the AFP client.

Constants 1013
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltAFPClient = 'afps',
 gestaltAFPClientVersionMask = 0x0000FFFF,
 gestaltAFPClient3_5 = 0x0001,
 gestaltAFPClient3_6 = 0x0002,
 gestaltAFPClient3_6_1 = 0x0003,
 gestaltAFPClient3_6_2 = 0x0004,
 gestaltAFPClient3_6_3 = 0x0005,
 gestaltAFPClient3_7 = 0x0006,
 gestaltAFPClient3_7_2 = 0x0007,
 gestaltAFPClient3_8 = 0x0008,
 gestaltAFPClient3_8_1 = 0x0009,
 gestaltAFPClient3_8_3 = 0x000A,
 gestaltAFPClient3_8_4 = 0x000B,
 gestaltAFPClientAttributeMask = 0xFFFF0000,
 gestaltAFPClientCfgRsrc = 16,
 gestaltAFPClientSupportsIP = 29,
 gestaltAFPClientVMUI = 30,
 gestaltAFPClientMultiReq = 31
};

Alias Manager Attribute Selectors
Specify feature availability information for the Alias Manager.

enum {
 gestaltAliasMgrAttr = 'alis',
 gestaltAliasMgrPresent = 0,
 gestaltAliasMgrSupportsRemoteAppletalk = 1,
 gestaltAliasMgrSupportsAOCEKeychain = 2,
 gestaltAliasMgrResolveAliasFileWithMountOptions = 3,
 gestaltAliasMgrFollowsAliasesWhenResolving = 4,
 gestaltAliasMgrSupportsExtendedCalls = 5,
 gestaltAliasMgrSupportsFSCalls = 6,
 gestaltAliasMgrPrefersPath = 7
};

Constants
gestaltAliasMgrAttr

The selector you pass to the Gestalt function to determine the Alias Manager attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Appearance Manager Attribute Selectors
Specify feature availability information for the Appearance Manager.

1014 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltAppearanceAttr = 'appr',
 gestaltAppearanceExists = 0,
 gestaltAppearanceCompatMode = 1
};

Constants
gestaltAppearanceAttr

The Gestalt selector passed to determine whether the Appearance Manager is present. Produces
a 32-bit value whose bits you should test to determine which Appearance Manager features are
available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAppearanceExists
If this bit is set, Appearance Manager functions are available. To determine which version of the
Appearance Manager is installed, check for the presence of the Gestalt selector
gestaltAppearanceVersion. If this bit is not set, Appearance Manager functions are not available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAppearanceCompatMode
If this bit is set, systemwide platinum appearance is off. When systemwide platinum appearance is
off, the Appearance Manager does not auto-map standard System 7 definition functions to their Mac
OS 8 equivalents (for those applications that have not called RegisterAppearanceClient). If this
bit is not set, systemwide platinum appearance is on, and the Appearance Manager auto-maps
standard System 7 definition functions to their Mac OS 8 equivalents for all applications.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any functions dependent upon the Appearance Manager’s presence, your application should
pass the selector gestaltAppearanceAttr to the Gestalt function to determine whether the Appearance
Manager is present. To determine which version of the Appearance Manager is installed, your application
should check for the presence of the Gestalt selector gestaltAppearanceVersion.

Appearance Manager Version Selector
Specifies version information for the Appearance Manager.

enum {
 gestaltAppearanceVersion = 'apvr'
};

Constants
gestaltAppearanceVersion

The Gestalt selector passed to determine which version of the Appearance Manager is installed. If
this selector exists, Appearance Manager 1.0.1 (or later) is installed. The version number of the currently
installed Appearance Manager is returned in the low-order word of the result in binary code decimal
format (for example, version 1.0.1 would be 0x0101). If this selector does not exist but
gestaltAppearanceAttr does, Appearance Manager 1.0 is installed.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1015
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Apple Event Manager Attribute Selectors
Specify feature availability information for the Apple Event Manager.

enum {
 gestaltAppleEventsAttr = 'evnt',
 gestaltAppleEventsPresent = 0,
 gestaltScriptingSupport = 1,
 gestaltOSLInSystem = 2,
 gestaltSupportsApplicationURL = 4
};

Constants
gestaltAppleEventsAttr

A selector you pass to the Gestalt function. If the Apple Event Manager is not present, the Gestalt
function returns an error value; otherwise, it returns noErr and supplies, in the response parameter,
a 32-bit value whose bits specify which features of the Apple Event Manager are available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAppleEventsPresent
A Gestalt attribute constant. If the bit specified by this constant is set in the response parameter
value supplied by Gestalt for the gestaltAppleEventsAttr selector, the Apple Event Manager
is present and installed in the system.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltScriptingSupport
A Gestalt attribute constant. If the bit specified by this constant is set in the response parameter
value supplied by Gestalt for the gestaltAppleEventsAttr selector, the Open Scripting
Architecture (OSA) is available to provide scripting support. The OSA is described in “Scripting
Components”.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltOSLInSystem
A Gestalt attribute constant. If the bit specified by this constant is set in the response parameter
value supplied by Gestalt for the gestaltAppleEventsAttr selector, the Object Support Library
(OSL) is part of the system.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSupportsApplicationURL
Available in Mac OS X v10.1 and later.

Declared in Gestalt.h.

AppleScript Attribute Selectors
Specify feature availability information for AppleScript.

1016 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltAppleScriptAttr = 'ascr',
 gestaltAppleScriptPresent = 0,
 gestaltAppleScriptPowerPCSupport = 1
};

Constants
gestaltAppleScriptAttr

A selector you pass to the Gestalt function. If AppleScript is not present, the Gestalt function
returns an error value; otherwise, it returns noErr and supplies, in the response parameter, a 32-bit
value whose bits specify which AppleScript features are available.

The only bit currently in use specifies whether AppleScript is present. You can test this bit with the
constant gestaltAppleScriptPresent.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAppleScriptPresent
A Gestalt attribute constant. If the bit specified by this constant is set in the response parameter
value supplied by Gestalt for the gestaltAppleScriptAttr selector, AppleScript is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAppleScriptPowerPCSupport
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

AppleScript Version Selector
Specifies version information for AppleScript.

enum {
 gestaltAppleScriptVersion = 'ascv'
};

Constants
gestaltAppleScriptVersion

A selector you pass to the Gestalt function. If AppleScript is not present, the Gestalt function
returns an error value; otherwise, it returns noErr and supplies, in the response parameter, a 32-bit
AppleScript version number.

The low word of the 32-bit AppleScript version number specifies the current AppleScript version,
while the high word specifies a compatibility version. For example, for AppleScript 1.3.7, which shipped
with Mac OS 8.6, the value returned in the response parameter, viewed as a hex number, is
0x01100137. The low word, 0x0137, refers to the current AppleScript version. The high word, 0x0110,
refers to the compatibility version number—scripts written for AppleScript versions 1.1.0 and later
will run with AppleScript version 1.3.7.

The Version Notes section provides additional information about AppleScript versions and features.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1017
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Version Notes
For System 7.0 and 7.1, AppleScript and the Apple Event Manager were optional installs. Starting with System
7.5, they are part of a standard install, so if you’ve already checked for the presence of System 7.5 or later,
you’ll know that the Apple Event Manager is available, though AppleScript could be disabled using the
Extensions Manager.

If you need features that are only available starting with a specific version of AppleScript, call Gestalt with
the gestaltAppleScriptVersion selector to obtain the version number, then determine whether it is
greater than or equal to the version your application requires.

AppleTalk Driver Version Selector
Specifies version information for the AppleTalk driver.

enum {
 gestaltATalkVersion = 'atkv'
};

Constants
gestaltATalkVersion

The version number of the AppleTalk driver, in the format introduced with AppleTalk version 56. The
version is stored in the high 3 bytes of the return value.

Byte 3 contains the major revision number, byte 2 contains the minor revision number, and byte 1
contains a constant that represents the release stage.

For example, if you call the Gestalt function with the 'atkv' selector when AppleTalk version 57 is
loaded, you receive the long integer response value $39008000.

Byte 0 always contains 0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

AppleTalk Version Selector
Specifies version information for AppleTalk.

enum {
 gestaltAppleTalkVersion = 'atlk'
};

Constants
gestaltAppleTalkVersion

The version number of the AppleTalk driver (in particular, the .MPP driver) currently installed. The
version number is placed into the low-order byte of the result; ignore the three high-order bytes. If
an AppleTalk driver is not currently open, the response parameter is 0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

ATSUI Attribute Selectors
Specify feature availability for Apple Type Services for Unicode Imaging.

1018 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltATSUFeatures = 'uisf',
 gestaltATSUTrackingFeature = 0x00000001,
 gestaltATSUMemoryFeature = 0x00000001,
 gestaltATSUFallbacksFeature = 0x00000001,
 gestaltATSUGlyphBoundsFeature = 0x00000001,
 gestaltATSULineControlFeature = 0x00000001,
 gestaltATSULayoutCreateAndCopyFeature = 0x00000001,
 gestaltATSULayoutCacheClearFeature = 0x00000001,
 gestaltATSUTextLocatorUsageFeature = 0x00000002,
 gestaltATSULowLevelOrigFeatures = 0x00000004,
 gestaltATSUFallbacksObjFeatures = 0x00000008,
 gestaltATSUIgnoreLeadingFeature = 0x00000008,
 gestaltATSUByCharacterClusterFeature = 0x00000010,
 gestaltATSUAscentDescentControlsFeature = 0x00000010,
 gestaltATSUHighlightInactiveTextFeature = 0x00000010,
 gestaltATSUPositionToCursorFeature = 0x00000010,
 gestaltATSUBatchBreakLinesFeature = 0x00000010,
 gestaltATSUTabSupportFeature = 0x00000010,
 gestaltATSUDirectAccess = 0x00000010,
 gestaltATSUDecimalTabFeature = 0x00000020,
 gestaltATSUBiDiCursorPositionFeature = 0x00000020,
 gestaltATSUNearestCharLineBreakFeature = 0x00000020,
 gestaltATSUHighlightColorControlFeature = 0x00000020,
 gestaltATSUUnderlineOptionsStyleFeature = 0x00000020,
 gestaltATSUStrikeThroughStyleFeature = 0x00000020,
 gestaltATSUDropShadowStyleFeature = 0x00000020
};

Constants
gestaltATSUFeatures

Specifies the ATSUI features available on the user’s system. You pass this selector to the Gestalt
function. On return, the Gestalt function passes back a value that represents the features available
in the version of ATSUI installed on the user’s system.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltATSUTrackingFeature
If the bit specified by this mask constant is set, the functions ATSUCountFontTracking and
ATSUGetIndFontTracking are available.

Available beginning with ATSUI 1.1.

Declared in Gestalt.h.

gestaltATSUMemoryFeature
If the bit specified by this mask is set, the functions ATSUCreateMemorySetting,
ATSUSetCurrentMemorySetting, ATSUGetCurrentMemorySetting, and
ATSUDisposeMemorySetting are available.

Available beginning with ATSUI 1.1.

Declared in Gestalt.h.

gestaltATSUFallbacksFeature
If the bit specified by this mask is set, the functions ATSUSetFontFallbacks and
ATSUGetFontFallbacks are available.

Available beginning with ATSUI 1.1.

Declared in Gestalt.h.

Constants 1019
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltATSUGlyphBoundsFeature
If the bit specified by this mask is set, the function ATSUGetGlyphBounds is available.

Available beginning with ATSU 1.1.

Declared in Gestalt.h.

gestaltATSULineControlFeature
If the bit specified by this mask is set, the functionsATSUCopyLineControls,ATSUSetLineControls,
ATSUGetLineControl, ATSUGetAllLineControls, and ATSUClearLineControls are available.

Available beginning with ATSUI 1.1.

Declared in Gestalt.h.

gestaltATSULayoutCreateAndCopyFeature
If the bit specified by this mask is set, the function ATSUCreateAndCopyTextLayout is available.

Available beginning with ATSUI 1.1.

Declared in Gestalt.h.

gestaltATSULayoutCacheClearFeature
If the bit specified by this mask is set, the function ATSUClearLayoutCache is available.

Available beginning with ATSUI 1.1.

Declared in Gestalt.h.

gestaltATSUTextLocatorUsageFeature
If the bit specified by this mask is set, the text-break locator attribute is available for both style and
text layout objects.

Available beginning with ATSUI 1.2.

Declared in Gestalt.h.

gestaltATSULowLevelOrigFeatures
If the bit specified by this mask is set, the low-level features introduced in ATSUI version 2.0 are
available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltATSUFallbacksObjFeatures
If the bit specified by this mask is set, ATSUFontFallbacks objects are available.

Available beginning with ATSUI version 2.3.

Declared in Gestalt.h.

gestaltATSUIgnoreLeadingFeature
If the bit specified by this mask is set, the line layout option (kATSIgnoreFontLeadingTag) to ignore
the font leading value is available.

Available beginning with ATSUI version 2.3.

Declared in Gestalt.h.

gestaltATSUByCharacterClusterFeature
If the bit specified by this mask is set, ATSUI cursor movement types are available.

Available beginning with ATSUI version 2.4.

Declared in Gestalt.h.

1020 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltATSUAscentDescentControlsFeature
If the bit specified by this mask is set, ascent and descent controls (kATSUDescentTag and
kATSUAscentTag) are available.

Available beginning with ATSUI version 2.4.

Declared in Gestalt.h.

gestaltATSUHighlightInactiveTextFeature
If the bit specified by this mask is set, the highlight inactive text feature is available.

Available beginning with ATSUI version 2.4.

Declared in Gestalt.h.

gestaltATSUPositionToCursorFeature
If the bit specified by this mask is set, the position-to-cursor feature is available.

Available beginning with ATSUI version 2.4.

Declared in Gestalt.h.

gestaltATSUBatchBreakLinesFeature
If the bit specified by this mask is set, the ATSUBatchBreakLines function is available.

Available beginning with ATSUI version 2.4.

Declared in Gestalt.h.

gestaltATSUTabSupportFeature
If the bit specified by this mask is set, support for tabs is available.

Available beginning with ATSUI version 2.4.

Declared in Gestalt.h.

gestaltATSUDirectAccess
If the bit specified by this mask is set, ATSU direct-access functions are available. These functions let
you access glyph information directly.

Available beginning with ATSUI version 2.4.

Declared in Gestalt.h.

gestaltATSUDecimalTabFeature
If the bit specified by this mask is set, your application can set a decimal tab character.

Available beginning with ATSUI version 2.5.

Declared in Gestalt.h.

gestaltATSUBiDiCursorPositionFeature
If the bit specified by this mask is set, support for bidirectional cursor positioning is available.

Available beginning with ATSUI version 2.5.

Declared in Gestalt.h.

gestaltATSUNearestCharLineBreakFeature
If the bit specified by this mask is set, the nearest character line break feature is available.

Available beginning with ATSUI version 2.5.

Declared in Gestalt.h.

gestaltATSUHighlightColorControlFeature
If the bit specified by this mask is set, your application can control highlight color.

Available beginning with ATSUI version 2.5.

Declared in Gestalt.h.

Constants 1021
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltATSUUnderlineOptionsStyleFeature
If the bit specified by this mask is set, underline options are available.

Available beginning with ATSUI version 2.5.

Declared in Gestalt.h.

gestaltATSUStrikeThroughStyleFeature
If the bit specified by this mask is set, strike through styles are available.

Available beginning with ATSUI version 2.5.

Declared in Gestalt.h.

gestaltATSUDropShadowStyleFeature
If the bit specified by this mask is set, drop shadow features are available.

Available beginning with ATSUI version 2.5.

Declared in Gestalt.h.

Discussion
You can pass the gestaltATSUFeature selector to the Gestalt function to obtain a value that specifies
which ATSUI features are available on the user’s system.

You can pass the gestaltATSUVersion selector to the Gestalt function to determine which version of
ATSUI is installed on the user’s system. See “ATSUI Version Selectors” (page 1022) for more information

ATSUI Version Selectors
Specify version information for Apple Type Service for Unicode Imaging.

enum {
 gestaltATSUVersion = 'uisv',
 gestaltOriginalATSUVersion = (1 << 16),
 gestaltATSUUpdate1 = (2 << 16),
 gestaltATSUUpdate2 = (3 << 16),
 gestaltATSUUpdate3 = (4 << 16),
 gestaltATSUUpdate4 = (5 << 16),
 gestaltATSUUpdate5 = (6 << 16),
 gestaltATSUUpdate6 = (7 << 16),
 gestaltATSUUpdate7 = (8 << 16)
};

Constants
gestaltATSUVersion

Specifies the version of ATSUI installed on the user’s system. You pass this selector to the Gestalt
function. On return, the Gestalt function passes back a value that represents the version of ATSUI
installed on the user’s system.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltOriginalATSUVersion
Indicates that version 1.0 of ATSUI is installed on the user’s system.

Available beginning with ATSUI 1.0.

Declared in Gestalt.h.

1022 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltATSUUpdate1
Indicates that version 1.1 of ATSUI is installed on the user’s system.

Available beginning with ATSUI 1.1.

Declared in Gestalt.h.

gestaltATSUUpdate2
Indicates that version 1.2 of ATSUI is installed on the user’s system.

Available beginning with ATSUI 1.2.

Declared in Gestalt.h.

gestaltATSUUpdate3
Indicates that version 2.0 of ATSUI is installed on the user’s system.

Available beginning with ATSUI 2.0.

Declared in Gestalt.h.

gestaltATSUUpdate4
Indicates that ATSUI for a version of Mac OS X from 10.0.1 through 10.0.4 is installed on the user’s
system.

Available beginning with Mac OS X version 10.0.1.

Declared in Gestalt.h.

gestaltATSUUpdate5
Indicates that version 2.3 of ATSUI is installed on the user’s system. Available beginning with ATSUI
2.3, in Mac OS X version 10.1.

Available in Mac OS X v10.1 and later.

Declared in Gestalt.h.

gestaltATSUUpdate6
Indicates that version 2.4 of ATSUI is installed on the user’s system. Available beginning with ATSUI
2.4, in Mac OS X version 10.2.

Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

gestaltATSUUpdate7
Indicates that version 2.5 of ATSUI is installed on the user’s system. Available beginning with ATSUI
2.5, in Mac OS X version 10.3.

Available in Mac OS X v10.3 and later.

Declared in Gestalt.h.

Discussion
Before calling any functions dependent upon ATSUI, you should pass the gestaltATSUVersion selector
to the Gestalt function to determine which version of ATSUI is available.

You can pass the gestaltATSUFeatures selector to the Gestalt function to determine which features of
ATSUI are available. See “ATSUI Attribute Selectors” (page 1018) for more information.

ATA Manager Attribute Selectors
Specify feature availability information for the ATA Manager.

Constants 1023
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltATAAttr = 'ata ',
 gestaltATAPresent = 0
};

AUX Version Selector
Specifies version information for A/UX.

enum {
 gestaltAUXVersion = 'a/ux'
};

Constants
gestaltAUXVersion

The version of A/UX if it is currently executing. The result is placed into the low-order word of the
response parameter. If A/UX is not executing, the Gestalt function returns gestaltUnknownErr.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

AVL Tree Attribute Selectors
Specify feature availability information for AVL tree routines.

enum {
 gestaltAVLTreeAttr = 'tree',
 gestaltAVLTreePresentBit = 0,
 gestaltAVLTreeSupportsHandleBasedTreeBit = 1,
 gestaltAVLTreeSupportsTreeLockingBit = 2
};

Bus Clock Version Selector
Specifies version information for the bus clock speed.

enum {
 gestaltBusClkSpeed = 'bclk'
};

Carbon Version Selector
Specifies version information for Carbon.

1024 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltCarbonVersion = 'cbon'
};

Classic Compatibility Attribute Selectors
Specify feature availability for the Classic environment.

enum {
 gestaltMacOSCompatibilityBoxAttr = 'bbox',
 gestaltMacOSCompatibilityBoxPresent = 0,
 gestaltMacOSCompatibilityBoxHasSerial = 1,
 gestaltMacOSCompatibilityBoxless = 2
};

CloseView Attribute Selectors
Specify feature availability information for CloseView.

enum {
 gestaltCloseViewAttr = 'BSDa',
 gestaltCloseViewEnabled = 0,
 gestaltCloseViewDisplayMgrFriendly = 1
};

Code Fragment Manager Attribute Selectors
Specify feature availability information for the Code Fragment Manager.

enum {
 gestaltCFMAttr = 'cfrg',
 gestaltCFMPresent = 0,
 gestaltCFMPresentMask = 0x0001,
 gestaltCFM99Present = 2,
 gestaltCFM99PresentMask = 0x0004
};

Collection Manager Version Selector
Specify version information for the Collection manager.

enum {
 gestaltCollectionMgrVersion = 'cltn'
};

Constants
gestaltCollectionMgrVersion

Collection Manager version.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1025
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Color Picker Version Selectors
Specify version information for the Color Picker.

enum {
 gestaltColorPickerVersion = 'cpkr',
 gestaltColorPicker = 'cpkr'
};

Discussion
To test for the availability and version of the Color Picker Manager, use the Gestalt function with the selector
defined by this enumerator.

If the Gestalt function returns a value of 00000200, version 2.0 of the Color Picker Manager is available. If
the Gestalt function returns a value of 00000100, version 1.0 (that is, the original Color Picker Package) is
available.

ColorSync Manager Attribute Selectors
Specify feature availability information for the ColorSync Manager.

enum {
 gestaltColorMatchingAttr = 'cmta',
 gestaltHighLevelMatching = 0,
 gestaltColorMatchingLibLoaded = 1
};

Constants
gestaltColorMatchingAttr

The selector for obtaining version information. Use when calling the Gestalt function to check for
particular ColorSync Manager features.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHighLevelMatching
This constant is provided for backward compatibility only. Bit 0 of the Gestalt response value is
always set if ColorSync is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorMatchingLibLoaded
This constant is provided for backward compatibility only. Bit 1 of the Gestalt response value is
always set on a Power Macintosh machine if ColorSync is present. It is always cleared on a 68K machine
if ColorSync is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
These constants were added to ColorSync version 2.0 to aid in the transition from 68K to PowerPC systems.
They are not recommended for new applications and are not guaranteed to be carried forward in future
versions of ColorSync. However, they are still supported as of version 2.5 for backward compatibility. If you
call the Gestalt function passing the selector gestaltColorMatchingAttr, you can test the bit fields of

1026 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

the returned value with the gestaltColorMatchingLibLoaded constant to determine if the ColorSync
Manager shared libraries are loaded, or with the gestaltHighLevelMatching constant to determine if
the ColorSync QuickDraw-specific functions are present.

ColorSync Manager Version Selectors
Specify version information for the ColorSync Manager.

enum {
 gestaltColorMatchingVersion = 'cmtc',
 gestaltColorSync10 = 0x0100,
 gestaltColorSync11 = 0x0110,
 gestaltColorSync104 = 0x0104,
 gestaltColorSync105 = 0x0105,
 gestaltColorSync20 = 0x0200,
 gestaltColorSync21 = 0x0210,
 gestaltColorSync211 = 0x0211,
 gestaltColorSync212 = 0x0212,
 gestaltColorSync213 = 0x0213,
 gestaltColorSync25 = 0x0250,
 gestaltColorSync26 = 0x0260,
 gestaltColorSync261 = 0x0261,
 gestaltColorSync30 = 0x0300
};

Constants
gestaltColorMatchingVersion

The selector for obtaining version information. Use when calling the Gestalt function to determine
whether the ColorSync Manager is available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync10
A Gestalt response value of gestaltColorSync10 indicates version 1.0 of the ColorSync Manager
is present. This version supports general purpose color matching only and does not provide
QuickDraw-specific matching functions.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync11
A Gestalt response value of gestaltColorSync11 indicates version 1.0.3 of the ColorSync Manager
is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync104
A Gestalt response value of gestaltColorSync104 indicates version 1.4 of the ColorSync Manager
is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1027
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltColorSync105
A Gestalt response value of gestaltColorSync105 indicates version 1.5 of the ColorSync Manager
is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync20
A Gestalt response value of gestaltColorSync20 indicates version 2.0 of the ColorSync Manager
is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync21
A Gestalt response value of gestaltColorSync21 indicates version 2.1 of the ColorSync Manager
is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync211
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync212
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync213
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync25
A Gestalt response value of gestaltColorSync25 indicates version 2.5 of the ColorSync Manager
is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync26
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync261
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltColorSync30
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
These constants were added to ColorSync version 2.0 to aid in the transition from 68K to PowerPC systems.
They are not recommended for new applications and are not guaranteed to be carried forward in future
versions of ColorSync. However, they are still supported as of version 2.5 for backward compatibility. If you
call the Gestalt function passing the selector gestaltColorMatchingAttr, you can test the bit fields of

1028 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

the returned value with the gestaltColorMatchingLibLoaded constant to determine if the ColorSync
Manager shared libraries are loaded, or with the gestaltHighLevelMatching constant to determine if
the ColorSync QuickDraw-specific functions are present.

Communications Toolbox Version Selector
Specifies version information for the Communications Toolbox.

enum {
 gestaltCTBVersion = 'ctbv'
};

Constants
gestaltCTBVersion

The version number of the Communications Toolbox (in the low-order word of the return value).

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Communication Resource Manager Attribute Selectors
Specify version and feature availability information for the Communications Resource Manager.

enum {
 gestaltCRMAttr = 'crm ',
 gestaltCRMPresent = 0,
 gestaltCRMPersistentFix = 1,
 gestaltCRMToolRsrcCalls = 2
};

Component Manager Version Selectors
Specify version information for the Coomponent Manager.

enum {
 gestaltComponentMgr = 'cpnt',
 gestaltComponentPlatform = 'copl'
};

Constants
gestaltComponentMgr

The Gestalt selector you pass to determine what version of the Component Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
To determine the version of the current Component Manager, your application should pass the selector
gestaltComponentMgr to the Gestalt function.

Constants 1029
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Computer Model Selectors
Specify computer models.

1030 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltMachineType = 'mach',
 gestaltClassic = 1,
 gestaltMacXL = 2,
 gestaltMac512KE = 3,
 gestaltMacPlus = 4,
 gestaltMacSE = 5,
 gestaltMacII = 6,
 gestaltMacIIx = 7,
 gestaltMacIIcx = 8,
 gestaltMacSE030 = 9,
 gestaltPortable = 10,
 gestaltMacIIci = 11,
 gestaltPowerMac8100_120 = 12,
 gestaltMacIIfx = 13,
 gestaltMacClassic = 17,
 gestaltMacIIsi = 18,
 gestaltMacLC = 19,
 gestaltMacQuadra900 = 20,
 gestaltPowerBook170 = 21,
 gestaltMacQuadra700 = 22,
 gestaltClassicII = 23,
 gestaltPowerBook100 = 24,
 gestaltPowerBook140 = 25,
 gestaltMacQuadra950 = 26,
 gestaltMacLCIII = 27,
 gestaltPerforma450 = gestaltMacLCIII,
 gestaltPowerBookDuo210 = 29,
 gestaltMacCentris650 = 30,
 gestaltPowerBookDuo230 = 32,
 gestaltPowerBook180 = 33,
 gestaltPowerBook160 = 34,
 gestaltMacQuadra800 = 35,
 gestaltMacQuadra650 = 36,
 gestaltMacLCII = 37,
 gestaltPowerBookDuo250 = 38,
 gestaltAWS9150_80 = 39,
 gestaltPowerMac8100_110 = 40,
 gestaltAWS8150_110 = gestaltPowerMac8100_110,
 gestaltPowerMac5200 = 41,
 gestaltPowerMac5260 = gestaltPowerMac5200,
 gestaltPerforma5300 = gestaltPowerMac5200,
 gestaltPowerMac6200 = 42,
 gestaltPerforma6300 = gestaltPowerMac6200,
 gestaltMacIIvi = 44,
 gestaltMacIIvm = 45,
 gestaltPerforma600 = gestaltMacIIvm,
 gestaltPowerMac7100_80 = 47,
 gestaltMacIIvx = 48,
 gestaltMacColorClassic = 49,
 gestaltPerforma250 = gestaltMacColorClassic,
 gestaltPowerBook165c = 50,
 gestaltMacCentris610 = 52,
 gestaltMacQuadra610 = 53,
 gestaltPowerBook145 = 54,
 gestaltPowerMac8100_100 = 55,
 gestaltMacLC520 = 56,
 gestaltAWS9150_120 = 57,

Constants 1031
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

 gestaltPowerMac6400 = 58,
 gestaltPerforma6400 = gestaltPowerMac6400,
 gestaltPerforma6360 = gestaltPerforma6400,
 gestaltMacCentris660AV = 60,
 gestaltMacQuadra660AV = gestaltMacCentris660AV,
 gestaltPerforma46x = 62,
 gestaltPowerMac8100_80 = 65,
 gestaltAWS8150_80 = gestaltPowerMac8100_80,
 gestaltPowerMac9500 = 67,
 gestaltPowerMac9600 = gestaltPowerMac9500,
 gestaltPowerMac7500 = 68,
 gestaltPowerMac7600 = gestaltPowerMac7500,
 gestaltPowerMac8500 = 69,
 gestaltPowerMac8600 = gestaltPowerMac8500,
 gestaltAWS8550 = gestaltPowerMac7500,
 gestaltPowerBook180c = 71,
 gestaltPowerBook520 = 72,
 gestaltPowerBook520c = gestaltPowerBook520,
 gestaltPowerBook540 = gestaltPowerBook520,
 gestaltPowerBook540c = gestaltPowerBook520,
 gestaltPowerMac5400 = 74,
 gestaltPowerMac6100_60 = 75,
 gestaltAWS6150_60 = gestaltPowerMac6100_60,
 gestaltPowerBookDuo270c = 77,
 gestaltMacQuadra840AV = 78,
 gestaltPerforma550 = 80,
 gestaltPowerBook165 = 84,
 gestaltPowerBook190 = 85,
 gestaltMacTV = 88,
 gestaltMacLC475 = 89,
 gestaltPerforma47x = gestaltMacLC475,
 gestaltMacLC575 = 92,
 gestaltMacQuadra605 = 94,
 gestaltMacQuadra630 = 98,
 gestaltMacLC580 = 99,
 gestaltPerforma580 = gestaltMacLC580,
 gestaltPowerMac6100_66 = 100,
 gestaltAWS6150_66 = gestaltPowerMac6100_66,
 gestaltPowerBookDuo280 = 102,
 gestaltPowerBookDuo280c = 103,
 gestaltPowerMacLC475 = 104,
 gestaltPowerMacPerforma47x = gestaltPowerMacLC475,
 gestaltPowerMacLC575 = 105,
 gestaltPowerMacPerforma57x = gestaltPowerMacLC575,
 gestaltPowerMacQuadra630 = 106,
 gestaltPowerMacLC630 = gestaltPowerMacQuadra630,
 gestaltPowerMacPerforma63x = gestaltPowerMacQuadra630,
 gestaltPowerMac7200 = 108,
 gestaltPowerMac7300 = 109,
 gestaltPowerMac7100_66 = 112,
 gestaltPowerBook150 = 115,
 gestaltPowerMacQuadra700 = 116,
 gestaltPowerMacQuadra900 = 117,
 gestaltPowerMacQuadra950 = 118,
 gestaltPowerMacCentris610 = 119,
 gestaltPowerMacCentris650 = 120,
 gestaltPowerMacQuadra610 = 121,
 gestaltPowerMacQuadra650 = 122,

1032 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

 gestaltPowerMacQuadra800 = 123,
 gestaltPowerBookDuo2300 = 124,
 gestaltPowerBook500PPCUpgrade = 126,
 gestaltPowerBook5300 = 128,
 gestaltPowerBook1400 = 310,
 gestaltPowerBook3400 = 306,
 gestaltPowerBook2400 = 307,
 gestaltPowerBookG3Series = 312,
 gestaltPowerBookG3 = 313,
 gestaltPowerBookG3Series2 = 314,
 gestaltPowerMacNewWorld = 406,
 gestaltPowerMacG3 = 510,
 gestaltPowerMac5500 = 512,
 gestalt20thAnniversary = gestaltPowerMac5500,
 gestaltPowerMac6500 = 513,
 gestaltPowerMac4400_160 = 514,
 gestaltPowerMac4400 = 515,
 gestaltMacOSCompatibility = 1206
};

Discussion
To obtain a string containing the machine’s name, you can pass the returned value to the GetIndString
procedure as an index into the resource of type 'STR#' in the System file having the resource ID defined
by the constant kMachineNameStrID.

Computer Name Selector
Specifes user-visiblity information for the computer name.

enum {
 gestaltUserVisibleMachineName = 'mnam'
};

Connection Manager Attribute Selectors
Specify feature availability information for the Connection Manager.

enum {
 gestaltConnMgrAttr = 'conn',
 gestaltConnMgrPresent = 0,
 gestaltConnMgrCMSearchFix = 1,
 gestaltConnMgrErrorString = 2,
 gestaltConnMgrMultiAsyncIO = 3
};

Constants
gestaltConnMgrAttr

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltConnMgrPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1033
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltConnMgrCMSearchFix
The gestaltConnMgrCMSearchFix bit flag indicates that the fix is present that allows the
CMAddSearch function to work over the mAttn channel.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltConnMgrErrorString
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltConnMgrMultiAsyncIO
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Control Manager Attribute Selectors
Specify feature availability information for the Control Manager.

enum {
 gestaltControlMgrAttr = 'cntl',
 gestaltControlMgrPresent = (1L << 0),
 gestaltControlMgrPresentBit = 0,
 gestaltControlMsgPresentMask = (1L << gestaltControlMgrPresentBit)
};

Constants
gestaltControlMgrAttr

The Gestalt selector passed to determine what features of the Control Manager are present. This
selector is available with Mac OS 8.5 and later. The Gestalt function produces a 32-bit value whose
bits you should test to determine what Control Manager functionality is available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltControlMgrPresent
If the bit specified by this mask is set, the Control Manager functionality for Appearance Manager 1.1
is available. This bit is set for Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltControlMgrPresentBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltControlMsgPresentMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any functions dependent upon the Control Manager, your application should pass the selector
gestaltControlMgrAttr to the Gestalt function to determine which Control Manager functions are
available.

1034 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Control Manager Version Selector
Specifies version information for the Control Manager.

enum {
 gestaltControlMgrVersion = 'cmvr'
};

Constants
gestaltControlMgrVersion

Available in Mac OS X v10.1 and later.

Declared in Gestalt.h.

Control Strip Attribute Selectors
Specify feature availability for the Control Strip.

enum {
 gestaltControlStripAttr = 'sdev',
 gestaltControlStripExists = 0,
 gestaltControlStripVersionFixed = 1,
 gestaltControlStripUserFont = 2,
 gestaltControlStripUserHotKey = 3
};

Control Strip Version Selector
Specifies version information for the Control Strip.

enum {
 gestaltControlStripVersion = 'csvr'
};

Constants
gestaltControlStripVersion

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

CPU Selectors for Apollo
Specify version information for Apollo CPUs.

enum {
 gestaltCPUApollo = 0x0111,
 gestaltCPU750FX = 0x0120
};

CPU Selectors for Intel and Pentium
Specify version information for Intel and Pentium CPUs.

Constants 1035
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltCPU486 = 'i486',
 gestaltCPUPentium = 'i586',
 gestaltCPUPentiumPro = 'i5pr',
 gestaltCPUPentiumII = 'i5ii',
 gestaltCPUX86 = 'ixxx'
};

Data Access Manager Attribute Selectors
Specify feature availability information for the Data Access Manager.

enum {
 gestaltDBAccessMgrAttr = 'dbac',
 gestaltDBAccessMgrPresent = 0
};

Desktop Pictures Attribute Selectors
Specify feature availability information for Desktop Pictures.

enum {
 gestaltDesktopPicturesAttr = 'dkpx',
 gestaltDesktopPicturesInstalled = 0,
 gestaltDesktopPicturesDisplayed = 1
};

Desktop Printing Attribute Selector
Specify feature availablity information for all desktop printer.

enum {
 gestaltDTPInfo = 'dtpx'
};

Desktop Printing Driver Attribute Selectors
Specify feature availability for third-party desktop printing drivers.

enum {
 gestaltDTPFeatures = 'dtpf',
 kDTPThirdPartySupported = 0x00000004
};

Dialog Manager Attribute Selectors
Specify feature availability for the Dialog Manager.

1036 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltDITLExtAttr = 'ditl',
 gestaltDITLExtPresent = 0,
 gestaltDITLExtSupportsIctb = 1
};

Constants
gestaltDITLExtAttr

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDITLExtPresent
If this flag bit is TRUE, then the Dialog Manager extensions included in System 7 are available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDITLExtSupportsIctb
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Dictionary Manager Attribute Selectors
Specify feature availability information for the Dictionary Manager.

enum {
 gestaltDictionaryMgrAttr = 'dict',
 gestaltDictionaryMgrPresent = 0
};

Dialog Manager Selectors for Mac OS 8.5
Specify version and feature availability information for the Dialog Manager in Mac OS 8.5.

enum {
 gestaltDialogMgrAttr = 'dlog',
 gestaltDialogMgrPresent = (1L << 0),
 gestaltDialogMgrPresentBit = 0,
 gestaltDialogMgrHasAquaAlertBit = 2,
 gestaltDialogMgrPresentMask = (1L << gestaltDialogMgrPresentBit),
 gestaltDialogMgrHasAquaAlertMask = (1L << gestaltDialogMgrHasAquaAlertBit),
 gestaltDialogMsgPresentMask = gestaltDialogMgrPresentMask
};

Constants
gestaltDialogMgrAttr

The Gestalt selector passed to determine what features of the Dialog Manager are present. This
selector is available with Mac OS 8.5 and later. Passing gestaltDialogManagerAttr produces a
32-bit value whose bits you should test to determine what Dialog Manager functionality is available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1037
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltDialogMgrPresent
If the bit specified by this mask is set, the Dialog Manager functionality for Appearance Manager 1.1
is available. This bit is set for Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDialogMgrPresentBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDialogMgrHasAquaAlertBit
Available in Mac OS X v10.1 and later.

Declared in Gestalt.h.

gestaltDialogMgrPresentMask
Available in Mac OS X v10.1 and later.

Declared in Gestalt.h.

gestaltDialogMgrHasAquaAlertMask
Available in Mac OS X v10.1 and later.

Declared in Gestalt.h.

gestaltDialogMsgPresentMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any Dialog Manager functions, your application should pass the selector
gestaltDialogManagerAttr to the Gestalt function to determine which Dialog Manager functions are
available.

Digital Signature Version Selector
Specifies version information for digital signatures.

enum {
 gestaltDigitalSignatureVersion = 'dsig'
};

Direct IO Attribute Selector
Specifies availability of direct input/ouput support by the file system.

enum {
 gestaltFSSupportsDirectIO = 11
};

Disk Cache Size Selector
Specifies size information for the disk cache buffer.

1038 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltDiskCacheSize = 'dcsz'
};

Constants
gestaltDiskCacheSize

A selector that you pass to the Gestalt function. If the function returns noErr, the response
parameter contains the size of the disk cache’s buffer. See the Gestalt Manager Reference for more
information on the Gestalt function.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Display Manager Attribute Selectors
Specify feature availability for the Display Manager.

enum {
 gestaltDisplayMgrAttr = 'dply',
 gestaltDisplayMgrPresent = 0,
 gestaltDisplayMgrCanSwitchMirrored = 2,
 gestaltDisplayMgrSetDepthNotifies = 3,
 gestaltDisplayMgrCanConfirm = 4,
 gestaltDisplayMgrColorSyncAware = 5,
 gestaltDisplayMgrGeneratesProfiles = 6,
 gestaltDisplayMgrSleepNotifies = 7
};

Constants
gestaltDisplayMgrAttr

The Gestalt selector you pass to determine which Display Manager attributes are present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDisplayMgrPresent
If true, the Display Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDisplayMgrCanSwitchMirrored
If true, the Display Manager can switch modes on mirrored displays.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDisplayMgrSetDepthNotifies
If true, and you have registered for notification and you will be notified of depth mode changes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1039
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltDisplayMgrCanConfirm
Not yet supported. Most commonly comes up for display modes that are not marked kModeSafe.
There is currently no system support for trying an unsafe mode and then restoring if the user does
not confirm. When this is supported, this bit will be set.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDisplayMgrColorSyncAware
If true, Display Manager supports profiles for displays.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDisplayMgrGeneratesProfiles
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDisplayMgrSleepNotifies
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent upon the Display Manager, your application should pass the selector
gestaltDisplayMgrAttr to the Gestalt function to determine the Display Manager attributes that are
present.

Display Manager Version Selector
Specifies version information for the Display Manager.

enum {
 gestaltDisplayMgrVers = 'dplv'
};

Constants
gestaltDisplayMgrVers

The Gestalt selector you pass to determine what version of the Display Manager is present. For
example, a Gestalt result may be 0x00020500, which means that the Display Manager version 2.5 is
present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
To determine the version of the current Display Manager, your application should pass the selector
gestaltDisplayMgrVers to the Gestalt function.

Drag Manager Attribute Selectors
Specify feature availability information for the Drag Manager.

1040 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltDragMgrAttr = 'drag',
 gestaltDragMgrPresent = 0,
 gestaltDragMgrFloatingWind = 1,
 gestaltPPCDragLibPresent = 2,
 gestaltDragMgrHasImageSupport = 3,
 gestaltCanStartDragInFloatWindow = 4,
 gestaltSetDragImageUpdates = 5
};

Constants
gestaltDragMgrAttr

The Gestalt selector passed to determine what features of the Drag Manager are present. Passing the
gestaltDragMgrAttr constant produces a 32-bit value whose bits you should test to determine
what Drag Manager functionality is available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDragMgrPresent
If the bit specified by this mask is set, the Drag Manager functions are available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDragMgrFloatingWind
If the bit specified by this mask is set, the Drag Manager floating window support functions are
available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPPCDragLibPresent
If the bit specified by this mask is set, the Drag Manager PPC Drag Library functions are available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDragMgrHasImageSupport
If the bit specified by this mask is set, the Drag Manager image support functions are available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCanStartDragInFloatWindow
If the bit specified by this mask is set, the Drag Manager can start a drag in a floating window.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSetDragImageUpdates
Available in Mac OS X v10.1 and later.

Declared in Gestalt.h.

Draw Sprocket Version Selectors
Specifies version information for Draw Sprocket.

Constants 1041
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltDrawSprocketVersion = 'dspv'
};

Easy Access Selectors
Specify version and feature availability information for Easy Access.

enum {
 gestaltEasyAccessAttr = 'easy',
 gestaltEasyAccessOff = 0,
 gestaltEasyAccessOn = 1,
 gestaltEasyAccessSticky = 2,
 gestaltEasyAccessLocked = 3
};

Edition Manager Attribute Selectors
Specify feature availability for the Edition Manager.

enum {
 gestaltEditionMgrAttr = 'edtn',
 gestaltEditionMgrPresent = 0,
 gestaltEditionMgrTranslationAware = 1
};

Extension Table Version Selector
Specifies version information for the extension table.

enum {
 gestaltExtensionTableVersion = 'etbl'
};

File Mapping Attribute Selectors
Specify feature availability for file mapping.

enum {
 gestaltFileMappingAttr = 'flmp',
 gestaltFileMappingPresent = 0,
 gestaltFileMappingMultipleFilesFix = 1
};

File System Attribute Selectors
Specify feature availability for the file system.

1042 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltFSAttr = 'fs ',
 gestaltFullExtFSDispatching = 0,
 gestaltHasFSSpecCalls = 1,
 gestaltHasFileSystemManager = 2,
 gestaltFSMDoesDynamicLoad = 3,
 gestaltFSSupports4GBVols = 4,
 gestaltFSSupports2TBVols = 5,
 gestaltHasExtendedDiskInit = 6,
 gestaltDTMgrSupportsFSM = 7,
 gestaltFSNoMFSVols = 8,
 gestaltFSSupportsHFSPlusVols = 9,
 gestaltFSIncompatibleDFA82 = 10
};

Constants
gestaltFSAttr

A selector you pass to the Gestalt function. If the Gestalt function returns noErr, the response
parameter contains a 32-bit value specifying the features of the file system.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFullExtFSDispatching
If this bit is set in the response parameter, all of the functions selected through the _HFSDispatch
trap are available to external file systems. If this bit is clear, the File Manager checks the selector passed
to _HFSDispatch and ensures that it is valid; if the selector is invalid, the result code paramErr is
returned to the caller. If this bit is set, no such validity checking is performed. See the Guide to the File
System Manager for more information on external file systems.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasFSSpecCalls
If this bit is set in the response parameter, the operating environment provides the file system
specification (FSSpec) versions of the basic file-manipulation functions, as well as the FSMakeFSSpec
function.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasFileSystemManager
If this bit is set in the response parameter, the File System Manager is present. See the Guide to the
File System Manager for more information about the File System Manager.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFSMDoesDynamicLoad
If this bit is set in the response parameter, the File System Manager supports dynamic loading of
external file system code resources.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFSSupports4GBVols
If this bit is set in the response parameter, the file system supports 4 gigabyte volumes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1043
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltFSSupports2TBVols
If this bit is set in the response parameter, the file system supports 2 terabyte volumes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasExtendedDiskInit
If this bit is set in the response parameter, the extended Disk Initialization Package functions are
present. These are the DIXFormat, DIXZero, or DIReformat functions. See the Guide to the File
System Manager for more information about the Disk Initialization Package interfaces.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDTMgrSupportsFSM
If this bit is set in the response parameter, the desktop database supports File System Manager-based
foreign file systems.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFSNoMFSVols
If this bit is set in the response parameter, the file system does not support MFS volumes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFSSupportsHFSPlusVols
If this bit is set in the response parameter, the file system supports HFS Plus volumes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFSIncompatibleDFA82
If this bit is set in the response parameter, VCB and FCB structures are changed; DFA 8.2 is
incompatible.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

File System Attribute Selectors for Mac OS 9
Specify feature availability for the file system for features introduced in Mac OS 9.

1044 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltHasHFSPlusAPIs = 12,
 gestaltMustUseFCBAccessors = 13,
 gestaltFSUsesPOSIXPathsForConversion = 14,
 gestaltFSSupportsExclusiveLocks = 15,
 gestaltFSSupportsHardLinkDetection = 16
};

Constants
gestaltHasHFSPlusAPIs

If this bit is set in the response parameter, the File Manager supports the HFS Plus APIs. Individual
file systems may or may not implement the HFS Plus APIs. However, if this bit is set, the File Manager
will emulate the HFS Plus APIs for file systems that do not implement them. Call the functions
PBHGetVolParmsSync or PBHGetVolParmsAsync to determine whether the HFS Plus APIs are
directly supported on a given volume.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMustUseFCBAccessors
If this bit is set in the response parameter, the File Manager no longer supports the low memory
globals FCBSPtr and FSFCBLen. All access to file or fork control blocks must use the File System
Manager utility functions instead.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFSUsesPOSIXPathsForConversion
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFSSupportsExclusiveLocks
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

gestaltFSSupportsHardLinkDetection
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

Discussion
Use these constants with the gestalt selector gestaltFSAttr, described in “File System Attribute
Selectors” (page 1042).

File System Manager Version Selector
Specifies version information for the File System Manager.

Constants 1045
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltFSMVersion = 'fsm '
};

Constants
gestaltFSMVersion

Pass this selector to the Gestalt function to determine the version of the HFS External File Systems
Manager (FSM).

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

File System Transport Manager Attribute Selectors
Specify feature availability for the File System Transport Manager

enum {
 gestaltFXfrMgrAttr = 'fxfr',
 gestaltFXfrMgrPresent = 0,
 gestaltFXfrMgrMultiFile = 1,
 gestaltFXfrMgrErrorString = 2,
 gestaltFXfrMgrAsync = 3
};

Constants
gestaltFXfrMgrAttr

The selector you pass to the Gestalt function to determine the File Transfer Manager attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Find By Content State Selectors
Specify state information for Find By Content.

enum {
 gestaltFBCIndexingState = 'fbci',
 gestaltFBCindexingSafe = 0,
 gestaltFBCindexingCritical = 1
};

Find By Content Version Selectors
Specify version information for Find By Content.

1046 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltFBCVersion = 'fbcv',
 gestaltFBCCurrentVersion = 0x0011,
 gestaltOSXFBCCurrentVersion = 0x0100
};

Find Folder Redirection Attribute Selector
Specifies feature availability information for Find Folder.

enum {
 gestaltFindFolderRedirectionAttr = 'fole'
};

Finder Attribute Selectors
Specify feature availability for the Finder.

enum {
 gestaltFinderAttr = 'fndr',
 gestaltFinderDropEvent = 0,
 gestaltFinderMagicPlacement = 1,
 gestaltFinderCallsAEProcess = 2,
 gestaltOSLCompliantFinder = 3,
 gestaltFinderSupports4GBVolumes = 4,
 gestaltFinderHasClippings = 6,
 gestaltFinderFullDragManagerSupport = 7,
 gestaltFinderFloppyRootComments = 8,
 gestaltFinderLargeAndNotSavedFlavorsOK = 9,
 gestaltFinderUsesExtensibleFolderManager = 10,
 gestaltFinderUnderstandsRedirectedDesktopFolder = 11
};

Floppy Driver Attribute Selectors
Specify feature availability information for the floppy disk drive.

enum {
 gestaltFloppyAttr = 'flpy',
 gestaltFloppyIsMFMOnly = 0,
 gestaltFloppyIsManualEject = 1,
 gestaltFloppyUsesDiskInPlace = 2
};

Font Manager Attribute Selectors
Specify feature availability information for the Font Manager.

Constants 1047
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltFontMgrAttr = 'font',
 gestaltOutlineFonts = 0
};

Constants
gestaltFontMgrAttr

The Gestalt selector you pass to determine which Font Manager attributes are present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltOutlineFonts
If true, outline fonts are supported.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent upon the Font Manager, your application should pass the selector
gestaltDisplayMgrAttr to the Gestalt function to determine the Font Manager attributes that are
present.

Folder Manager Attribute Selectors
Specify feature availability information for the Folder Manager.

enum {
 gestaltFindFolderAttr = 'fold',
 gestaltFindFolderPresent = 0,
 gestaltFolderDescSupport = 1,
 gestaltFolderMgrFollowsAliasesWhenResolving = 2,
 gestaltFolderMgrSupportsExtendedCalls = 3,
 gestaltFolderMgrSupportsDomains = 4,
 gestaltFolderMgrSupportsFSCalls = 5
};

Constants
gestaltFindFolderAttr

The selector you pass to the Gestalt function to determine the FindFolder function attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFindFolderPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFolderDescSupport
If this bit is set, the extended Folder Manager functionality supporting folder descriptors and routings
is available. This bit is set for versions of the Mac OS starting with Mac OS 8.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFolderMgrFollowsAliasesWhenResolving
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1048 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltFolderMgrSupportsExtendedCalls
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFolderMgrSupportsDomains
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFolderMgrSupportsFSCalls
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any Folder Manager functions, your application should pass the selector
gestaltFindFolderAttr to the Gestalt function to determine which Folder Manager functions are
available.

FPU Type Selectors
Specify version and availability information for the type of floating-point unit installed.

enum {
 gestaltFPUType = 'fpu ',
 gestaltNoFPU = 0,
 gestalt68881 = 1,
 gestalt68882 = 2,
 gestalt68040FPU = 3
};

Constants
gestaltFPUType

A constant that represents the type of floating-point unit currently installed, if any.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltNoFPU
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68881
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68882
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68040FPU
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Gestalt Manager Version Selectors
Specify Gestalt Manager version information.

Constants 1049
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltVersion = 'vers',
 gestaltValueImplementedVers = 5
};

Constants
gestaltVersion

The selector you pass to the function Gestalt (page 1005) to determine the version of the Gestalt
Manager. The function passes back the version in the low-order word of the response.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltValueImplementedVers
The first version of the Gestalt Manager that implements this selector.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Hardware Attribute Attribute Selectors
Specify feature availability information for hardware.

enum {
 gestaltHardwareAttr = 'hdwr',
 gestaltHasVIA1 = 0,
 gestaltHasVIA2 = 1,
 gestaltHasASC = 3,
 gestaltHasSCC = 4,
 gestaltHasSCSI = 7,
 gestaltHasSoftPowerOff = 19,
 gestaltHasSCSI961 = 21,
 gestaltHasSCSI962 = 22,
 gestaltHasUniversalROM = 24,
 gestaltHasEnhancedLtalk = 30
};

Constants
gestaltHardwareAttr

The selector you pass to the Gestalt function to determine low-level hardware configuration attributes.

Never infer the existence of certain hardware or software features from the responses that Gestalt
returns when you pass it this selector.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasVIA1
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasVIA2
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1050 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltHasASC
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasSCC
The gestaltHasSCC bit is normally returned as 0 on the Macintosh IIfx and Macintosh Quadra 900
computers, which have intelligent I/O processors that isolate the hardware and make direct access
to the SCC impossible. However, if the user has used the Compatibility Switch control panel to enable
compatibility mode, gestaltHasSCC is set.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasSCSI
The gestaltHasSCSI bit means the machine is equipped with a SCSI implementation based on the
53C80 chip, which was introduced in the Macintosh Plus. This bit is 0 on computers with a different
SCSI implementation.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasSoftPowerOff
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasSCSI961
This bit is set if the machine has a SCSI implementation based on the 53C96 chip installed on an
internal bus.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasSCSI962
This bit is set if the machine has a SCSI implementation based on the 53C96 chip installed on an
external bus.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasUniversalROM
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasEnhancedLtalk
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Hardware Icon Selector
Specifies icon family resource ID information for the computer hardware.

Constants 1051
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltMachineIcon = 'micn'
};

Constants
gestaltMachineIcon

The selector you pass to the Gestalt function to determine the icon family resource ID for the current
type of Macintosh.

Never infer the existence of certain hardware or software features from the responses that Gestalt
returns when you pass it this selector.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Hardware Vendor Selectors
Specify hardware vendor information.

enum {
 gestaltHardwareVendorCode = 'hrad',
 gestaltHardwareVendorApple = 'Appl'
};

Help Manager Attribute Selectors
Specify feature availability for the Apple Help Manager.

enum {
 gestaltHelpMgrAttr = 'help',
 gestaltHelpMgrPresent = 0,
 gestaltHelpMgrExtensions = 1,
 gestaltAppleGuideIsDebug = 30,
 gestaltAppleGuidePresent = 31
};

Constants
gestaltHelpMgrAttr

The selector you pass to the Gestalt function to determine the Help Manager attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHelpMgrPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHelpMgrExtensions
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAppleGuideIsDebug
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1052 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltAppleGuidePresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Icon Services Attribute Selectors
Specify feature availability for Icon Services.

enum {
 gestaltIconUtilitiesAttr = 'icon',
 gestaltIconUtilitiesPresent = 0,
 gestaltIconUtilitiesHas48PixelIcons = 1,
 gestaltIconUtilitiesHas32BitIcons = 2,
 gestaltIconUtilitiesHas8BitDeepMasks = 3,
 gestaltIconUtilitiesHasIconServices = 4
};

Constants
gestaltIconUtilitiesAttr

The Gestalt selector passed to determine which features of Icon Services are present. The Gestalt
function produces a 32-bit value whose bits you should test to determine which Icon Services features
are available.

Note: available in System 7.0, despite gestalt.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltIconUtilitiesPresent
True if icon utilities are present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltIconUtilitiesHas48PixelIcons
True if 48x48 icons are supported by IconUtilities.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltIconUtilitiesHas32BitIcons
True if 32-bit deep icons are supported.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltIconUtilitiesHas8BitDeepMasks
True if 8-bit deep masks are supported.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltIconUtilitiesHasIconServices
True if IconServices is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1053
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Discussion
Before calling any Icon Services functions, your application should pass the selector
gestaltIconUtilitiesAttr to the Gestalt function.

Image Compression Manager Version Selector
Specifies the version of the Image Compression Manager.

enum {
 gestaltCompressionMgr = 'icmp'
};

Constants
gestaltCompressionMgr

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Intel Architecture Selector
Specifies the Intel architecture.

enum {
 gestaltIntel = 10
};

Internal Display Location Selector
Specifies the slot number information for the internal display location.

enum {
 gestaltInternalDisplay = 'idsp'
};

Keyboard Selectors
Specify keyboard information.

1054 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltKeyboardType = 'kbd ',
 gestaltMacKbd = 1,
 gestaltMacAndPad = 2,
 gestaltMacPlusKbd = 3,
 gestaltExtADBKbd = 4,
 gestaltStdADBKbd = 5,
 gestaltPrtblADBKbd = 6,
 gestaltPrtblISOKbd = 7,
 gestaltStdISOADBKbd = 8,
 gestaltExtISOADBKbd = 9,
 gestaltADBKbdII = 10,
 gestaltADBISOKbdII = 11,
 gestaltPwrBookADBKbd = 12,
 gestaltPwrBookISOADBKbd = 13,
 gestaltAppleAdjustKeypad = 14,
 gestaltAppleAdjustADBKbd = 15,
 gestaltAppleAdjustISOKbd = 16,
 gestaltJapanAdjustADBKbd = 17,
 gestaltPwrBkExtISOKbd = 20,
 gestaltPwrBkExtJISKbd = 21,
 gestaltPwrBkExtADBKbd = 24,
 gestaltPS2Keyboard = 27,
 gestaltPwrBkSubDomKbd = 28,
 gestaltPwrBkSubISOKbd = 29,
 gestaltPwrBkSubJISKbd = 30,
 gestaltPwrBkEKDomKbd = 195,
 gestaltPwrBkEKISOKbd = 196,
 gestaltPwrBkEKJISKbd = 197,
 gestaltUSBCosmoANSIKbd = 198,
 gestaltUSBCosmoISOKbd = 199,
 gestaltUSBCosmoJISKbd = 200,
 gestaltPwrBk99JISKbd = 201,
 gestaltUSBAndyANSIKbd = 204,
 gestaltUSBAndyISOKbd = 205,
 gestaltUSBAndyJISKbd = 206
};

Constants
gestaltKeyboardType

The selector you pass to the Gestalt function to determine the type of the keyboard.

If the Apple Desktop Bus (ADB) is in use, there may be multiple keyboards or other ADB devices
attached to the machine. The gestaltKeyboardType selector identifies only the type of the keyboard
on which the last keystroke occurred.

You cannot use this selector to find out what ADB devices are connected. For that, you can use the
Apple Desktop Bus Manager. Note that the ADB keyboard types described by Gestalt do not
necessarily map directly to ADB device handler IDs.

Future support for the gestaltKeyboardType selector is not guaranteed. To determine the type of
the keyboard last touched without using Gestalt, check the system global variable KbdType.

If the Gestalt Manager does not recognize the keyboard type, it returns an error.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1055
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Keyboard Selectors for Laptops
Specify laptop keyboard information.

enum {
 gestaltPortable2001ANSIKbd = 202,
 gestaltPortable2001ISOKbd = 203,
 gestaltPortable2001JISKbd = 207
};

Logical Page Size Selector
Specifies logical page size information.

enum {
 gestaltLogicalPageSize = 'pgsz'
};

Constants
gestaltLogicalPageSize

The logical page size. This value is defined only on machines with the MC68010, MC68020, MC68030,
or MC68040 microprocessors. On a machine with the MC68000, the Gestalt function returns an
error when called with this selector.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Logical RAM Size Selector
Specifies logical randon-access memory size information.

enum {
 gestaltLogicalRAMSize = 'lram'
};

Constants
gestaltLogicalRAMSize

The amount of logical memory available. This value is the same as that returned by
gestaltPhysicalRAMSize when virtual memory is not installed. On some machines, however, this
value might be less than the value returned by gestaltPhysicalRAMSize because some RAM may
be used by the video display and the Operating System.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Low Memory Size Selector
Specifies information about the size of the low-memory area.

1056 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltLowMemorySize = 'lmem'
};

Constants
gestaltLowMemorySize

The size (in bytes) of the low-memory area. The low-memory area is used for vectors, global variables,
and dispatch tables

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Machine Name String ID
Defines a machine name string ID.

enum {
 kMachineNameStrID = -16395
};

Mailer Version Selector
Specifies version information for the OCE standard mailer.

enum {
 gestaltSMPMailerVersion = 'malr'
};

Mailer Send LetterVersion Selector
Specifies version information for the OCE standard mailer’s send letter.

enum {
 gestaltSMPSPSendLetterVersion = 'spsl'
};

Media Bay Selectors
Specify information about media bay availability.

enum {
 gestaltMediaBay = 'mbeh',
 gestaltMBLegacy = 0,
 gestaltMBSingleBay = 1,
 gestaltMBMultipleBays = 2
};

Memory Attribute Selectors
Specify feature availability information for memory.

Constants 1057
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltOSAttr = 'os ',
 gestaltSysZoneGrowable = 0,
 gestaltLaunchCanReturn = 1,
 gestaltLaunchFullFileSpec = 2,
 gestaltLaunchControl = 3,
 gestaltTempMemSupport = 4,
 gestaltRealTempMemory = 5,
 gestaltTempMemTracked = 6,
 gestaltIPCSupport = 7,
 gestaltSysDebuggerSupport = 8,
 gestaltNativeProcessMgrBit = 19,
 gestaltAltivecRegistersSwappedCorrectlyBit = 20
};

Constants
gestaltOSAttr

The Gestalt selector you pass to determine general Operating System attributes, such as whether
temporary memory handles are real handles. The low-order bits of the response parameter are
interpreted as bit flags. A flag is set to 1 to indicate that the corresponding feature is available.
Currently, the following bits are significant.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSysZoneGrowable
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltLaunchCanReturn
If this bit is set, the _Launch trap macro can return to the caller. The _Launch trap macro in system
software version 7.0 (and in earlier versions running MultiFinder) gives your application the option
to continue running after it launches another application. In earlier versions of system software not
running MultiFinder, the _Launch trap macro forces the launching application to quit.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltLaunchFullFileSpec
If this bit is set, the launchControlFlags field supports control flags in addition to the
launchContinue flag, and if the _Launch trap can process the launchAppSpec, launchProcessSN,
launchPreferredSize, launchMinimumSize, launchAvailableSize, and
launchAppParameters fields in the launch parameter block.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltLaunchControl
If this bit is set, the Process Manager is available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTempMemSupport
If true, there is temporary memory support.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1058 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltRealTempMemory
If true, temporary memory handles are real.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTempMemTracked
If true, temporary memory handles are tracked.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltIPCSupport
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSysDebuggerSupport
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltNativeProcessMgrBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAltivecRegistersSwappedCorrectlyBit
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

Memory Mapping Attribute Selectors
Specify feature availibility information for memory mapping.

enum {
 gestaltMemoryMapAttr = 'mmap',
 gestaltMemoryMapSparse = 0
};

Menu Manager Selectors in Mac OS 8.5
Specify version and feature availability information for the Menu Manager in Mac OS 8.5

Constants 1059
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltMenuMgrAttr = 'menu',
 gestaltMenuMgrPresent = (1L << 0),
 gestaltMenuMgrPresentBit = 0,
 gestaltMenuMgrAquaLayoutBit = 1,
 gestaltMenuMgrMultipleItemsWithCommandIDBit = 2,
 gestaltMenuMgrRetainsIconRefBit = 3,
 gestaltMenuMgrSendsMenuBoundsToDefProcBit = 4,
 gestaltMenuMgrMoreThanFiveMenusDeepBit = 5,
 gestaltMenuMgrPresentMask = (1L << gestaltMenuMgrPresentBit),
 gestaltMenuMgrAquaLayoutMask = (1L << gestaltMenuMgrAquaLayoutBit),
 gestaltMenuMgrMultipleItemsWithCommandIDMask = (1L <<
gestaltMenuMgrMultipleItemsWithCommandIDBit),
 gestaltMenuMgrRetainsIconRefMask = (1L << gestaltMenuMgrRetainsIconRefBit),
 gestaltMenuMgrSendsMenuBoundsToDefProcMask = (1L <<
gestaltMenuMgrSendsMenuBoundsToDefProcBit),
 gestaltMenuMgrMoreThanFiveMenusDeepMask = (1L <<
gestaltMenuMgrMoreThanFiveMenusDeepBit)
};

Constants
gestaltMenuMgrAttr

The Gestalt selector passed to determine what features of the Menu Manager are present. This
selector is available with Mac OS 8.5 and later. Passing gestaltMenuMgrAttr produces a 32-bit
value whose bits you should test to determine what Menu Manager functionality is available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrPresent
If the bit specified by this mask is set, the Menu Manager functionality for Appearance Manager 1.1
is available. This bit is set for Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrPresentBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrAquaLayoutBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrMultipleItemsWithCommandIDBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrRetainsIconRefBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrSendsMenuBoundsToDefProcBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1060 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltMenuMgrMoreThanFiveMenusDeepBit
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

gestaltMenuMgrPresentMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrAquaLayoutMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrMultipleItemsWithCommandIDMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrRetainsIconRefMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrSendsMenuBoundsToDefProcMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMenuMgrMoreThanFiveMenusDeepMask
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

Discussion
Before calling any Menu Manager functions, your application should pass the selector gestaltMenuMgrAttr
to the Gestalt function to determine which Menu Manager functions are available.

Message Manager Version Selector
Specify version information for the Message Manager.

enum {
 gestaltMessageMgrVersion = 'mess'
};

Miscellaneous Attribute Selectors
Specify feature availability information for miscellaneous pieces of the operating system or the hardware
configuration.

Constants 1061
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltMiscAttr = 'misc',
 gestaltScrollingThrottle = 0,
 gestaltSquareMenuBar = 2
};

Constants
gestaltMiscAttr

The selector you pass to the Gestalt function to determine information about miscellaneous pieces
of the Operating System or hardware configuration.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltScrollingThrottle
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSquareMenuBar
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Mixed Mode Manager Selectors
Specify version and feature availability information for the Mixed Mode Manager.

enum {
 gestaltMixedModeAttr = 'mixd',
 gestaltMixedModePowerPC = 0,
 gestaltPowerPCAware = 0,
 gestaltMixedModeCFM68K = 1,
 gestaltMixedModeCFM68KHasTrap = 2,
 gestaltMixedModeCFM68KHasState = 3
};

Constants
gestaltMixedModeAttr

The Gestalt selector you pass to determine what version of Mixed Mode Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMixedModePowerPC
True if Mixed Mode supports PowerPC ABI calling conventions

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPowerPCAware
Old name for gestaltMixedModePowerPC

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1062 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltMixedModeCFM68K
True if Mixed Mode supports CFM-68K calling conventions

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMixedModeCFM68KHasTrap
True if CFM-68K Mixed Mode implements _MixedModeDispatch (versions 1.0.1 and prior did not)

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMixedModeCFM68KHasState
True if CFM-68K Mixed Mode exports Save/RestoreMixedModeState

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent upon Mixed Mode Manager, your application should pass the selector
gestaltMixedModeAttr to the Gestalt function to determine the Mixed Mode Manager attributes that
are present.

Mixed Mode Manager Version Selector
Specifies version information for the Mixed Mode Manager.

enum {
 gestaltMixedModeVersion = 'mixd'
};

Constants
gestaltMixedModeVersion

The selector you pass to the Gestalt function to determine the version of Mixed Mode Manager.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

MMU Type Selectors
Specify information about the type of MMU installed.

Constants 1063
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltMMUType = 'mmu ',
 gestaltNoMMU = 0,
 gestaltAMU = 1,
 gestalt68851 = 2,
 gestalt68030MMU = 3,
 gestalt68040MMU = 4,
 gestaltEMMU1 = 5
};

Constants
gestaltMMUType

The selector you pass to the Gestalt function to determine the type of MMU currently installed.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltNoMMU
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAMU
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68851
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68030MMU
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68040MMU
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltEMMU1
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Multiple Users State Selector
Specifies information about the multiple user state.

enum {
 gestaltMultipleUsersState = 'mfdr'
};

Name-Binding Protocol Attribute Selectors
Specify feature availiability information for the standard name-binding protocol.

1064 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltStdNBPAttr = 'nlup',
 gestaltStdNBPPresent = 0,
 gestaltStdNBPSupportsAutoPosition = 1
};

Constants
gestaltStdNBPAttr

The selector you pass to the Gestalt function to determine information about the StandardNBP
(Name-Binding Protocol) function.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltStdNBPPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltStdNBPSupportsAutoPosition
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Name Registry Version Selector
Specifies the version of the name registry.

enum {
 gestaltNameRegistryVersion = 'nreg'
};

Constants
gestaltNameRegistryVersion

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Native CPU Selectors
Specify the native CPU type or family.

Constants 1065
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltNativeCPUtype = 'cput',
 gestaltNativeCPUfamily = 'cpuf',
 gestaltCPU68000 = 0,
 gestaltCPU68010 = 1,
 gestaltCPU68020 = 2,
 gestaltCPU68030 = 3,
 gestaltCPU68040 = 4,
 gestaltCPU601 = 0x0101,
 gestaltCPU603 = 0x0103,
 gestaltCPU604 = 0x0104,
 gestaltCPU603e = 0x0106,
 gestaltCPU603ev = 0x0107,
 gestaltCPU750 = 0x0108,
 gestaltCPU604e = 0x0109,
 gestaltCPU604ev = 0x010A,
 gestaltCPUG4 = 0x010C,
 gestaltCPUG47450 = 0x0110
};

Constants
gestaltNativeCPUtype

The selector you pass to the Gestalt function to determine the native CPU type.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltNativeCPUfamily
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU68000
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU68010
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU68020
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU68030
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU68040
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU601
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU603
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1066 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltCPU604
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU603e
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU603ev
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU750
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU604e
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPU604ev
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPUG4
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCPUG47450
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

Discussion
The use of these selectors is no longer recommended. You can use the gestaltSysArchitecture (page
1098) selector to determine whether your application is running on a PowerPC or Intel-based Macintosh. If you
are trying to determine whether you can use a particular processor feature, you should check directly for
that feature using a BSD library function such as sysctl or sysctlbyname. For more information, see Mac
OS X Man Pages.

Notification Manager Attribute Selectors
Specify feature availability information for the Notification Manager.

enum {
 gestaltNotificationMgrAttr = 'nmgr',
 gestaltNotificationPresent = 0
};

Constants
gestaltNotificationMgrAttr

.The Gestalt selector which you pass to the Gestalt function to determine Notification Manager
attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1067
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltNotificationPresent
True if the Notification Manager exists.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

NuBus Location Selector
Specifies information about the NuBus slot connector locations.

enum {
 gestaltNuBusConnectors = 'sltc'
};

Constants
gestaltNuBusConnectors

A bitmap that describes the NuBus slot connector locations. On a Macintosh II, for example, the return
value would have bits 9 through 14 set, indicating that 6 NuBus slots are present, at locations 9
through 14.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

NuBus Slot Count Selector
Specifies information about the number of NuBus slots.

enum {
 gestaltNuBusSlotCount = 'nubs'
};

OCE Toolbox Attribute Selectors
Specify feature availability for the OCE Toolbox.

enum {
 gestaltOCEToolboxAttr = 'oceu',
 gestaltOCETBPresent = 0x01,
 gestaltOCETBAvailable = 0x02,
 gestaltOCESFServerAvailable = 0x04,
 gestaltOCETBNativeGlueAvailable = 0x10
};

OCE Toolbox Version Selectors
Specify version information for the OCE Toolbox.

1068 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltOCEToolboxVersion = 'ocet',
 gestaltOCETB = 0x0102,
 gestaltSFServer = 0x0100
};

Open Firmware Selector
Specifies version information for Open Firmware.

enum {
 gestaltOpenFirmwareInfo = 'opfw'
};

Open Firmware Safe Selectors
Specify feature availability for Open Firmware safe features.

enum {
 gestaltSafeOFAttr = 'safe',
 gestaltVMZerosPagesBit = 0,
 gestaltInitHeapZerosOutHeapsBit = 1,
 gestaltNewHandleReturnsZeroedMemoryBit = 2,
 gestaltNewPtrReturnsZeroedMemoryBit = 3,
 gestaltFileAllocationZeroedBlocksBit = 4
};

Open Transport Selectors
Specify version and feature availability information for Open Transport.

Constants 1069
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltOpenTpt = 'otan',
 gestaltOpenTptPresentMask = 0x00000001,
 gestaltOpenTptLoadedMask = 0x00000002,
 gestaltOpenTptAppleTalkPresentMask = 0x00000004,
 gestaltOpenTptAppleTalkLoadedMask = 0x00000008,
 gestaltOpenTptTCPPresentMask = 0x00000010,
 gestaltOpenTptTCPLoadedMask = 0x00000020,
 gestaltOpenTptIPXSPXPresentMask = 0x00000040,
 gestaltOpenTptIPXSPXLoadedMask = 0x00000080,
 gestaltOpenTptPresentBit = 0,
 gestaltOpenTptLoadedBit = 1,
 gestaltOpenTptAppleTalkPresentBit = 2,
 gestaltOpenTptAppleTalkLoadedBit = 3,
 gestaltOpenTptTCPPresentBit = 4,
 gestaltOpenTptTCPLoadedBit = 5,
 gestaltOpenTptIPXSPXPresentBit = 6,
 gestaltOpenTptIPXSPXLoadedBit = 7
};

Open Transport Network Setup Selectors
Specify feature availability and setup information for Open Transport networking.

enum {
 gestaltOpenTptNetworkSetup = 'otcf',
 gestaltOpenTptNetworkSetupLegacyImport = 0,
 gestaltOpenTptNetworkSetupLegacyExport = 1,
 gestaltOpenTptNetworkSetupSupportsMultihoming = 2
};

Open Transport Network Version Selector
Specifies the version of the Open Transport network setup.

enum {
 gestaltOpenTptNetworkSetupVersion = 'otcv'
};

Open Transport Remote Access Selectors
Specify feature availabiliy for Open Transport remote access.

1070 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltOpenTptRemoteAccess = 'otra',
 gestaltOpenTptRemoteAccessPresent = 0,
 gestaltOpenTptRemoteAccessLoaded = 1,
 gestaltOpenTptRemoteAccessClientOnly = 2,
 gestaltOpenTptRemoteAccessPServer = 3,
 gestaltOpenTptRemoteAccessMPServer = 4,
 gestaltOpenTptPPPPresent = 5,
 gestaltOpenTptARAPPresent = 6
};

Opent Transport Remote Access Version Selector
Specifies version information for Open Transport remote access.

enum {
 gestaltOpenTptRemoteAccessVersion = 'otrv'
};

Open Transport Version Selector
Specifies version information for Open Transport.

enum {
 gestaltOpenTptVersions = 'otvr'
};

OS Trap Table Selector
Specifies base address information for the operating system trap dispatch table.

enum {
 gestaltOSTable = 'ostt'
};

Constants
gestaltOSTable

The selector you pass to the Gestalt function to determine the base address of the operating system
trap dispatch table.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Parity Checking Attribute Selectors
Specify feature availability for parity checking.

Constants 1071
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltParityAttr = 'prty',
 gestaltHasParityCapability = 0,
 gestaltParityEnabled = 1
};

Constants
gestaltParityAttr

The selector you pass to the Gestalt function to determine information about the machine’s
parity-checking features.

Note that parity is not considered to be enabled unless all installed memory is parity RAM.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasParityCapability
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltParityEnabled
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

PC Compatibility Card Selectors
Specify version and feature availability information for a PC-compatibility card.

enum {
 gestaltPCCard = 'pccd',
 gestaltCardServicesPresent = 0,
 gestaltPCCardFamilyPresent = 1,
 gestaltPCCardHasPowerControl = 2,
 gestaltPCCardSupportsCardBus = 3
};

PC Exchange Attribute Selectors
Specify feature availability information for PC Exchange.

enum {
 gestaltPCXAttr = 'pcxg',
 gestaltPCXHas8and16BitFAT = 0,
 gestaltPCXHasProDOS = 1,
 gestaltPCXNewUI = 2,
 gestaltPCXUseICMapping = 3
};

Constants
gestaltPCXAttr

The selector you pass to the Gestalt function to determine the PC Exchange attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1072 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltPCXHas8and16BitFAT
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPCXHasProDOS
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPCXNewUI
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPCXUseICMapping
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Physical RAM Size Selector
Specifies information about the size of the physical RAM.

enum {
 gestaltPhysicalRAMSize = 'ram '
};

Constants
gestaltPhysicalRAMSize

The selector you pass to the Gestalt function to determine the number of bytes of physical RAM
currently installed.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Pop-up Control Selector
Specify feature availability for pop-up controls.

enum {
 gestaltPopupAttr = 'pop!',
 gestaltPopupPresent = 0
};

Constants
gestaltPopupAttr

The selector you pass to the Gestalt function to determine the attribute of the pop-up control
definition.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPopupPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1073
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Power Manager Attribute Selectors
Specify feature availability for the Power Manager.

enum {
 gestaltPowerMgrAttr = 'powr',
 gestaltPMgrExists = 0,
 gestaltPMgrCPUIdle = 1,
 gestaltPMgrSCC = 2,
 gestaltPMgrSound = 3,
 gestaltPMgrDispatchExists = 4,
 gestaltPMgrSupportsAVPowerStateAtSleepWake = 5
};

Constants
gestaltPowerMgrAttr

The Gestalt selector you pass to determine which Power Manager capabilities are available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPMgrExists
If true, the Power Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPMgrCPUIdle
If true the CPU is capable of going into a low–power-consumption state.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPMgrSCC
If true, it is possible to stop the SCC clock, thus effectively turning off the serial ports.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPMgrSound
If true, it is possible to turn off power to the sound circuits.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPMgrDispatchExists
If true, Dispatch is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPMgrSupportsAVPowerStateAtSleepWake
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Power Manager Version Selector
Specifies version information for the Power Manager.

1074 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltPowerMgrVers = 'pwrv'
};

PowerPC Attribute Selectors
Specify feature availability for PowerPC processors.

enum {
 gestaltPowerPCProcessorFeatures = 'ppcf',
 gestaltPowerPCHasGraphicsInstructions = 0,
 gestaltPowerPCHasSTFIWXInstruction = 1,
 gestaltPowerPCHasSquareRootInstructions = 2,
 gestaltPowerPCHasDCBAInstruction = 3,
 gestaltPowerPCHasVectorInstructions = 4,
 gestaltPowerPCHasDataStreams = 5
};

PowerPC Toolbox Attribute Selectors
Specify feature availability for the PowerPC Toolbox.

enum {
 gestaltPPCToolboxAttr = 'ppc ',
 gestaltPPCToolboxPresent = 0x0000,
 gestaltPPCSupportsRealTime = 0x1000,
 gestaltPPCSupportsIncoming = 0x0001,
 gestaltPPCSupportsOutGoing = 0x0002,
 gestaltPPCSupportsTCP_IP = 0x0004,
 gestaltPPCSupportsIncomingAppleTalk = 0x0010,
 gestaltPPCSupportsIncomingTCP_IP = 0x0020,
 gestaltPPCSupportsOutgoingAppleTalk = 0x0100,
 gestaltPPCSupportsOutgoingTCP_IP = 0x0200
};

Constants
gestaltPPCToolboxAttr

The selector you pass to the Gestalt function to determine the Program-to-Program Communication
(PPC) Toolbox attributes. Note that these constants are defined as masks, not bit numbers.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPPCToolboxPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPPCSupportsRealTime
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPPCSupportsIncoming
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1075
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltPPCSupportsOutGoing
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPPCSupportsTCP_IP
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPPCSupportsIncomingAppleTalk
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPPCSupportsIncomingTCP_IP
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPPCSupportsOutgoingAppleTalk
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPPCSupportsOutgoingTCP_IP
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Preemptive Function Atrribute Selectors
Specify feature availability information for preemptive system software functions.

enum {
 gestaltMPCallableAPIsAttr = 'mpsc',
 gestaltMPFileManager = 0,
 gestaltMPDeviceManager = 1,
 gestaltMPTrapCalls = 2
};

Constants
gestaltMPCallableAPIsAttr

The Gestalt selector passed to determine the availability of preemptive system software functions.
The Gestalt function produces a 32-bit value that you should test to determine which what type
of preemptive calls are allowed.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMPFileManager
If this bit is set, you can call preemptively safe File Manager functions.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMPDeviceManager
If this bit is set, you can call preemptively safe Device Manager function.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1076 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltMPTrapCalls
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any Mac OS system software functions from a preemptive task , you should call the Gestalt
function with the gestaltMPCallableAPIsAttr selector set to determine which preemptively safe system
calls are allowed.

Note that for functions that are shared between managers (for example, PBCloseSync), you should check
the bit that is appropriate for the manager you want to call.

Version Notes
Introduced with Multiprocessing Services 2.1

Processor Clock Speed Selector
Specifies information about processor clock speed.

enum {
 gestaltProcClkSpeed = 'pclk'
};

Processor Type Selector
Specifies information about the type of microprocessor.

enum {
 gestaltProcessorType = 'proc',
 gestalt68000 = 1,
 gestalt68010 = 2,
 gestalt68020 = 3,
 gestalt68030 = 4,
 gestalt68040 = 5
};

Constants
gestaltProcessorType

The selector you pass to the Gestalt function to determine the type of microprocessor currently
running.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68000
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68010
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1077
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestalt68020
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68030
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68040
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Quadra Redefinitions
Specifies alternate names for MacQuadra constants.

enum {
 gestaltQuadra605 = gestaltMacQuadra605,
 gestaltQuadra610 = gestaltMacQuadra610,
 gestaltQuadra630 = gestaltMacQuadra630,
 gestaltQuadra650 = gestaltMacQuadra650,
 gestaltQuadra660AV = gestaltMacQuadra660AV,
 gestaltQuadra700 = gestaltMacQuadra700,
 gestaltQuadra800 = gestaltMacQuadra800,
 gestaltQuadra840AV = gestaltMacQuadra840AV,
 gestaltQuadra900 = gestaltMacQuadra900,
 gestaltQuadra950 = gestaltMacQuadra950
};

QuickDraw 3D Attribute Selectors
Specify feature availability information for QuickDraw 3D.

enum {
 gestaltQD3D = 'qd3d',
 gestaltQD3DPresent = 0
};

Quick Draw 3D Old Attribute Selectors
Specify old feature availability information for QuickDraw 3D.

enum {
 gestaltQD3DNotPresent = (0 << gestaltQD3DPresent),
 gestaltQD3DAvailable = (1 << gestaltQD3DPresent)
};

Quick Draw 3D Version Selector
Specifies version information for QuickDraw 3D.

1078 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltQD3DVersion = 'q3v '
};

QuickDraw 3D Viewer Attribute Selectors
Specify feature availablity information for QuickDraw 3D Viewer.

enum {
 gestaltQD3DViewer = 'q3vc',
 gestaltQD3DViewerPresent = 0
};

QuickDraw Attribute Selectors
Specify feature availability information for QuickDraw.

enum {
 gestaltQuickdrawFeatures = 'qdrw',
 gestaltHasColor = 0,
 gestaltHasDeepGWorlds = 1,
 gestaltHasDirectPixMaps = 2,
 gestaltHasGrayishTextOr = 3,
 gestaltSupportsMirroring = 4,
 gestaltQDHasLongRowBytes = 5
};

Constants
gestaltQuickdrawFeatures

The selector you pass to the Gestalt function to determine the QuickDraw features.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasColor
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasDeepGWorlds
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasDirectPixMaps
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasGrayishTextOr
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSupportsMirroring
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1079
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltQDHasLongRowBytes
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

QuickDraw Version Selectors
Specify version information for QuickDraw.

enum {
 gestaltQuickdrawVersion = 'qd ',
 gestaltOriginalQD = 0x0000,
 gestalt8BitQD = 0x0100,
 gestalt32BitQD = 0x0200,
 gestalt32BitQD11 = 0x0201,
 gestalt32BitQD12 = 0x0220,
 gestalt32BitQD13 = 0x0230,
 gestaltAllegroQD = 0x0250,
 gestaltMacOSXQD = 0x0300
};

Constants
gestaltQuickdrawVersion

The Gestalt selector you pass to determine what version of QuickDraw is present. For QuickDraw Text,
the Gestalt selector you pass to determine what version of QuickDraw Text is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltOriginalQD
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt8BitQD
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt32BitQD
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt32BitQD11
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt32BitQD12
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt32BitQD13
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAllegroQD
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1080 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltMacOSXQD
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
The version of QuickDraw is encoded as a revision number in the low-order word of the return value. The
high-order byte represents the major revision number, and the low-order byte represents the minor revision
number. For example, version 1.3 of 32-Bit QuickDraw represents QuickDraw revision 2.3; its response value
is $0230.

Values having a major revision number of 1 or 2 indicate that Color QuickDraw is available, in either the 8-bit
or 32-bit version. These results do not, however, indicate whether a color monitor is attached to the system.
You must use high-level QuickDraw functions to obtain that information.

QuickDraw GX Overall Version Selector
Specifies version information for the overall version of QuickDraw GX.

enum {
 gestaltGXVersion = 'qdgx'
};

QuickDraw GX Printing Version Selector
Specifies version information for QuickDraw GX printing.

enum {
 gestaltGXPrintingMgrVersion = 'pmgr'
};

QuickDraw GX Version Selectors
Specify version information for QuickDraw GX.

enum {
 gestaltGraphicsVersion = 'grfx',
 gestaltCurrentGraphicsVersion = 0x00010200
};

Constants
gestaltGraphicsVersion

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCurrentGraphicsVersion
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

QuickDraw GX Attribute Selectors
Specify feature availability information for QuickDraw GX.

Constants 1081
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltGraphicsAttr = 'gfxa',
 gestaltGraphicsIsDebugging = 0x00000001,
 gestaltGraphicsIsLoaded = 0x00000002,
 gestaltGraphicsIsPowerPC = 0x00000004
};

QuickDraw 3D Viewer Old Selectors
Specify old feature availability information for QuickDraw 3D.

enum {
 gestaltQD3DViewerNotPresent = (0 << gestaltQD3DViewerPresent),
 gestaltQD3DViewerAvailable = (1 << gestaltQD3DViewerPresent)
};

QuickDraw Text Attribute Selectors
Specify feature availability information for QuickDraw Text.

enum {
 gestaltQDTextFeatures = 'qdtf',
 gestaltWSIISupport = 0,
 gestaltSbitFontSupport = 1,
 gestaltAntiAliasedTextAvailable = 2,
 gestaltOFA2available = 3,
 gestaltCreatesAliasFontRsrc = 4,
 gestaltNativeType1FontSupport = 5,
 gestaltCanUseCGTextRendering = 6
};

Constants
gestaltQDTextFeatures

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltWSIISupport
WSII support is included.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSbitFontSupport
sbit-only fonts are supported.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAntiAliasedTextAvailable
Capable of antialiased text.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1082 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltOFA2available
OFA2 is available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCreatesAliasFontRsrc
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltNativeType1FontSupport
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltCanUseCGTextRendering
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent upon QuickDraw Text, your application should pass the selector
gestaltQDTextFeatures to the Gestalt function to determine the QuickDraw Text attributes that are
present.

QuickDraw Text Version Selectors
Specify version information for QuickDraw Text.

enum {
 gestaltQDTextVersion = 'qdtx',
 gestaltOriginalQDText = 0x0000,
 gestaltAllegroQDText = 0x0100,
 gestaltMacOSXQDText = 0x0200
};

Constants
gestaltQDTextVersion

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltOriginalQDText
This is the original version of QuickDraw Text, used through Mac OS 8.1.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltAllegroQDText
This is the version of QuickDraw Text used with Mac OS 8.2 and up.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMacOSXQDText
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
To determine the version of the current QuickDraw Text, your application should pass the selector
gestaltQuickdrawVersion to the Gestalt function.

Constants 1083
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

QuickTime VR Feature Selectors
Specify feature availability information for QuickTime VR.

enum {
 gestaltQTVRMgrAttr = 'qtvr',
 gestaltQTVRMgrPresent = 0,
 gestaltQTVRObjMoviesPresent = 1,
 gestaltQTVRCylinderPanosPresent = 2,
 gestaltQTVRCubicPanosPresent = 3
};

QuickTime VR Version Selector
Specifies version information for QuickTime VR.

enum {
 gestaltQTVRMgrVers = 'qtvv'
};

QuickTime Attribute Selectors
Specify feature availability information for QuickTime.

enum {
 gestaltQuickTimeFeatures = 'qtrs',
 gestaltPPCQuickTimeLibPresent = 0
};

QuickTime Version Selectors
Specify version information for QuickTime.

enum {
 gestaltQuickTimeVersion = 'qtim',
 gestaltQuickTime = 'qtim'
};

Constants
gestaltQuickTimeVersion

The selector you pass to the Gestalt function to determine the QuickTime version.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltQuickTime
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

QuickTime Conferencing Information Selector
Specifies information about QuickTime conferencing.

1084 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltQuickTimeConferencingInfo = 'qtci'
};

Constants
gestaltQuickTimeConferencingInfo

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

QuickTime Conferencing Selector
Specifies availability information for QuickTime conferencing.

enum {
 gestaltQuickTimeConferencing = 'mtlk'
};

QuickTime Streaming Attribute Selector
Specify feature availability information for QuickTime streaming.

enum {
 gestaltQuickTimeStreamingFeatures = 'qtsf'
};

QuickTime Streaming Version Selector
Specifies version information for QuickTime streaming.

enum {
 gestaltQuickTimeStreamingVersion = 'qtst'
};

RBV Address Selector
Specifies information about the RBV base address.

enum {
 gestaltRBVAddr = 'rbv '
};

Realtime Manager Attribute Selectors
Specify feature availability information for the Realtime Manager.

Constants 1085
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltRealtimeMgrAttr = 'rtmr',
 gestaltRealtimeMgrPresent = 0
};

Constants
gestaltRealtimeMgrAttr

The selector you pass to the Gestalt function to determine the Realtime Manager attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltRealtimeMgrPresent
(description forthcoming)

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Resource Manager Bug Fixes Attribute Selectors
Specify feature availability information for Resource Manager bug fixes.

enum {
 gestaltResourceMgrBugFixesAttrs = 'rmbg',
 gestaltRMForceSysHeapRolledIn = 0,
 gestaltRMFakeAppleMenuItemsRolledIn = 1,
 gestaltSanityCheckResourceFiles = 2,
 gestaltSupportsFSpResourceFileAlreadyOpenBit = 3,
 gestaltRMSupportsFSCalls = 4,
 gestaltRMTypeIndexOrderingReverse = 8
};

Resource Manager Attribute Selectors
Specify feature availability information for the Resource Manager.

enum {
 gestaltResourceMgrAttr = 'rsrc',
 gestaltPartialRsrcs = 0,
 gestaltHasResourceOverrides = 1
};

Constants
gestaltResourceMgrAttr

The Gestalt selector you pass to determine which Resource Manager attributes are present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPartialRsrcs
If true, partial resources exist.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1086 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltHasResourceOverrides
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent upon the Resource Manager, your application should pass the selector
gestaltResourceMgrAttr to the Gestalt function to determine the Resource Manager attributes that
are present.

ROM Size Selector
Specifies information about ROM size information.

enum {
 gestaltROMSize = 'rom '
};

Constants
gestaltROMSize

The selector you pass to the Gestalt function to determine the size of the installed ROM, in bytes.
The value is returned in only one word.

You should not infer the existence of certain hardware or software features from the responses that
Gestalt returns when you pass it this selector.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

ROM Version Selector
Specifies ROM version information.

enum {
 gestaltROMVersion = 'romv'
};

Constants
gestaltROMVersion

This selector is NOT supported in Carbon.

The selector you pass to the Gestalt function to determine the version number of the installed ROM
(in the low-order word of the return value).

Never infer the existence of certain hardware or software features from the responses that Gestalt
returns when you pass it this selector.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

SCC Read Address Selector
Specifies information about the base address for reading SCC.

Constants 1087
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltSCCReadAddr = 'sccr'
};

SCC Write Address Selector
Specifies information about the base address for writing SCC.

enum {
 gestaltSCCWriteAddr = 'sccw'
};

SCSI Manager Attribute Selectors
Specify feature availability information for the SCSI Manager.

enum {
 gestaltSCSI = 'scsi',
 gestaltAsyncSCSI = 0,
 gestaltAsyncSCSIINROM = 1,
 gestaltSCSISlotBoot = 2,
 gestaltSCSIPollSIH = 3
};

Scrap Manager Selectors
Specify version and feature availability information for the Scrap Manager.

enum {
 gestaltScrapMgrAttr = 'scra',
 gestaltScrapMgrTranslationAware = 0
};

Constants
gestaltScrapMgrAttr

The Gestalt selector you pass to determine which Scrap Manager attributes are present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltScrapMgrTranslationAware
If true, the Scrap Manager supports Translation Manager.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent upon the Scrap Manager, your application should pass the selector
gestaltScrapMgrAttr to the Gestalt function to determine the Scrap Manager attributes that are present.

Screen Capture Selectors
Specifies location information for screen capture.

1088 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltScreenCaptureMain = 'pic1',
 gestaltScreenCaptureDir = 'pic2'
};

Script Manager Version Selector
Specifies version information for the Script Manager.

enum {
 gestaltScriptMgrVersion = 'scri'
};

Constants
gestaltScriptMgrVersion

The selector you pass to the Gestalt function to determine the version number of the Script Manager
(in the low-order word of the return value).

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Script Systems Count Selector
Specifies information about the number of active script systems.

enum {
 gestaltScriptCount = 'scr#'
};

Constants
gestaltScriptCount

The selector you pass to the Gestalt function to determine the number of script systems currently
active.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Serial Hardware Attribute Selectors
Specify serial hardware attributes.

Constants 1089
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltSerialAttr = 'ser ',
 gestaltHasGPIaToDCDa = 0,
 gestaltHasGPIaToRTxCa = 1,
 gestaltHasGPIbToDCDb = 2,
 gestaltHidePortA = 3,
 gestaltHidePortB = 4,
 gestaltPortADisabled = 5,
 gestaltPortBDisabled = 6
};

Constants
gestaltSerialAttr

The selector you pass to the Gestalt function to determine the serial hardware attributes of the
machine, such as whether or not the GPIa line is connected and can be used for external clocking.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasGPIaToDCDa
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasGPIaToRTxCa
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasGPIbToDCDb
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHidePortA
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHidePortB
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPortADisabled
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPortBDisabled
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Serial Port Arbitrator Attribute Selectors
Specify feature availability information for serial port arbitration.

1090 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltArbitorAttr = 'arb ',
 gestaltSerialArbitrationExists = 0
};

Settings Manager Attribute Selectors
Specify feature availability information for the Settings Manager.

enum {
 gestaltALMAttr = 'trip',
 gestaltALMPresent = 0,
 gestaltALMHasSFGroup = 1,
 gestaltALMHasCFMSupport = 2,
 gestaltALMHasRescanNotifiers = 3
};

Discussion
See also “Settings Manager Version Selector” (page 1091).

Settings Manager Location Selector
Specifies location information for the Settings Manager.

enum {
 gestaltALMHasSFLocation = gestaltALMHasSFGroup
};

Settings Manager Version Selector
Specifies version information for the Settings Manager.

enum {
 gestaltALMVers = 'walk'
};

Shutdown Attribute Selectors
Specify shutdown attributes.

enum {
 gestaltShutdownAttributes = 'shut',
 gestaltShutdownHassdOnBootVolUnmount = 0
};

Single Window Mode Selectors
Specify single-window modes.

Constants 1091
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltHasSingleWindowModeBit = 8,
 gestaltHasSingleWindowModeMask = (1L << gestaltHasSingleWindowModeBit)
};

Slot Attribute Selectors
Specify feature availablity for slots.

enum {
 gestaltSlotAttr = 'slot',
 gestaltSlotMgrExists = 0,
 gestaltNuBusPresent = 1,
 gestaltSESlotPresent = 2,
 gestaltSE30SlotPresent = 3,
 gestaltPortableSlotPresent = 4
};

Constants
gestaltSlotAttr

The selector you pass to the Gestalt function to determine the Slot Manager attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSlotMgrExists
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltNuBusPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSESlotPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSE30SlotPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPortableSlotPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Slot Number Selector
Specifies information about the first physical slot in the computer.

1092 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltFirstSlotNumber = 'slt1'
};

Constants
gestaltFirstSlotNumber

The first physical slot.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Software Vendor Codes
Specify codes for software vendors.

enum {
 gestaltSoftwareVendorCode = 'srad',
 gestaltSoftwareVendorApple = 'Appl',
 gestaltSoftwareVendorLicensee = 'Lcns'
};

Sound Manager Attribute Selectors
Specify feature availability information for the Sound Manager.

enum {
 gestaltSoundAttr = 'snd ',
 gestaltStereoCapability = 0,
 gestaltStereoMixing = 1,
 gestaltSoundIOMgrPresent = 3,
 gestaltBuiltInSoundInput = 4,
 gestaltHasSoundInputDevice = 5,
 gestaltPlayAndRecord = 6,
 gestalt16BitSoundIO = 7,
 gestaltStereoInput = 8,
 gestaltLineLevelInput = 9,
 gestaltSndPlayDoubleBuffer = 10,
 gestaltMultiChannels = 11,
 gestalt16BitAudioSupport = 12
};

Constants
gestaltSoundAttr

The Gestalt selector which you pass to the Gestalt function.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltStereoCapability
Set if the built-in sound hardware is able to produce stereo sounds.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1093
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltStereoMixing
Set if the built-in sound hardware mixes both left and right channels of stereo sound into a single
audio signal for the internal speaker.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSoundIOMgrPresent
Set if the Sound Input Manager is available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltBuiltInSoundInput
Set if a built-in sound input device is available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasSoundInputDevice
Set if a sound input device is available. This device can be either built-in or external.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPlayAndRecord
Set if the built-in sound hardware is able to play and record sounds simultaneously. If this bit is clear,
the built-in sound hardware can either play or record, but not do both at once. This bit is valid only
if the gestaltBuiltInSoundInput bit is set, and it applies only to any built-in sound input and
output hardware.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt16BitSoundIO
Set if the built-in sound hardware is able to play and record 16-bit samples. This indicates that built-in
hardware necessary to handle 16-bit data is available.

This bit is not defined for versions of the Sound Manager prior to version 3.0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltStereoInput
Set if the built-in sound hardware can record stereo sounds.

This bit is not defined for versions of the Sound Manager prior to version 3.0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltLineLevelInput
Set if the built-in sound input port requires line level input.

This bit is not defined for versions of the Sound Manager prior to version 3.0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1094 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltSndPlayDoubleBuffer
Set if the Sound Manager supports the play-from-disk functions.

This bit is not defined for versions of the Sound Manager prior to version 3.0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltMultiChannels
Set if the Sound Manager supports multiple channels of sound.

This bit is not defined for versions of the Sound Manager prior to version 3.0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt16BitAudioSupport
Set if the Sound Manager can handle 16-bit audio data. This indicates that software necessary to
handle 16-bit data is available.

This bit is not defined for versions of the Sound Manager prior to version 3.0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
You can pass the gestaltSoundAttr selector to the Gestalt function to determine information about
the sound input capabilities of a Macintosh computer.

The Gestalt function returns information by setting or clearing bits in the response parameter. The bits
relevant to the Sound Input Manager are defined by constants.

Speech Manager Attribute Selectors
Specify feature availability information for the Speech Manager.

enum {
 gestaltSpeechAttr = 'ttsc',
 gestaltSpeechMgrPresent = 0,
 gestaltSpeechHasPPCGlue = 1
};

Constants
gestaltSpeechAttr

The selector you pass to the Gestalt function to determine the Speech Manager attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSpeechMgrPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSpeechHasPPCGlue
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1095
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Speech Recognition Version Selector
Specifies version information for the Speech Recognition Manager.

enum {
 gestaltSpeechRecognitionVersion = 'srtb'
};

Speech Recognition Manager Attribute Selectors
Specify feature availability information for the Speech Recognition Manager.

enum {
 gestaltSpeechRecognitionAttr = 'srta',
 gestaltDesktopSpeechRecognition = 1,
 gestaltTelephoneSpeechRecognition = 2
};

Constants
gestaltSpeechRecognitionAttr

The selector which you pass to the Gestalt function to determine the Speech Recognition Manager
attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltDesktopSpeechRecognition
If this bit is set, the Speech Recognition Manager supports the desktop microphone.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTelephoneSpeechRecognition
If this bit is set, the Speech Recognition Manager supports telephone input. In versions 1.5 and earlier,
this bit is always 0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
You can pass the gestaltSpeechRecognitionAttr selector to the Gestalt function to get the attributes
of the Speech Recognition Manager. Gestalt returns information to you by returning a long word in the
response parameter. The returned values are defined by these constants.

Standard Directory Find Panel Selector
Specifies version information for the standard directory find panel.

enum {
 gestaltSDPFindVersion = 'dfnd'
};

Standard Directory Prompt Panel Selector
Specifies version information for the standard directory prompt panel.

1096 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltSDPPromptVersion = 'prpv'
};

Standard Directory Version Selector
Specifies version information for the standard directory.

enum {
 gestaltSDPStandardDirectoryVersion = 'sdvr'
};

Startup Disk Attribute Selectors
Specify feature availability information for the startup disk.

enum {
 gestaltSplitOSAttr = 'spos',
 gestaltSplitOSBootDriveIsNetworkVolume = 0,
 gestaltSplitOSAware = 1,
 gestaltSplitOSEnablerVolumeIsDifferentFromBootVolume = 2,
 gestaltSplitOSMachineNameSetToNetworkNameTemp = 3,
 gestaltSplitOSMachineNameStartupDiskIsNonPersistent = 5
};

Standard File Attribute Selectors
Specify feature availabity information for Standard File.

enum {
 gestaltStandardFileAttr = 'stdf',
 gestaltStandardFile58 = 0,
 gestaltStandardFileTranslationAware = 1,
 gestaltStandardFileHasColorIcons = 2,
 gestaltStandardFileUseGenericIcons = 3,
 gestaltStandardFileHasDynamicVolumeAllocation = 4
};

Constants
gestaltStandardFileAttr

The selector you pass to the Gestalt function to determine the Standard File Package attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltStandardFile58
If the gestaltStandardFile58 flag bit is set, you can call the four new
procedures—StandardPutFile, StandardGetFile, CustomPutFile, and
CustomGetFile—introduced with System 7. (The name of the constant reflects the enabling of
selectors 5 through 8 on the trap macro that handles the Standard File Package.)

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1097
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltStandardFileTranslationAware
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltStandardFileHasColorIcons
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltStandardFileUseGenericIcons
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltStandardFileHasDynamicVolumeAllocation
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

System Architecture Selectors
Specify the native system architecture.

enum {
 gestaltSysArchitecture = 'sysa',
 gestalt68k = 1,
 gestaltPowerPC = 2,
 gestaltIntel = 10
};

Constants
gestaltSysArchitecture

The selector you pass to the Gestalt function to determine the native system architecture.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestalt68k
If the Gestalt function returns gestalt68k, the system is a MC680x0 Macintosh.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltPowerPC
If the Gestalt function returns gestaltPowerPC, the system is a PowerPC Macintosh.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltIntel
If the Gestalt function returns gestaltIntel, the system is is an Intel-based Macintosh.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

System Update Version Selector
Specifies version information for system updates.

1098 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltSystemUpdateVersion = 'sysu'
};

System Version Selectors
Specifies version information for the operating system.

enum {
 gestaltSystemVersion = 'sysv'
 gestaltSystemVersionMajor = 'sys1',
 gestaltSystemVersionMinor = 'sys2',
 gestaltSystemVersionBugFix = 'sys3'
};

Constants
gestaltSystemVersion

The selector you pass to the Gestalt function to determine the version number of the currently
active System file. For systems prior to Mac OS X, the version is represented as four hexadecimal digits
in the low-order word of the return value. For example, if your application is running in version 7.0.1,
then Gestalt returns the value 0x0701. Ignore the high-order word of the returned value. For Mac
OS X versions, the representation is as shown in Table 18-1.

Table 18-1 The representation of Mac OS X versions by the Gestalt Manager

RepresentationMac OS X Version

0x100010.0

0x101010.1

0x102010.2

0x103010.3

0x104010.4

If the values of the minor or bug fix revision are larger than 9, then gestaltSystemVersion will
substitute the value 9 for them. For example, Mac OS X 10.3.15 will be returned as 0x1039, and Mac
OS X 10.10.5 will return 0x1095.

Never infer the existence of certain hardware or software features from the responses that Gestalt
returns when you pass it this selector.

In Mac OS X v10.4 and later, a better way to get system version information is to use the selectors
gestaltSystemVersionMajor, gestaltSystemVersionMinor, and
gestaltSystemVersionBugFix, which are listed below. These selectors don't have arbitrary limits
on the values returned.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1099
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltSystemVersionMajor
The major system version number. For example, in 10.4.12, this would be the decimal value 10.

Available in Mac OS X v10.3 and later.

Declared in Gestalt.h.

gestaltSystemVersionMinor
The minor system version number. For example, in 10.4.12, this would be the decimal value 4.

Available in Mac OS X v10.3 and later.

Declared in Gestalt.h.

gestaltSystemVersionBugFix
The bug fix version number. For example, in 10.4.12, this would be the decimal value 12.

Available in Mac OS X v10.3 and later.

Declared in Gestalt.h.

Telephone Manager Attribute Selectors
Specify feature availability information for the Telephone Manager.

enum {
 gestaltTeleMgrAttr = 'tele',
 gestaltTeleMgrPresent = 0,
 gestaltTeleMgrPowerPCSupport = 1,
 gestaltTeleMgrSoundStreams = 2,
 gestaltTeleMgrAutoAnswer = 3,
 gestaltTeleMgrIndHandset = 4,
 gestaltTeleMgrSilenceDetect = 5,
 gestaltTeleMgrNewTELNewSupport = 6
};

Terminal Manager Attribute Selectors
Specify feature availability information for the Terminal Manager.

enum {
 gestaltTermMgrAttr = 'term',
 gestaltTermMgrPresent = 0,
 gestaltTermMgrErrorString = 2
};

Constants
gestaltTermMgrAttr

The selector you pass to the Gestalt function to determine the Terminal Manager attributes.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTermMgrPresent
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1100 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltTermMgrErrorString
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

TextEdit Attribute Selectors
Specify feature availability information for TextEdit.

enum {
 gestaltTEAttr = 'teat',
 gestaltTEHasGetHiliteRgn = 0,
 gestaltTESupportsInlineInput = 1,
 gestaltTESupportsTextObjects = 2,
 gestaltTEHasWhiteBackground = 3
};

Constants
gestaltTEAttr

The Gestalt selector you pass to determine whichTextEdit attributes are present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTEHasGetHiliteRgn
If true, TextEdit has TEGetHiliteRgn.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTESupportsInlineInput
If true, TextEdit does Inline Input.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTESupportsTextObjects
If true, TextEdit does Text Objects.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTEHasWhiteBackground
If true, TextEdit supports overriding the TERec' data structure background field to white.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent upon TextEdit, your application should pass the selector
gestaltTEAttr to the Gestalt function to determine the TextEdit attributes that are present.

TextEdit Version Selectors
Specify version information for TextEdit.

Constants 1101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltTextEditVersion = 'te ',
 gestaltTE1 = 1,
 gestaltTE2 = 2,
 gestaltTE3 = 3,
 gestaltTE4 = 4,
 gestaltTE5 = 5
};

Constants
gestaltTextEditVersion

The Gestalt selector you pass to determine what version of TextEdit is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTE1
The version of TextEdit found in Mac IIci ROM.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTE2
The version of TextEdit shipped with 6.0.4 Script Systems on Mac IIci (Script bug fixes for Mac IIci).

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTE3
The version of TextEdit shipped with 6.0.4 Script Systems (all but Mac IIci).

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTE4
The version of TextEdit shipped in System 7.0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTE5
TextWidthHook is available in TextEdit.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
To determine the version of the current TextEdit, your application should pass the selector gestalt
TextEditVersion to the Gestalt function.

Text Services Manager Attribute Selectors
Specify feature availability information for the Text Services Manager.

1102 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltTSMgrAttr = 'tsma',
 gestaltTSMDisplayMgrAwareBit = 0,
 gestaltTSMdoesTSMTEBit = 1
};

Text Services Manager Version Selectors
Specifies version information for the Text Services Manager.

enum {
 gestaltTSMgrVersion = 'tsmv',
 gestaltTSMgr15 = 0x0150,
 gestaltTSMgr20 = 0x0200
};

Constants
gestaltTSMgrVersion

The selector you pass to the Gestalt function to determine the version of the Text Services Manager.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTSMgr15
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTSMgr20
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Thread Manager Attribute Selectors
Specify feature availability information for the Thread Manager.

enum {
 gestaltThreadMgrAttr = 'thds',
 gestaltThreadMgrPresent = 0,
 gestaltSpecificMatchSupport = 1,
 gestaltThreadsLibraryPresent = 2
};

Constants
gestaltThreadMgrAttr

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltThreadMgrPresent
This bit is set if the Thread Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltSpecificMatchSupport
This bit is set if the Thread Manager supports the allocation of threads based on an exact match with
the requested stack size. If this bit is not set, the Thread Manager allocates threads based on the
closest match to the requested stack size.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltThreadsLibraryPresent
This bit is set if the native version of the threads library has been loaded.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent upon the Thread Manager, your application should pass the selector
gestaltThreadMgrAttr to the Gestalt function to determine the Thread Manager attributes that are
present.

Time Manager Version Selectors
Specify version information for the Time Manager.

enum {
 gestaltTimeMgrVersion = 'tmgr',
 gestaltStandardTimeMgr = 1,
 gestaltRevisedTimeMgr = 2,
 gestaltExtendedTimeMgr = 3,
 gestaltNativeTimeMgr = 4
};

Constants
gestaltTimeMgrVersion

The Gestalt selector you pass to determine what version of the Time Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltStandardTimeMgr
If this bit is set, the original Time Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltRevisedTimeMgr
If this bit is set, the revised Time Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltExtendedTimeMgr
If this bit is set, the extended Time Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1104 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltNativeTimeMgr
If this bit is set, the native Time Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
To determine the version of the current Time Manager, your application should pass the selector
gestaltTimeMgrVersion to the Gestalt function.

Toolbox Trap Table Selector
Specifes base address information for the Toolbox trap dispatch table.

enum {
 gestaltToolboxTable = 'tbtt'
};

Constants
gestaltToolboxTable

The selector you pass to the Gestalt function to determine the base address of the Toolbox trap
dispatch table.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Toolbox Trap Table (Second Half) Selector
Specifies address information for the second half of the Toolbox trap table.

enum {
 gestaltExtToolboxTable = 'xttt'
};

Constants
gestaltExtToolboxTable

The base address of the second half of the Toolbox trap table if the table is discontiguous. If the table
is contiguous, this selector returns 0.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Translation Manager Attribute Selectors
Specify feature availability information for the Translation Manager.

Constants 1105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltTranslationAttr = 'xlat',
 gestaltTranslationMgrExists = 0,
 gestaltTranslationMgrHintOrder = 1,
 gestaltTranslationPPCAvail = 2,
 gestaltTranslationGetPathAPIAvail = 3
};

Constants
gestaltTranslationAttr

The Gestalt selector you pass to determine which Translation Manager attributes are present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTranslationMgrExists
If true, the Translation Manager is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTranslationMgrHintOrder
In earlier versions of the Translation Manager, the scrap hints in the DoTranslateScrapProcPtr
function were reversed. In later versions, this was fixed. If this bit is true, this bug fix is in effect.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTranslationPPCAvail
If true, the PowerPC Translation Library is available, and you can call the Translation Manager from
native PowerPC code.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltTranslationGetPathAPIAvail
If true, the functions GetFileTranslationPath and GetPathTranslationDialog are available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent upon the Translation Manager your application should pass the
selectorgestaltTranslationAttr to theGestalt function to determine the Translation Manager attributes
that are present.

TSME Version Selector
Specifies version information for the Text Services Manager integrated with TextEdit.

enum {
 gestaltTE6 = 6
};

TSMTE Attribute Selectors
Specify feature availability information for TSMTE.

1106 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltTSMTEAttr = 'tmTE',
 gestaltTSMTEPresent = 0,
 gestaltTSMTE = 0
};

TSMTE Version Selectors
Specify version information for TSMTE.

enum {
 gestaltTSMTEVersion = 'tmTV',
 gestaltTSMTE1 = 0x0100,
 gestaltTSMTE15 = 0x0150,
 gestaltTSMTE152 = 0x0152
};

TV Tuner Attribute Selectors
Specifies feature availabilty information for the TV tuner.

enum {
 gestaltTVAttr = 'tv ',
 gestaltHasTVTuner = 0,
 gestaltHasSoundFader = 1,
 gestaltHasHWClosedCaptioning = 2,
 gestaltHasIRRemote = 3,
 gestaltHasVidDecoderScaler = 4,
 gestaltHasStereoDecoder = 5,
 gestaltHasSerialFader = 6,
 gestaltHasFMTuner = 7,
 gestaltHasSystemIRFunction = 8,
 gestaltIRDisabled = 9,
 gestaltINeedIRPowerOffConfirm = 10,
 gestaltHasZoomedVideo = 11
};

UDF Selector
Specifes support information for communication between implementations of UDF .

enum {
 gestaltUDFSupport = 'kudf'
};

USB Attribute Selectors
Specifies feature availability information for USB.

Constants 1107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltUSBAttr = 'usb ',
 gestaltUSBPresent = 0,
 gestaltUSBHasIsoch = 1
};

USB Printer Sharing Version Selectors
Specify version information for USB printer sharing.

enum {
 gestaltUSBPrinterSharingVersion = 'zak ',
 gestaltUSBPrinterSharingVersionMask = 0x0000FFFF,
 gestaltUSBPrinterSharingAttr = 'zak ',
 gestaltUSBPrinterSharingAttrMask = 0xFFFF0000,
 gestaltUSBPrinterSharingAttrRunning = 0x80000000,
 gestaltUSBPrinterSharingAttrBooted = 0x40000000
};

USB Version Selector
Specifies version information for USB.

enum {
 gestaltUSBVersion = 'usbv'
};

VIA1 Base Address Selector
Specifies base address information for VIA 1.

enum {
 gestaltVIA1Addr = 'via1'
};

VIA2 Base Address Selector
Specifies base address information for VIA 2.

enum {
 gestaltVIA2Addr = 'via2'
};

Virtual Memory Manager Attribute Selectors
Specify feature availability information for the Virtual Memory Manager.

1108 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltVMAttr = 'vm ',
 gestaltVMPresent = 0,
 gestaltVMHasLockMemoryForOutput = 1,
 gestaltVMFilemappingOn = 3,
 gestaltVMHasPagingControl = 4
};

Constants
gestaltVMAttr

The Gestalt selector you pass to determine the virtual memory attributes that are present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltVMPresent
If true, virtual memory is present.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltVMHasLockMemoryForOutput
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltVMFilemappingOn
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltVMHasPagingControl
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Discussion
Before calling any function dependent on memory, your application should pass the selector gestaltVMAttr
to the Gestalt function to determine the virtual memory attributes that are present.

Virtual Memory Backing Store Selector
Specifes file reference number information for the VM backing store.

enum {
 gestaltVMBackingStoreFileRefNum = 'vmbs'
};

Virtual Memory Information Type Selectors
Specifes information about the VM type.

Constants 1109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltVMInfoType = 'vmin',
 gestaltVMInfoSizeStorageType = 0,
 gestaltVMInfoSizeType = 1,
 gestaltVMInfoSimpleType = 2,
 gestaltVMInfoNoneType = 3
};

Win32 Attribute Selectors
Specify feature availability information for Win32.

enum {
 gestaltX86Features = 'x86f',
 gestaltX86HasFPU = 0,
 gestaltX86HasVME = 1,
 gestaltX86HasDE = 2,
 gestaltX86HasPSE = 3,
 gestaltX86HasTSC = 4,
 gestaltX86HasMSR = 5,
 gestaltX86HasPAE = 6,
 gestaltX86HasMCE = 7,
 gestaltX86HasCX8 = 8,
 gestaltX86HasAPIC = 9,
 gestaltX86Reserved10 = 10,
 gestaltX86HasSEP = 11,
 gestaltX86HasMTRR = 12,
 gestaltX86HasPGE = 13,
 gestaltX86HasMCA = 14,
 gestaltX86HasCMOV = 15,
 gestaltX86HasPAT = 16,
 gestaltX86HasPSE36 = 17,
 gestaltX86HasMMX = 23,
 gestaltX86HasFXSR = 24
};

Window Manager Attribute Selectors
Specify feature availability information for the Window Manager.

1110 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

enum {
 gestaltWindowMgrAttr = 'wind',
 gestaltWindowMgrPresent = (1L << 0),
 gestaltWindowMgrPresentBit = 0,
 gestaltExtendedWindowAttributes = 1,
 gestaltExtendedWindowAttributesBit = 1,
 gestaltHasFloatingWindows = 2,
 gestaltHasFloatingWindowsBit = 2,
 gestaltHasWindowBuffering = 3,
 gestaltHasWindowBufferingBit = 3,
 gestaltWindowLiveResizeBit = 4,
 gestaltWindowMinimizeToDockBit = 5,
 gestaltHasWindowShadowsBit = 6,
 gestaltSheetsAreWindowModalBit = 7,
 gestaltFrontWindowMayBeHiddenBit = 8,
 gestaltWindowMgrPresentMask = (1L << gestaltWindowMgrPresentBit),
 gestaltExtendedWindowAttributesMask = (1L << gestaltExtendedWindowAttributesBit),
 gestaltHasFloatingWindowsMask = (1L << gestaltHasFloatingWindowsBit),
 gestaltHasWindowBufferingMask = (1L << gestaltHasWindowBufferingBit),
 gestaltWindowLiveResizeMask = (1L << gestaltWindowLiveResizeBit),
 gestaltWindowMinimizeToDockMask = (1L << gestaltWindowMinimizeToDockBit),
 gestaltHasWindowShadowsMask = (1L << gestaltHasWindowShadowsBit),
 gestaltSheetsAreWindowModalMask = (1L << gestaltSheetsAreWindowModalBit),
 gestaltFrontWindowMayBeHiddenMask = (1L << gestaltFrontWindowMayBeHiddenBit)
};

Constants
gestaltWindowMgrAttr

The Gestalt selector passed to determine what features of the Window Manager are present. This
selector is available with Mac OS 8.5 and later. The Gestalt function produces a 32-bit value whose
bits you should test to determine which Window Manager features are available.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltWindowMgrPresent
If the bit specified by this mask is set, the Window Manager functionality for Appearance Manager
1.1 is available. This bit is set for Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltWindowMgrPresentBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltExtendedWindowAttributes
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltExtendedWindowAttributesBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasFloatingWindows
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

Constants 1111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltHasFloatingWindowsBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasWindowBuffering
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasWindowBufferingBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltWindowLiveResizeBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltWindowMinimizeToDockBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasWindowShadowsBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSheetsAreWindowModalBit
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFrontWindowMayBeHiddenBit
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

gestaltWindowMgrPresentMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltExtendedWindowAttributesMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasFloatingWindowsMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltHasWindowBufferingMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltWindowLiveResizeMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltWindowMinimizeToDockMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

1112 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

gestaltHasWindowShadowsMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltSheetsAreWindowModalMask
Available in Mac OS X v10.0 and later.

Declared in Gestalt.h.

gestaltFrontWindowMayBeHiddenMask
Available in Mac OS X v10.2 and later.

Declared in Gestalt.h.

Discussion
Before calling any functions dependent on the Window Manager, your application should pass the selector
gestaltWindowMgrAttr to the Gestalt function to determine which Window Manager functions are
available.

WorldScriptII Version Selectors
Specify version information for WorldScript II.

enum {
 gestaltWorldScriptIIVersion = 'doub',
 gestaltWorldScriptIIAttr = 'wsat',
 gestaltWSIICanPrintWithoutPrGeneralBit = 0
};

Result Codes

The most common result codes returned by the Gestalt Manager are listed below.

DescriptionValueResult Code

Specifies an unknown error.-5550gestaltUnknownErr

Available in Mac OS X v10.0 and later.

Specifies an undefined selector was passed to the Gestalt Manager.-5551gestaltUndefSelectorErr

Available in Mac OS X v10.0 and later.

Specifies you tried to add an entry that already existed.-5552gestaltDupSelectorErr

Available in Mac OS X v10.0 and later.

Specifies the gestalt function ptr was not in the system heap.-5553gestaltLocationErr

Available in Mac OS X v10.0 and later.

Result Codes 1113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

1114 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Gestalt Manager Reference

Framework: CoreServices/CoreServices.h, Carbon/Carbon.h

Declared in KeychainCore.h
KeychainHI.h

Overview

The Keychain Manager is an API that provides a uniform way for your application to handle passwords for
multiple users, multiple databases, or any situation in which a user must enter single or multiple passwords.
You can use the Keychain Manager to provide secure storage for a user's passwords, cryptographic keys, and
digital certificates.

This document, which describes KeychainLib 2.0, is relevant to you if your application needs to create and
manage passwords and other secure data.

Important: Keychain Manager is being phased out and replaced by Keychain Services. Any new development
should use Keychain Services. See Keychain Services Reference.

Carbon fully supports the Keychain Manager.

Functions by Task

Getting Information About the Keychain Manager

KCGetKeychainManagerVersion (page 1154)
Determines the version of the Keychain Manager installed on the user’s system.

Creating and Disposing of Keychain References

KCMakeKCRefFromAlias (page 1159)
Creates a keychain reference from a keychain alias.

KCMakeAliasFromKCRef (page 1158)
Creates an alias to a keychain reference.

KCReleaseKeychain (page 1162)
Disposes of the memory associated with a keychain reference.

Overview 1115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCMakeKCRefFromFSSpec (page 1159) Deprecated in Mac OS X v10.5
Creates a keychain reference from a file specification record.

Managing Keychains

KCCreateKeychain (page 1134)
Creates an empty keychain.

kccreatekeychain (page 1135)

KCSetDefaultKeychain (page 1166)
Sets the default keychain.

KCGetDefaultKeychain (page 1152)
Obtains the default keychain.

KCGetStatus (page 1156)
Determines the permissions that are set in a keychain.

KCGetKeychainName (page 1155)
Determines the name of a keychain.

kcgetkeychainname (page 1155)

KCCountKeychains (page 1133)
Determines the number of available keychains.

KCGetIndKeychain (page 1152)
Obtains the reference to an indexed keychain.

Storing and Retrieving Passwords

KCAddAppleSharePassword (page 1120)
Adds a new AppleShare server password to the default keychain.

kcaddapplesharepassword (page 1122)

KCFindAppleSharePassword (page 1136)
Finds the first AppleShare password in the default keychain that matches the specified parameters.

kcfindapplesharepassword (page 1138)

KCAddInternetPassword (page 1126)
Adds a new Internet server password to the default keychain.

kcaddinternetpassword (page 1127)

KCAddInternetPasswordWithPath (page 1128)
Adds a new Internet server password with a specified path to the default keychain.

kcaddinternetpasswordwithpath (page 1129)

1116 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCFindInternetPassword (page 1142)
Finds the first Internet password in the default keychain that matches the specified parameters.

kcfindinternetpassword (page 1144)

KCFindInternetPasswordWithPath (page 1145)
Finds the first Internet password in the default keychain that matches the specified parameters,
including path information.

kcfindinternetpasswordwithpath (page 1147)

KCAddGenericPassword (page 1124)
Adds a new generic password to the default keychain.

kcaddgenericpassword (page 1125)

KCFindGenericPassword (page 1140)
Finds the first generic password in the default keychain matching the specified parameters.

kcfindgenericpassword (page 1142)

Creating and Disposing of Keychain Item References

KCNewItem (page 1160)
Creates a reference to a keychain item.

KCReleaseItem (page 1161)
Disposes of the memory occupied by a keychain item reference.

Manipulating Keychain Items

KCAddItem (page 1130)
Adds a password or other keychain item to the default keychain.

KCDeleteItem (page 1136)
Deletes a password or other keychain item from the default keychain.

KCUpdateItem (page 1169)
Updates a password or other keychain item.

KCCopyItem (page 1132)
Copies a password or other keychain item from one keychain to another.

KCGetKeychain (page 1153)
Determines the location of a password or other keychain item.

Setting and Obtaining Keychain Item Data

KCSetAttribute (page 1164)
Sets or edits keychain item data using a keychain item attribute structure.

Functions by Task 1117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCGetAttribute (page 1149)
Determines keychain item data using a keychain item attribute structure.

KCSetData (page 1165)
Sets or edits keychain item data.

KCGetData (page 1151)
Determines keychain item data.

Searching for Keychain Items

KCFindFirstItem (page 1139)
Finds the first keychain item in a specified keychain that matches specified attributes.

KCFindNextItem (page 1148)
Finds the next keychain item matching the previously specified search criteria.

KCReleaseSearch (page 1162)
Disposes of the memory occupied by a search criteria reference.

Managing User Interaction

KCLock (page 1157)
Locks a keychain.

KCUnlock (page 1167)
Displays a dialog box that prompts the user for a password before unlocking a keychain.

kcunlock (page 1169)

KCChangeSettings (page 1131)
Displays a dialog box enabling the user to change the name, password, or settings of a keychain.

KCSetInteractionAllowed (page 1167)
Enables or disables Keychain Manager functions that display a user interface.

KCIsInteractionAllowed (page 1157)
Indicates whether Keychain Manager functions that display a user interaction will do so.

Registering Your Keychain Event Callback Function

KCAddCallback (page 1123)
Registers your keychain event callback function.

KCRemoveCallback (page 1163)
Unregisters your keychain event callback function.

Working With Your Keychain Manager Callback Function

NewKCCallbackUPP (page 1170)
Creates a UPP to your keychain event callback.

1118 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

InvokeKCCallbackUPP (page 1119)
Invokes your keychain event callback.

DisposeKCCallbackUPP (page 1119)
Disposes of a UPP to your keychain event callback.

Unsupported Functions

KCChooseCertificate (page 1132)
Displays a list of certificates that the user can choose from.

KCFindX509Certificates (page 1149)
Finds the certificates in a keychain that match specified search criteria.

Functions

DisposeKCCallbackUPP
Disposes of a UPP to your keychain event callback.

Not recommended

void DisposeKCCallbackUPP (
 KCCallbackUPP userUPP
);

Parameters
userUPP

A Universal Procedure Pointer (UPP) to your keychain event callback function.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194).

Discussion
When you are finished with a UPP to your keychain event callback function, you should dispose of it by calling
the DisposeKCCallbackUPP function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

There is no replacement function available.

Declared In
KeychainCore.h

InvokeKCCallbackUPP
Invokes your keychain event callback.

Functions 1119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Not recommended

OSStatus InvokeKCCallbackUPP (
 KCEvent keychainEvent,
 KCCallbackInfo *info,
 void *userContext,
 KCCallbackUPP userUPP
);

Parameters
keychainEvent

The keychain events you want your application to receive. See “Keychain Events Constants” (page
1180) for a description of possible values. The Keychain Manager tests the bitmask you pass in the
eventMaskparameter of the function KCAddCallback (page 1123) to determine which events to pass
to your callback function. See “Keychain Events Mask” (page 1182) for a description of this bitmask.

info
A pointer to a structure of type KCCallbackInfo (page 1173) that provides information about the
keychain event to your callback function. The Keychain Manager passes a pointer to this structure in
the info parameter of your callback function.

userContext
A pointer to application-defined storage. The Keychain Manager passes this value in the userContext
parameter of your callback function. Your application can use this to associate any particular call of
the InvokeKCCallbackUPP function with any particular call of the keychain event callback function.

userUPP
A Universal Procedure Pointer to your keychain event callback function. For information on how to
create a keychain event callback function, see KCCallbackProcPtr (page 1171).

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194).

Discussion
You should not need to use the function InvokeKCCallbackUPP, as the system calls your
KCAddCallback (page 1123) callback function for you.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

There is no replacement function available.

Declared In
KeychainCore.h

KCAddAppleSharePassword
Adds a new AppleShare server password to the default keychain.

Not recommended

1120 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus KCAddAppleSharePassword (
 AFPServerSignature *serverSignature,
 StringPtr serverAddress,
 StringPtr serverName,
 StringPtr volumeName,
 StringPtr accountName,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Parameters
serverSignature

A pointer to a 16-byte Apple File Protocol server signature block. Pass a value of type
AFPServerSignature (page 1172). Pass NULL to match any server signature. The Keychain Manager
identifies the location for the password by the information passed in the serverAddress and
serverSignature parameters. You must pass a valid value in at least one of these parameters.

serverAddress
A pointer to a Pascal string containing the server address, which may be specified as an AppleTalk
zone name, a DNS domain name (in the format "xxx.yyy.zzz"), or an IP address (in the format
"111.222.333.444"). The Keychain Manager identifies the location for the password by the information
passed in the serverAddress and serverSignature parameters. You must pass a valid value in
at least one of these parameters.

serverName
A pointer to a Pascal string containing the server name.

volumeName
A pointer to a Pascal string containing the volume name.

accountName
A pointer to a Pascal string containing the account name.

passwordLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer which will hold the returned password data. Before calling
KCAddAppleSharePassword, allocate enough memory for the buffer to hold the data you want to
store.

item
On return, a pointer to a reference to the added item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errKCDataTooLarge indicates
that you tried to add more data than is allowed for a record of this type.

Discussion
The KCAddAppleSharePassword function adds a new AppleShare server password to the default keychain
that is uniquely identified by the serverName, volumeName, and accountName parameters, and a location
specified either by the serverAddress or serverSignatureparameters. The KCAddAppleSharePassword
function optionally returns a reference to the newly added item.

Functions 1121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Most applications do not need to store AppleShare password data, as this is handled transparently by the
AppleShare client software. To be compatible with the AppleShare client, you should store a fully-specified
File Manager structure AFPXVolMountInfo as the password data.

The KCAddAppleSharePassword function automatically calls the function KCUnlock (page 1167) to display
the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcaddapplesharepassword to add an AppleShare server password to the
default keychain. kcaddapplesharepassword requires that you pass a pointer to a C string instead of a
pointer to a Pascal string for the serverAddress, serverName, volumeName, accountName, and
passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcaddapplesharepassword function
provides the same functionality as KCAddAppleSharePassword, except that it accepts C strings rather than
Pascal strings as arguments. In KeychainLib 2.0, you should use KCAddAppleSharePassword, since
kcaddapplesharepassword is provided for convenience only and may be removed from the header file
at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

It is recommended that you use internet passwords instead of AppleShare passwords. Use the
SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

kcaddapplesharepassword
Not recommended

OSStatus kcaddapplesharepassword (
 AFPServerSignature *serverSignature,
 const char *serverAddress,
 const char *serverName,
 const char *volumeName,
 const char *accountName,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCAddAppleSharePassword (page 1120) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

1122 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Carbon Porting Notes

It is recommended that you use internet passwords instead of AppleShare passwords. Use the
SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

KCAddCallback
Registers your keychain event callback function.

Not recommended

OSStatus KCAddCallback (
 KCCallbackUPP callbackProc,
 KCEventMask eventMask,
 void *userContext
);

Parameters
callbackProc

A Universal Procedure Pointer (UPP) to your keychain event callback function, described in
KCCallbackProcPtr (page 1171). You indicate the type of keychain events you want to receive by
passing a bitmask of the desired events in the eventMask parameter. To create a UPP to your callback
function, call the function NewKCCallbackUPP (page 1170).

eventMask
A bitmask indicating the keychain events that your application wishes to be notified of. See “Keychain
Events Mask” (page 1182) for a description of this bitmask. The Keychain Manager tests this mask to
determine the keychain events that you wish to receive, and passes these events in the
keychainEvent parameter of your callback function. See “Keychain Events Constants” (page 1180) for
a description of these events.

userContext
A pointer to application-defined storage that will be passed to your callback function. Your application
can use this to associate any particular call of the KCAddCallback function with any particular call
of your keychain event callback function.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCDuplicateCallback
indicates that your callback function is already registered.

Discussion
You can register your callback function by passing a UPP to it in the callbackProc parameter of the
KCAddCallback function. Once you have done so, the Keychain Manager calls the function
InvokeKCCallbackUPP (page 1119) when the keychain event specified in the eventMask parameter occurs.
In turn, the function InvokeKCCallbackUPP (page 1119) passes the keychain event, information about the
event, and application-defined storage to your keychain event callback function.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Carbon Porting Notes

Use the SecKeychainAddCallback function in Keychain Services instead.

Declared In
KeychainCore.h

KCAddGenericPassword
Adds a new generic password to the default keychain.

Not recommended

OSStatus KCAddGenericPassword (
 StringPtr serviceName,
 StringPtr accountName,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Parameters
serviceName

A pointer to a Pascal string containing an application-defined service name.

accountName
A pointer to a Pascal string containing an application-defined account name.

passwordLength
The length of the password data to be stored

passwordData
A pointer to the buffer that holds the returned password data. Before calling the
KCAddGenericPassword function, allocate enough memory for the buffer to hold the data you want
to store.

item
On return, a pointer to a reference to the added item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errKCDataTooLarge indicates
that you tried to add more data than is allowed for a record of this type.

Discussion
The KCAddGenericPassword function adds a new generic password to the default keychain. Required
parameters to identify the password are serviceName and accountName, which are application-defined
strings. The KCAddGenericPassword function optionally returns a reference to the newly added item.

You can use the KCAddGenericPassword function to add passwords for accounts other than Internet or
AppleShare. For example, you might add passwords for your database or scheduling programs.

1124 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

You can also call the function kcaddgenericpassword to add a new generic password to the default
keychain. The difference between the two functions is that the kcaddgenericpassword function takes a
pointer to a C string instead of a Pascal string in the serverAddress, serverName, volumeName,
accountName, and passwordData parameters.

The KCAddGenericPassword function automatically calls the function KCUnlock (page 1167) to display the
Unlock Keychain dialog box if the keychain containing the password is currently locked.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcaddgenericpassword function provides
the same functionality as the function KCAddGenericPassword, except that it accepts C strings rather than
Pascal strings as arguments. In KeychainLib 2.0, you should use the KCAddGenericPassword function, since
the kcaddgenericpassword function is provided for convenience only and may be removed from the
header file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddGenericPassword function in Keychain Services instead.

Declared In
KeychainHI.h

kcaddgenericpassword
Not recommended

OSStatus kcaddgenericpassword (
 const char *serviceName,
 const char *accountName,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCAddGenericPassword (page 1124) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddGenericPassword function in Keychain Services instead.

Declared In
KeychainHI.h

Functions 1125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCAddInternetPassword
Adds a new Internet server password to the default keychain.

Not recommended

OSStatus KCAddInternetPassword (
 StringPtr serverName,
 StringPtr securityDomain,
 StringPtr accountName,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Parameters
serverName

A pointer to a Pascal string containing the server name.

securityDomain
A pointer to a Pascal string containing the security domain. This parameter is optional, as not all
protocols will require it.

accountName
A pointer to a Pascal string containing the account name.

port
The TCP/IP port number. Pass the constant kAnyPort, described in “Default Internet Port
Constant” (page 1180), to specify any port.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 1191) for a
description of possible values. Pass the constant kAnyProtocol, described in “Default Internet
Protocol And Authentication Type Constants” (page 1180), to specify any protocol.

authType
The authentication scheme used. See “Authentication Type Constants” (page 1176) for a description of
possible values. Pass the constant kAnyAuthType, described in “Default Internet Protocol And
Authentication Type Constants” (page 1180), to specify any authentication scheme.

passwordLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer that holds the returned password data. Before calling the
KCAddInternetPasswordWithPath function, allocate enough memory for the buffer to hold the
data you want to store.

item
On return, a pointer to a reference to the added item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errKCDataTooLarge indicates
that you tried to add more data than is allowed for a record of this type.

1126 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Discussion
The KCAddInternetPassword function adds a new Internet server password to the default keychain.
Required parameters to identify the password are serviceName and accountName (you cannot pass NULL
for both parameters). In addition, some protocols may require an optional value in the securityDomain
parameter when authentication is requested. KCAddInternetPassword optionally returns a reference to
the newly added item.

The KCAddInternetPassword function automatically calls the function KCUnlock (page 1167) to display the
Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcaddinternetpassword to add a new Internet server password to the
default keychain. The kcaddinternetpassword function requires that you pass a pointer to a C string
instead of a pointer to a Pascal string for the serverAddress, serverName, volumeName, accountName,
and passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcaddinternetpassword function provides
the same functionality as KCAddInternetPassword, except that it accepts C strings rather than Pascal
strings as arguments. In KeychainLib 2.0, you should use KCAddInternetPassword, since
kcaddinternetpassword is provided for convenience only and may be removed from the header file at
some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

kcaddinternetpassword
Not recommended

OSStatus kcaddinternetpassword (
 const char *serverName,
 const char *securityDomain,
 const char *accountName,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCAddInternetPassword (page 1126) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Carbon Porting Notes

Use the SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

KCAddInternetPasswordWithPath
Adds a new Internet server password with a specified path to the default keychain.

Not recommended

OSStatus KCAddInternetPasswordWithPath (
 StringPtr serverName,
 StringPtr securityDomain,
 StringPtr accountName,
 StringPtr path,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Parameters
serverName

A pointer to a Pascal string containing the server name.

securityDomain
A pointer to a Pascal string containing the security domain. This parameter is optional, as not all
protocols will require it.

accountName
A pointer to a Pascal string containing the account name.

path
A pointer to a Pascal string containing additional information that specifies a file or directory on the
server specified by the serverName parameter. In a typical URL, path information begins directly
after the first slash (“/”) character following the server name. This parameter is optional.

port
The TCP/IP port number. Pass the constant kAnyPort, described in “Default Internet Port
Constant” (page 1180), to specify any port.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 1191) for a
description of possible values. Pass the constant kAnyProtocol, described in “Default Internet
Protocol And Authentication Type Constants” (page 1180), to specify any protocol.

authType
The authentication scheme used. See “Authentication Type Constants” (page 1176) for a description of
possible values. Pass the constant kAnyAuthType, described in “Default Internet Protocol And
Authentication Type Constants” (page 1180), to specify any authentication scheme.

passwordLength
The length of the buffer pointed to by passwordData.

1128 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

passwordData
A pointer to a buffer which will hold the returned password data. Before calling
KCAddInternetPasswordWithPath, allocate enough memory for the buffer to hold the data you
want to store.

item
On return, a pointer to a reference to the added item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errKCDataTooLarge indicates
that you tried to add more data than is allowed for a record of this type.

Discussion
The KCAddInternetPasswordWithPath function enables you to specify path information when adding a
new Internet server password to the default keychain. Required parameters to identify the password are
serviceName and accountName (you cannot pass NULL for both parameters). In addition, some protocols
may require an optional securityDomain when authentication is requested.
KCAddInternetPasswordWithPath optionally returns a reference to the newly added item.

The KCAddInternetPasswordWithPath function automatically calls the function KCUnlock (page 1167) to
display the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcaddinternetpasswordwithpath to add a new Internet server password
to the default keychain. The function kcaddinternetpasswordwithpath requires that you pass a pointer
to a C string instead of a pointer to a Pascal string for the serverAddress, serverName, volumeName,
accountName, and passwordData parameters.

Version Notes
Available beginning with KeychainLib 2.0. In KeychainLib 1.0, the kcaddinternetpasswordwithpath
function provides the same functionality as the KCAddInternetPasswordWithPath function, except that
it accepts C strings rather than Pascal strings as arguments. In KeychainLib 2.0, you should use the
KCAddInternetPasswordWithPath function, since the function kcaddinternetpasswordwithpath is
provided for convenience only and may be removed from the header file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

kcaddinternetpasswordwithpath
Not recommended

Functions 1129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus kcaddinternetpasswordwithpath (
 const char *serverName,
 const char *securityDomain,
 const char *accountName,
 const char *path,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCAddInternetPasswordWithPath (page 1128) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

KCAddItem
Adds a password or other keychain item to the default keychain.

Not recommended

OSStatus KCAddItem (
 KCItemRef item
);

Parameters
item

A reference to the keychain item you wish to add. If you pass an existing item in the keychain, the
item is updated. If you pass an item that has not been previously added to the keychain and an
identical item already exists in the keychain,KCAddItem returns the result codeerrKCDuplicateItem.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCInvalidItemRef indicates that
the specified keychain item reference was invalid. The result code errKCDuplicateItem indicates that you
tried to add a new item that already exists in the keychain.

Discussion
You can use the KCAddItem function to add a password or other keychain item to the permanent data store
of the default keychain. If you want to add a password to a keychain other than the default, call the function
KCSetDefaultKeychain (page 1166) to change the default keychain. The KCAddItem function automatically
calls the function KCUnlock (page 1167) to display the Unlock Keychain dialog box if the keychain containing
the item is currently locked.

1130 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

When you use Keychain Services to create an item, it is always added to the specified keychain at creation
time.

Declared In
KeychainHI.h

KCChangeSettings
Displays a dialog box enabling the user to change the name, password, or settings of a keychain.

Not recommended

OSStatus KCChangeSettings (
 KCRef keychain
);

Parameters
keychain

A reference to an unlocked keychain. Pass in NULL to specify the default keychain.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errUserCanceled indicates
that the user pressed the Cancel button in the Change Settings dialog box. The result code
errKCNoDefaultKeychain indicates that the default keychain could not be found. The result code
errKCInvalidKeychain indicates that the specified keychain is invalid.

Discussion
Typically, your application should not call the KCChangeSettings function. You would only call the
KCChangeSettings function in response to a user's request to change keychain settings, name, or password.
Note that you cannot change a keychain passphrase directly. You must call the KCChangeSettings function
and allow the user to change it.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainSetSettings function in Keychain Services instead.

Declared In
KeychainHI.h

Functions 1131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCChooseCertificate
Displays a list of certificates that the user can choose from.

Unsupported

OSStatus KCChooseCertificate (
 CFArrayRef items,
 KCItemRef *certificate,
 CFArrayRef policyOIDs,
 KCVerifyStopOn stopOn
);

Parameters
items

An array of certificate references.

certificate
If the items array only contains one certificate, on return, a pointer to that certificate. In this case, no
user interface is displayed.

policyOIDs
An array of trust policy options used for Macintosh file signing. To obtain a pointer to this array, call
the function SecMacGetDefaultPolicyOIDs.

stopOn
The criteria to use in selecting the certificates to display. See “Certificate Verification Criteria” (page
1179) for a description of this mask.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code userCanceledErr indicates
that the user pressed the Cancel button in the user interface.

Discussion
The KCChooseCertificate function displays a list of the certificates from which the user can choose. If
only one certificate matches the criteria, the reference is passed back in the certificate parameter and
no user interface is presented.

Version Notes
Available beginning with KeychainLib 2.0.

Carbon Porting Notes

This function is obsolete. There is currently no replacement.

Declared In
KeychainHI.h

KCCopyItem
Copies a password or other keychain item from one keychain to another.

Not recommended

1132 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus KCCopyItem (
 KCItemRef item,
 KCRef destKeychain,
 KCItemRef *copy
);

Parameters
item

A reference to the keychain item you wish to copy.

destKeychain
A reference to the keychain into which the item is to be copied.

copy
A pointer to a reference to the new copied keychain item.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCReadOnly indicates
that the destination keychain is read only. The result code errKCNoSuchClass indicates that the item has
an invalid keychain item class. The result code errKCInvalidItemRef indicates that the specified keychain
item reference was invalid.

Discussion
You can use the KCCopyItem function to copy a keychain item from one keychain to another. The KCCopyItem
function automatically calls the function KCUnlock (page 1167) to display the Unlock Keychain dialog box if
the keychain containing the item to be copied is currently locked.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCopyContent function in Keychain Services instead.

Declared In
KeychainCore.h

KCCountKeychains
Determines the number of available keychains.

Not recommended

UInt16 KCCountKeychains (
 void
);

Parameters
Return Value
The number of available keychains. This includes all keychains in the Keychains folder, as well as any other
keychains known to the Keychain Manager.

Functions 1133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Discussion
This function reports the number of keychains known to the Keychain Manager. These keychains are created
by the function KCCreateKeychain (page 1134).

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use theSecKeychainCopySearchList function in Keychain Services followed by a call toCFArrayGetCount
instead.

Declared In
KeychainCore.h

KCCreateKeychain
Creates an empty keychain.

Not recommended

OSStatus KCCreateKeychain (
 StringPtr password,
 KCRef *keychain
);

Parameters
password

A pointer to a Pascal string representing the password string which will be used to protect the new
keychain. If you pass NULL, the Keychain Setup dialog box will be displayed to obtain it.

keychain
A pointer to a reference to the keychain you wish to create. You create a keychain reference by calling
the function KCMakeKCRefFromFSSpec (page 1159) or KCMakeKCRefFromAlias (page 1159). If you
pass a pointer to a keychain reference, the user will not need to be prompted for a name and location;
in all other cases, KCCreateKeychain will interactively request this information from the user. If you
pass a pointer to a NULL keychain reference, the Keychain Manager allocates the memory for the
keychain reference and returns it in this parameter. Pass a NULL pointer if you do not need a reference
returned.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code userCanceledErr indicates
that the user pressed the Cancel button in the create keychain. The result code errKCDuplicateKeychain
indicates that the user tried to create a keychain which already exists. The result code errKCInvalidKeychain
indicates that the specified keychain is invalid. Additional errors may be returned if the keychain could not
be created (for example, a file system or network error may be returned if there is no write access to the
storage media).

Discussion
The KCCreateKeychain function creates an empty keychain. The keychain and password parameters are
optional. If user interaction to create a keychain is posted, the newly-created keychain is automatically
unlocked after creation.

1134 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

You can also call the function kccreatekeychain to create an empty keychain. The function
kccreatekeychain requires that you pass a pointer to a C string instead of a pointer to a Pascal string in
the password parameter.

Special Considerations

It is recommended that the KCCreateKeychain function not be explicitly called by applications. Instead,
you should call one of the add functions in “Storing and Retrieving Passwords” (page 1116) to add a password
to the default keychain. If a default keychain does not exist, it is created automatically.

When you are finished with a keychain, you must deallocate its memory by calling the function
KCReleaseKeychain (page 1162).

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kccreatekeychain function provides the
same functionality as KCCreateKeychain. In KeychainLib 2.0, you should use KCCreateKeychain, since
kccreatekeychain is provided for convenience only and may be removed from the header file at some
point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainCreate function in Keychain Services instead.

Declared In
KeychainHI.h

kccreatekeychain
Not recommended

OSStatus kccreatekeychain (
 const char *password,
 KCRef *keychain
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCCreateKeychain (page 1134) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainCreate function in Keychain Services instead.

Declared In
KeychainHI.h

Functions 1135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCDeleteItem
Deletes a password or other keychain item from the default keychain.

Not recommended

OSStatus KCDeleteItem (
 KCItemRef item
);

Parameters
item

A reference to the keychain item you wish to delete. If you pass an item that has not been previously
added to the keychain, the function KCDeleteItem does nothing and returns noErr.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCInvalidItemRef indicates that
the specified keychain item reference was invalid.

Discussion
You can use the KCDeleteItem function to delete a keychain item from the permanent data store of the
default keychain. TheKCDeleteItem function automatically calls the functionKCUnlock (page 1167) to display
the Unlock Keychain dialog box if the keychain containing the item is currently locked.

Special Considerations

The KCDeleteItem function does not dispose the memory occupied by the item reference. To do so, call
the function KCReleaseItem (page 1161) when you are finished with an item.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemDelete function in Keychain Services instead.

Declared In
KeychainCore.h

KCFindAppleSharePassword
Finds the first AppleShare password in the default keychain that matches the specified parameters.

Not recommended

1136 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus KCFindAppleSharePassword (
 AFPServerSignature *serverSignature,
 ConstStringPtr serverAddress,
 ConstStringPtr serverName,
 ConstStringPtr volumeName,
 ConstStringPtr accountName,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Parameters
serverSignature

A pointer to a 16-byte Apple File Protocol server signature block. Pass a value of type
AFPServerSignature (page 1172). Pass NULL to match any server signature. The Keychain Manager
identifies the location for the password by the information passed in the serverAddress and
serverSignature parameters. You must pass a valid value in at least one of these parameters.

serverAddress
A pointer to a Pascal string containing the server address, which may be specified as an AppleTalk
zone name, a DNS domain name (in the format "xxx.yyy.zzz"), or an IP address (in the format
"111.222.333.444"). The Keychain Manager identifies the location for the password by the information
passed in the serverAddress and serverSignature parameters. You must pass a valid value in
at least one of these parameters.

serverName
A pointer to a Pascal string containing the server name. Pass NULL to match any server name.

volumeName
A pointer to a Pascal string containing the volume name. Pass NULL to match any volume name.

accountName
A pointer to a Pascal string containing the account name. Pass NULL to match any account name.

maxLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer which will hold the returned password data. Before calling
KCFindAppleSharePassword, allocate enough memory for the buffer to hold the data you want
to store. Pass NULL if you want to obtain the item reference but not the password data. In this case,
you must also pass NULL in the actualLength parameter. On return, a pointer to the returned
password data.

actualLength
On return, the actual length of the password data that was retrieved. If the buffer pointed to by
passwordData is smaller than the actual length of the data, KCFindAppleSharePassword returns
the result code errKCBufferTooSmall. In this case, your application must allocate a new buffer of
sufficient size before calling KCFindAppleSharePassword again.

item
On return, a pointer to a reference to the found item. Pass NULL if you don’t want to obtain this
reference.

Functions 1137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain was found. The result code errKCItemNotFound indicates that no
matching password item was found. The result code errKCBufferTooSmall indicates that your application
must allocate a new buffer of sufficient size before calling KCFindAppleSharePassword again.

Discussion
The KCFindAppleSharePassword function finds the first AppleShare password item which matches the
attributes you provide. The buffer specified in the passwordData parameter must be large enough to hold
the password data, otherwiseKCFindAppleSharePassword returns the result codeerrKCBufferTooSmall.
In this case, your application must allocate a new buffer of sufficient size before calling the
KCFindAppleSharePassword function again. The KCFindAppleSharePassword function optionally
returns a reference to the found item.

The KCFindAppleSharePassword function automatically calls the function KCUnlock (page 1167) to display
the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcfindapplesharepassword to find the first AppleShare server password
matching specified attributes. kcfindapplesharepassword requires that you pass a pointer to a C string
instead of a pointer to a Pascal string for the serverAddress, serverName, volumeName, accountName,
and passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcfindapplesharepassword function
provides the same functionality as KCFindAppleSharePassword, except that it accepts C strings rather
than Pascal strings as arguments. In KeychainLib 2.0, you should use KCFindAppleSharePassword, since
kcfindapplesharepassword is provided for convenience only and may be removed from the header file
at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the Keychain Services function SecKeychainSearchCreateFromAttributes followed by the
SecKeychainSearchCopyNext function instead.

Declared In
KeychainCore.h

kcfindapplesharepassword
Not recommended

1138 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus kcfindapplesharepassword (
 AFPServerSignature *serverSignature,
 const char *serverAddress,
 const char *serverName,
 const char *volumeName,
 const char *accountName,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCFindAppleSharePassword (page 1136) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the Keychain Services function SecKeychainSearchCreateFromAttributes followed by the
SecKeychainSearchCopyNext function instead.

Declared In
KeychainCore.h

KCFindFirstItem
Finds the first keychain item in a specified keychain that matches specified attributes.

Not recommended

OSStatus KCFindFirstItem (
 KCRef keychain,
 const KCAttributeList *attrList,
 KCSearchRef *search,
 KCItemRef *item
);

Parameters
keychain

A reference to the keychain that you wish to search. If you pass a locked keychain, the Unlock Keychain
dialog box is displayed. If you pass NULL, the KCFindFirstItem function searches all unlocked
keychains.

attrList
A pointer to a list of 0 or more structures containing information about the keychain item attributes
to be matched. Pass NULL to match any attribute.

search
On return, a pointer to a reference to the current search criteria.

item
On return, a pointer to the first matching keychain item.

Functions 1139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCItemNotFound indicates that no
matching keychain item was found. The result code errKCNoSuchAttr indicates that the specified attribute
is undefined for this item class.

Discussion
The KCFindFirstItem function returns a reference to the first keychain item in a keychain that matches a
list of attributes. The KCFindFirstItem function also returns a reference to the search criteria used. You
should pass the returned search criteria in the searchRef parameter of the function KCFindNextItem (page
1148).

The KCFindFirstItem function automatically calls the function KCUnlock (page 1167) to display the Unlock
Keychain dialog box if the keychain containing the item you are searching for is currently locked.

Special Considerations

When you are completely finished with a search, you should the functions KCReleaseItem (page 1161) and
KCReleaseSearch (page 1162) to release the memory occupied by the keychain item and search criteria
reference.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the Keychain Services function SecKeychainSearchCreateFromAttributes followed by a call to
SecKeychainSearchCopyNext instead.

Declared In
KeychainCore.h

KCFindGenericPassword
Finds the first generic password in the default keychain matching the specified parameters.

Not recommended

OSStatus KCFindGenericPassword (
 ConstStringPtr serviceName,
 ConstStringPtr accountName,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Parameters
serviceName

A pointer to a Pascal string containing an application-defined service name. Pass NULL to match any
service name.

1140 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

accountName
A pointer to a Pascal string containing an application-defined account name. Pass NULL to match any
account name.

maxLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to the buffer that holds the returned password data. Before calling the
KCFindGenericPassword function, allocate enough memory for the buffer to hold the data you
want to store. Pass NULL if you want to obtain the item reference but not the password data. In this
case, you must also pass NULL in the actualLength parameter. On return, a pointer to the returned
password data.

actualLength
On return, the actual length of the password data that was retrieved. If the buffer pointed to by the
passwordDataparameter is smaller than the actual length of the data, the KCFindGenericPassword
function returns the result code errKCBufferTooSmall. In this case, your application must allocate
a new buffer of sufficient size before calling the KCFindGenericPassword function again.

item
On return, a pointer to a reference to the found item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain was found. The result code errKCItemNotFound indicates that no
matching password item was found. The result code errKCBufferTooSmall indicates that your application
must allocate a new buffer of sufficient size before calling the function KCFindGenericPassword again.

Discussion
The KCFindGenericPassword function finds the first generic password item which matches the attributes
you provide. The buffer specified in the passwordData parameter must be large enough to hold the password
data, otherwise the function KCFindGenericPassword returns the result code errKCBufferTooSmall.
In this case, your application must allocate a new buffer of sufficient size before calling the function
KCFindGenericPassword again. The KCFindGenericPassword function optionally returns a reference
to the found item.

The KCFindGenericPassword function automatically calls the function KCUnlock (page 1167) to display the
Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcfindgenericpassword to find the first generic password matching specified
attributes. The kcfindgenericpassword function requires that you pass a pointer to a C string instead of
a pointer to a Pascal string for the serverAddress, serverName, volumeName, accountName, and
passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcfindgenericpassword function provides
the same functionality as the function KCFindGenericPassword, except that it accepts C strings rather
than Pascal strings as arguments. In KeychainLib 2.0, you should use the KCFindGenericPassword function,
since the kcfindgenericpassword function is provided for convenience only and may be removed from
the header file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Carbon Porting Notes

Use the SecKeychainFindGenericPassword function in Keychain Services instead.

Declared In
KeychainCore.h

kcfindgenericpassword
Not recommended

OSStatus kcfindgenericpassword (
 const char *serviceName,
 const char *accountName,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCFindGenericPassword (page 1140) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindGenericPassword function in Keychain Services instead.

Declared In
KeychainCore.h

KCFindInternetPassword
Finds the first Internet password in the default keychain that matches the specified parameters.

Not recommended

1142 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus KCFindInternetPassword (
 ConstStringPtr serverName,
 ConstStringPtr securityDomain,
 ConstStringPtr accountName,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Parameters
serverName

A pointer to a Pascal string containing the server name. Pass NULL to match any server name.

securityDomain
A pointer to a Pascal string containing the security domain. Pass NULL to match any domain.

accountName
A pointer to a Pascal string containing the account name. Pass NULL to match any account name.

port
The TCP/IP port number. Pass the constant kAnyPort, described in “Default Internet Port
Constant” (page 1180), to match any port.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 1191) for a
description of possible values. Pass the constant kAnyProtocol, described in “Default Internet
Protocol And Authentication Type Constants” (page 1180), to match any protocol.

authType
The authentication scheme used. See “Authentication Type Constants” (page 1176) for a description of
possible values. Pass the constant kAnyAuthType, described in “Default Internet Protocol And
Authentication Type Constants” (page 1180), to match any authentication scheme.

maxLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to the buffer that holds the returned password data. Before calling the
KCFindInternetPassword function, allocate enough memory for the buffer to hold the data you
want to store. Pass NULL if you want to obtain the item reference but not the password data. In this
case, you must also pass NULL in the actualLength parameter. On return, a pointer to the returned
password data.

actualLength
On return, the actual length of the password data that was retrieved. If the buffer pointed to by the
passwordData parameter is smaller than the actual length of the data, the
KCFindInternetPassword function returns the result code errKCBufferTooSmall. In this case,
your application must allocate a new buffer of sufficient size before calling the
KCFindInternetPassword function again.

item
On return, a pointer to a reference to the found item. Pass NULL if you don’t want to obtain this
reference.

Functions 1143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain was found. The result code errKCItemNotFound indicates that no
matching password item was found. The result code errKCBufferTooSmall indicates that your application
must allocate a new buffer of sufficient size before calling the function KCFindInternetPassword again.

Discussion
The KCFindInternetPassword function finds the first Internet password item that matches the attributes
you provide. The buffer specified in the passwordData parameter must be large enough to hold the password
data, otherwise the function KCFindInternetPassword returns the result code errKCBufferTooSmall.
In this case, your application must allocate a new buffer of sufficient size before calling the function
KCFindInternetPassword again. The KCFindInternetPassword function optionally returns a reference
to the found item.

The KCFindInternetPassword function automatically calls the function KCUnlock (page 1167) to display
the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcfindinternetpassword to find the first Internet password item matching
specified attributes. The kcfindinternetpassword function requires that you pass a pointer to a C string
instead of a Pascal string for the serverAddress, serverName, volumeName, accountName, and
passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcfindinternetpassword function
provides the same functionality as the function KCFindInternetPassword, except that it accepts C strings
rather than Pascal strings as arguments. In KeychainLib 2.0, you should use the KCFindInternetPassword
function, since kcfindinternetpassword is provided for convenience only and may be removed from the
header file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindInternetPassword function in Keychain Services instead.

Declared In
KeychainCore.h

kcfindinternetpassword
Not recommended

1144 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus kcfindinternetpassword (
 const char *serverName,
 const char *securityDomain,
 const char *accountName,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCFindInternetPassword (page 1142) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindInternetPassword function in Keychain Services instead.

Declared In
KeychainCore.h

KCFindInternetPasswordWithPath
Finds the first Internet password in the default keychain that matches the specified parameters, including
path information.

Not recommended

OSStatus KCFindInternetPasswordWithPath (
 ConstStringPtr serverName,
 ConstStringPtr securityDomain,
 ConstStringPtr accountName,
 ConstStringPtr path,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Parameters
serverName

A pointer to a Pascal string containing the server name. Pass NULL to match any server name.

securityDomain
A pointer to a Pascal string containing the security domain. Pass NULL to match any domain.

Functions 1145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

accountName
A pointer to a Pascal string containing the account name. Pass NULL to match any account name.

path
A pointer to a Pascal string containing additional information that specifies a file or directory on the
server specified by the serverName parameter. In a typical URL, path information begins directly
after the first slash (“/”) character following the server name. This parameter is optional.

port
The TCP/IP port number. Pass the constant kAnyPort, described in “Default Internet Port
Constant” (page 1180), to match any port.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 1191) for a
description of possible values. Pass the constant kAnyProtocol, described in “Default Internet
Protocol And Authentication Type Constants” (page 1180), to match any protocol.

authType
The authentication scheme used. See “Authentication Type Constants” (page 1176) for a description of
possible values. Pass the constant kAnyAuthType, described in “Default Internet Protocol And
Authentication Type Constants” (page 1180), to match any authentication scheme.

maxLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer which will hold the returned password data. Before calling the
KCFindInternetPasswordWithPath function, allocate enough memory for the buffer to hold the
data you want to store. Pass NULL if you want to obtain the item reference but not the password data.
In this case, you must also pass NULL in the actualLength parameter. On return, a pointer to the
returned password data.

actualLength
On return, the actual length of the password data that was retrieved. If the buffer pointed to by the
passwordData parameter is smaller than the actual length of the data, the function
KCFindInternetPasswordWithPath returns the result code errKCBufferTooSmall. In this case,
your application must allocate a new buffer of sufficient size before calling the function
KCFindInternetPasswordWithPath again.

item
On return, a pointer to a reference to the found item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain was found. The result code errKCItemNotFound indicates that no
matching password item was found. The result code errKCBufferTooSmall indicates that your application
must allocate a new buffer of sufficient size before calling the function KCFindInternetPasswordWithPath
again.

Discussion
The KCFindInternetPasswordWithPath function finds the first Internet password item which matches
the attributes you provide, including path information. The buffer specified in the passwordData parameter
must be large enough to hold the password data, otherwise the function
KCFindInternetPasswordWithPath returns the result code errKCBufferTooSmall. In this case, your
application must allocate a new buffer of sufficient size before calling the
KCFindInternetPasswordWithPath function again. The KCFindInternetPasswordWithPath function
optionally returns a reference to the found item.

1146 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

The KCFindInternetPasswordWithPath function automatically calls the function KCUnlock (page 1167)
to display the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcfindinternetpasswordwithpath to find the first Internet password item
matching specified attributes. The function kcfindinternetpasswordwithpath requires that you pass a
pointer to a C string instead of a pointer to a Pascal string for the serverAddress, serverName, volumeName,
accountName, and passwordData parameters.

Version Notes
Available beginning with KeychainLib 2.0. In KeychainLib 1.0, the kcfindinternetpassword function
provides the same functionality as the function KCFindInternetPassword, except that it accepts C strings
rather than Pascal strings as arguments. In KeychainLib 2.0, you should use KCFindInternetPassword,
since kcfindinternetpassword is provided for convenience only and may be removed from the header
file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindInternetPassword function in Keychain Services instead.

Declared In
KeychainCore.h

kcfindinternetpasswordwithpath
Not recommended

OSStatus kcfindinternetpasswordwithpath (
 const char *serverName,
 const char *securityDomain,
 const char *accountName,
 const char *path,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCFindInternetPasswordWithPath (page 1145) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindInternetPassword function in Keychain Services instead.

Functions 1147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Declared In
KeychainCore.h

KCFindNextItem
Finds the next keychain item matching the previously specified search criteria.

Not recommended

OSStatus KCFindNextItem (
 KCSearchRef search,
 KCItemRef *item
);

Parameters
search

A reference to the previously-specified search criteria. Pass the reference passed back in the searchRef
parameter of the function KCFindFirstItem (page 1139).

item
On return, a pointer to the next matching keychain item, if any.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCItemNotFound indicates that no
matching keychain item was found. The result code errKCInvalidSearchRef indicates that the specified
search reference was invalid.

Discussion
The KCFindNextItem function finds the next keychain item matching the search criteria previously specified
by a call to the function KCFindFirstItem (page 1139). The KCFindNextItem function returns a reference
to the matching item, if any. The KCFindNextItem function automatically calls the function KCUnlock (page
1167) to display the Unlock Keychain dialog box if the keychain containing the item you are searching for is
currently locked.

Special Considerations

When you are completely finished with a search, you should use the functions KCReleaseItem (page 1161)
and KCReleaseSearch (page 1162) to release the keychain item and search criteria reference.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainSearchCopyNext function in Keychain Services instead.

Declared In
KeychainCore.h

1148 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCFindX509Certificates
Finds the certificates in a keychain that match specified search criteria.

Unsupported

OSStatus KCFindX509Certificates (
 KCRef keychain,
 CFStringRef name,
 CFStringRef emailAddress,
 KCCertSearchOptions options,
 CFMutableArrayRef *certificateItems
);

Parameters
keychain

A reference to the keychain you want to search. If the keychain is locked, the Unlock Keychain dialog
box is automatically displayed.

name
A pointer to a C string containing the certificate owner's common name.

emailAddress
A pointer to a C string containing the certificate owner’s email address.

options
The search criteria you wish to use. See “Certificate Search Options” (page 1177) for a description of
this mask.

certificateItems
On return, a pointer to a list of the matching certificates. Pass NULL if you don’t want to obtain these
references.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that a default keychain was not found. The result code errKCBufferTooSmall indicates that the
certificate data was too large for the supplied buffer. In this case, you should allocate a new buffer of sufficient
size before calling KCFindX509Certificates again. The result code errKCItemNotFound indicates that
no matching certificate was found.

Version Notes
Available beginning with KeychainLib 2.0.

Carbon Porting Notes

This function is obsolete. There is currently no replacement.

Declared In
KeychainHI.h

KCGetAttribute
Determines keychain item data using a keychain item attribute structure.

Not recommended

Functions 1149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus KCGetAttribute (
 KCItemRef item,
 KCAttribute *attr,
 UInt32 *actualLength
);

Parameters
item

A reference to the keychain item whose attribute data you wish to determine.

attr
A pointer to a structure of typeKCAttribute (page 1172). Before calling theKCGetAttribute function,
fill in the tag, length, and data fields (the data field should contain a pointer to a buffer of sufficient
length for the type of data to be returned). On return, the KCGetAttribute function passes back
the requested data in the data field.

actualLength
On return, a pointer to the actual length of the attribute data. This may be more than the length you
allocated in the length field of the attribute structure.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCInvalidItemRef
indicates that the specified keychain item reference was invalid. The result code errKCNoSuchAttr indicates
that you tried to set an attribute which is undefined for this item class. The result code errKCBufferTooSmall
indicates that your application must allocate a new buffer of sufficient size before calling KCGetAttribute
again.

Discussion
You can call the function KCGetAttribute or the function KCGetData (page 1151) to obtain keychain item
data. The difference between the functions is that the function KCGetData (page 1151) requires that you pass
the length of the data and a pointer to that data as separate parameters rather than fields in a keychain item
attribute structure.

If the keychain that contains the item is locked, before calling the KCGetAttribute function you should
call the function KCUnlock (page 1167) to prompt the user to unlock the keychain.

You can determine any of the standard item attributes identified by the following tag constants:
kClassKCItemAttr, kCreationDateKCItemAttr, kModDateKCItemAttr, kDescriptionKCItemAttr,
kCommentKCItemAttr, kLabelKCItemAttr, kCreatorKCItemAttr, kScriptCodeKCItemAttr, and
kCustomIconKCItemAttr. There is additional data you can determine, depending upon the type of keychain
item whose data you wish to obtain. See “Keychain Item Attribute Tag Constants” (page 1184) for more
information.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCopyAttributesAndData function in Keychain Services instead.

Declared In
KeychainCore.h

1150 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCGetData
Determines keychain item data.

Not recommended

OSStatus KCGetData (
 KCItemRef item,
 UInt32 maxLength,
 void *data,
 UInt32 *actualLength
);

Parameters
item

A reference to the keychain item whose data you wish to determine.

maxLength
The length of the data buffer pointed to by the data parameter.

data
A pointer to the buffer that holds the returned data. Before calling the KCGetData function, allocate
enough memory for the buffer to hold the data you want to store. On return, a pointer to the attribute
data you requested.

actualLength
On return, a pointer to the actual length of the data being retrieved. If the buffer pointed to by the
data parameter is smaller than the actual length of the data, the KCGetData function returns the
result code errKCBufferTooSmall. In this case, your application must allocate a new buffer of
sufficient size before calling KCGetData again.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCInvalidItemRef
indicates that the specified keychain item reference was invalid. The result code errKCBufferTooSmall
indicates that your application must allocate a new buffer of sufficient size before calling KCGetData again.
The result code errKCDataNotModifiable indicates that the data is not available for this item.

Discussion
You can call the function KCGetData or the function KCGetAttribute (page 1149) to obtain keychain item
data. The difference between the functions is that the function KCGetAttribute (page 1149) requires that
you pass the length of the data and a pointer to that data as fields in a keychain item attribute structure
rather than as separate parameters.

If the keychain that contains the item is locked, before calling the function KCGetData you should call the
function KCUnlock (page 1167) to prompt the user to unlock the keychain. You cannot call the KCGetData
function for a private key.

You can determine any of the standard item attributes identified by the following tag constants:
kClassKCItemAttr, kCreationDateKCItemAttr, kModDateKCItemAttr, kDescriptionKCItemAttr,
kCommentKCItemAttr, kLabelKCItemAttr, kCreatorKCItemAttr, kScriptCodeKCItemAttr, and
kCustomIconKCItemAttr. There is additional data you can determine, depending upon the type of keychain
item whose data you wish to obtain. See “Keychain Item Attribute Tag Constants” (page 1184) for more
information.

Version Notes
Available beginning with KeychainLib 1.0.

Functions 1151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCopyContent function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetDefaultKeychain
Obtains the default keychain.

Not recommended

OSStatus KCGetDefaultKeychain (
 KCRef *keychain
);

Parameters
keychain

On return, a pointer to default keychain reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that there is no default keychain.

Discussion
You can determine the name of the default keychain by passing the returned keychain reference to the
function KCGetKeychainName (page 1155).

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainCopyDefault function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetIndKeychain
Obtains the reference to an indexed keychain.

Not recommended

1152 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus KCGetIndKeychain (
 UInt16 index,
 KCRef *keychain
);

Parameters
index

An index of the list of available keychains. Pass a value between 1 and the number returned by the
function KCCountKeychains (page 1133).

keychain
On return, pointer to the keychain reference corresponding to the index in the index parameter.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoSuchKeychain
indicates that the index value is out of range.

Discussion
To guarantee correct operation, you should call the function KCCountKeychains (page 1133) once before
calling KCGetIndKeychain.

Special Considerations

The memory that the keychain reference occupies must be released by calling the function
KCReleaseKeychain (page 1162) when you are finished with it.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainCopySearchList function in Keychain Services followed by a call to
CFArrayGetValueAtIndex instead.

Declared In
KeychainCore.h

KCGetKeychain
Determines the location of a password or other keychain item.

Not recommended

OSStatus KCGetKeychain (
 KCItemRef item,
 KCRef *keychain
);

Parameters
item

A reference to the keychain item whose keychain location you wish to determine. If you pass a
reference to a keychain item whose keychain is locked, the KCGetKeychain function returns the
result code errKCInvalidItemRef.

Functions 1153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

keychain
On return, a pointer to the keychain containing the specified item.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCInvalidItemRef
indicates that the keychain item reference was invalid.

Discussion
The KCGetKeychain function determines the location of a keychain item in an unlocked keychain. It does
not search locked keychains. Calling the KCGetKeychain function displays the Unlock Keychain dialog box
if the keychain containing the item is currently locked.

Special Considerations

The keychain reference returned by KCGetKeychain should be released by calling the function
KCReleaseItem (page 1161).

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCopyKeychain function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetKeychainManagerVersion
Determines the version of the Keychain Manager installed on the user’s system.

Not Recommended

OSStatus KCGetKeychainManagerVersion (
 UInt32 *returnVers
);

Parameters
returnVers

On return, a pointer to the version number of the Keychain Manager installed on the current system.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194).

Discussion
Your application can call the KCGetKeychainManagerVersion function to find out which version of the
Keychain Manager is installed on the user's system.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.

1154 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetVersion function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetKeychainName
Determines the name of a keychain.

Not recommended

OSStatus KCGetKeychainName (
 KCRef keychain,
 StringPtr keychainName
);

Parameters
keychain

A reference to the keychain whose name you wish to obtain.

keychainName
A pointer to a Pascal string. On return, this string contains the name of the keychain.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCInvalidKeychain
indicates that the keychain is invalid.

Discussion
You can also call the function kcgetkeychainname to obtain the name of a keychain. kcgetkeychainname
requires that you pass a pointer to a C string instead of a pointer to a Pascal string in the keychainName
parameter.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetPath function in Keychain Services instead.

Declared In
KeychainCore.h

kcgetkeychainname
Not recommended

Functions 1155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus kcgetkeychainname (
 KCRef keychain,
 char *keychainName
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCGetKeychainName (page 1155) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetPath function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetStatus
Determines the permissions that are set in a keychain.

Not recommended

OSStatus KCGetStatus (
 KCRef keychain,
 UInt32 *keychainStatus
);

Parameters
keychain

A pointer to the keychain reference whose permissions you wish to determine. Pass NULL to obtain
the status of the default keychain.

keychainStatus
On return, a pointer to a bitmask that you can test to determine the permissions that are set in a
keychain. See “Keychain Status Constants” (page 1193) for a description of this mask.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoSuchKeychain
indicates that the specified keychain could not be found. The result code errKCInvalidKeychain indicates
that the specified keychain is invalid.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetStatus function in Keychain Services instead.

1156 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Declared In
KeychainCore.h

KCIsInteractionAllowed
Indicates whether Keychain Manager functions that display a user interaction will do so.

Not recommended

Boolean KCIsInteractionAllowed (
 void
);

Parameters
Return Value
A Boolean value indicating whether user interaction is permitted. If true, user interaction is allowed, and
Keychain Manager functions that display a user interface can do so as appropriate.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetUserInteractionAllowed function in Keychain Services instead.

Declared In
KeychainCore.h

KCLock
Locks a keychain.

Not recommended

OSStatus KCLock (
 KCRef keychain
);

Parameters
keychain

A reference to the keychain to lock. Pass NULL to lock all unlocked keychains.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoSuchKeychain
indicates that specified keychain could not be found. The result code errKCInvalidKeychain indicates
that the specified keychain is invalid.

Discussion
Your application should not call the KCLock function unless you are responding to a user's request to lock
a keychain. In general, you should leave the keychain unlocked so that the user does not have to unlock it
again in another application.

Functions 1157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Version Notes
The function KCLock replaces the function KCLockKeychain, which was available in KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainLock function in Keychain Services instead.

Declared In
KeychainCore.h

KCMakeAliasFromKCRef
Creates an alias to a keychain reference.

Not Recommended

OSStatus KCMakeAliasFromKCRef (
 KCRef keychain,
 AliasHandle *keychainAlias
);

Parameters
keychain

A reference to the keychain for which you want to create an alias.

keychainAlias
On return, a pointer to an alias handle to the file referred to by the keychain reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194).

Discussion
You may wish to call the KCMakeAliasFromKCRef function to determine the location of a keychain.

Special Considerations

When you are finished with a keychain, you should call the function KCReleaseKeychain (page 1162) to
deallocate its memory. You should not use the keychain after its memory has been deallocated.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use theSecKeychainGetPath function in Keychain Services followed by calls to the functionFSPathMakeRef
and FSNewAlias instead.

Declared In
KeychainCore.h

1158 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCMakeKCRefFromAlias
Creates a keychain reference from a keychain alias.

Not Recommended

OSStatus KCMakeKCRefFromAlias (
 AliasHandle keychainAlias,
 KCRef *keychain
);

Parameters
keychainAlias

A handle to an alias record of the keychain file. Since the keychain is a file, an alias can be made to
the keychain file.

keychain
On return, a pointer to a reference to the keychain specified by the alias in the keychainAlias
parameter.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194).

Special Considerations

When you are finished with a keychain, you should call the function KCReleaseKeychain (page 1162) to
deallocate its memory. You should not use the keychain after its memory has been deallocated.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainOpen function in Keychain Services instead. If the keychain doesn’t exist, use the
SecKeychainCreate function in Keychain Services.

Declared In
KeychainCore.h

KCMakeKCRefFromFSSpec
Creates a keychain reference from a file specification record. (Deprecated in Mac OS X v10.5.)

Not Recommended

OSStatus KCMakeKCRefFromFSSpec (
 FSSpec *keychainFSSpec,
 KCRef *keychain
);

Parameters
keychainFSSpec

A pointer to a keychain file specification record.

Functions 1159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

keychain
On return, a pointer to a reference to the keychain specified by the file in the keychainFSSpec
parameter.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194).

Special Considerations

When you are finished with a keychain, you should call the function KCReleaseKeychain (page 1162) to
deallocate its memory. You should not use the keychain after its memory has been deallocated.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Carbon Porting Notes

Use the SecKeychainOpen function in Keychain Services instead. If the keychain doesn’t exist, use the
SecKeychainCreate function in Keychain Services.

Declared In
KeychainCore.h

KCNewItem
Creates a reference to a keychain item.

Not recommended

OSStatus KCNewItem (
 KCItemClass itemClass,
 OSType itemCreator,
 UInt32 length,
 const void *data,
 KCItemRef *item
);

Parameters
itemClass

The type of keychain item that you wish to create. See “Keychain Item Type Constants” (page 1190) for
a description of possible values and a description of the KCItemClass data type.

itemCreator
The creator code of the application that owns this item.

length
The length of the data to be stored in this item.

data
A pointer to a buffer containing the data to be stored in this item. Before calling KCNewItem, allocate
enough memory for the buffer to hold the data you want to store.

1160 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

item
On return, a pointer to a reference to the newly-created item.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The Memory Manager result codememFullErr
indicates that you did not allocate enough memory in the current heap to create the item.

Discussion
After calling the KCNewItem function, you should call the function KCAddItem (page 1130) if you wish to
permanently store a password or other keychain item. Note that a copy of the data buffer pointed to by the
data parameter is stored in the newly-created item.

Special Considerations

When you are done with a keychain item, you should call the function KCReleaseItem (page 1161) to release
its memory. You should not use the item after its memory has been deallocated.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCreateFromContent function in Keychain Services instead.

Declared In
KeychainCore.h

KCReleaseItem
Disposes of the memory occupied by a keychain item reference.

Not recommended

OSStatus KCReleaseItem (
 KCItemRef *item
);

Parameters
item

A pointer to a keychain item reference. Pass the keychain item reference whose memory you want
to release. On return, the reference is set to NULL and should not be used again.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194).

Discussion
You should call the KCReleaseItem function to release the memory occupied by a keychain item reference
when you are finished with it.

Version Notes
Available beginning with KeychainLib 1.0

Functions 1161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the CFRelease function instead.

Declared In
KeychainCore.h

KCReleaseKeychain
Disposes of the memory associated with a keychain reference.

Not recommended

OSStatus KCReleaseKeychain (
 KCRef *keychain
);

Parameters
keychain

A pointer to a keychain reference. Pass the keychain reference whose memory you want to release.
On return, the reference is set to NULL and should not be used again.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194).

Discussion
You should call the KCReleaseKeychain function to release the memory occupied by a keychain reference
when you are finished with it. You should not use the reference after it has been released.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the CFRelease function instead.

Declared In
KeychainCore.h

KCReleaseSearch
Disposes of the memory occupied by a search criteria reference.

Not recommended

1162 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus KCReleaseSearch (
 KCSearchRef *search
);

Parameters
search

A pointer to a search criteria reference. Pass the search criteria reference whose memory you want
to release. On return, the reference is set to NULL and should not be used again.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCInvalidSearchRef
indicates that the specified search reference was invalid.

Discussion
You should call the KCReleaseSearch function to release the memory occupied by a search criteria reference
when you are completely finished with a search performed by calling the functions KCFindFirstItem (page
1139) or KCFindNextItem (page 1148).

Version Notes
Available beginning with KeychainLib 1.0

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the CFRelease function instead.

Declared In
KeychainCore.h

KCRemoveCallback
Unregisters your keychain event callback function.

Not recommended

OSStatus KCRemoveCallback (
 KCCallbackUPP callbackProc
);

Parameters
callbackProc

A Universal Procedure Pointer (UPP) to your keychain event callback function that was previously
registered with the function KCAddCallback (page 1123).

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCInvalidCallback
indicates that the callback function was not previously registered.

Discussion
After you pass a UPP to your keychain event callback function to the KCRemoveCallback function, it will
no longer be called by the Keychain Manager.

Functions 1163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Special Considerations

After calling KCRemoveCallback, you should call the function DisposeKCCallbackUPP (page 1119) to
dispose of the UPP to your callback function.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainRemoveCalllback function in Keychain Services instead.

Declared In
KeychainCore.h

KCSetAttribute
Sets or edits keychain item data using a keychain item attribute structure.

Not recommended

OSStatus KCSetAttribute (
 KCItemRef item,
 KCAttribute *attr
);

Parameters
item

A reference to the keychain item whose data you wish to set or edit.

attr
A pointer to a structure of type KCAttribute (page 1172) containing keychain item data you want to
set. Before calling the function KCSetAttribute, fill in the tag, length, and data fields of this
structure with the tag identifying the attribute you wish to modify or set, the length of the attribute
data you wish to set, and a pointer to that data, respectively.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCInvalidItemRef
indicates that the keychain item reference was invalid. The result code errKCNoSuchAttr indicates that the
item attribute you wish to set is undefined for the specified item. The result code errKCDataTooLarge
indicates that more data was supplied than is allowed for this attribute.

Discussion
You can call the KCSetAttribute function or the function KCSetData (page 1165) to set or modify keychain
item data. The difference between the functions is that the KCSetData (page 1165) function requires that you
pass the length of the data and a pointer to that data as separate parameters rather than fields in a keychain
item attribute structure.

If the keychain that contains the item is locked, before calling the KCSetAttribute function you should
call the function KCUnlock (page 1167) to prompt the user to unlock the keychain. The keychain must permit
read/write access in order to modify keychain item data.

1164 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

You can only set or modify standard item attributes identified by the tag constants
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr, kCreatorKCItemAttr,
kTypeKCItemAttr, and kCustomIconKCItemAttr. In addition, each class of keychain item has attributes
specific to that class which may be set or modified. See “Keychain Item Attribute Tag Constants” (page 1184)
for more information.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemModifyAttributesAndData function in Keychain Services instead.

Declared In
KeychainCore.h

KCSetData
Sets or edits keychain item data.

Not recommended

OSStatus KCSetData (
 KCItemRef item,
 UInt32 length,
 const void *data
);

Parameters
item

A reference to the keychain item whose data you wish to set.

length
The length of the data buffer pointed to by the data parameter.

data
A pointer to a buffer containing the data to be stored in this item. Before calling the KCSetData
function, allocate enough memory for the buffer to hold the data you want to store.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCInvalidItemRef
indicates that the specified keychain item reference was invalid. The result code errKCDataTooLarge
indicates that the data was too large for the supplied buffer. The result code errKCDataNotModifiable
indicates that the data cannot be set for this item.

Discussion
You can call the function KCSetData or the function KCSetAttribute (page 1164) to set or modify keychain
item data. The difference between the functions is that the function KCSetAttribute (page 1164) requires
that you pass the length of the data buffer as a field in a keychain item attribute structure rather than as a
separate parameter.

Functions 1165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

If the keychain that contains the item is locked, before calling the KCSetData function you should call the
functionKCUnlock (page 1167) to prompt the user to unlock the keychain. The keychain must permit read/write
access in order to modify keychain item data.

You can set or edit any of the standard item attributes identified by the following tag constants:
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr, kCreatorKCItemAttr,
kTypeKCItemAttr, and kCustomIconKCItemAttr. There is additional data you can set, depending upon
the type of keychain item whose data you are manipulating. See “Keychain Item Attribute Tag Constants” (page
1184) for more information.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemModifyContent function in Keychain Services instead.

Declared In
KeychainCore.h

KCSetDefaultKeychain
Sets the default keychain.

Not recommended

OSStatus KCSetDefaultKeychain (
 KCRef keychain
);

Parameters
keychain

A reference to the keychain you wish to make the default.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoSuchKeychain
indicates that the specified keychain could not be found. The result code errKCInvalidKeychain indicates
that the specified keychain is invalid.

Discussion
In most cases, your application should not need to set the default keychain, because this is a choice normally
made by the user. You should call the KCSetDefaultKeychain function to change where a password or
other keychain items are added.

The KCSetDefaultKeychain function sets the default keychain regardless of whether the keychain is
currently locked.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.

1166 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainSetDefault function in Keychain Services instead.

Declared In
KeychainCore.h

KCSetInteractionAllowed
Enables or disables Keychain Manager functions that display a user interface.

Not recommended

OSStatus KCSetInteractionAllowed (
 Boolean state
);

Parameters
state

A flag that indicates whether the Keychain Manager will display a user interface. If you pass true,
user interaction is allowed. This is the default value. If false, Keychain Manager functions that normally
display a user interface will instead return an error.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194).

Discussion
The KCSetInteractionAllowed function enables you to control whether the functions KCLock (page 1157),
KCUnlock (page 1167), and KCChangeSettings (page 1131) display a user interface. Note that failure to
re-enable user interaction will affect other clients of the Keychain Manager. By default, user interaction is
permitted.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainSetUserInteractionAllowed function in Keychain Services instead.

Declared In
KeychainCore.h

KCUnlock
Displays a dialog box that prompts the user for a password before unlocking a keychain.

Not recommended

Functions 1167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

OSStatus KCUnlock (
 KCRef keychain,
 StringPtr password
);

Parameters
keychain

A reference to the keychain to unlock. Pass NULL to specify the default keychain. If you pass NULL
and the default keychain is currently locked, the keychain will appear as the default choice. If you
pass a locked keychain, the function KCUnlock displays the Unlock Keychain dialog box and the
keychain appears as the chosen menu item in the keychain popup menu. If the default keychain is
currently unlocked, the Unlock Keychain dialog box is not displayed and the KCUnlock function
returns noErr.

password
A pointer to a Pascal string representing the password string for this keychain. Pass NULL if the user
password is unknown. In this case, The KCUnlock function displays the Unlock Keychain dialog box,
and the authentication user interface associated with the keychain about to be unlocked. If you specify
an invalid password, you will not be able to unlock the keychain with a specified password until the
machine is rebooted. In this case, the KCUnlock function returns errKCInteractionRequired.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code noErr does not guarantee
that the specified keychain is unlocked, because the user can select any available keychain and unlock it. The
result code userCanceledErr indicates that the user pressed the Cancel button in the Unlock Keychain
dialog box. The result code errKCAuthFailed indicates that authentication failed because of too many
unsuccessful retries. The result code errKCInteractionRequired indicates that user interaction is required
to unlock the keychain. In this case, you will not be able to unlock the keychain with that password until the
machine is rebooted.

Discussion
In most cases, your application does not need to call the KCUnlock function directly, since most Keychain
Manager functions that require an unlocked keychain call KCUnlock automatically. If your application needs
to verify that a keychain is unlocked, call the function KCGetStatus (page 1156).

You can also call the function kcunlock to display a user interface prompting the user to unlock a keychain.
The kcunlock function requires that you pass a pointer to a C string instead of a pointer to a Pascal string
in the password parameter.

Special Considerations

It is recommended that the KCUnlock function not be explicitly called by applications. Most functions that
require an unlocked keychain call the KCUnlock function for you.

The memory that the keychain reference occupies must be released by calling the function
KCReleaseKeychain (page 1162) when you are finished with it.

Version Notes
The KCUnlock function replaces the function KCUnlockKeychain, which was available in KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainUnlock function in Keychain Services instead.

1168 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Declared In
KeychainHI.h

kcunlock
Not recommended

OSStatus kcunlock (
 KCRef keychain,
 const char *password
);

Discussion
This function is available for convenience only and may be removed. Use the function KCUnlock (page 1167)
instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainUnlock function in Keychain Services instead.

Declared In
KeychainHI.h

KCUpdateItem
Updates a password or other keychain item.

Not recommended

OSStatus KCUpdateItem (
 KCItemRef item
);

Parameters
item

A reference to the keychain item whose data you wish to update. If you pass an item that has not
been previously added to the keychain, the KCUpdateItem function does nothing and returns noErr.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCInvalidItemRef indicates that
the specified keychain item reference was invalid.

Discussion
You can use the KCUpdateItem function to update a password or other keychain item in a keychain’s
permanent data store after changing its data. The function KCUpdateItem automatically calls the function
KCUnlock (page 1167) to display the Unlock Keychain dialog box if the keychain containing the item is currently
locked.

Version Notes
Available beginning with KeychainLib 1.0.

Functions 1169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemModifyContent function in Keychain Services instead.

Declared In
KeychainCore.h

NewKCCallbackUPP
Creates a UPP to your keychain event callback.

Not recommended

KCCallbackUPP NewKCCallbackUPP (
 KCCallbackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your keychain event callback function. For information on how to create a keychain event
callback, see KCCallbackProcPtr (page 1171).

Return Value
A UPP to your callback function. You can register your callback function by passing this UPP in the
callbackProc parameter of the function KCAddCallback (page 1123). See the description of the
KCCallbackUPP data type.

Discussion
The NewKCCallbackUPP function creates a pointer to your keychain event callback function. You pass a
pointer to your callback function in the callbackProc parameter of the function KCAddCallback (page
1123) if you want your application to receive data transfer events.

Special Considerations

When you are finished with a UPP to your keychain event callback function, you should dispose of it by calling
the function DisposeKCCallbackUPP (page 1119).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

There is no replacement function available.

Declared In
KeychainCore.h

1170 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Callbacks

KCCallbackProcPtr
Defines a pointer to your keychain event callback that handles user keychain access events.

typedef OSStatus (*KCCallbackProcPtr)
(
 KCEvent keychainEvent,
 KCCallbackInfo * info,
 void * userContext
);

If you name your function MyKCCallbackProc, you would declare it like this:

OSStatus MyKCCallbackProc (
 KCEvent keychainEvent,
 KCCallbackInfo * info,
 void * userContext
);

Parameters
keychainEvent

The keychain event that your application wishes to be notified of. See “Keychain Events
Constants” (page 1180) for a description of possible values. The type of event that can trigger your
callback depends on the bitmask you passed in the eventMask parameter of the function
KCAddCallback (page 1123). For more information, see the discussion.

info
A pointer to a structure of type KCCallbackInfo (page 1173). On return, the structure contains
information about the keychain event that occurred. The Keychain Manager passes this information
to your callback function via the info parameter of the function InvokeKCCallbackUPP (page 1119).

userContext
A pointer to application-defined storage that your application previously passed to the function
KCAddCallback (page 1123). You can use this value to perform operations such as tracking which
instance of a function is operating.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1194). Your keychain event callback function should
process the keychain event and return noErr.

Discussion
Your keychain event callback function handles those keychain events that you indicate. In order to be notified
of these events, you must pass a UPP to your notification callback function in the callbackProc parameter
of KCAddCallback (page 1123). You indicate the type of data transfer events you want to receive via a bitmask
in the eventMask parameter. When you no longer wish to receive notification of keychain events, you should
call the function KCRemoveCallback (page 1163) to dispose of the UPP to your keychain event callback
function.

Carbon Porting Notes

Use the SecKeychainCalllback function in Keychain Services instead.

Callbacks 1171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

Data Types

AFPServerSignature
Represents a 16-byte Apple File Protocol server signature block.

typedef UInt8 AFPServerSignature[16];

Discussion
The AFPServerSignature type represents a 16-byte Apple File Protocol server signature block. You can
pass a value of this type in the serverSignature parameter of the functions KCAddAppleSharePassword (page
1120) and KCFindAppleSharePassword (page 1136) to represent an Apple File Protocol server signature. You
can use a value of this type with the keychain item attribute constant kSignatureKCItemAttr to specify
an Apple File Protocol server signature.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCAttribute
Contains information about a keychain item attribute.

typedef SecKeychainAttribute KCAttribute;

Discussion
The KCAttribute type represents a structure containing information about the attribute of a keychain item.
It contains a tag that identifies a particular keychain item attribute value, the length of the attribute value,
and a pointer to the attribute value. You can modify attribute data for a keychain item attribute by passing
a pointer to this structure in the attr parameter of the function KCSetAttribute (page 1164). The function
KCGetAttribute (page 1149) passes back a pointer to this structure in the attr parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCAttributeList
Lists attributes in a keychain item.

1172 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

typedef SecKeychainAttributeList KCAttributeList;

Discussion
The KCAttributeList type represents a list of structures containing information about the attributes in a
keychain item. You pass a pointer to this list of 0 or more structures in the attrList parameter of the
function KCFindFirstItem (page 1139) to indicate the attributes to be matched.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCAttrType
Identifies a keychain item attribute value.

typedef SecKeychainAttrType KCAttrType;

Discussion
The KCAttrType type represents a tag that identifies a keychain item attribute value. You can use this value
in the tag field of the structure KCAttribute (page 1172) to identify the keychain item attribute value you
wish to set or obtain. See Keychain Item Attribute Tag Constants (page 1184) for a description of the
Apple-defined tag constants and the data types of the values they identify. Your application can create
application-defined tags of type KCAttrType.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCCallbackInfo
Contains information about a keychain event.

struct KCCallbackInfo {
 UInt32 version;
 KCItemRef item;
 long processID[2];
 long event[4];
 KCRef keychain;
};
typedef struct KCCallbackInfo KCCallbackInfo;

Fields
version

The version of this structure.

item
A reference to the keychain item in which the event occurred. If the event did not involve an item,
this field is not valid.

Data Types 1173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

processID
A 64-bit quantity containing the process serial number of the process in which the event occurred.
This is not available on Mac OS X.

event
The keychain event that occurred. If the event is a system event as indicated by the constant
kSystemKCEvent, the Keychain client can process events. If the event is not a system event, this field
is not valid. This is not available on Mac OS X.

keychain
A reference to the keychain in which the event occurred. If the event did not involve a keychain, this
field is not valid.

Discussion
The KCCallbackInfo type represents a structure that contains information about the keychain event of
which your application wants to be notified. The Keychain Manager passes a pointer to this structure in the
infoparameter of your callback function via the function InvokeKCCallbackUPP (page 1119), which invokes
your callback function. For information on how to write a keychain event callback function, see
KCCallbackProcPtr (page 1171).

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCCallbackUPP
Defines a data type for the KCCallbackProcPtr callback pointer.

typedef KCCallbackProcPtr KCCallbackUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCItemRef
Represents a reference to a keychain item.

typedef SecKeychainItemRef KCItemRef;

Discussion
The KCItemRef type represents a reference to an opaque structure that identifies a keychain item. You
should call the function KCNewItem (page 1160) to create a keychain item reference. The function
KCReleaseItem (page 1161) disposes of a keychain item reference when no longer needed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

1174 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCPublicKeyHash
Represents a 20-byte public key hash.

typedef UInt8 KCPublicKeyHash[20];

Discussion
The KCPublicKeyHash type represents a hash of a public key. You can use the constant
kPublicKeyHashKCItemAttr, described in Keychain Item Attribute Tag Constants (page 1184), to
set or retrieve a certificate attribute value of this type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCRef
Represents a reference to a keychain.

typedef SecKeychainRef KCRef;

Discussion
The KCRef type represents a reference to an opaque structure that identifies a keychain. You should call the
functionKCMakeKCRefFromFSSpec (page 1159) orKCMakeKCRefFromAlias (page 1159) to create a keychain
reference. The function KCReleaseKeychain (page 1162) disposes of a keychain reference when no longer
needed. You pass a reference of this type to Keychain Manager functions that operate on a keychain in some
way.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCSearchRef
Represents a reference to the current search criteria.

typedef SecKeychainSearchRef KCSearchRef;

Discussion
The KCSearchRef type represents a reference to an opaque structure that identifies the current search
criteria. The function KCFindFirstItem (page 1139) passes back a reference of this type in the search
parameter for subsequent calls to the function KCFindNextItem (page 1148). You must release this reference
when you are finished with a search by calling the function KCReleaseSearch (page 1162).

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

Data Types 1175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

KCStatus
Identifies a mask that you can use in determining the permissions that are set in a keychain.

typedef SecKeychainStatus KCStatus;

Discussion
The KCStatus enumeration defines masks your application can use to determine the read and write
permissions for a keychain. The function KCGetStatus (page 1156) passes back this mask in the status
parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

Constants

Authentication Type Constants
Represent the type of authentication to use in storing and retrieving Internet passwords.

enum {
 kKCAuthTypeNTLM = 'ntlm',
 kKCAuthTypeMSN = 'msna',
 kKCAuthTypeDPA = 'dpaa',
 kKCAuthTypeRPA = 'rpaa',
 kKCAuthTypeHTTPDigest = 'httd',
 kKCAuthTypeDefault = 'dflt'
};
typedef FourCharCode KCAuthType;

Constants
kKCAuthTypeNTLM

Specifies Windows NT LAN Manager authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCAuthTypeMSN
Specifies Microsoft Network authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCAuthTypeDPA
Specifies Distributed Password authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1176 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kKCAuthTypeRPA
Specifies Remote Password authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCAuthTypeHTTPDigest
Specifies HTTP Digest Access authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCAuthTypeDefault
Specifies default authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCAuthType enumeration defines constants you can use to identify the type of authentication to use
in storing and retrieving Internet passwords. You can pass a constant of this type in the authType parameter
of the functions KCAddInternetPassword (page 1126), KCAddInternetPasswordWithPath (page 1128),
KCFindInternetPassword (page 1142), and KCFindInternetPasswordWithPath (page 1145).

Certificate Search Options
Represent a mask that specifies the search criteria to use when finding certificates.

Constants 1177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

typedef UInt32 KCCertSearchOptions;
enum {
 kCertSearchShift = 0,
 kCertSearchSigningIgnored = 0,
 kCertSearchSigningAllowed = 1 << (kCertSearchShift + 0),
 kCertSearchSigningDisallowed = 1 << (kCertSearchShift + 1),
 kCertSearchSigningMask = ((kCertSearchSigningAllowed) |
 (kCertSearchSigningDisallowed)),
 kCertSearchVerifyIgnored = 0,
 kCertSearchVerifyAllowed = 1 << (kCertSearchShift + 2),
 kCertSearchVerifyDisallowed = 1 << (kCertSearchShift + 3),
 kCertSearchVerifyMask = ((kCertSearchVerifyAllowed) |
 (kCertSearchVerifyDisallowed)),
 kCertSearchEncryptIgnored = 0,
 kCertSearchEncryptAllowed = 1 << (kCertSearchShift + 4),
 kCertSearchEncryptDisallowed = 1 << (kCertSearchShift + 5),
 kCertSearchEncryptMask = ((kCertSearchEncryptAllowed) |
 (kCertSearchEncryptDisallowed)),
 kCertSearchDecryptIgnored = 0,
 kCertSearchDecryptAllowed = 1 << (kCertSearchShift + 6),
 kCertSearchDecryptDisallowed = 1 << (kCertSearchShift + 7),
 kCertSearchDecryptMask = ((kCertSearchDecryptAllowed) |
 (kCertSearchDecryptDisallowed)),
 kCertSearchWrapIgnored = 0,
 kCertSearchWrapAllowed = 1 << (kCertSearchShift + 8),
 kCertSearchWrapDisallowed = 1 << (kCertSearchShift + 9),
 kCertSearchWrapMask = ((kCertSearchWrapAllowed) |
 (kCertSearchWrapDisallowed)),
 kCertSearchUnwrapIgnored = 0,
 kCertSearchUnwrapAllowed = 1 << (kCertSearchShift + 10),
 kCertSearchUnwrapDisallowed = 1 << (kCertSearchShift + 11),
 kCertSearchUnwrapMask = ((kCertSearchUnwrapAllowed) |
 (kCertSearchUnwrapDisallowed)),
 kCertSearchPrivKeyRequired = 1 << (kCertSearchShift + 12),
 kCertSearchAny = 0
};

Discussion
The KCCertSearchOptions enumeration defines masks that you can use in the options parameter of the
function KCFindX509Certificates (page 1149).

Certificate Usage Options
Represent a mask that specifies the usage options when adding certificates.

typedef UInt32 KCCertAddOptions;
enum {
 kSecOptionReserved = 0x000000FF,
 kCertUsageShift = 8,
 kCertUsageSigningAdd = 1 << (kCertUsageShift + 0),
 kCertUsageSigningAskAndAdd = 1 << (kCertUsageShift + 1),

1178 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

 kCertUsageVerifyAdd = 1 << (kCertUsageShift + 2),
 kCertUsageVerifyAskAndAdd = 1 << (kCertUsageShift + 3),
 kCertUsageEncryptAdd = 1 <<(kCertUsageShift + 4),
 kCertUsageEncryptAskAndAdd = 1 << (kCertUsageShift + 5),
 kCertUsageDecryptAdd = 1 << (kCertUsageShift + 6),
 kCertUsageDecryptAskAndAdd = 1 << (kCertUsageShift + 7),
 kCertUsageKeyExchAdd = 1 << (kCertUsageShift + 8),
 kCertUsageKeyExchAskAndAdd = 1 << (kCertUsageShift + 9),
 kCertUsageRootAdd = 1 << (kCertUsageShift + 10),
 kCertUsageRootAskAndAdd = 1 << (kCertUsageShift + 11),
 kCertUsageSSLAdd = 1 << (kCertUsageShift + 12),
 kCertUsageSSLAskAndAdd = 1 << (kCertUsageShift + 13),
 kCertUsageAllAdd = 0x7FFFFF00
};

Certificate Verification Criteria
Identify the verification criteria for use when displaying certificates to the user.

typedef UInt16 KCVerifyStopOn;
enum {
 kPolicyKCStopOn = 0,
 kNoneKCStopOn = 1,
 kFirstPassKCStopOn = 2,
 kFirstFailKCStopOn = 3
};

Constants
kPolicyKCStopOn

Indicates that the function KCChooseCertificate (page 1132) should use the trust policy options
currently in effect.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kNoneKCStopOn
Indicates that the functionKCChooseCertificate (page 1132) completes after examining all available
certificates.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kFirstPassKCStopOn
Indicates that the function KCChooseCertificate (page 1132) when one certificate meeting the
verification criteria is found.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kFirstFailKCStopOn
Specifies that the function KCChooseCertificate (page 1132) completes when one certificate that
fails to meet the verification criteria is found.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Discussion
The KCVerifyStopOn enumeration defines constants your application can use to identify the verification
criteria to use in selecting certificates. You can pass a constant of this type in the stopOn parameter of the
function KCChooseCertificate (page 1132).

Default Internet Port Constant
Represent the internet ports available.

enum {
 kAnyPort = 0
};

Constants
kAnyPort

Indicates that any Internet port can be used.

Available in Mac OS X v10.1 and later.

Declared in KeychainCore.h.

Default Internet Protocol And Authentication Type Constants
Represent the internet protocols and authentication types available.

enum {
 kAnyProtocol = 0,
 kAnyAuthType = 0
};

Constants
kAnyProtocol

Indicates that any Internet protocol can be used.

Available in Mac OS X v10.1 and later.

Declared in KeychainCore.h.

kAnyAuthType
Indicates that any Internet authentication type can be used.

Available in Mac OS X v10.1 and later.

Declared in KeychainCore.h.

Keychain Events Constants
Identify keychain events.

1180 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

typedef UInt16 KCEvent;
enum {
 kIdleKCEvent = 0,
 kLockKCEvent = 1,
 kUnlockKCEvent = 2,
 kAddKCEvent = 3,
 kDeleteKCEvent = 4,
 kUpdateKCEvent = 5,
 kPasswordChangedKCEvent = 6,
 kSystemKCEvent = 8,
 kDefaultChangedKCEvent = 9,
 kDataAccessKCEvent = 10,
 kKeychainListChangedKCEvent = 11
};

Constants
kIdleKCEvent

Indicates a NULL event.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kLockKCEvent
Indicates that the keychain was locked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUnlockKCEvent
Indicates that the keychain was unlocked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAddKCEvent
Indicates that an item was added to a keychain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDeleteKCEvent
Indicates that an item was deleted from a keychain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUpdateKCEvent
Indicates that a keychain item was updated.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPasswordChangedKCEvent
Indicates that the identity of the keychain was changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kSystemKCEvent
Indicates that the keychain client can process events.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDefaultChangedKCEvent
Indicates that the default keychain has changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDataAccessKCEvent
Indicates that a process has called the function KCGetData (page 1151) to access a keychain item’s
data.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKeychainListChangedKCEvent
Indicates that the list of keychains has changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCEvent enumeration defines constants that identify the Keychain-related events your callback function
wishes to receive. The Keychain Manager tests a mask that you pass in the eventMask parameter of the
function KCAddCallback (page 1123) to determine the data transfer events your notification callback function
wishes to receive. It passes these events in the keychainEvent parameter of the function
InvokeKCCallbackUPP (page 1119). For a description of the Keychain-related event masks, see Keychain
Events Mask (page 1182).

Keychain Events Mask
Identify a mask that you can use to set the keychain events you wish to receive.

typedef UInt16 KCEventMask;
enum {
 kIdleKCEventMask = 1 << kIdleKCEvent,
 kLockKCEventMask = 1 << kLockKCEvent,
 kUnlockKCEventMask = 1 << kUnlockKCEvent,
 kAddKCEventMask = 1 << kAddKCEvent,
 kDeleteKCEventMask = 1 << kDeleteKCEvent,
 kUpdateKCEventMask = 1 << kUpdateKCEvent,
 kPasswordChangedKCEventMask = 1 << kPasswordChangedKCEvent,
 kSystemEventKCEventMask = 1 << kSystemKCEvent,
 kDefaultChangedKCEventMask = 1 << kDefaultChangedKCEvent,
 kDataAccessKCEventMask = 1 << kDataAccessKCEvent,
 kEveryKCEventMask = 0xFFFF
};

Constants
kIdleKCEventMask

If the bit specified by this mask is set, your callback function will be invoked during a NULL event.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1182 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kLockKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the keychain is
locked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUnlockKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the keychain is
unlocked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAddKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when an item is added
to the keychain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDeleteKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when an item is removed
from the keychain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUpdateKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when a keychain item is
updated.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPasswordChangedKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the keychain identity
is changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSystemEventKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the keychain client
processes an event.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDefaultChangedKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the default keychain
is changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kDataAccessKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when a process calls the
function KCGetData (page 1151).

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kEveryKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when any of the above
Keychain-related events occur.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCEventMask enumeration defines masks your application can use to set Keychain event bits. You pass
this mask in the eventMask parameter of the function KCAddCallback (page 1123), thereby defining the
Keychain-related events to which your callback will respond. The Keychain Manager uses this mask to test
which events your callback function will handle. It passes these events in the keychainEvent parameter of
the function InvokeKCCallbackUPP (page 1119). For a description of Keychain-related events, see Keychain
Events Constants (page 1180).

Keychain Item Attribute Tag Constants
Represent tags that identify keychain item attribute values.

1184 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

enum {
 kClassKCItemAttr = 'clas',
 kCreationDateKCItemAttr = 'cdat',
 kModDateKCItemAttr = 'mdat',
 kDescriptionKCItemAttr = 'desc',
 kCommentKCItemAttr = 'icmt',
 kCreatorKCItemAttr = 'crtr',
 kTypeKCItemAttr = 'type',
 kScriptCodeKCItemAttr = 'scrp',
 kLabelKCItemAttr = 'labl',
 kInvisibleKCItemAttr = 'invi',
 kNegativeKCItemAttr = 'nega',
 kCustomIconKCItemAttr = 'cusi',
 kAccountKCItemAttr = 'acct',
 kServiceKCItemAttr = 'svce',
 kGenericKCItemAttr = 'gena',
 kSecurityDomainKCItemAttr = 'sdmn',
 kServerKCItemAttr = 'srvr',
 kAuthTypeKCItemAttr = 'atyp',
 kPortKCItemAttr = 'port',
 kPathKCItemAttr = 'path',
 kVolumeKCItemAttr = 'vlme',
 kAddressKCItemAttr = 'addr',
 kSignatureKCItemAttr = 'ssig',
 kProtocolKCItemAttr = 'ptcl',
 kSubjectKCItemAttr = 'subj',
 kCommonNameKCItemAttr = 'cn ',
 kIssuerKCItemAttr = 'issu',
 kSerialNumberKCItemAttr = 'snbr',
 kEMailKCItemAttr = 'mail',
 kPublicKeyHashKCItemAttr = 'hpky',
 kIssuerURLKCItemAttr = 'iurl',
 kEncryptKCItemAttr = 'encr',
 kDecryptKCItemAttr = 'decr',
 kSignKCItemAttr = 'sign',
 kVerifyKCItemAttr = 'veri',
 kWrapKCItemAttr = 'wrap',
 kUnwrapKCItemAttr = 'unwr',
 kStartDateKCItemAttr = 'sdat',
 kEndDateKCItemAttr = 'edat'
};
typedef FourCharCode KCItemAttr;

Constants
kClassKCItemAttr

Identifies the class attribute. You use this tag to set or get a value of type KCItemClass that indicates
whether the item is an AppleShare, Internet, or generic password, or a certificate. See
“KCPublicKeyHash” (page 1175) for a description of possible values.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kCreationDateKCItemAttr
Identifies the creation date attribute. You use this tag to set or get a value of type UInt32 that indicates
the date the item was created.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kModDateKCItemAttr
Identifies the modification date attribute. You use this tag to set or get a value of type UInt32 that
indicates the last time the item was updated.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDescriptionKCItemAttr
Identifies the description attribute. You use this tag to set or get a value of type string that represents
a user-visible string describing this item.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kCommentKCItemAttr
Identifies the comment attribute. You use this tag to set or get a value of type string that represents
a user-editable string containing comments for this item.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kCreatorKCItemAttr
Identifies the creator attribute. You use this tag to set or get a value of type OSType that represents
the item’s creator.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kTypeKCItemAttr
Identifies the type attribute. You use this tag to set or get a value of type OSType that represents the
item’s type.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kScriptCodeKCItemAttr
Identifies the script code attribute. You use this tag to set or get a value of type ScriptCode that
represents the script code for all strings.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kLabelKCItemAttr
Identifies the label attribute. You use this tag to set or get a value of type string that represents a
user-editable string containing the label for this item.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kInvisibleKCItemAttr
Identifies the invisible attribute. You use this tag to set or get a value of type Boolean that indicates
whether the item is invisible.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1186 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kNegativeKCItemAttr
Identifies the negative attribute. You use this tag to set or get a value of type Boolean that indicates
whether there is a valid password associated with this keychain item. This is useful if your application
doesn't want a password for some particular service to be stored in the keychain, but prefers that it
always be entered by the user. The item (typically invisible and with zero-length data) acts as a
placeholder to say “don't use me.”

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kCustomIconKCItemAttr
Identifies the custom icon attribute. You use this tag to set or get a value of type Boolean that
indicates whether the item has an application-specific icon. To do this, you must also set the attribute
value identified by the tag kTypeKCItemAttr to a file type for which there is a corresponding icon in
the desktop database, and set the attribute value identified by the tag kCreatorKCItemAttr to an
appropriate application creator type. If a custom icon corresponding to the item's type and creator
can be found in the desktop database, it will be displayed by Keychain Access. Otherwise, default
icons are used.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAccountKCItemAttr
Identifies the account attribute. You use this tag to set or get a value of type Str63 that represents
the user account. It also applies to generic and AppleShare passwords.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kServiceKCItemAttr
Identifies the service attribute for a generic password. You use this tag to set or get a value of type
Str63 that represents the service.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kGenericKCItemAttr
Identifies the generic attribute for a generic password. You use this tag to set or get a value of untyped
bytes that represents a user-defined attribute.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSecurityDomainKCItemAttr
Identifies the security domain attribute for an internet password. You use this tag to set or get a value
of type Str63 that represents the Internet security domain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kServerKCItemAttr
Identifies the server attribute for an internet password. You use this tag to set or get a value of type
string that represents the Internet server’s domain name or IP address.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kAuthTypeKCItemAttr
Identifies the authentication type attribute for an internet password. You use this tag to set or get a
value of type KCAuthType that represents the Internet authentication scheme.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPortKCItemAttr
Identifies the port attribute for an internet password. You use this tag to set or get a value of type
UInt16 that represents the Internet port.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPathKCItemAttr
Identifies the path attribute for an internet password. You use this tag to set or get a value of type
Str255 that represents the path.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kVolumeKCItemAttr
Identifies the volume attribute for an AppleShare password. You use this tag to set or get a value of
type Str63 that represents the AppleShare volume.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAddressKCItemAttr
Identifies the address attribute for an AppleShare password. You use this tag to set or get a value of
type string that represents the zone name, or the IP or domain name that represents the server
address.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSignatureKCItemAttr
Identifies the server signature attribute for an AppleShare password. You use this tag to set or get a
value of type KCPublicKeyHash (page 1175) that represents the server signature block.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kProtocolKCItemAttr
Identifies the protocol attribute for an AppleShare or internet password. You use this tag to set or get
a value of type KCProtocolType that represents the Internet protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSubjectKCItemAttr
Identifies the subject attribute for a certificate. You use this tag to set or get DER-encoded data that
represents the subject distinguished name.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1188 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kCommonNameKCItemAttr
Identifies the common name attribute for a certificate. You use this tag to set or get a UTF8-encoded
string that represents the common name.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kIssuerKCItemAttr
Identifies the issuer attribute for a certificate. You use this tag to set or get a DER-encoded data that
represents the issuer distinguished name.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSerialNumberKCItemAttr
Identifies the serial number attribute for a certificate. You use this tag to set or get a DER-encoded
data that represents the serial number.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kEMailKCItemAttr
Identifies the email attribute for a certificate. You use this tag to set or get an ASCII-encoded string
that represents the issuer’s email address.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPublicKeyHashKCItemAttr
Identifies the public key hash attribute for a certificate. You use this tag to set or get a value of type
KCPublicKeyHash (page 1175) that represents the hash of the public key.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kIssuerURLKCItemAttr
Identifies the issuer URL attribute for a certificate. You use this tag to set or get an ASCII-encoded
string that represents the URL of the certificate issuer.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kEncryptKCItemAttr
Identifies the encrypt attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can encrypt.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDecryptKCItemAttr
Identifies the decrypt attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can decrypt.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kSignKCItemAttr
Identifies the sign attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can sign.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kVerifyKCItemAttr
Identifies the verify attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can verify.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kWrapKCItemAttr
Identifies the wrap attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can wrap.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUnwrapKCItemAttr
Identifies the unwrap attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can unwrap.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kStartDateKCItemAttr
Identifies the start date attribute for a certificate or key. You use this tag to set or get a value of type
UInt32 that indicates the start date.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kEndDateKCItemAttr
Identifies the end date attribute for a certificate or key. You use this tag to set or get a value of type
UInt32 that indicates the end date.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCItemAttr enumeration defines the Apple-defined tag constants that identify keychain item attribute
values. Your application can use one of these tags in the tag field of the structure KCAttribute (page 1172)
to identify the keychain item attribute value you wish to set or retrieve. Your application can create
application-defined tags of type KCAttrType (page 1173).

Keychain Item Type Constants
Identify the type of keychain item.

1190 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

enum {
 kCertificateKCItemClass = 'cert',
 kAppleSharePasswordKCItemClass = 'ashp',
 kInternetPasswordKCItemClass = 'inet',
 kGenericPasswordKCItemClass = 'genp'
};
typedef FourCharCode KCItemClass;

Constants
kCertificateKCItemClass

Specifies that the item is a digital certificate.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAppleSharePasswordKCItemClass
Specifies that the item is an AppleShare password.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kInternetPasswordKCItemClass
Specifies that the item is an Internet password.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kGenericPasswordKCItemClass
Specifies that the item is a generic password.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCItemClass enumeration defines constants your application can use to specify the type of the keychain
item you wish to create, dispose, add, delete, update, copy, or locate. You pass a constant of this type to the
functionsKCNewItem (page 1160),KCReleaseItem (page 1161),KCAddItem (page 1130),KCDeleteItem (page
1136),KCUpdateItem (page 1169),KCCopyItem (page 1132), andKCGetKeychain (page 1153). You can also use
these constants with the tag constant kClassKCItemAttr, described in Keychain Item Attribute Tag
Constants (page 1184).

Keychain Protocol Type Constants
Identify the protocol to use in storing and retrieving Internet passwords.

Constants 1191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

enum {
 kKCProtocolTypeFTP = 'ftp ',
 kKCProtocolTypeFTPAccount = 'ftpa',
 kKCProtocolTypeHTTP = 'http',
 kKCProtocolTypeIRC = 'irc ',
 kKCProtocolTypeNNTP = 'nntp',
 kKCProtocolTypePOP3 = 'pop3',
 kKCProtocolTypeSMTP = 'smtp',
 kKCProtocolTypeSOCKS = 'sox ',
 kKCProtocolTypeIMAP = 'imap',
 kKCProtocolTypeLDAP = 'ldap',
 kKCProtocolTypeAppleTalk = 'atlk',
 kKCProtocolTypeAFP = 'afp ',
 kKCProtocolTypeTelnet = 'teln'
};
typedef FourCharCode KCProtocolType;

Constants
kKCProtocolTypeFTP

Specifies the File Transfer Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeFTPAccount
Specifies the File Transfer Protocol Account.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeHTTP
Specifies the HyperText Transfer Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeIRC
Specifies the Internet Relay Channel Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeNNTP
Specifies the Network News Transfer Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypePOP3
Specifies the Post Office 3 Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeSMTP
Specifies the Simple Mail Transfer Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1192 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kKCProtocolTypeSOCKS
Specifies the Secure Proxy Server Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeIMAP
Specifies the Internet Message Access Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeLDAP
Specifies the Lightweight Directory Access Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeAppleTalk
Specifies the AppleTalk Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeAFP
Specifies the AppleTalk File Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeTelnet
Specifies the Telnet Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCProtocolType enumeration defines constants you can use to identify the type of authentication to
use in storing and retrieving Internet passwords. You can pass a constant of this type in the protocol
parameter of the functionsKCAddInternetPassword (page 1126),KCAddInternetPasswordWithPath (page
1128), KCFindInternetPassword (page 1142), and KCFindInternetPasswordWithPath (page 1145).

Keychain Status Constants
Identify the keychain status.

enum {
 kUnlockStateKCStatus = 1,
 kRdPermKCStatus = 2,
 kWrPermKCStatus = 4
};

Constants
kUnlockStateKCStatus

If the bit specified by this mask is set (bit 0), the keychain is unlocked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

kRdPermKCStatus
If the bit specified by this mask is set (bit 1), the keychain is unlocked with read permission.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kWrPermKCStatus
If the bit specified by this mask is set (bit 2), the keychain is unlocked with write permission.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Result Codes

The most common result codes returned by Keychain Manager are listed below.

DescriptionValueResult Code

Indicates that the Keychain Manager was not loaded.-25291errKCNotAvailable

Available in Mac OS X v10.0 and later.

Returned by the function KCCopyItem to indicate that the
keychain file is read-only and cannot be edited.

-25292errKCReadOnly

Available in Mac OS X v10.0 and later.

Returned by the function KCUnlock to indicate that the
authentication failed (too many unsuccessful retries).

-25293errKCAuthFailed

Available in Mac OS X v10.0 and later.

Returned by the functions KCUnlock,
KCSetDefaultKeychain, KCGetStatus, and
KCGetIndKeychain to indicate that the specified keychain
was not found.

-25294errKCNoSuchKeychain

Available in Mac OS X v10.0 and later.

Returned by the functions KCUnlock,
KCSetDefaultKeychain, KCGetStatus,
KCGetKeychainName, KCChangeSettings, and
KCCreateKeychain to indicate that the keychain is not valid.

-25295errKCInvalidKeychain

Available in Mac OS X v10.0 and later.

Returned by the function KCCreateKeychain to indicate
that your application tried to create a keychain that already
exists.

-25296errKCDuplicateKeychain

Available in Mac OS X v10.0 and later.

Returned by the function KCAddCallback to indicate that
your callback function was already registered.

-25297errKCDuplicateCallback

Available in Mac OS X v10.0 and later.

1194 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

DescriptionValueResult Code

Returned by the function KCRemoveCallback to indicate
that the callback function was not previously registered.

-25298errKCInvalidCallback

Available in Mac OS X v10.0 and later.

Returned by the functions KCAddAppleSharePassword,
KCAddInternetPassword,
KCAddInternetPasswordWithPath,
KCAddGenericPassword, and KCAddItem to indicate that
you tried to add an existing keychain item to the keychain.

-25299errKCDuplicateItem

Available in Mac OS X v10.0 and later.

Returned by the functions KCFindAppleSharePassword,
KCFindInternetPassword,
KCFindInternetPasswordWithPath,
KCFindGenericPassword, KCFindNextItem, and
KCFindFirstItem to indicate that no matching item was
found.

-25300errKCItemNotFound

Available in Mac OS X v10.0 and later.

Returned by the functions KCFindAppleSharePassword,
KCFindInternetPassword,
KCFindInternetPasswordWithPath,
KCFindGenericPassword, KCGetAttribute, KCGetData,
and KCFindX509Certificates to indicate that the buffer
was not large enough to contain the password data.

-25301errKCBufferTooSmall

Available in Mac OS X v10.0 and later.

Returned by the functions KCAddAppleSharePassword,
KCAddInternetPassword,
KCAddInternetPasswordWithPath,
KCAddGenericPassword, KCSetAttribute, and
KCSetData to indicate that the data is too large.

-25302errKCDataTooLarge

Available in Mac OS X v10.0 and later.

Returned by the functions KCSetAttribute,
KCGetAttribute, and KCFindFirstItem to indicate that
no such attribute exists.

-25303errKCNoSuchAttr

Available in Mac OS X v10.0 and later.

Returned by the functions KCSetAttribute,
KCGetAttribute, KCSetData, KCGetData, KCAddItem,
KCDeleteItem, KCUpdateItem, KCCopyItem, and
KCGetKeychain to indicate that the keychain item reference
is invalid.

-25304errKCInvalidItemRef

Available in Mac OS X v10.0 and later.

Result Codes 1195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

DescriptionValueResult Code

Returned by the functions KCFindNextItem and
KCReleaseSearch to indicate that the specified search
reference is invalid.

-25305errKCInvalidSearchRef

Available in Mac OS X v10.0 and later.

Returned by the function KCCopyItem to indicate that the
item class does not exist.

-25306errKCNoSuchClass

Available in Mac OS X v10.0 and later.

Returned by the functions KCChangeSettings,
KCSetDefaultKeychain, KCGetDefaultKeychain,
KCAddAppleSharePassword, KCAddInternetPassword,
KCAddInternetPasswordWithPath,
KCAddGenericPassword, KCFindAppleSharePassword,
KCFindInternetPassword,
KCFindInternetPasswordWithPath,
KCFindGenericPassword, KCCopyItem, KCAddItem,
KCDeleteItem, KCUpdateItem, KCFindNextItem,
KCFindFirstItem, and KCFindX509Certificates to
indicate that there is no default keychain.

-25307errKCNoDefaultKeychain

Available in Mac OS X v10.0 and later.

Returned by the functions KCCreateKeychain,
KCChangeSettings, KCUnlock, and KCGetData (the latter
two only when the Unlock Dialog and Allow Access dialog
boxes are needed) to indicate that there is no start-up
keychain.

-25308errKCInteractionNotAllowed

Available in Mac OS X v10.0 and later.

Returned by the function KCSetAttribute to indicate that
the keychain item attribute is read-only.

-25309errKCReadOnlyAttr

Available in Mac OS X v10.0 and later.

Indicates that the wrong version of Keychain Manager is
installed to perform this operation.

-25310errKCWrongKCVersion

Available in Mac OS X v10.0 and later.

Indicates that the key size is illegal.-25311errKCKeySizeNotAllowed

Available in Mac OS X v10.0 and later.

Returned by functions that prompts the loading of the
Keychain Manager to indicate that the storage module is not
found.

-25312errKCNoStorageModule

Available in Mac OS X v10.0 and later.

Returned when a function is required for a certificate and the
certificate module is not found.

-25313errKCNoCertificateModule

Available in Mac OS X v10.0 and later.

1196 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

DescriptionValueResult Code

Returned when a function is required for a trust policy and
the policy module is not found.

-25314errKCNoPolicyModule

Available in Mac OS X v10.0 and later.

Returned by the function KCUnlock to indicate that user
interaction is required for this operation.

-25315errKCInteractionRequired

Available in Mac OS X v10.0 and later.

Indicates that the requested data is not available.-25316errKCDataNotAvailable

Available in Mac OS X v10.0 and later.

Returned by the functions KCSetData and KCGetData to
indicate that the data cannot be modified.

-25317errKCDataNotModifiable

Available in Mac OS X v10.0 and later.

Returned by the functions KCChooseCertificate and
KCFindX509Certificates to indicate that the attempt to
create a new keychain failed.

-25318errKCCreateChainFailed

Available in Mac OS X v10.0 and later.

Result Codes 1197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

1198 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Keychain Manager Reference

Framework: ApplicationServices/ApplicationServices.h

Declared in LSInfo.h
LSOpen.h

Companion guide Launch Services Programming Guide

Overview

Mac OS X Launch Services is an API that enables a running application to open other applications or their
document files in a way similar to the Finder or the Dock. Using Launch Services, an application can perform
such tasks as:

 ■ Open (launch or activate) another application

 ■ Open a document or a URL (uniform resource locator) in another application

 ■ Identify the preferred application for opening a given document or URL

 ■ Register information about the kinds of document files and URLs an application is capable of opening

 ■ Obtain appropriate information for displaying a file or URL on the screen, such as its icon, display name,
and kind string

 ■ Maintain and update the contents of the Recent Items menu

Although most of these services are normally performed by the Finder, other applications may also find them
useful for purposes such as opening email attachments, following URLs embedded in a document, running
helper applications, or opening embedded document components that were created by another application
or require it for viewing or editing.

Many of Launch Services’ capabilities were formerly provided by the Desktop Manager. With the advent of
Mac OS X application bundles, however, the Desktop Manager has lost its usefulness, since it is not
knowledgeable about bundled applications and simply ignores them. Similarly, Launch Services’ facilities for
dealing with URLs were formerly implemented through the Internet Config API. Launch Services replaces
and supersedes the Desktop Manager and Internet Config with a new API providing similar functionality, but
designed to operate properly in the Mac OS X environment.

Launch Services was created specifically to avoid the common need for applications to ask the Finder to
open an application, document, or URL for them. In the past, opening such items in a way similar to the
Finder required knowledge of several APIs, including the Desktop Manager, File Manager, Translation Manager,
Internet Config, Process Manager, and Apple Event Manager. The Finder also had implicit knowledge of the
desktop database and other information not available elsewhere for determining the correct application
with which to open a given document.

Overview 1199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Launch Services removes this specialized knowledge from the Finder and isolates it in a single, straightforward
API available to any application. The Mac OS X Finder itself uses Launch Services to open applications,
documents, and URLs at the user’s request. Since the Finder does no additional processing beyond calling
Launch Services, any client using Launch Services for these purposes is guaranteed to behave identically to
the Finder itself.

Before reading this document, you should be familiar with the related document, LaunchServices Programming
Guide, which presents a conceptual overview of Launch Services and its operations.

Functions by Task

This section describes the functions defined in the Launch Services API.

Locating an Application
The functions described in this section locate the preferred application for opening a given item or family
of items or the application matching a given set of defining characteristics, or test whether an application
can open a designated item.

LSGetApplicationForItem (page 1219)
Locates the preferred application for opening an item designated by file-system reference.

LSGetApplicationForURL (page 1220)
Locates the preferred application for opening an item designated by URL.

LSGetApplicationForInfo (page 1218)
Locates the preferred application for opening items with a specified file type, creator signature,
filename extension, or any combination of these characteristics.

LSCopyApplicationForMIMEType (page 1206)
Locates the preferred application for opening items with a specified MIME type.

LSCopyApplicationURLsForURL (page 1207)
Locates all known applications suitable for opening an item designated by URL.

LSCanRefAcceptItem (page 1203)
Tests whether an application can accept (open) an item designated by file-system reference.

LSCanURLAcceptURL (page 1204)
Tests whether an application can accept (open) an item designated by URL.

LSFindApplicationForInfo (page 1217)
Locates an application with a specified creator signature, bundle ID, filename, or any combination of
these characteristics.

Opening Items
The functions described in this section open a designated item or collection of items, or launch or activate
a designated application.

LSOpenApplication (page 1223)
Launches the specified application.

1200 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

LSOpenItemsWithRole (page 1229)
Opens items specified as an array of values of type FSRef with a specified role.

LSOpenURLsWithRole (page 1230)
Opens one or more URLs with the specified roles.

LSOpenFSRef (page 1228)
Opens an item designated by file-system reference, in the default manner in its preferred application.

LSOpenFromRefSpec (page 1225)
Opens one or more items designated by file-system reference, in either their preferred applications
or a designated application.

LSOpenCFURLRef (page 1224)
Opens an item designated by URL, in the default manner in its preferred application.

LSOpenFromURLSpec (page 1226)
Opens one or more items designated by URL, in either their preferred applications or a designated
application.

Obtaining Information About an Item
The functions described in this section obtain requested information about an item.

LSCopyItemInfoForRef (page 1212)
Obtains requested information about an item designated by file-system reference.

LSCopyItemInfoForURL (page 1213)
Obtains requested information about an item designated by URL.

LSCopyDisplayNameForRef (page 1209)
Obtains the display name for an item designated by file-system reference.

LSCopyDisplayNameForURL (page 1210)
Obtains the display name for an item designated by URL.

LSCopyKindStringForRef (page 1214)
Obtains the kind string for an item designated by file-system reference.

LSCopyKindStringForURL (page 1216)
Obtains the kind string for an item designated by URL.

LSCopyKindStringForTypeInfo (page 1215)
Obtains a kind string for items with a specified file type, creator signature, filename extension, or any
combination of these characteristics.

LSCopyKindStringForMIMEType (page 1213)
Obtains the kind string for a specified MIME type.

LSCopyItemAttribute (page 1210)
Obtains the value of an item’s attribute.

LSCopyItemAttributes (page 1211)
Obtains multiple item attribute values as a dictionary.

Getting and Setting Filename Extension Information
The functions described in this section obtain information about an item’s filename extension, or control
whether the extension should be hidden or shown on the screen.

Functions by Task 1201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

LSGetExtensionInfo (page 1221)
Obtains the starting index of the extension within a filename.

LSSetExtensionHiddenForRef (page 1234)
Specifies whether the filename extension for an item designated by file-system reference should be
hidden or shown.

LSSetExtensionHiddenForURL (page 1235)
Specifies whether the filename extension for an item designated by URL should be hidden or shown.

Registering an Application
The functions described in this section register an application in the Launch Services database.

LSRegisterFSRef (page 1231)
Registers an application, designated by file-system reference, in the Launch Services database.

LSRegisterURL (page 1232)
Registers an application, designated by URL, in the Launch Services database.

Working With Role Handlers
The functions described in this section get and set application bundle identifiers for handlers of specified
content types and URL schemes.

LSCopyAllRoleHandlersForContentType (page 1205)
Returns an array of application bundle identifiers for applications capable of handling a specified
content type with the specified roles.

LSCopyDefaultRoleHandlerForContentType (page 1208)
Returns the application bundle identifier of the user’s preferred default handler for the specified
content type with the specified role.

LSSetDefaultRoleHandlerForContentType (page 1233)
Sets the user’s preferred default handler for the specified content type in the specified roles.

LSGetHandlerOptionsForContentType (page 1222)
Gets the handler options for the specified content type.

LSSetHandlerOptionsForContentType (page 1235)
Sets the handler option for the specified content type.

LSCopyAllHandlersForURLScheme (page 1205)
Returns an array of application bundle identifiers for applications capable of handling the specified
URL scheme.

LSCopyDefaultHandlerForURLScheme (page 1207)
Returns the application bundle identifier of the user’s preferred default handler for the specified URL
scheme.

LSSetDefaultHandlerForURLScheme (page 1232)
Sets the user’s preferred default handler for the specified URL scheme.

Functions No Longer Used
The functions described in this section are no longer used.

1202 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

LSInit (page 1222) Deprecated in Mac OS X v10.3
(Deprecated. Formerly used to initialize Launch Services; now does nothing.)

LSTerm (page 1236) Deprecated in Mac OS X v10.3
(Deprecated. Formerly used to terminate Launch Services; now does nothing.)

Functions

LSCanRefAcceptItem
Tests whether an application can accept (open) an item designated by file-system reference.

OSStatus LSCanRefAcceptItem (
 const FSRef *inItemFSRef,
 const FSRef *inTargetRef,
 LSRolesMask inRoleMask,
 LSAcceptanceFlags inFlags,
 Boolean *outAcceptsItem
);

Parameters
inItemFSRef

A pointer to a file-system reference designating the source item (the item to test for acceptance by
the target application); see the FileManager Reference in the Carbon File Management Documentation
for a description of the FSRef data type.

inTargetFSRef
A pointer to a file-system reference designating the target application; see the File Manager Reference
in the Carbon File Management Documentation for a description of the FSRef data type.

inRolesMask
A bit mask specifying the target application’s desired role or roles with respect to the source item;
see “Roles Mask” (page 1241) for a description of this mask. If the role is unimportant, passkLSRolesAll.

inFlags
Flags specifying behavior to observe during the acceptance test; see “Acceptance Flags” (page 1248)
for a description of these flags.

outAcceptsItem
A pointer to a Boolean value that, on return, will indicate whether the target application can accept
the source item with at least one of the specified roles.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Functions 1203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Declared In
LSInfo.h

LSCanURLAcceptURL
Tests whether an application can accept (open) an item designated by URL.

OSStatus LSCanURLAcceptURL (
 CFURLRef inItemURL,
 CFURLRef inTargetURL,
 LSRolesMask inRoleMask,
 LSAcceptanceFlags inFlags,
 Boolean *outAcceptsItem
);

Parameters
inItemURL

A Core Foundation URL reference designating the source item (the item to test for acceptance by the
target application); see the CFURL Reference in the Core Foundation Reference Documentation for a
description of the CFURLRef data type.

inTargetURL
A Core Foundation URL reference designating the target application; see the CFURL Reference in the
Core Foundation Reference Documentation for a description of the CFURLRef data type. The URL
must have scheme file and contain a valid path to an application file or application bundle.

inRolesMask
A bit mask specifying the target application’s desired role or roles with respect to the source item;
see “Roles Mask” (page 1241) for a description of this mask. This parameter applies only to URLs with
a scheme component of file, and is ignored for all other schemes. If the role is unimportant, pass
kLSRolesAll.

inFlags
Flags specifying behavior to observe during the acceptance test; see “Acceptance Flags” (page 1248)
for a description of these flags.

outAcceptsItem
A pointer to a Boolean value that, on return, will indicate whether the target application can accept
the source item with at least one of the specified roles.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
If the item URL’s scheme is file (designating either a file or a directory), the acceptance test is based on the
designated item’s filename extension, file type, and creator signature, along with the role specified by the
inRolesMask parameter; otherwise, it is based on the URL scheme (such as http, ftp, or mailto).

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSInfo.h

1204 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

LSCopyAllHandlersForURLScheme
Returns an array of application bundle identifiers for applications capable of handling the specified URL
scheme.

CFArrayRef LSCopyAllHandlersForURLScheme (
 CFStringRef inURLScheme
);

Parameters
inURLScheme

The URL scheme for which the application bundle identifiers are to be returned.

Return Value
An array containing the application bundle identifiers for applications capable of handling the URL scheme
specified by inURLScheme, or NULL if no handlers are available.

Discussion
This function returns all of the application bundle identifiers that are capable of handling the specified URL
scheme.

URL handling capability is determined according to the value of the CFBundleURLTypes key in an application’s
Info.plist. For information on the CFBundleURLTypes key, see the section “CFBundleURLTypes” in Mac
OS X Runtime Configuration Guidelines.

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSCopyAllRoleHandlersForContentType
Returns an array of application bundle identifiers for applications capable of handling a specified content
type with the specified roles.

CFArrayRef LSCopyAllRoleHandlersForContentType (
 CFStringRef inContentType,
 LSRolesMask inRole
);

Parameters
inContentType

The content type. The content type is a uniform type identifier (UTI).

inRole
The role. Pass kLSRolesAll if any role is acceptable. For additional possible values, see “Roles
Mask” (page 1241).

Return Value
The application bundle identifiers for applications capable of handling the specified content type in the
specified roles, or NULL if no handlers are available.

Functions 1205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Discussion
This function returns all of the application bundle identifiers that are capable of handling the specified content
type in the specified roles.

The CFBundleDocumentTypes key in an application’s Info.plist can be used to set an application’s
content handling capabilities. The LSItemContentTypes key is particularly useful because it supports the
use of UTIs in document claims. For information on the CFBundleDocumentTypes key, see the section
“CFBundleDocumentTypes” in Mac OS X Runtime Configuration Guidelines.

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSCopyApplicationForMIMEType
Locates the preferred application for opening items with a specified MIME type.

OSStatus LSCopyApplicationForMIMEType (
 CFStringRef inMIMEType,
 LSRolesMask inRoleMask,
 CFURLRef *outAppURL
);

Parameters
inMIMEType

A Core Foundation string object specifying the MIME type to consider; see the CFString Reference in
the Core Foundation Reference Documentation for a description of the CFStringRef data type.
Comparison of MIME types is case-insensitive.

inRolesMask
A bit mask specifying the application’s desired role or roles with respect to items with the specified
MIME type; see “Roles Mask” (page 1241) for a description of this mask. If the role is unimportant, pass
kLSRolesAll.

outAppURL
A pointer to a Core Foundation URL reference that, on return, will identify the preferred application
for items with the specified MIME type; see the CFURL Reference in the Core Foundation Reference
Documentation for a description of the CFURLRef data type. You are responsible for releasing the
URL reference object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251). If no application suitable for opening items with
the specified MIME type is found in the Launch Services database, the function will return the result code
kLSApplicationNotFoundErr.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.2 and later.

1206 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Declared In
LSInfo.h

LSCopyApplicationURLsForURL
Locates all known applications suitable for opening an item designated by URL.

CFArrayRef LSCopyApplicationURLsForURL (
 CFURLRef inURL,
 LSRolesMask inRoleMask
);

Parameters
inURL

A Core Foundation URL reference designating the item for which all suitable applications are requested;
see the CFURL Reference in the Core Foundation Reference Documentation for a description of the
CFURLRef data type.

inRolesMask
A bit mask specifying the applications’ desired role or roles with respect to the designated item; see
“Roles Mask” (page 1241) for a description of this mask. This parameter applies only to URLs with a
scheme component of file, and is ignored for all other schemes. If the role is unimportant, pass
kLSRolesAll.

Return Value
An array of Core Foundation URL references, one for each application that can open the designated item
with at least one of the specified roles. You are responsible for releasing the array object. If no suitable
applications are found in the Launch Services database, the function will return NULL

Discussion
If the item URL’s scheme is file (designating either a file or a directory), the selection of suitable applications
is based on the designated item’s filename extension, file type, and creator signature, along with the role
specified by the inRolesMask parameter; otherwise, it is based on the URL scheme (such as http, ftp, or
mailto).

Version Notes
Thread-safe since Mac OS version 10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
LSInfo.h

LSCopyDefaultHandlerForURLScheme
Returns the application bundle identifier of the user’s preferred default handler for the specified URL scheme.

Functions 1207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

CFStringRef LSCopyDefaultHandlerForURLScheme (
 CFStringRef inURLScheme
);

Parameters
inURLScheme

The URL scheme for which the application bundle identifier is to be returned.

Return Value
The application bundle identifier of the specified URL scheme.

Discussion
This function returns the user’s currently preferred default handler for the specified URL scheme.

URL handling capability is determined according to the value of the CFBundleURLTypes key in an application’s
Info.plist. For information on the CFBundleURLTypes key, see the section “CFBundleURLTypes” in Mac
OS X Runtime Configuration Guidelines.

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSCopyDefaultRoleHandlerForContentType
Returns the application bundle identifier of the user’s preferred default handler for the specified content
type with the specified role.

CFStringRef LSCopyDefaultRoleHandlerForContentType (
 CFStringRef inContentType,
 LSRolesMask inRole
);

Parameters
inContentType

The content type. The content type is a uniform type identifier (UTI).

inRole
The role. Pass kLSRolesAll if any role is acceptable. For additional possible values, see “Roles
Mask” (page 1241).

Return Value
The application bundle identifier of the default handler for the specified content type in the specified roles,
or NULL if no handler is available.

Discussion
This function returns the user’s currently preferred default handler for the specified content type. Say, for
example, that LSSetDefaultRoleHandlerForContentType (page 1233) has been used to set
“com.Apple.TextEdit” for the “public.xml” content type. When a file whose content type is “public.xml” is
double-clicked, TextEdit will be launched to open the file. If you call
LSCopyDefaultRoleHandlerForContentType (CFSTR("public.xml"), kLSRolesAll), the string
com.apple.TextEdit is returned.

1208 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

The CFBundleDocumentTypes key in an application’s Info.plist can be used to set an application’s
content handling capabilities. The LSItemContentTypes key is particularly useful because it supports the
use of UTIs in document claims. For information on the CFBundleDocumentTypes key, see the section
“CFBundleDocumentTypes” in Mac OS X Runtime Configuration Guidelines.

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSCopyDisplayNameForRef
Obtains the display name for an item designated by file-system reference.

OSStatus LSCopyDisplayNameForRef (
 const FSRef *inRef,
 CFStringRef *outDisplayName
);

Parameters
inRef

A pointer to a file-system reference designating the item whose display name is requested; see the
FileManager Reference in the Carbon File Management Documentation for a description of the FSRef
data type.

outDisplayName
A pointer to a Core Foundation string object that, on return, will contain the item’s display name; see
the CFString Reference in the Core Foundation Reference Documentation for a description of the
CFStringRef data type. You are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The item’s display name is returned in the form in which it will appear on the user’s screen; it may be localized
(for applications and folders), and it excludes the filename extension if the extension is set to be hidden and
the Finder preference to always show extensions is not enabled.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
QTMetaData

Declared In
LSInfo.h

Functions 1209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

LSCopyDisplayNameForURL
Obtains the display name for an item designated by URL.

OSStatus LSCopyDisplayNameForURL (
 CFURLRef inURL,
 CFStringRef *outDisplayName
);

Parameters
inFileURL

A Core Foundation URL reference designating the item whose display name is requested; see the
CFURL Reference in the Core Foundation Reference Documentation for a description of the CFURLRef
data type. The URL must have scheme file and contain a valid path to either a file or a directory.

outDisplayName
A pointer to a Core Foundation string object that, on return, will contain the item’s display name; see
the CFString Reference in the Core Foundation Reference Documentation for a description of the
CFStringRef data type. You are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The item’s display name is returned in the form in which it will appear on the user’s screen; it may be localized
(for applications and folders), and it excludes the filename extension if the extension is set to be hidden and
the Finder preference to always show extensions is not enabled.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.1 and later.

Declared In
LSInfo.h

LSCopyItemAttribute
Obtains the value of an item’s attribute.

OSStatus LSCopyItemAttribute (
 const FSRef *inItem,
 LSRolesMask inRoles,
 CFStringRef inAttributeName,
 CFTypeRef *outValue
);

Parameters
inItem

The FSRef of the item to query.

inRoles
The roles. When obtaining attributes related to document binding (such as
kLSItemRoleHandlerDisplayName), at least one of the roles must be provided by the application
selected. Pass kLSRolesAll if any role is acceptable.

1210 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

inAttributeName
The name of the attribute to copy. For possible values, see “Item Attribute Constants” (page 1245).

outValue
A pointer to a CFTypeRef. On return, the CFTypeRef is set to the copied attribute value (a CF object),
or is NULL if an error occurs. The type of the returned object varies depending on the attribute that
is requested.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSCopyItemAttributes
Obtains multiple item attribute values as a dictionary.

OSStatus LSCopyItemAttributes (
 const FSRef *inItem,
 LSRolesMask inRoles,
 CFArrayRef inAttributeNames,
 CFDictionaryRef *outValues
);

Parameters
inItem

The FSRef of the item to query.

inRoles
The roles. When obtaining attributes related to document binding (such as
kLSItemRoleHandlerDisplayName), at least one of the roles must be provided by the application
selected. Pass kLSRolesAll if any role is acceptable.

inAttributeNames
A CFArrayRef for an array containing the attribute names to copy. For possible values, see “Item
Attribute Constants” (page 1245).

outValues
On return, a pointer a CFDictionaryRef for a dictionary whose keys are the attribute names specified
by the inAttributeNames parameter and whose values are the attribute’s values. The CFTypeID
of each value in the dictionary varies by attribute. See “Item Attribute Constants” (page 1245) for the
data type of each value. If the item does not have a specified attribute, the key for the attribute is not
in the dictionary.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Version Notes
Thread-safe since Mac OS X v10.4.

Functions 1211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSCopyItemInfoForRef
Obtains requested information about an item designated by file-system reference.

OSStatus LSCopyItemInfoForRef (
 const FSRef *inItemRef,
 LSRequestedInfo inWhichInfo,
 LSItemInfoRecord *outItemInfo
);

Parameters
inItemRef

A pointer to a file-system reference designating the item about which information is requested; see
the File Manager Reference in the Carbon File Management Documentation for a description of the
FSRef data type.

inWhichInfo
Flags specifying what information to obtain; see “Requested-Information Flags” (page 1244) for a
description of these flags.

outItemInfo
A pointer to an item-information record that, on return, will contain the requested information; see
LSItemInfoRecord (page 1240) for a description of this structure.

If you request the item’s filename extension (field extension of the item-information record, requested
by flag kLSRequestExtension), you are responsible for releasing the Core Foundation string object
in which the extension is returned.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The information obtained about an item can include its filename extension, file type, creator signature, and
various item-information flags (indicating, for example, whether the item is an application, or whether it has
a hidden extension); see “Item-Information Flags” (page 1246) for a description of these flags.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
LSInfo.h

1212 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

LSCopyItemInfoForURL
Obtains requested information about an item designated by URL.

OSStatus LSCopyItemInfoForURL (
 CFURLRef inURL,
 LSRequestedInfo inWhichInfo,
 LSItemInfoRecord *outItemInfo
);

Parameters
inFileURL

A Core Foundation URL reference designating the item about which information is requested; see
the CFURL Reference in the Core Foundation Reference Documentation for a description of the
CFURLRef data type. The URL must have scheme file and contain a valid path to either a file or a
directory.

inWhichInfo
Flags specifying what information to obtain; see “Requested-Information Flags” (page 1244) for a
description of these flags.

outItemInfo
A pointer to an item-information record that, on return, will contain the requested information; see
LSItemInfoRecord (page 1240) for a description of this structure.

If you request the item’s filename extension (field extension of the item-information record, requested
by flag kLSRequestExtension), you are responsible for releasing the Core Foundation string object
in which the extension is returned.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The information obtained about an item can include its filename extension, file type, creator signature, and
various item-information flags (indicating, for example, whether the item is an application, or whether it has
a hidden extension); see “Item-Information Flags” (page 1246) for a description of these flags.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
LSInfo.h

LSCopyKindStringForMIMEType
Obtains the kind string for a specified MIME type.

Functions 1213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

OSStatus LSCopyKindStringForMIMEType (
 CFStringRef inMIMEType,
 CFStringRef *outKindString
);

Parameters
inMIMEType

A Core Foundation string object specifying the MIME type whose kind string is requested; see the
CFString Reference in the Core Foundation Reference Documentation for a description of the
CFStringRef data type. Comparison of MIME types is case-insensitive.

outKindString
A pointer to a Core Foundation string object that, on return, will contain the kind string for the specified
MIME type; see the CFString Reference in the Core Foundation Reference Documentation for a
description of the CFStringRef data type. You are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The kind string (which may be localized) is obtained from the preferred application for opening items of the
specified the MIME type, if one is found in the Launch Services database; otherwise, a more generic kind
string is chosen.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.2 and later.

Declared In
LSInfo.h

LSCopyKindStringForRef
Obtains the kind string for an item designated by file-system reference.

OSStatus LSCopyKindStringForRef (
 const FSRef *inFSRef,
 CFStringRef *outKindString
);

Parameters
inFSRef

A pointer to a file-system reference designating the item whose kind string is requested; see the File
Manager Reference in the Carbon File Management Documentation for a description of the FSRef
data type.

outKindString
A pointer to a Core Foundation string object that, on return, will contain the item’s kind string; see
the CFString Reference in the Core Foundation Reference Documentation for a description of the
CFStringRef data type. You are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

1214 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Discussion
The kind string (which may be localized) is obtained from the item’s preferred application, if one is found in
the Launch Services database; otherwise, a more generic kind string is chosen. For example, the kind string
might be FrameMaker Document, or just Document if the item is a document for which no application is
found.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSInfo.h

LSCopyKindStringForTypeInfo
Obtains a kind string for items with a specified file type, creator signature, filename extension, or any
combination of these characteristics.

OSStatus LSCopyKindStringForTypeInfo (
 OSType inType,
 OSType inCreator,
 CFStringRef inExtension,
 CFStringRef *outKindString
);

Parameters
inType

The file type to consider. Comparison of file types is case-sensitive. Pass kLSUnknownType if the items’
file type is unimportant.

inCreator
The creator signature to consider. Comparison of creator signatures is case-sensitive. Pass
kLSUnknownCreator if the items’ creator signature is unimportant.

inExtension
A Core Foundation string object specifying the filename extension to consider; see the CFString
Reference in the Core Foundation Reference Documentation for a description of the CFStringRef
data type. Comparison of filename extensions is case-insensitive. Pass NULL if the items’ filename
extension is unimportant.

outKindString
A pointer to a Core Foundation string object that, on return, will contain the requested kind string;
see the CFString Reference in the Core Foundation Reference Documentation for a description of the
CFStringRef data type. You are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
This function obtains the kind string that most closely describes items having the specified characteristics.
It is useful when you want to display the kind string for a document you do not yet have (such as an email
attachment).

Functions 1215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

You can request any combination of one, two, or all three of the characteristics specified by the inType,
inCreator, and inExtension parameters; at least one of these characteristics must be supplied. The kind
string (which may be localized) is obtained from the preferred application for opening such items, if one is
found in the Launch Services database; otherwise, a more generic kind string is chosen. For example, the
kind string might be FrameMaker Document, or just Document if no suitable application is found.

Note that since the choice of a preferred application is subject to any document binding preferences the
user may have set, the kind string will not necessarily be obtained from the default application that matches
the specified creator signature (if any), but may instead be taken from a user-specified application that
overrides the default. For example, if the user has specified that files of type 'PDF ' and creator 'ACRO'
should be opened in the Preview application rather than in Acrobat, the kind string for this combination of
characteristics will be that defined for 'PDF ' files by Preview and not by Acrobat.

Version Notes
Thread-safe since Mac OS version 10.2

Availability
Available in Mac OS X v10.2 and later.

Declared In
LSInfo.h

LSCopyKindStringForURL
Obtains the kind string for an item designated by URL.

OSStatus LSCopyKindStringForURL (
 CFURLRef inURL,
 CFStringRef *outKindString
);

Parameters
inURL

A Core Foundation URL reference designating the item whose kind string is requested; see the CFURL
Reference in the Core Foundation Reference Documentation for a description of the CFURLRef data
type.

outKindString
A pointer to a Core Foundation string object that, on return, will contain the item’s kind string; see
the CFString Reference in the Core Foundation Reference Documentation for a description of the
CFStringRef data type. You are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The kind string (which may be localized) is obtained from the item’s preferred application, if one is found in
the Launch Services database; otherwise, a more generic kind string is chosen. For example, the kind string
might be FrameMaker Document, or just Document if the item is a document for which no application is
found. If the item URL’s scheme is file (designating either a file or a directory), the selection of the preferred
application is based on the designated item’s filename extension, file type, and creator signature; otherwise,
it is based on the URL scheme (such as http, ftp, or mailto).

Version Notes
Thread-safe since Mac OS version 10.2.

1216 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSInfo.h

LSFindApplicationForInfo
Locates an application with a specified creator signature, bundle ID, filename, or any combination of these
characteristics.

OSStatus LSFindApplicationForInfo (
 OSType inCreator,
 CFStringRef inBundleID,
 CFStringRef inName,
 FSRef *outAppRef,
 CFURLRef *outAppURL
);

Parameters
inCreator

The creator signature to consider. Comparison of creator signatures is case-sensitive. Pass
kLSUnknownCreator if the application’s creator signature is unimportant.

inBundleID
A Core Foundation string object specifying the bundle ID to consider; see the CFString Reference in
the Core Foundation Reference Documentation for a description of the CFStringRef data type.
Comparison of bundle IDs is case-insensitive. Pass NULL if the application’s bundle ID is unimportant.

inName
A Core Foundation string object specifying the filename to consider; see the CFString Reference in the
Core Foundation Reference Documentation for a description of the CFStringRef data type. The
string must include any extension (such as '.app') that is part of the filename. Comparison of
filenames is case-insensitive. Pass NULL if the application’s filename is unimportant.

outAppRef
A pointer to a file-system reference that, on return, will identify the requested application; see the
FileManager Reference in the Carbon File Management Documentation for a description of the FSRef
data type. Pass NULL if you are not interested in identifying the application in this form; however, this
parameter and outAppURL cannot both be NULL.

outAppURL
A pointer to a Core Foundation URL reference that, on return, will identify the requested application;
see the CFURL Reference in the Core Foundation Reference Documentation for a description of the
CFURLRef data type. Pass NULL if you are not interested in identifying the application in this form;
however, this parameter and outAppRef cannot both be NULL.

Despite the absence of the word Copy in its name, this function retains the URL reference object on
your behalf; you are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251). If no suitable application is found in the Launch
Services database, the function will return the result code kLSApplicationNotFoundErr.

Functions 1217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Discussion
You can request any combination of one, two, or all three of the characteristics specified by the inCreator,
inBundleID, and inName parameters; at least one of these characteristics must be supplied. If more than
one application is found matching the specified characteristics, Launch Services chooses one in the same
manner as when locating the preferred application for opening an item.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSInfo.h

LSGetApplicationForInfo
Locates the preferred application for opening items with a specified file type, creator signature, filename
extension, or any combination of these characteristics.

OSStatus LSGetApplicationForInfo (
 OSType inType,
 OSType inCreator,
 CFStringRef inExtension,
 LSRolesMask inRoleMask,
 FSRef *outAppRef,
 CFURLRef *outAppURL
);

Parameters
inType

The file type to consider. Comparison of file types is case-sensitive. Pass kLSUnknownType if the items’
file type is unimportant.

inCreator
The creator signature to consider. Comparison of creator signatures is case-sensitive. Pass
kLSUnknownCreator if the items’ creator signature is unimportant.

inExtension
A Core Foundation string object specifying the filename extension to consider; see the CFString
Reference in the Core Foundation Reference Documentation for a description of the CFStringRef
data type. Comparison of filename extensions is case-insensitive. Pass NULL if the items’ filename
extension is unimportant.

inRolesMask
A bit mask specifying the application’s desired role or roles with respect to items with the specified
characteristics; see “Roles Mask” (page 1241) for a description of this mask. If the role is unimportant,
pass kLSRolesAll.

outAppRef
A pointer to a file-system reference that, on return, will identify the preferred application for opening
items with the specified characteristics; see the FileManager Reference in the Carbon File Management
Documentation for a description of the FSRef data type. Pass NULL if you are not interested in
identifying the preferred application in this form; however, this parameter and outAppURL cannot
both be NULL.

1218 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

outAppURL
A pointer to a Core Foundation URL reference that, on return, will identify the preferred application
for items with the specified characteristics; see the CFURL Reference in the Core Foundation Reference
Documentation for a description of the CFURLRef data type. Pass NULL if you are not interested in
identifying the preferred application in this form; however, this parameter and outAppRef cannot
both be NULL.

Despite the absence of the word Copy in its name, this function retains the URL reference object on
your behalf; you are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251). If no application suitable for opening items with
the specified characteristics is found in the Launch Services database, the function will return the result code
kLSApplicationNotFoundErr.

Discussion
You can request any combination of one, two, or all three of the characteristics specified by the inType,
inCreator, and inExtension parameters; at least one of these characteristics must be supplied. Note that
since the choice of a preferred application is subject to any document binding preferences the user may
have set, the application chosen will not necessarily be the default application that matches the input
characteristics, but may instead be a user-specified application that overrides the default.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSInfo.h

LSGetApplicationForItem
Locates the preferred application for opening an item designated by file-system reference.

OSStatus LSGetApplicationForItem (
 const FSRef *inItemRef,
 LSRolesMask inRoleMask,
 FSRef *outAppRef,
 CFURLRef *outAppURL
);

Parameters
inItemRef

A pointer to a file-system reference designating the item whose preferred application is requested;
see the File Manager Reference in the Carbon File Management Documentation for a description of
the FSRef data type.

inRolesMask
A bit mask specifying the application’s desired role or roles with respect to the designated item; see
“Roles Mask” (page 1241) for a description of this mask. If the role is unimportant, pass kLSRolesAll.

Functions 1219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

outAppRef
A pointer to a file-system reference that, on return, will identify the item’s preferred application; see
the File Manager Reference in the Carbon File Management Documentation for a description of the
FSRef data type. Pass NULL if you are not interested in identifying the preferred application in this
form; however, this parameter and outAppURL cannot both be NULL.

outAppURL
A pointer to a Core Foundation URL reference that, on return, will identify the item’s preferred
application; see the CFURLReference in the Core Foundation Reference Documentation for a description
of the CFURLRef data type. Pass NULL if you are not interested in identifying the preferred application
in this form; however, this parameter and outAppRef cannot both be NULL.

Despite the absence of the word Copy in its name, this function retains the URL reference object on
your behalf; you are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251). If no application suitable for opening the item
is found in the Launch Services database, the function will return the result code
kLSApplicationNotFoundErr.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSInfo.h

LSGetApplicationForURL
Locates the preferred application for opening an item designated by URL.

OSStatus LSGetApplicationForURL (
 CFURLRef inURL,
 LSRolesMask inRoleMask,
 FSRef *outAppRef,
 CFURLRef *outAppURL
);

Parameters
inURL

A Core Foundation URL reference designating the item whose preferred application is requested; see
the CFURL Reference in the Core Foundation Reference Documentation for a description of the
CFURLRef data type.

inRolesMask
A bit mask specifying the application’s desired role or roles with respect to the designated item; see
“Roles Mask” (page 1241) for a description of this mask. This parameter applies only to URLs with a
scheme component of file, and is ignored for all other schemes. If the role is unimportant, pass
kLSRolesAll.

1220 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

outAppRef
A pointer to a file-system reference that, on return, will identify the item’s preferred application; see
the File Manager Reference in the Carbon File Management Documentation for a description of the
FSRef data type. Pass NULL if you are not interested in identifying the preferred application in this
form; however, this parameter and outAppURL cannot both be NULL.

outAppURL
A pointer to a Core Foundation URL reference that, on return, will identify the item’s preferred
application; see the CFURLReference in the Core Foundation Reference Documentation for a description
of the CFURLRef data type. Pass NULL if you are not interested in identifying the preferred application
in this form; however, this parameter and outAppRef cannot both be NULL.

Despite the absence of the word Copy in its name, this function retains the URL reference object on
your behalf; you are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251). If no application suitable for opening the item
is found in the Launch Services database, the function will return the result code
kLSApplicationNotFoundErr.

Discussion
If the item URL’s scheme is file (designating either a file or a directory), the selection of the preferred
application is based on the designated item’s filename extension, file type, and creator signature, along with
the role specified by the inRolesMask parameter; otherwise, it is based on the URL scheme (such as http,
ftp, or mailto).

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSInfo.h

LSGetExtensionInfo
Obtains the starting index of the extension within a filename.

OSStatus LSGetExtensionInfo (
 UniCharCount inNameLen,
 const UniChar inNameBuffer[],
 UniCharCount *outExtStartIndex
);

Parameters
inNameLen

The number of characters in the filename specified by the inNameBuffer parameter.

inNameBuffer
The buffer containing the filename’s Unicode characters.

outExtStartIndex
A pointer to a value of type UniCharCount that, on return, will give the starting index of the extension
within the filename. If the name does not contain a valid extension (one with no spaces in it), the
value on return will be kLSInvalidExtensionIndex.

Functions 1221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The starting index is the number of Unicode characters from the start of the filename buffer to the first
character of the extension (not including the period).

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.1 and later.

Related Sample Code
QTCarbonShell

Declared In
LSInfo.h

LSGetHandlerOptionsForContentType
Gets the handler options for the specified content type.

LSHandlerOptions LSGetHandlerOptionsForContentType (
 CFStringRef inContentType
);

Parameters
inContentType

The content type for which the handler options are to be obtained. The content type is a uniform
type identifier (UTI).

Return Value
The handler option that is set for the specified content type. For possible values, see “Handler Option
Constants” (page 1249).

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSInit
(Deprecated in Mac OS X v10.3. Formerly used to initialize Launch Services; now does nothing.)

Not recommended.

1222 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

OSStatus LSInit (
 LSInitializeFlags inFlags
);

Discussion
Calling this function was formerly required in order to initialize Launch Services; it is no longer needed,
however, because Launch Services is now initialized automatically the first time one of its functions is called.
LSInit now does nothing at all.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
LSInfo.h

LSOpenApplication
Launches the specified application.

OSStatus LSOpenApplication (
 const LSApplicationParameters *appParams,
 ProcessSerialNumber *outPSN
);

Parameters
inAppParams

A LSApplicationParameters (page 1237) structure specifying the application to launch and its
launch parameters. This parameter cannot be NULL.

outPSN
On input, a pointer to a value of type ProcessSerialNumber that, on return, contains the process
serial number (PSN) of the application specified by inAppParams, or NULL if you don’t want to receive
the PSN.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The LSOpenApplication launches one application. This function is an updated alternative to the Process
Manager's LaunchApplication function. Launch arguments are specified in the inAppParams argument,
which must be supplied. If the application is already running in the current session, it is made the front
process (unless the kLSLaunchNewInstance flag is used, which always causes a new process to be created).

If outPSN is not NULL, on return, the structure it points to contains the PSN of the launched (or activated)
process. Note that for asynchronous launches, the application may not have finished launching when this
function returns.

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Functions 1223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Declared In
LSOpen.h

LSOpenCFURLRef
Opens an item designated by URL, in the default manner in its preferred application.

OSStatus LSOpenCFURLRef (
 CFURLRef inURL,
 CFURLRef *outLaunchedURL
);

Parameters
inURL

A Core Foundation URL reference designating the item to open; see the CFURL Reference in the Core
Foundation Reference Documentation for a description of the CFURLRef data type.

outLaunchedURL
A pointer to a Core Foundation URL reference that, on return, will identify the application launched.
Pass NULL if this information is unimportant.

Despite the absence of the word Copy in its name, this function retains the URL reference object on
your behalf; you are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The designated item is opened in the default manner, as if it had been opened with the LSOpenFromURLSpec
function with a launch specification specifying the launch flag kLSLaunchDefaults: that is, asynchronously,
starting the Classic emulation environment if necessary, and with the remaining launch parameters taken
from the application’s information property list. For greater control, call LSOpenFromURLSpec directly. See
“Launch Flags” (page 1242) for more information about launch flags.

If the item URL’s scheme is file (designating either a file or a directory), the selection of the preferred
application is based on the designated item’s filename extension, file type, and creator signature; otherwise,
it is based on the URL scheme (such as http, ftp, or mailto). The application is launched or activated, as
required, and sent an appropriate Apple event depending on the circumstances:

 ■ If the URL’s scheme is file and it designates a document, the document’s preferred application is
launched (or activated if it is already running).

 ❏ If the application claims to accept file URLs, it is sent a 'GURL' (“get URL”) Apple event containing
the item’s URL.

 ❏ If the application does not claim to accept fileURLs, it is sent an 'odoc' (“open document”) Apple
event identifying the document to open.

 ■ If the URL’s scheme is file and it designates an application:

 ❏ If the application is not already running, it is launched and sent an 'oapp' (“open application”)
Apple event.

 ❏ If the application is already running, it is activated and sent an 'rapp' (“reopen application”) Apple
event.

1224 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

 ■ If the URL has a scheme other than file, the scheme’s preferred application is launched (or activated
if it is already running) and sent a 'GURL' (“get URL”) Apple event containing the item’s URL.

As of Mac OS X v10.4 and later, LSOpenURLsWithRole (page 1230) is the preferred way of opening a URL.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
QTCarbonShell
SimpleDataQueue
SimpleUserClient

Declared In
LSOpen.h

LSOpenFromRefSpec
Opens one or more items designated by file-system reference, in either their preferred applications or a
designated application.

OSStatus LSOpenFromRefSpec (
 const LSLaunchFSRefSpec *inLaunchSpec,
 FSRef *outLaunchedRef
);

Parameters
inLaunchSpec

A pointer to a file-based launch specification indicating what to open and how to launch the relevant
application or applications; see LSLaunchFSRefSpec (page 1237) for a description of this structure.

outLaunchedRef
A pointer to a file-system reference that, on return, will identify the application launched; see the File
Manager Reference in the Carbon File Management Documentation for a description of the FSRef
data type. Pass NULL if this information is unimportant. If more than one application is launched, the
one identified will be the one corresponding to the first item designated in the launch specification.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
This function affords greater control of how items are opened or applications launched than is possible with
the LSOpenFSRef function. For instance, you can use it to open multiple items in a single call, in either the
same or different applications; open documents for printing rather than for simple viewing or editing; or
force a document to open in an application other than its own preferred application.

The launch specification supplied for the inLaunchSpec parameter may designate an application to launch,
items to open, or both. The relevant application or applications are launched or activated, as required, and
sent an appropriate Apple event depending on the circumstances:

Functions 1225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

 ■ If the launch specification designates both items to open and an application with which to open them,
the designated application is used to open all of the items. The application is launched (or activated if
it is already running) and sent an 'odoc' (“open document”) Apple event containing the list of items
to open; if the items are to be printed, the Apple event is 'pdoc' (“print document”) instead.

Note: When both an application and a list of items are supplied, the designated application is asked to
open all of the items, whether or not it claims the ability to do so. Launch Services does not report an
error if the application is unable to open one or more of the items; any error processing is the application’s
responsibility.

 ■ If the launch specification designates items to open but not an application with which to open them,
each item is opened in its own preferred application. Each application is launched or activated and sent
an 'odoc' or 'pdoc' Apple event, as described for the preceding case. (If two or more of the items
have the same preferred application, the application receives a single 'odoc' or 'pdoc' event listing
all of the relevant items.)

 ■ If the launch specification designates only an application to launch (or if one or more of the items to
open are applications):

 ❏ If the application is not already running, it is launched and sent an 'oapp' (“open application”)
Apple event.

 ❏ If the application is already running, it is activated and sent an 'rapp' (“reopen application”) Apple
event.

As of Mac OS X v10.4 and later, LSOpenItemsWithRole (page 1229) is the preferred way of opening items.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSOpen.h

LSOpenFromURLSpec
Opens one or more items designated by URL, in either their preferred applications or a designated application.

OSStatus LSOpenFromURLSpec (
 const LSLaunchURLSpec *inLaunchSpec,
 CFURLRef *outLaunchedURL
);

Parameters
inLaunchSpec

A pointer to a URL-based launch specification indicating what to open and how to launch the relevant
application or applications; see LSLaunchURLSpec (page 1238) for a description of this structure.

1226 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

outLaunchedURL
A pointer to a Core Foundation URL reference that, on return, will identify the application launched;
see the CFURL Reference in the Core Foundation Reference Documentation for a description of the
CFURLRef data type. Pass NULL if this information is unimportant. If more than one application is
launched, the one identified will be the one corresponding to the first item designated in the launch
specification.

Despite the absence of the word Copy in its name, this function retains the URL reference object on
your behalf; you are responsible for releasing this object.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
This function affords greater control of how items are opened or applications launched than is possible with
the LSOpenCFURLRef function. For instance, you can use it to open multiple items in a single call, in either
the same or different applications; open documents for printing rather than for simple viewing or editing;
or force a document to open in an application other than its own preferred application.

The launch specification supplied for the inLaunchSpec parameter may designate an application to launch,
items to open, or both. The relevant application or applications are launched or activated, as required, and
sent an appropriate Apple event depending on the circumstances:

 ■ If the launch specification designates both items to open and an application with which to open them,
the designated application is used to open all of the items. The application is launched (or activated if
it is already running) and sent one or more Apple events:

 ❏ If one or more of the item URLs have scheme file and designate documents to open, and if the
application claims to accept file URLs, it is sent a 'GURL' (“get URL”) Apple event for each such
URL.

 ❏ If one or more of the item URLs have scheme file and designate documents to open, and if the
application does not claim to accept file URLs, it is sent a single 'odoc' (“open document”) Apple
event containing the list of items to open; if the items are to be printed, the Apple event is 'pdoc'
(“print document”) instead.

 ❏ For each item URL with a scheme other than file, the application is sent a 'GURL' (“get URL”)
Apple event containing the item’s URL.

Note: When both an application and a list of items are supplied, the designated application is asked to
open all of the items, whether or not it claims the ability to do so. Launch Services does not report an
error if the application is unable to open one or more of the items; any error processing is the application’s
responsibility.

 ■ If the launch specification designates items to open but not an application with which to open them,
each item is opened in its own preferred application. Each application is launched or activated and sent
one or more Apple events, as described for the preceding case. (If two or more of the items have the
same preferred application, the application receives a single 'odoc' or 'pdoc' event listing all of the
relevant items.)

 ■ If the launch specification designates only an application to launch (or if one or more of the items to
open are file URLs designating applications):

 ❏ If the application is not already running, it is launched and sent an 'oapp' (“open application”)
Apple event.

Functions 1227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

 ❏ If the application is already running, it is activated and sent an 'rapp' (“reopen application”) Apple
event.

As of Mac OS X v10.4 and later, LSOpenURLsWithRole (page 1230) is the preferred way of opening URLs.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSOpen.h

LSOpenFSRef
Opens an item designated by file-system reference, in the default manner in its preferred application.

OSStatus LSOpenFSRef (
 const FSRef *inRef,
 FSRef *outLaunchedRef
);

Parameters
inRef

A pointer to a file-system reference designating the item to open; see the File Manager Reference in
the Carbon File Management Documentation for a description of the FSRef data type.

outLaunchedRef
A pointer to a file-system reference that, on return, will identify the application launched. Pass NULL
if this information is unimportant.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
The designated item is opened in the default manner, as if it had been opened with the LSOpenFromRefSpec
function with a launch specification specifying the launch flag kLSLaunchDefaults: that is, asynchronously,
starting the Classic emulation environment if necessary, and with the remaining launch parameters taken
from the application’s information property list. For greater control, call LSOpenFromRefSpec directly. See
“Launch Flags” (page 1242) for more information about launch flags.

The application is launched or activated, as required, and sent an appropriate Apple event depending on
the circumstances:

 ■ If the item is a document, its preferred application is launched (or activated if it is already running) and
sent an 'odoc' (“open document”) Apple event.

 ■ If the item is an application that is not already running, it is launched and sent an 'oapp' (“open
application”) Apple event.

 ■ If the item is an application that is already running, it is activated and sent an 'rapp' (“reopen
application”) Apple event.

1228 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

As of Mac OS X v10.4 and later, LSOpenItemsWithRole (page 1229) is the preferred way of opening an item.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSOpen.h

LSOpenItemsWithRole
Opens items specified as an array of values of type FSRef with a specified role.

OSStatus LSOpenItemsWithRole (
 const FSRef *inItems,
 CFIndex inItemCount,
 LSRolesMask inRole,
 const AEKeyDesc *inAEParam,
 const LSApplicationParameters *inAppParams,
 ProcessSerialNumber *outPSNs,
 CFIndex inMaxPSNCount
);

Parameters
inItems

An array of values of type FSRef.

inItemCount
The number of items specified in inItems.

inRole
A value of type LSRolesMask specifying one or more roles. If the role doesn’t matter, use
kLSRolesAll. For possible values, see “Roles Mask” (page 1241). If the inAppParams parameter is not
NULL, this parameter is ignored.

inAEParam
An AEKeyDesc that is to be attached to the Apple Event(s) generated by Launch Services with the
specified AEKeyword. This parameter can be NULL.

inAppParams
An LSApplicationParameters (page 1237) structure specifying the application to launch and its
launch parameters, in which case the inRole parameter is ignored. This parameter can be NULL, in
which case an application is selected that can handle each input item in at least one of the roles
specified by the inRole parameter.

outPSNs
On input, a pointer to a caller-allocated buffer or NULL if you don’t want to receive process serial
number (PSN) information. If not NULL on input, on return, the buffer contains at each index the PSN
that was used to open the item at the same index of the input item array (inItems).

inMaxPSNCount
The maximum number of PSNs that the buffer pointed to by outPSNs can hold.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Functions 1229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Discussion
This function opens the specified items with the specified role. You can optionally specify the application
and launch parameters in the inAppParams parameter. If an application is specified in the inAppParams
parameter, the inRole parameter is ignored and the application is launched (if necessary).

Each application (regardless of whether it is launched or already running) receives an 'odoc' Apple Event
specifying the items that are to be opened.

If the inItems array contains any applications, this function launches them only if the kLSRolesShell bit
is set in the inRoles parameter to indicate that the operating system should use the application itself as
the execution shell of the new process.

If not NULL, the outPSNs buffer is filled with the PSN that was used to open each item at the same index of
the inItems array. The PSN capacity of the output buffer is specified by inMaxPSNCount.

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSOpen.h

LSOpenURLsWithRole
Opens one or more URLs with the specified roles.

OSStatus LSOpenURLsWithRole (
 CFArrayRef inURLs,
 LSRolesMask inRole,
 const AEKeyDesc *inAEParam,
 const LSApplicationParameters *inAppParams,
 ProcessSerialNumber *outPSNs,
 CFIndex inMaxPSNCount
);

Parameters
inURLs

An array of values of type CFURLRef.

inRole
A value of type LSRolesMask specifying one or more roles. If the role doesn’t matter, use
kLSRolesAll. For possible values, see “Roles Mask” (page 1241). This parameter is ignored if the
inAppParams parameter is not NULL.

inAEParam
A value of type AEKeyDesc that is to be attached to the Apple Event(s) generated by Launch Services
with the specified AEKeyword. This parameter can be NULL.

inAppParams
An LSApplicationParameters (page 1237) structure specifying the application to launch and its
launch parameters, in which case the inRole parameter is ignored. This parameter can be NULL, in
which case an application is selected that can handle each input URL in at least one of the roles
specified by the inRole parameter.

1230 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

outPSNs
On input, a pointer to a caller-allocated buffer or NULL if you don’t want to receive process serial
number (PSN) information. If not NULL on input, on return, the buffer contains at each index the PSN
that was used to open the URL at the same index of the input URL array (inURLs).

inMaxPSNCount
The maximum number of PSNs that the buffer pointed to by outPSNs can hold.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
This function opens the URLs specified by inURLs with the roles specified by inRole.

Each launched application receives one or more 'GURL' Apple Events specifying the URLs to be opened.
You can also pass file URLs, which are interpreted as file system items and opened in the manner of
LSOpenItemsWithRole (page 1229) (that is, a handler is selected based on the item’s filesystem metadata).If
inURLs contains any application URLs, this function launches them only if the kLSRolesShell bit is set in
the inRoles parameter, in which case the application is its own shell.If not NULL, the outPSNs buffer is filled
with the process serial numbers that were used to open each URL at the same index of the input URL array
specified by the inURLs parameter. The PSN capacity of the output buffer is specified by inMaxPSNCount.

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSOpen.h

LSRegisterFSRef
Registers an application, designated by file-system reference, in the Launch Services database.

OSStatus LSRegisterFSRef (
 const FSRef *inRef,
 Boolean inUpdate
);

Parameters
inRef

A pointer to a file-system reference designating the application to be registered; see the File Manager
Reference in the Carbon File Management Documentation for a description of the FSRef data type.

inUpdate
A Boolean value specifying whether Launch Services should update existing information registered
for the application, if any. If this parameter is false, the application will not be registered if it has
already been registered previously and its current modification date has not changed from when it
was last registered; if the parameter is true, the application’s registered information will be updated
even if its modification date has not changed.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Functions 1231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Discussion
This function adds the designated application and its document and URL claims (if any) to the Launch Services
database, making the application a candidate for document and URL binding.

Version Notes
Thread-safe since Mac OS version 10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
LSInfo.h

LSRegisterURL
Registers an application, designated by URL, in the Launch Services database.

OSStatus LSRegisterURL (
 CFURLRef inURL,
 Boolean inUpdate
);

Parameters
inFileURL

A Core Foundation URL reference designating the application to be registered; see the CFURLReference
in the Core Foundation Reference Documentation for a description of the CFURLRef data type. The
URL must have scheme file and contain a valid path to an application file or application bundle.

inUpdate
A Boolean value specifying whether Launch Services should update existing information registered
for the application, if any. If this parameter is false, the application will not be registered if it has
already been registered previously and its current modification date has not changed from when it
was last registered; if the parameter is true, the application’s registered information will be updated
even if its modification date has not changed.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
This function adds the designated application and its document and URL claims (if any) to the Launch Services
database, making the application a candidate for document and URL binding.

Version Notes
Thread-safe since Mac OS version 10.3.

Availability
Available in Mac OS X v10.3 and later.

Declared In
LSInfo.h

LSSetDefaultHandlerForURLScheme
Sets the user’s preferred default handler for the specified URL scheme.

1232 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

OSStatus LSSetDefaultHandlerForURLScheme (
 CFStringRef inURLScheme,
 CFStringRef inHandlerBundleID
);

Parameters
inURLScheme

The URL scheme for which the handler is to be set.

inHandlerBundleID
The application bundle identifier that is to be set as the handler for the URL scheme specified by
inURLScheme.

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
Call LSCopyDefaultHandlerForURLScheme (page 1207) to get the current setting of the user’s preferred
default handler for a specified content type.

URL handling capability is determined according to the value of the CFBundleURLTypes key in an application’s
Info.plist. For information on the CFBundleURLTypes key, see the section “CFBundleURLTypes” in Mac
OS X Runtime Configuration Guidelines.

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSSetDefaultRoleHandlerForContentType
Sets the user’s preferred default handler for the specified content type in the specified roles.

OSStatus LSSetDefaultRoleHandlerForContentType (
 CFStringRef inContentType,
 LSRolesMask inRole,
 CFStringRef inHandlerBundleID
);

Parameters
inContentType

The content type for which the default role handler is being set. The content type is a uniform type
identifier (UTI).

inRole
The roles for which the default role handler is being set. Pass kLSRolesAll to specify all roles. For
additional possible values, see “Roles Mask” (page 1241).

inHandlerBundleID
The application bundle identifier that is to be set as the default handler for the specified content type
and roles.

Functions 1233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Discussion
Call LSCopyDefaultRoleHandlerForContentType (page 1208) to get the current setting of the user’s
preferred default handler for a specified content type.

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSSetExtensionHiddenForRef
Specifies whether the filename extension for an item designated by file-system reference should be hidden
or shown.

OSStatus LSSetExtensionHiddenForRef (
 const FSRef *inRef,
 Boolean inHide
);

Parameters
inRef

A pointer to a file-system reference designating the item whose filename extension is to be hidden
or shown; see the File Manager Reference in the Carbon File Management Documentation for a
description of the FSRef data type.

inHide
A Boolean value specifying whether the filename extension should be hidden (true) or shown (false).

Return Value
A result code; see “Launch Services Result Codes” (page 1251). The function will return the result code
kLSCannotSetInfoErr if:

 ■ The extension is not valid (contains spaces)

 ■ The extension is not active (is not claimed by an application registered with Launch Services)

 ■ Hiding the extension would make the filename appear to have an active but incorrect extension (for
example, in the filename Photo.jpeg.scpt, where hiding the extension would make an AppleScript
file appear to be a JPEG file)

Discussion
This function sets the necessary file-system state controlling whether the filename extension should be
hidden in the display name of the item designated by the inRef parameter. To determine whether an item’s
extension is currently hidden, you can use the LSCopyItemInfoForRef function.

Version Notes
Thread-safe since Mac OS version 10.2.

1234 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Availability
Available in Mac OS X v10.1 and later.

Declared In
LSInfo.h

LSSetExtensionHiddenForURL
Specifies whether the filename extension for an item designated by URL should be hidden or shown.

OSStatus LSSetExtensionHiddenForURL (
 CFURLRef inURL,
 Boolean inHide
);

Parameters
inFileURL

A Core Foundation URL reference designating the item whose filename extension is to be hidden or
shown; see the CFURL Reference in the Core Foundation Reference Documentation for a description
of the CFURLRef data type. The URL must have scheme file and contain a valid path to either a file
or a directory.

inHide
A Boolean value specifying whether the extension should be hidden (true) or shown (false).

Return Value
A result code; see “Launch Services Result Codes” (page 1251). The function will return the result code
kLSCannotSetInfoErr if:

 ■ The extension is not valid (contains spaces)

 ■ The extension is not active (is not claimed by an application registered with Launch Services)

 ■ Hiding the extension would make the filename appear to have an active but incorrect extension (for
example, in the filename Photo.jpeg.scpt, where hiding the extension would make an AppleScript
file appear to be a JPEG file)

Discussion
This function sets the necessary file-system state controlling whether the filename extension should be
hidden in the display name of the item designated by the inFileURL parameter. To determine whether an
item’s extension is currently hidden, you can use the LSCopyItemInfoForURL function.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.1 and later.

Declared In
LSInfo.h

LSSetHandlerOptionsForContentType
Sets the handler option for the specified content type.

Functions 1235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

OSStatus LSSetHandlerOptionsForContentType (
 CFStringRef inContentType,
 LSHandlerOptions inOptions
);

Parameters
inContentType

The content type for which the handler options are to be set. The content type is a uniform type
identifier (UTI).

inOptions
The handler options to set. For possible values, see “Handler Option Constants” (page 1249).

Return Value
A result code; see “Launch Services Result Codes” (page 1251).

Version Notes
Thread-safe since Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSInfo.h

LSTerm
(Deprecated in Mac OS X v10.3. Formerly used to terminate Launch Services; now does nothing.)

Not recommended.

OSStatus LSTerm (
 void
);

Discussion
Calling this function was formerly required in order to terminate Launch Services; however, it is no longer
needed and so should not be called. It now does nothing at all.

Version Notes
Thread-safe since Mac OS version 10.2.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
LSInfo.h

Data Types

This section describes the data types defined in the Launch Services API.

1236 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

LSApplicationParameters
Specifies the application, launch flags, and additional parameters that control how an application is launched.

struct LSApplicationParameters {
 CFIndex version;
 LSLaunchFlags flags;
 const FSRef * application;
 void * asyncLaunchRefCon;
 CFDictionaryRef environment;
 CFArrayRef argv;
 AppleEvent * initialEvent
};
typedef struct LSApplicationParameters LSApplicationParameters;

Fields
version

The version of the structure. The value of this field must be 0.

flags
Launch flags. For possible values, see “Launch Flags” (page 1242).

application
The FSRef of the application to open.

asyncLaunchRefCon
The client refCon that is to appear in subsequent launch notifications.

environment
A dictionary of CFStringRef keys and values for environment variables to set in the launched process.
The value of this field can be NULL.

argv
An array of values of type CFStringRef that specify the arguments that are to be passed to main()
in the launched process. The value of this field can be NULL. This field is ignored in Mac OS X v10.4.

initialEvent
The first Apple Event to send to the launched process. The value of this field can be NULL.

Discussion
This structure is passed as a parameter to LSOpenApplication (page 1223), LSOpenItemsWithRole (page
1229), and LSOpenURLsWithRole (page 1230).

Availability
Available in Mac OS X v10.4 and later.

Declared In
LSOpen.h

LSLaunchFSRefSpec
Specifies, by file-system reference, an application to launch, items to open, or both, along with related
information.

Data Types 1237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

struct LSLaunchFSRefSpec {
 const FSRef *appRef;
 UInt32 numDocs;
 const FSRef *itemRefs;
 const AEDesc *passThruParams;
 LSLaunchFlags launchFlags;
 void *asyncRefCon;
};
typedef struct LSLaunchFSRefSpec LSLaunchFSRefSpec;

Fields
appRef

A pointer to a file-system reference designating the application to launch; see the File Manager
Reference in the Carbon File Management Documentation for a description of the FSRef data type.
Set this field to NULL to request that each item in the itemRefs array be opened in its own preferred
application.

numDocs
The number of elements in the array specified by the itemRefs field. The value of this field can be
0, in which case the application designated by appRef is launched without opening any items.

itemRefs
An array of file-system references designating the item or items to open. If the value of numDocs is
0, this field is ignored and can be set to NULL.

passThruParams
A pointer to an Apple event descriptor that is passed untouched as an optional parameter, with
keyword keyAEPropData ('prdt'), in the Apple event sent to each application launched or activated
(whether individual preferred applications or the application designated by appRef). See the Apple
Event Manager Reference in the Carbon Interapplication Communication Documentation for a
description of the AEDesc data type. The value of this field can be NULL.

launchFlags
Launch flags specifying how to launch each application (including whether to print or merely open
documents); see “Launch Flags” (page 1242) for a description of these flags.

asyncRefCon
A pointer to an arbitrary application-defined value, passed in the Carbon event notifying you of an
application’s launch or termination (if you have registered for such notification). The value of this field
can be NULL.

Discussion
This data type defines a file-based launch specification designating, by file-system reference, an application
to launch, items to open, or both. To request that items be opened in a particular application, set appRef,
numDocs, and itemRefs accordingly. To request that each designated item be opened in its own preferred
application, set appRef to NULL. To request that a particular application be launched without opening any
documents, set appRef accordingly and set numDocs to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSOpen.h

LSLaunchURLSpec
Specifies, by URL, an application to launch, items to open, or both, along with related information.

1238 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

struct LSLaunchURLSpec {
 CFURLRef appURL;
 CFArrayRef itemURLs;
 const AEDesc *passThruParams;
 LSLaunchFlags launchFlags;
 void *asyncRefCon;
};
typedef struct LSLaunchURLSpec LSLaunchURLSpec;

Fields
appURL

A Core Foundation URL reference designating the application to launch; see the CFURL Reference in
the Core Foundation Reference Documentation for a description of the CFURLRef data type. The URL
must have scheme file and contain a valid path to an application file or application bundle. Set this
field to NULL to request that each item in the itemURLs array be opened in its own preferred
application.

itemURLs
A reference to an array of Core Foundation URL references designating the item or items to open;
see the CFArray Reference in the Core Foundation Reference Documentation for a description of the
CFArrayRef data type. The value of this field can be NULL, in which case the application designated
by appURL will be launched without opening any items.

passThruParams
A pointer to an Apple event descriptor that is passed untouched as an optional parameter, with
keyword keyAEPropData ('prdt'), in the Apple event sent to each application launched or activated
(whether individual preferred applications or the application designated by appURL). See the Apple
Event Manager Reference in the Carbon Interapplication Communication Documentation for a
description of the AEDesc data type. The value of this field can be NULL.

launchFlags
Launch flags specifying how to launch each application (including whether to print or merely open
documents); see “Launch Flags” (page 1242) for a description of these flags.

asyncRefCon
A pointer to an arbitrary application-defined value, passed in the Carbon event notifying you of an
application’s launch or termination (if you have registered for such notification). The value of this field
can be NULL.

Discussion
This data type defines a URL-based launch specification designating, by URL, an application to launch, items
to open, or both. To request that items be opened in a particular application, set appURL and itemURLs
accordingly. To request that each designated item be opened in its own preferred application, set appURL
to NULL. If the item URL’s scheme is file (designating either a file or a directory), the selection of the preferred
application is based on the designated item’s filename extension, file type, and creator signature; otherwise,
it is based on the URL scheme (such as http, ftp, or mailto). To request that a particular application be
launched without opening any document, set appURL accordingly and set itemURLs to NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSOpen.h

Data Types 1239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

LSItemInfoRecord
Contains requested information about an item.

struct LSItemInfoRecord {
 LSItemInfoFlags flags;
 OSType filetype;
 OSType creator;
 CFStringRef extension;
 CFStringRef iconFileName;
 LSKindID kindID;
};
typedef struct LSItemInfoRecord LSItemInfoRecord;

Fields
flags

Item-information flags specifying information about the item; see “Item-Information Flags” (page 1246)
for a description of these flags.

filetype
The item’s file type.

creator
The item’s creator signature.

extension
A Core Foundation string object specifying the item’s filename extension; see the CFString Reference
in the Core Foundation Reference Documentation for a description of the CFStringRef data type.

iconFileName
No longer used.

kindID
No longer used.

Discussion
This data type defines an item-information record used by the LSCopyItemInfoForRef and
LSCopyItemInfoForURL functions to return requested information about an item.

Availability
Available in Mac OS X v10.0 and later.

Declared In
LSInfo.h

LSKindID
Data type of the kindID field of an item-information record (LSItemInfoRecord); no longer used.

typedef UInt32 LSKindID;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
LSInfo.h

1240 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Constants

This section describes the constants defined in the Launch Services API.

Roles Mask
Specify the desired role or roles for an application to claim with respect to an item or family of items.

typedef OptionBits LSRolesMask;enum {
 kLSRolesNone = 0x00000001,
 kLSRolesViewer = 0x00000002,
 kLSRolesEditor = 0x00000004,
 kLSRolesShell = 0x00000008,
 kLSRolesAll = 0xFFFFFFFF
};

Constants
kLSRolesNone

Requests the role None (the application cannot open the item, but provides an icon and a kind string
for it).

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSRolesViewer
Requests the role Viewer (the application can read and present the item, but cannot manipulate or
save it).

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSRolesEditor
Requests the role Editor (the application can read, present, manipulate, and save the item).

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSRolesShell
Requests the role Shell (the application can execute the item).

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

kLSRolesAll
Accepts any role with respect to the item.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

Discussion
This bit mask is passed to functions that find the preferred application for a given item or family of items
(LSGetApplicationForItem,LSGetApplicationForURL,LSGetApplicationForInfo), or that determine
whether a given application can open a designated item (LSCanRefAcceptItem, LSCanURLAcceptURL),
to specify the application’s desired role or roles with respect to the item. For example, to request only an
editor application, specify kLSRolesEditor; if either an editor or a viewer application is acceptable, specify
kLSRolesEditor | kLSRolesViewer.

Constants 1241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Launch Flags
Specify how to launch an application.

typedef OptionBits LSLaunchFlags;enum {
 kLSLaunchDefaults = 0x00000001,
 kLSLaunchAndPrint = 0x00000002,
 kLSLaunchReserved2 = 0x00000004,
 kLSLaunchReserved3 = 0x00000008,
 kLSLaunchReserved4 = 0x00000010,
 kLSLaunchReserved5 = 0x00000020,
 kLSLaunchAndDisplayErrors = 0x00000040,
 kLSLaunchInhibitBGOnly = 0x00000080,
 kLSLaunchDontAddToRecents = 0x00000100,
 kLSLaunchDontSwitch = 0x00000200,
 kLSLaunchNoParams = 0x00000800,
 kLSLaunchAsync = 0x00010000,
 kLSLaunchStartClassic = 0x00020000,
 kLSLaunchInClassic = 0x00040000,
 kLSLaunchNewInstance = 0x00080000,
 kLSLaunchAndHide = 0x00100000,
 kLSLaunchAndHideOthers = 0x00200000,
 kLSLaunchHasUntrustedContents = 0x00400000
};

Constants
kLSLaunchDefaults

Requests launching in the default manner (as if the only flags set were kLSLaunchNoParams,
kLSLaunchAsync, and kLSLaunchStartClassic).

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchAndPrint
Requests that documents opened in the application be printed.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchReserved2
Reserved for future use.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchReserved3
Reserved for future use.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchReserved4
Reserved for future use.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

1242 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

kLSLaunchReserved5
Reserved for future use.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchAndDisplayErrors
Requests that launch and open failures be displayed in the UI.

Available in Mac OS X v10.4 and later.

Declared in LSOpen.h.

kLSLaunchInhibitBGOnly
Requests that the launch be made to fail if the application is background-only.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchDontAddToRecents
Requests that the application or documents not be added to the Finder’s Recent Items menu.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchDontSwitch
Requests that the application be launched without being brought to the foreground.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchNoParams
Requests that the application’s information property list be used to determine the launch parameters.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchAsync
Requests that the application be launched asynchronously: that is, the Launch Services function
launching it return control immediately, without waiting for it to complete its launch sequence
(indicated visually to the user when the application’s icon stops “bouncing” in the Dock).

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchStartClassic
Requests that the Classic emulation environment be started up if the application requires it. If this
flag is not set and the application requires the Classic environment, the launch will fail.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchInClassic
Requests that the application be forced to launch in the Classic emulation environment.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchNewInstance
Requests that a new instance of the application be started, even if one is already running.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

Constants 1243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

kLSLaunchAndHide
Requests that the application be hidden as soon as it completes its launch sequence.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchAndHideOthers
Requests that other applications be hidden as soon as the opened application completes its launch
sequence.

Available in Mac OS X v10.0 and later.

Declared in LSOpen.h.

kLSLaunchHasUntrustedContents
Requests that the items to be launched should be marked as untrusted.

Available in Mac OS X v10.4 and later.

Declared in LSOpen.h.

Discussion
They are passed in a launch specification structure (LSLaunchFSRefSpec to the LSOpenFromRefSpec
function or LSLaunchURLSpec to the LSOpenFromURLSpec function), to control the manner in which
applications are launched.

Requested-Information Flags
Specify what information to obtain about an item.

typedef OptionBits LSRequestedInfo;enum {
 kLSRequestExtension = 0x00000001,
 kLSRequestTypeCreator = 0x00000002,
 kLSRequestBasicFlagsOnly = 0x00000004,
 kLSRequestAppTypeFlags = 0x00000008,
 kLSRequestAllFlags = 0x00000010,
 kLSRequestIconAndKind = 0x00000020,
 kLSRequestExtensionFlagsOnly = 0x00000040,
 kLSRequestAllInfo = 0xFFFFFFFF
};

Constants
kLSRequestExtension

Requests the item’s filename extension.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSRequestTypeCreator
Requests the item’s file type and creator signature.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSRequestBasicFlagsOnly
Requests all item-information flags that are not application-specific: that is, all except
kLSItemInfoIsNativeApp through kLSItemInfoAppIsScriptable.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

1244 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

kLSRequestAppTypeFlags
Requests all application-specific item-information flags: that is, kLSItemInfoIsNativeApp through
kLSItemInfoAppIsScriptable.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSRequestAllFlags
Requests all item-information flags.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSRequestIconAndKind
Not used.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSRequestExtensionFlagsOnly
Requests only the kLSItemInfoExtensionIsHidden item-information flag.

Available in Mac OS X v10.1 and later.

Declared in LSInfo.h.

kLSRequestAllInfo
Requests all available item information.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

Discussion
These flags are passed to the LSCopyItemInfoForRef and LSCopyItemInfoForURL functions to specify
the type of information to be obtained in an item-information record; see LSItemInfoRecord (page 1240) for a
description of this structure.

Item Attribute Constants
Constants used to retrieve item attributes.

const CFStringRef kLSItemContentType;
const CFStringRef kLSItemFileType;
const CFStringRef kLSItemFileCreator;
const CFStringRef kLSItemExtension;
const CFStringRef kLSItemDisplayName
const CFStringRef kLSItemDisplayKind;
const CFStringRef kLSItemRoleHandlerDisplayName;
const CFStringRef kLSItemIsInvisible;
const CFStringRef kLSItemExtensionIsHidden;

Constants
kLSItemContentType

The item’s content type identifier, which is a uniform type identifier string. The value type of this
attribute is CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

Constants 1245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

kLSItemFileType
The item’s file type (OSType). The value type of this attribute is CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

kLSItemFileCreator
The item’s file creator (OSType). The value type of this attribute is CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

kLSItemExtension
The item’s filename extension. The value type of this attribute is CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

kLSItemDisplayName
The item’s name as displayed to the user. The display name reflects localization and extension hiding
that may be in effect. The value type of this attribute is CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

kLSItemDisplayKind
The localized kind string describing the item’s type. The value type of this attribute is CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

kLSItemRoleHandlerDisplayName
The display name of the application that is set to handle this item, subject to the role mask. The value
type of this attribute is CFStringRef.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

kLSItemIsInvisible
A value of kCFBooleanTrue if the item is normally hidden from users; otherwise, kCFBooleanFalse.
The value type of this attribute is CFBooleanRef.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

kLSItemExtensionIsHidden
A value of kCFBooleanTrue if the item’s extension is set to be hidden; otherwise, kCFBooleanFalse.
The value type of this attribute is CFBooleanRef.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

Item-Information Flags
Provide information about an item.

1246 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

typedef OptionBits LSItemInfoFlags;enum {
 kLSItemInfoIsPlainFile = 0x00000001,
 kLSItemInfoIsPackage = 0x00000002,
 kLSItemInfoIsApplication = 0x00000004,
 kLSItemInfoIsContainer = 0x00000008,
 kLSItemInfoIsAliasFile = 0x00000010,
 kLSItemInfoIsSymlink = 0x00000020,
 kLSItemInfoIsInvisible = 0x00000040,
 kLSItemInfoIsNativeApp = 0x00000080,
 kLSItemInfoIsClassicApp = 0x00000100,
 kLSItemInfoAppPrefersNative = 0x00000200,
 kLSItemInfoAppPrefersClassic = 0x00000400,
 kLSItemInfoAppIsScriptable = 0x00000800,
 kLSItemInfoIsVolume = 0x00001000,
 kLSItemInfoExtensionIsHidden = 0x00100000
};

Constants
kLSItemInfoIsPlainFile

Item is a data file (and not, for example, a directory, volume, or UNIX symbolic link).

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoIsPackage
Item is a packaged directory.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoIsApplication
Item is a single-file or packaged application.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoIsContainer
Item is a directory (includes packages) or volume.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoIsAliasFile
Item is an alias file (includes symbolic links).

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoIsSymlink
Item is a UNIX symbolic link.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoIsInvisible
Item is invisible, because either its name begins with a period or its isInvisible Finder flag is set.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

Constants 1247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

kLSItemInfoIsNativeApp
Item is an application that can run natively in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoIsClassicApp
Item is an application that cannot run natively and must be launched in the Classic emulation
environment.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoAppPrefersNative
Item is an application that can run either natively or in the Classic emulation environment, but prefers
to be launched natively. This flag is valid only when kLSItemInfoIsNativeApp is set.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoAppPrefersClassic
Item is an application that can run either natively or in the Classic emulation environment, but prefers
to be launched in the Classic environment. This flag is valid only when kLSItemInfoIsNativeApp
is set.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoAppIsScriptable
Item is an application that can be scripted.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoIsVolume
Item is the root directory of a volume or mount point.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSItemInfoExtensionIsHidden
Item has a hidden filename extension.

Available in Mac OS X v10.1 and later.

Declared in LSInfo.h.

Discussion
These flags are set in an item-information record to provide information about an item; see
LSItemInfoRecord (page 1240) for a description of this structure.

Acceptance Flags
Specify behavior to observe when testing whether an application can accept (open) an item.

1248 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

typedef OptionBits LSAcceptanceFlags;enum {
 kLSAcceptDefault = 0x00000001,
 kLSAcceptAllowLoginUI = 0x00000002
};

Constants
kLSAcceptDefault

Requests the default behavior (as opposed to the behavior specified by the kLSAcceptAllowLoginUI
flag).

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSAcceptAllowLoginUI
Requests that the user interface to log in be presented if necessary. If LSCanRefAcceptItem or
LSCanURLAcceptURL is called during a drag-and-drop operation, showing a server login dialog
would be an inappropriate user experience. If the target designated in the function call is an alias to
an application, Launch Services needs to resolve the alias to ascertain what file types the application
can open; however, if the application is on a server that needs to be authenticated, Launch Services
will by default fail to resolve the alias, to avoid having to present the login interface. To override this
default behavior by allowing the server login interface, set the kLSAcceptAllowLoginUI flag.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

Discussion
These flags are passed to the functions LSCanRefAcceptItem and LSCanURLAcceptURL.

Handler Option Constants
Specify the options for controlling how content handlers are selected.

typedef OptionBits LSHandlerOptions;enum {
 kLSHandlerOptionsDefault = 0,
 kLSHandlerOptionsIgnoreCreator = 1
};

Constants
kLSHandlerOptionsDefault

When set, causes Launch Services to use a content item’s creator (when available) to select a handler.
This is the default setting.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

kLSHandlerOptionsIgnoreCreator
When set, causes Launch Services to ignore the content item’s creator when selecting a role handler
for the specified content type.

Available in Mac OS X v10.4 and later.

Declared in LSInfo.h.

Invalid Extension Index
Represents an invalid filename extension index.

Constants 1249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

enum {
 kLSInvalidExtensionIndex = 0xFFFFFFFF
};

Constants
kLSInvalidExtensionIndex

The value obtained by the LSGetExtensionInfo function if the filename does not contain a valid
extension.

Available in Mac OS X v10.1 through Mac OS X v10.4.

Declared in LSInfo.h.

Unknown Type or Creator
Represent an unknown file type or creator.

enum {
 kLSUnknownType = 0,
 kLSUnknownCreator = 0
};

Constants
kLSUnknownType

The value to supply as the file type (for example, to the LSGetApplicationForInfo function) if no
file type information is available.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

kLSUnknownCreator
The value to supply as the creator signature if no file creator information is available.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

Constants No Longer Used
The following constants are no longer used.

typedef OptionBits LSInitializeFlags;enum {
 kLSInitializeDefaults = 0x00000001
};enum {
 kLSUnknownKindID = 0
};enum {
 kLSMinCatInfoBitmap = (kFSCatInfoNodeFlags | kFSCatInfoParentDirID
| kFSCatInfoFinderInfo | kFSCatInfoFinderXInfo)
};

Constants
kLSInitializeDefaults

Formerly passed to the LSInit function, which is no longer used.

Available in Mac OS X v10.0 and later.

Declared in LSInfo.h.

1250 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

kLSUnknownKindID
A possible value of the kindID field of an item-information record, which is no longer used.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in LSInfo.h.

kLSMinCatInfoBitmap
A minimal catalog information bitmap; no longer used.

Available in Mac OS X v10.1 and later.

Declared in LSInfo.h.

Result Codes

The table below lists the most common result codes returned by Launch Services functions.

DescriptionValueResult Code

The application cannot be run because it is inside
a Trash folder.

-10660kLSAppInTrashErr

Available in Mac OS X v10.3 and later.

An unknown error has occurred.-10810kLSUnknownErr

Available in Mac OS X v10.0 and later.

The item to be registered is not an application.-10811kLSNotAnApplicationErr

Available in Mac OS X v10.0 and later.

Formerly returned by LSInit on initialization
failure; no longer used.

-10812kLSNotInitializedErr

Available in Mac OS X v10.0 and later.

Data of the desired type is not available (for
example, there is no kind string).

-10813kLSDataUnavailableErr

Available in Mac OS X v10.0 and later.

No application in the Launch Services database
matches the input criteria.

-10814kLSApplicationNotFoundErr

Available in Mac OS X v10.0 and later.

Not currently used.-10815kLSUnknownTypeErr

Available in Mac OS X v10.0 and later.

Not currently used.-10816kLSDataTooOldErr

Available in Mac OS X v10.0 and later.

Result Codes 1251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

DescriptionValueResult Code

Data is structured improperly (for example, an
item’s information property list is malformed). Not
used in Mac OS X v10.4.

-10817kLSDataErr

Available in Mac OS X v10.0 and later.

A launch of the application is already in progress.-10818kLSLaunchInProgressErr

Available in Mac OS X v10.0 and later.

Not currently used.-10819kLSNotRegisteredErr

Available in Mac OS X v10.0 and later.

Not currently used.-10820kLSAppDoesNotClaimTypeErr

Available in Mac OS X v10.0 and later.

Not currently used.-10821kLSAppDoesNotSupportSchemeWarning

Available in Mac OS X v10.0 and later.

There is a problem communicating with the server
process that maintains the Launch Services
database.

-10822kLSServerCommunicationErr

Available in Mac OS X v10.0 and later.

The filename extension to be hidden cannot be
hidden.

-10823kLSCannotSetInfoErr

Available in Mac OS X v10.1 and later.

Not currently used.-10824kLSNoRegistrationInfoErr

Available in Mac OS X v10.3 and later.

The application to be launched cannot run on the
current Mac OS version.

-10825kLSIncompatibleSystemVersionErr

Available in Mac OS X v10.3 and later.

The user does not have permission to launch the
application (on a managed network).

-10826kLSNoLaunchPermissionErr

Available in Mac OS X v10.3 and later.

The executable file is missing or has an unusable
format.

-10827kLSNoExecutableErr

Available in Mac OS X v10.3 and later.

The Classic emulation environment was required
but is not available.

-10828kLSNoClassicEnvironmentErr

Available in Mac OS X v10.3 and later.

1252 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

DescriptionValueResult Code

The application to be launched cannot run
simultaneously in two different user sessions.

-10829kLSMultipleSessionsNotSupportedErr

Available in Mac OS X v10.3 and later.

Result Codes 1253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

1254 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Launch Services Reference

Framework: CoreServices/CoreServices.h

Declared in MacLocales.h

Overview

Unicode operations such as collation and text boundary determination can be affected by the conventions
of a particular language or region. You can use Locale Utilities to specify language-specific or region-specific
information for locale-sensitive Unicode operations. The Locale Utilities provide support for obtaining available
locales, obtaining localized locale names, and converting among locale data formats.

Carbon supports the Locales Utilities.

Functions by Task

Obtaining Available Locales

LocaleOperationGetLocales (page 1263)
Obtains the list of available locale-and-variant combinations for a given class of operation.

LocaleOperationCountLocales (page 1261)
Obtains the total count of locale-and-variant combinations available for a given class of operation.

Obtaining Localized Locale Names

LocaleGetName (page 1258)
Obtains the localized name for a locale and/or operation variant, based on the requested language
for the localized name.

LocaleGetIndName (page 1257)
Obtains a localized name for a locale and/or operation variant, based on an index into the list of all
available localized names.

LocaleCountNames (page 1256)
Obtains the total count of all available localized names for a locale and/or operation variant.

LocaleOperationGetName (page 1264)
Obtains the localized name for an operation class, based on the requested language for the localized
name.

Overview 1255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

LocaleOperationGetIndName (page 1262)
Obtains a localized name for an operation class, based on an index into the list of all available localized
names.

LocaleOperationCountNames (page 1261)
Obtains the total count of all available localized names for an operation class.

LocaleGetRegionLanguageName (page 1260) Deprecated in Mac OS X v10.5
Obtains the localized language name for a region.

Converting Among Locale Data Formats

LocaleRefFromLangOrRegionCode (page 1265)
Converts a Mac OS language or region code to a locale reference.

LocaleRefFromLocaleString (page 1266)
Converts a string containing locale data to a locale reference.

LocaleRefGetPartString (page 1267)
Converts a locale reference to a string containing locale data.

LocaleStringToLangAndRegionCodes (page 1268)
Converts a string containing locale data to Mac OS language and region codes.

Functions

LocaleCountNames
Obtains the total count of all available localized names for a locale and/or operation variant.

OSStatus LocaleCountNames (
 LocaleRef locale,
 LocaleOperationVariant opVariant,
 LocaleNameMask nameMask,
 ItemCount *nameCount
);

Parameters
locale

A LocaleRef value identifying the locale for which you are requesting a localized name.

opVariant
A LocaleOperationVariant value identifying the operation variant for which you are requesting
a localized name. Pass 0 to obtain the default operation variant.

nameMask
A LocaleNameMask value specifying the parts of the name that you are requesting: the name of the
locale alone, the name of the operation variant alone, or the name for the combination of the two.

nameCount
A pointer to an ItemCount value. On return, the value is set to the total count of all available localized
names for the locale and/or operation variant.

1256 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

Return Value
A result code. The LocaleCountNames function can return paramErr if nameCount is NULL.

Discussion
This function provides a count of all available localized names for a given locale, operation variant, or
locale-and-variant combination, for use in the function LocaleGetIndName (page 1257). You must call this
function prior to calling LocaleGetIndName.

Special Considerations

This function can move memory in Carbon and Mac OS 9.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleGetIndName
Obtains a localized name for a locale and/or operation variant, based on an index into the list of all available
localized names.

OSStatus LocaleGetIndName (
 LocaleRef locale,
 LocaleOperationVariant opVariant,
 LocaleNameMask nameMask,
 ItemCount nameIndex,
 UniCharCount maxNameLen,
 UniCharCount *actualNameLen,
 UniChar displayName[],
 LocaleRef *displayLocale
);

Parameters
locale

A LocaleRef value identifying the locale for which you are requesting a localized name.

opVariant
A LocaleOperationVariant value identifying the operation variant for which you are requesting
a localized name. Pass 0 to obtain the default operation variant.

nameMask
A LocaleNameMask value specifying the parts of the name that you are requesting: the name of the
locale alone, the name of the operation variant alone, or the name for the combination of the two.

nameIndex
An ItemCount index value identifying an entry in the list of available localized names. You can obtain
a count of all available localized names from the nameCount parameter of the function
LocaleCountNames (page 1256). Note that index values must be in the range from 0 to nameCount
-1. To create a list of all available localized names that correspond to the locale and operation variant
you request, you can call the LocaleGetIndName function starting with an index value of 0, then
increment the index value with each successive call to LocaleGetIndName, continuing to
nameCount-1.

Functions 1257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

maxNameLen
A UniCharCount value specifying the length of the UniChar array being passed in the displayName
parameter. An array of 32 characters is typically adequate if you request just a single name (that is,
the name for a locale or an operation variant), or 64 characters if you request both names.

actualNameLen
A pointer to a UniCharCount value. On return, the value contains the actual length of the name
produced in the displayName parameter.

displayName
An array of UniChar values. On return, the array contains the requested name as localized for a
particular display locale.

displayLocale
A pointer to a LocaleRef value. On return, the value indicates the language of the name produced
in the displayName parameter.

Return Value
A result code. If the value specified in the maxNameLen parameter is too small for the requested string,
LocaleGetIndName returns kLocalesBufferTooSmallErr (-30001).

Discussion
The LocaleGetIndName function obtains a localized name for a locale, operation variant, or locale-and-variant
combination. LocaleGetIndName produces the name based on a requested locale, an operation variant,
and an index into the count of all available localized names for the locale and/or operation variant. The
language for the obtained name is produced on return.

You can use repeated calls to the LocaleGetIndName function to create a list of all available localized names
(that is, the names from all available display locales), that correspond to a given locale and operation variant.
Alternately, for a particular locale, operation variant, or locale-and-variant combination, the function
LocaleGetName (page 1258) obtains the corresponding name as localized for a particular display locale.

Note that, in some languages, the name for a language or locale may have several different grammatical
forms, where the correct form depends on the usage or context. For example, Swedish uses different forms
of a language name depending on whether the name is applied to a collation order, to text break rules, or
to keyboard layouts. However, the Locale Utilities functions only return one form of a language or locale
name—typically that name which would be used for the language name alone. Therefore, this name may
not be the correct form for some usages in some languages.

Special Considerations

This function can move memory in Carbon and Mac OS 9.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleGetName
Obtains the localized name for a locale and/or operation variant, based on the requested language for the
localized name.

1258 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

OSStatus LocaleGetName (
 LocaleRef locale,
 LocaleOperationVariant opVariant,
 LocaleNameMask nameMask,
 LocaleRef displayLocale,
 UniCharCount maxNameLen,
 UniCharCount *actualNameLen,
 UniChar displayName[]
);

Parameters
locale

A LocaleRef value identifying the locale for which you are requesting a localized name.

opVariant
A LocaleOperationVariant value identifying the operation variant for which you are requesting
a localized name. Pass 0 to obtain the default operation variant.

nameMask
A LocaleNameMask value specifying the parts of the name that you are requesting: the name of the
locale alone, the name of the operation variant alone, or the name for the combination of the two.

displayLocale
A LocaleRef value indicating the requested language for the name produced in the displayName
parameter. If LocaleGetName cannot find a name in the requested language, it produces a name in
the default display locale.

maxNameLen
A UniCharCount value specifying the length of the UniChar array being passed in the displayName
parameter. An array of 32 characters is typically adequate if you request just a single name (that is,
the name for a locale or an operation variant), or 64 characters if you request both names.

actualNameLen
A pointer to a UniCharCount value. On return, the value contains the actual length of the name
produced in the displayName parameter.

displayName
An array of UniChar values. On return, the array contains the requested name as localized for a
particular display locale.

Return Value
A result code. If LocaleGetName cannot find a name that matches the language specified in the
displayLocale parameter, it returns kLocalesDefaultDisplayStatus (-30029). If the value specified
in the maxNameLen parameter is too small for the requested string, LocaleGetName returns
kLocalesBufferTooSmallErr (-30001).

Discussion
For a particular locale, operation variant, or locale-and-variant combination, the LocaleGetName function
obtains the corresponding name as localized for a particular display locale. Alternately, you can use repeated
calls to the function LocaleGetIndName (page 1257) to iterate through all of the available display locales to
create a list of the corresponding names as localized in each of the display locales.

Note that, in some languages, the name for a language or locale may have several different grammatical
forms, where the correct form depends on the usage or context. For example, Swedish uses different forms
of a language name depending on whether the name is applied to a collation order, to text break rules, or
to keyboard layouts. However, the Locale Utilities functions only return one form of a language or locale
name—typically that name which would be used for the language name alone. Therefore, this name may
not be the correct form for some usages in some languages.

Functions 1259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

Special Considerations

This function can move memory in Carbon and Mac OS 9.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleGetRegionLanguageName
Obtains the localized language name for a region. (Deprecated in Mac OS X v10.5.)

OSStatus LocaleGetRegionLanguageName (
 RegionCode region,
 Str255 languageName
);

Parameters
region

A Mac OS RegionCode value, specifying the region for which you are requesting a localized language
name.

languageName
A Pascal string. On return, the string contains the name of the language corresponding to the region
specified in the region parameter. The language name is produced in its own language and in the
appropriate Mac OS encoding for that region.

Return Value
A result code. The LocaleGetRegionLanguageName function returns paramErr if languageName is NULL
or if region is invalid (

Discussion
For a particular Mac OS region code, the LocaleGetRegionLanguageName function returns the name of
the corresponding language in that language and in the non-Unicode Mac OS text encoding used for that
region.

Note that, in some languages, the name for a language or locale may have several different grammatical
forms, where the correct form depends on the usage or context. For example, Swedish uses different forms
of a language name depending on whether the name is applied to a collation order, to text break rules, or
to keyboard layouts. However, the Locale Utilities functions only return one form of a language or locale
name—typically that name which would be used for the language name alone. Therefore, this name may
not be the correct form for some usages in some languages.

Special Considerations

This function can move memory in Carbon and Mac OS 9.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1260 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

Declared In
MacLocales.h

LocaleOperationCountLocales
Obtains the total count of locale-and-variant combinations available for a given class of operation.

OSStatus LocaleOperationCountLocales (
 LocaleOperationClass opClass,
 ItemCount *localeCount
);

Parameters
opClass

A LocaleOperationClass value identifying the operation class for which you are requesting
availability information.

localeCount
A pointer to an ItemCount value. On return, the value is set to the total count of all available
locale-and-variant combinations for the specified class of operation.

Return Value
A result code. The LocaleOperationCountLocales function returns paramErr if the opClass parameter
is 0 or if the localeCount parameter is NULL.

Discussion
The LocaleOperationCountLocales function counts the total number of locale-and-variant combinations
available for a given operation class. You should call LocaleOperationCountLocales before the function
LocaleOperationGetLocales (page 1263) in order to determine how much memory to allocate for the list
LocaleOperationGetLocales produces.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleOperationCountNames
Obtains the total count of all available localized names for an operation class.

OSStatus LocaleOperationCountNames (
 LocaleOperationClass opClass,
 ItemCount *nameCount
);

Parameters
opClass

A LocaleOperationClass value identifying the operation class for which you are requesting a
localized name.

Functions 1261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

nameCount
A pointer to an ItemCount value. On return, the value is set to the total count of all available localized
names for the operation class.

Return Value
A result code. The LocaleOperationCountNames function returns paramErr if nameCount is NULL.

Discussion
This function provides a count of all available localized names for a given operation class, for use in the
function LocaleOperationGetIndName (page 1262). You must call this function prior to calling
LocaleOperationGetIndName.

Special Considerations

This function can move memory in Carbon and Mac OS 9.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleOperationGetIndName
Obtains a localized name for an operation class, based on an index into the list of all available localized names.

OSStatus LocaleOperationGetIndName (
 LocaleOperationClass opClass,
 ItemCount nameIndex,
 UniCharCount maxNameLen,
 UniCharCount *actualNameLen,
 UniChar displayName[],
 LocaleRef *displayLocale
);

Parameters
opClass

A LocaleOperationClass value identifying the operation class for which you are requesting a
localized name.

nameIndex
An ItemCount index value identifying an entry in the list of available localized names. You can obtain
a count of all available localized names from the nameCount parameter of the function
LocaleOperationCountNames (page 1261). Note that index values must be in the range from 0 to
nameCount -1. To create a list of all available localized names that correspond to the requested
operation class, you can call the LocaleOperationGetIndName function starting with an index
value of 0, then increment the index value with each successive call to LocaleOperationGetIndName,
continuing to nameCount-1.

maxNameLen
A UniCharCount value specifying the length of the UniChar array being passed in the displayName
parameter.

1262 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

actualNameLen
A pointer to a UniCharCount value. On return, the value contains the actual length of the name
produced in the displayName parameter.

displayName
An array of UniChar values. On return, the array contains the requested name as localized for a
particular display locale.

displayLocale
A pointer to a LocaleRef value. On return, the value indicates the language of the name produced
in the displayName parameter.

Return Value
A result code. If the value specified in the maxNameLen parameter is too small for the requested string,
LocaleOperationGetIndName returns kLocalesBufferTooSmallErr (-30001).

Discussion
The LocaleOperationGetIndName function obtains a localized name for an operation class based on an
index into the count of all available localized names for the operation class. The language for the obtained
name is produced on return.

You can use repeated calls to the LocaleOperationGetIndName function to create a list of all available
localized names (that is, the names from all available display locales), that correspond to a given operation
class. Alternately, for a particular operation class, the function LocaleOperationGetName (page 1264) obtains
the corresponding name as localized for a particular display locale.

Special Considerations

This function can move memory in Carbon and Mac OS 9.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleOperationGetLocales
Obtains the list of available locale-and-variant combinations for a given class of operation.

OSStatus LocaleOperationGetLocales (
 LocaleOperationClass opClass,
 ItemCount maxLocaleCount,
 ItemCount *actualLocaleCount,
 LocaleAndVariant localeVariantList[]
);

Parameters
opClass

A LocaleOperationClass value identifying the operation class for which you are requesting
availability information.

Functions 1263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

maxLocaleCount
An ItemCount value specifying the size of the array passed in the localeVariantList parameter.
To determine how much memory to allocate for the list, you can call the function
LocaleOperationCountLocales (page 1261).LocaleOperationCountLocalesproduces a count
of the locale-and-variant combinations available for a given operation class in its localeCount
parameter.

actualLocaleCount
A pointer to an ItemCount value. On return, the value contains the actual length of the list produced
in the localeVariantList parameter.

localeVariantList
An array of LocaleAndVariant values. On return, the array contains a list of the available combinations
of locale and operation variant for a specified operation class. The LocaleAndVariant.opVariant
field may be 0 for entries that do not have a specific operation variant.

Return Value
A result code. If the value specified in the maxLocaleCount parameter is too small for the complete list,
LocaleOperationGetLocales returns kLocalesBufferTooSmallErr (-30001). The function returns
paramErr if opClass is 0 or if either the actualLocaleCount or localeVariantList parameter is NULL.

Discussion
The LocaleOperationGetLocales function provides a list of all the combinations of locales and operation
variants that are available for a given class of operations, such as collation.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleOperationGetName
Obtains the localized name for an operation class, based on the requested language for the localized name.

OSStatus LocaleOperationGetName (
 LocaleOperationClass opClass,
 LocaleRef displayLocale,
 UniCharCount maxNameLen,
 UniCharCount *actualNameLen,
 UniChar displayName[]
);

Parameters
opClass

A LocaleOperationClass value identifying the operation class for which you are requesting a
localized name.

displayLocale
A LocaleRef value indicating the requested language for the name produced in the displayName
parameter. If LocaleOperationGetName cannot find a name in the requested language, it produces
a name in the default display locale.

1264 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

maxNameLen
A UniCharCount value specifying the length of the UniChar array being passed in the displayName
parameter. An array of 64 characters is typically adequate.

actualNameLen
A pointer to a UniCharCount value. On return, the value contains the actual length of the name
produced in the displayName parameter.

displayName
An array of UniChar values. On return, the array contains the requested name as localized for a
particular display locale.

Return Value
A result code. If LocaleOperationGetName cannot find a name that matches the language specified in the
displayLocale parameter, it returns kLocalesDefaultDisplayStatus (-30029). If the value specified
in the maxNameLen parameter is too small for the requested string, LocaleOperationGetName returns
kLocalesBufferTooSmallErr (-30001).

Discussion
For a particular operation class, the LocaleOperationGetName function obtains the corresponding name
as localized for a particular display locale. Alternately, you can use repeated calls to the function
LocaleOperationGetIndName (page 1262) to iterate through all of the available display locales to create a
list of the corresponding names as localized in each of the display locales.

Special Considerations

This function can move memory in Carbon and Mac OS 9.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleRefFromLangOrRegionCode
Converts a Mac OS language or region code to a locale reference.

OSStatus LocaleRefFromLangOrRegionCode (
 LangCode lang,
 RegionCode region,
 LocaleRef *locale
);

Parameters
lang

A Mac OS LangCode value, specifying the language for which to create a LocaleRef. If you wish to
specify only a region, not a language as well, you can pass the constant kTextLanguageDontCare
(from TextCommon.h). The LocaleRefFromLangOrRegionCode function requires values for either
the lang or region parameters, or both.

Functions 1265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

region
A Mac OS RegionCode value, specifying the region for which to create a LocaleRef. If you wish to
specify only a language, not a region as well, you can pass the constant kTextRegionDontCare
(from TextCommon.h). The LocaleRefFromLangOrRegionCode function requires values for either
the lang or region parameters, or both.

locale
A pointer to a value of type LocaleRef. On return, the LocaleRef value contains a valid reference
to locale data. Note that the LocaleRefFromLangOrRegionCode function can move memory, so
the locale parameter should not point to memory that can move.

Return Value
A result code. The LocaleRefFromLangOrRegionCode function returns paramErr if no value is provided
for either the lang or region parameters, or if both values are provided but they are inconsistent, or if a
value provided is invalid. The function returns paramErr if the locale parameter is NULL. It can also return
memory errors or resource errors. Finally, if the tables used for mapping language and region codes are
invalid, the function returns kLocalesTableFormatErr (-30002) in CarbonLib and Mac OS 9 (in Mac OS
8.6, paramErr is returned).

Discussion
A LocaleRef is an opaque type that references static locale data. You typically provide a LocaleRef value
to the locale-sensitive Unicode Utilities functions and to some Locale Utilities functions such as
LocaleGetName (page 1258) and LocaleOperationGetName (page 1264).

You can use the LocaleRefFromLangOrRegionCode function to convert a Mac OS language and/or region
code to a LocaleRef value. Additionally, you can use the function LocaleRefFromLocaleString (page
1266) to convert a locale part string—or an Internet language tag or POSIX/Java locale string—to a LocaleRef
value.

You should not save LocaleRef values in a file or other persistent storage, because a given LocaleRef is
not guaranteed to be valid across multiple launches of your application. For persistent storage, you can either
save the original value or string used to construct the LocaleRef, or you can use the function
LocaleRefGetPartString (page 1267) to convert a LocaleRef to a locale part string and save that.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleRefFromLocaleString
Converts a string containing locale data to a locale reference.

1266 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

OSStatus LocaleRefFromLocaleString (
 const char localeString[],
 LocaleRef *locale
);

Parameters
localeString

An ASCII string containing an Internet RFC 1766-style language tag, or a POSIX-style or Java-style
locale string, or a Mac OS locale part string. A locale part string is an ASCII string whose full form is
“lan-var.sc-v_rg-v”, where “lan-var” specifies the language and variant, “.sc-v” specifies the script &
variant, and “_rg-v” specifies the region and variant. Any of those three parts can be omitted
furthermore, the variant part “-var” or “-v” within any of those parts may be omitted.

locale
A pointer to a value of type LocaleRef. On return, the LocaleRef value contains a valid reference
to locale data. Note that the LocaleRefFromLocaleString function can move memory, so the
locale parameter should not point to memory that can move.

Return Value
A result code. The function returns paramErr if the localeString or locale parameters are NULL, or if
the value provided in localeString is invalid. It can also return memory errors.

Discussion
A LocaleRef is an opaque type that references static locale data. You typically provide a LocaleRef value
to the locale-sensitive Unicode Utilities functions and to some Locale Utilities functions such as
LocaleGetName (page 1258) and LocaleOperationGetName (page 1264).

You can use the LocaleRefFromLocaleString function to convert a locale part string—or an Internet
language tag or POSIX/Java locale string—to a LocaleRef value. Additionally, you can use the function
LocaleRefFromLangOrRegionCode (page 1265) to convert a Mac OS language and/or region code to a
LocaleRef value.

You should not save LocaleRef values in a file or other persistent storage, because a given LocaleRef is
not guaranteed to be valid across multiple launches of your application. For persistent storage, you can either
save the original value or string used to construct the LocaleRef, or you can use the function
LocaleRefGetPartString (page 1267) to convert a LocaleRef back to a locale part string and save that.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleRefGetPartString
Converts a locale reference to a string containing locale data.

Functions 1267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

OSStatus LocaleRefGetPartString (
 LocaleRef locale,
 LocalePartMask partMask,
 ByteCount maxStringLen,
 char partString[]
);

Parameters
locale

The LocaleRef value to convert to string format. You can pass NULL for the default system locale.

partMask
A LocalePartMask value specifying the kinds of locale information to include in the string. Available
kinds of locale information include language, script, region, and their respective variants.

maxStringLen
A ByteCount value specifying the length of the char array being passed in the partString
parameter. The amount of storage should typically be at least 4 times the number of parts requested.

partString
An array of char values. On return, the array contains the new part string. The full form of the returned
string is “lan-var.sc-v_rg-v” where “lan-var” specifies the language and variant, “.sc-v” specifies the
script & variant, and “_rg-v” specifies the region and variant. Fields not specified by the partMask
parameter (as well as any field separator that precedes them) are not included in the returned string.

Return Value
A result code. The function returns paramErr if the partString parameter is NULL, or if the locale is invalid.
It returns kLocalesBufferTooSmallErr (-30001) if the value supplied in the maxStringLen parameter
is too small for the requested string.

Discussion
The LocaleRefGetPartString function converts a LocaleRef value to a string containing locale
information. You can use a locale part string to tag or specify language or locale in persistent storage.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

LocaleStringToLangAndRegionCodes
Converts a string containing locale data to Mac OS language and region codes.

1268 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

OSStatus LocaleStringToLangAndRegionCodes (
 const char localeString[],
 LangCode *lang,
 RegionCode *region
);

Parameters
localeString

An ASCII string containing an Internet RFC 1766-style language tag, or a POSIX-style or Java-style
locale string, or a Mac OS locale part string. If you have a LocaleRef value, you can obtain a locale
string from the function LocaleRefGetPartString (page 1267). A locale part string is an ASCII string
whose full form is “lan-var.sc-v_rg-v”, where “lan-var” specifies the language and variant, “.sc-v”
specifies the script & variant, and “_rg-v” specifies the region and variant. Any of those three parts
can be omitted furthermore, the variant part “-var” or “-v” within any of those parts may be omitted.

lang
A pointer to a LangCode value, or pass NULL, if you do not want to obtain a language code. On return,
LocaleStringToLangAndRegionCodes produces the appropriate Mac OS language code for the
locale part string provided in the localeString parameter. Note that you can set either the lang
or the region parameter to NULL, but not both.

region
A pointer to a RegionCode value or pass NULL, if you do not want to obtain a region code. On return,
LocaleStringToLangAndRegionCodes produces the appropriate Mac OS region code for the locale
part string provided in the localeString parameter. Note that you can set either the region or
the lang parameter to NULL, but not both.

Return Value
A result code. If the localeString parameter is NULL or if the string cannot be mapped to an existing
language code and region code, the LocaleStringToLangAndRegionCodes function returns paramErr.
If the required resource is invalid, the function can return kLocalesTableFormatErr (-30002). The function
can also return Resource Manager errors.

Discussion
The LocaleStringToLangAndRegionCodes function maps from a locale string to a combination of Mac
OS language code and region code.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacLocales.h

Data Types

LocaleAndVariant
Identifies a specific locale and/or sub-class of locale-sensitive operations.

Data Types 1269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

struct LocaleAndVariant {
 LocaleRef locale;
 LocaleOperationVariant opVariant;
};
typedef struct LocaleAndVariant LocaleAndVariant;

Fields
locale

A LocaleRef value, encapsulating information regarding language, script, and/or region.

opVariant
A LocaleOperationVariant value, identifying an individual sub-class of locale-sensitive operations.
The opVariant field of a LocaleAndVariant value may be 0 for entries that do not have a specific
operation variant.

Discussion
You use the function LocaleOperationGetLocales (page 1263) to obtain a list of all the locale-and-variant
combinations available for a given class of operations. The LocaleOperationGetLocales function specifies
these combinations using the LocaleAndVariant type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacLocales.h

LocaleNameMask
Specifies named parts of locale data.

typedef UInt32 LocaleNameMask;

Discussion
The bits set in a LocaleNameMask value determine the kind of localized names that are produced by the
functions LocaleGetName (page 1258) and LocaleGetIndName (page 1257). For a description of the
LocaleNameMask values, see “Locale Name Masks” (page 1272).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacLocales.h

LocaleOperationClass
Identifies individual classes of locale-sensitive operations.

typedef FourCharCode LocaleOperationClass;

Discussion
Locale-sensitive Unicode Utilities operations fall into several classes, such as collation, text break determination,
and date and time formatting. You use the LocaleOperationClass type to specify these classes.

1270 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

Specific LocaleOperationClass values depend on the Locale Utilities client. Values from Unicode Utilities
include kUnicodeCollationClass ('ucol') and kUnicodeTextBreakClass ('ubrk'). For example,
the locales and collation variants available for collation operations can be determined by calling the functions
LocaleOperationCountLocales (page 1261) and LocaleOperationGetLocales (page 1263) with the
opClass parameter set to the kUnicodeCollationClass constant.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacLocales.h

LocaleOperationVariant
Identifies individual sub-classes of locale-sensitive operations.

typedef FourCharCode LocaleOperationVariant;

Discussion
Locale-sensitive Unicode Utilities operations fall into several classes, such as collation, text break determination,
and date and time formatting. You use the type LocaleOperationClass (page 1270) to specify these classes.
Some of these classes also have sub-classes of their operations. For example, sub-classes of collation operations
include dictionary vs. bibliographic collation, and radical-stroke vs. pinyin collation.

For classes such as collation, the LocaleOperationVariant type provides an operation-specific variant
field. This field is analogous to the @variant part of a POSIX locale string or the final _VARIANT part of a
Java locale string.

You can use LocaleOperationVariant values in the functions LocaleGetName (page 1258) ,
LocaleGetIndName (page 1257) , andLocaleCountNames (page 1256) to obtain localized names for operation
variants.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacLocales.h

LocalePartMask
Specifies kinds of locale data.

typedef UInt32 LocalePartMask;

Discussion
The bits set in a LocalePartMask value determine the kinds of locale information that are produced by the
function LocaleRefGetPartString (page 1267). For a description of the LocalePartMask values, see
“Locale Part Masks” (page 1273).

Availability
Available in Mac OS X v10.0 and later.

Data Types 1271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

Declared In
MacLocales.h

LocaleRef
An opaque type that refers to locale information.

typedef struct OpaqueLocaleRef * LocaleRef;

Discussion
A LocaleRef is an opaque type that references static locale data. You typically provide a LocaleRef value
to the locale-sensitive Unicode Utilities functions and to some Locale Utilities functions such as
LocaleGetName (page 1258) and LocaleOperationGetName (page 1264).

To obtain aLocaleRef, you can use the functionLocaleRefFromLangOrRegionCode (page 1265) to convert
a Mac OS language and/or region code to a LocaleRef value. Additionally, you can use the function
LocaleRefFromLocaleString (page 1266) to convert a locale part string—or an Internet language tag or
POSIX/Java locale string—to a LocaleRef value.

You should not save LocaleRef values in a file or other persistent storage, since a given LocaleRef is not
guaranteed to be valid across multiple launches of your application. For persistent storage, you can either
save the original value or string used to construct the LocaleRef, or you can use the function
LocaleRefGetPartString (page 1267) to convert a LocaleRef to a locale part string and save that.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacLocales.h

Constants

Locale Name Masks
Specify named parts of locale data.

enum {
 kLocaleNameMask = 1L << 0,
 kLocaleOperationVariantNameMask = 1L << 1,
 kLocaleAndVariantNameMask = 0x00000003
};

Constants
kLocaleNameMask

If the bit specified by this mask is set, then the name for a locale is specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

1272 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

kLocaleOperationVariantNameMask
If the bit specified by this mask is set, then the name for an operation variant is specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

kLocaleAndVariantNameMask
If the bits specified by this mask are set, then the name for a locale-and-variant combination is specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

Discussion
The bits set in a LocaleNameMask value determine the kind of localized names that are produced by the
functionsLocaleGetName (page 1258) andLocaleGetIndName (page 1257). With aLocaleNameMask value,
you can specify the name of a locale alone, the name of an operation variant alone, or the name for the
combination of the two.

Locale Part Masks
Specify kinds of locale data.

enum {
 kLocaleLanguageMask = 1L << 0,
 kLocaleLanguageVariantMask = 1L << 1,
 kLocaleScriptMask = 1L << 2,
 kLocaleScriptVariantMask = 1L << 3,
 kLocaleRegionMask = 1L << 4,
 kLocaleRegionVariantMask = 1L << 5,
 kLocaleAllPartsMask = 0x0000003F
};

Constants
kLocaleLanguageMask

If the bit specified by this mask is set, then a ISO 639-1 or -2 language code is specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

kLocaleLanguageVariantMask
If the bit specified by this mask is set, then a custom string for a language variant is specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

kLocaleScriptMask
If the bit specified by this mask is set, then a ISO 15924 script code is specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

kLocaleScriptVariantMask
If the bit specified by this mask is set, then a custom string for a script variant is specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

Constants 1273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

kLocaleRegionMask
If the bit specified by this mask is set, then a ISO 3166 country/region code is specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

kLocaleRegionVariantMask
If the bit specified by this mask is set, then a custom string for a region variant is specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

kLocaleAllPartsMask
If the bits specified by this mask are set, then all types (language and variant, script and variant, and
region and variant) of locale information are specified.

Available in Mac OS X v10.0 and later.

Declared in MacLocales.h.

Discussion
The bits set in a LocalePartMask value determine the kinds of locale information that are produced by the
function LocaleRefGetPartString (page 1267).

1274 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Locale Utilities Reference

Framework: CoreServices/CoreServices.h

Declared in ToolUtils.h
FixMath.h
Math64.h
fp.h
MacTypes.h

Overview

Important: This is a preliminary document. Although it has been reviewed for technical accuracy, it is not
final. Apple Computer is supplying this information to help you plan for the adoption of the technologies
and programming interfaces described herein. This information is subject to change, and software implemented
according to this document should be tested with final operating system software and final documentation.
For information about updates to this and other developer documentation, you can check the ADC Reference
Library Revision List. To receive notification of documentation updates, you can sign up for ADC's free Online
Program and receive the weekly Apple Developer Connection News email newsletter. (See http://develop-
er.apple.com/membership for more details about the Online Program.)

You can use the Mathematical and Logical Utilities to perform mathematical and logical operations in Mac
OS X programming. This document describes functions you can use to:

 ■ Perform low-level logical manipulation of bits and bytes when using a compiler that does not directly
support such manipulations.

 ■ Save disk space by using simple compression and decompression routines.

 ■ Obtain a pseudorandom number.

 ■ Perform mathematical operations with two fixed-point data types supported directly by the Operating
System.

 ■ Convert numeric variables of different types.

With the exception of the mathematical operations and conversions, these utilities are intended for
programmers who occasionally need to access some of these features and do not require that the algorithms
used to implement them be sophisticated. For example, if you are developing an advanced mathematical
application, the pseudorandom number generator built into Mac OS might be too simplistic to fit your needs.
Similarly, if you wish to access individual bits of memory in a time-critical loop, these routines are probably
too slow to be practical.

Overview 1275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

http://developer.apple.com/referencelibrary/index-rev-date.html
http://developer.apple.com/referencelibrary/index-rev-date.html
http://developer.apple.com/
http://developer.apple.com/

Carbon supports the Mathematical and Logical Utilities, with the exception of those functions that are
68K-specific. However there are several important differences between the implementation of the Mathematical
and Logical Utilities in Mac OS 9 and its implementation in Mac OS X.

The implementation in Carbon on Mac OS X of many floating-point functions defined in fp.h is not as
accurate as the implementation of those functions in MathLib on Mac OS 8 and 9 (as accessed either directly
or through CarbonLib). There are a number of reasons for this difference, including the different expectations
of Mac OS 9 and UNIX floating-point clients, compiler limitations, and the need in for an implementation
that’s independent of assumptions about the size and layout of floating-point data types.

Functions which take parameters or return values of type long double are not exported by the Core Services
framework on Mac OS X. Instead, these functions have been replaced with macros that map to the
corresponding double-typed functions. While these functions are exported by CarbonLib, CFM applications
calling these functions on Mac OS X should note that the implementations of the long double functions on
Mac OS X actually have only double precision, with the following four exceptions: num2decl, dec2numl,
x80told, and ldtox80.

Functions by Task

Converting Among 32-Bit Numeric Types

Fix2Frac (page 1297)
Converts a Fixed number to a Fract number.

Fix2Long (page 1298)
Converts a Fixed number to a LongInt number.

Frac2Fix (page 1305)
Converts a Fract number to a Fixed number.

Long2Fix (page 1314)
Converts a LongInt number to a Fixed number.

Converting Between Fixed-Point and Floating-Point Values

FixedToFloat (page 1300)
Converts a Fixed number to a float number.

FractToFloat (page 1308)
Converts a Fract number to a float number.

FloatToFixed (page 1302)
Converts a float number to a Fixed number.

FloatToFract (page 1303)
Converts a float number to a Fract number.

Fix2X (page 1298)
Converts a Fixed number to an Extended number.

Frac2X (page 1305)
Converts a Fract number to an Extended number.

1276 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

X2Fix (page 1344)
Converts an Extended number to a Fixed number.

X2Frac (page 1344)
Converts an Extended number to a Fract number.

Converting Between Fixed-Point and Integral Values

FixRatio (page 1301)
Obtains the Fixed equivalent of a fraction.

FixRound (page 1302)
Rounds a fixed-point number to the nearest integer.

Getting and Setting Memory Values

HiWord (page 1310)
Obtains the high-order word of a long word.

LoWord (page 1315)
Obtains the low-order word of a long word.

Multiplying and Dividing Fixed-Point Numbers

FixDiv (page 1299)
Divides two variables of the same type (Fixed, Fract, or LongInt) or to divide a LongInt or Fract
number by a Fixed number.

FixMul (page 1300)
Multiplies a variable of type Fixed with another variable of type Fixed or with a variable of type
Fract or LongInt.

FracDiv (page 1306)
Divides two variables of the same type (Fract, Fixed, or LongInt) or to divide a LongInt or Fixed
number by a Fract number.

FracMul (page 1307)
Multiplies a variable of type Fract with another variable of type Fract or with a variable of type
Fixed or LongInt.

Performing Calculations on Fixed-Point Numbers

FixATan2 (page 1299)
Obtains a fast approximation of the arctangent of a fraction.

FracCos (page 1306)
Obtains a fast approximation of the cosine of a Fixed number.

FracSin (page 1307)
Obtains a fast approximation of the sine of a Fixed number.

Functions by Task 1277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

FracSqrt (page 1308)
Obtains the square root of a Fract number.

Performing Logical Operations

BitAnd (page 1287)
Performs the AND logical operation on two long words.

BitNot (page 1288)
Performs the NOT logical operation on a long word.

BitOr (page 1288)
Performs the OR logical operation on two long words.

BitShift (page 1289)
Shifts bits in a long word.

BitXor (page 1290)
Performs the XOR logical operation on two long words.

Testing and Setting Bits

BitClr (page 1287)
Clears a particular bit (to a value of 0).

BitSet (page 1289)
Sets a particular bit (to a value of 1).

BitTst (page 1290)
Determines whether a given bit is set.

Miscellaneous Functions

acos (page 1284)

acosh (page 1285)

annuity (page 1285)

asin (page 1285)

asinh (page 1286)

atan (page 1286)

atan2 (page 1286)

atanh (page 1287)

1278 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

ceil (page 1291)

compound (page 1292)

copysign (page 1292)

cos (page 1292)

cosh (page 1293)

dec2f (page 1293)

dec2l (page 1293)

dec2num (page 1294)

dec2s (page 1294)

dec2str (page 1294)

dtox80 (page 1295)

erf (page 1295)

erfc (page 1295)

exp (page 1296)

exp2 (page 1296)

expm1 (page 1296)

fabs (page 1297)

fdim (page 1297)

floor (page 1303)

fmax (page 1304)

fmin (page 1304)

fmod (page 1304)

Functions by Task 1279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

fpclassify (page 1305)

frexp (page 1309)

gamma (page 1309)

hypot (page 1310)

isfinite (page 1311)

isnan (page 1311)

isnormal (page 1311)

ldexp (page 1312)

lgamma (page 1312)

log (page 1313)

log10 (page 1313)

log1p (page 1314)

log2 (page 1314)

logb (page 1314)

modf (page 1316)

modff (page 1316)

nan (page 1316)

nanf (page 1317)

nearbyint (page 1317)

nextafterd (page 1317)

nextafterf (page 1318)

num2dec (page 1318)

1280 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

pi (page 1318)

pow (page 1319)

randomx (page 1319)

relation (page 1319)

remainder (page 1320)

remquo (page 1320)

rint (page 1321)

rinttol (page 1321)

round (page 1321)

roundtol (page 1322)

S32Set (page 1322)

S64Absolute (page 1322)

S64Add (page 1323)

S64And (page 1323)

S64BitwiseAnd (page 1323)

S64BitwiseEor (page 1324)

S64BitwiseNot (page 1324)

S64BitwiseOr (page 1324)

S64Compare (page 1325)

S64Div (page 1325)

S64Divide (page 1325)

S64Eor (page 1326)

Functions by Task 1281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

S64Max (page 1326)

S64Min (page 1326)

S64Multiply (page 1327)

S64Negate (page 1327)

S64Not (page 1327)

S64Or (page 1328)

S64Set (page 1328)

S64SetU (page 1328)

S64ShiftLeft (page 1329)

S64ShiftRight (page 1329)

S64Subtract (page 1329)

scalb (page 1330)

signbit (page 1330)

sin (page 1330)

sinh (page 1331)

SInt64ToUInt64 (page 1331)

sqrt (page 1331)

str2dec (page 1332)

tan (page 1332)

tanh (page 1332)

trunc (page 1333)

U32SetU (page 1333)

1282 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

U64Add (page 1333)

U64And (page 1334)

U64BitwiseAnd (page 1334)

U64BitwiseEor (page 1334)

U64BitwiseNot (page 1335)

U64BitwiseOr (page 1335)

U64Compare (page 1335)

U64Div (page 1336)

U64Divide (page 1336)

U64Eor (page 1336)

U64Max (page 1337)

U64Multiply (page 1337)

U64Not (page 1337)

U64Or (page 1338)

U64Set (page 1338)

U64SetU (page 1338)

U64ShiftLeft (page 1339)

U64ShiftRight (page 1339)

U64Subtract (page 1339)

UInt64ToSInt64 (page 1340)

WideAdd (page 1340)

WideBitShift (page 1340)

Functions by Task 1283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

WideCompare (page 1341)

WideDivide (page 1341)

WideMultiply (page 1342)

WideNegate (page 1342)

WideShift (page 1342)

WideSquareRoot (page 1343)

WideSubtract (page 1343)

WideWideDivide (page 1343)

x80tod (page 1345)

Functions

acos

double_t acos (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1284 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

acosh

double_t acosh (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

annuity

double annuity (
 double rate,
 double periods
);

Parameters
rate
periods

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

asin

double_t asin (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Functions 1285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

asinh

double_t asinh (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

atan

double_t atan (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

atan2

double_t atan2 (
 double_t y,
 double_t x
);

Parameters
y
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1286 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

atanh

double_t atanh (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

BitAnd
Performs the AND logical operation on two long words.

long BitAnd (
 long value1,
 long value2
);

Parameters
value1

A long word.

value2
A long word.

Return Value
A long word that is the result of the AND operation on the long words passed as arguments. Each bit in the
returned value is set if and only if the corresponding bit is set in both value1 and value2.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
ToolUtils.h

BitClr
Clears a particular bit (to a value of 0).

void BitClr (
 void *bytePtr,
 long bitNum
);

Parameters
bytePtr

A pointer to a byte in memory.

Functions 1287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

bitNum
The bit to be cleared, specified as a positive offset from the high-order bit of the byte pointed to by
the bytePtr parameter. The bit being cleared need not be in the same byte pointed to by bytePtr.

Special Considerations

The bit numbering scheme used by the BitClr function is the opposite of the MC680x0 numbering. To
convert an MC680x0 bit number to the format required by the BitClr function, subtract the MC680x0 bit
number from the highest bit number.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
ToolUtils.h

BitNot
Performs the NOT logical operation on a long word.

long BitNot (
 long value
);

Parameters
value

A long word.

Return Value
A long word that is the result of the NOT operation on the long word passed in as an argument. Each bit in
the returned value is set if and only if the corresponding bit is not set in value.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
ToolUtils.h

BitOr
Performs the OR logical operation on two long words.

long BitOr (
 long value1,
 long value2
);

Parameters
value1

A long word.

value2
A long word.

1288 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Return Value
A long word that is the result of the OR operation on the long words passed as arguments. Each bit in the
returned value is set if and only if the corresponding bit is set in value1 or value2, or in both value1 and
value2.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
ToolUtils.h

BitSet
Sets a particular bit (to a value of 1).

void BitSet (
 void *bytePtr,
 long bitNum
);

Parameters
bytePtr

A pointer to a byte in memory.

bitNum
The bit to be set, specified as a positive offset from the high-order bit of the byte pointed to by the
bytePtr parameter. The bit being set need not be in the byte pointed to by bytePtr.

Special Considerations

The bit numbering scheme used by the BitSet function is the opposite of the MC680x0 numbering. To
convert an MC680x0 bit number to the format required by the BitSet function, subtract the MC680x0 bit
number from the highest bit number.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
ToolUtils.h

BitShift
Shifts bits in a long word.

long BitShift (
 long value,
 short count
);

Parameters
value

A long word.

Functions 1289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

count
The number of bits to shift. If this number is positive, BitShift shifts this many positions to the left;
if this number is negative, BitShift shifts this many positions to the right. The value in this parameter
is converted to the result of MOD 32.

Return Value
A long word that is the result of shifting the bits in the long word passed in as an argument. The shift’s
direction and extent are determined by the count parameter. Zeroes are shifted into empty positions
regardless of the direction of the shift.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
ToolUtils.h

BitTst
Determines whether a given bit is set.

Boolean BitTst (
 const void *bytePtr,
 long bitNum
);

Parameters
bytePtr

A pointer to a byte in memory.

bitNum
The bit to be tested, specified as a positive offset from the high-order bit of the byte pointed to by
the bytePtr parameter. The bit being tested need not be in the byte pointed to by bytePtr.

Return Value
TRUE if the specified bit is set (that is, has a value of 1) and FALSE if the bit is cleared (that is, has a value of
0).

Special Considerations

The bit numbering scheme used by the BitTst function is the opposite of the MC680x0 numbering. To
convert an MC680x0 bit number to the format required by the BitTst function, subtract the MC680x0 bit
number from the highest bit number.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
ToolUtils.h

BitXor
Performs the XOR logical operation on two long words.

1290 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

long BitXor (
 long value1,
 long value2
);

Parameters
value1

A long word.

value2
A long word.

Return Value
A long word that is the result of the XOR operation on the long words passed in as arguments. Each bit in
the returned value is set if and only if the corresponding bit is set in either value1 or value2, but not in
both value1 and value2.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
ToolUtils.h

ceil

double_t ceil (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
Aperture Edit Plugin - Borders & Titles

Declared In
fp.h

Functions 1291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

compound

double compound (
 double rate,
 double periods
);

Parameters
rate
periods

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

copysign

double_t copysign (
 double_t x,
 double_t y
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

cos

double_t cos (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1292 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

cosh

double_t cosh (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

dec2f

float dec2f (
 const decimal *d
);

Parameters
d

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

dec2l

long dec2l (
 const decimal *d
);

Parameters
d

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Functions 1293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

dec2num

double_t dec2num (
 const decimal *d
);

Parameters
d

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

dec2s

short dec2s (
 const decimal *d
);

Parameters
d

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

dec2str

void dec2str (
 const decform *f,
 const decimal *d,
 char *s
);

Parameters
f
d
s

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1294 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

dtox80

void dtox80 (
 const double *x,
 extended80 *x80
);

Parameters
x
x80

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

erf

double_t erf (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

erfc

double_t erfc (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Functions 1295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

exp

double_t exp (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

exp2

double_t exp2 (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

expm1

double_t expm1 (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1296 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

fabs

double_t fabs (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
HID Calibrator
HID Config Save
HID Explorer
SIMD Primer

Declared In
fp.h

fdim

double_t fdim (
 double_t x,
 double_t y
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Fix2Frac
Converts a Fixed number to a Fract number.

Fract Fix2Frac (
 Fixed x
);

Parameters
x

The Fixed number to be converted to a Fract number.

Functions 1297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Return Value
The Fract number equivalent to the Fixed number x. If x is greater than the maximum representable Fract
number, the Fix2Frac function returns $7FFFFFFF. If x is less than the negative number with the highest
absolute value, Fix2Frac returns $80000000.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

Fix2Long
Converts a Fixed number to a LongInt number.

SInt32 Fix2Long (
 Fixed x
);

Parameters
x

The Fixed number to be converted to a long integer.

Return Value
The long integer nearest to the Fixed number x. If x is halfway between two integers (0.5), it is rounded to
the integer with the higher absolute value.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

Fix2X
Converts a Fixed number to an Extended number.

double Fix2X (
 Fixed x
);

Parameters
x

The Fixed number to be converted to an Extended number.

Return Value
The Extended equivalent of the Fixed number x.

Special Considerations

Fix2X does not move memory; you can call it at interrupt time.

Availability
Available in Mac OS X version 10.0 and later.

1298 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Declared In
FixMath.h

FixATan2
Obtains a fast approximation of the arctangent of a fraction.

Fixed FixATan2 (
 SInt32 x,
 SInt32 y
);

Parameters
x

The numerator of the fraction whose arctangent is to be obtained. This variable can be a LongInt,
Fixed, or Fract number.

y
The denominator of the fraction whose arctangent is to be obtained. The number supplied in this
variable must be of the same type as that of the number supplied in the x parameter.

Return Value
The arctangent of y/x, in radians.

Discussion
The approximation of p/4 used to compute the arctangent is the hexadecimal value 0.C910, making the
approximation of p equal to 3.1416015625, while p itself equals 3.14159265.... Thus FixATan2(1, 1) equals
the equivalent of the hexadecimal value 0.C910. Despite the approximation of p, the arctangent value obtained
will usually be correct to several decimal places.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

FixDiv
Divides two variables of the same type (Fixed, Fract, or LongInt) or to divide a LongInt or Fract number
by a Fixed number.

Fixed FixDiv (
 Fixed x,
 Fixed y
);

Parameters
x

The first operand, which can be a variable of type Fixed or a variable of type Fract or LongInt.

y
The second operand, which can be a variable of type Fixed or it can be a variable of the same type
as the variable in parameter x.

Functions 1299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Return Value
The quotient of the numbers in x and y. If the y parameter is in the format of a Fixed number, then the x
parameter can be in the format of a Fixed, Fract, or LongInt number. If the y parameter is in the format
of a Fract or LongInt number, then the x parameter must be in the same format.

The returned value is in the format of a Fixed number if both x and y are both Fixed numbers, both Fract
numbers, or both LongInt numbers. Otherwise, the returned value is the same type as the number in the
x parameter.

Division by zero results in $8000000 if x is negative, and $7FFFFFFF otherwise; thus the special case 0/0 yields
$7FFFFFFF.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
SoftVDigX

Declared In
FixMath.h

FixedToFloat
Converts a Fixed number to a float number.

float FixedToFloat (
 Fixed x
);

Parameters
x

The Fixed number to be converted.

Return Value
The float equivalent of the Fixed number.

Discussion
This function is implemented as an inline macro.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
FixMath.h

FixMul
Multiplies a variable of type Fixed with another variable of type Fixed or with a variable of type Fract or
LongInt.

1300 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Fixed FixMul (
 Fixed a,
 Fixed b
);

Parameters
a

The first operand, which can be a variable of type Fixed or a variable of type Fract or LongInt.

b
The second operand, which can be a variable of type Fixed or a variable of type Fract or LongInt.

Return Value
The product of the numbers in a and b. At least one of a and b should be a variable of type Fixed.

The returned value is in the format of a LongInt if one of a or b is a LongInt. It is a Fract number if one
of a or b is Fract. It is a Fixed number if both a and b are Fixed numbers.

Overflows are set to the maximum representable value with the correct sign ($80000000 for negative results
and $7FFFFFFF for positive results).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

FixRatio
Obtains the Fixed equivalent of a fraction.

Fixed FixRatio (
 short numer,
 short denom
);

Parameters
numer

The numerator of the fraction.

denom
The denominator of the fraction.

Return Value
The Fixed equivalent of the fraction numer/denom.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
SoftVDigX

Declared In
FixMath.h

Functions 1301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

FixRound
Rounds a fixed-point number to the nearest integer.

short FixRound (
 Fixed x
);

Parameters
x

The Fixed number to be rounded.

Return Value
The Integer number nearest the Fixed number x. If the value is halfway between two integers (0.5), it is
rounded up. Thus, 4.5 is rounded to 5, and –3.5 is rounded to –3.

Discussion
To round a negative Fixed number so that values halfway between two integers are rounded to the number
with the higher absolute value, negate the number, round it, and then negate it again.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
SoftVDigX

Declared In
FixMath.h

FloatToFixed
Converts a float number to a Fixed number.

Fixed FloatToFixed (
 float x
);

Parameters
x

The float number to be converted.

Return Value
The Fixed equivalent of the float number.

Discussion
This function is implemented as an inline macro.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
FixMath.h

1302 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

FloatToFract
Converts a float number to a Fract number.

Fract FloatToFract (
 float x
);

Parameters
x

The float number to be converted.

Return Value
The Fract equivalent of the float number.

Discussion
This function is implemented as an inline macro.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
FixMath.h

floor

double_t floor (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
Aperture Edit Plugin - Borders & Titles
WhackedTV

Declared In
fp.h

Functions 1303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

fmax

double_t fmax (
 double_t x,
 double_t y
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

fmin

double_t fmin (
 double_t x,
 double_t y
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

fmod

double_t fmod (
 double_t x,
 double_t y
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1304 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

fpclassify

long fpclassify (
 float x
);

Parameters
x

A value of type float or double.

Return Value
Returns one of the FP_ values. See FP_SNAN (page 1351).

Discussion
This function is implemented as an inline macro.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Frac2Fix
Converts a Fract number to a Fixed number.

Fixed Frac2Fix (
 Fract x
);

Parameters
x

The Fract number to be converted to a Fixed number.

Return Value
The Fixed number that best approximates the Fract number x.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

Frac2X
Converts a Fract number to an Extended number.

double Frac2X (
 Fract x
);

Parameters
x

The Fract number to be converted to an Extended number.

Functions 1305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Return Value
The Extended equivalent of the Fract number x.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

FracCos
Obtains a fast approximation of the cosine of a Fixed number.

Fract FracCos (
 Fixed x
);

Parameters
x

The Fixed number expressed in radians, whose cosine is to be calculated.

Return Value
The cosine, expressed in radians, of the Fixed number x.

Discussion
The approximation of p/4 used to compute the cosine is the hexadecimal value 0.C910, making the
approximation of p equal to 3.1416015625, while p itself equals 3.14159265.... Despite the approximation of
p, the cosine value obtained is usually correct to several decimal places.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

FracDiv
Divides two variables of the same type (Fract, Fixed, or LongInt) or to divide a LongInt or Fixed number
by a Fract number.

Fract FracDiv (
 Fract x,
 Fract y
);

Parameters
x

The first operand, which can be a variable of type Fract or a variable of type Fixed or LongInt.

y
The second operand, which can be a variable of type Fract or a variable of the same type as the
variable in parameter a.

1306 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Return Value
The quotient of the numbers in a and b. If the b parameter is in the format of a Fract number, then the a
parameter can be in the format of a Fract, a Fixed, or a LongInt number. If the b parameter is in the format
of a Fixed or a LongInt number, then the a parameter must be in the same format.

The returned value is in the format of a Fract number if a and b are both Fract numbers, both Fixed
numbers, or both LongInt numbers. Otherwise, the returned value is in the same format as the number in
the a parameter.

Division by zero results in $8000000 if a is negative, and $7FFFFFFF otherwise; thus the special case 0/0 yields
$7FFFFFFF.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

FracMul
Multiplies a variable of type Fract with another variable of type Fract or with a variable of type Fixed or
LongInt.

Fract FracMul (
 Fract x,
 Fract y
);

Parameters
x

The first operand, which can be a variable of type Fract or a variable of type Fixed or LongInt.

y
The second operand, which can be a variable of type Fract or a variable of type Fixed or LongInt.

Return Value
The product of the numbers in a and b. At least one of a or b should be a variable of type Fract.

The returned value is in the format of a LongInt number if one of a and b is a LongInt number. It is a Fixed
number if one of a or b is a Fixed number. It is a Fract number if both a and b are Fract numbers.

Overflows are set to the maximum representable value with the correct sign ($80000000 for negative results
and $7FFFFFFF for positive results).

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

FracSin
Obtains a fast approximation of the sine of a Fixed number.

Functions 1307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Fract FracSin (
 Fixed x
);

Parameters
x

The Fixed number expressed in radians, whose sine is to be calculated.

Return Value
The sine, expressed in radians, of the Fixed number x.

Discussion
The approximation of p/4 used to compute the sine is the hexadecimal value 0.C910, making the approximation
of p equal to 3.1416015625, while p itself equals 3.14159265.... Despite the approximation of p, the sine value
obtained is usually correct to several decimal places.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

FracSqrt
Obtains the square root of a Fract number.

Fract FracSqrt (
 Fract x
);

Parameters
x

The Fract number to obtain a square root of. This parameter is interpreted as being unsigned in the
range 0 through 4 – 2–30, inclusive. That is, the bit of the Fract number that ordinarily has weight
-2 is instead interpreted as having weight 2.

Return Value
The square root of the specified Fract number. The result is unsigned in the range 0 through 2, inclusive.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

FractToFloat
Converts a Fract number to a float number.

1308 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

float FixedToFract (
 Fract x
);

Parameters
x

The Fract number to be converted.

Return Value
The float equivalent of the Fract number.

Discussion
This function is implemented as an inline macro.

Availability
Available in Mac OS X version 10.3 and later.

Declared In
FixMath.h

frexp

double_t frexp (
 double_t x,
 int *exponent
);

Parameters
x
exponent

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

gamma

double_t gamma (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
Gamma Filter for FxPlug and AE

Functions 1309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

SoftVDigX

Declared In
fp.h

HiWord
Obtains the high-order word of a long word.

SInt16 HiWord (
 SInt32 x
);

Parameters
x

The long word whose high word is to be returned.

Return Value
The high-order word of the long word specified by the x parameter.

Discussion
One use of this function is to obtain the integral part of a fixed-point number.

To copy a range of bytes from one memory location to another, you should ordinarily use the Memory
Manager function, BlockMove.

Availability

Declared In
ToolUtils.h

hypot

double_t hypot (
 double_t x,
 double_t y
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
pyport.h

1310 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

isfinite

long isfinite (
 float x
);

Parameters
x

A value of type float or double.

Return Value
Returns a non-zero value only if the argument is finite.

Discussion
This function is implemented as an inline macro.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

isnan

long isnan (
 float x
);

Parameters
x

A value of type float or double.

Return Value
Returns a non-zero value only if the argument is not a number (NaN).

Discussion
This function is implemented as an inline macro.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

isnormal

long isnormal (
 float x
);

Parameters
x

A value of type float or double.

Functions 1311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Return Value
Returns a non-zero value only if the argument is normalized.

Discussion
This function is implemented as an inline macro.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

ldexp

double_t ldexp (
 double_t x,
 int n
);

Parameters
x
n

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

lgamma

double_t lgamma (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1312 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

log

double_t log (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
dist_fft
FBOBunnies
FilterDemo
LSMSmartCategorizer
PBORenderToVertexArray

Declared In
syslog.h

log10

double_t log10 (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
WhackedTV

Declared In
fp.h

Functions 1313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

log1p

double_t log1p (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

log2

double_t log2 (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

logb

double_t logb (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Long2Fix
Converts a LongInt number to a Fixed number.

1314 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Fixed Long2Fix (
 SInt32 x
);

Parameters
x

The long integer to be converted to a Fixed number.

Return Value
The Fixed number equivalent to the long integer x. If x is greater than the maximum representable fixed-point
number, the Long2Fix function returns $7FFFFFFF. If x is less than the negative number with the highest
absolute value, Long2Fix returns $80000000.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample

Declared In
FixMath.h

LoWord
Obtains the low-order word of a long word.

SInt16 LoWord (
 SInt32 x
);

Parameters
x

The long word whose low word is to be returned.

Return Value
The low-order word of the long word specified by the x parameter.

Discussion
One use of this function is to obtain the fractional part of a fixed-point number.

To copy a range of bytes from one memory location to another, you should ordinarily use the Memory
Manager function, BlockMove.

Availability

Declared In
ToolUtils.h

Functions 1315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

modf

double_t modf (
 double_t x,
 double_t *iptr
);

Parameters
x
iptr

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

modff

float modff (
 float x,
 float *iptrf
);

Parameters
x
iptrf

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

nan

double nan (
 const char *tagp
);

Parameters
tagp

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1316 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

nanf

float nanf (
 const char *tagp
);

Parameters
tagp

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

nearbyint

double_t nearbyint (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

nextafterd

double nextafterd (
 double x,
 double y
);

Parameters
x
y

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Functions 1317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

nextafterf

float nextafterf (
 float x,
 float y
);

Parameters
x
y

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

num2dec

void num2dec (
 const decform *f,
 double_t x,
 decimal *d
);

Parameters
f
x
d

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

pi

pi ();

Parameters
Return Value
Availability

Declared In
fp.h

1318 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

pow

double_t pow (
 double_t x,
 double_t y
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
Gamma Filter for FxPlug and AE
WhackedTV

Declared In
fp.h

randomx

double_t randomx (
 double_t *x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

relation

relop relation (
 double_t x,
 double_t y
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Functions 1319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Declared In
fp.h

remainder

double_t remainder (
 double_t x,
 double_t y
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
SoftVDigX

Declared In
fp.h

remquo

double_t remquo (
 double_t x,
 double_t y,
 int *quo
);

Parameters
x
y
quo

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1320 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

rint

double_t rint (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

rinttol

long rinttol (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

round

double_t round (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Functions 1321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

roundtol

long roundtol (
 double_t round
);

Parameters
round

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

S32Set

SInt32 S32Set (
 SInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64Absolute

SInt64 S64Absolute (
 SInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

1322 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

S64Add

SInt64 S64Add (
 SInt64 left,
 SInt64 right
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64And

Boolean S64And (
 SInt64 left,
 SInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64BitwiseAnd

SInt64 S64BitwiseAnd (
 SInt64 left,
 SInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

Functions 1323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

S64BitwiseEor

SInt64 S64BitwiseEor (
 SInt64 left,
 SInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64BitwiseNot

SInt64 S64BitwiseNot (
 SInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64BitwiseOr

SInt64 S64BitwiseOr (
 SInt64 left,
 SInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

1324 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

S64Compare

SInt32 S64Compare (
 SInt64 left,
 SInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64Div

SInt64 S64Div (
 SInt64 dividend,
 SInt64 divisor
);

Parameters
dividend
divisor

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64Divide

SInt64 S64Divide (
 SInt64 dividend,
 SInt64 divisor,
 SInt64 *remainder
);

Parameters
dividend
divisor
remainder

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Functions 1325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Declared In
Math64.h

S64Eor

Boolean S64Eor (
 SInt64 left,
 SInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64Max

SInt64 S64Max (
 void
);

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64Min

SInt64 S64Min (
 void
);

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

1326 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

S64Multiply

SInt64 S64Multiply (
 SInt64 left,
 SInt64 right
);

Parameters
xparam
yparam

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64Negate

SInt64 S64Negate (
 SInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64Not

Boolean S64Not (
 SInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

Functions 1327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

S64Or

Boolean S64Or (
 SInt64 left,
 SInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64Set

SInt64 S64Set (
 SInt32 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64SetU

SInt64 S64SetU (
 UInt32 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

1328 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

S64ShiftLeft

SInt64 S64ShiftLeft (
 SInt64 value,
 UInt32 shift
);

Parameters
value
shift

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64ShiftRight

SInt64 S64ShiftRight (
 SInt64 value,
 UInt32 shift
);

Parameters
value
shift

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

S64Subtract

SInt64 S64Subtract (
 SInt64 left,
 SInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

Functions 1329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

scalb

double_t scalb (
 double_t x,
 _scalb_n_type n
);

Parameters
x
n

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

signbit

long signbit (
 float x
);

Parameters
x

A value of type float or double, NaN, infinity, or zero.

Return Value
Returns a non-zero value only if the sign of the argument is negative.

Discussion
This function is implemented as an inline macro.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

sin

double_t sin (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

1330 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Declared In
fp.h

sinh

double_t sinh (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

SInt64ToUInt64

UInt64 SInt64ToUInt64 (
 SInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

sqrt

double_t sqrt (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Functions 1331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

str2dec

void str2dec (
 const char *s,
 short *ix,
 decimal *d,
 short *vp
);

Parameters
s
ix
d
vp

Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

tan

double_t tan (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

tanh

double_t tanh (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

1332 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

trunc

_trunc_return_type trunc (
 double_t x
);

Parameters
x

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

U32SetU

UInt32 U32SetU (
 UInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64Add

UInt64 U64Add (
 UInt64 left,
 UInt64 right
);

Parameters
x
y

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

Functions 1333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

U64And

Boolean U64And (
 UInt64 left,
 UInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64BitwiseAnd

UInt64 U64BitwiseAnd (
 UInt64 left,
 UInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64BitwiseEor

UInt64 U64BitwiseEor (
 UInt64 left,
 UInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

1334 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

U64BitwiseNot

UInt64 U64BitwiseNot (
 UInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64BitwiseOr

UInt64 U64BitwiseOr (
 UInt64 left,
 UInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64Compare

SInt32 U64Compare (
 UInt64 left,
 UInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

Functions 1335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

U64Div

Under evaluation

UInt64 U64Div (
 UInt64 dividend,
 UInt64 divisor
);

Parameters
dividend
divisor

Return Value
Availability

Declared In
Math64.h

U64Divide

UInt64 U64Divide (
 UInt64 dividend,
 UInt64 divisor,
 UInt64 *remainder
);

Parameters
dividend
divisor
remainder

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64Eor

Boolean U64Eor (
 UInt64 left,
 UInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

1336 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Declared In
Math64.h

U64Max

UInt64 U64Max (
 void
);

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64Multiply

UInt64 U64Multiply (
 UInt64 left,
 UInt64 right
);

Parameters
xparam
yparam

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64Not

Boolean U64Not (
 UInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

Functions 1337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

U64Or

Boolean U64Or (
 UInt64 left,
 UInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64Set

UInt64 U64Set (
 SInt32 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64SetU

UInt64 U64SetU (
 UInt32 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

1338 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

U64ShiftLeft

UInt64 U64ShiftLeft (
 UInt64 value,
 UInt32 shift
);

Parameters
value
shift

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64ShiftRight

UInt64 U64ShiftRight (
 UInt64 value,
 UInt32 shift
);

Parameters
value
shift

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

U64Subtract

UInt64 U64Subtract (
 UInt64 left,
 UInt64 right
);

Parameters
left
right

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

Functions 1339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

UInt64ToSInt64

SInt64 UInt64ToSInt64 (
 UInt64 value
);

Parameters
value

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
Math64.h

WideAdd

wide * WideAdd (
 wide *target,
 const wide *source
);

Parameters
target
source

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
SoftVDigX

Declared In
FixMath.h

WideBitShift

wide * WideBitShift (
 wide *target,
 SInt32 shift
);

Parameters
src
shift

Return Value
Availability
Available in Mac OS X version 10.0 and later.

1340 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Declared In
FixMath.h

WideCompare

short WideCompare (
 const wide *target,
 const wide *source
);

Parameters
target
source

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

WideDivide

SInt32 WideDivide (
 const wide *dividend,
 SInt32 divisor,
 SInt32 *remainder
);

Parameters
dividend
divisor
remainder

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

Functions 1341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

WideMultiply

wide * WideMultiply (
 SInt32 multiplicand,
 SInt32 multiplier,
 wide *target
);

Parameters
multiplicand
multiplier
target

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

WideNegate

wide * WideNegate (
 wide *target
);

Parameters
target

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

WideShift

wide * WideShift (
 wide *target,
 SInt32 shift
);

Parameters
target
shift

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

1342 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

WideSquareRoot

UInt32 WideSquareRoot (
 const wide *source
);

Parameters
source

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

WideSubtract

wide * WideSubtract (
 wide *target,
 const wide *source
);

Parameters
target
source

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

WideWideDivide

wide * WideWideDivide (
 wide *dividend,
 SInt32 divisor,
 SInt32 *remainder
);

Parameters
dividend
divisor
remainder

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

Functions 1343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

X2Fix
Converts an Extended number to a Fixed number.

Fixed X2Fix (
 double x
);

Parameters
x

The Extended number to be converted to a Fixed number.

Return Value
The best Fixed approximation of the Extended number x. If x is greater than the maximum representable
Fixed number, the X2Fix function returns $7FFFFFFF. If x is less than the negative number with the highest
absolute value, X2Fix returns $80000000.

Availability
Available in Mac OS X version 10.0 and later.

Related Sample Code
LiveVideoMixer2

Declared In
FixMath.h

X2Frac
Converts an Extended number to a Fract number.

Fract X2Frac (
 double x
);

Parameters
x

The Extended number to be converted to a Fract number.

Return Value
The best Fract approximation of the Extended number x. If x is greater than the maximum representable
Fract number, the X2Frac function returns $7FFFFFFF. If x is less than the negative number with the highest
absolute value, X2Frac returns $80000000.

Availability
Available in Mac OS X version 10.0 and later.

Declared In
FixMath.h

1344 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

x80tod

double x80tod (
 const extended80 *x80
);

Parameters
x80

Return Value
Availability
Available in Mac OS X version 10.0 and later.

Declared In
fp.h

Data Types

decform

struct decform {
 char style;
 char unused;
 short digits;
};
typedef struct decform decform;

Fields
style
unused
digits

Availability
Available in Mac OS X v10.0 and later.

Declared In
fp.h

Data Types 1345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

decimal

struct decimal {
 char sgn
 char unused
 short exp
 struct {
 unsigned char length;
 unsigned char text[36];
 unsigned char pad;
 } sig;
};
typedef struct decimal decimal;

Fields
sgn
unused
exp
length
text
pad

Availability
Available in Mac OS X v10.0 and later.

Declared In
fp.h

double_t

typedef double double_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
fp.h

fenv_t

typedef SInt32 fenv_t;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
fenv.h

1346 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

fexcept_t

typedef SInt32 fexcept_t;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared In
fenv.h

Fixed
Defines a data type for fixed-point decimal numbers.

typedef SInt32 Fixed;

Discussion
This data type uses a 16-bit signed integer and a 16-bit fraction to represent fixed-point decimal numbers
in the interval:

For example, the number 1.5 would be represented as 0x00018000, and the number -1.3 would be represented
as 0xFFFEB334. To convert numbers between Fixed and float, you can use the functions
FixedToFloat (page 1300) and FloatToFixed (page 1302).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

Fract
Defines a high-precision data type for fixed-point decimal numbers.

typedef SInt32 Fract;

Discussion
This data type uses a 2-bit signed integer and a 30-bit fraction to represent fixed-point decimal numbers in
the interval

with higher precision than the Fixed (page 1347) data type. For example, the number 1.5 would be represented
as 0x60000000, and the number -1.3 would be represented as 0xACCCCCCD. To convert numbers between
Fract and float, you can use the functions FractToFloat (page 1308) and FloatToFract (page 1303).

Availability
Available in Mac OS X v10.0 and later.

Data Types 1347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Declared In
IOMacOSTypes.h

float_t

typedef float float_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
fp.h

relop

typedef short relop;

Availability
Available in Mac OS X v10.0 and later.

Declared In
fp.h

1348 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

_scalb_n_type

typedef int _scalb_n_type;

_trunc_return_type

typedef double_t _trunc_return_type;

Constants

DECSTROUTLEN

enum {
 DECSTROUTLEN = 80
};

Constants
DECSTROUTLEN

FE_INEXACT
Definitions of floating-point exception macros.

enum {
 FE_INEXACT = 0x02000000,
 FE_DIVBYZERO = 0x04000000,
 FE_UNDERFLOW = 0x08000000,
 FE_OVERFLOW = 0x10000000,
 FE_INVALID = 0x20000000,
 FE_ALL_EXCEPT = 0x3E000000
};

Constants
FE_INEXACT

Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fenv.h.

FE_DIVBYZERO
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fenv.h.

FE_UNDERFLOW
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fenv.h.

FE_OVERFLOW
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fenv.h.

Constants 1349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

FE_INVALID
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fenv.h.

FE_ALL_EXCEPT
Available in Mac OS X v10.1 through Mac OS X v10.1.

Declared in fenv.h.

FE_LDBLPREC

enum {
 FE_LDBLPREC = 0,
 FE_DBLPREC = 1,
 FE_FLTPREC = 2
};

Constants
FE_LDBLPREC
FE_DBLPREC
FE_FLTPREC

FE_TONEAREST
Definitions of rounding direction macros.

enum {
 FE_TONEAREST = 0x00000000,
 FE_TOWARDZERO = 0x00000001,
 FE_UPWARD = 0x00000002,
 FE_DOWNWARD = 0x00000003
};

Constants
FE_TONEAREST

Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fenv.h.

FE_TOWARDZERO
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fenv.h.

FE_UPWARD
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fenv.h.

FE_DOWNWARD
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fenv.h.

1350 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

fixed1

enum {
 fixed1 = 0x00010000,
 fract1 = 0x40000000,
 positiveInfinity = 0x7FFFFFFF,
 negativeInfinity = 0x80000000
};

Constants
fixed1
fract1
positiveInfinity
negativeInfinity

FP_SNAN

enum {
 FP_SNAN = 0,
 FP_QNAN = 1,
 FP_INFINITE = 2,
 FP_ZERO = 3,
 FP_NORMAL = 4,
 FP_SUBNORMAL = 5
};

Constants
FP_SNAN

Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fp.h.

FP_QNAN
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fp.h.

FP_INFINITE
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fp.h.

FP_ZERO
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fp.h.

FP_NORMAL
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fp.h.

FP_SUBNORMAL
Available in Mac OS X v10.0 through Mac OS X v10.1.

Declared in fp.h.

Constants 1351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Relational Operator

typedef short relop;
enum {
 GREATERTHAN = 0,
 LESSTHAN = 1,
 EQUALTO = 2,
 UNORDERED = 3
};

Constants
GREATERTHAN

Available in Mac OS X v10.0 and later.

Declared in fp.h.

LESSTHAN
Available in Mac OS X v10.0 and later.

Declared in fp.h.

EQUALTO
Available in Mac OS X v10.0 and later.

Declared in fp.h.

UNORDERED
Available in Mac OS X v10.0 and later.

Declared in fp.h.

SIGDIGLEN

enum {
 SIGDIGLEN = 36
};

Constants
SIGDIGLEN

Special Values

#define HUGE_VAL
#define INFINITY

Constants
HUGE_VAL

Available in Mac OS X v10.0 and later.

Declared in fp.h.

INFINITY
Available in Mac OS X v10.0 and later.

Declared in fp.h.

1352 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Mathematical and Logical Utilities Reference

Framework: CoreServices/CoreServices.h

Declared in OSUtils.h

Overview

Applications can use the Memory Management Utilities to

 ■ ensure that their callback routines, interrupt tasks, and stand-alone code could access application global
variables or QuickDraw global variables

 ■ add elements to and remove them from an operating-system queue

 ■ ensure that they function properly in both 24- and 32-bit modes

 ■ ensure that data or instructions in the microprocessor’s internal caches remain consistent with data or
instructions in RAM

While Carbon supports most of the Memory Management Utilities, there are changes to functions that assume
a 68K runtime environment.

 ■ Functions that flush caches on 68K processors (such as FlushInstructionCache, FlushDataCache,
and FlushCodeCacheRange) are no longer supported.

 ■ Functions such as SetA5 or SetCurrentA5 do nothing when running in Mac OS X. However, these
functions should work normally when running in Mac OS 8 or 9.

 ■ The functions GetMMUMode and SwapMMUMode are not supported because all PowerPC applications use
32-bit addressing, even if they are not Carbon-compliant.

 ■ The SysEnvirons function is no longer supported since the Gestalt Manager can provide the same
information. You should call the functions FindFolder and Gestalt instead.

For a list of unsupported functions, see the Carbon Specification.

Functions by Task

Determining the Measurement System

IsMetric (page 1361)
Verifies whether the current script system is using the metric system or the English system of
measurement.

Overview 1353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

Reading and Writing Location Data

ReadLocation (page 1362)
Obtains information about a geographic location or time zone.

WriteLocation (page 1365) Deprecated in Mac OS X v10.0
Changes the geographic location or time-zone information stored in extended parameter RAM.
(Deprecated. There is no replacement because you cannot set this information in Mac OS X.)

Setting and Restoring the A5 Register

SetA5 (page 1363) Deprecated in Mac OS X v10.4
Sets the A5 register to the address specified. (Deprecated. There is no replacement because Mac OS
X doesn’t use the A5 variable.)

SetCurrentA5 (page 1364) Deprecated in Mac OS X v10.4
Sets the value in register A5 to the value of the low-memory global variable CurrentA5. (Deprecated.
There is no replacement because Mac OS X doesn’t use the A5 variable.)

Getting the User and Computer Name

CSCopyMachineName (page 1355)
Returns a reference to the CFString that represents the computer name.

CSCopyUserName (page 1356)
Returns a reference to the CFString that represents the user name.

Managing a Queue

Enqueue (page 1359)
Adds elements directly to an operating-system queue or a queue that you create.

Dequeue (page 1356)
Removes a queue element directly from an operating-system queue or from a queue that you have
created.

DTUninstall (page 1358)
(Deprecated. You should restructure your application to use threads, such as those supplied by
Multiprocessing Services.)

DTInstall (page 1358) Deprecated in Mac OS X v10.4
Adds the specified task record to the deferred-task queue. (Deprecated. You should restructure your
application to use threads, such as those supplied by Multiprocessing Services.)

Working With Parameter RAM

InitUtil (page 1360) Deprecated in Mac OS X v10.3
Copies the contents of parameter RAM into low memory. (Deprecated. There is no replacement
because Mac OS X doesn’t require this initialization.)

1354 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

GetSysPPtr (page 1360) Deprecated in Mac OS X v10.4
Returns a pointer to the low-memory copy of parameter RAM. (Deprecated. There is no replacement;
this function always returns NULL in Mac OS X.)

WriteParam (page 1366) Deprecated in Mac OS X v10.4
Write the modified values in the system parameters data structure to parameter RAM. (Deprecated.
There is no replacement, because this function does nothing in Mac OS X.)

Miscellaneous

Delay (page 1356)
Delays execture for the specified amount of time.

TickCount (page 1365)
Obtains the current number of ticks (a tick is approximately 1/60 of a second) since the system last
started up.

MakeDataExecutable (page 1362)
Notifies the system that the specified data is subject to execution.

Working With Universal Procedure Pointers

NewDeferredTaskUPP (page 1362)
Creates a new universal procedure pointer (UPP) to a deferred-task callback.

InvokeDeferredTaskUPP (page 1361)
Calls a deferred-task callback.

DisposeDeferredTaskUPP (page 1358)
Disposes of a universal procedure pointer (UPP) to a deferred-task callback.

Functions

CSCopyMachineName
Returns a reference to the CFString that represents the computer name.

CFStringRef CSCopyMachineName (
 void
);

Return Value
A CFStringRef. See the Base Services documentation for a description of the CFStringRef data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

Functions 1355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

CSCopyUserName
Returns a reference to the CFString that represents the user name.

CFStringRef CSCopyUserName (
 Boolean useShortName
);

Parameters
useShortName

A Boolean value that specifies whether to return the short name or full name of the user.

Return Value
A CFStringRef. See the Base Services documentation for a description of the CFStringRef data type.

Discussion
The function CSCopyUserName returns a CFStringRef based on the read UID (RUID, as returned by getuid)
of the calling process. This can result in unexpected behavior (that is, CSCopyUserName returning different
results than SCDynamicStoreCopyConsoleUser) for processes that manipulate their UID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

Delay
Delays execture for the specified amount of time.

void Delay (
 unsigned long numTicks,
 unsigned long *finalTicks
);

Parameters
numTicks
finalTicks

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

Dequeue
Removes a queue element directly from an operating-system queue or from a queue that you have created.

1356 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

OSErr Dequeue (
 QElemPtr qElement,
 QHdrPtr qHeader
);

Parameters
qElement

A pointer to a queue element to remove from a queue.

qHeader
A pointer to a queue header.

Return Value
A result code. See “Memory Management Utilities Result Codes” (page 1376).

Discussion
The Dequeue function attempts to find the queue element specified by the qElement parameter in the
queue specified by the qHeader parameter. If Dequeue finds the element, it removes the element from the
queue, adjusts the other elements in the queue accordingly, and returns noErr. Otherwise, it returns qErr,
indicating that it could not find the element in the queue. The Dequeue function does not deallocate the
memory occupied by the queue element.

For a description of the QElem record, see QElem (page 1369); for a description of the QHdr record, see
QHdr (page 1370).

The Dequeue function disables interrupts as it searches through the queue for the element to be removed.
The time during which interrupts are disabled depends on the length of the queue and the position of the
entry in the queue. The Dequeue function can be called at interrupt time. However, the Dequeue function
is ordinarily used only by system software and, whenever possible, you should manipulate an operating-system
queue indirectly, by calling special-purpose removal functions. You can use the Queue Utilities functions for
directly manipulating queues that you create. Use the following functions instead of Dequeue:

 ■ SlotVRemove

Removes a slot-based VBL task. This function is available with the Vertical Retrace Manager.

 ■ VRemove

Removes a system-based VBL task. This function is available with the Vertical Retrace Manager.

 ■ WaitNextEvent

Removes an Event. This function is available with the Event manager.

 ■ SIntRemove

Removes a slot interrupt task. This function is available with the Slot Manager.

 ■ NMRemove

Removes a Notification request. This function is available with the Notification Manager.

 ■ SleepQRemove

Removes a Sleep task. This function is available with the Power Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

Functions 1357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

DisposeDeferredTaskUPP
Disposes of a universal procedure pointer (UPP) to a deferred-task callback.

void DisposeDeferredTaskUPP (
 DeferredTaskUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback DeferredTaskProcPtr (page 1367) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

DTInstall
Adds the specified task record to the deferred-task queue. (Deprecated in Mac OS X v10.4. You should
restructure your application to use threads, such as those supplied by Multiprocessing Services.)

OSErr DTInstall (
 DeferredTaskPtr dtTaskPtr
);

Parameters
dtTaskPtr

Return Value
A result code. See “Memory Management Utilities Result Codes” (page 1376).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OSUtils.h

DTUninstall
(Deprecated in Mac OS X v10.4. You should restructure your application to use threads, such as those supplied
by Multiprocessing Services.)

OSErr DTUninstall (
 DeferredTaskPtr dtTaskPtr
);

Availability
Available in Mac OS X v10.4 and later.

1358 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OSUtils.h

Enqueue
Adds elements directly to an operating-system queue or a queue that you create.

void Enqueue (
 QElemPtr qElement,
 QHdrPtr qHeader
);

Parameters
qElement

A pointer to the queue element to add to a queue.

qHeader
A pointer to a queue header.

Discussion
The Enqueue function adds the queue element specified by the qElement parameter to the end of the
queue specified by the qHeader parameter. The specified queue header is updated to reflect the new queue
element.

For a description of the QElem record, see QElem (page 1369); for a description of the QHdr record, see
QHdr (page 1370).

Because interrupt functions are likely to manipulate operating-system queues, interrupts are disabled for a
short time while the specified queue is updated. You can call the Enqueue function at interrupt time. However,
the Enqueue function is ordinarily used only by system software. Whenever possible, you should manipulate
an operating-system queue indirectly, by calling special-purpose functions whenever possible, instead of
the Enqueue function. You can use the Queue Utilities functions for directly manipulating queues that you
create. Use the following functions instead of Enqueue:

 ■ SlotVInstall

Installs a slot-based VBL task. This function is available with the Vertical Retrace Manager.

 ■ VInstall

Installs a system-based VBL task. This function is available with the Vertical Retrace Manager.

 ■ AddDrive

Adds a disk drive. This function is available with the Device Manager.

 ■ PPostEvent and PostEvent

Installs an Event. This function is available with the Event manager.

 ■ DTInstall

Installs a deferred task. This function is available with the Memory Management Utilities.

 ■ SIntInstall

Installs a slot interrupt task. This function is available with the Slot Manager.

Functions 1359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

 ■ NMInstall

Installs a Notification request. This function is available with the Notification Manager.

 ■ SleepQInstall

Installs a Sleep task. This function is available with the Power Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

GetSysPPtr
Returns a pointer to the low-memory copy of parameter RAM. (Deprecated in Mac OS X v10.4. There is no
replacement; this function always returns NULL in Mac OS X.)

SysPPtr GetSysPPtr (
 void
);

Return Value
See the description of the SysPPtr data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OSUtils.h

InitUtil
Copies the contents of parameter RAM into low memory. (Deprecated in Mac OS X v10.3. There is no
replacement because Mac OS X doesn’t require this initialization.)

OSErr InitUtil (
 void
);

Return Value
A result code. See “Memory Management Utilities Result Codes” (page 1376).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
OSUtils.h

1360 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

InvokeDeferredTaskUPP
Calls a deferred-task callback.

void InvokeDeferredTaskUPP (
 long dtParam,
 DeferredTaskUPP userUPP
);

Discussion
You should not need to use the function InvokeDeferredTaskUPP, as the system calls your deferred-task
callback for you. See the callback DeferredTaskProcPtr (page 1367) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

IsMetric
Verifies whether the current script system is using the metric system or the English system of measurement.

Boolean IsMetric (
 void
);

Return Value
TRUE if the metric system is being used; FALSE if the English system is being used.

Discussion
The IsMetric function examines the metricSys field of the numeric-format resource (resource type 'itl0')
to determine if the current script is using the metric system. A value of 255 in the metricSys field indicates
that the metric system (centimeters, kilometers, milligrams, degrees Celsius, and so on) is being used. A value
of 0 in the metricSys field indicates that the English system of measurement (inches, miles, ounces, degrees
Fahrenheit, and so on) is used.

If you want to use units of measurement different from that of the current script, you need to override the
value of the metricSys field in the current numeric-format resource. You can do this by using your own
version of the numeric-format resource instead of the current script system’s default international resource.

The IsMetric function is the same as the IUMetric function, which was previously available with the
International Utilities Package.

Special Considerations

The IsMetric function may move or purge blocks in the heap calling it may cause problems if you’ve
dereferenced a handle. Do not call this function from within interrupt code, such as in a completion function
or a VBL task.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

Functions 1361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

MakeDataExecutable
Notifies the system that the specified data is subject to execution.

void MakeDataExecutable (
 void *baseAddress,
 unsigned long length
);

Parameters
baseAddress

The starting address of the data to be flushed.

length
The length of the data pointed to by the baseAddress parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
OSUtils.h

NewDeferredTaskUPP
Creates a new universal procedure pointer (UPP) to a deferred-task callback.

DeferredTaskUPP NewDeferredTaskUPP (
 DeferredTaskProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your deferred-task callback.

Return Value
On return, a UPP to a deferred-task callback. See the description of the DeferredTaskUPP data type.

Discussion
See the callback DeferredTaskProcPtr (page 1367) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

ReadLocation
Obtains information about a geographic location or time zone.

1362 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

void ReadLocation (
 MachineLocation *loc
);

Parameters
loc

On return, the fields of the geographic location structure containing the geographic location and the
time-zone information.The ReadLocation procedure reads the stored geographic location and time
zone of the Macintosh computer from extended parameter RAM.

You can get values for the latitude, longitude, daylight savings time (DST), or Greenwich mean time
(GMT). If the geographic location record has never been set, all fields contain 0.

Discussion
The latitude and longitude are stored as Fract values, giving accuracy to within one foot. For example, a
Fract value of 1.0 equals 90 degrees –1.0 equals –90 degrees and –2.0 equals –180 degrees.

To convert these values to a degrees format, you need to convert the Fract values first to the Fixed data
type, then to the LongInt data type. Use the Mathematical and Logical Utilities functions Fract2Fix and
Fix2Long to accomplish this task.

The DST value is a signed byte value that specifies the offset for the hour field—whether to add one hour,
subtract one hour, or make no change at all.

The GMT value is in seconds east of GMT. For example, San Francisco is at –28,800 seconds (8 hours * 3,600
seconds per hour) east of GMT. The gmtDelta field is a 3-byte value contained in a long word, so you must
take care to get it properly.

The ReadLocation function was previously available with the Script Manager.

For more information on the geographic location record, see MachineLocation (page 1368).

For more information on the Fractdata type and the conversion routines Long2Fix, Fix2Fract, Fract2Fix,
and Fix2Long, see Mathematical and Logical Utilities.

Special Considerations

Do not call the ReadLocation function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

SetA5
Sets the A5 register to the address specified. (Deprecated in Mac OS X v10.4. There is no replacement because
Mac OS X doesn’t use the A5 variable.)

Functions 1363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

long SetA5 (
 long newA5
);

Parameters
newA5

The value to which the A5 register is to be changed.

Return Value
The value in the A5 register before SetA5 changes it to newA5.

Discussion
In interrupt code that accesses application global variables, use the SetA5 function first to restore a value
previously saved using SetCurrentA5, and then, at the end of the code, to restore the A5 register to the
value it had before the first call to SetA5.

Carbon Porting Notes

68K-specific. Does nothing in PowerPC native code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OSUtils.h

SetCurrentA5
Sets the value in register A5 to the value of the low-memory global variable CurrentA5. (Deprecated in Mac
OS X v10.4. There is no replacement because Mac OS X doesn’t use the A5 variable.)

long SetCurrentA5 (
 void
);

Return Value
The value in the A5 register before SetCurrentA5 changes it to the value of the low-memory global variable
CurrentA5.

Discussion
The CurrentA5 variable points to the boundary between the parameters and global variables of the current
application.

You cannot reliably call SetCurrentA5 in code that executes at interrupt time unless you first guarantee
that your application is the current process (for example, by calling the Process Manager function
GetCurrentProcess). In general, you should call SetCurrentA5 at noninterrupt time and then pass the
returned value to the interrupt code.

Carbon Porting Notes

68K-specific. Does nothing in PowerPC native code.

Availability
Available in Mac OS X v10.0 and later.

1364 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OSUtils.h

TickCount
Obtains the current number of ticks (a tick is approximately 1/60 of a second) since the system last started
up.

UInt32 TickCount (
 void
);

Discussion
The TickCount function returns an unsigned 32-bit integer that indicates the current number of ticks since
the system last started up. You can use this value to compare the number of ticks that have elapsed since a
given event or other action occurred. For example, you could compare the current value returned by
TickCount with the value of the when field of an event structure.

The tick count is incremented during the vertical retrace interrupt, but this interrupt can be disabled. Your
application should not rely on the tick count to increment with absolute precision. Your application also
should not assume that the tick count always increments by 1 an interrupt task might keep control for more
than one tick. If your application keeps track of the previous tick count and then compares this value with
the current tick count, your application should compare the two values by checking for a “greater than or
equal” condition rather than “equal to previous tick count plus 1.”

Do not rely on the tick count being exact; it is usually accurate to within one tick, but this level of accuracy
is not guaranteed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
Simple DrawSprocket

Declared In
OSUtils.h

WriteLocation
Changes the geographic location or time-zone information stored in extended parameter RAM. (Deprecated
in Mac OS X v10.0. There is no replacement because you cannot set this information in Mac OS X.)

void WriteLocation (
 const MachineLocation *loc
);

Parameters
loc

The geographic location and time-zone information to write to the extended parameter RAM.

Functions 1365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

Discussion
The latitude and longitude are stored in the geographic location structure as Fract values, giving accuracy
to within 1 foot. For example, a Fract value of 1.0 equals 90 degrees –1.0 equals –90 degrees and –2.0 equals
–180 degrees.

Use the functions Long2Fix and Fix2Fract to convert longitude and latitude values to the Fixed data
type and then to the Fract data type for storage.

Use the daylight savings time value signed byte value to specify the offset for the hour field—whether to
add one hour, subtract one hour, or make no change at all.

The Greenwich mean time value is in seconds east of GMT. For example, San Francisco is at –28,800 seconds
(8 hours * 3,600 seconds per hour) east of GMT.The gmtDelta field is a 3-byte value contained in a long
word. When writing gmtDelta, mask off the top byte because it is reserved. Preserve the value of dlsDelta.

The WriteLocation function was previously available with the Script Manager.

For more information on the geographic location record, see MachineLocation (page 1368).

For more information on the Fractdata type and the conversion routines Long2Fix, Fix2Fract, Fract2Fix,
and Fix2Long, see Mathematical and Logical Utilities.

Special Considerations

Do not call the WriteLocation function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
OSUtils.h

WriteParam
Write the modified values in the system parameters data structure to parameter RAM. (Deprecated in Mac
OS X v10.4. There is no replacement, because this function does nothing in Mac OS X.)

OSErr WriteParam (
 void
);

Return Value
A result code. See “Memory Management Utilities Result Codes” (page 1376).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OSUtils.h

1366 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

Callbacks

DeferredTaskProcPtr
Defines a pointer to a deferred-task callback.

typedef void (*DeferredTaskProcPtr) (
 long dtParam
);

If you name your function MyDeferredTaskProc, you would declare it like this:

void MyDeferredTaskProc (
 long dtParam
);

Parameters
dtParam

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

Data Types

DeferredTask
Contains information related to a deferred task.

struct DeferredTask {
 volatile QElemPtr qLink;
 short qType;
 volatile short dtFlags;
 DeferredTaskUPP dtAddr;
 long dtParam;
 long dtReserved;
};
typedef struct DeferredTask DeferredTask;
typedef DeferredTask * DeferredTaskPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

Callbacks 1367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

DeferredTaskUPP
Defines a universal procedure pointer to a deferred-task callback.

typedef DeferredTaskProcPtr DeferredTaskUPP;

Discussion
For more information, see the description of the DeferredTaskProcPtr (page 1367) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

MachineLocation
Contains information about the geographical location of a computer.

struct MachineLocation {
 Fract latitude
 Fract longitude
 union {
 #if TARGET_RT_BIG_ENDIAN
 SInt8 dlsDelta;
 #endif
 long gmDelta;
 struct {
 #if TARGET_RT_LITTLE_ENDIAN
 SInt8 pad[3];
 #endif
 SInt8 Delta;
 } dls;
 } u;
};
typedef struct MachineLocation MachineLocation;

Fields
latitude

The location’s latitude, in fractions of a great circle. For example, Copenhagen, Denmark is at 55.43
degrees north latitude. When writing the latitude to extended parameter RAM with the
WriteLocation procedure, you must convert this value to a Fract data type. (For example, a Fract
value of 1.0 equals 90 degrees –1.0 equals –90 degrees and –2.0 equals –180 degrees.) For more
information on the Fract data type, see Mathematical and Logical Utilities.

longitude
The location’s longitude, in fractions of a great circle. For example, Copenhagen, Denmark is at 12.34
degrees east longitude. When writing the longitude to extended parameter RAM with the
WriteLocation procedure, you must convert this value to a Fract data type. (For example, a Fract
value of 1.0 equals 90 degrees –1.0 equals –90 degrees and –2.0 equals –180 degrees.

dlsDelta
A value that represents the current state of daylight savings time.

1368 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

gmDelta
pad
delta

A signed byte value representing the hour offset for daylight saving time. This field is a 1-byte value
contained in a long word. It should be preserved when writing gmtDelta.

Discussion
The geographic location and time-zone information of a Macintosh computer are stored in extended parameter
RAM. The MachineLocation data type defines the format for the geographic location record.

The ReadLocation and WriteLocation procedures use the geographic location record to read and store
the geographic location and time zone information in extended parameter RAM. If the geographic location
record has never been set, all fields contain 0.

In order for MachineLocation to be endian-safe, a new member has been added to the 'u' union in the
structure. You are encouraged to use the new member instead of the old one.

If your code looked like this:

MachineLocation.u.dlsDelta = 1;

you should change it to this:

MachineLocation.u.dls.Delta = 1;

to be endian safe. The gmtDelta remains the same; the low 24-bits are used. Remember that order of
assignment DOES matter.

This will overwrite results:

MachineLocation.u.dls.Delta = 0xAA; // u = 0xAAGGGGGG; G=Garbage
MachineLocation.u.gmtDelta = 0xBBBBBB; // u = 0x00BBBBBB;

when in fact reversing the assignment would have preserved the values:

MachineLocation.u.gmtDelta = 0xBBBBBB; // u = 0x00BBBBB;
MachineLocation.u.dls.Delta = 0xAA; // u = 0xAABBBBBB;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

QElem
Contains information about a queue element.

Data Types 1369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

struct QElem {
 QElem * qLink;
 short qType;
 short qData[1];
};
typedef struct QElem QElem;
typedef QElem * QElemPtr;

Fields
qLink

The type of the queue element. For a description of the values which you can use in this field, see
“Queue Types” (page 1374).

qType
A variable array of data. The type of data and the length depend upon the queue type, specified in
the qType field.

qData

Discussion
A queue element is a single entry in a queue. Each operating-system queue created and maintained by the
Macintosh Operating System consists of a queue header and a linked list of queue elements. The exact
structure of an element in an operating-system queue depends on the type of the queue. The QElem data
type defines the available queue elements.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

QHdr
Contains information about the event queue.

struct QHdr {
 volatile short qFlags;
 volatile QElemPtr qHead;
 volatile QElemPtr qTail;
};
typedef struct QHdr QHdr;
typedef QHdr * QHdrPtr;

Fields
qFlags

Queue flags.

qHead
First queue entry.

qTail
Last queue entry.

Discussion
The event queue consists of a header followed by the actual entries in the queue. The event queue has the
same header as all standard Macintosh Operating System queues. The Qhdr structure defines the queue
header.

1370 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

SysEnvRec
Contains information about the system environment.

struct SysEnvRec {
 short environsVersion;
 short machineType;
 short systemVersion;
 short processor;
 Boolean hasFPU;
 Boolean hasColorQD;
 short keyBoardType;
 short atDrvrVersNum;
 short sysVRefNum;
};
typedef struct SysEnvRec SysEnvRec;

Fields
environsVersion

The version number of the SysEnvirons function that was used to fill in the record.

When you call the SysEnvirons function, you specify a version number to ensure that you receive
a system environment record that matches your expectations. If you request a more recent version
of SysEnvirons than is available, SysEnvirons places its own version number in the
environsVersion field and returns a function result envVersTooBig.

machineType
A code for the Macintosh model. See “Macintosh Model Codes” (page 1373). Use the Gestalt function
to obtain information about machine types not listed among these constants.

systemVersion
The version number of the current System file, represented as two byte-long numbers with one or
more implied decimal points. The value $0410, for example, represents system software version 4.1.

If you call SysEnvirons when a system earlier than 4.1 is running, the MPW glue places $0 in this
field and returns a result code of envNotPresent.

processor
A code for the microprocessor. See “Microprocessor Codes” (page 1374).

hasFPU
A Boolean value that indicates whether hardware floating-point processing is available.

hasColorQD
A Boolean value that indicates whether Color QuickDraw is present. This field says nothing about the
presence of a color monitor.

keyBoardType
A code for the keyboard type. See “Keyboard Constants” (page 1373). Use the Gestalt function to
obtain information about keyboard types not listed among these constants.

If the Apple Desktop Bus is in use, this field returns the keyboard type of the keyboard on which the
last keystroke was made.

Data Types 1371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

atDrvrVersNum
The version number of the AppleTalk driver (specifically, the .MPP driver) currently installed. If AppleTalk
is not loaded, this field is 0.

sysVRefNum
The working-directory reference number of the folder or volume that holds the open System file.

Discussion
The SysEnvirons function fills in a system environment record, which describes some aspects of the software
and hardware environment.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

SysParmType
Contains settings used by the system at startup.

struct SysParmType {
 UInt8 valid;
 UInt8 aTalkA;
 UInt8 aTalkB;
 UInt8 config;
 short portA;
 short portB;
 long alarm;
 short font;
 short kbdPrint;
 short volClik;
 short misc;
};
typedef struct SysParmType SysParmType;
typedef SysParmType * SysPPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSUtils.h

Constants

Addressing Errors
Specify a type of addressing error.

1372 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

enum {
 false32b = 0,
 true32b = 1
};

Constants
false32b

Indicates a 24-bit addressing error.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

true32b
Indicates a 32-bit addressing error.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

Keyboard Constants
Specify keyboard types.

enum {
 envUnknownKbd = 0,
 envMacKbd = 1,
 envMacAndPad = 2,
 envMacPlusKbd = 3,
 envAExtendKbd = 4,
 envStandADBKbd = 5,
 envPrtblADBKbd = 6,
 envPrtblISOKbd = 7,
 envStdISOADBKbd = 8,
 envExtISOADBKbd = 9
};

Macintosh Model Codes
Specify models of Macintosh computers.

Constants 1373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

enum {
 envMac = -1,
 envXL = -2,
 envMachUnknown = 0,
 env512KE = 1,
 envMacPlus = 2,
 envSE = 3,
 envMacII = 4,
 envMacIIx = 5,
 envMacIIcx = 6,
 envSE30 = 7,
 envPortable = 8,
 envMacIIci = 9,
 envMacIIfx = 11
};

Microprocessor Codes
Specify types of microprocessors.

enum {
 envCPUUnknown = 0,
 env68000 = 1,
 env68010 = 2,
 env68020 = 3,
 env68030 = 4,
 env68040 = 5
};

Queue Types
Specifies queue types.

enum {
 dummyType = 0,
 vType = 1,
 ioQType = 2,
 drvQType = 3,
 evType = 4,
 fsQType = 5,
 sIQType = 6,
 dtQType = 7,
 nmType = 8
};
typedef SignedByte QTypes;

Constants
dummyType

Reserved.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

1374 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

vType
Specifies a vertical retrace queue type. See the Vertical Retrace Manager for more information.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

ioQType
Specifies a file I/O or driver I/O queue type.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

drvQType
Specifies a drive queue type.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

evType
Specifies an event queue type. See the Event Manager for more information.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

fsQType
Specifies a volume-control-block queue type.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

sIQType
Specifies a slot interrupt queue type. See the Slot Manager for more information.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

dtQType
Specifies a deferred task queue type. See Memory Management Utilities for more information.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

nmType
Specifies a notification queue type. See the Notification Manager for more information.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

Discussion
The different queue types that are accessible to your application are defined by the QTypes data type. Each
of these enumerated queue types determines a different type of queue element. These constants are used
in the qtype field of the QElem (page 1369) structure.

Sorting Constants
Specify the result types for the function RelString.

Constants 1375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

enum {
 sortsBefore = -1,
 sortsEqual = 0,
 sortsAfter = 1
};

Constants
sortsBefore

Indicates the first string is less than the second string.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

sortsEqual
Indicates the first string is equivalent to the second string.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

sortsAfter
Indicates the first string is greater than the second string.

Available in Mac OS X v10.0 and later.

Declared in OSUtils.h.

Assorted Use Constants
Defines constants to indicate use of various things, such as to use MIDE or AppleTalk.

enum {
 useFree = 0,
 useATalk = 1,
 useAsync = 2,
 useExtClk = 3,
 useMIDI = 4
};

Version Number
Specifies the version of the current system environment.

enum {
 curSysEnvVers = 2
};

Result Codes

The most common result codes returned by Memory Management Utilities are listed in the table below.
Memory Management Utilities may also return the following errors:

noErr (0)
paramErr (-50)

1376 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

prWrErr (-87)
prInitErr (-88)
memROZErr (-99)
memFullErr (-108)
nilHandleErr (-109)
memWZErr (-111)
memPurErr (-112)
memBCErr (-115)
memLockedErr (-117)
notEnoughMemoryErr (-620)
notHeldErr (-621)
cannotMakeContiguousErr (-622)
notLockedErr (-623)
interruptsMaskedErr (-624)
cannotDeferErr (-625)

DescriptionValueResult Code

Queue element not found during deletion.-1qErr

Available in Mac OS X v10.0 and later.

Invalid queue element.-2vTypErr

Available in Mac OS X v10.0 and later.

Core routine number out of range-3corErr

Available in Mac OS X v10.0 and later.

Unimplemented core routine.-4unimpErr

Available in Mac OS X v10.0 and later.

Invalid queue element.-5SlpTypeErr

Available in Mac OS X v10.0 and later.

Processor does not support flushing a range.-502hwParamErr

Available in Mac OS X v10.0 and later.

Result Codes 1377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

1378 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

Memory Management Utilities Reference

Framework: CoreServices/CoreServices.h

Declared in MacMemory.h

Overview

The Memory Manager was the memory management solution for versions of the Macintosh operating system
prior to Mac OS X. It remains available for compatibility with legacy applications and for new applications
that must work with legacy Carbon code that requires handles.

In previous versions of the Macintosh operating system, developers used the Memory Manager to set up an
application’s memory partition at launch time, to manage an application’s heap, to minimize application
memory fragmentation, and to implement a scheme to avoid low-memory conditions. All of these operations
are now handled transparently by Mac OS X.

In the Mac OS X Memory Manager, many functions are deprecated, the callbacks are not functional, and the
data types and constants are not used. In Mac OS X there is no need to set up or manage an application
memory partition or to manage pointers. To allocate memory, in most cases you simply use the C functions
malloc or calloc. Mac OS X ensures that every application has access to as much memory as it needs—up
to 4 gigabytes of addressable space per 32-bit process.

Mac OS X does not support functions for accessing the system heap, as the system heap is unavailable to
applications in Mac OS X. Starting with Mac OS X v10.3, Memory Manager is thread safe, and the
MemError (page 1410) function now returns error codes on a per-thread basis.

For information on memory management issues when porting a legacy Macintosh application to Mac OS X,
refer to the Carbon Porting Guide and to Technical Note 2130, Memory Allocation Recommendations on Mac
OS X.

Functions by Task

Allocating and Releasing Nonrelocatable Blocks of Memory

DisposePtr (page 1391)
Releases memory occupied by a nonrelocatable block.

NewPtr (page 1416)
Allocates a nonrelocatable block of memory of a specified size.

NewPtrClear (page 1417)
Allocates a nonrelocatable block of memory of a specified size with all its bytes set to 0.

Overview 1379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

http://developer.apple.com/technotes/tn2005/tn2130.html
http://developer.apple.com/technotes/tn2005/tn2130.html

Allocating and Releasing Relocatable Blocks of Memory

DisposeHandle (page 1390)
Releases memory occupied by a relocatable block.

NewEmptyHandle (page 1413)
Initializes a new handle without allocating any memory for it to control.

NewHandle (page 1414)
Allocates a new relocatable memory block of a specified size in the current heap zone.

NewHandleClear (page 1415)
Allocates a relocatable block of memory of a specified size with all its bytes set to 0.

Allocating Temporary Memory

TempNewHandle (page 1430)
Allocates a new relocatable block of temporary memory.

Assessing Memory Conditions

MemError (page 1410)
Determines if an application’s last direct call to a Memory Manager function executed successfully.

LMGetMemErr (page 1406)
Returns the result of the last Memory Manager function without clearing the value.

LMSetMemErr (page 1407)
Sets the value which will be returned by the MemError function.

MaxBlock (page 1409) Deprecated in Mac OS X v10.5
Returns a fixed value for block size that is compatible with most applications. (Deprecated. There is
no replacement function; you can assume that any reasonable memory allocation will succeed.)

StackSpace (page 1427) Deprecated in Mac OS X v10.5
Returns the amount of space between the bottom of the stack and the top of the application heap.
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

Changing the Sizes of Relocatable and Nonrelocatable Blocks

GetHandleSize (page 1394)
Returns the logical size of the relocatable block corresponding to a handle.

GetPtrSize (page 1395)
Returns the logical size of the nonrelocatable block corresponding to a pointer.

SetHandleSize (page 1425)
Changes the logical size of the relocatable block corresponding to the specified handle.

SetPtrSize (page 1426)
Changes the logical size of the nonrelocatable block corresponding to a pointer.

1380 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Managing Relocatable Blocks

EmptyHandle (page 1392)
Purges a relocatable block and sets the corresponding handle’s master pointer to NULL.

HLockHi (page 1399)
Sets the lock bit on the block.

ReallocateHandle (page 1422)
Allocates a new relocatable block of a specified size and sets a handle’s master pointer to point to
the new block.

RecoverHandle (page 1423)
Returns a handle to a relocatable block pointed to by a specified pointer.

Manipulating Blocks of Memory

BlockMove (page 1385)
Copies a sequence of bytes from one location in memory to another.

BlockMoveData (page 1386)

BlockMoveDataUncached (page 1387)

BlockMoveUncached (page 1387)

BlockZero (page 1388)

BlockZeroUncached (page 1388)

HandAndHand (page 1396)
Concatenates two relocatable blocks.

HandToHand (page 1396)
Copies all of the data from one relocatable block to a new relocatable block.

PtrAndHand (page 1418)
Concatenates part or all of a memory block to the end of a relocatable block.

PtrToHand (page 1419)
Copies data referenced by a pointer to a new relocatable block.

PtrToXHand (page 1419)
Copies data referenced by a pointer to an existing relocatable block.

Setting the Properties of Relocatable Blocks

HClrRBit (page 1397)
Clears the resource flag of a relocatable block.

HGetState (page 1398)
Returns a signed byte representing the current properties of a relocatable block.

Functions by Task 1381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

HLock (page 1398)
Prevents a relocatable block from moving within its heap zone.

HSetRBit (page 1402)
Sets the resource flag of a relocatable block.

HSetState (page 1402)
Restores the properties of a relocatable block.

HUnlock (page 1403)
Allows a relocatable block to move in its heap zone.

Miscellaneous

IsHandleValid (page 1405)
Checks that a handle is valid.

IsHeapValid (page 1405)
Always returns true in Mac OS X.

IsPointerValid (page 1406)
Checks that a pointer is valid.

Deprecated Functions
You should avoid using the functions listed in this section.

FlushMemory (page 1393)
Makes a portion of the address space clean. (Deprecated. There is no replacement; this function does
nothing in Mac OS X.)

LMGetApplZone (page 1406)
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

LMSetApplZone (page 1407)
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

FreeMem (page 1393) Deprecated in Mac OS X v10.5
Returns the total amount of free space in the current heap zone. (Deprecated. There is no replacement
function; you can assume that any reasonable memory allocation will succeed.)

MaxMem (page 1409) Deprecated in Mac OS X v10.5
Returns the size, in bytes, of the largest contiguous free block in the current heap zone. (Deprecated.
There is no replacement function; you can assume that any reasonable memory allocation will succeed.)

TempDisposeHandle (page 1427) Deprecated in Mac OS X v10.5
Releases a relocatable block in the temporary heap. (Deprecated. Use DisposeHandle (page 1390)
instead; Mac OS X does not have a separate temporary memory heap.)

CheckAllHeaps (page 1388) Deprecated in Mac OS X v10.4
Checks all known heaps for validity. (Deprecated. There is no replacement function; an application
has access only to its own heap in Mac OS X.)

CompactMem (page 1389) Deprecated in Mac OS X v10.4
Compacts the heap by moving relocatable blocks as needed. (Deprecated. There is no replacement
function; memory compaction is never needed and never performed in Mac OS X.)

1382 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

DisposeGrowZoneUPP (page 1390) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps never grow in Mac OS X, so the grow-zone
function is never called.)

DisposePurgeUPP (page 1391) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps are never purged in Mac OS X, so the purge
function is never called.)

DisposeUserFnUPP (page 1392) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

GetGrowZone (page 1394) Deprecated in Mac OS X v10.4
Returns the current heap zone’s grow-zone function. (Deprecated. There is no replacement function;
heaps never grow in Mac OS X, so the grow-zone function is never used.)

GZSaveHnd (page 1395) Deprecated in Mac OS X v10.4
Returns a relocatable block to be protected during grow-zone operations. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

HNoPurge (page 1400) Deprecated in Mac OS X v10.4
Marks a relocatable block as unpurgeable. (Deprecated. There is no replacement function; heaps are
never purged in Mac OS X.)

HoldMemory (page 1400) Deprecated in Mac OS X v10.4
Makes a portion of the address space resident in physical memory and ineligible for paging.
(Deprecated. There is no replacement; this function does nothing in Mac OS X.)

HPurge (page 1401) Deprecated in Mac OS X v10.4
Marks a relocatable block as purgeable. (Deprecated. There is no replacement function; heaps are
never purged in Mac OS X.)

InvokeGrowZoneUPP (page 1403) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps never grow in Mac OS X, so the grow-zone
function is never called.)

InvokePurgeUPP (page 1404) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps are never purged in Mac OS X, so the purge
function is never called.)

InvokeUserFnUPP (page 1404) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

LMGetSysZone (page 1407) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

LMSetSysZone (page 1408) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

MakeMemoryNonResident (page 1408) Deprecated in Mac OS X v10.4
Makes pages in the specified range immediately available for reuse. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

MakeMemoryResident (page 1408) Deprecated in Mac OS X v10.4
Makes a portion of the address space resident in physical memory. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

Functions by Task 1383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

MoreMasterPointers (page 1411) Deprecated in Mac OS X v10.4
Allocates a specified number of master pointers in the current heap zone. (Deprecated. There is no
replacement function; master pointers do not need to be pre-allocated in Mac OS X.)

MoreMasters (page 1411) Deprecated in Mac OS X v10.4
Allocates a block of master pointers in the current heap zone. (Deprecated. There is no replacement
function; master pointers do not need to be pre-allocated in Mac OS X.)

MoveHHi (page 1412) Deprecated in Mac OS X v10.4
Moves a relocatable block as high in memory as possible. (Deprecated. There is no replacement
function; there is no benefit to moving handles high in memory in Mac OS X.)

NewGrowZoneUPP (page 1414) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps never grow in Mac OS X, so the grow-zone
function is never called.)

NewPurgeUPP (page 1417) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement function; heaps are never purged in Mac OS X, so the purge
function is never called.)

NewUserFnUPP (page 1418) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

PurgeMem (page 1420) Deprecated in Mac OS X v10.4
Purges the current heap zone until the specified number of bytes are available. (Deprecated. There
is no replacement; heaps are never purged in Mac OS X, so this function does nothing.)

PurgeSpace (page 1421) Deprecated in Mac OS X v10.4
Determines the total amount of free memory and the size of the largest allocatable block in the current
heap zone if it were purged. (Deprecated. There is no replacement; heaps are never purged in Mac
OS X.)

PurgeSpaceContiguous (page 1421) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; heaps are never purged in Mac OS X.)

PurgeSpaceTotal (page 1422) Deprecated in Mac OS X v10.4
(Deprecated. There is no replacement; heaps are never purged in Mac OS X.)

ReleaseMemoryData (page 1423) Deprecated in Mac OS X v10.4
Releases the data of a portion of the address space. (Deprecated. There is no replacement; this function
does nothing in Mac OS X.)

ReserveMem (page 1424) Deprecated in Mac OS X v10.4
Reserves space for a block of memory as close to the bottom of the current heap zone as possible.
(Deprecated. There is no replacement; this function does nothing in Mac OS X.)

SetGrowZone (page 1425) Deprecated in Mac OS X v10.4
Specifies the current heap zone’s grow-zone function. (Deprecated. There is no replacement function;
heaps never grow in Mac OS X, so the grow-zone function is never called.)

TempFreeMem (page 1428) Deprecated in Mac OS X v10.4
Returns the maximum amount of free memory in the temporary heap. (Deprecated. There is no
replacement function; Mac OS X does not have a separate temporary memory heap.)

TempHLock (page 1428) Deprecated in Mac OS X v10.4
Locks a relocatable block in the temporary heap. (Deprecated. Use HLock (page 1398) instead; Mac OS
X does not have a separate temporary memory heap.)

TempHUnlock (page 1429) Deprecated in Mac OS X v10.4
Unlocks a relocatable block in the temporary heap. (Deprecated. Use HUnlock (page 1403) instead;
Mac OS X does not have a separate temporary memory heap.)

1384 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

TempMaxMem (page 1429) Deprecated in Mac OS X v10.4
Returns the maximum amount of temporary memory available. (Deprecated. There is no replacement
function; Mac OS X does not have a separate temporary memory heap.)

TempTopMem (page 1430) Deprecated in Mac OS X v10.4
Returns the location of the top of the temporary heap. (Deprecated. There is no replacement function;
Mac OS X does not have a separate temporary memory heap.)

TopMem (page 1431) Deprecated in Mac OS X v10.4
Returns a pointer to the byte at the top of an application’s partition. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

UnholdMemory (page 1431) Deprecated in Mac OS X v10.4
Makes a currently held range of memory eligible for paging again. (Deprecated. There is no
replacement; this function does nothing in Mac OS X.)

Functions

BlockMove
Copies a sequence of bytes from one location in memory to another.

static void BlockMove (
 const void *srcPtr,
 void *destPtr,
 Size byteCount
);

Parameters
srcPtr

The address of the first byte to copy.

destPtr
The destination address.

byteCount
The number of bytes to copy. If the value of byteCount is 0, BlockMove does nothing.

Discussion
The BlockMove function copies the specified number of bytes from the address designated by srcPtr to that
designated by destPtr. It updates no pointers.

The BlockMove function works correctly even if the source and destination blocks overlap.

You can safely call BlockMove at interrupt time. Even though it moves memory, BlockMove does not move
relocatable blocks, but simply copies bytes.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

The BlockMove function currently flushes the processor caches whenever it moves more than 12 bytes. This
behavior can adversely affect your application’s performance. You might want to avoid calling BlockMove
to move small amounts of data in memory if there is no possibility of moving stale data or instructions. For
more information about stale data and instructions, see the discussion of the processor caches in the chapter
“Memory Management Utilities” in Inside Macintosh: Memory.

Functions 1385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Special Considerations

Beginning in Mac OS X v10.4, the BlockMove function is inlined to a direct call to the POSIX memmove function.
For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
SoftVDigX

Declared In
MacMemory.h

BlockMoveData

static void BlockMoveData (
 const void *srcPtr,
 void *destPtr,
 Size byteCount
);

Parameters
srcPtr
destPtr
byteCount

Discussion
You should not make any assumptions about the state of the destination memory while BlockMoveData is
executing. In the intermediate state, values may be present that are neither the original nor the final ones.
For example, this function may use the 'dcbz' instruction. If the underlying memory is not cacheable, if the
memory is write-through instead of copy-back, or if the cache block is flushed for some reason, the 'dcbz'
instruction will write zeros to the destination. You can avoid the use of the 'dcbz' instruction by calling
BlockMoveDataUncached, but even that function makes no other guarantees about the memory block's
intermediate state.

Special Considerations

Beginning in Mac OS X v10.4, the BlockMoveData function is inlined to a direct call to the POSIX memmove
function. For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTMetaData

Declared In
MacMemory.h

1386 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

BlockMoveDataUncached

static void BlockMoveDataUncached (
 const void *srcPtr,
 void *destPtr,
 Size byteCount
);

Parameters
srcPtr
destPtr
byteCount

Discussion
You should not make any assumptions about the state of the destination memory while
BlockMoveDataUncached is executing. In the intermediate state, values may be present that are neither
the original nor the final ones.

Special Considerations

Beginning in Mac OS X v10.4, the BlockMoveDataUncached function is inlined to a direct call to the POSIX
memmove function. For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

BlockMoveUncached

static void BlockMoveUncached (
 const void *srcPtr,
 void *destPtr,
 Size byteCount
);

Parameters
srcPtr
destPtr
byteCount

Special Considerations

Beginning in Mac OS X v10.4, the BlockMoveUncached function is inlined to a direct call to the POSIX
memmove function. For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

Functions 1387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

BlockZero

static void BlockZero (
 void *destPtr,
 Size byteCount
);

Parameters
destPtr
byteCount

Special Considerations

Beginning in Mac OS X v10.4, the BlockZero function is inlined to a direct call to the POSIX bzero function.
For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
MacMemory.h

BlockZeroUncached

static void BlockZeroUncached (
 void *destPtr,
 Size byteCount
);

Parameters
destPtr
byteCount

Special Considerations

Beginning in Mac OS X v10.4, the BlockZeroUncached function is inlined to a direct call to the POSIX bzero
function. For more information, see the header file MacMemory.h.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

CheckAllHeaps
Checks all known heaps for validity. (Deprecated in Mac OS X v10.4. There is no replacement function; an
application has access only to its own heap in Mac OS X.)

1388 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Boolean CheckAllHeaps (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

CompactMem
Compacts the heap by moving relocatable blocks as needed. (Deprecated in Mac OS X v10.4. There is no
replacement function; memory compaction is never needed and never performed in Mac OS X.)

Size CompactMem (
 Size cbNeeded
);

Parameters
cbNeeded

The size, in bytes, of the block for which CompactMem should attempt to make room.

Return Value
The size, in bytes, of the largest contiguous free block available after compacting the heap zone. CompactMem
does not actually allocate that block.

Discussion
The Memory Manager automatically compacts the heap when a memory request fails. However, you can use
the CompactMem function to compact the current heap zone manually.

CompactMem compacts the current heap zone not by purging blocks, but rather by moving unlocked,
relocatable blocks down until they encounter nonrelocatable blocks or locked, relocatable blocks. CompactMem
continues compacting until it either finds a contiguous block of at least cbNeeded free bytes or compacts
the entire zone.

To compact the entire heap zone, call CompactMem(maxSize).

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Because CompactMem moves memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

Functions 1389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

DisposeGrowZoneUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps never grow in Mac OS X, so the
grow-zone function is never called.)

void DisposeGrowZoneUPP (
 GrowZoneUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

DisposeHandle
Releases memory occupied by a relocatable block.

void DisposeHandle (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The DisposeHandle function releases the memory occupied by the relocatable block whose handle is h. It
also frees the handle’s master pointer for other uses.

Do not use DisposeHandle to dispose of a handle obtained from the Resource Manager (for example, by
a previous call to GetResource), use ReleaseResource instead. If, however, you have called
DetachResource on a resource handle, you should dispose of the storage by calling DisposeHandle.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Special Considerations

After a call to DisposeHandle, all handles to the released block become invalid and should not be used
again. Any subsequent calls to DisposeHandle using an invalid handle might crash your application.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ASCIIMoviePlayerSample
Gamma Filter for FxPlug and AE
QTCarbonShell
QTMetaData

1390 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

WhackedTV

Declared In
MacMemory.h

DisposePtr
Releases memory occupied by a nonrelocatable block.

void DisposePtr (
 Ptr p
);

Parameters
p

A pointer to the nonrelocatable block you want to dispose of.

Discussion
When you no longer need a nonrelocatable block, call the DisposePtr function to free it for other uses.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

After a call to DisposePtr, all pointers to the released block become invalid and should not be used again.
Any subsequent use of a pointer to the released block might cause a system error.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor
CarbonSketch
SoftVDigX

Declared In
MacMemory.h

DisposePurgeUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps are never purged in Mac OS X, so
the purge function is never called.)

void DisposePurgeUPP (
 PurgeUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 1391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Declared In
MacMemory.h

DisposeUserFnUPP
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void DisposeUserFnUPP (
 UserFnUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

EmptyHandle
Purges a relocatable block and sets the corresponding handle’s master pointer to NULL.

void EmptyHandle (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The EmptyHandle function purges the relocatable block whose handle is h and sets the handle’s master
pointer to NULL. The EmptyHandle function allows you to free memory taken by a relocatable block without
freeing the relocatable block’s master pointer for other uses. The block whose handle is h must be unlocked
but need not be purgeable.

Note that if there are multiple handles to the relocatable block, then calling the EmptyHandle function
empties them all, because all of the handles share a common master pointer. When you later use
ReallocateHandle to reallocate space for the block, the master pointer is updated, and all of the handles
reference the new block correctly.

To purge all of the blocks in a heap zone that are marked purgeable, use the PurgeMem (page 1420) function.

To free the memory taken up by a relocatable block and release the block’s master pointer for other uses,
use the DisposeHandle (page 1390) function.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

1392 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

FlushMemory
Makes a portion of the address space clean. (Deprecated in Mac OS X v10.4. There is no replacement; this
function does nothing in Mac OS X.)

OSErr FlushMemory (
 void *address,
 unsigned long count
);

Return Value
This function always returns a value of noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

FreeMem
Returns the total amount of free space in the current heap zone. (Deprecated in Mac OS X v10.5. There is no
replacement function; you can assume that any reasonable memory allocation will succeed.)

long FreeMem (
 void
);

Return Value
Returns a fixed value for heap size that is compatible with most applications.

Discussion
In Mac OS 8 and 9, this function returns the total amount of free space in the current heap zone. In Mac OS
X, this function always returns a large fixed value because applications run in a large, protected memory
space.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Special Considerations

Even though FreeMem does not move or purge memory, you should not call it at interrupt time because the
heap might be in an inconsistent state.

Availability
Available in Mac OS X v10.0 and later.

Functions 1393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

GetGrowZone
Returns the current heap zone’s grow-zone function. (Deprecated in Mac OS X v10.4. There is no replacement
function; heaps never grow in Mac OS X, so the grow-zone function is never used.)

GrowZoneUPP GetGrowZone (
 void
);

Return Value
See the description of the GrowZoneUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

GetHandleSize
Returns the logical size of the relocatable block corresponding to a handle.

Size GetHandleSize (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Return Value
The logical size, in bytes, of the relocatable block whose handle is h. In case of error, the function return 0.

Discussion
Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

You should not call GetHandleSize at interrupt time because the heap might be in an inconsistent state.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
SoftVDigX

1394 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Declared In
MacMemory.h

GetPtrSize
Returns the logical size of the nonrelocatable block corresponding to a pointer.

Size GetPtrSize (
 Ptr p
);

Parameters
p

A pointer to a nonrelocatable block.

Return Value
The logical size, in bytes, of the nonrelocatable block pointed to by p. In case of error, the function returns
0.

Discussion
Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

GZSaveHnd
Returns a relocatable block to be protected during grow-zone operations. (Deprecated in Mac OS X v10.4.
There is no replacement; this function does nothing in Mac OS X.)

Handle GZSaveHnd (
 void
);

Return Value
A handle to a block of memory that the Memory Manager reserves during grow-zone operations. Your
grow-zone function must not move, purge, or delete this block. This function returns NULL if there is no such
block.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

Functions 1395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

HandAndHand
Concatenates two relocatable blocks.

OSErr HandAndHand (
 Handle hand1,
 Handle hand2
);

Parameters
hand1

A handle to the first relocatable block, whose contents do not change but are concatenated to the
end of the second relocatable block.

hand2
A handle to the second relocatable block, whose size the Memory Manager expands so that it can
concatenate the information from handl to the end of the contents of this block.

Return Value
A result code. See “Memory Manager Result Codes” (page 1443).

Discussion
The HandAndHand function concatenates the information from the relocatable block specified by handl
onto the end of the relocatable block specified by hand2. The handl variable remains unchanged.

Because the HandAndHand function dereferences the handle handl, you must call the HLock function to
lock the block before calling HandAndHand. Afterward, you can call the HUnlock function to unlock it.
Alternatively, you can save the block’s original state by calling the HGetState function, lock the block by
calling HLock, and then restore the original settings by calling HSetState.

Because HandAndHand moves memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

HandToHand
Copies all of the data from one relocatable block to a new relocatable block.

OSErr HandToHand (
 Handle *theHndl
);

Parameters
theHndl

A handle to the relocatable block whose data HandToHand will copy. On return, theHndl contains
a handle to a new relocatable block whose data duplicates the original.

Return Value
A result code. See “Memory Manager Result Codes” (page 1443).

Discussion
The HandToHand function attempts to copy the information in the relocatable block to which theHndl is a
handle; if successful, HandToHand sets theHndl to a handle pointing to the new relocatable block.

1396 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

If successful in creating a new relocatable block, the HandToHand function does not duplicate the properties
of the original block. The new block is unlocked, unpurgeable, and not a resource. Call HLock, HPurge, or
HSetRBit (or the combination of HGetState and HSetState) to adjust the properties of the new block.

To copy only part of a relocatable block into a new relocatable block, use the PtrToHand (page 1419) function.
Before calling PtrToHand, lock and dereference the handle pointing to the relocatable block you want to
copy.

Because HandToHand replaces its parameter with the new handle, you should retain the original parameter
value somewhere else, otherwise you will not be able to access it. Here is an example:

Handle original, copy;
OSErr myErr;
...
copy = original;
 /*both handles access same block*/
myErr = HandToHand(copy);
 /*copy now points to copy of block*/

Because HandToHand allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

HClrRBit
Clears the resource flag of a relocatable block.

void HClrRBit (
 Handle h
);

Parameters
h

A handle to a relocatable block. HClrRBit does nothing if the flag for the relocatable block pointed to
by h is already cleared.

Discussion
The Resource Manager uses this function extensively, but you probably will not need to use it.

To disassociate the data in a resource handle from the resource file, you should use the Resource Manager
function DetachResource instead of this function.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

Functions 1397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

HGetState
Returns a signed byte representing the current properties of a relocatable block.

SInt8 HGetState (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Return Value
A signed byte (char) containing the flags of the master pointer for the given handle. In case of error, the value
returned is meaningless.

Discussion
The HGetState function returns a signed byte (char) containing the flags of the master pointer for the given
handle. You can save this byte, change the state of any of the flags using the functions described in this
section, and then restore their original states by passing the byte to the HSetState function.

You can use bit-manipulation functions on the returned signed byte to determine the value of a given
attribute. Currently the following bits are used:

If an error occurs during an attempt to get the state flags of the specified relocatable block, HGetState
returns the low-order byte of the result code as its function result. For example, if the handle h points to a
master pointer whose value is NULL, then the signed byte returned by HGetState will contain the value
–109.

You may also call the function MemError (page 1410) to get the result code. See “Memory Manager Result
Codes” (page 1443).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
MacMemory.h

HLock
Prevents a relocatable block from moving within its heap zone.

void HLock (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
If you plan to dereference a handle and then allocate, move, or purge memory (or call a function that does
so), then you should lock the handle before using the dereferenced handle.

1398 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

If the block is already locked, HLock does nothing.

If you plan to lock a relocatable block for long periods of time, you can prevent fragmentation by ensuring
that the block is as low as possible in the heap zone. To do this, see the description of the ReserveMem (page
1424) function.

If you plan to lock a relocatable block for short periods of time, you can prevent heap fragmentation by
moving the block to the top of the heap zone before locking. For more information, see the description of
the MoveHHi (page 1412) function.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData
SoftVDigX

Declared In
MacMemory.h

HLockHi
Sets the lock bit on the block.

void HLockHi (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The HLockHi function is an alternative to using the two functions MoveHHi (deprecated in Mac OS X) and
HLock. Because the MoveHHi function does not move memory in Mac OS X, there is no benefit to using this
function.

This function will not return a meaningful error code. If you call HLockHi on a locked handle, it will return
noErr (not memLockedErr) because it is not an error to call HLock on a locked handle.

Do not call HLockHi on blocks in the system heap. Do not call HLockHi from a desk accessory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

Functions 1399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

HNoPurge
Marks a relocatable block as unpurgeable. (Deprecated in Mac OS X v10.4. There is no replacement function;
heaps are never purged in Mac OS X.)

void HNoPurge (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The HNoPurge function marks the relocatable block, to which h is a handle, as unpurgeable. If the block is
already unpurgeable, HNoPurge does nothing.

The HNoPurge function does not reallocate memory for a handle if it has already been purged.

If you want to reallocate memory for a relocatable block that has already been purged, you can use the
ReallocateHandle (page 1422) function.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

HoldMemory
Makes a portion of the address space resident in physical memory and ineligible for paging. (Deprecated in
Mac OS X v10.4. There is no replacement; this function does nothing in Mac OS X.)

OSErr HoldMemory (
 void *address,
 unsigned long count
);

Parameters
address

A pointer indicating the starting address of the range of memory to be held in RAM.

count
The size, in bytes, of the range of memory to be held in RAM.

Return Value
This function always returns a value of noErr.

1400 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Discussion
If the starting address you supply to the HoldMemory function is not on a page boundary, then HoldMemory
rounds down to the nearest page boundary. Similarly, if the specified range does not end on a page boundary,
HoldMemory rounds up the value you pass in the count parameter so that the entire range of memory is
held.

Even though HoldMemory does not move or purge memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

HPurge
Marks a relocatable block as purgeable. (Deprecated in Mac OS X v10.4. There is no replacement function;
heaps are never purged in Mac OS X.)

void HPurge (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The HPurge function marks the relocatable block, to which h is a handle, as purgeable. If the block is already
purgeable, HPurge does nothing.

The Memory Manager might purge the block when it needs to purge the heap zone containing the block to
satisfy a memory request. A direct call to the MaxMem function would also purge blocks marked as purgeable.

Once you mark a relocatable block as purgeable, you should make sure that handles to the block are not
empty before you access the block. If they are empty, you must reallocate space for the block and recopy
the block’s data from another source, such as a resource file, before using the information in the block.

If the block to which h is a handle is locked, HPurge does not unlock the block but does mark it as purgeable.
If you later call HUnlock on h, the block is subject to purging.

If the Memory Manager has purged a block, you can reallocate space for it by using the
ReallocateHandle (page 1422) function.

You can immediately free the space taken by a handle without disposing of it by calling the function
EmptyHandle (page 1392). This function does not require that the block be purgeable.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 1401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Not available to 64-bit applications.

Declared In
MacMemory.h

HSetRBit
Sets the resource flag of a relocatable block.

void HSetRBit (
 Handle h
);

Parameters
h

A handle to a relocatable block. HSetRBit does nothing if the flag for the relocatable block pointed
to by h is already set.

Discussion
The Resource Manager uses this function extensively, but you probably will not need to use it.

When the resource flag is set, the Resource Manager identifies the associated relocatable block as belonging
to a resource. This can cause problems if that block wasn’t actually read from a resource.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

HSetState
Restores the properties of a relocatable block.

void HSetState (
 Handle h,
 SInt8 flags
);

Parameters
h

A handle to a relocatable block.

flags
A signed byte (char) specifying the properties to which you want to set the relocatable block.

Discussion
You can use HSetState to restore properties of a block after a call to HGetState. See the description of the
HGetState function for a list of the currently used bits in the flags byte. Because additional bits of the flags
byte could become significant in future versions of system software, use HSetState only with a byte returned

1402 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

by HGetState. If you need to set two or three properties of a relocatable block at once, it is better to use
the functions that set individual properties than to manipulate the bits returned by HGetState and then
call HSetState.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
MacMemory.h

HUnlock
Allows a relocatable block to move in its heap zone.

void HUnlock (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
The HUnlock function unlocks the relocatable block to which h is a handle, allowing the block to move within
its heap zone. If the block is already unlocked, HUnlock does nothing.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData
SoftVDigX

Declared In
MacMemory.h

InvokeGrowZoneUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps never grow in Mac OS X, so the
grow-zone function is never called.)

Functions 1403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

long InvokeGrowZoneUPP (
 Size cbNeeded,
 GrowZoneUPP userUPP
);

Parameters
cbNeeded
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

InvokePurgeUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps are never purged in Mac OS X, so
the purge function is never called.)

void InvokePurgeUPP (
 Handle blockToPurge,
 PurgeUPP userUPP
);

Parameters
blockToPurge
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

InvokeUserFnUPP
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

1404 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

void InvokeUserFnUPP (
 void *parameter,
 UserFnUPP userUPP
);

Parameters
parameter
userUPP

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

IsHandleValid
Checks that a handle is valid.

Boolean IsHandleValid (
 Handle h
);

Parameters
h

The handle to check.

Return Value
Returns true if the specified handle is valid. If the handle is NULL or if the handle refers to memory which
was not properly allocated, IsHandleValid returns false. In Mac OS 8 and 9, IsHandleValid also returns
false if the given handle is empty. In Mac OS X, however, zero-length blocks are considered valid and
IsHandleValid returns true for an empty handle.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

IsHeapValid
Always returns true in Mac OS X.

Boolean IsHeapValid (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

Functions 1405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

IsPointerValid
Checks that a pointer is valid.

Boolean IsPointerValid (
 Ptr p
);

Parameters
p

The pointer to check.

Return Value
Returns true if the specified pointer is valid. If the pointer is NULL or if the pointer points to memory which
was not properly allocated, IsPointerValid returns false. In Mac OS 8 and 9, IsPointerValid also
returns false if the given pointer points to a zero-length block in memory. In Mac OS X, however, zero-length
blocks are considered valid and IsPointerValid returns true.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

LMGetApplZone
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

THz LMGetApplZone (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

LMGetMemErr
Returns the result of the last Memory Manager function without clearing the value.

SInt16 LMGetMemErr (
 void
);

Return Value
A result code. See “Memory Manager Result Codes” (page 1443).

Availability
Available in Mac OS X v10.0 and later.

1406 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Declared In
MacMemory.h

LMGetSysZone
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

THz LMGetSysZone (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

LMSetApplZone
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetApplZone (
 THz value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

LMSetMemErr
Sets the value which will be returned by the MemError function.

void LMSetMemErr (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

Functions 1407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

LMSetSysZone
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetSysZone (
 THz value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

MakeMemoryNonResident
Makes pages in the specified range immediately available for reuse. (Deprecated in Mac OS X v10.4. There
is no replacement; this function does nothing in Mac OS X.)

OSErr MakeMemoryNonResident (
 void *address,
 unsigned long count
);

Return Value
This function always returns a value of noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

MakeMemoryResident
Makes a portion of the address space resident in physical memory. (Deprecated in Mac OS X v10.4. There is
no replacement; this function does nothing in Mac OS X.)

OSErr MakeMemoryResident (
 void *address,
 unsigned long count
);

Return Value
A result code. See “Memory Manager Result Codes” (page 1443).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1408 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Not available to 64-bit applications.

Declared In
MacMemory.h

MaxBlock
Returns a fixed value for block size that is compatible with most applications. (Deprecated in Mac OS X v10.5.
There is no replacement function; you can assume that any reasonable memory allocation will succeed.)

long MaxBlock (
 void
);

Return Value
The maximum contiguous space, in bytes, that you could obtain after compacting the current heap zone.
MaxBlock does not actually do the compaction.

Discussion
In Mac OS X, this function always returns a large value because virtual memory is always available to fulfill
any request for memory.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

MaxMem
Returns the size, in bytes, of the largest contiguous free block in the current heap zone. (Deprecated in Mac
OS X v10.5. There is no replacement function; you can assume that any reasonable memory allocation will
succeed.)

Size MaxMem (
 Size *grow
);

Parameters
grow

On return, the maximum number of bytes by which the current heap zone can grow. After a call to
MaxApplZone, MaxMem always sets this parameter to 0.

Return Value
The size, in bytes, of the largest contiguous free block in the zone after the compacting and purging.

Functions 1409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Discussion
In Mac OS 8 and 9, the MaxMem function compacts the current heap zone and purges all relocatable, unlocked,
and purgeable blocks from the zone. If the current zone is the original application zone, the grow parameter
is set to the maximum number of bytes by which the zone can grow. For any other heap zone, grow is set
to 0. MaxMem does not actually expand the zone or call the zone’s grow-zone function.

In Mac OS X, the MaxMem function returns a large fixed value because applications run in a large, protected
memory space.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

MemError
Determines if an application’s last direct call to a Memory Manager function executed successfully.

OSErr MemError (
 void
);

Return Value
A result code. See “Memory Manager Result Codes” (page 1443).

Discussion
For each thread, MemError yields the result code produced by the last Memory Manager function your
application called directly.

MemError is useful during application debugging. You might also use MemError as one part of a
memory-management scheme to identify instances in which the Memory Manager rejects overly large
memory requests by returning the error code memFullErr.

To view the result codes that MemError can produce, see “Memory Manager Result Codes” (page 1443).

Do not rely on MemError as the only component of a memory-management scheme. For example, suppose
you call NewHandle or NewPtr and receive the result code noErr, indicating that the Memory Manager was
able to allocate sufficient memory. In this case, you have no guarantee that the allocation did not deplete
your application’s memory reserves to levels so low that simple operations might cause your application to
crash. Instead of relying on MemError, check before making a memory request that there is enough memory
both to fulfill the request and to support essential operations.

Version Notes
Starting with Mac OS X v10.3, the MemError function provides error codes on a per-thread basis.

Availability
Available in Mac OS X v10.0 and later.

1410 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Related Sample Code
QTCarbonShell
SoftVDigX

Declared In
MacMemory.h

MoreMasterPointers
Allocates a specified number of master pointers in the current heap zone. (Deprecated in Mac OS X v10.4.
There is no replacement function; master pointers do not need to be pre-allocated in Mac OS X.)

void MoreMasterPointers (
 UInt32 inCount
);

Parameters
inCount

The number of master pointers you want to allocate in a single nonrelocatable block.

Carbon Porting Notes

Carbon applications should use this function instead of MoreMasters to allocate a nonrelocatable block of
master pointers in the current heap zone.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

MoreMasters
Allocates a block of master pointers in the current heap zone. (Deprecated in Mac OS X v10.4. There is no
replacement function; master pointers do not need to be pre-allocated in Mac OS X.)

void MoreMasters (
 void
);

Discussion
In the application heap, a block of master pointers consists of 64 master pointers, and in the system heap, a
block consists of 32 master pointers. (These values are likely to increase in future versions of system software.)
When you initialize additional heap zones, you can specify the number of master pointers you want to have
in a block of master pointers.

The Memory Manager automatically calls the MoreMasters function once for every new heap zone, including
the application heap zone.

Call MoreMasters several times at the beginning of your program to prevent the Memory Manager from
running out of master pointers in the middle of application execution. If it does run out, it allocates more,
possibly causing heap fragmentation.

Functions 1411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

You should call MoreMasters at the beginning of your program enough times to ensure that the Memory
Manager never needs to call it for you. For example, if your application never allocates more than 300
relocatable blocks in its heap zone, then five calls to the MoreMasters should be enough. It’s better to call
MoreMasters too many times than too few. For instance, if your application usually allocates about 100
relocatable blocks but might allocate 1000 in a particularly busy session, call MoreMasters enough times
to accommodate the largest amount.

If you initialize a new zone, you can specify the number of master pointers that a master pointer block should
contain.

Call the MemError (page 1410) function to get the result code. See “Memory Manager Result Codes” (page
1443).

Because MoreMasters allocates memory, you should not call it at interrupt time.

The calls to MoreMasters at the beginning of your application should be in the main code segment of your
application or in a segment that the main segment never unloads.

Carbon Porting Notes

You should instead use MoreMasterPointers (page 1411).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
MacMemory.h

MoveHHi
Moves a relocatable block as high in memory as possible. (Deprecated in Mac OS X v10.4. There is no
replacement function; there is no benefit to moving handles high in memory in Mac OS X.)

void MoveHHi (
 Handle h
);

Parameters
h

A handle to a relocatable block.

Discussion
This function moves a relocatable block as high in memory as possible to help prevent heap fragmentation.
The MoveHHi function attempts to move the relocatable block referenced by the handle h upward until it
reaches a nonrelocatable block, a locked relocatable block, or the top of the heap.

If you plan to lock a relocatable block for a short period of time, use the MoveHHi function, which moves the
block to the top of the heap and thus helps prevent heap fragmentation.

1412 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

If you call MoveHHi to move a handle to a resource that has its resChanged bit set, the Resource Manager
updates the resource by using the WriteResource function to write the contents of the block to disk. If you
want to avoid this behavior, call the Resource Manager function SetResPurge(FALSE) before you call
MoveHHi, and then call SetResPurge(TRUE) to restore the default setting.

By using the MoveHHi function on relocatable blocks you plan to allocate for short periods of time, you help
prevent islands of immovable memory from accumulating in (and thus fragmenting) the heap.

Do not use the MoveHHi function to move blocks you plan to lock for long periods of time. The MoveHHi
function moves such blocks to the top of the heap, perhaps preventing other blocks already at the top of
the heap from moving down once they are unlocked. Instead, use the ReserveMem function before allocating
such blocks, thus keeping them in the bottom partition of the heap, where they do not prevent relocatable
blocks from moving.

If you frequently lock a block for short periods of time and find that calling MoveHHi each time slows down
your application, you might consider leaving the block always locked and calling the ReserveMem function
before allocating it.

Once you move a block to the top of the heap, be sure to lock it if you do not want the Memory Manager to
move it back to the middle partition as soon as it can. (The MoveHHi function cannot move locked blocks;
be sure to lock blocks after, not before, calling MoveHHi.)

Using the MoveHHi function without taking other precautionary measures to prevent heap fragmentation
is useless, because even one small nonrelocatable or locked relocatable block in the middle of the heap
might prevent MoveHHi from moving blocks to the top of the heap.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

NewEmptyHandle
Initializes a new handle without allocating any memory for it to control.

Handle NewEmptyHandle (
 void
);

Return Value
A handle with its master pointer set to NULL.

Discussion
The Resource Manager uses this function extensively, but you probably will not need to use it.

When you want to allocate memory for the empty handle, use the ReallocateHandle (page 1422) function.

Functions 1413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

NewGrowZoneUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps never grow in Mac OS X, so the
grow-zone function is never called.)

GrowZoneUPP NewGrowZoneUPP (
 GrowZoneProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the GrowZoneUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

NewHandle
Allocates a new relocatable memory block of a specified size in the current heap zone.

Handle NewHandle (
 Size byteCount
);

Parameters
byteCount

The requested size, in bytes, of the relocatable block. Maximum size is 2 GB, the maximum size for
variables of type Size.

Return Value
A handle to the new block. If NewHandle cannot allocate a block of the requested size, it returns NULL.

Discussion
The NewHandle function pursues all available avenues to create a block of the requested size, including
compacting the heap zone, increasing its size, and purging blocks from it. If all of these techniques fail and
the heap zone has a grow-zone function installed, NewHandle calls the function. Then NewHandle

1414 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

tries again to free the necessary amount of memory, once more compacting and purging the heap zone if
necessary. If NewHandle still cannot allocate memory, NewHandle calls the grow-zone function again, unless
that function had returned 0, in which case NewHandle gives up and returns NULL.

If the NewHandle function succeeds in creating the requested block, this new block is unlocked and
unpurgeable.

If you allocate a relocatable block that you plan to lock for long periods of time, you can prevent heap
fragmentation by allocating the block as low as possible in the heap zone. To do this, see the description of
the function ReserveMem (page 1424).

If you plan to lock a relocatable block for short periods of time, you might want to move it to the top of the
heap zone to prevent heap fragmentation. For more information, see the description of the function
MoveHHi (page 1412).

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Because NewHandle allocates memory, you should not call it at interrupt time.

Do not try to manufacture your own handles without this function by simply assigning the address of a
variable of type Ptr to a variable of type Handle. The resulting “fake handle” would not reference a relocatable
block and could cause a system crash.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Gamma Filter for FxPlug and AE
QTCarbonShell
QTMetaData
WhackedTV

Declared In
MacMemory.h

NewHandleClear
Allocates a relocatable block of memory of a specified size with all its bytes set to 0.

Handle NewHandleClear (
 Size byteCount
);

Parameters
byteCount

The requested size (in bytes) of the relocatable block. The NewHandleClear function sets each of
these bytes to 0.

Return Value
A handle to the new block. If NewHandleClear cannot allocate a block of the requested size, it returns NULL.

Functions 1415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Discussion
The NewHandleClear function works like the NewHandle function, but sets all bytes in the new block to 0
instead of leaving the contents of the block undefined.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Because NewHandleClear allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
LiveVideoMixer2
SoftVDigX

Declared In
MacMemory.h

NewPtr
Allocates a nonrelocatable block of memory of a specified size.

Ptr NewPtr (
 Size byteCount
);

Parameters
byteCount

The requested size (in bytes) of the nonrelocatable block. In Mac OS X, if you pass a value of zero, this
function returns NULL, and MemError is set to paramErr. In Mac OS 9 and earlier, if you pass a value
of zero, this function returns a valid zero length pointer.

Return Value
A pointer to the new block. If NewPtr fails to allocate a block of the requested size, it returns NULL.

Discussion
The NewPtr function attempts to reserve space as low in the heap zone as possible for the new block. If it
is able to reserve the requested amount of space, NewPtr allocates the nonrelocatable block in the gap
ReserveMem creates. Otherwise, NewPtr returns NULL and generates a memFullErr error.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Because NewPtr allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

1416 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

NewPtrClear
Allocates a nonrelocatable block of memory of a specified size with all its bytes set to 0.

Ptr NewPtrClear (
 Size byteCount
);

Parameters
byteCount

The requested size (in bytes) of the nonrelocatable block.

Return Value
A pointer to the new block. If NewPtrClear fails to allocate a block of the requested size, it returns NULL.

Discussion
The NewPtrClear function works much as the NewPtr function does, but sets all bytes in the new block to
0 instead of leaving the contents of the block undefined.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Because NewPtrClear allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor
CarbonSketch
SoftVDigX

Declared In
MacMemory.h

NewPurgeUPP
(Deprecated in Mac OS X v10.4. There is no replacement function; heaps are never purged in Mac OS X, so
the purge function is never called.)

PurgeUPP NewPurgeUPP (
 PurgeProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the PurgeUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 1417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Declared In
MacMemory.h

NewUserFnUPP
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

UserFnUPP NewUserFnUPP (
 UserFnProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the UserFnUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

PtrAndHand
Concatenates part or all of a memory block to the end of a relocatable block.

OSErr PtrAndHand (
 const void *ptr1,
 Handle hand2,
 long size
);

Parameters
ptr1

A pointer to the beginning of the data that the Memory Manager is to concatenate onto the end of
the relocatable block.

hand2
A handle to the relocatable block, whose size the Memory Manager expands so that it can concatenate
the information from ptr1 onto the end of this block.

size
The number of bytes of the block referenced by ptr1 to copy.

Return Value
A result code. See “Memory Manager Result Codes” (page 1443).

Discussion
The PtrAndHand function takes the number of bytes specified by the size parameter, beginning at the
location specified by ptr1, and concatenates them onto the end of the relocatable block to which hand2 is
a handle. The contents of the source block remain unchanged.

1418 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Because PtrAndHand allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
MacMemory.h

PtrToHand
Copies data referenced by a pointer to a new relocatable block.

OSErr PtrToHand (
 const void *srcPtr,
 Handle *dstHndl,
 long size
);

Parameters
srcPtr

The address of the first byte to copy.

dstHndl
A handle for which you have not yet allocated any memory. The PtrToHand function allocates memory
for the handle and copies the specified number of bytes beginning at srcPtr into it. The dstHndl
parameter is an output parameter that will hold the result. Its value on entry is ignored. If no error
occurs, on exit it points to an unlocked, non-purgeable Handle of the requested size.

size
The number of bytes to copy.

Return Value
A result code. See “Memory Manager Result Codes” (page 1443).

Discussion
If you dereference and lock a handle, the PtrToHand function can copy its data to a new handle. However,
for copying data from one handle to another, the HandToHand (page 1396) function is more efficient.

Because PtrToHand allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

PtrToXHand
Copies data referenced by a pointer to an existing relocatable block.

Functions 1419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

OSErr PtrToXHand (
 const void *srcPtr,
 Handle dstHndl,
 long size
);

Parameters
srcPtr

The address of the first byte to copy.

dstHndl
A handle to an existing relocatable block.

size
The number of bytes to copy.

Return Value
A result code. See “Memory Manager Result Codes” (page 1443).

Discussion
The PtrToXHand function copies the specified number of bytes from the location specified by srcPtr to
the handle specified by dstHndl.

Because PtrToXHand affects memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

PurgeMem
Purges the current heap zone until the specified number of bytes are available. (Deprecated in Mac OS X
v10.4. There is no replacement; heaps are never purged in Mac OS X, so this function does nothing.)

void PurgeMem (
 Size cbNeeded
);

Parameters
cbNeeded

The size, in bytes, of the block for which PurgeMem should attempt to make room.

Discussion
The Memory Manager purges the heap automatically when a memory request fails. However, you can use
PurgeMem to purge the current heap zone manually.

The PurgeMem function sequentially purges blocks from the current heap zone until it either allocates a
contiguous block of the specified size or purges the entire zone. If PurgeMem purges the entire zone without
creating a contiguous block of the specified size, PurgeMem generates the result code memFullErr.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

The PurgeMem function purges only relocatable, unlocked, purgeable blocks. The function does not actually
attempt to allocate the memory.

1420 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

To purge the entire heap zone, call PurgeMem(maxSize).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

PurgeSpace
Determines the total amount of free memory and the size of the largest allocatable block in the current heap
zone if it were purged. (Deprecated in Mac OS X v10.4. There is no replacement; heaps are never purged in
Mac OS X.)

void PurgeSpace (
 long *total,
 long *contig
);

Parameters
total

On return, the total amount of free memory, in bytes, in the current heap zone if it were purged. This
amount includes space that is already free.

contig
On return, the size of the largest contiguous block of free memory in the current heap zone if it were
purged.

Discussion
The PurgeSpace function does not actually purge the current heap zone.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

PurgeSpaceContiguous
(Deprecated in Mac OS X v10.4. There is no replacement; heaps are never purged in Mac OS X.)

long PurgeSpaceContiguous (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Functions 1421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

PurgeSpaceTotal
(Deprecated in Mac OS X v10.4. There is no replacement; heaps are never purged in Mac OS X.)

long PurgeSpaceTotal (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

ReallocateHandle
Allocates a new relocatable block of a specified size and sets a handle’s master pointer to point to the new
block.

void ReallocateHandle (
 Handle h,
 Size byteCount
);

Parameters
h

A handle to a relocatable block.

byteCount
The desired new logical size (in bytes) of the relocatable block. The new block is unlocked and
unpurgeable.

Discussion
Usually you use ReallocateHandle to reallocate space for a block that you have emptied or the Memory
Manager has purged. If the handle references an existing block, ReallocateHandle releases that block
before creating a new one.

If many handles reference a single purged, relocatable block, you need to call ReallocateHandle on just
one of them.

To reallocate space for a resource that has been purged, you should call LoadResource, not
ReallocateHandle. To resize relocatable blocks, you should call the SetHandleSize (page 1425) function.

1422 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Currently in Mac OS 8 and 9, the ReallocateHandle function releases any existing relocatable block
referenced by the handle h before allocating a new one. This behavior means that if an error occurs when
calling ReallocateHandle, the handle h will be set to NULL. This behavior does not occur in the Mac OS X
implementation.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Because ReallocateHandle might purge and allocate memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

RecoverHandle
Returns a handle to a relocatable block pointed to by a specified pointer.

Handle RecoverHandle (
 Ptr p
);

Parameters
p

The master pointer to a relocatable block.

Return Value
A handle to a relocatable block point to by p. If p does not point to a valid block, the results of RecoverHandle
are undefined.

Discussion
The Memory Manager does not allow you to change relocatable blocks into nonrelocatable blocks, or
vice-versa. However, if you no longer have access to a handle but still have access to its master pointer p,
you can use the RecoverHandle function to recreate a handle to the relocatable block referenced by p.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Even though RecoverHandle does not move or purge memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

ReleaseMemoryData
Releases the data of a portion of the address space. (Deprecated in Mac OS X v10.4. There is no replacement;
this function does nothing in Mac OS X.)

Functions 1423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

OSErr ReleaseMemoryData (
 void *address,
 unsigned long count
);

Return Value
This function always returns a value of noErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

ReserveMem
Reserves space for a block of memory as close to the bottom of the current heap zone as possible. (Deprecated
in Mac OS X v10.4. There is no replacement; this function does nothing in Mac OS X.)

void ReserveMem (
 Size cbNeeded
);

Parameters
cbNeeded

The number of bytes to reserve near the bottom of the heap.

Discussion
The ReserveMem function attempts to create free space for the specified number of contiguous logical bytes
at the lowest possible position in the current heap zone. It pursues every available means of placing the
block as close as possible to the bottom of the zone, including moving other relocatable blocks upward,
expanding the zone (if possible), and purging blocks from it.

Use the ReserveMem function when allocating a relocatable block that you intend to lock for long periods
of time. This helps prevent heap fragmentation because it reserves space for the block as close to the bottom
of the heap as possible. Consistent use of ReserveMem for this purpose ensures that all locked, relocatable
blocks and nonrelocatable blocks are together at the bottom of the heap zone and thus do not prevent
unlocked relocatable blocks from moving about the zone.

Because ReserveMem does not actually allocate the block, you must combine calls to ReserveMemwith calls
to the NewHandle function.

Do not use the ReserveMem function for a relocatable block you intend to lock for only a short period of
time. If you do so and then allocate a nonrelocatable block above it, the relocatable block becomes trapped
under the nonrelocatable block when you unlock that relocatable block.

It isn’t necessary to call ReserveMem to reserve space for a nonrelocatable block, because the NewPtr function
calls it automatically.

Also, you do not need to call ReserveMem to reserve memory before you load a locked resource into memory,
because the Resource Manager calls ReserveMem automatically.

1424 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Because the ReserveMem function could move and purge memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

SetGrowZone
Specifies the current heap zone’s grow-zone function. (Deprecated in Mac OS X v10.4. There is no replacement
function; heaps never grow in Mac OS X, so the grow-zone function is never called.)

void SetGrowZone (
 GrowZoneUPP growZone
);

Parameters
growZone

A pointer to the grow-zone function. A NULL value removes any previous grow-zone function from
the zone.

Discussion
To specify a grow-zone function for the current heap zone, pass a pointer to that function to the SetGrowZone
function. Usually you call this function early in the execution of your application.

If you initialize your own heap zones besides the application and system zones, you can alternatively specify
a grow-zone function as a parameter to the InitZone function.

The Memory Manager calls the grow-zone function only after exhausting all other avenues of satisfying a
memory request, including compacting the zone, increasing its size (if it is the original application zone and
is not yet at its maximum size), and purging blocks from it.

See “Grow-Zone Operations” for a complete description of a grow-zone function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

SetHandleSize
Changes the logical size of the relocatable block corresponding to the specified handle.

Functions 1425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

void SetHandleSize (
 Handle h,
 Size newSize
);

Parameters
h

A handle to a relocatable block.

newSize
The desired new logical size, in bytes, of the relocatable block.

Discussion
SetHandleSize tries to change the size of the allocation to newSize. If there is not enough room to enlarge
the memory allocation pointed to by h, SetHandleSize creates a new allocation, copies as much of the old
data pointed to by h as will fit to the new allocation, and frees the old allocation. SetHandleSize might
need to move the relocatable block to obtain enough space for the resized block. Thus, for best results you
should unlock a block before resizing it.

An attempt to increase the size of a locked block might fail, because of blocks above and below it that are
either nonrelocatable or locked. You should be prepared for this possibility.

Instead of using the SetHandleSize function to set the size of a handle to 0, you can use the
EmptyHandle (page 1392) function.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Because SetHandleSize allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SoftVDigX

Declared In
MacMemory.h

SetPtrSize
Changes the logical size of the nonrelocatable block corresponding to a pointer.

void SetPtrSize (
 Ptr p,
 Size newSize
);

Parameters
p

A pointer to a nonrelocatable block.

newSize
The desired new logical size, in bytes, of the nonrelocatable block.

1426 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Discussion
An attempt to increase the size of a nonrelocatable block might fail because of a block above it that is either
nonrelocatable or locked. You should be prepared for this possibility.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Because SetPtrSize allocates memory, you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

StackSpace
Returns the amount of space between the bottom of the stack and the top of the application heap. (Deprecated
in Mac OS X v10.5. There is no replacement; this function was included to facilitate porting legacy applications
to Carbon, but it serves no useful purpose in Mac OS X.)

long StackSpace (
 void
);

Return Value
The current amount of stack space, in bytes, between the current stack pointer and the application heap.

Discussion
Usually you determine the maximum amount of stack space needed before you ship your application. Thus
this function is generally useful only during debugging to determine how big to make the stack. However,
if your application calls a recursive function that conceivably could call itself many times, that function should
keep track of the stack space and take appropriate action if it becomes too low.

Call the function MemError (page 1410) to get the result code. See “Memory Manager Result Codes” (page
1443).

Special Considerations

StackSpace must not be called at interrupt time, as it may alter location MemErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempDisposeHandle
Releases a relocatable block in the temporary heap. (Deprecated in Mac OS X v10.5. Use DisposeHandle (page
1390) instead; Mac OS X does not have a separate temporary memory heap.)

Functions 1427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

void TempDisposeHandle (
 Handle h,
 OSErr *resultCode
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempFreeMem
Returns the maximum amount of free memory in the temporary heap. (Deprecated in Mac OS X v10.4. There
is no replacement function; Mac OS X does not have a separate temporary memory heap.)

long TempFreeMem (
 void
);

Return Value
The total amount of free temporary memory, in bytes, that you could allocate by calling TempNewHandle.
Because these bytes might be dispersed throughout memory, it is ordinarily not possible to allocate a single
relocatable block of that size.

Discussion
Returns the total amount of memory available for temporary allocation.

Special Considerations

In Mac OS X, there is no separate temporary memory heap. This function always returns a large value, because
virtual memory is always available to fulfill any request for memory. You can assume that any reasonable
memory allocation request will succeed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempHLock
Locks a relocatable block in the temporary heap. (Deprecated in Mac OS X v10.4. Use HLock (page 1398) instead;
Mac OS X does not have a separate temporary memory heap.)

1428 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

void TempHLock (
 Handle h,
 OSErr *resultCode
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempHUnlock
Unlocks a relocatable block in the temporary heap. (Deprecated in Mac OS X v10.4. Use HUnlock (page 1403)
instead; Mac OS X does not have a separate temporary memory heap.)

void TempHUnlock (
 Handle h,
 OSErr *resultCode
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempMaxMem
Returns the maximum amount of temporary memory available. (Deprecated in Mac OS X v10.4. There is no
replacement function; Mac OS X does not have a separate temporary memory heap.)

Size TempMaxMem (
 Size *grow
);

Parameters
grow

On return, this parameter always contains 0 after the function call because temporary memory does
not come from the application’s heap zone, and only that zone can grow. Ignore this parameter.

Return Value
The size of the largest contiguous block available for temporary allocation.

Discussion
Compacts the current heap zone and returns the size of the largest contiguous block available for temporary
allocation.

Functions 1429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Special Considerations

In Mac OS X, there is no separate temporary memory heap. This function always returns a large value, because
virtual memory is always available to fulfill any request for memory. You can assume that any reasonable
memory allocation request will succeed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TempNewHandle
Allocates a new relocatable block of temporary memory.

Handle TempNewHandle (
 Size logicalSize,
 OSErr *resultCode
);

Parameters
logicalSize

The requested logical size, in bytes, of the new temporary block of memory.

resultCode
On return, the result code from the function call. See “Memory Manager Result Codes” (page 1443).

Return Value
A handle to a block of size logicalSize. If it cannot allocate a block of that size, the function returns NULL.

Discussion
Before calling TempNewHandle, you should call TempFreeMem or TempMaxMem to make sure that there is
enough free space to satisfy the request.

Because TempNewHandle might allocate memory, you should not call it at interrupt time.

Carbon Porting Notes

Temporary memory allocations will actually come from the applications’s address space in Mac OS X. However,
Carbon applications running under Mac OS 8.x will be able to get true temporary memory.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacMemory.h

TempTopMem
Returns the location of the top of the temporary heap. (Deprecated in Mac OS X v10.4. There is no replacement
function; Mac OS X does not have a separate temporary memory heap.)

1430 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Ptr TempTopMem (
 void
);

Discussion
In Mac OS X, this function always returns NULL.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

TopMem
Returns a pointer to the byte at the top of an application’s partition. (Deprecated in Mac OS X v10.4. There
is no replacement; this function does nothing in Mac OS X.)

Ptr TopMem (
 void
);

Discussion
Deprecated. Refer to MacMemory.h for information on replacement functions.

TopMem obtains a pointer to the byte at the top of an application’s partition, directly above the jump table.
TopMem does this to maintain compatibility with programs that check TopMem to find out how much memory
is installed in a computer. The preferred method of obtaining this information is with the Gestalt function.

The function exhibits special behavior at startup time, and the value it returns controls the amount by which
an extension can lower the value of the global variable BufPtr at startup time. If you are writing a system
extension, you should not lower the value of BufPtr by more than MemTop DIV 2 + 1024. If you do lower
BufPtr too far, the startup process generates an out-of-memory system error.

You should never need to call TopMem except during the startup process.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

UnholdMemory
Makes a currently held range of memory eligible for paging again. (Deprecated in Mac OS X v10.4. There is
no replacement; this function does nothing in Mac OS X.)

Functions 1431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

OSErr UnholdMemory (
 void *address,
 unsigned long count
);

Parameters
address

A pointer indicating the starting address of the range of memory to be released.

count
The size, in bytes, of the range of memory to be released.

Return Value
This function always returns a value of noErr.

Discussion
If the starting address you supply to the UnholdMemory function is not on a page boundary, then
UnholdMemory rounds down to the nearest page boundary. Similarly, if the specified range does not end
on a page boundary, UnholdMemory rounds up the value you pass in the count parameter so that the entire
range of memory is released.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacMemory.h

Callbacks

All Memory Manager callbacks are deprecated in Mac OS X. They are non-functional.

GrowZoneProcPtr
Deprecated.

typedef long (*GrowZoneProcPtr) (
 Size cbNeeded
);

If you name your function MyGrowZoneProc, you would declare it like this:

long MyGrowZoneProc (
 Size cbNeeded
);

Parameters
cbNeeded

The physical size, in bytes, of the needed block, including the block header. The grow-zone function
should attempt to create a free block of at least this size.

1432 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Return Value
The number of bytes of memory the function has freed.

Discussion
User-defined function that creates free space in the heap.

Whenever the Memory Manager has exhausted all available means of creating space within your application
heap—including purging, compacting, and (if possible) expanding the heap—it calls your application-defined
grow-zone function. The grow-zone function can do whatever is necessary to create free space in the heap.
Typically, a grow-zone function marks some unneeded blocks as purgeable or releases an emergency memory
reserve maintained by your application.

The grow-zone function should return a nonzero value equal to the number of bytes of memory it has freed,
or zero if it is unable to free any. When the function returns a nonzero value, the Memory Manager once
again purges and compacts the heap zone and tries to reallocate memory. If there is still insufficient memory,
the Memory Manager calls the grow-zone function again (but only if the function returned a nonzero value
the previous time it was called). This mechanism allows your grow-zone function to release just a little bit of
memory at a time. If the amount it releases at any time is not enough, the Memory Manager calls it again
and gives it the opportunity to take more drastic measures.

The Memory Manager might designate a particular relocatable block in the heap as protected; your grow-zone
function should not move or purge that block. You can determine which block, if any, the Memory Manager
has protected by calling the GZSaveHnd function in your grow-zone function.

Remember that the Memory Manager calls a grow-zone function while attempting to allocate memory. As
a result, your grow-zone function should not allocate memory itself or perform any other actions that might
indirectly cause memory allocation (such as calling functions in unloaded code segments or displaying dialog
boxes).

You install a grow-zone function by passing its address to the InitZone function when you create a new
heap zone or by calling the SetGrowZone function at any other time.

Your grow-zone function might be called at a time when the system is attempting to allocate memory and
the value in the A5 register is not correct. If your function accesses your application’s A5 world or makes any
trap calls, you need to set up and later restore the A5 register by calling SetCurrentA5 and SetA5. See the
chapter “Memory Management Utilities” in this book for a description of these two functions.

Because of the optimizations performed by some compilers, the actual work of the grow-zone function and
the setting and restoring of the A5 register might have to be placed in separate functions.

See the chapter “Introduction to Memory Management” for a definition of a sample grow-zone function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

PurgeProcPtr
Deprecated.

Callbacks 1433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

typedef void (*PurgeProcPtr) (
 Handle blockToPurge
);

If you name your function MyPurgeProc, you would declare it like this:

void MyPurgeProc (
 Handle blockToPurge
);

Parameters
blockToPurge

A handle to the block that is about to be purged.

Discussion
User-defined function called when the Memory Manager needs to purge a block or allocate memory.

Whenever the Memory Manager needs to purge a block from the application heap, it first calls any
application-defined purge-warning function that you have installed. The purge-warning function can, if
necessary, save the contents of that block or otherwise respond to the warning.

Your purge-warning function is called during a memory-allocation request. As a result, you should not call
any functions that might cause memory to be moved or purged. In particular, if you save the data of the
block in a file, the file should already be open when your purge-warning function is called, and you should
write the data synchronously.

You should not dispose of or change the purgeable status of the block whose handle is passed to your
function.

To install a purge-warning function, you need to assign its address to the purgeProc field of the associated
zone header.

Note that if you call the Resource Manager function SetResPurge with the parameter TRUE, any existing
purge-warning function is replaced by a purge-warning function installed by the Resource Manager. You
can execute both warning functions by calling SetResPurge, saving the existing value of the purgeProc
field of the zone header, and then reinstalling your purge-warning function. Your purge-warning function
should call the Resource Manager’s purge-warning function internally.

Your purge-warning function might be called at a time when the system is attempting to allocate memory
and the value in the A5 register is not correct. If your function accesses your application’s A5 world or makes
any trap calls, you need to set up and later restore the A5 register by calling SetCurrentA5 and SetA5.

Because of the optimizations performed by some compilers, the actual work of the purge-warning function
and the setting and restoring of the A5 register might have to be placed in separate functions.

The Memory Manager calls your purge-warning function for every handle that is about to be purged (not
necessarily for every purgeable handle in your heap, however). Your function should be able to determine
quickly whether the handle that the Memory Manager is about to purge points to data you need to save or
otherwise process.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1434 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Declared In
MacMemory.h

UserFnProcPtr
Deprecated.

typedef void (*UserFnProcPtr) (
 void *parameter
);

If you name your function MyUserFnProc, you would declare it like this:

void MyUserFnProc (
 void * parameter
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

Data Types

All Memory Manager data types are deprecated in Mac OS X. They are not used.

BackingFileID
Deprecated.

typedef struct * BackingFileID;

Special Considerations

FileViewAccess
Deprecated.

Data Types 1435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

typedef UInt32 FileViewAccess;
enum {
 kFileViewAccessReadBit = 0,
 kFileViewAccessWriteBit = 1,
 kFileViewAccessExecuteBit = 2,
 kFileViewAccessReadMask = 1,
 kFileViewAccessWriteMask = 2,
 kFileViewAccessExecuteMask = 4,
 kFileViewAccessExcluded = 0,
 kFileViewAccessReadOnly = 5,
 kFileViewAccessReadWrite = 7
};

Special Considerations

FileViewID
Deprecated.

typedef struct * FileViewID;

Special Considerations

FileViewInformation
Deprecated.

struct FileViewInformation {
 ProcessSerialNumber owningProcess;
 LogicalAddress viewBase;
 ByteCount viewLength;
 BackingFileID backingFile;
 UInt64 backingBase;
 FileViewAccess access;
 ByteCount guardLength;
 FileViewOptions options;
};

FileViewOptions
Deprecated.

typedef OptionBits FileViewOptions;

GrowZoneUPP
Deprecated.

typedef GrowZoneProcPtr GrowZoneUPP;

Discussion
For more information, see the description of the GrowZoneUPP () callback function.

1436 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

LogicalToPhysicalTable
Deprecated.

struct LogicalToPhysicalTable {
 MemoryBlock logical;
 MemoryBlock physical[8];
};
typedef struct LogicalToPhysicalTable LogicalToPhysicalTable;

Fields
logical

A logical block of memory whose corresponding physical blocks are to be determined.

physical
A physical translation table that identifies the blocks of physical memory corresponding to the logical
block identified in the logical field.

Discussion
The GetPhysical function uses a translation table to hold information about a logical address range and
its corresponding physical addresses. A translation table is defined by the data type LogicalToPhysicalTable.

Special Considerations
Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

MappedFileAttributes
Deprecated.

typedef UInt32 MappedFileAttributes;
enum {
 kIsMappedScratchFile = 1
};

MappedFileInformation
Deprecated.

Data Types 1437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

struct MappedFileInformation {
 ProcessSerialNumber owningProcess;
 FSRef *ref;
 HFSUniStr255 *forkName;
 MappingPrivileges privileges;
 UInt64 currentSize;
 MappedFileAttributes attributes;
};

MappingPrivileges
Deprecated.

typedef UInt32 MappingPrivileges;
enum {
 kInvalidMappedPrivileges = 0,
 kCanReadMappedFile = 1,
 kCanWriteMappedFile = 2,
 kNoProcessMappedFile = -2147483648,
 kValidMappingPrivilegesMask = -2147483645
};

Special Considerations

MemoryBlock
Deprecated.

struct MemoryBlock {
 void * address;
 unsigned long count;
};
typedef struct MemoryBlock MemoryBlock;

Fields
address

A pointer to the beginning of a block of memory.

count
The number of bytes in the block of memory.

Discussion
The GetPhysical function uses a structure of type MemoryBlock to hold information about a block of
memory, either logical or physical.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

1438 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

PurgeUPP
Deprecated.

typedef PurgeProcPtr PurgeUPP;

Discussion
For more information, see the description of the PurgeUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

StatusRegisterContents
Deprecated.

typedef StatusRegisterContents;

Special Considerations
Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

UserFnUPP
Deprecated.

typedef UserFnProcPtr UserFnUPP;

Discussion
For more information, see the description of the UserFnUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

VolumeVirtualMemoryInfo
Deprecated.

Data Types 1439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

struct VolumeVirtualMemoryInfo {
 PBVersion version;
 SInt16 volumeRefNum;
 Boolean inUse;
 UInt8 _fill;
 UInt32 vmOptions;
};
typedef struct VolumeVirtualMemoryInfo VolumeVirtualMemoryInfo;
typedef VolumeVirtualMemoryInfo * VolumeVirtualMemoryInfoPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

Zone
Deprecated.

struct Zone {
 Ptr bkLim;
 Ptr purgePtr;
 Ptr hFstFree;
 long zcbFree;
 GrowZoneUPP gzProc;
 short moreMast;
 short flags;
 short cntRel;
 short maxRel;
 short cntNRel;
 SInt8 heapType;
 SInt8 unused;
 short cntEmpty;
 short cntHandles;
 long minCBFree;
 PurgeUPP purgeProc;
 Ptr sparePtr;
 Ptr allocPtr;
 short heapData;
};
typedef struct Zone Zone;
typedef Zone * THz;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacMemory.h

1440 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Constants

All Memory Manager constants are deprecated in Mac OS X. They are not used.

Default Physical Entry Count Constant
Deprecated.

enum {
 defaultPhysicalEntryCount = 8
};

Discussion
The defaultPhysicalEntryCount constant represents the default number of physical blocks in a table.

k32BitHeap
Deprecated.

enum {
 k32BitHeap = 1,
 kNewStyleHeap = 2,
 kNewDebugHeap = 4
};

kFileViewInformationVersion1
Deprecated.

enum {
 kFileViewInformationVersion1 = 1
};

kHandleIsResourceBit
Deprecated.

enum {
 kHandleIsResourceBit = 5,
 kHandlePurgeableBit = 6,
 kHandleLockedBit = 7
};

kHandleIsResourceMask
Deprecated.

Constants 1441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

enum {
 kHandleIsResourceMask = 0x20,
 kHandlePurgeableMask = 0x40,
 kHandleLockedMask = 0x80
};

kMapEntireFork
Deprecated.

enum {
 kMapEntireFork = -1
};

Constants
kMapEntireFork

kMappedFileInformationVersion1
Deprecated.

enum {
 kMappedFileInformationVersion1 = 1
};

kPageInMemory
Deprecated.

typedef short PageState;
enum {
 kPageInMemory = 0,
 kPageOnDisk = 1,
 kNotPaged = 2
};

Discussion
The GetPageState function obtains the state value of a page of logical memory. The PageState data type
defines constants that represent these possible state values.

Debuggers need a way to display the contents of memory without paging or to display the contents of pages
currently on disk. The GetPageState function obtains a constant from the PageState data type to specify
the state of a page containing a virtual address. A debugger can use this information to determine whether
certain memory addresses should be referenced. Note that ROM and I/O space are not pageable and therefore
are considered not paged.

kVolumeVirtualMemoryInfoVersion1
Deprecated.

1442 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

enum {
 kVolumeVirtualMemoryInfoVersion1 = 1
};

maxSize
Deprecated.

enum {
 maxSize = 0x7FFFFFF0
};

Result Codes

The most common result codes returned by the Memory Manager are listed below.

DescriptionValueResult Code

A menu was purged.84menuPrgErr

Available in Mac OS X v10.0 and later.

A heap has been corrupted.33negZcbFreeErr

Available in Mac OS X v10.0 and later.

Operation on a read-only zone. This result code is not relevant in Mac OS X.-99memROZErr

Available in Mac OS X v10.0 and later.

Not enough memory in heap.-108memFullErr

Available in Mac OS X v10.0 and later.

Handle argument is NULL.-109nilHandleErr

Available in Mac OS X v10.0 and later.

Address is odd or out of range.-110memAdrErr

Available in Mac OS X v10.0 and later.

Attempt to operate on a free block.-111memWZErr

Available in Mac OS X v10.0 and later.

Attempt to purge a locked or unpurgeable block.-112memPurErr

Available in Mac OS X v10.0 and later.

Address in zone check failed.-113memAZErr

Available in Mac OS X v10.0 and later.

Result Codes 1443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

DescriptionValueResult Code

Pointer check failed.-114memPCErr

Available in Mac OS X v10.0 and later.

Block check failed.-115memBCErr

Available in Mac OS X v10.0 and later.

Size check failed.-116memSCErr

Available in Mac OS X v10.0 and later.

Block is locked.-117memLockedErr

Available in Mac OS X v10.0 and later.

1444 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Memory Manager Reference

Framework: CoreServices/CoreServices.h

Declared in MixedMode.h

Overview

Mac OS X does not require the Mixed Mode Manager, and does not support its functions. These unsupported
functions are listed in the Appendix. The functions have been removed from the Mixed Mode Manager and
redefined as macros for the purpose of source compatibility with code ported to CFM. See the header file
MixedMode.h for details on these macros and their usage.

You do not need to remove Mixed Mode Manager calls from your application for compatibility with Mac OS
X, and may want to retain them for source code compatibility with previous versions of the Mac OS.

The Mixed Mode Manager managed the mixed-mode architecture of PowerPC processor-based computers
running 680x0-based code (including system software, applications, and stand-alone code modules). The
Mixed Mode Manager cooperated with the 68LC040 Emulator to provide a fast, efficient, and virtually
transparent method for code in one instruction set architecture to call code in another architecture. The
Mixed Mode Manager handled all the details of switching between architectures.

The Mixed Mode Manager was intended to operate transparently to most applications and other software.

Although Mac OS X does not run 68K code, Carbon supports universal procedure pointers (UPPs) transparently,
so you do not have to change them or remove them from your code. You may want to keep Mixed Mode
Manager calls in your application to maintain source code compatibility with the previous versions of the
Mac OS. Mixed Mode Manager calls from Carbon applications running on Mac OS 8 or 9 will function normally.

The Mixed Mode Manager was used by developers who

 ■ wanted to recompile their applications into PowerPC code and their applications passed the address of
some routines to the Mac OS using a reference of type ProcPtr

 ■ created applications–written in either PowerPC or 680x0 code–that support installable code modules
that might be written in a different architecture

 ■ wrote stand-alone code (for example, a VBL task or a component) that could be called from either the
PowerPC native environment or the 680x0 emulated environment

 ■ wrote debuggers or other software that needed to know about the structure of the stack at any time
(for example, during a mode switch)

Mac OS X will not run 68K code. Although Carbon supports universal procedure pointers (UPPs), applications
should use ProcPtrs for their own code and plug-ins and use the new system-supplied UPP creation functions
for Toolbox callback UPPs. You still need to dispose of those UPPs (using the corresponding disposal function),
so that any allocated memory can be cleaned up when your application is running on Mac OS 8 or 9.

Overview 1445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

Data Types

MixedModeStateRecord
Contains mixed mode state information.

struct MixedModeStateRecord {
 UInt32 state1;
 UInt32 state2;
 UInt32 state3;
 UInt32 state4;
};
typedef struct MixedModeStateRecord MixedModeStateRecord;

Fields
state1
state2
state3
state4

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

ProcInfoType
Defines a data type used to encode a routine’s procedure information.

typedef unsigned long ProcInfoType;

Discussion
The Mixed Mode Manager uses a long word of type ProcInfoType to encode a routine’s procedure
information, which contains essential information about the calling conventions and other features of a
routine. These values specify

 ■ the routine’s calling conventions

 ■ the sizes and locations of the routine’s parameters, if any

 ■ the size and location of the routine’s result, if any

The Mixed Mode Manager provides a number of constants that you can use to specify the procedure
information. See “Procedure Information Size Constants” (page 1455) , “ProcInfo Field Offset And Width
Constants” (page 1456) , “Calling Convention Constants” (page 1450) , “Special Case Calling Convention
Constants” (page 1464) , and “Register Constants” (page 1459).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

1446 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

RDFlagsType
Defines a data type for routine descriptor flags.

typedef UInt8 RDFlagsType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

RoutineDescriptor
Contains information used by the Mixed Mode Manager to execute a routine.

struct RoutineDescriptor {
 UInt16 goMixedModeTrap;
 SInt8 version;
 RDFlagsType routineDescriptorFlags;
 UInt32 reserved1;
 UInt8 reserved2;
 UInt8 selectorInfo;
 UInt16 routineCount;
 RoutineRecord routineRecords[1];
};
typedef struct RoutineDescriptor RoutineDescriptor;
typedef RoutineDescriptor * RoutineDescriptorPtr;
typedef RoutineDescriptorPtr RoutineDescriptorHandle;

Fields
goMixedModeTrap

An A-line instruction that is used privately by the Mixed Mode Manager. When the emulator encounters
this instruction, it transfers control to the Mixed Mode Manager. This field contains the value $AAFE.

version
The version number of the RoutineDescriptor data type.

routineDescriptorFlags
A set of routine descriptor flags. Currently, all the bits in this field should be set to 0, unless you are
specifying a routine descriptor for a dispatched routine.

reserved1
Reserved. This field must initially be 0.

reserved2
Reserved. This field must be 0.

selectorInfo
Reserved. This field must be 0.

routineCount
The index of the final routine record in the following array, of routineRecords. Because the
routineRecords array is zero-based, this field does not contain an actual count of the routine records
contained in that array. Often, you will use a routine descriptor to describe a single procedure, in
which case this field should contain the value 0. You can, however, construct a routine descriptor that
contains pointers to both 680x0 and PowerPC code (known as a “fat” routine descriptor). In that case,
this field should contain the value 1.

Data Types 1447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

routineRecords
An array of routine records for the routines described by this routine descriptor. See
“RoutineRecord” (page 1448) for the structure of a routine record. This array is zero-based.

Discussion
A routine descriptor is a data structure used by the Mixed Mode Manager to execute a routine. The external
interface to a routine descriptor is through a universal procedure pointer, of type UniversalProcPtr, which
is defined as a procedure pointer (if the code is 680x0 code) or as a pointer to a routine descriptor (if the
code is PowerPC code). A routine descriptor is defined by the RoutineDescriptor data type.

Your application (or other software) should never attempt to guide its execution by inspecting the value in
the ISA field of a routine record and jumping to the address in the procDescriptor field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

RoutineFlagsType
Defines a data type for routine flags.

typedef unsigned short RoutineFlagsType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

RoutineRecord
Cntains information about a particular routine.

1448 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

struct RoutineRecord {
 ProcInfoType procInfo;
 SInt8 reserved1;
 ISAType ISA;
 RoutineFlagsType routineFlags;
 ProcPtr procDescriptor;
 UInt32 reserved2;
 UInt32 selector;
};
typedef struct RoutineRecord RoutineRecord;
typedef RoutineRecord * RoutineRecordPtr;
typedef RoutineRecordPtr RoutineRecordHandle;

Fields
procInfo

A value of type ProcInfoType that encodes essential information about the routine’s calling
conventions and parameters. See “Procedure Information Size Constants” (page 1455), “ProcInfo Field
Offset And Width Constants” (page 1456), “Calling Convention Constants” (page 1450), “Special Case
Calling Convention Constants” (page 1464), and “Register Constants” (page 1459) for descriptions of the
constants you can use to set this field.

reserved1
Reserved. This field must be 0.

ISA
The instruction set architecture of the routine. See “Instruction Set Architectures” (page 1452) for a
complete listing of the constants you can use to set this field.

routineFlags
A value of type RoutineFlagsType that contains a set of flags describing the routine. See “Routine
Entry Point Flags” (page 1463), “Fragment Flags” (page 1452), “ISA Flags” (page 1453), “Routine Selector
Flags” (page 1463), and “Default Routine Flags” (page 1451) for descriptions of the constants you can use
to set this field.

procDescriptor
A pointer to the routine’s code. If the routine consists of 680x0 code and the
kProcDescriptorIsAbsolute flag is set in the routineFlags field, then this field contains the
address of the routine’s entry point. If the routine consists of 680x0 code and the
kProcDescriptorIsRelative flag is set, then this field contains the offset from the beginning of
the routine descriptor to the routine’s entry point. If the routine consists of PowerPC code, the
kFragmentIsPrepared flag is set, and the kProcDescriptorIsAbsolute flag is set, then this
field contains the address of the routine’s transition vector. If the routine consists of PowerPC code,
the kFragmentNeedsPreparing flag is set, and the kProcDescriptorIsRelative flag is set, then
this field contains the offset from the beginning of the routine descriptor to the routine’s entry point.

reserved2
Reserved. This field must be 0.

selector
Reserved. This field must be 0. For routines that are dispatched, this field contains the routine selector.

Discussion
A routine record is a data structure that contains information about a particular routine. The routine descriptor
specifies, among other things, the instruction set architecture of the routine, the number and size of the
routine’s parameters, the routine’s calling conventions, and the routine’s location in memory. At least one
routine record is contained in the routineRecords field of a routine descriptor. A routine record is defined
by the RoutineRecord data type.

Data Types 1449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MixedMode.h

Constants

Calling Convention Constants
Specify a routine’s calling conventions.

typedef unsigned short CallingConventionType;
enum {
 kPascalStackBased = 0,
 kCStackBased = 1,
 kRegisterBased = 2,
 kD0DispatchedPascalStackBased = 8,
 kD1DispatchedPascalStackBased = 12,
 kD0DispatchedCStackBased = 9,
 kStackDispatchedPascalStackBased = 14,
 kThinkCStackBased = 5
};

Constants
kPascalStackBased

The routine follows normal Pascal calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCStackBased
The routine follows the C calling conventions employed by the MPW development environment.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterBased
The parameters are passed in registers.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kD0DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal conventions, and the routine selector is
passed in register D0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kD1DispatchedPascalStackBased
The parameters are passed on the stack according to Pascal conventions, and the routine selector is
passed in register D1.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

1450 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kD0DispatchedCStackBased
The parameters are passed on the stack according to C conventions, and the routine selector is passed
in register D0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackDispatchedPascalStackBased
The routine selector and the parameters are passed on the stack.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kThinkCStackBased
The routine follows the C calling conventions employed by the THINK C software development
environment. Arguments are passed on the stack from right to left, and a result is returned in register
D0. All arguments occupy an even number of bytes on the stack. An argument having the size of a
char is passed in the high-order byte. You should always provide function prototypes; failure to do
so may cause THINK C to generate code that is incompatible with this parameter-passing convention.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
These constants are used by the ProcInfoType (page 1446) type to specify a routine’s calling conventions.

Default Routine Flags
Specify defaults for a routine.

enum {
 kRoutineIsNotDispatchedDefaultRoutine = 0x00,
 kRoutineIsDispatchedDefaultRoutine = 0x10
};

Constants
kRoutineIsNotDispatchedDefaultRoutine

This routine is not the default routine for a set of routines that is dispatched using a routine selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRoutineIsDispatchedDefaultRoutine
This routine is the default routine for a set of routines that is dispatched using a routine selector. If a
set of routines is dispatched using a routine selector and the routine corresponding to a specified
selector cannot be found, this default routine is called. This routine must be able to accept the same
procedure information for all routines. If possible, it is passed the procedure information passed in a
call to CallUniversalProc.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Constants 1451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

In general, you should use the constant kRoutineIsNotDispatchedDefaultRoutine. The constant and
kRoutineIsDispatchedDefaultRoutine is reserved for use with selector-based system software routines.

Fragment Flags
Used in the routineFlags field of a routine record.

enum {
 kFragmentIsPrepared = 0x00,
 kFragmentNeedsPreparing = 0x02
};

Constants
kFragmentIsPrepared

The fragment containing the code to be executed is already loaded into memory and prepared by
the Code Fragment Manager.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kFragmentNeedsPreparing
The fragment containing the code to be executed needs to be loaded into memory and prepared by
the Code Fragment Manager. If this flag is set, the kPowerPCISA and kProcDescriptorIsRelative
flags should also be set.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Instruction Set Architectures
Used in the ISA field of a routine record.

typedef SInt8 ISAType;
enum {
 kM68kISA = 0,
 kPowerPCISA = 1
};

Constants
kM68kISA

The routine consists of Motorola 680x0 code.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kPowerPCISA
The routine consists of PowerPC code.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

1452 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

Discussion
The ISA field of a routine record contains a flag that specifies the instruction set architecture of a routine.
You can use constants to specify the instruction set architecture.

ISA Flags
Used in the routineFlags field of a routine record.

enum {
 kUseCurrentISA = 0x00,
 kUseNativeISA = 0x04
};

Constants
kUseCurrentISA

If possible, use the current instruction set architecture when executing a routine.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kUseNativeISA
Use the native instruction set architecture when executing a routine.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Current Mixed Mode State
Specifies the current version of the mixed-mode state record.

enum {
 kCurrentMixedModeStateRecord = 1
};

RTA Types

typedef SInt8 RTAType;
enum {
 kOld68kRTA = 0 << 4,
 kPowerPCRTA = 0 << 4,
 kCFM68kRTA = 1 << 4
};

Constants
kOld68kRTA

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 1453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kPowerPCRTA
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCFM68kRTA
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Procedure Descriptors

enum {
 kProcDescriptorIsProcPtr = 0x00,
 kProcDescriptorIsIndex = 0x20
};

Constants
kProcDescriptorIsProcPtr

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kProcDescriptorIsIndex
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Routine Descriptor Version
Specifies the version of routine descriptor.

enum {
 kRoutineDescriptorVersion = 7
};

Special Case Constant
Used to specify a special case.

enum {
 kSpecialCase = 0x000F
};

Constants
kSpecialCase

The routine is a special case. You can use the following constants to specify a special case.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

1454 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kX86ISA

enum {
 kX86ISA = 2
};

Constants
kX86ISA

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kX86RTA

enum {
 kX86RTA = 2 << 4
};

Constants
kX86RTA

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

_MixedModeMagic

enum {
 _MixedModeMagic = 0xAAFE
};

Constants
_MixedModeMagic

Procedure Information Size Constants
Specify the size (in bytes) of a value encoded in the procedure information for a routine.

enum {
 kNoByteCode = 0,
 kOneByteCode = 1,
 kTwoByteCode = 2,
 kFourByteCode = 3
};

Constants
kNoByteCode

The value occupies no bytes.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 1455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kOneByteCode
The value occupies 1 byte.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kTwoByteCode
The value occupies 2 bytes.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kFourByteCode
The value occupies 4 bytes.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
These constants are used by the ProcInfoType (page 1446) to specify the size (in bytes) of a value encoded
in a routine’s procedure information.

ProcInfo Field Offset And Width Constants
Specify offsets to fields and the widths of the fields within a value.

1456 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

enum {
 kCallingConventionWidth = 4,
 kCallingConventionPhase = 0,
 kCallingConventionMask = 0x0F,
 kResultSizeWidth = 2,
 kResultSizePhase = kCallingConventionWidth,
 kResultSizeMask = 0x30,
 kStackParameterWidth = 2,
 kStackParameterPhase = (kCallingConventionWidth + kResultSizeWidth),
 kStackParameterMask = 0xFFFFFFC0,
 kRegisterResultLocationWidth = 5,
 kRegisterResultLocationPhase = (kCallingConventionWidth + kResultSizeWidth),
 kRegisterParameterWidth = 5,
 kRegisterParameterPhase = (kCallingConventionWidth + kResultSizeWidth
+ kRegisterResultLocationWidth),
 kRegisterParameterMask = 0x7FFFF800,
 kRegisterParameterSizePhase = 0,
 kRegisterParameterSizeWidth = 2,
 kRegisterParameterWhichPhase = kRegisterParameterSizeWidth,
 kRegisterParameterWhichWidth = 3,
 kDispatchedSelectorSizeWidth = 2,
 kDispatchedSelectorSizePhase = (kCallingConventionWidth + kResultSizeWidth),
 kDispatchedParameterPhase = (kCallingConventionWidth + kResultSizeWidth
+ kDispatchedSelectorSizeWidth),
 kSpecialCaseSelectorWidth = 6,
 kSpecialCaseSelectorPhase = kCallingConventionWidth,
 kSpecialCaseSelectorMask = 0x03F0
};

Constants
kCallingConventionWidth

The number of bits in the procedure information that encode the calling convention information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCallingConventionPhase
The offset from the least significant bit in the procedure information to the calling convention
information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCallingConventionMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kResultSizeWidth
The number of bits in the procedure information that encode the function result size information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kResultSizePhase
The offset from the least significant bit in the procedure information to the function result size
information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 1457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kResultSizeMask
A mask for the bits in the procedure information that encode the function result size information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackParameterWidth
The number of bits in the procedure information that encode the size of a stack-based parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackParameterPhase
The offset from the least significant bit in the procedure information to the stack parameter information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kStackParameterMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterResultLocationWidth
The number of bits in the procedure information that encode which register the result will be stored
in.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterResultLocationPhase
The offset from the least significant bit in the procedure information to the result register information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterWidth
The number of bits in the procedure information that encode the information about a register-based
parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterPhase
The offset from the least significant bit in the procedure information to the register parameter
information.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterSizePhase
The offset from the beginning of a register parameter information field to the encoded size of the
parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

1458 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kRegisterParameterSizeWidth
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterWhichPhase
The offset from the beginning of a register parameter information field to the encoded register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterParameterWhichWidth
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDispatchedSelectorSizeWidth
The number of bits in the procedure information that encode the size of a routine-dispatching selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDispatchedSelectorSizePhase
The offset from the least significant bit in the procedure information to the selector size information
of a routine that is dispatched though a selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDispatchedParameterPhase
The offset from the least significant bit in the procedure information to the parameter information
of a routine that is dispatched though a selector.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSelectorWidth
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSelectorPhase
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSelectorMask
Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The offsets to fields and the widths of the fields within a value of type ProcInfoType (page 1446) are defined
by constants.

Register Constants
Specify registers that are encoded in the procedure information for a routine.

Constants 1459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

enum {
 kRegisterD0 = 0,
 kRegisterD1 = 1,
 kRegisterD2 = 2,
 kRegisterD3 = 3,
 kRegisterD4 = 8,
 kRegisterD5 = 9,
 kRegisterD6 = 10,
 kRegisterD7 = 11,
 kRegisterA0 = 4,
 kRegisterA1 = 5,
 kRegisterA2 = 6,
 kRegisterA3 = 7,
 kRegisterA4 = 12,
 kRegisterA5 = 13,
 kRegisterA6 = 14,
 kCCRegisterCBit = 16,
 kCCRegisterVBit = 17,
 kCCRegisterZBit = 18,
 kCCRegisterNBit = 19,
 kCCRegisterXBit = 20
};
typedef unsigned short registerSelectorType;

Constants
kRegisterD0

Register D0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD1
Register D1.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD2
Register D2.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD3
Register D3.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD4
Register D4.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD5
Register D5.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

1460 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kRegisterD6
Register D6.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterD7
Register D7.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA0
Register A0.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA1
Register A1.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA2
Register A2.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA3
Register A3.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA4
Register A4.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA5
Register A5.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kRegisterA6
Register A6.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterCBit
The C (carry) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 1461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kCCRegisterVBit
The V (overflow) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterZBit
The Z (zero) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterNBit
The N (negative) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kCCRegisterXBit
The X (extend) flag of the Status Register.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
For register-based routines, the registers are encoded in the routine’s procedure information using these
constants.

Routine Descriptor Flags
Specify attributes of the described routine.

enum {
 kSelectorsAreNotIndexable = 0x00,
 kSelectorsAreIndexable = 0x01
};

Constants
kSelectorsAreNotIndexable

For dispatched routines, the recognized routine selectors are not contiguous.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSelectorsAreIndexable
For dispatched routines, the recognized routine selectors are contiguous and therefore indexable.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineDescriptorFlags field of a routine descriptor contains a set of routine descriptor flags that
specify attributes of the described routine. You can use constants to specify the routine descriptor flags. In
general, you should use the constant kSelectorsAreNotIndexable when constructing your own routine
descriptors; the value kSelectorsAreIndexable is reserved for use by Apple.

1462 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

Routine Entry Point Flags
Specify information about the entry point for a routine.

enum {
 kProcDescriptorIsAbsolute = 0x00,
 kProcDescriptorIsRelative = 0x01
};

Constants
kProcDescriptorIsAbsolute

The address of the routine’s entry point specified in the procDescriptor field of a routine record
is an absolute address.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kProcDescriptorIsRelative
The address of the routine’s entry point specified in the procDescriptor field of a routine record
is relative to the beginning of the routine descriptor. If the code is contained in a resource and its
absolute location is not known until run time, you should set this flag.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Routine Selector Flags
Specify whether or not to pass a selector to a routine.

enum {
 kPassSelector = 0x00,
 kDontPassSelector = 0x08
};

Constants
kPassSelector

Pass the routine selector to the target routine as a parameter.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kDontPassSelector
Do not pass the routine selector to the target routine as a parameter. You should not use this flag for
680x0 routines.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
The routineFlags field of a routine record contains a set of flags that specify information about a routine.
You can use constants to specify the desired routine flags. Currently, only 5 of the 16 bits in a routine flags
word are defined. You should set all the other bits to 0.

Constants 1463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

In general, you should use the constant kPassSelector. The constant kDontPassSelector is reserved
for use with selector-based system software routines.

Special Case Calling Convention Constants
Specify the calling conventions for a routine.

enum {
 kSpecialCaseHighHook = 0,
 kSpecialCaseCaretHook = 0,
 kSpecialCaseEOLHook = 1,
 kSpecialCaseWidthHook = 2,
 kSpecialCaseTextWidthHook = 2,
 kSpecialCaseNWidthHook = 3,
 kSpecialCaseDrawHook = 4,
 kSpecialCaseHitTestHook = 5,
 kSpecialCaseTEFindWord = 6,
 kSpecialCaseProtocolHandler = 7,
 kSpecialCaseSocketListener = 8,
 kSpecialCaseTERecalc = 9,
 kSpecialCaseTEDoText = 10,
 kSpecialCaseGNEFilterProc = 11,
 kSpecialCaseMBarHook = 12
};

Constants
kSpecialCaseHighHook

The routine follows the calling conventions documented in Inside Macintosh: Text; a rectangle is on
the stack and a pointer is in register A3; no result is returned.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseCaretHook
The routine follows the calling conventions documented in Inside Macintosh: Text; a rectangle is on
the stack and a pointer is in register A3; no result is returned.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseEOLHook
Parameters are passed to the routine in registers A3, A4, and D0, and output is returned in the Z flag
of the Status Register. An EOLHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and D1, and output is returned in
register D1. A WIDTHHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

1464 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kSpecialCaseTextWidthHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and D1, and output is returned in
register D1. A TextWidthHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseNWidthHook
Parameters are passed to the routine in registers A0, A2, A3, A4, D0, and D1, and output is returned
in register D1. An nWIDTHHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseDrawHook
Parameters are passed to the routine in registers A0, A3, A4, D0, and D1, and no result is returned. A
DRAWHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseHitTestHook
Parameters are passed to the routine in registers A0, A3, A4, D0, D1, and D2, and output is returned
in registers D0, D1, and D2. A HITTESTHook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseTEFindWord
Parameters are passed to the routine in registers A3, A4, D0, and D2, and output is returned in registers
D0 and D1. A TEFindWord hook has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseProtocolHandler
Parameters are passed to the routine in registers A0, A1, A2, A3, A4, and in the low-order word of
register D1; output is returned in the Z flag of the Status Register. A protocol handler has these calling
conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseSocketListener
Parameters are passed to the routine in registers A0, A1, A2, A3, A4, in the low-order byte of register
D0, and in the low-order word of register D1; output is returned in the Z flag of the Status Register.
A socket listener has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseTERecalc
Parameters are passed to the routine in registers A3 and D7, and output is returned in registers D2,
D3, and D4. A TextEdit line-start recalculation routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Constants 1465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

kSpecialCaseTEDoText
Parameters are passed to the routine in registers A3, D3, D4, and D7, and output is returned in registers
A0 and D0. A TextEdit text-display, hit-test, and caret-positioning routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseGNEFilterProc
Parameters are passed to the routine in registers A1 and D0 and on the stack, and output is returned
on the stack. A GetNextEvent filter procedure has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

kSpecialCaseMBarHook
Parameters are passed to the routine on the stack, and output is returned in register D0. A menu bar
hook routine has these calling conventions.

Available in Mac OS X v10.0 and later.

Declared in MixedMode.h.

Discussion
These constants are used by the ProcInfoType (page 1446) type to specify a routine’s calling conventions.

Result Codes

The most common result codes returned by the Mixed Mode Manager are listed below.

DescriptionValueResult Code

An internal error has occurred.-2526mmInternalError

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availabilty information by using the Mixed Mode Manager selectors
defined in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.

1466 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Mixed Mode Manager Reference

Framework: CoreServices/CoreServices.h

Declared in Multiprocessing.h
MultiprocessingInfo.h

Companion guide Multiprocessing Services Programming Guide

Overview

Multiprocessing Services is an API that lets you create preemptive tasks in your application that can run on
one or more microprocessors. Unlike the cooperative threads created by the Thread Manager, Multiprocessing
Services automatically divides processor time among the available tasks, so that no particular task can
monopolize the system. This document is relevant to you if you want to add multitasking capability to your
Mac OS applications.

In Mac OS X, Carbon supports Multiprocessing Services with the following restrictions:

 ■ Debugging functions are not implemented. Use the mach APIs provided by the system to implement
debugging services.

 ■ Opaque notification IDs are local to your process; they are not globally addressable across processes.

 ■ Global memory allocation is not supported.

Functions by Task

Determining Multiprocessing Services And Processor Availability

_MPIsFullyInitialized (page 1508)
Indicates whether Multiprocessing Services is available for use.

MPGetNextCpuID (page 1489)
Obtains the next CPU ID in the list of physical processors of the specified memory coherence group.

MPProcessors (page 1493)
Returns the number of processors on the host computer.

MPProcessorsScheduled (page 1493)
Returns the number of active processors available on the host computer.

Overview 1467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Creating and Handling Message Queues

MPCreateQueue (page 1478)
Creates a message queue.

MPDeleteQueue (page 1484)
Deletes a message queue.

MPNotifyQueue (page 1492)
Sends a message to the specified message queue.

MPSetQueueReserve (page 1497)
Reserves space for messages on a specified message queue.

MPWaitOnQueue (page 1506)
Obtains a message from a specified message queue.

Creating and Handling Semaphores

MPCreateSemaphore (page 1478)
Creates a semaphore.

MPDeleteSemaphore (page 1485)
Removes a semaphore.

MPSignalSemaphore (page 1502)
Signals a semaphore.

MPWaitOnSemaphore (page 1507)
Waits on a semaphore

Creating and Scheduling Tasks

MPCreateTask (page 1479)
Creates a preemptive task.

MPCurrentTaskID (page 1481)
Obtains the task ID of the currently-executing preemptive task

MPSetTaskType (page 1499)
Sets the type of the task.

MPExit (page 1487)
Allows a task to terminate itself

MPGetNextTaskID (page 1490)
Obtains the next task ID in the list of available tasks.

MPSetTaskWeight (page 1500)
Assigns a relative weight to a task, indicating how much processor time it should receive compared
to other available tasks.

MPTaskIsPreemptive (page 1502)
Determines whether a task is preemptively scheduled.

MPTerminateTask (page 1503)
Terminates an existing task.

1468 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPYield (page 1507)
Allows a task to yield the processor to another task.

Handling Critical Regions

MPCreateCriticalRegion (page 1476)
Creates a critical region object.

MPDeleteCriticalRegion (page 1483)
Removes the specified critical region object.

MPEnterCriticalRegion (page 1486)
Attempts to enter a critical region.

MPExitCriticalRegion (page 1487)
Exits a critical region.

Handling Event Groups

MPCreateEvent (page 1477)
Creates an event group.

MPDeleteEvent (page 1483)
Removes an event group.

MPSetEvent (page 1496)
Merges event flags into a specified event group.

MPWaitForEvent (page 1505)
Retrieves event flags from a specified event group.

Handling Kernel Notifications

MPCauseNotification (page 1476)
Signals a kernel notification.

MPCreateNotification (page 1477)
Creates a kernel notification

MPDeleteNotification (page 1484)
Removes a kernel notification.

MPModifyNotification (page 1491)
Adds a simple notification to a kernel notification.

MPModifyNotificationParameters (page 1492)

Accessing Per-Task Storage Variables

MPAllocateTaskStorageIndex (page 1472)
Returns an index number to access per-task storage.

Functions by Task 1469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPDeallocateTaskStorageIndex (page 1482)
Frees an index number used to access per-task storage

MPGetTaskStorageValue (page 1490)
Gets the storage value stored at a specified index number.

MPSetTaskStorageValue (page 1499)
Sets the storage value for a given index number.

Memory Allocation Functions

MPAllocate (page 1471)
Allocates a nonrelocatable memory block. (Deprecated. Use MPAllocateAligned instead.)

MPAllocateAligned (page 1472)
Allocates a nonrelocatable memory block.

MPBlockClear (page 1474)
Clears a block of memory.

MPBlockCopy (page 1474)
Copies a block of memory.

MPDataToCode (page 1481)
Designates the specified block of memory as executable code.

MPFree (page 1488)
Frees memory allocated by MPAllocateAligned.

MPGetAllocatedBlockSize (page 1489)
Returns the size of a memory block.

Remote Calling Functions

MPRemoteCall (page 1494)
Calls a non-reentrant function and blocks the current task.

MPRemoteCallCFM (page 1495)
Calls a non-reentrant function and blocks the current task.

Timer Services Functions

MPArmTimer (page 1473)
Arms the timer to expire at a given time.

MPCancelTimer (page 1475)
Cancels an armed timer.

MPCreateTimer (page 1480)
Creates a timer.

MPDelayUntil (page 1482)
Blocks the calling task until a specified time.

MPDeleteTimer (page 1485)
Removes a timer.

1470 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPSetTimerNotify (page 1500)
Sets the notification information associated with a timer.

Exception Handling Functions

MPDisposeTaskException (page 1486)
Removes a task exception.

MPExtractTaskState (page 1488)
Extracts state information from a suspended task.

MPSetExceptionHandler (page 1496)
Sets an exception handler for a task.

MPSetTaskState (page 1498)
Sets state information for a suspended task.

MPThrowException (page 1504)
Throws an exception to a specified task.

Debugger Support Functions

MPRegisterDebugger (page 1494)
Registers a debugger.

MPUnregisterDebugger (page 1504)
Unregisters a debugger.

Functions

MPAllocate
Allocates a nonrelocatable memory block. (Deprecated. Use MPAllocateAligned instead.)

LogicalAddress MPAllocate (
 ByteCount size
);

Parameters
size

The size, in bytes, of the memory block to allocate.

Return Value
A pointer to the allocated memory. If the function cannot allocate the requested memory or the requested
alignment, the returned address is NULL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Functions 1471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPAllocateAligned
Allocates a nonrelocatable memory block.

LogicalAddress MPAllocateAligned (
 ByteCount size,
 UInt8 alignment,
 OptionBits options
);

Parameters
size

The size, in bytes, of the memory block to allocate.

alignment
The desired alignment of the allocated memory block. See “Memory Allocation Alignment
Constants” (page 1523) for a list of possible values to pass. Note that there will be a minimum alignment
regardless of the requested alignment. If the requested memory block is 4 bytes or smaller, the block
will be at least 4-byte aligned. If the requested block is greater than 4 bytes, the block will be at least
8-byte aligned.

options
Any optional information to use with this call. See “Memory Allocation Option Constants” (page 1525)
for a list of possible values to pass.

Return Value
A pointer to the allocated memory. If the function cannot allocate the requested memory or the requested
alignment, the returned address is NULL.

Discussion
The memory referenced by the returned address is guaranteed to be accessible by the application's cooperative
task and any preemptive tasks that it creates, but not by other applications or their preemptive tasks. Any
existing non-global heap blocks are freed when the application terminates. As with all shared memory, you
must explicitly synchronize access to allocated heap blocks using a notification mechanism.

You can replicate the effect of the older MPAllocate function by calling MPAllocateAligned with 32-byte
alignment and no options.

Also see the function MPFree (page 1488).

Special Considerations

Mac OS X does not support allocation of global (cross address space) or resident memory with this function.
In addition, passing the kMPAllocateNoGrowthMask constant in the options parameter has no effect in
Mac OS X, since memory allocation is done with sparse heaps.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPAllocateTaskStorageIndex
Returns an index number to access per-task storage.

1472 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

OSStatus MPAllocateTaskStorageIndex (
 TaskStorageIndex *taskIndex
);

Parameters
index

On return, index contains an index number you can use to store task data.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
A call to the function MPAllocateTaskStorageIndex returns an index number that is common across all
tasks in the current process. You can use this index number in calls to MPSetTaskStorageValue (page 1499)
and MPGetTaskStorageValue (page 1490) to set a different value for each task using the same index.

You can think of the task storage area as a two dimensional array cross-referenced by the task storage index
number and the task ID. Note that since the amount of per-task storage is determined when the task is
created, the number of possible index values associated with a task is limited.

Also see the function MPDeallocateTaskStorageIndex (page 1482).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPArmTimer
Arms the timer to expire at a given time.

OSStatus MPArmTimer (
 MPTimerID timerID,
 AbsoluteTime *expirationTime,
 OptionBits options
);

Parameters
timerID

The ID of the timer you want to arm.

expirationTime
A pointer to a value that specifies when you want the timer to expire. Note that if you arm the timer
with a time that has already passed, the timer expires immediately.

options
Any optional actions. See “Timer Option Masks” (page 1532) for a list of possible values.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If the timer has already expired, the
reset does not take place and the function returns kMPInsufficientResourcesErr.

Functions 1473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Discussion
The expiration time is an absolute time, which you can generate by calling the Driver Services Library function
UpTime. When the timer expires, a notification is sent to the notification mechanism specified in the last
MPSetTimerNotify (page 1500) call. If the specified notification ID has become invalid, no action is taken
when the timer expires. The timer itself is deleted when it expires unless you specified the
kMPPreserveTimerID option in the options parameter.

Also see the function MPCancelTimer (page 1475).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPBlockClear
Clears a block of memory.

void MPBlockClear (
 LogicalAddress address,
 ByteCount size
);

Parameters
address

The starting address of the memory block you want to clear.

size
The number of bytes you want to clear.

Discussion
As with all shared memory, your application must synchronize access to the memory blocks to avoid data
corruption. MPBlockClear ensures the clearing stays within the bounds of the area specified by size, but
the calling task can be preempted during the copying process.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPBlockCopy
Copies a block of memory.

1474 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

void MPBlockCopy (
 LogicalAddress source,
 LogicalAddress destination,
 ByteCount size
);

Parameters
source

The starting address of the memory block you want to copy.

destination
The location to which you want to copy the memory block.

size
The number of bytes to copy.

Discussion
This function simply calls through to the Driver Services Library function BlockMoveData. Note that you
should not make any assumptions about the state of the destination memory while this function is executing.
In the intermediate state, values may be present that are neither the original nor the final ones. For example,
this function may use the 'dcbz' instruction. If the underlying memory is not cacheable, if the memory is
write-through instead of copy-back, or if the cache block is flushed for some reason, the 'dcbz' instruction
will write zeros to the destination. You can avoid the use of the 'dcbz' instruction by calling
BlockMoveDataUncached, but even that function makes no other guarantees about the memory block's
intermediate state.

As with all shared memory, your application must synchronize access to the memory blocks to avoid data
corruption. MPBlockCopy ensures the copying stays within the bounds of the area specified by size, but
the calling task can be preempted during the copying process.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCancelTimer
Cancels an armed timer.

OSStatus MPCancelTimer (
 MPTimerID timerID,
 AbsoluteTime *timeRemaining
);

Parameters
timerID

The ID of the armed timer you want to cancel.

timeRemaining
On return, the timeRemaining contains the time remaining before the timer would have expired.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If the timer has already expired, this
function returns kMPInsufficientResourcesErr.

Functions 1475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Discussion
Also see the function MPArmTimer (page 1473).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCauseNotification
Signals a kernel notification.

OSStatus MPCauseNotification (
 MPNotificationID notificationID
);

Parameters
notificationID

The ID of the kernel notification you want to signal.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
You call this function to signal a kernel notification much as you would signal any simple notification (for
example, MPNotifyQueue (page 1492)).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateCriticalRegion
Creates a critical region object.

OSStatus MPCreateCriticalRegion (
 MPCriticalRegionID *criticalRegion
);

Parameters
criticalRegion

On return, the criticalRegion contains the ID of the newly created critical region object.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
Also see the function MPDeleteCriticalRegion (page 1483).

Availability
Available in Mac OS X v10.0 and later.

1476 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Declared In
Multiprocessing.h

MPCreateEvent
Creates an event group.

OSStatus MPCreateEvent (
 MPEventID *event
);

Parameters
event

On return, event contains the ID of the newly created event group.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
Event groups are created from dynamically allocated internal resources. Other tasks may be competing for
these resources so it is possible that this function will not be able to create an event group.

Also see the function MPDeleteEvent (page 1483).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateNotification
Creates a kernel notification

OSStatus MPCreateNotification (
 MPNotificationID *notificationID
);

Parameters
notificationID

On return, notificationID points to the newly created kernel notification.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
After creating the kernel notification object, you can add simple notifications by calling the function
MPModifyNotification (page 1491).

Also see the function MPDeleteNotification (page 1484).

Availability
Available in Mac OS X v10.0 and later.

Functions 1477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Declared In
Multiprocessing.h

MPCreateQueue
Creates a message queue.

OSStatus MPCreateQueue (
 MPQueueID *queue
);

Parameters
queue

On return, the variable contains the ID of the newly created message queue.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If a queue could not be created,
MPCreateQueue returns kMPInsufficientResourcesErr.

Discussion
This call creates a message queue, which can be used to notify (that is, send) and wait for (that is, receive)
messages consisting of three pointer-sized values in a preemptively safe manner.

Message queues are created from dynamically allocated internal resources. Other tasks may be competing
for these resources so it is possible this function may not be able to create a queue.

See also the functions MPDeleteQueue (page 1484) and MPSetQueueReserve (page 1497).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateSemaphore
Creates a semaphore.

OSStatus MPCreateSemaphore (
 MPSemaphoreCount maximumValue,
 MPSemaphoreCount initialValue,
 MPSemaphoreID *semaphore
);

Parameters
maximumValue

The maximum allowed value of the semaphore.

initialValue
The initial value of the semaphore.

semaphore
On return, semaphore contains the ID of the newly–created semaphore.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

1478 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Discussion
If you want to create a binary semaphore, you can call the macro MPCreateBinarySemaphore
(MPSemaphoreID *semaphore) instead, which simply callsMPCreateSemaphorewith bothmaximumValue
and initialValue set to 1.

Also see the function MPDeleteSemaphore (page 1485).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateTask
Creates a preemptive task.

OSStatus MPCreateTask (
 TaskProc entryPoint,
 void *parameter,
 ByteCount stackSize,
 MPQueueID notifyQueue,
 void *terminationParameter1,
 void *terminationParameter2,
 MPTaskOptions options,
 MPTaskID *task
);

Parameters
entryPoint

A pointer to the task function. The task function should take a single pointer-sized parameter and
return a value of type OSStatus.

parameter
The parameter to pass to the task function.

stackSize
The size of the stack assigned to the task. Note that you should be careful not to exceed the bounds
of the stack, since stack overflows may not be detected. Specifying zero for the size will result in a
default stack size of 4KB.

Note that in Mac OS X prior to version 10.1, this parameter is ignored, and all stacks have the default
size of 512 KB. Versions 10.1 and later do not have this limitation.

notifyQueue
The ID of the message queue to which the system will send a message when the task terminates. You
specify the first two values of the message in the parameters terminationParameter1 and
terminationParameter2 respectively. The last message value contains the result code of the task
function.

terminationParameter1
A pointer-sized value that is sent to the message queue specified by the parameter notifyQueue
when the task terminates.

terminationParameter2
A pointer-sized value that is sent to the message queue specified by the parameter notifyQueue
when the task terminates.

Functions 1479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

options
Optional attributes of the preemptive task. See “Task Creation Options” (page 1528) for a list of possible
values.

task
On return, task points to the ID of the newly created task.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If MPCreateTask could not create the
task because some critical resource was not available, the function returns kMPInsufficientResourcesErr.
Usually this is due to lack of memory to allocate the internal data structures associated with the task or the
stack. The function also returns kMPInsufficientResourcesErr if any reserved option bits are set.

Discussion
Tasks are created in the unblocked state, ready for execution. A task can terminate in the following ways:

 ■ By returning from its entry point

 ■ By calling MPExit (page 1487)

 ■ When specified as the target of an MPTerminateTask (page 1503) call

 ■ If a hardware-detected exception or programming exception occurs and no exception handler is installed

 ■ If the application calls ExitToShell

Task resources (its stack, active timers, internal structures related to the task, and so on) are reclaimed by the
system when the task terminates. The task's address space is inherited from the process address space. All
existing tasks are terminated when the owning process terminates.

To set the relative processor weight to be assigned to a task, use the function MPSetTaskWeight (page 1500).

See also the function MPTerminateTask (page 1503).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCreateTimer
Creates a timer.

OSStatus MPCreateTimer (
 MPTimerID *timerID
);

Parameters
timerID

On return, the timerID contains the ID of the newly created timer.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
You can use a timer to notify an event, queue, or semaphore after a specified amount of time has elapsed.

1480 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Timer objects are created from dynamically-allocated internal resources. Other tasks may be competing for
these resources so it is possible this function may not be able to create one.

To specify the notification mechanism to signal, use the function MPSetTimerNotify (page 1500).

Also see the functions MPDeleteTimer (page 1485) and MPArmTimer (page 1473).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCurrentTaskID
Obtains the task ID of the currently-executing preemptive task

MPTaskID MPCurrentTaskID (
 void
);

Return Value
The task ID of the current preemptive task. See the description of the MPTaskID data type.

Discussion
Returns the ID of the current preemptive task. If called from a cooperative task, this function returns an ID
which is different than the ID of any preemptive task. Nonpreemptive processes may or may not have different
task IDs for each application; future implementations of this API may behave differently in this regard.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDataToCode
Designates the specified block of memory as executable code.

void MPDataToCode (
 LogicalAddress address,
 ByteCount size
);

Parameters
address

The starting address of the memory block you want to designate as code.

size
The size of the memory block.

Functions 1481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Discussion
Since processors need to differentiate between code and data in memory, you should call this function to
tag any executable code that your tasks may generate.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Multiprocessing.h

MPDeallocateTaskStorageIndex
Frees an index number used to access per-task storage

OSStatus MPDeallocateTaskStorageIndex (
 TaskStorageIndex taskIndex
);

Parameters
index

The index number you want to deallocate.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
Also see the function MPAllocateTaskStorageIndex (page 1472).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDelayUntil
Blocks the calling task until a specified time.

OSStatus MPDelayUntil (
 AbsoluteTime *expirationTime
);

Parameters
expirationTime

The time to unblock the task.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
You cannot call this function from a cooperative task.

1482 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteCriticalRegion
Removes the specified critical region object.

OSStatus MPDeleteCriticalRegion (
 MPCriticalRegionID criticalRegion
);

Parameters
criticalRegion

The critical region object you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
Calling this function unblocks all tasks waiting to enter the critical region and their respective
MPEnterCriticalRegion (page 1486) calls will return with the result code kMPDeletedErr.

Also see the function MPCreateCriticalRegion (page 1476).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteEvent
Removes an event group.

OSStatus MPDeleteEvent (
 MPEventID event
);

Parameters
event

The ID of the event group you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
After deletion, the event ID becomes invalid, and all internal resources associated with the event group are
reclaimed. Calling this function unblocks all tasks waiting on the event group and their respective
MPWaitForEvent (page 1505) calls will return with the result code kMPDeletedErr.

Also see the function MPCreateEvent (page 1477).

Functions 1483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteNotification
Removes a kernel notification.

OSStatus MPDeleteNotification (
 MPNotificationID notificationID
);

Parameters
notificationID

The ID of the notification you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
Also see the function MPCreateNotification (page 1477).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteQueue
Deletes a message queue.

OSStatus MPDeleteQueue (
 MPQueueID queue
);

Parameters
queue

The ID of the message queue you want to delete.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
After calling MPDeleteQueue, the specified queue ID becomes invalid, and all internal resources associated
with the queue (including queued messages) are reclaimed. Any tasks waiting on the queue are unblocked
and their respective MPWaitOnQueue (page 1506) calls will return with the result code kMPDeletedErr.

Also see the function MPCreateQueue (page 1478).

Availability
Available in Mac OS X v10.0 and later.

1484 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Declared In
Multiprocessing.h

MPDeleteSemaphore
Removes a semaphore.

OSStatus MPDeleteSemaphore (
 MPSemaphoreID semaphore
);

Parameters
semaphore

The ID of the semaphore you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
Calling this function unblocks all tasks waiting on the semaphore and the tasks’ respective
MPWaitOnSemaphore (page 1507) calls will return with the result code kMPDeletedErr.

Also see the function MPCreateSemaphore (page 1478).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPDeleteTimer
Removes a timer.

OSStatus MPDeleteTimer (
 MPTimerID timerID
);

Parameters
timerID

The ID of the timer you want to remove.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
After deletion, the timer ID becomes invalid, and all internal resources associated with the timer are reclaimed.

Also see the function MPCreateTimer (page 1480).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Functions 1485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPDisposeTaskException
Removes a task exception.

OSStatus MPDisposeTaskException (
 MPTaskID task,
 OptionBits action
);

Parameters
task

The task whose exception you want to remove.

action
Any actions to perform on the task. For example, you can enable single-stepping when the task
resumes, or you can pass the exception on to another handler. See “Task Exception Disposal
Constants” (page 1528) for a listing of possible values.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If the specified action is invalid or
unsupported, or if the specified task is not suspended, this function returns kMPInsufficientResourcesErr.

Discussion
This function removes the task exception and allows the task to resume operation. If desired, you can enable
single-stepping or branch-stepping, or propagate the exception instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPEnterCriticalRegion
Attempts to enter a critical region.

OSStatus MPEnterCriticalRegion (
 MPCriticalRegionID criticalRegion,
 Duration timeout
);

Parameters
criticalRegion

The ID of the critical region you want to enter.

timeout
The maximum time to wait for entry before timing out. See “Timer Duration Constants” (page 1531) for
a list of constants you can use to specify the wait interval.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
If another task currently occupies the critical region, the current task is blocked until the critical region is
released or until the designated timeout expires. Otherwise the task enters the critical region and
MPEnterCriticalRegion increments the region’s use count.

1486 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Once a task enters a critical region it can make further calls to MPEnterCriticalRegion without blocking
(its use count increments for each call). However, each call to MPEnterCriticalRegion must be balanced
by a call to MPExitCriticalRegion (page 1487) ; otherwise the region is not released for use by other tasks.

Note that you can enter a critical region from a cooperative task. Each cooperative task is treated as unique
and different from any preemptive task. If you call this function from a cooperative task, you should specify
only kDurationImmediate for the timeout length; other waits will cause the task to block.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPExit
Allows a task to terminate itself

void MPExit (
 OSStatus status
);

Parameters
status

An application-defined value that indicates termination status. This value is sent to the termination
message queue in place of the task’s result code.

Discussion
When called from within a preemptive task, the task terminates, and the value indicated by the parameter
status is sent to the termination message queue you specified in MPCreateTask (page 1479). Note that you
cannot call MPExit from outside a preemptive task.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPExitCriticalRegion
Exits a critical region.

OSStatus MPExitCriticalRegion (
 MPCriticalRegionID criticalRegion
);

Parameters
criticalRegion

The ID of the critical region you want to exit.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If the task does not own the critical
region specified by criticalRegion, MPExitCriticalRegion returns kMPInsufficientResourcesErr.

Functions 1487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Discussion
This function decrements the use count of the critical region object. When the use count reaches zero,
ownership of the critical region object is released (which allows another task to use the critical region).

Also see the function MPEnterCriticalRegion (page 1486).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPExtractTaskState
Extracts state information from a suspended task.

OSStatus MPExtractTaskState (
 MPTaskID task,
 MPTaskStateKind kind,
 void *info
);

Parameters
task

The task whose state information you want to obtain.

kind
The kind of state information you want to obtain. See “Task State Constants” (page 1530) for a listing
of possible values.

info
A pointer to a data structure to hold the state information. On return, the data structure holds the
desired state information. The format of the data structure varies depending on the state information
you want to retrieve. See the header file MachineExceptions.h for the formats of the various state
information structures.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If you attempt to extract state information
for a running task, this function returns kMPInsufficientResourcesErr.

Discussion
You can use this function to obtain register contents or exception information about a particular task.

Also see the function MPSetTaskState (page 1498).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPFree
Frees memory allocated by MPAllocateAligned.

1488 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

void MPFree (
 LogicalAddress object
);

Parameters
object

A pointer to the memory you want to release.

Discussion
Also see the function MPAllocateAligned (page 1472).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPGetAllocatedBlockSize
Returns the size of a memory block.

ByteCount MPGetAllocatedBlockSize (
 LogicalAddress object
);

Parameters
object

The address of the memory block whose size you want to determine.

Return Value
The size of the allocated memory block, in bytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPGetNextCpuID
Obtains the next CPU ID in the list of physical processors of the specified memory coherence group.

OSStatus MPGetNextCpuID (
 MPCoherenceID owningCoherenceID,
 MPCpuID *cpuID
);

Parameters
owningCoherenceID

The ID of the memory coherence group whose physical processor IDs you want to obtain. Pass
kMPInvalidIDErr, as only one coherence group, internal RAM, is currently defined.

cpuID
On return, cpuID points to the ID of the next physical processor.

Functions 1489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
By iterating on this function (after calling MPProcessors (page 1493) , for example), you can obtain the IDs
of all the processors available on the host computer. Generally, you would only use this function in diagnostic
programs.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MultiprocessingInfo.h

MPGetNextTaskID
Obtains the next task ID in the list of available tasks.

OSStatus MPGetNextTaskID (
 MPProcessID owningProcessID,
 MPTaskID *taskID
);

Parameters
owningProcessID

The ID of the process (typically the application) that owns the tasks. This ID is the same as the process
ID handled by the Code Fragment Manager.

taskID
On return, taskID points to ID of the next task in the list of tasks.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
By iterating on this function, you can obtain the IDs of all the tasks in a given process. These tasks may be
running, ready, or blocked. Generally you would only use this function in diagnostic programs.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MultiprocessingInfo.h

MPGetTaskStorageValue
Gets the storage value stored at a specified index number.

TaskStorageValue MPGetTaskStorageValue (
 TaskStorageIndex taskIndex
);

Parameters
index

The index number of the storage value you want to obtain.

1490 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Return Value
The value stored at the specified index number. See the description of the TaskStorageValue data type.

Discussion
Calling this function from within a task effectively reads a value in a two-dimensional array cross-referenced
by task storage index value and the task ID.

Note that since this function does not return any status information, it may not be immediately obvious
whether the returned storage value is valid.

Also see the function MPSetTaskStorageValue (page 1499).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPModifyNotification
Adds a simple notification to a kernel notification.

OSStatus MPModifyNotification (
 MPNotificationID notificationID,
 MPOpaqueID anID,
 void *notifyParam1,
 void *notifyParam2,
 void *notifyParam3
);

Parameters
notificationID

The ID of the kernel notification you want to add to..

anID
The ID of the simple notification (semaphore, message group, or event group) you want to add to
the kernel notification.

notifyParam1
If anID specifies an event group, this parameter should contain the flags to set in the event group
when MPCauseNotification (page 1476) is called. If anID specifies a message queue, this parameter
should contain the first pointer-sized value of the message to be sent to the message queue when
MPCauseNotification (page 1476) is called.

notifyParam2
If anID specifies a message queue, this parameter should contain the second pointer-sized value of
the message to be sent to the message queue when MPCauseNotification (page 1476) is called.
Pass NULL if you don’t need this parameter.

notifyParam3
If anID specifies a message queue, this parameter should contain the third pointer-sized value of the
message sent to the message queue when MPCauseNotification (page 1476) is called. Pass NULL
if you don’t need this parameter.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Functions 1491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Discussion
You specify the parameters for the simple notifications just as if you were calling the
MPSetTimerNotify (page 1500) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPModifyNotificationParameters

OSStatus MPModifyNotificationParameters (
 MPNotificationID notificationID,
 MPOpaqueIDClass kind,
 void *notifyParam1,
 void *notifyParam2,
 void *notifyParam3
);

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Multiprocessing.h

MPNotifyQueue
Sends a message to the specified message queue.

OSStatus MPNotifyQueue (
 MPQueueID queue,
 void *param1,
 void *param2,
 void *param3
);

Parameters
queue

The queue ID of the message queue you want to notify.

param1
The first pointer-sized value of the message to send.

param2
The second pointer-sized value of the message to send.

param3
The third pointer-sized value of the message to send.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

1492 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Discussion
This function sends a message to the specified queue, which consist of the three parameters, param1, param2,
and param3. The system does not interpret the three values which comprise the text of the message. If tasks
are waiting on the specified queue, the first waiting task is unblocked and the task’s MPWaitOnQueue (page
1506) function completes.

Depending on the queue mode, the system either allocates messages dynamically or assigns them to memory
reserved for the queue. In either case, if no more memory is available for messages MPNotifyQueue returns
kMPInsufficientResourcesErr.

You can call this function from an interrupt handler if messages are reserved on the queue. For more
information about queueing modes and reserving messages, see MPSetQueueReserve (page 1497).

Also see the function MPWaitOnQueue (page 1506).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPProcessors
Returns the number of processors on the host computer.

ItemCount MPProcessors (
 void
);

Return Value
The number of physical processors on the host computer.

Discussion
See also the function MPProcessorsScheduled (page 1493).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPProcessorsScheduled
Returns the number of active processors available on the host computer.

ItemCount MPProcessorsScheduled (
 void
);

Return Value
The number of active processors available on the host computer.

Functions 1493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Discussion
The number of active processors is defined as the number of processors scheduled to run tasks. This number
varies while the system is running. Advanced power management facilities may stop or start scheduling
processors in the system to control power consumption or to maintain a proper operating temperature.

See also the function MPProcessors (page 1493).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPRegisterDebugger
Registers a debugger.

OSStatus MPRegisterDebugger (
 MPQueueID queue,
 MPDebuggerLevel level
);

Parameters
queue

The ID of the queue to which you want exception messages and other information to be sent.

level
The level of this debugger with respect to other debuggers. Exceptions and informational messages
are sent first to the debugger with the highest level. If more than one debugger attempts to register
at a particular level, only the first debugger is registered. Other attempts return an error.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
In Mac OS X, this function is available but is not implemented. Use system debugging services to write a
debugger for Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPRemoteCall
Calls a non-reentrant function and blocks the current task.

1494 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

void * MPRemoteCall (
 MPRemoteProcedure remoteProc,
 void *parameter,
 MPRemoteContext context
);

Parameters
remoteProc

A pointer to the application-defined function you want to call. See MPRemoteProcedure (page 1508)
for more information about the form of this function.

parameter
A pointer to a parameter to pass to the application-defined function. For example, this value could
point to a data structure or a memory location.

context
This parameter is ignored; specify kMPOwningProcessRemoteContext.

Return Value
The value that your remote procedure callback returned.

Discussion
You use this function to execute code on your application’s main task. The remoteProc function is scheduled
on the application’s main run loop and run in the default mode (kCFRunloopDefaultMode). If you call this
function from your application’s main task, the remoteProc function is executed immediately in the current
mode without blocking the task; otherwise, calling this function blocks the current task until the remote call
completes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPRemoteCallCFM
Calls a non-reentrant function and blocks the current task.

void * MPRemoteCallCFM (
 MPRemoteProcedure remoteProc,
 void *parameter,
 MPRemoteContext context
);

Parameters
remoteProc

A pointer to the application-defined CFM (Code Fragment Manager) function you want to call. See
MPRemoteProcedure (page 1508) for more information about the form of this function.

parameter
A pointer to a parameter to pass to the application-defined function. For example, this value could
point to a data structure or a memory location.

context
This parameter is ignored; specify kMPOwningProcessRemoteContext.

Functions 1495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Return Value
The value that your remote procedure callback returned.

Discussion
You use this function to execute code on your application’s main task. The remoteProc function is scheduled
on the application’s main run loop and run in the default mode (kCFRunloopDefaultMode). If you call this
function from your application’s main task, the remoteProc function is executed immediately in the current
mode without blocking the task; otherwise, calling this function blocks the current task until the remote call
completes.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Multiprocessing.h

MPSetEvent
Merges event flags into a specified event group.

OSStatus MPSetEvent (
 MPEventID event,
 MPEventFlags flags
);

Parameters
event

The ID of the event group you want to set.

flags
The flags you want to merge into the event group.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
The flags are logically ORed with the current flags in the event group. This procedure is an atomic operation
to ensure that multiple updates do not get lost. If tasks are waiting on this event group, the first waiting task
is unblocked.

Note that you can call this function from an interrupt handler.

Also see the function MPWaitForEvent (page 1505).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetExceptionHandler
Sets an exception handler for a task.

1496 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

OSStatus MPSetExceptionHandler (
 MPTaskID task,
 MPQueueID exceptionQ
);

Parameters
task

The task to associate with the exception handler.

exceptionQ
The message queue to which an exception message will be sent.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
When an exception handler is set and an exception occurs, the task is suspended and a message is sent to
the message queue specified by exceptionQ. The message contains the following information:

 ■ The first pointer-sized value contains the ID of the task in which the exception occurred.

 ■ The second pointer-sized value contains the type of exception that occurred. See the header file
MachineExceptions.h for a listing of exception types.

 ■ The last pointer-sized value is set to NULL (reserved for future use).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetQueueReserve
Reserves space for messages on a specified message queue.

OSStatus MPSetQueueReserve (
 MPQueueID queue,
 ItemCount count
);

Parameters
queue

The ID of the queue whose messages you want to reserve.

count
The number of messages to reserve.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
MPNotifyQueue (page 1492) allocates spaces for messages dynamically; that is, memory to hold the message
is allocated for the queue at the time of the call. In most cases this method is both speed and storage efficient.
However, it is possible that, due to lack of memory resources, space for the message may not be available
at the time of the call; in such cases, MPNotifyQueue (page 1492) will return kInsufficientResourcesErr.

Functions 1497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

If you must have guaranteed message delivery, or if you need to call MPNotifyQueue (page 1492) from an
interrupt handler, you should reserve space on the specified queue by calling MPSetQueueReserve. Because
such allocated space is reserved for duration of the queue’s existence, you should avoid straining internal
system resources by reserving messages only when absolutely necessary. Note that if you have reserved
messages on a queue, additional space cannot be added dynamically if the number of messages exceeds
the number reserved for that queue.

The number of reserved messages is set to count, lowering or increasing the current number of reserved
messages as required. If count is set to zero, no messages are reserved for the queue, and space for messages
is allocated dynamically.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetTaskState
Sets state information for a suspended task.

OSStatus MPSetTaskState (
 MPTaskID task,
 MPTaskStateKind kind,
 void *info
);

Parameters
task

The task whose state information you want to set.

kind
The kind of state information you want to set. See “Task State Constants” (page 1530) for a listing of
possible values. Note that some state information is read-only and cannot be changed using this
function.

info
A pointer to a data structure holding the state information you want to set. The format of the data
structure varies depending on the state information you want to set. See the header file
MachineExceptions.h for the formats of the various state information structures.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If you specify
kMPTaskState32BitMemoryException for the state information, this function returns
kMPInsufficientResourcesErr, since the exception state information is read-only. Attempting to set
state information for a running task will also return kMPInsufficientResourcesErr.

Discussion
You can use this function to set register contents or exception information for a particular task. However,
some state information, such as the exception information (as specified by
kMPTaskState32BitMemoryException) as well as the MSR, ExceptKind, DSISR, and DARmachine registers
(specified under kMPTaskStateMachine) are read-only. Attempting to set the read-only machine registers
will do nothing, while attempting to set the exception information will return an error.

Also see the function MPExtractTaskState (page 1488).

1498 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetTaskStorageValue
Sets the storage value for a given index number.

OSStatus MPSetTaskStorageValue (
 TaskStorageIndex taskIndex,
 TaskStorageValue value
);

Parameters
index

The index number whose storage value you want to set.

value
The value you want to set.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
Typically you use MPSetTaskStorageValue to store pointers to task-specific structures or data.

Calling this function from within a task effectively assigns a value in a two-dimensional array cross-referenced
by task storage index value and the task ID.

Also see the function MPGetTaskStorageValue (page 1490).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetTaskType
Sets the type of the task.

OSStatus MPSetTaskType (
 MPTaskID task,
 OSType taskType
);

Return Value
The noErr result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
This function does nothing and should not be used.

Functions 1499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Availability
Available in Mac OS X v10.1 and later.

Declared In
Multiprocessing.h

MPSetTaskWeight
Assigns a relative weight to a task, indicating how much processor time it should receive compared to other
available tasks.

OSStatus MPSetTaskWeight (
 MPTaskID task,
 MPTaskWeight weight
);

Parameters
task

The ID of the task to which you want to assign a weighting.

weight
The relative weight to assign. This value can range from 1 to 10,000, with the default value being 100.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
The approximate processor share is defined as:

weight of the task / total weight of available tasks

For a set of ready tasks, the amount of CPU time dedicated to the tasks will be determined by the dynamically
computed share. Note that the processor share devoted to tasks may deviate from the suggested weighting
if critical tasks require attention. For example, a real-time task (such as a QuickTime movie) may require more
than its relative weight of processor time, and the scheduler will adjust proportions accordingly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSetTimerNotify
Sets the notification information associated with a timer.

1500 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

OSStatus MPSetTimerNotify (
 MPTimerID timerID,
 MPOpaqueID anID,
 void *notifyParam1,
 void *notifyParam2,
 void *notifyParam3
);

Parameters
timerID

The ID of the timer whose notification information you want to set.

notificationID
The ID of the notification mechanism to associate with the timer. This value should be the ID of an
event group, a message queue, or a semaphore.

notifyParam1
If anID specifies an event group, this parameter should contain the flags to set in the event group
when the timer expires. If anID specifies a message queue, this parameter should contain the first
pointer-sized value of the message to be sent to the message queue when the timer expires.

notifyParam2
If anID specifies a message queue, this parameter should contain the second pointer-sized value of
the message to be sent to the message queue when the timer expires. Pass NULL if you don’t need
this parameter.

notifyParam3
If anID specifies a message queue, this parameter should contain the third pointer-sized value of the
message sent to the message queue when the timer expires. Pass NULL if you don’t need this
parameter.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
When the timer expires, Multiprocessing Services checks the notification ID, and if it is valid, notifies the
related notification mechanisms (that is, event groups, queues, or semaphores) you had specified in your
MPSetTimerNotify (page 1500) calls.

You can specify multiple notification mechanisms by calling this function several times. For example, you
can call MPSetTimerNotify to specify a message queue and then call it again to specify a semaphore. When
the timer expires, a message is sent to the message queue and the appropriate semaphore is signaled. You
cannot, however, specify more than one notification per notification mechanism (for example, if you call
MPSetTimerNotify twice, specifying different messages or message queues in each call, the second call
will overwrite the first). Note that if a call to MPSetTimerNotify returns an error, any previous calls specifying
the same timer are still valid; previously set notifications will still be notified when the timer expires.

You can set the notification information at any time. If the timer is armed, it will modify the notification
parameters dynamically. If the timer is disarmed, it will modify the notification parameters to be used for the
next MPArmTimer (page 1473) call.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Functions 1501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPSignalSemaphore
Signals a semaphore.

OSStatus MPSignalSemaphore (
 MPSemaphoreID semaphore
);

Parameters
semaphore

The ID of the semaphore you want to signal.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If the value of the semaphore was
already at the maximum, MPSignalSemaphore returns kInsufficientResourcesErr.

Discussion
If tasks are waiting on the semaphore, the oldest (first queued) task is unblocked so that the corresponding
MPWaitOnSemaphore (page 1507) call for that task completes. Otherwise, if the value of the semaphore is not
already equal to its maximum value, it is incremented by one.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTaskIsPreemptive
Determines whether a task is preemptively scheduled.

Boolean MPTaskIsPreemptive (
 MPTaskID taskID
);

Parameters
taskID

The task you want to check. Pass kMPNoID or kInvalidID if you want to specify the current task.

Return Value
If true, the task is preemptively scheduled. If false, the task is cooperatively scheduled.

Discussion
If you have code that may be called from either cooperative or preemptive tasks, that code can call
MPTaskIsPreemptive if its actions should differ depending on its execution environment.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

1502 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPTerminateTask
Terminates an existing task.

OSStatus MPTerminateTask (
 MPTaskID task,
 OSStatus terminationStatus
);

Parameters
task

The ID of the task you wish to terminate.

terminationStatus
A value of type OSStatus indicating termination status. This value is sent to the termination status
message queue you specified in MPCreateTask (page 1479) in place of the task function’s result code.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If the task to be terminated is already
in the process of termination, MPTerminateTask returns kMPInsufficientResourcesErr. You do not
need to take any additional action if this occurs.

Discussion
You should be very careful when calling MPTerminateTask. As defined, this call will asynchronously and
abruptly terminate a task, potentially leaving whatever structures or resources it was operating upon in an
indeterminate state. Mac OS X exacerbates this problem, as MP tasks can use many more system services
that are not expecting client threads to asynchronously terminate, and these services do not take the rather
complicated steps necessary to protect against, or recover from, such a situation.

However, there are situations in which calling MPTerminateTask is useful and relatively safe. One such
situation is when your application or service is quitting and you know that the task you wish to terminate is
waiting on an MP synchonization construct (queue, event, semaphore or critical region). While you could do
this more cleanly by waking the task and causing it to exit on its own, doing so may not always be practical.

For example, suppose you have several service tasks performing background processing for your application.
These service tasks wait on a queue, onto which the application places requests for processing. When the
task is done with a request, it notifies another queue, which the application polls. Since the main application
task is placing items on the shared queue, and receiving notifications when the requests are done, it can
track whether or not there are outstanding requests being processed. If all outstanding requests have, in
fact, been processed, it is relatively safe to terminate a task (or all tasks) waiting on the request queue.

You should not assume that the task has completed termination when this call returns; the proper way to
synchronize with task termination is to wait on the termination queue (specified in MPCreateTask (page
1479)) until a message appears. Because task termination is a multistage activity, it is possible for a preemptive
task to attempt to terminate a task that is already undergoing termination. In such cases, MPTerminateTask
returns kMPInsufficientResourcesErr.

Note that Multiprocessing Services resources (event groups, queues, semaphores, and critical regions) owned
by a preemptive task are not released when that task terminates. If a task has a critical region locked when
it terminates, the critical region remains in the locked state. Multiprocessing Services resources no longer
needed should be explicitly deleted by the task that handles the termination message. All Multiprocessing
Services resources created by tasks are released when their owning process (that is, the host application)
terminates.

Availability
Available in Mac OS X v10.0 and later.

Functions 1503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Declared In
Multiprocessing.h

MPThrowException
Throws an exception to a specified task.

OSStatus MPThrowException (
 MPTaskID task,
 MPExceptionKind kind
);

Parameters
task

The task to which the exception should be thrown.

kind
The type of exception to give to the task.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533). If the task is already suspended or if
the task is not defined to take thrown exceptions, the function returns kMPInsufficientResourcesErr.

Discussion
The exception is treated in the same manner as any other exception taken by a task. However, since it is
asynchronous, it may not be presented immediately.

By convention, you should set the exception kind to kMPTaskStoppedErr if you want to suspend a task. In
general, you should do so only if you are debugging and wish to examine the state of the task. Otherwise
you should block the task using one of the traditional notification mechanisms (such as a message queue).

An exception can be thrown at any time, whether that task is running, eligible to be run (that is, ready), or
blocked. The task is suspended and an exception message may be generated the next time the task is about
to run. Note that this may never occur— for example, if the task is deadlocked or the resource it is waiting
on is never released. If the task is currently blocked when this function is executed, kMPTaskBlockedErr is
returned. If the task was suspended immediately at the conclusion of this function call the return value is
kMPTaskStoppedErr.

In Mac OS X, this function is available but is not implemented.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPUnregisterDebugger
Unregisters a debugger.

1504 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

OSStatus MPUnregisterDebugger (
 MPQueueID queue
);

Parameters
queue

The ID of the queue whose debugger you want to unregister.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
In Mac OS X, this function is available but is not implemented. Use system debugging services to write a
debugger for Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPWaitForEvent
Retrieves event flags from a specified event group.

OSStatus MPWaitForEvent (
 MPEventID event,
 MPEventFlags *flags,
 Duration timeout
);

Parameters
event

The event group whose flags you want to retrieve.

flags
On return, flags contains the flags of the specified event group. Pass NULL if you do not need any
flag information.

timeout
The maximum time to wait for events before timing out. See “Timer Duration Constants” (page 1531)
for a list of constants you can use to specify the wait interval.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
This function obtains event flags from the specified event group. The timeout specifies how long to wait for
events if none are present when the call is made. If any flags are set when this function is called, all the flags
in the event group are moved to the flag field and the event group is cleared. This obtaining and clearing
action is an atomic operation to ensure that no updates are lost. If multiple tasks are waiting on an event
group, only one can obtain any particular set of flags.

If you call this function from a cooperative task, you should specify only kDurationImmediate for the
timeout length; other waits will cause the task to block.

Also see the function MPSetEvent (page 1496).

Functions 1505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPWaitOnQueue
Obtains a message from a specified message queue.

OSStatus MPWaitOnQueue (
 MPQueueID queue,
 void **param1,
 void **param2,
 void **param3,
 Duration timeout
);

Parameters
queue

The ID of the message queue from which to receive the notification.

param1
On return, the first pointer-sized value of the notification message. Pass NULL if you do not need this
portion of the message.

param2
On return, the second pointer-sized value of the notification message. Pass NULL if you do not need
this portion of the message.

param3
On return, the third pointer-sized value of the notification message. Pass NULL if you do not need
this portion of the message.

timeout
The time to wait for a notification before timing out. See “Timer Duration Constants” (page 1531) for a
list of constants you can use to specify the wait interval.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
This function receives a message from the specified message queue. If no messages are currently available,
the timeout specifies how long the function should wait for one. Tasks waiting on the queue are handled in
a first in, first out manner; that is, the first task to wait on the queue receives the message from the
MPNotifyQueue (page 1492) call.

After calling this function, when a message appears, it is removed from the queue and the three fields,
param1, param2, and param3 are set to the values specified by the message text. Note these parameters
are pointers to variables to be set with the message text.

If you call this function from a cooperative task, you should specify only kDurationImmediate for the
timeout length; other waits will cause the task to block.

Also see the function MPNotifyQueue (page 1492).

1506 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPWaitOnSemaphore
Waits on a semaphore

OSStatus MPWaitOnSemaphore (
 MPSemaphoreID semaphore,
 Duration timeout
);

Parameters
semaphore

The ID of the semaphore you want to wait on.

timeout
The maximum time the function should wait before timing out. See “Timer Duration Constants” (page
1531) for a list of constants you can use to specify the wait interval.

Return Value
A result code. See “Multiprocessing Services Result Codes” (page 1533).

Discussion
If the value of the semaphore is greater than zero, the value is decremented and the function returns with
noErr. Otherwise, the task is blocked awaiting a signal until the specified timeout is exceeded.

If you call this function from a cooperative task, you should specify only kDurationImmediate for the
timeout length; other waits will cause the task to block.

Also see the function MPSignalSemaphore (page 1502).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPYield
Allows a task to yield the processor to another task.

void MPYield (
 void
);

Discussion
This function indicates to the scheduler that another task can run. Other than possibly yielding the processor
to another task or application, the call has no effect. Note that since tasks are preemptively scheduled, an
implicit yield may occur at any point, whether or not this function is called.

Functions 1507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

In most cases you should not need to call this function. The most common use of MPYield is to release the
processor when a task is in a loop in which further progress is dependent on other tasks, and the task cannot
be blocked by waiting on a Multiprocessing Services resource. You should avoid such busy waiting whenever
possible.

Note that you can call this function from an interrupt handler.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

_MPIsFullyInitialized
Indicates whether Multiprocessing Services is available for use.

Boolean _MPIsFullyInitialized (
 void
);

Return Value
If true, Multiprocessing Services is available for use; otherwise, false.

Declared In
Multiprocessing.h

Callbacks

MPRemoteProcedure
Defines a remote procedure call.

typedef void* (*MPRemoteProcedure) (
 void *parameter
);

For example, this is how you would declare the application-defined function if you were to name the function
MyRemoteProcedure:

void* MyRemoteProcedure (
 void *parameter
);

Parameters
parameter

A pointer to the application-defined value you passed to the function MPRemoteCallCFM (page 1495).
For example, this value could point to a data structure or a memory location.

Availability
Available in Mac OS X v10.0 and later.

1508 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Declared In
Multiprocessing.h

TaskProc
Defines the entry point of a task.

typedef OSStatus (*TaskProc) (
 void *parameter
);

For example, this is how you would declare the application-defined function if you were to name the function
MyTaskProc:

OSStatus MyTaskProc (
 void *parameter
);

Parameters
parameter

A pointer to the application-defined value you passed to the function MPCreateTask (page 1479). For
example, this value could point to a data structure or a memory location.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Data Types

MPAddressSpaceID

typedef struct OpaqueMPAddressSpaceID * MPAddressSpaceID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Data Types 1509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPAddressSpaceInfo

struct MPAddressSpaceInfo {
 PBVersion version;
 MPProcessID processID;
 MPCoherenceID groupID;
 ItemCount nTasks;
 UInt32 vsid[16];
};
typedef struct MPAddressSpaceInfo MPAddressSpaceInfo;

Availability
Available in Mac OS X v10.1 and later.

Declared In
MultiprocessingInfo.h

MPAreaID

typedef struct OpaqueMPAreaID * MPAreaID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCoherenceID
Represents a memory coherence group.

typedef struct OpaqueMPCoherenceID * MPCoherenceID;

Discussion
A coherence group is the set of processors and other bus controllers that have cache-coherent access to
memory. Mac OS 9 defines only one coherence group, which is all the processors that can access internal
memory (RAM). Other coherence groups are possible; for example, a PCI card with its own memory and
processors can comprise a coherence group.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPConsoleID

typedef struct OpaqueMPConsoleID * MPConsoleID;

Availability
Available in Mac OS X v10.0 and later.

1510 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Declared In
Multiprocessing.h

MPCpuID
Represents a CPU ID.

typedef struct OpaqueMPCpuID * MPCpuID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCriticalRegionID
Represents a critical region ID, which Multiprocessing Services uses to manipulate critical regions.

typedef struct OpaqueMPCriticalRegionID * MPCriticalRegionID;

Discussion
You obtain a critical region ID by calling the function MPCreateCriticalRegion (page 1476).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPCriticalRegionInfo

struct MPCriticalRegionInfo {
 PBVersion version;
 MPProcessID processID;
 OSType regionName;
 ItemCount nWaiting;
 MPTaskID waitingTaskID;
 MPTaskID owningTask;
 ItemCount count;
};
typedef struct MPCriticalRegionInfo MPCriticalRegionInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

Data Types 1511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPEventFlags
Represents event information for an event group.

typedef UInt32 MPEventFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPEventID
Represents an event group ID, which Multiprocessing Services uses to manipulate event groups.

typedef struct OpaqueMPEventID * MPEventID;

Discussion
You obtain an event group ID by calling the function MPCreateEvent (page 1477).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPEventInfo

struct MPEventInfo {
 PBVersion version;
 MPProcessID processID;
 OSType eventName;
 ItemCount nWaiting;
 MPTaskID waitingTaskID;
 MPEventFlags events;
};
typedef struct MPEventInfo MPEventInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

MPExceptionKind
Represents the kind of exception thrown.

typedef UInt32 MPExceptionKind;

Availability
Available in Mac OS X v10.0 and later.

1512 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Declared In
Multiprocessing.h

MPNotificationID
Represents a notification ID, which Multiprocessing Services uses to manipulate kernel notifications.

typedef struct OpaqueMPNotificationID * MPNotificationID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPNotificationInfo

struct MPNotificationInfo {
 PBVersion version;
 MPProcessID processID;
 OSType notificationName;
 MPQueueID queueID;
 void * p1;
 void * p2;
 void * p3;
 MPEventID eventID;
 MPEventFlags events;
 MPSemaphoreID semaphoreID;
};
typedef struct MPNotificationInfo MPNotificationInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

MPOpaqueID
Represents a generic notification ID (that is, an ID that could be a queue ID, event ID, kernel notification ID,
or semaphore ID).

typedef struct OpaqueMPOpaqueID * MPOpaqueID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Data Types 1513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPOpaqueIDClass

typedef UInt32 MPOpaqueIDClass;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPPageSizeClass

typedef UInt32 MPPageSizeClass;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPProcessID
Represents a process ID.

typedef struct OpaqueMPProcessID * MPProcessID;

Discussion
Note that this process ID is identical to the process ID (or context ID) handled by the Code Fragment Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPQueueID
Represents a queue ID, which Multiprocessing Services uses to manipulate message queues.

typedef struct OpaqueMPQueueID * MPQueueID;

Discussion
You obtain a queue ID by calling the function MPCreateQueue (page 1478).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

1514 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPQueueInfo

struct MPQueueInfo {
 PBVersion version;
 MPProcessID processID;
 OSType queueName;
 ItemCount nWaiting;
 MPTaskID waitingTaskID;
 ItemCount nMessages;
 ItemCount nReserved;
 void * p1;
 void * p2;
 void * p3;
};
typedef struct MPQueueInfo MPQueueInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

MPSemaphoreCount
Represents a semaphore count.

typedef ItemCount MPSemaphoreCount;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPSemaphoreID
Represents a semaphore ID, which Multiprocessing Services uses to manipulate semaphores.

typedef struct OpaqueMPSemaphoreID * MPSemaphoreID;

Discussion
You obtain a semaphore ID by calling the function MPCreateSemaphore (page 1478).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Data Types 1515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPSemaphoreInfo

struct MPSemaphoreInfo {
 PBVersion version;
 MPProcessID processID;
 OSType semaphoreName;
 ItemCount nWaiting;
 MPTaskID waitingTaskID;
 ItemCount maximum;
 ItemCount count;
};
typedef struct MPSemaphoreInfo MPSemaphoreInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MultiprocessingInfo.h

MPTaskID
Represents a task ID.

typedef struct OpaqueMPTaskID * MPTaskID;

Discussion
You obtain a task ID by calling the function MPCreateTask (page 1479).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTaskInfo
Contains information about a task.

1516 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

struct MPTaskInfo {
 PBVersion version;
 OSType name;
 OSType queueName;
 UInt16 runState;
 UInt16 lastCPU;
 UInt32 weight;
 MPProcessID processID;
 AbsoluteTime cpuTime;
 AbsoluteTime schedTime;
 AbsoluteTime creationTime;
 ItemCount codePageFaults;
 ItemCount dataPageFaults;
 ItemCount preemptions;
 MPCpuID cpuID;
 MPOpaqueID blockedObject;
 MPAddressSpaceID spaceID;
 LogicalAddress stackBase;
 LogicalAddress stackLimit;
 LogicalAddress stackCurr;
};
typedef struct MPTaskInfo MPTaskInfo;

Fields
version

The version of this data structure.

name
The name of the task.

queueName
A four-byte code indicating the status of the queue waiting on the task.

runState
The current state of the task (running, ready, or blocked).

lastCPU
The address of the last processor that ran this task.

weight
The weighting assigned to this task.

processID
The ID of the process that owns this task.

cpuTime
The accumulated CPU time used by the task.

schedTime
The time when the task was last scheduled.

creationTime
The time when the task was created.

codePageFaults
The number of page faults that occurred during code execution.

dataPageFaults
The number of page faults that occurred during data access.

preemptions
The number of times this task was preempted.

Data Types 1517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

cpuID
The ID of the last processor that ran this task.

blockedObject
Reserved for use by Mac OS X.

spaceID
Address space ID of this task.

stackBase
The lowest memory address of the task’s stack.

stackLimit
The highest memory address of the task’s stack.

stackCurr
The current stack address.

Discussion
If you specify the kMPTaskStateTaskInfo constant when calling the function MPExtractTaskState (page
1488) , Multiprocessing Services returns state information in an MPTaskInfo structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTaskInfoVersion2

struct MPTaskInfoVersion2 {
 PBVersion version;
 OSType name;
 OSType queueName;
 UInt16 runState;
 UInt16 lastCPU;
 UInt32 weight;
 MPProcessID processID;
 AbsoluteTime cpuTime;
 AbsoluteTime schedTime;
 AbsoluteTime creationTime;
 ItemCount codePageFaults;
 ItemCount dataPageFaults;
 ItemCount preemptions;
 MPCpuID cpuID;
};
typedef struct MPTaskInfoVersion2 MPTaskInfoVersion2;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

1518 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPTaskStateKind

typedef UInt32 MPTaskStateKind;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTaskWeight
Represents the relative processor weighting of a task.

typedef UInt32 MPTaskWeight;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

MPTimerID
Represents a timer ID.

typedef struct OpaqueMPTimerID * MPTimerID;

Discussion
You obtain a timer ID by calling the function MPCreateTimer (page 1480).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

TaskStorageIndex
Represents a task storage index value used by functions described in “Accessing Per-Task Storage Variables.”

typedef ItemCount TaskStorageIndex;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

TaskStorageValue
Represents a task storage value used by functions described in “Accessing Per-Task Storage Variables.”

Data Types 1519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

typedef LogicalAddress TaskStorageValue;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Multiprocessing.h

Constants

Allocation constants
The maximum memory allocation size.

enum {
 kMPMaxAllocSize = 1024L * 1024 * 1024
};

Constants
kMPMaxAllocSize

The maximum allocation size: 1GB.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task IDs
Use to specify no task ID.

enum {
 kMPNoID = kInvalidID
};

Constants
kMPNoID

No task ID.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Discussion
Used when calling MPTaskIsPreemptive (page 1502) if you want to specify the current task.

Data Structure Version Constants
Data structure version information constants.

1520 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

enum {
 kMPQueueInfoVersion = 1L | (kOpaqueQueueID << 16),
 kMPSemaphoreInfoVersion = 1L | (kOpaqueSemaphoreID << 16),
 kMPEventInfoVersion = 1L | (kOpaqueEventID << 16),
 kMPCriticalRegionInfoVersion = 1L | (kOpaqueCriticalRegionID << 16),
 kMPNotificationInfoVersion = 1L | (kOpaqueNotificationID << 16),
 kMPAddressSpaceInfoVersion = 1L | (kOpaqueAddressSpaceID << 16)
};

Constants
kMPQueueInfoVersion

The MPQueueInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPSemaphoreInfoVersion
The MPSemaphoreInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPEventInfoVersion
The MPEventInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPCriticalRegionInfoVersion
The MPCriticalRegionInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPNotificationInfoVersion
The MPNotificationInfo structure version.

Available in Mac OS X v10.0 and later.

Declared in MultiprocessingInfo.h.

kMPAddressSpaceInfoVersion
The MPAddressSpaceInfo structure version.

Available in Mac OS X v10.1 and later.

Declared in MultiprocessingInfo.h.

Values for the MPOpaqueIDClass type
Constants indicating the source of a generic notification.

Constants 1521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

enum {
 kOpaqueAnyID = 0,
 kOpaqueProcessID = 1,
 kOpaqueTaskID = 2,
 kOpaqueTimerID = 3,
 kOpaqueQueueID = 4,
 kOpaqueSemaphoreID = 5,
 kOpaqueCriticalRegionID = 6,
 kOpaqueCpuID = 7,
 kOpaqueAddressSpaceID = 8,
 kOpaqueEventID = 9,
 kOpaqueCoherenceID = 10,
 kOpaqueAreaID = 11,
 kOpaqueNotificationID = 12,
 kOpaqueConsoleID = 13
};

Constants
kOpaqueAnyID

Any source.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueProcessID
A process.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueTaskID
A task.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueTimerID
A timer.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueQueueID
A queue.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueSemaphoreID
A semaphore.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueCriticalRegionID
A critical region.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

1522 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

kOpaqueCpuID
A CPU.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueAddressSpaceID
An address space.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueEventID
An event.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueCoherenceID
A coherence group.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueAreaID
An area.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueNotificationID
A notification.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kOpaqueConsoleID
A console.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Memory Allocation Alignment Constants
Specify the alignment of the desired memory block when calling the MPAllocateAligned function.

Constants 1523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

enum {
 kMPAllocateDefaultAligned = 0,
 kMPAllocate8ByteAligned = 3,
 kMPAllocate16ByteAligned = 4,
 kMPAllocate32ByteAligned = 5,
 kMPAllocate1024ByteAligned = 10,
 kMPAllocate4096ByteAligned = 12,
 kMPAllocateMaxAlignment = 16,
 kMPAllocateAltiVecAligned = kMPAllocate16ByteAligned,
 kMPAllocateVMXAligned = kMPAllocateAltiVecAligned,
 kMPAllocateVMPageAligned = 254,
 kMPAllocateInterlockAligned = 255
};

Constants
kMPAllocateDefaultAligned

Use the default alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate8ByteAligned
Use 8-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate16ByteAligned
Use 16-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate32ByteAligned
Use 32-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate1024ByteAligned
Use 1024-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocate4096ByteAligned
Use 4096-byte alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateMaxAlignment
Use the maximum alignment (65536 byte).

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateAltiVecAligned
Use AltiVec alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

1524 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

kMPAllocateVMXAligned
Use VMX (now called AltiVec) alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateVMPageAligned
Use virtual memory page alignment. This alignment is set at runtime.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateInterlockAligned
Use interlock alignment, which is the alignment needed to allow the use of CPU interlock instructions
(that is, lwarx and stwcx.) on the returned memory address. This alignment is set at runtime. In most
cases you would never need to use this alignment.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Memory Allocation Option Constants
Specify optional actions when calling the MPAllocateAligned function.

enum {
 kMPAllocateClearMask = 0x0001,
 kMPAllocateGloballyMask = 0x0002,
 kMPAllocateResidentMask = 0x0004,
 kMPAllocateNoGrowthMask = 0x0010,
 kMPAllocateNoCreateMask = 0x0020
};

Constants
kMPAllocateClearMask

Zero out the allocated memory block.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateGloballyMask
Allocate memory from in memory space that is visible to all processes. Note that such globally-allocated
space is not automatically reclaimed when the allocating process terminates. By default,
MPAllocateAligned (page 1472) allocates memory from process-specific (that is, not global) memory.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateResidentMask
Allocate memory from resident memory only (that is, the allocated memory is not pageable).

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPAllocateNoGrowthMask
Do not attempt to grow the pool of available memory. Specifying this option is useful, as attempting
to grow memory may cause your task to block until such memory becomes available.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Constants 1525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

kMPAllocateNoCreateMask
Do not attempt to create the pool if it does not yet exist.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

MPDebuggerLevel
Indicates the debugger level.

typedef UInt32 MPDebuggerLevel;
enum {
 kMPLowLevelDebugger = 0x00000000,
 kMPMidLevelDebugger = 0x10000000,
 kMPHighLevelDebugger = 0x20000000
};

Constants
kMPLowLevelDebugger

The low-level debugger.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

kMPMidLevelDebugger
The mid-level debugger.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

kMPHighLevelDebugger
The high-level debugger.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

Library Version Constants
Identifies the current library version.

enum {
 MPLibrary_MajorVersion = 2,
 MPLibrary_MinorVersion = 3,
 MPLibrary_Release = 1,
 MPLibrary_DevelopmentRevision = 1
};

Constants
MPLibrary_MajorVersion

Major version number.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

1526 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

MPLibrary_MinorVersion
Minor version number.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

MPLibrary_Release
Release number.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

MPLibrary_DevelopmentRevision
Development revision number.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Remote Call Context Option Constants
Specify which contexts are allowed to execute the callback function when using MPRemoteCall.

enum {
 kMPAnyRemoteContext = 0,
 kMPOwningProcessRemoteContext = 1,
 kMPInterruptRemoteContext = 2,
 kMPAsyncInterruptRemoteContext = 3
};
typedef UInt8 MPRemoteContext;

Constants
kMPAnyRemoteContext

Any cooperative context can execute the function. Note that the called function may not have access
to any of the owning context’s process-specific low-memory values.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPOwningProcessRemoteContext
Only the context that owns the task can execute the function.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPInterruptRemoteContext
Unsupported in Mac OS X.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

kMPAsyncInterruptRemoteContext
Unsupported in Mac OS X.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

Discussion
These constants are used to support older versions of Mac OS and are ignored in Mac OS X.

Constants 1527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Task Creation Options
Specify optional actions when calling the MPCreateTask function.

enum {
 kMPCreateTaskSuspendedMask = 1L << 0,
 kMPCreateTaskTakesAllExceptionsMask = 1L << 1,
 kMPCreateTaskNotDebuggableMask = 1L << 2,
 kMPCreateTaskValidOptionsMask = kMPCreateTaskSuspendedMask |
kMPCreateTaskTakesAllExceptionsMask | kMPCreateTaskNotDebuggableMask
};
typedef OptionBits MPTaskOptions;

Constants
kMPCreateTaskSuspendedMask

Unsupported in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPCreateTaskTakesAllExceptionsMask
The task will take all exceptions, including those normally handled by the system, such as page faults.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPCreateTaskNotDebuggableMask
Unsupported in Mac OS X.

Available in Mac OS X v10.1 and later.

Declared in Multiprocessing.h.

kMPCreateTaskValidOptionsMask
Include all valid options for this task.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task Exception Disposal Constants
Specify actions to take on an exception when passed in the action parameter of the
MPDisposeTaskException function.

1528 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

enum {
 kMPTaskPropagate = 0,
 kMPTaskResumeStep = 1,
 kMPTaskResumeBranch = 2,
 kMPTaskResumeMask = 0x0000,
 kMPTaskPropagateMask = 1 << kMPTaskPropagate,
 kMPTaskResumeStepMask = 1 << kMPTaskResumeStep,
 kMPTaskResumeBranchMask = 1 << kMPTaskResumeBranch
};

Constants
kMPTaskPropagate

The exception is propagated.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeStep
The task is resumed and single step is enabled.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeBranch
The task is resumed and branch stepping is enabled.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeMask
Resume the task.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskPropagateMask
Propagate the exception to the next debugger level.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeStepMask
Resume the task and enable single stepping.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskResumeBranchMask
Resume the task and enable branch stepping.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task Information Structure Version Constant
Indicates the current version of the MPTaskInfo structure (returned as the first field).

Constants 1529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

enum {
 kMPTaskInfoVersion = 3
};

Constants
kMPTaskInfoVersion

The current version of the task information structure.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task Run State Constants
Indicate the state of the task when returned as part of the MPTaskInfo data structure.

enum {
 kMPTaskBlocked = 0,
 kMPTaskReady = 1,
 kMPTaskRunning = 2
};

Constants
kMPTaskBlocked

The task is blocked..

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskReady
The task is ready for execution.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskRunning
The task is currently running.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Task State Constants
Specify what states you want to set or obtain when calling the MPExtractTaskState or MPSetTaskState
functions.

1530 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

enum {
 kMPTaskStateRegisters = 0,
 kMPTaskStateFPU = 1,
 kMPTaskStateVectors = 2,
 kMPTaskStateMachine = 3,
 kMPTaskState32BitMemoryException = 4,
 kMPTaskStateTaskInfo = 5
};

Constants
kMPTaskStateRegisters

The task’s general-purpose (GP) registers. The RegisterInformationPowerPC structure in
MachineExceptions.h defines the format of this information.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskStateFPU
The task’s floating point registers. The FPUInformationPowerPC structure in MachineExceptions.h
defines the format of this information.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskStateVectors
The task’s vector registers. The VectorInformationPowerPC structure in MachineExceptions.h
defines the format of this information.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskStateMachine
The task’s machine registers. TheMachineInformationPowerPC structure inMachineExceptions.h
defines the format of this information. Note that the MSR, ExceptKind, DSISR, and DAR registers are
read-only.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskState32BitMemoryException
The task’s exception information for older 32-bit memory exceptions (that is, memory exceptions on
32-bit CPUs). The MemoryExceptionInformation structure in MachineExceptions.h defines the
format of this information. This exception information is read-only.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTaskStateTaskInfo
Static and dynamic information about the task, as described by the data structure MPTaskInfo (page
1516). This task information is read-only.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Timer Duration Constants
Specify the maximum time a task should wait for an event to occur.

Constants 1531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

enum {
 kDurationImmediate = 0,
 kDurationForever = 0x7FFFFFFF,
 kDurationMillisecond = 1,
 kDurationMicrosecond = -1
};

Constants
kDurationImmediate

The task times out immediately, whether or not the event has occurred. If the event occurred, the
return status is noErr. If the event did not occur, the return status is kMPTimeoutErr (assuming no
other errors occurred).

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kDurationForever
The task waits forever. The blocking call waits until either the event occurs, or until the object being
waited upon (such as a message queue) is deleted.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kDurationMillisecond
The task waits one millisecond before timing out.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kDurationMicrosecond
The task waits one microsecond before timing out.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Discussion
You can use these constants in conjunction with other values to indicate specific wait intervals. For example,
to wait 1 second, you can pass kDurationMillisecond * 1000.

Timer Option Masks
Indicate optional actions when calling MPArmTimer.

enum {
 kMPPreserveTimerIDMask = 1L << 0,
 kMPTimeIsDeltaMask = 1L << 1,
 kMPTimeIsDurationMask = 1L << 2
};

Constants
kMPPreserveTimerIDMask

Specifying this mask prevents the timer from being deleted when it expires.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

1532 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

kMPTimeIsDeltaMask
Specifying this mask indicates that the specified time should be added to the previous expiration
time to form the new expiration time. You can use this mask to compensate for timing drift caused
by the finite amount of time required to arm the timer, receive the notification, and so on.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

kMPTimeIsDurationMask
Specifying this mask indicates that the specified expiration time is of type Duration. You can use
this mask to avoid having to call time conversion routines when specifying an expiration time.

Available in Mac OS X v10.0 and later.

Declared in Multiprocessing.h.

Result Codes

Result codes defined for Multiprocessing Services are listed below.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-29275kMPIterationEndErr

Available in Mac OS X v10.0 and later.-29276kMPPrivilegedErr

Available in Mac OS X v10.0 and later.-29288kMPProcessCreatedErr

Available in Mac OS X v10.0 and later.-29289kMPProcessTerminatedErr

Available in Mac OS X v10.0 and later.-29290kMPTaskCreatedErr

The desired task is blocked.-29291kMPTaskBlockedErr

Available in Mac OS X v10.0 and later.

The desired task is stopped.-29292kMPTaskStoppedErr

Available in Mac OS X v10.0 and later.

The desired notification the function was waiting upon was
deleted.

-29295kMPDeletedErr

Available in Mac OS X v10.0 and later.

The designated timeout interval passed before the function
could take action.

-29296kMPTimeoutErr

Available in Mac OS X v10.0 and later.

Could not complete task due to unavailable Multiprocessing
Services resources. Note that many functions return this
value as a general error when the desired action could not
be performed.

-29298kMPInsufficientResourcesErr

Available in Mac OS X v10.0 and later.

Result Codes 1533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

DescriptionValueResult Code

Invalid ID value. For example, an invalid message queue ID
was passed to MPNotifyQueue.

-29299kMPInvalidIDErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can determine which system software calls are preemptively-safe for Multiprocessing Services by using
the preemptive function attribute selectors defined in the Gestalt Manager. For more information, see Gestalt
Manager Reference.

1534 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Multiprocessing Services Reference

Framework: CoreServices/CoreServices.h

Declared in MC68000Test.h
ddrt.h
Disassembler68k.h
PLStringFuncs.h
IntEnv.h
MacRuntime.h
MPWLibsDebug.h

Overview

Pascal String Utilities is an API that provides functions for performing common string manipulations, such
as concatenation and copying, on Pascal strings. Although Unicode is the preferred encoding for strings on
Mac OS X, you may find these functions useful if your application handles Pascal strings as well.

This category also includes structures and constants defining the PEF binary storage format.

Carbon fully supports the functions that assist you in manipulating Pascal strings.

Important: Pascal String Utilities is deprecated as of Mac OS X v10.4. You should update your applications
to use Core Foundation Strings (CFStrings) instead. If you need to convert Pascal strings, you can use functions
like CFStringCreateWithPascalString to do so.

Functions

PLpos
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

Overview 1535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

short PLpos (
 ConstStr255Param str1,
 ConstStr255Param searchStr
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

PLstrcat
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

StringPtr PLstrcat (
 StringPtr str,
 ConstStr255Param append
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

1536 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PLstrchr
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

Ptr PLstrchr (
 ConstStr255Param str1,
 short ch1
);

Parameters
str1

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

PLstrcmp
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

short PLstrcmp (
 ConstStr255Param str1,
 ConstStr255Param str2
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 1537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Declared In
PLStringFuncs.h

PLstrcpy
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

StringPtr PLstrcpy (
 StringPtr dest,
 ConstStr255Param source
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Related Sample Code
SoftVDigX

Declared In
PLStringFuncs.h

PLstrlen
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

short PLstrlen (
 ConstStr255Param str
);

Parameters
str

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

1538 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

PLstrncat
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

StringPtr PLstrncat (
 StringPtr str1,
 ConstStr255Param append,
 short num
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

PLstrncmp
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

Functions 1539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

short PLstrncmp (
 ConstStr255Param str1,
 ConstStr255Param str2,
 short num
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

PLstrncpy
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

StringPtr PLstrncpy (
 StringPtr dest,
 ConstStr255Param source,
 short num
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1540 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Declared In
PLStringFuncs.h

PLstrpbrk
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

Ptr PLstrpbrk (
 ConstStr255Param str1,
 ConstStr255Param charSet
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

PLstrrchr
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

Ptr PLstrrchr (
 ConstStr255Param str1,
 short ch1
);

Parameters
str1

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Functions 1541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

PLstrspn
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

short PLstrspn (
 ConstStr255Param str1,
 ConstStr255Param charSet
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

PLstrstr
(Deprecated in Mac OS X v10.4. Use Core Foundation strings (CFStrings) instead. See CFString Reference.)

1542 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Ptr PLstrstr (
 ConstStr255Param str1,
 ConstStr255Param searchStr
);

Parameters
str1
str2

Return Value
Discussion
Special Considerations

If you need to convert Pascal strings, you can use functions like CFStringCreateWithPascalString to
do so.

Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PLStringFuncs.h

Functions 1543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Data Types

PEF2ContainerHeader

struct PEF2ContainerHeader {
 OSType tag1;
 OSType tag2;
 UInt32 currentFormat;
 UInt32 oldestFormat;
 UInt32 containerHeaderSize;
 UInt32 containerLength;
 UInt32 checksum;
 UInt32 sectionHeadersOffset;
 UInt32 sectionHeaderSize;
 UInt32 totalSectionCount;
 UInt32 instSectionCount;
 UInt32 loaderSectionIndex;
 UInt32 containerStringsOffset;
 UInt32 containerStringsLength;
 UInt32 options;
 UInt32 preferredAddress;
 UInt8 alignment;
 UInt8 stringEncoding;
 UInt16 reservedA;
 UInt32 reservedB;
 UInt32 reservedC;
 UInt32 nameOffset;
 OSType architecture;
 UInt32 dateTimeStamp;
 UInt32 currentVersion;
 UInt32 oldDefVersion;
 UInt32 oldImpVersion;
 UInt32 reservedD;
 UInt32 reservedE;
};
typedef struct PEF2ContainerHeader PEF2ContainerHeader;

Fields
tag1
tag2
currentFormat
oldestFormat
containerHeaderSize
containerLength
checksum
sectionHeadersOffset
sectionHeaderSize
totalSectionCount
instSectionCount
loaderSectionIndex
containerStringsOffset
containerStringsLength

1544 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

options
preferredAddress
alignment
stringEncoding
reservedA
reservedB
reservedC
nameOffset
architecture
dateTimeStamp
currentVersion
oldDefVersion
oldImpVersion
reservedD
reservedE

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

PEF2ExportedSymbolKey

typedef PEFExportedSymbolKey PEF2ExportedSymbolKey;

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

Data Types 1545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEF2ImportedLibrary

struct PEF2ImportedLibrary {
 UInt32 nameOffset;
 UInt32 oldImpVersion;
 UInt32 currentVersion;
 UInt32 importedSymbolCount;
 UInt32 firstImportedSymbol;
 UInt32 options;
 UInt32 reservedA;
};
typedef struct PEF2ImportedLibrary PEF2ImportedLibrary;

Fields
nameOffset
oldImpVersion
currentVersion
importedSymbolCount
firstImportedSymbol
options
reservedA

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

PEF2LgExportedSymbolHashSlot

struct PEF2LgExportedSymbolHashSlot {
 UInt32 chainCount;
 UInt32 chainOffset;
};
typedef struct PEF2LgExportedSymbolHashSlot PEF2LgExportedSymbolHashSlot;

Fields
chainCount
chainOffset

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

1546 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEF2LgExportedSymbol

struct PEF2LgExportedSymbol {
 UInt8 symClass;
 UInt8 flags;
 UInt16 reservedA;
 UInt32 nameOffset;
 UInt32 versionPair;
 SInt32 sectionIndex;
 UInt32 sectionOffset;
 UInt32 reservedB;
};
typedef struct PEF2LgExportedSymbol PEF2LgExportedSymbol;

Fields
symClass
flags
reservedA
nameOffset
versionPair
sectionIndex
sectionOffset
reservedB

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

Data Types 1547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEF2LgImportedSymbol

struct PEF2LgImportedSymbol {
 UInt8 symClass;
 UInt8 flags;
 UInt16 reservedA;
 UInt32 nameOffset;
 UInt32 versionPair;
 UInt32 reservedB;
};
typedef struct PEF2LgImportedSymbol PEF2LgImportedSymbol;

Fields
symClass
flags
reservedA
nameOffset
versionPair
reservedB

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

1548 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEF2LoaderInfoHeader

struct PEF2LoaderInfoHeader {
 UInt32 headerSize;
 UInt32 options;
 SInt32 mainSection;
 UInt32 mainOffset;
 SInt32 initSection;
 UInt32 initOffset;
 SInt32 termSection;
 UInt32 termOffset;
 SInt32 notifySection;
 UInt32 notifyOffset;
 UInt32 importedLibrariesOffset;
 UInt32 importedLibrarySize;
 UInt32 importedLibraryCount;
 UInt32 importedSymbolsOffset;
 UInt32 importedSymbolSize;
 UInt32 totalImportedSymbolCount;
 UInt32 loaderNamesOffset;
 UInt32 loaderNamesLength;
 UInt32 exportHashTableOffset;
 UInt8 exportHashTablePower;
 UInt8 reservedA;
 UInt16 reservedB;
 UInt32 exportedKeysOffset;
 UInt32 exportedSymbolsOffset;
 UInt32 exportedSymbolSize;
 UInt32 exportedSymbolCount;
 UInt32 relocHeadersOffset;
 UInt32 relocHeaderCount;
 UInt32 relocInstrOffset;
 UInt32 relocInstrLength;
 UInt32 reservedC;
 UInt32 reservedD;
};
typedef struct PEF2LoaderInfoHeader PEF2LoaderInfoHeader;

Fields
headerSize
options
mainSection
mainOffset
initSection
initOffset
termSection
termOffset
notifySection
notifyOffset
importedLibrariesOffset
importedLibrarySize
importedLibraryCount
importedSymbolsOffset
importedSymbolSize
totalImportedSymbolCount

Data Types 1549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

loaderNamesOffset
loaderNamesLength
exportHashTableOffset
exportHashTablePower
reservedA
reservedB
exportedKeysOffset
exportedSymbolsOffset
exportedSymbolSize
exportedSymbolCount
relocHeadersOffset
relocHeaderCount
relocInstrOffset
relocInstrLength
reservedC
reservedD

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

PEF2LoaderRelocationHeader

struct PEF2LoaderRelocationHeader {
 UInt32 sectionIndex;
 UInt32 relocLength;
 UInt32 firstRelocOffset;
 UInt32 reservedA;
};
typedef struct PEF2LoaderRelocationHeader PEF2LoaderRelocationHeader;

Fields
sectionIndex
relocLength
firstRelocOffset
reservedA

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

1550 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEF2SectionHeader

struct PEF2SectionHeader {
 UInt32 nameOffset;
 UInt32 presumedAddress;
 UInt32 totalLength;
 UInt32 unpackedLength;
 UInt32 containerLength;
 UInt32 containerOffset;
 UInt32 options;
 UInt8 shareKind;
 UInt8 alignment;
 UInt16 reservedA;
 UInt32 reservedB;
 UInt32 reservedC;
};
typedef struct PEF2SectionHeader PEF2SectionHeader;

Fields
nameOffset
presumedAddress
totalLength
unpackedLength
containerLength
containerOffset
options
shareKind
alignment
reservedA
reservedB
reservedC

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

PEF2SmExportedSymbolHashSlot

typedef PEFExportedSymbolHashSlot PEF2SmExportedSymbolHashSlot;

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Data Types 1551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Declared In
PEFBinaryFormat.h

PEF2SmExportedSymbol

typedef PEFExportedSymbol PEF2SmExportedSymbol;

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

PEF2SmImportedSymbol

typedef PEFImportedSymbol PEF2SmImportedSymbol;

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

1552 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEFContainerHeader

struct PEFContainerHeader {
 OSType tag1;
 OSType tag2;
 OSType architecture;
 UInt32 formatVersion;
 UInt32 dateTimeStamp;
 UInt32 oldDefVersion;
 UInt32 oldImpVersion;
 UInt32 currentVersion;
 UInt16 sectionCount;
 UInt16 instSectionCount;
 UInt32 reservedA;
};
typedef struct PEFContainerHeader PEFContainerHeader;

Fields
tag1
tag2
architecture
formatVersion
dateTimeStamp
oldDefVersion
oldImpVersion
currentVersion
sectionCount
instSectionCount
reservedA

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

Data Types 1553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEFExportedSymbol

struct PEFExportedSymbol {
 UInt32 classAndName;
 UInt32 symbolValue;
 SInt16 sectionIndex;
};
typedef struct PEFExportedSymbol PEFExportedSymbol;
typedef PEFExportedSymbol PEF2SmExportedSymbol;

Fields
classAndName
symbolValue
sectionIndex

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

PEFExportedSymbolHashSlot

struct PEFExportedSymbolHashSlot {
 UInt32 countAndStart;
};
typedef struct PEFExportedSymbolHashSlot PEFExportedSymbolHashSlot;
typedef PEFExportedSymbolHashSlot XLibExportedSymbolHashSlot;

Fields
countAndStart

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

1554 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEFExportedSymbolKey

struct PEFExportedSymbolKey {
 union {
 UInt32 fullHashWord;
 PEFSplitHashWord splitHashWord;
 } u;
};
typedef struct PEFExportedSymbolKey PEFExportedSymbolKey;
typedef PEFExportedSymbolKey XLibExportedSymbolKey;

Fields
fullHashWord
splitHashWord

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

Data Types 1555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEFImportedLibrary

struct PEFImportedLibrary {
 UInt32 nameOffset;
 UInt32 oldImpVersion;
 UInt32 currentVersion;
 UInt32 importedSymbolCount;
 UInt32 firstImportedSymbol;
 UInt8 options;
 UInt8 reservedA;
 UInt16 reservedB;
};
typedef struct PEFImportedLibrary PEFImportedLibrary;

Fields
nameOffset
oldImpVersion
currentVersion
importedSymbolCount
firstImportedSymbol
options
reservedA
reservedB

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

PEFImportedSymbol

struct PEFImportedSymbol {
 UInt32 classAndName;
};
typedef struct PEFImportedSymbol PEFImportedSymbol;
typedef PEFImportedSymbol PEF2SmImportedSymbol;

Fields
classAndName

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

1556 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEFLoaderInfoHeader

struct PEFLoaderInfoHeader {
 SInt32 mainSection;
 UInt32 mainOffset;
 SInt32 initSection;
 UInt32 initOffset;
 SInt32 termSection;
 UInt32 termOffset;
 UInt32 importedLibraryCount;
 UInt32 totalImportedSymbolCount;
 UInt32 relocSectionCount;
 UInt32 relocInstrOffset;
 UInt32 loaderStringsOffset;
 UInt32 exportHashOffset;
 UInt32 exportHashTablePower;
 UInt32 exportedSymbolCount;
};
typedef struct PEFLoaderInfoHeader PEFLoaderInfoHeader;

Fields
mainSection
mainOffset
initSection
initOffset
termSection
termOffset
importedLibraryCount
totalImportedSymbolCount
relocSectionCount
relocInstrOffset
loaderStringsOffset
exportHashOffset
exportHashTablePower
exportedSymbolCount

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

Data Types 1557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEFLoaderRelocationHeader

struct PEFLoaderRelocationHeader {
 UInt16 sectionIndex;
 UInt16 reservedA;
 UInt32 relocCount;
 UInt32 firstRelocOffset;
};
typedef struct PEFLoaderRelocationHeader PEFLoaderRelocationHeader;

Fields
sectionIndex
reservedA
relocCount
firstRelocOffset

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

PEFRelocChunk

typedef UInt16 PEFRelocChunk;

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

1558 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEFSectionHeader

struct PEFSectionHeader {
 SInt32 nameOffset;
 UInt32 defaultAddress;
 UInt32 totalLength;
 UInt32 unpackedLength;
 UInt32 containerLength;
 UInt32 containerOffset;
 UInt8 sectionKind;
 UInt8 shareKind;
 UInt8 alignment;
 UInt8 reservedA;
};
typedef struct PEFSectionHeader PEFSectionHeader;

Fields
nameOffset
defaultAddress
totalLength
unpackedLength
containerLength
containerOffset
sectionKind
shareKind
alignment
reservedA

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

Data Types 1559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

PEFSplitHashWord

struct PEFSplitHashWord {
 UInt16 nameLength;
 UInt16 hashValue;
};
typedef struct PEFSplitHashWord PEFSplitHashWord;

Fields
nameLength
hashValue

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

1560 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

XLibContainerHeader

struct XLibContainerHeader {
 OSType tag1;
 OSType tag2;
 UInt32 currentFormat;
 UInt32 containerStringsOffset;
 UInt32 exportHashOffset;
 UInt32 exportKeyOffset;
 UInt32 exportSymbolOffset;
 UInt32 exportNamesOffset;
 UInt32 exportHashTablePower;
 UInt32 exportedSymbolCount;
 UInt32 fragNameOffset;
 UInt32 fragNameLength;
 UInt32 dylibPathOffset;
 UInt32 dylibPathLength;
 OSType cpuFamily;
 OSType cpuModel;
 UInt32 dateTimeStamp;
 UInt32 currentVersion;
 UInt32 oldDefVersion;
 UInt32 oldImpVersion;
};
typedef struct XLibContainerHeader XLibContainerHeader;

Fields
tag1
tag2
currentFormat
containerStringsOffset
exportHashOffset
exportKeyOffset
exportSymbolOffset
exportNamesOffset
exportHashTablePower
exportedSymbolCount
fragNameOffset
fragNameLength
dylibPathOffset
dylibPathLength
cpuFamily
cpuModel
dateTimeStamp
currentVersion
oldDefVersion
oldImpVersion

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Data Types 1561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Declared In
PEFBinaryFormat.h

XLibExportedSymbol

struct XLibExportedSymbol {
 UInt32 classAndName;
 UInt32 bpOffset;
};
typedef struct XLibExportedSymbol XLibExportedSymbol;

Fields
classAndName
bpOffset

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

XLibExportedSymbolHashSlot

typedef PEFExportedSymbolHashSlot XLibExportedSymbolHashSlot;

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
PEFBinaryFormat.h

XLibExportedSymbolKey

typedef PEFExportedSymbolKey XLibExportedSymbolKey;

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

1562 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Declared In
PEFBinaryFormat.h

Constants

kPEF2IsReexportLibraryMask

enum {
 kPEF2IsReexportLibraryMask = 0x00000001,
 kPEF2IsGlueLibraryMask = 0x00000002
};

Constants
kPEF2IsReexportLibraryMask

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2IsGlueLibraryMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEF2LdrInfoLargeImpSymMask

enum {
 kPEF2LdrInfoLargeImpSymMask = 0x00000001,
 kPEF2LdrInfoLargeExpSymMask = 0x00000002,
 kPEF2LdrInfoLargeExpHashMask = 0x00000004
};

Constants
kPEF2LdrInfoLargeImpSymMask

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2LdrInfoLargeExpSymMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2LdrInfoLargeExpHashMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEF2PrivateShare

enum {
 kPEF2PrivateShare = 0,
 kPEF2ProcessShare = 1,
 kPEF2GlobalShare = 4,
 kPEF2ProtectedShare = 5
};

Constants
kPEF2PrivateShare

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2ProcessShare
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2GlobalShare
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2ProtectedShare
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1564 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEF2SectionHasCodeMask

enum {
 kPEF2SectionHasCodeMask = 0x00000001,
 kPEF2SectionIsWriteableMask = 0x00000002,
 kPEF2SectionHasRelocationsMask = 0x00000004,
 kPEF2SectionContentsArePackedMask = 0x00000100,
 kPEF2SectionNoZeroFillMask = 0x00000200,
 kPEF2SectionResidentMask = 0x00000400,
 kPEF2SectionFollowsPriorMask = 0x00010000,
 kPEF2SectionPrecedesNextMask = 0x00020000,
 kPEF2SectionHasLoaderTablesMask = 0x01000000,
 kPEF2SectionHasDebugTablesMask = 0x02000000,
 kPEF2SectionHasExceptionTablesMask = 0x04000000,
 kPEF2SectionHasTracebackTablesMask = 0x08000000
};

Constants
kPEF2SectionHasCodeMask

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionIsWriteableMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionHasRelocationsMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionContentsArePackedMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionNoZeroFillMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionResidentMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionFollowsPriorMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionPrecedesNextMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

kPEF2SectionHasLoaderTablesMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionHasDebugTablesMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionHasExceptionTablesMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2SectionHasTracebackTablesMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEF2StringsAreASCII

enum {
 kPEF2StringsAreASCII = 0,
 kPEF2StringsAreUnicode = 1
};

Constants
kPEF2StringsAreASCII

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2StringsAreUnicode
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1566 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEF2Tag1

enum {
 kPEF2Tag1 = kPEFTag1,
 kPEF2Tag2 = 'PEF ',
 kPEF2CurrentFormat = 0x00000002,
 kPEF2OldestHandler = 0x00000002
};

Constants
kPEF2Tag1

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2Tag2
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2CurrentFormat
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2OldestHandler
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEF2WeakImportLibMask

enum {
 kPEF2WeakImportLibMask = kPEFWeakImportLibMask,
 kPEF2InitLibBeforeMask = kPEFInitLibBeforeMask
};

Constants
kPEF2WeakImportLibMask

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEF2InitLibBeforeMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEFAbsoluteExport

enum {
 kPEFAbsoluteExport = -2,
 kPEFReexportedImport = -3
};

Constants
kPEFAbsoluteExport

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFReexportedImport
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFCodeSection

enum {
 kPEFCodeSection = 0,
 kPEFUnpackedDataSection = 1,
 kPEFPackedDataSection = 2,
 kPEFConstantSection = 3,
 kPEFExecDataSection = 6,
 kPEFLoaderSection = 4,
 kPEFDebugSection = 5,
 kPEFExceptionSection = 7,
 kPEFTracebackSection = 8
};

Constants
kPEFCodeSection

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFUnpackedDataSection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPackedDataSection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1568 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

kPEFConstantSection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFExecDataSection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFLoaderSection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFDebugSection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFExceptionSection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFTracebackSection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFCodeSymbol

enum {
 kPEFCodeSymbol = 0x00,
 kPEFDataSymbol = 0x01,
 kPEFTVectorSymbol = 0x02,
 kPEFTOCSymbol = 0x03,
 kPEFGlueSymbol = 0x04,
 kPEFUndefinedSymbol = 0x0F,
 kPEFWeakImportSymMask = 0x80
};

Constants
kPEFCodeSymbol

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFDataSymbol
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFTVectorSymbol
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

kPEFTOCSymbol
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFGlueSymbol
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFUndefinedSymbol
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFWeakImportSymMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFExpSymClassShift

enum {
 kPEFExpSymClassShift = 24,
 kPEFExpSymNameOffsetMask = 0x00FFFFFF,
 kPEFExpSymMaxNameOffset = 0x00FFFFFF
};

Constants
kPEFExpSymClassShift

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFExpSymNameOffsetMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFExpSymMaxNameOffset
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1570 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEFFirstSectionHeaderOffset

enum {
 kPEFFirstSectionHeaderOffset = sizeof(PEFContainerHeader)
};

Constants
kPEFFirstSectionHeaderOffset

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFHashLengthShift

enum {
 kPEFHashLengthShift = 16,
 kPEFHashValueMask = 0x0000FFFF,
 kPEFHashMaxLength = 0x0000FFFF
};

Constants
kPEFHashLengthShift

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFHashValueMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFHashMaxLength
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEFHashSlotSymCountShift

enum {
 kPEFHashSlotSymCountShift = 18,
 kPEFHashSlotFirstKeyMask = 0x0003FFFF,
 kPEFHashSlotMaxSymbolCount = 0x00003FFF,
 kPEFHashSlotMaxKeyIndex = 0x0003FFFF
};

Constants
kPEFHashSlotSymCountShift

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFHashSlotFirstKeyMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFHashSlotMaxSymbolCount
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFHashSlotMaxKeyIndex
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFImpSymClassShift

enum {
 kPEFImpSymClassShift = 24,
 kPEFImpSymNameOffsetMask = 0x00FFFFFF,
 kPEFImpSymMaxNameOffset = 0x00FFFFFF
};

Constants
kPEFImpSymClassShift

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFImpSymNameOffsetMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1572 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

kPEFImpSymMaxNameOffset
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFPkDataOpcodeShift

enum {
 kPEFPkDataOpcodeShift = 5,
 kPEFPkDataCount5Mask = 0x1F,
 kPEFPkDataMaxCount5 = 31,
 kPEFPkDataVCountShift = 7,
 kPEFPkDataVCountMask = 0x7F,
 kPEFPkDataVCountEndMask = 0x80
};

Constants
kPEFPkDataOpcodeShift

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPkDataCount5Mask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPkDataMaxCount5
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPkDataVCountShift
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPkDataVCountMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPkDataVCountEndMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEFPkDataZero

enum {
 kPEFPkDataZero = 0,
 kPEFPkDataBlock = 1,
 kPEFPkDataRepeat = 2,
 kPEFPkDataRepeatBlock = 3,
 kPEFPkDataRepeatZero = 4
};

Constants
kPEFPkDataZero

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPkDataBlock
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPkDataRepeat
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPkDataRepeatBlock
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFPkDataRepeatZero
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFProcessShare

enum {
 kPEFProcessShare = 1,
 kPEFGlobalShare = 4,
 kPEFProtectedShare = 5
};

Constants
kPEFProcessShare

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1574 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

kPEFGlobalShare
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFProtectedShare
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocBasicOpcodeRange

enum {
 kPEFRelocBasicOpcodeRange = 128
};

Constants
kPEFRelocBasicOpcodeRange

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocBySectDWithSkip

enum {
 kPEFRelocBySectDWithSkip = 0x00,
 kPEFRelocBySectC = 0x20,
 kPEFRelocBySectD = 0x21,
 kPEFRelocTVector12 = 0x22,
 kPEFRelocTVector8 = 0x23,
 kPEFRelocVTable8 = 0x24,
 kPEFRelocImportRun = 0x25,
 kPEFRelocSmByImport = 0x30,
 kPEFRelocSmSetSectC = 0x31,
 kPEFRelocSmSetSectD = 0x32,
 kPEFRelocSmBySection = 0x33,
 kPEFRelocIncrPosition = 0x40,
 kPEFRelocSmRepeat = 0x48,
 kPEFRelocSetPosition = 0x50,
 kPEFRelocLgByImport = 0x52,
 kPEFRelocLgRepeat = 0x58,
 kPEFRelocLgSetOrBySection = 0x5A,
 kPEFRelocUndefinedOpcode = 0xFF
};

Constants
kPEFRelocBySectDWithSkip

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocBySectC
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocBySectD
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocTVector12
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocTVector8
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocVTable8
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocImportRun
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1576 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

kPEFRelocSmByImport
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocSmSetSectC
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocSmSetSectD
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocSmBySection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocIncrPosition
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocSmRepeat
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocSetPosition
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocLgByImport
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocLgRepeat
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocLgSetOrBySection
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocUndefinedOpcode
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocIncrPositionMaxOffset

enum {
 kPEFRelocIncrPositionMaxOffset = 4096
};

Constants
kPEFRelocIncrPositionMaxOffset

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocLgByImportMaxIndex

enum {
 kPEFRelocLgByImportMaxIndex = 0x03FFFFFF
};

Constants
kPEFRelocLgByImportMaxIndex

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocLgBySectionSubopcode

enum {
 kPEFRelocLgBySectionSubopcode = 0x00,
 kPEFRelocLgSetSectCSubopcode = 0x01,
 kPEFRelocLgSetSectDSubopcode = 0x02
};

Constants
kPEFRelocLgBySectionSubopcode

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1578 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

kPEFRelocLgSetSectCSubopcode
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocLgSetSectDSubopcode
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocLgRepeatMaxChunkCount

enum {
 kPEFRelocLgRepeatMaxChunkCount = 16,
 kPEFRelocLgRepeatMaxRepeatCount = 0x003FFFFF
};

Constants
kPEFRelocLgRepeatMaxChunkCount

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocLgRepeatMaxRepeatCount
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocLgSetOrBySectionMaxIndex

enum {
 kPEFRelocLgSetOrBySectionMaxIndex = 0x003FFFFF
};

Constants
kPEFRelocLgSetOrBySectionMaxIndex

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocRunMaxRunLength

enum {
 kPEFRelocRunMaxRunLength = 512
};

Constants
kPEFRelocRunMaxRunLength

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocSetPosMaxOffset

enum {
 kPEFRelocSetPosMaxOffset = 0x03FFFFFF
};

Constants
kPEFRelocSetPosMaxOffset

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocSmIndexMaxIndex

enum {
 kPEFRelocSmIndexMaxIndex = 511
};

Constants
kPEFRelocSmIndexMaxIndex

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1580 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocSmRepeatMaxChunkCount

enum {
 kPEFRelocSmRepeatMaxChunkCount = 16,
 kPEFRelocSmRepeatMaxRepeatCount = 256
};

Constants
kPEFRelocSmRepeatMaxChunkCount

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocSmRepeatMaxRepeatCount
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFRelocWithSkipMaxSkipCount

enum {
 kPEFRelocWithSkipMaxSkipCount = 255,
 kPEFRelocWithSkipMaxRelocCount = 63
};

Constants
kPEFRelocWithSkipMaxSkipCount

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFRelocWithSkipMaxRelocCount
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Constants 1581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kPEFTag1

enum {
 kPEFTag1 = 'Joy!',
 kPEFTag2 = 'peff',
 kPEFVersion = 0x00000001
};

Constants
kPEFTag1

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFTag2
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFVersion
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

kPEFWeakImportLibMask

enum {
 kPEFWeakImportLibMask = 0x40,
 kPEFInitLibBeforeMask = 0x80
};

Constants
kPEFWeakImportLibMask

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kPEFInitLibBeforeMask
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

1582 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Discussion
Version Notes
Carbon Porting Notes

kXLibTag1

enum {
 kXLibTag1 = 'Mac',
 kVLibTag2 = 'VLib',
 kBLibTag2 = 'BLib',
 kXLibVersion = 0x00000001
};

Constants
kXLibTag1

Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kVLibTag2
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kBLibTag2
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

kXLibVersion
Available in Mac OS X v10.0 and later.

Declared in PEFBinaryFormat.h.

Discussion
Version Notes
Carbon Porting Notes

Constants 1583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

1584 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Pascal String Utilities Reference

Framework: CoreServices/CoreServices.h

Declared in Power.h

Overview

The Power Manager controls power to the internal hardware devices of battery-powered Macintosh computers
(such PowerBook computers). The Power Manager automatically shuts off power to internal devices to
conserve power whenever the computer has not been used for a predetermined amount of time. In addition,
the Power Manager allows your application or other software to

 ■ install a procedure that is executed when power to internal devices is about to be shut off or when power
has just been restored

 ■ set a timer to wake up the computer at some time in the future

 ■ set or disable the wakeup timer and read its current setting

 ■ enable, disable, or delay the CPU idle feature

 ■ read the current CPU clock speed

 ■ control power to the internal modem and serial ports

 ■ read the status of the internal modem

 ■ read the state of the battery charge and the status of the battery charger

Most applications do not need to know whether they are executing on a battery-powered Macintosh computer
because the transition between power states is largely invisible. As a result, most applications do not need
to use Power Manager routines. You need Power Manager only if you are writing a program--such as a device
driver--that must control power to some subsystem of a battery-powered Macintosh computer or that might
be affected by the idle or sleep state.

Carbon supports Power Manager functions prior to Power Manager 2.0. However, many of these functions
do nothing on Mac OS X; these calls have been retained in Carbon as the only means for implementing power
management on Mac OS 8 and 9. Before using any of the Power Manager API, you should call the PMFeatures
function to check the availability of the feature you wish to use. On Mac OS X, use the functions provided in
IOKit for power management. For more information on IOKit, see I/O Kit Fundamentals.

Overview 1585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Functions by Task

Function descriptions are grouped by the tasks for which you use the functions. For an alphabetical list of
functions, go to the API index at the end of the document.

Controlling the Idle State

CurrentProcessorSpeed (page 1593)
Returns the current effective clock speed of the CPU in megahertz.

DisableIdle (page 1595) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

EnableIdle (page 1596) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

IdleUpdate (page 1606) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use UpdateSystemActivity instead.)

Controlling and Reading the Wakeup Timer

DisableWUTime (page 1595) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetWUTime (page 1604) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetWUTime (page 1618) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

Controlling the Sleep Queue

SleepQInstall (page 1619)
Adds an entry to the sleep queue.

SleepQRemove (page 1619)
Removes an entry from the sleep queue.

Controlling Serial Power

AOff (page 1590) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

AOn (page 1590) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

AOnIgnoreModem (page 1590) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

BOff (page 1592) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

1586 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

BOn (page 1593) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

Reading the Status of the Internal Modem

ModemStatus (page 1610) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

Reading the Status of the Battery and of the Battery Charger

BatteryStatus (page 1592) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

Miscellaneous

BatteryCount (page 1591)

DisposeHDSpindownUPP (page 1596)
Unimplemented.

DisposePMgrStateChangeUPP (page 1596)
Unimplemented

DisposeSleepQUPP (page 1596)

GetCPUSpeed (page 1598)
Returns the current effective clock speed of the CPU in megahertz.

InvokeHDSpindownUPP (page 1607)
Unimplemented.

InvokePMgrStateChangeUPP (page 1607)
Unimplemented.

InvokeSleepQUPP (page 1608)

MaximumProcessorSpeed (page 1610)

MinimumProcessorSpeed (page 1610)

NewHDSpindownUPP (page 1611)
Unimplemented.

NewPMgrStateChangeUPP (page 1611)
Unimplemented.

NewSleepQUPP (page 1612)

UpdateSystemActivity (page 1620)

Functions by Task 1587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

FullProcessorSpeed (page 1597) Deprecated in Mac OS X v10.5
Unimplemented.

PMFeatures (page 1612) Deprecated in Mac OS X v10.5

PMSelectorCount (page 1613) Deprecated in Mac OS X v10.5
Unimplemented.

SetProcessorSpeed (page 1615) Deprecated in Mac OS X v10.5
Unimplemented.

SetSpindownDisable (page 1617) Deprecated in Mac OS X v10.5
Unimplemented.

AutoSleepControl (page 1591) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

DelaySystemIdle (page 1594) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

DimmingControl (page 1594) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

EnableProcessorCycling (page 1597) Deprecated in Mac OS X v10.0
Unimplemented.

GetBatteryTimes (page 1598) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetBatteryVoltage (page 1598) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetDimmingTimeout (page 1599) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetDimSuspendState (page 1599) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetHardDiskTimeout (page 1600) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetIntModemInfo (page 1600) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetLastActivity (page 1601) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetScaledBatteryInfo (page 1601) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetSCSIDiskModeAddress (page 1602) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetSleepTimeout (page 1602) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetSoundMixerState (page 1603) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetStartupTimer (page 1603) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

GetWakeupTimer (page 1604) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

1588 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

HardDiskPowered (page 1605) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

HardDiskQInstall (page 1605) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

HardDiskQRemove (page 1606) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

IsAutoSlpControlDisabled (page 1608) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

IsDimmingControlDisabled (page 1608) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

IsProcessorCyclingEnabled (page 1609) Deprecated in Mac OS X v10.0
Unimplemented.

IsSpindownDisabled (page 1609) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

PMgrStateQInstall (page 1612) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

PMgrStateQRemove (page 1613) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetDimmingTimeout (page 1614) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetDimSuspendState (page 1614) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetHardDiskTimeout (page 1615) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetIntModemState (page 1615) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetSCSIDiskModeAddress (page 1616) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetSleepTimeout (page 1616) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetSoundMixerState (page 1617) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetStartupTimer (page 1617) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SetWakeupTimer (page 1618) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

SpinDownHardDisk (page 1620) Deprecated in Mac OS X v10.0
Unimplemented. (Deprecated. Use I/O Kit instead; see I/O Kit Fundamentals.)

Functions by Task 1589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Functions

AOff
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void AOff (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

AOn
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void AOn (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

AOnIgnoreModem
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

1590 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

void AOnIgnoreModem (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

AutoSleepControl
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void AutoSleepControl (
 Boolean enableSleep
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

BatteryCount

short BatteryCount (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

Functions 1591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

BatteryStatus
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr BatteryStatus (
 Byte *status,
 Byte *power
);

Parameters
Status

On return, the referenced value holds the status of the battery charger and the voltage level of the
battery, described in BatteryByte Bits (page 1631).The connChangedBit is set when the charger
connection is changed—either connected or disconnected. When this bit is set, the Power Manager
IC sends an interrupt to the CPU.

The batteryLowBit is set whenever battery voltage drops below the value set in parameter RAM.
The Power Manager IC sends an interrupt to the CPU once every second when battery voltage is low.If
the batteryDeadBit were set, it would indicate a dead battery; however, the Power Manager
automatically shuts the system down when the battery voltage drops below a preset level, so this bit
is always 0.

Power
On return, the referenced value contains the Power value you can use to estimate the battery voltage:

voltage = ((Power/100) + 5.12) volts

Due to the nature of lead-acid batteries, the battery power remaining is difficult to measure accurately.
Temperature, load, and other factors can alter the measured voltage by 30 percent or more. The
Power Manager takes as many of these factors into account as possible, but the voltage measurement
can still be in error by up to 10 percent. The measurement is most accurate when the Macintosh
Portable has been in the sleep state for at least 30 minutes.

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

BOff
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

1592 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

void BOff (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

BOn
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void BOn (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

CurrentProcessorSpeed
Returns the current effective clock speed of the CPU in megahertz.

short CurrentProcessorSpeed (
 void
);

Return Value
The clock speed of the CPU in megahertz (MHz). One MHz represents one million cycles per second.

Functions 1593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Special Considerations

Prior to Mac OS X 10.4, this function returns the maximum clock speed, not the current effective clock speed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

DelaySystemIdle
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr DelaySystemIdle (
 void
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

DimmingControl
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void DimmingControl (
 Boolean enableSleep
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

1594 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Declared In
Power.h

DisableIdle
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void DisableIdle (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

DisableWUTime
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr DisableWUTime (
 void
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

Functions 1595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

DisposeHDSpindownUPP
Unimplemented.

void DisposeHDSpindownUPP (
 HDSpindownUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

DisposePMgrStateChangeUPP
Unimplemented

void DisposePMgrStateChangeUPP (
 PMgrStateChangeUPP userUPP
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

DisposeSleepQUPP

void DisposeSleepQUPP (
 SleepQUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

EnableIdle
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

1596 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

void EnableIdle (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

EnableProcessorCycling
Unimplemented. (Deprecated in Mac OS X v10.0.)

void EnableProcessorCycling (
 Boolean enable
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

FullProcessorSpeed
Unimplemented. (Deprecated in Mac OS X v10.5.)

Boolean FullProcessorSpeed (
 void
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Power.h

Functions 1597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

GetBatteryTimes
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void GetBatteryTimes (
 short whichBattery,
 BatteryTimeRec *theTimes
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetBatteryVoltage
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

Fixed GetBatteryVoltage (
 short whichBattery
);

Return Value
See the Mac Types documentation for a description of the Fixed data type.

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetCPUSpeed
Returns the current effective clock speed of the CPU in megahertz.

1598 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

long GetCPUSpeed (
 void
);

Return Value
The clock speed of the CPU in megahertz.

Discussion
For more information, see CurrentProcessorSpeed (page 1593).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

GetDimmingTimeout
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

UInt8 GetDimmingTimeout (
 void
);

Return Value
See the Mac Types documentation for a description of the UInt8 data type.

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetDimSuspendState
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

Boolean GetDimSuspendState (
 void
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Functions 1599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetHardDiskTimeout
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

UInt8 GetHardDiskTimeout (
 void
);

Return Value
See the Mac Types documentation for a description of the UInt8 data type.

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetIntModemInfo
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

UInt32 GetIntModemInfo (
 void
);

Return Value
See the Mac Types documentation for a description of the UInt32 data type.

1600 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetLastActivity
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr GetLastActivity (
 ActivityInfo *theActivity
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetScaledBatteryInfo
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

Functions 1601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

void GetScaledBatteryInfo (
 short whichBattery,
 BatteryInfo *theInfo
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetSCSIDiskModeAddress
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

short GetSCSIDiskModeAddress (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetSleepTimeout
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

UInt8 GetSleepTimeout (
 void
);

Return Value
See the Mac Types documentation for a description of the UInt8 data type.

1602 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetSoundMixerState
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr GetSoundMixerState (
 SoundMixerByte *theSoundMixerByte
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetStartupTimer
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr GetStartupTimer (
 StartupTime *theTime
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Functions 1603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetWakeupTimer
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void GetWakeupTimer (
 WakeupTime *theTime
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

GetWUTime
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr GetWUTime (
 long *wuTime,
 Byte *wuFlag
);

Parameters
WUTime

On return, the referenced value holds the current setting of the wakeup timer specified as the number
of seconds since midnight, January 1, 1904.

1604 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

WUFlag
On return, the low order bit of the referenced value is set to 1 if and only if the wakeup timer is
enabled. The other bits in WUFlag are reserved.

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

HardDiskPowered
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

Boolean HardDiskPowered (
 void
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

HardDiskQInstall
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

Functions 1605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

OSErr HardDiskQInstall (
 HDQueueElement *theElement
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

HardDiskQRemove
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr HardDiskQRemove (
 HDQueueElement *theElement
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

IdleUpdate
Unimplemented. (Deprecated in Mac OS X v10.0. Use UpdateSystemActivity instead.)

1606 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

long IdleUpdate (
 void
);

Return Value
The IdleUpdate function returns the value in the Ticks global variable at the time the function was called.

Special Considerations

This function is unimplemented on Mac OS X. Use UpdateSystemActivity(IdleActivity) instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

InvokeHDSpindownUPP
Unimplemented.

void InvokeHDSpindownUPP (
 HDQueueElement *theElement,
 HDSpindownUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

InvokePMgrStateChangeUPP
Unimplemented.

void InvokePMgrStateChangeUPP (
 PMgrQueueElement *theElement,
 long stateBits,
 PMgrStateChangeUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

Functions 1607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

InvokeSleepQUPP

long InvokeSleepQUPP (
 long message,
 SleepQRecPtr qRecPtr,
 SleepQUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

IsAutoSlpControlDisabled
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

Boolean IsAutoSlpControlDisabled (
 void
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

IsDimmingControlDisabled
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

Boolean IsDimmingControlDisabled (
 void
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

1608 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

IsProcessorCyclingEnabled
Unimplemented. (Deprecated in Mac OS X v10.0.)

Boolean IsProcessorCyclingEnabled (
 void
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

IsSpindownDisabled
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

Boolean IsSpindownDisabled (
 void
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.

Functions 1609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

MaximumProcessorSpeed

short MaximumProcessorSpeed (
 void
);

Version Notes
MaximumProcessorSpeed is unimplemented on versions of Mac OS X prior to Mac OS X 10.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

MinimumProcessorSpeed

short MinimumProcessorSpeed (
 void
);

Special Considerations

MinimumProcessorSpeed is unimplemented on versions of Mac OS X prior to Mac OS X v10.1.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Power.h

ModemStatus
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr ModemStatus (
 Byte *status
);

Parameters
Status

On return, the referenced variable has its bits set as indicated in ModemByte Bits (page 1639).

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

1610 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

NewHDSpindownUPP
Unimplemented.

HDSpindownUPP NewHDSpindownUPP (
 HDSpindownProcPtr userRoutine
);

Return Value
See the description of the HDSpindownUPP data type.

Discussion
See the callback HDSpindownProcPtr (page 1620) for more information.

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

NewPMgrStateChangeUPP
Unimplemented.

PMgrStateChangeUPP NewPMgrStateChangeUPP (
 PMgrStateChangeProcPtr userRoutine
);

Return Value
See the description of the PMgrStateChangeUPP data type.

Availability
Available in Mac OS X v10.0 and later.

Functions 1611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Declared In
Power.h

NewSleepQUPP

SleepQUPP NewSleepQUPP (
 SleepQProcPtr userRoutine
);

Return Value
See the description of the SleepQUPP data type.

Discussion
See the callback SleepQProcPtr (page 1622) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

PMFeatures
(Deprecated in Mac OS X v10.5.)

UInt32 PMFeatures (
 void
);

Return Value
See the Mac Types documentation for a description of the UInt32 data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Power.h

PMgrStateQInstall
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr PMgrStateQInstall (
 PMgrQueueElement *theElement
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

1612 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

PMgrStateQRemove
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr PMgrStateQRemove (
 PMgrQueueElement *theElement
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

PMSelectorCount
Unimplemented. (Deprecated in Mac OS X v10.5.)

short PMSelectorCount (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Functions 1613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Power.h

SetDimmingTimeout
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void SetDimmingTimeout (
 UInt8 timeout
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

SetDimSuspendState
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void SetDimSuspendState (
 Boolean dimSuspendState
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

1614 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

SetHardDiskTimeout
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void SetHardDiskTimeout (
 UInt8 timeout
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

SetIntModemState
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void SetIntModemState (
 short theState
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

SetProcessorSpeed
Unimplemented. (Deprecated in Mac OS X v10.5.)

Functions 1615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Boolean SetProcessorSpeed (
 Boolean fullSpeed
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Power.h

SetSCSIDiskModeAddress
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void SetSCSIDiskModeAddress (
 short scsiAddress
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

SetSleepTimeout
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void SetSleepTimeout (
 UInt8 timeout
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.

1616 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

SetSoundMixerState
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr SetSoundMixerState (
 SoundMixerByte *theSoundMixerByte
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

SetSpindownDisable
Unimplemented. (Deprecated in Mac OS X v10.5.)

void SetSpindownDisable (
 Boolean setDisable
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Power.h

SetStartupTimer
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

Functions 1617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

OSErr SetStartupTimer (
 StartupTime *theTime
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

SetWakeupTimer
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void SetWakeupTimer (
 WakeupTime *theTime
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

SetWUTime
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

OSErr SetWUTime (
 long wuTime
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

1618 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

SleepQInstall
Adds an entry to the sleep queue.

void SleepQInstall (
 SleepQRecPtr qRecPtr
);

Parameters
qRecPtr

A pointer to a sleep queue record that you must provide.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

SleepQRemove
Removes an entry from the sleep queue.

void SleepQRemove (
 SleepQRecPtr qRecPtr
);

Parameters
qRecPtr

A pointer to a sleep queue record that you provided when you added your routine to the sleep queue.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

Functions 1619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

SpinDownHardDisk
Unimplemented. (Deprecated in Mac OS X v10.0. Use I/O Kit instead; see I/O Kit Fundamentals.)

void SpinDownHardDisk (
 void
);

Special Considerations

The I/O Kit Framework header file IOPMLib.h (in I/O Kit Framework Reference) provides access to common
power management facilites, such as initiating system sleep, getting current idle timer values, registering
for sleep/wake notifications, and preventing system sleep. For additional information about power
management for device drivers, see I/O Kit Fundamentals and I/O Kit Device Driver Design Guidelines.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.0.
Not available to 64-bit applications.

Declared In
Power.h

UpdateSystemActivity

OSErr UpdateSystemActivity (
 UInt8 activity
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

Callbacks

HDSpindownProcPtr
typedef void (*HDSpindownProcPtr) (
 HDQueueElement * theElement
);

If you name your function MyHDSpindownCallback, you would declare it like this:

void MyHDSpindownCallback (
 HDQueueElement * theElement
);

1620 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

PMgrStateChangeProcPtr
typedef void (*PMgrStateChangeProcPtr) (
 PMgrQueueElement * theElement,
 long stateBits
);

If you name your function MyPMgrStateChangeCallback, you would declare it like this:

void MyPMgrStateChangeCallback (
 PMgrQueueElement * theElement,
 long stateBits
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

PowerHandlerProcPtr
typedef OSStatus (*PowerHandlerProcPtr) (
 UInt32 message,
 void * param,
 UInt32 refCon,
 RegEntryID * regEntryID
);

If you name your function MyPowerHandlerCallback, you would declare it like this:

OSStatus MyPowerHandlerCallback (
 UInt32 message,
 void * param,
 UInt32 refCon,
 RegEntryID * regEntryID
);

Return Value
A result code. See “Power Manager Result Codes” (page 1654).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

Callbacks 1621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

SleepQProcPtr
typedef long (*SleepQProcPtr) (
 long message,
 SleepQRecPtr qRecPtr
);

If you name your function MySleepQProc, you would declare it like this:

long MySleepQProc (
 long message,
 SleepQRecPtr qRecPtr
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

Data Types

ActivityInfo
struct ActivityInfo {
 short ActivityType;
 unsigned long ActivityTime;
};
typedef struct ActivityInfo ActivityInfo;

Fields
ActivityType

A short representing the type of activity to fetch.

ActivityTime
An unsigned long representing the time of the last activity in ticks.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

BatteryByte
typedef SInt8 BatteryByte;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1622 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Declared In
Power.h

BatteryInfo
struct BatteryInfo {
 UInt8 flags;
 UInt8 warningLevel;
 UInt8 reserved;
 UInt8 batteryLevel;
};
typedef struct BatteryInfo BatteryInfo;

Fields
flags

An unsigned, 8-bit integer representing battery state information.

warningLevel
An unsigned, 8-bit integer representing a scaled warning level. The value of this field is in the range
of 0-255.

reserved
This field is reserved for internal use.

batteryLevel
An unsigned, 8-bit integer representing a scaled battery level. The value for this field is in the range
of 0-255.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

BatteryTimeRec
struct BatteryTimeRec {
 unsigned long expectedBatteryTime;
 unsigned long minimumBatteryTime;
 unsigned long maximumBatteryTime;
 unsigned long timeUntilCharged;
};
typedef struct BatteryTimeRec BatteryTimeRec;

Fields
expectedBatteryTime

An unsigned long representing in seconds, the estimated battery time remaining.

minimumBatteryTime
An unsigned long representing in seconds, the minimum battery time remaining.

maximumBatteryTime
An unsigned long representing in seconds, the maximum battery time remaining.

timeUntilCharged
An unsigned long representing in seconds, the time remaining until the battery is fully charged.

Data Types 1623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

DevicePowerInfo
struct DevicePowerInfo {
 UInt32 version;
 RegEntryID regID;
 OptionBits flags;
 UInt32 minimumWakeTime;
 UInt32 sleepPowerNeeded;
};
typedef struct DevicePowerInfo DevicePowerInfo;

Fields
version

The version of this structure.

regID
The Registry Entry ID for the device.

flags
A value of type OptionBits representing device power information.

minimumWakeTime
The minimum number of seconds before the device sleeps again.

sleepPowerNeeded
The milliwatts the device requires in the sleep state.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

HDQueueElement
struct HDQueueElement {
 struct HDQueueElement * hdQLink;
 short hdQType;
 short hdFlags;
 HDSpindownUPP hdProc;
 long hdUser;
};
typedef struct HDQueueElement HDQueueElement;

Fields
hdQLink

A pointer to the next queue element.

1624 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

hdQType
A value of type short representing the queue element type.

hdFlags
A value of type short representing flags.

hdProc
A pointer to the hard drive spindown routine to call.

hdUser
A user-defined value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

HDSpindownUPP
typedef HDSpindownProcPtr HDSpindownUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

ModemByte
typedef SInt8 ModemByte;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

PMgrQueueElement
struct PMgrQueueElement {
 struct PMgrQueueElement * pmQLink;
 short pmQType;
 short pmFlags;
 long pmNotifyBits;
 PMgrStateChangeUPP pmProc;
 long pmUser;
};
typedef struct PMgrQueueElement PMgrQueueElement;

Fields
pmQLink

A pointer to the next queue element.

Data Types 1625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

pmQType
A value of type short representing the queue element type.

pmFlags
A value of type short representing flags.

pmNotifyBits
A bitmap representing the changes of which you wish to be notified.

pmProc
A pointer to the routine to call.

pmUser
A user-defined value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

PMgrStateChangeUPP
typedef PMgrStateChangeProcPtr PMgrStateChangeUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

PMResultCode
typedef long PMResultCode;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

PowerLevel
typedef UInt32 PowerLevel;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

1626 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

PowerSourceID
typedef SInt16 PowerSourceID;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Power.h

PowerSourceParamBlock
struct PowerSourceParamBlock {
 PowerSourceID sourceID;
 UInt16 sourceCapacityUsage;
 UInt32 sourceVersion;
 OptionBits sourceAttr;
 OptionBits sourceState;
 UInt32 currentCapacity;
 UInt32 maxCapacity;
 UInt32 timeRemaining;
 UInt32 timeToFullCharge;
 UInt32 voltage;
 SInt32 current;
 UInt32 lowWarnLevel;
 UInt32 deadWarnLevel;
 UInt32 reserved[16];
};
typedef struct PowerSourceParamBlock PowerSourceParamBlock;
typedef PowerSourceParamBlock * PowerSourceParamBlockPtr;

Fields
sourceID

A unique ID assigned by the Power Manager.

sourceCapacityUsage
An unsigned, 16-bit integer representing current capacity usage.

sourceVersion
An unsigned, 32-bit integer indicating the version of this record.

sourceAttr
A value of type OptionBits representing power source attributes.

sourceState
A value of type OptionBits representing power source states.

currentCapacity
The current capacity represented in milliwatts or percentage.

maxCapacity
The full capacity represented in milliwatts.

timeRemaining
The time remaining represented in milliwatt-hours.

timeToFullCharge
The time required to charge represented in milliwatt-hours.

Data Types 1627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

voltage
The voltage represented in millivolts.

current
The current represented in milliamperes. This value may be negative if the power source is consuming.

lowWarnLevel
The low warning level represented in milliwatts, or percentage depending on the representation of
sourceCapacityUsage.

deadWarnLevel
The dead warming level represented in milliwatts, or percentage depending on the representation
of sourceCapacityUsage.

reserved
This field is reserved for future expansion.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Power.h

PowerSourceParamBlockPtr
typedef PowerSourceParamBlock* PowerSourceParamBlockPtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Power.h

PowerSummary
struct PowerSummary {
 UInt32 version;
 OptionBits flags;
 UInt32 sleepPowerAvailable;
 UInt32 sleepPowerNeeded;
 UInt32 minimumWakeTime;
 ItemCount deviceCount;
 DevicePowerInfo devices[1];
};
typedef struct PowerSummary PowerSummary;

Fields
version

An unsigned, 32-bit integer indicating the version of this record.

flags
A value of type OptionBits representing power summary information.

sleepPowerAvailable
An unsigned, 32-bit integer indicating the milliwatts available during sleep.

1628 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

sleepPowerNeeded
An unsigned, 32-bit integer indicating the milliwatts needed during sleep.

minimumWakeTime
An unsigned, 32-bit integer indicating the minimum number of seconds required before sleeping
again.

deviceCount
The number of device power info records.

devices
An array of device power info records.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

SleepQRec
struct SleepQRec {
 SleepQRecPtr sleepQLink;
 short sleepQType;
 SleepQUPP sleepQProc;
 short sleepQFlags;
};
typedef struct SleepQRec SleepQRec;
typedef SleepQRec * SleepQRecPtr;

Fields
sleepQLink

A pointer to the next element in the queue. This pointer is maintained by the Power Manager; your
application should not modify this field.

sleepQType
A short indicating the type of the queue, which must be the constant sleepQType (16).

sleepQProc
A pointer to the routine that you provide.

sleepQFlags
A short containing flags which is reserved for use by Apple Computer, Inc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

SleepQRecPtr
typedef SleepQRec *SleepQRecPtr;

Availability
Available in Mac OS X v10.0 and later.

Data Types 1629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Declared In
Power.h

SleepQUPP
typedef SleepQProcPtr SleepQUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Power.h

SoundMixerByte
typedef SInt8 SoundMixerByte;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

StartupTime
struct StartupTime {
 unsigned long startTime;
 Boolean startEnabled;
 SInt8 filler;
};
typedef struct StartupTime StartupTime;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Power.h

WakeupTime
struct WakeupTime {
 unsigned long wakeTime;
 Boolean wakeEnabled;
 SInt8 filler;
};
typedef struct WakeupTime WakeupTime;

Availability
Available in Mac OS X v10.0 and later.

1630 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Not available to 64-bit applications.

Declared In
Power.h

Constants

Apple Event Types and Errors
enum {
 kAEMacPowerMgtEvt = 'pmgt',
 kAEMacToWake = 'wake',
 kAEMacLowPowerSaveData = 'pmsd',
 kAEMacEmergencySleep = 'emsl',
 kAEMacEmergencyShutdown = 'emsd'
};

BatteryByte Bits
enum {
 chargerConnBit = 0,
 hiChargeBit = 1,
 chargeOverFlowBit = 2,
 batteryDeadBit = 3,
 batteryLowBit = 4,
 connChangedBit = 5
};

Constants
chargerConnBit

When this bit is set, it indicates the charger is connected.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hiChargeBit
When this bit is set, it indicates charging at fastest rate.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

chargeOverFlowBit
When this bit is set, it indicates the hicharge counter has overflowed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Constants 1631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

batteryDeadBit
Always 0.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

batteryLowBit
When this bit is set, it indicates the battery is low.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

connChangedBit
When this bit is set, it indicates the charger connection has changed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

BatteryByte Masks
enum {
 chargerConnMask = 0x01,
 hiChargeMask = 0x02,
 chargeOverFlowMask = 0x04,
 batteryDeadMask = 0x08,
 batteryLowMask = 0x10,
 connChangedMask = 0x20
};

Constants
chargerConnMask

The charger is connected.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hiChargeMask
Charging at fastest rate.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

chargeOverFlowMask
The hicharge counter has overflowed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

1632 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

batteryDeadMask
The battery is dead.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

batteryLowMask
The battery is low.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

connChangedMask
The connection has changed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

BatteryInfo Bits
enum {
 batteryInstalled = 7,
 batteryCharging = 6,
 chargerConnected = 5,
 upsConnected = 4,
 upsIsPowerSource = 3
};

Constants
batteryInstalled

When this bit is set, it indicates the battery is currently connected.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

batteryCharging
When this bit is set, it indicates the battery is being charged.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

chargerConnected
When this bit is set, it indicates the charger is connected.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Constants 1633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

upsConnected
When this bit is set, it indicates there is an uninterruptable power source (UPS) connected.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

upsIsPowerSource
When this bit is set, it indicates the UPS is the source of power.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

1634 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Client Notification Bits
enum {
 pmSleepTimeoutChanged = 0,
 pmSleepEnableChanged = 1,
 pmHardDiskTimeoutChanged = 2,
 pmHardDiskSpindownChanged = 3,
 pmDimmingTimeoutChanged = 4,
 pmDimmingEnableChanged = 5,
 pmDiskModeAddressChanged = 6,
 pmProcessorCyclingChanged = 7,
 pmProcessorSpeedChanged = 8,
 pmWakeupTimerChanged = 9,
 pmStartupTimerChanged = 10,
 pmHardDiskPowerRemovedbyUser = 11,
 pmChargeStatusChanged = 12,
 pmPowerLevelChanged = 13,
 pmWakeOnNetActivityChanged = 14
};

Client Notification Masks
enum {
 pmSleepTimeoutChangedMask = (1 << pmSleepTimeoutChanged),
 pmSleepEnableChangedMask = (1 << pmSleepEnableChanged),
 pmHardDiskTimeoutChangedMask = (1 << pmHardDiskTimeoutChanged),
 pmHardDiskSpindownChangedMask = (1 << pmHardDiskSpindownChanged),
 pmDimmingTimeoutChangedMask = (1 << pmDimmingTimeoutChanged),
 pmDimmingEnableChangedMask = (1 << pmDimmingEnableChanged),
 pmDiskModeAddressChangedMask = (1 << pmDiskModeAddressChanged),
 pmProcessorCyclingChangedMask = (1 << pmProcessorCyclingChanged),
 pmProcessorSpeedChangedMask = (1 << pmProcessorSpeedChanged),
 pmWakeupTimerChangedMask = (1 << pmWakeupTimerChanged),
 pmStartupTimerChangedMask = (1 << pmStartupTimerChanged),
 pmHardDiskPowerRemovedbyUserMask = (1 << pmHardDiskPowerRemovedbyUser),
 pmChargeStatusChangedMask = (1 << pmChargeStatusChanged),
 pmPowerLevelChangedMask = (1 << pmPowerLevelChanged),
 pmWakeOnNetActivityChangedMask = (1 << pmWakeOnNetActivityChanged)
};

DevicePowerInfo Flags
enum {
 kDevicePCIPowerOffAllowed = (1L << 0),
 kDeviceSupportsPMIS = (1L << 1),
 kDeviceCanAssertPMEDuringSleep = (1L << 2),
 kDeviceUsesCommonLogicPower = (1L << 3),
 kDeviceDriverPresent = (1L << 4),
 kDeviceDriverSupportsPowerMgt = (1L << 5)
};

Constants

Constants 1635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

kDevicePCIPowerOffAllowed
If the bit specified by this mask is set, PCI power off is allowed for this device.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kDeviceSupportsPMIS
If the bit specified by this mask is set, the device supports Power Manager Interface Specifications.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kDeviceCanAssertPMEDuringSleep
If the bit specified by this mask is set, the device can assert the PME# line during sleep.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kDeviceUsesCommonLogicPower
If the bit specified by this mask is set, the device uses common-logic power.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kDeviceDriverPresent
If the bit specified by this mask is set, the device driver is present.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kDeviceDriverSupportsPowerMgt
If the bit specified by this mask is set, the device driver installed a power handler.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

HDPwrQType Constants
enum {
 HDPwrQType = 0x4844,
 PMgrStateQType = 0x504D
};

Constants
HDPwrQType

The hard disk spindown queue element type.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

1636 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

PMgrStateQType
The Power Manager state queue element type.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

HDQueueElement Flags
enum {
 kHDQueuePostBit = 0,
 kHDQueuePostMask = (1 << kHDQueuePostBit)
};

Constants
kHDQueuePostBit

When this bit is set, it indicates the routine will be called on the second pass.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kHDQueuePostMask
If the bit specified by this mask is set, it indicates the routine will be called on the second pass.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kMediaPowerCSCode Constants
enum {
 kMediaPowerCSCode = 70
};

kUseDefaultMinimumWakeTime Constants
enum {
 kUseDefaultMinimumWakeTime = 0,
 kPowerSummaryVersion = 1,
 kDevicePowerInfoVersion = 1
};

Constants
kUseDefaultMinimumWakeTime

Defaults to 5 minutes.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Constants 1637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

kPowerSummaryVersion
Version of PowerSummary structure.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kDevicePowerInfoVersion
Version of DevicePowerInfo structure

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Modem State Bits
enum {
 hasInternalModem = 0,
 intModemRingDetect = 1,
 intModemOffHook = 2,
 intModemRingWakeEnb = 3,
 extModemSelected = 4,
 modemSetBit = 15
};

Constants
hasInternalModem

When this bit is set, it indicates an internal modem is installed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

intModemRingDetect
When this bit is set, it indicates the internal modem has detected a ring.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

intModemOffHook
When this bit is set, it indicates the internal modem is off the hook.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

intModemRingWakeEnb
When this bit is set, it indicates wakeup on ring is enabled.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

1638 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

extModemSelected
When this bit is set, it indicates external modem is selected.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

modemSetBit
When this bit is set, it indicates set bit. If 0, clear bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Discussion
These bits are in the bit field returned by the GetIntModemInfo (page 1600) function and set by the
SetIntModemState (page 1615) function.

ModemByte Bits
enum {
 modemOnBit = 0,
 ringWakeUpBit = 2,
 modemInstalledBit = 3,
 ringDetectBit = 4,
 modemOnHookBit = 5
};

Constants
modemOnBit

When this bit is set, it indicates the modem is on.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

ringWakeUpBit
When this bit is set, it indicates ring wakeup is enabled.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

modemInstalledBit
When this bit is set, it indicates an internal modem is installed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

ringDetectBit
When this bit is set, it indicates an incoming call is detected.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Constants 1639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

modemOnHookBit
When this bit is set, it indicates the modem is off the hook.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

ModemByte Masks
enum {
 modemOnMask = 0x01,
 ringWakeUpMask = 0x04,
 modemInstalledMask = 0x08,
 ringDetectMask = 0x10,
 modemOnHookMask = 0x20
};

Constants
modemOnMask

The modem is on.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

ringWakeUpMask
Ring wakeup is enabled.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

modemInstalledMask
An internal modem is installed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

ringDetectMask
An incoming call is detected.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

modemOnHookMask
The modem is off the hook.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

1640 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Net Activity Wake Options
enum {
 kConfigSupportsWakeOnNetBit = 0,
 kWakeOnNetAdminAccessesBit = 1,
 kWakeOnAllNetAccessesBit = 2,
 kUnmountServersBeforeSleepingBit = 3,
 kConfigSupportsWakeOnNetMask = (1 << kConfigSupportsWakeOnNetBit),
 kWakeOnNetAdminAccessesMask = (1 << kWakeOnNetAdminAccessesBit),
 kWakeOnAllNetAccessesMask = (1 << kWakeOnAllNetAccessesBit),
 kUnmountServersBeforeSleepingMask = (1 << kUnmountServersBeforeSleepingBit)
};

PCI Bus PMIS Power Levels
enum {
 kPMDevicePowerLevel_On = 0,
 kPMDevicePowerLevel_D1 = 1,
 kPMDevicePowerLevel_D2 = 2,
 kPMDevicePowerLevel_Off = 3
};

Constants
kPMDevicePowerLevel_On

When this bit is set, it indicates the PCI bus is fully powered.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kPMDevicePowerLevel_D1
Reserved.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kPMDevicePowerLevel_D2
Reserved.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kPMDevicePowerLevel_Off
When this bit is set, it indicates the main PCI bus power is off, but PCI standby power is available.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Constants 1641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Power Capacity Types
enum {
 kCapacityIsActual = 0,
 kCapacityIsPercentOfMax = 1
};

Constants
kCapacityIsActual

The capacity is expressed as actual capacity in the same units as maxCapacity.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kCapacityIsPercentOfMax
The capacity is expressed as a percentage of maxCapacity.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

Power Handler Wake Results
enum {
 kDeviceDidNotWakeMachine = 0,
 kDeviceRequestsFullWake = 1,
 kDeviceRequestsWakeToDoze = 2
};

Constants
kDeviceDidNotWakeMachine

The device did not wake the computer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kDeviceRequestsFullWake
The device did wake the computer and requests full wakeup.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kDeviceRequestsWakeToDoze
The device did wake the computer and requests partial wakeup.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Discussion
On query by the Power Manager, these are result values returned by a power handler if the device the power
handler represents woke the computer.

1642 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Power Manager Features Bits
enum {
 hasWakeupTimer = 0,
 hasSharedModemPort = 1,
 hasProcessorCycling = 2,
 mustProcessorCycle = 3,
 hasReducedSpeed = 4,
 dynamicSpeedChange = 5,
 hasSCSIDiskMode = 6,
 canGetBatteryTime = 7,
 canWakeupOnRing = 8,
 hasDimmingSupport = 9,
 hasStartupTimer = 10,
 hasChargeNotification = 11,
 hasDimSuspendSupport = 12,
 hasWakeOnNetActivity = 13,
 hasWakeOnLid = 14,
 canPowerOffPCIBus = 15,
 hasDeepSleep = 16,
 hasSleep = 17,
 supportsServerModeAPIs = 18,
 supportsUPSIntegration = 19,
 hasAggressiveIdling = 20,
 supportsIdleQueue = 21
};

Constants
hasWakeupTimer

When this bit is set, it indicates the wakeup timer is supported.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasSharedModemPort
When this bit is set, it indicates the modem port is shared by the serial communications chip (SCC)
and the internal modem.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasProcessorCycling
When this bit is set, it indicates processor cycling is supported.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

mustProcessorCycle
When this bit is set, it indicates processor cycling should not be turned off.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Constants 1643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

hasReducedSpeed
When this bit is set, it indicates the processor can be started up at a reduced speed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

dynamicSpeedChange
When this bit is set, it indicates the processor speed can be switched dynamically.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasSCSIDiskMode
When this bit is set, it indicates SCSI disk mode is supported.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

canGetBatteryTime
When this bit is set, it indicates battery time can be calculated.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

canWakeupOnRing
When this bit is set, it indicates wakeup when the modem detects a ring.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasDimmingSupport
When this bit is set, it indicates dimming support is built in—display power management system
(DPMS) standby by default.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasStartupTimer
When this bit is set, it indicates the startup timer is supported.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasChargeNotification
When this bit is set, it indicates the client can determine charge connect status change notification
available.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

1644 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

hasDimSuspendSupport
When this bit is set, it indicates support of dimming LCD and CRT to DPMS suspend state.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasWakeOnNetActivity
When this bit is set, it indicates hardware supports wake on network activity.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasWakeOnLid
When this bit is set, it indicates hardware can wake when opened.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

canPowerOffPCIBus
When this bit is set, it indicates hardware can power off PCI bus during sleep if cards allow.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasDeepSleep
When this bit is set, it indicates hardware supports deep sleep (hibernation) mode.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

hasSleep
When this bit is set, it indicates hardware supports normal sleep.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

supportsServerModeAPIs
When this bit is set, it indicates hardware supports server mode API.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

supportsUPSIntegration
When this bit is set, it indicates hardware supports UPS integration and reporting.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Constants 1645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

hasAggressiveIdling
When this bit is set, it indicates Power Manager only resets OverallAct on UsrActivity.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in Power.h.

supportsIdleQueue
When this bit is set, it indicates Power Manager supports the idle queue.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in Power.h.

Discussion
These bits are in the bit field returned by the PMFeatures (page 1612) function.

Power Source Attribute Bits
enum {
 bSourceIsBattery = 0,
 bSourceIsAC = 1,
 bSourceCanBeCharged = 2,
 bSourceIsUPS = 3,
 bSourceProvidesWarnLevels = 4,
 kSourceIsBatteryMask = (1 << bSourceIsBattery),
 kSourceIsACMask = (1 << bSourceIsAC),
 kSourceCanBeChargedMask = (1 << bSourceCanBeCharged),
 kSourceIsUPSMask = (1 << bSourceIsUPS),
 kSourceProvidesWarnLevelsMask = (1 << bSourceProvidesWarnLevels)
};

Constants
bSourceIsBattery

When this bit is set, it indicates the power source is a battery.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

bSourceIsAC
When this bit is set, it indicates the power source is AC.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

bSourceCanBeCharged
When this bit is set, it indicates the power source can be charged.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

bSourceIsUPS
When this bit is set, it indicates the power source is an uninterruptable power supply (UPS).
bSourceIsBattery and bSourceIsAC should be set as well if appropriate.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

1646 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

bSourceProvidesWarnLevels
When this bit is set, it indicates power source provides low power and dead battery warning levels.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kSourceIsBatteryMask
If the bit specified by this mask is set, the power source is a battery.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kSourceIsACMask
If the bit specified by this mask is set, the power source is AC.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kSourceCanBeChargedMask
If the bit specified by this mask is set, the power source can be charged.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kSourceIsUPSMask
If the bit specified by this mask is set, the power source is a UPS.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kSourceProvidesWarnLevelsMask
If the bit specified by this mask is set, the power source provides low power and dead battery warning
levels.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

Power Source Capacity Usage Types
enum {
 kCurrentCapacityIsActualValue = 0,
 kCurrentCapacityIsPercentOfMax = 1
};

Constants
kCurrentCapacityIsActualValue

The current capacity is expressed as a real value in the same units as maxCapacity.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kCurrentCapacityIsPercentOfMax
The current capacity is expressed as a percentage of maxCapacity.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

Constants 1647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Power Source State Bits
enum {
 bSourceIsAvailable = 0,
 bSourceIsCharging = 1,
 bChargerIsAttached = 2,
 kSourceIsAvailableMask = (1 << bSourceIsAvailable),
 kSourceIsChargingMask = (1 << bSourceIsCharging),
 kChargerIsAttachedMask = (1 << bChargerIsAttached)
};

Constants
bSourceIsAvailable

When this bit is set, it indicates a power source is installed.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

bSourceIsCharging
When this bit is set, it indicates a power source is charging.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

bChargerIsAttached
When this bit is set, it indicates a charger is connected.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kSourceIsAvailableMask
If the bit specified by this mask is set, the power source is installed.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kSourceIsChargingMask
If the bit specified by this mask is set, the power source is charging.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

kChargerIsAttachedMask
If the bit specified by this mask is set, a charger is connected.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Power.h.

1648 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Power Source Version
enum {
 kVersionOnePowerSource = 1,
 kVersionTwoPowerSource = 2,
 kCurrentPowerSourceVersion = kVersionTwoPowerSource
};

Power Summary Flags
enum {
 kPCIPowerOffAllowed = (1L << 0)
};

Constants
kPCIPowerOffAllowed

If the bit specified by this mask is set, it indicates PCI power off is allowed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Sleep Commands
Not recommended

enum {
 sleepRequest = kSleepRequest,
 sleepDemand = kSleepDemand,
 sleepWakeUp = kSleepWakeUp,
 sleepRevoke = kSleepRevoke,
 sleepUnlock = kSleepUnlock,
 sleepDeny = kSleepDeny,
 sleepNow = kSleepNow,
 dozeDemand = kDozeDemand,
 dozeWakeUp = kDozeWakeUp,
 dozeRequest = kDozeRequest,
 enterStandby = kEnterStandby,
 enterRun = kEnterRun,
 suspendRequestMsg = kSuspendRequest,
 suspendDemandMsg = kSuspendDemand,
 suspendRevokeMsg = kSuspendRevoke,
 suspendWakeUpMsg = kSuspendWakeUp,
 getPowerLevel = kGetPowerLevel,
 setPowerLevel = kSetPowerLevel
};

Constants
sleepRequest

A sleep request.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

Constants 1649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

sleepDemand
A sleep demand.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

sleepWakeUp
A wakeup demand.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

sleepRevoke
A sleep request revocation.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

sleepQFlags Bits
enum {
 noCalls = 1,
 noRequest = 2,
 slpQType = 16,
 sleepQType = 16
};

Constants
noCalls

A noCalls queue type.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

noRequest
A noRequest queue type.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

slpQType
A sleepQType queue.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

sleepQType
A sleepQType queue.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

1650 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

sleepQProc Commands
enum {
 kSleepRequest = 1,
 kSleepDemand = 2,
 kSleepWakeUp = 3,
 kSleepRevoke = 4,
 kSleepUnlock = 4,
 kSleepDeny = 5,
 kSleepNow = 6,
 kDozeDemand = 7,
 kDozeWakeUp = 8,
 kDozeRequest = 9,
 kEnterStandby = 10,
 kEnterRun = 11,
 kSuspendRequest = 12,
 kSuspendDemand = 13,
 kSuspendRevoke = 14,
 kSuspendWakeUp = 15,
 kGetPowerLevel = 16,
 kSetPowerLevel = 17,
 kDeviceInitiatedWake = 18,
 kWakeToDoze = 19,
 kDozeToFullWakeUp = 20,
 kGetPowerInfo = 21,
 kGetWakeOnNetInfo = 22,
 kSuspendWakeToDoze = 23,
 kEnterIdle = 24,
 kStillIdle = 25,
 kExitIdle = 26
};

Constants
kSleepDeny

A non-zero value clients can use to deny requests.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

kDozeRequest
Additional messages for Power Manager 2.0.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

kEnterStandby
Idle queue only.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

kEnterRun
Idle queue only.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

Constants 1651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

kEnterIdle
Idle queue only.

Available in Mac OS X v10.1 and later.

Declared in Power.h.

kStillIdle
Idle queue only.

Available in Mac OS X v10.1 and later.

Declared in Power.h.

kExitIdle
Idle queue only.

Available in Mac OS X v10.1 and later.

Declared in Power.h.

SoundMixerByte Bits
enum {
 MediaBaySndEnBit = 0,
 PCISndEnBit = 1,
 ZVSndEnBit = 2,
 PCCardSndEnBit = 3
};

SoundMixerByte Masks
enum {
 MediaBaySndEnMask = 0x01,
 PCISndEnMask = 0x02,
 ZVSndEnMask = 0x04,
 PCCardSndEnMask = 0x08
};

Storage Media Sleep Modes
enum {
 kMediaModeOn = 0,
 kMediaModeStandBy = 1,
 kMediaModeSuspend = 2,
 kMediaModeOff = 3
};

Constants
kMediaModeOn

When this bit is set, it indicates the media is active—the drive is spinning at full power.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

1652 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

kMediaModeStandBy
When this bit is set, it indicates the media is on standby. This is not implemented.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kMediaModeSuspend
When this bit is set, it indicates the media is idle. This is not implemented.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

kMediaModeOff
When this bit is set, it indicates the media is asleep—the drive is not spinning and is at minimum
power and maximum recovery time.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Power.h.

System Activity Selectors
enum {
 OverallAct = 0,
 UsrActivity = 1,
 NetActivity = 2,
 HDActivity = 3,
 IdleActivity = 4
};

Constants
OverallAct

Delays idle sleep by a small amount. This will only delay power cycling if it's enabled, and will delay
sleep by a small amount when hasAggressiveIdling is set.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

UsrActivity
Delays idle sleep and dimming by timeout time.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

NetActivity
Delays idle sleep and power cycling by small amount.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

HDActivity
Delays hard drive spindown and idle sleep by small amount.

Available in Mac OS X v10.0 and later.

Declared in Power.h.

Constants 1653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

IdleActivity
Delays idle sleep by timeout time. The IdleActivity selector is not available unless the
hasAggressiveIdlingbit is set. UseIdleActivitywhere you used to useOverallAct if necessary.
Don't use IdleActivity unless hasAggressiveIdling is set; when hasAggressiveIdling is
not set, the use of IdleActivity is undefined, and will do different things depending on which
Power Manager is currently running.

Available in Mac OS X v10.1 and later.

Declared in Power.h.

Result Codes

The most common result codes returned by Power Manager are listed below.

DescriptionValueResult Code

No error0noErr

Available in Mac OS X v10.0 and later.

Power Manager IC stuck busy-13000pmBusyErr

Available in Mac OS X v10.0 and later.

Timed out waiting to begin reply handshake-13001pmReplyTOErr

Available in Mac OS X v10.0 and later.

Power Manager IC did not start handshake-13002pmSendStartErr

Available in Mac OS X v10.0 and later.

During send, Power Manager did not finish handshake-13003pmSendEndErr

Available in Mac OS X v10.0 and later.

During receive, Power Manager did not start handshake-13004pmRecvStartErr

Available in Mac OS X v10.0 and later.

During receive, Power Manager did not finish handshake-13005pmRecvEndErr

Available in Mac OS X v10.0 and later.

1654 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Power Manager Reference

Framework: CoreServices/CoreServices.h

Declared in Resources.h

Overview

The Resource Manager allows applications to create, delete, open, read, modify, and write resources, get
information about them, and alter the Resource Manager’s search path. A resource is data of any kind stored
in a defined format in a resource file. The Resource Manager keeps track of resources in memory and provides
functions for the proper management of the resource chain. In Mac OS X, you should store resources in the
data fork of a resource file.

Carbon applications have used Resource Manager resources to store the descriptions for user interface
elements such as menus, windows, dialogs, controls, and icons. In addition, applications have used resources
to store variable settings, such as the location of a document window at the time the user closes the window.
When the user opens the document again, the application reads the information in the appropriate resource
and restores the window to its previous location.

Functions by Task

Checking for Errors

ResError (page 1692)
Determines what error occurred, if any, after calling a Resource Manager function.

Closing Resource Forks

CloseResFile (page 1662)
Closes a resource fork before your application terminates.

Counting and Listing Resource Types

Count1Resources (page 1663)
Returns the total number of resources of a given type in the current resource file.

Count1Types (page 1663)
Returns the number of resource types in the current resource file.

Overview 1655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

CountResources (page 1664)
Returns the total number of available resources of a given type.

CountTypes (page 1664)
Returns the number of resource types in all resource forks open to your application.

Get1IndResource (page 1675)
Returns a handle to a resource of a given type in the current resource file.

Get1IndType (page 1675)
Gets a resource types available in the current resource file.

GetIndResource (page 1678)
Returns a handle to a resource of a given type in resource forks open to your application.

GetIndType (page 1678)
Gets a resource type available in resource forks open to your application.

Creating Resource Files and Forks

FSCreateResourceFile (page 1667)
Creates a file with a named fork for storing resource data.

FSCreateResourceFork (page 1668)
Creates a named fork for storing resource data.

FSCreateResFile (page 1666)
Creates a file with an empty resource fork.

FSpCreateResFile (page 1670) Deprecated in Mac OS X v10.5
Creates an empty resource fork in a new or existing file. (Deprecated. Use
FSCreateResourceFile (page 1667) instead.)

HCreateResFile (page 1685) Deprecated in Mac OS X v10.5
Creates an empty resource fork, when the FSpCreateResFile function is not available. (Deprecated.
Use FSCreateResourceFile (page 1667) instead.)

Disposing of Resources

DetachResource (page 1665)
Sets the value of a resource’s handle in the resource map in memory to NULL while keeping the
resource data in memory.

ReleaseResource (page 1691)
Releases the memory a resource occupies when you have finished using it.

RemoveResource (page 1692)
Removes a resource’s entry from the current resource file’s resource map in memory.

Getting a Unique Resource ID

Unique1ID (page 1698)
Gets a resource ID that’s unique with respect to resources in the current resource file.

1656 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

UniqueID (page 1699)
Gets a unique resource ID for a resource.

Getting and Setting Resource Fork Attributes

GetResFileAttrs (page 1682)
Gets the attributes of a resource fork.

SetResFileAttrs (page 1694)
Sets a resource fork’s attributes.

Getting and Setting Resource Information

GetResAttrs (page 1681)
Gets a resource’s attributes.

GetResInfo (page 1682)
Gets a resource’s resource ID, resource type, and resource name.

SetResAttrs (page 1693)
Sets a resource’s attributes in the resource map in memory.

SetResInfo (page 1694)
Sets the name and resource ID of a resource.

Getting and Setting the Current Resource File

CurResFile (page 1664)
Gets the file reference number of the current resource file.

HomeResFile (page 1685)
Gets the file reference number associated with a particular resource.

UseResFile (page 1700)
Sets the current resource file.

Getting Resource Sizes

GetMaxResourceSize (page 1679)
Returns the approximate size of a resource.

GetResourceSizeOnDisk (page 1684)
Returns the exact size of a resource.

Managing the Resource Chain

InsertResourceFile (page 1687)
Inserts a resource file into the current resource chain at the specified location.

Functions by Task 1657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

DetachResourceFile (page 1666)
Removes a resource file from the resource chain.

GetNextResourceFile (page 1681)
Retrieves the next resource file in the resource chain.

GetTopResourceFile (page 1684)
Retrieves the topmost resource file in the current resource chain.

Modifying Resources

AddResource (page 1660)
Adds a resource to the current resource file’s resource map in memory.

ChangedResource (page 1661)
Sets a flag in the resource’s resource map entry in memory to show that you’ve made changes to a
resource’s data or to an entry in a resource map.

Opening Resource Forks

FSOpenResourceFile (page 1670)
Opens a named fork in an existing resource file.

FSOpenOrphanResFile (page 1669)
Opens a resource file that is persistent across all contexts.

FSOpenResFile (page 1669)
Opens the resource fork in a file specified with an FSRef structure.

FSResourceFileAlreadyOpen (page 1674)
Checks whether a resource file is open.

FSpOpenOrphanResFile (page 1671) Deprecated in Mac OS X v10.5
Opens a resource file that is persistent across all contexts. (Deprecated. Use
FSOpenOrphanResFile (page 1669) instead.)

FSpOpenResFile (page 1671) Deprecated in Mac OS X v10.5
Opens the resource fork in a file specified with an FSSpec structure. (Deprecated. Use
FSOpenResourceFile (page 1670) instead.)

FSpResourceFileAlreadyOpen (page 1673) Deprecated in Mac OS X v10.5
Checks whether a resource file is open. (Deprecated. Use FSResourceFileAlreadyOpen (page 1674)
instead.)

HOpenResFile (page 1686) Deprecated in Mac OS X v10.5
Opens a file’s resource fork, when the FSpOpenResFile function is not available. (Deprecated. Use
FSOpenResourceFile (page 1670) instead.)

OpenRFPerm (page 1689) Deprecated in Mac OS X v10.5
Opens a file’s resource fork, when the FSpOpenResFile and HOpenResFile functions are not
available. (Deprecated. Use FSOpenResourceFile (page 1670) instead.)

1658 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Reading and Writing Partial Resources

ReadPartialResource (page 1690)
Reads part of a resource into memory and work with a small subsection of a large resource.

SetResourceSize (page 1696)
Sets the size of a resource on disk.

WritePartialResource (page 1701)
Writes part of a resource to disk when working with a small subsection of a large resource.

Reading Resources Into Memory

Get1NamedResource (page 1676)
Gets a named resource in the current resource file.

Get1Resource (page 1677)
Gets resource data for a resource in the current resource file.

GetNamedResource (page 1680)
Gets a named resource.

GetResource (page 1683)
Gets resource data for a resource specified by resource type and resource ID.

LoadResource (page 1688)
Gets resource data after you’ve called the SetResLoad function with the load parameter set to
FALSE or when the resource is purgeable.

SetResLoad (page 1695)
Enables and disables automatic loading of resource data into memory for functions that return handles
to resources.

Writing to Resource Forks

SetResPurge (page 1697)
Tells the Memory Manager to pass the handle of a resource to the Resource Manager before purging
the data specified by that handle.

UpdateResFile (page 1700)
Updates the resource map and resource data for a resource fork without closing it.

WriteResource (page 1702)
Writes resource data in memory immediately to a file’s resource fork.

Not Recommended

GetNextFOND (page 1680)
Gets the next FOND handle.

InvokeResErrUPP (page 1688)
Calls your callback function.

NewResErrUPP (page 1688)
Creates a new universal procedure pointer (UPP) to your callback function.

Functions by Task 1659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

DisposeResErrUPP (page 1666)
Disposes of the universal procedure pointer (UPP) to your callback function.

Functions

AddResource
Adds a resource to the current resource file’s resource map in memory.

void AddResource (
 Handle theData,
 ResType theType,
 ResID theID,
 ConstStr255Param name
);

Parameters
theData

A handle to data in memory to be added as a resource to the current resource file (not a handle to
an existing resource). If the value of this parameter is an empty handle (that is, a handle whose master
pointer is set to NULL), the Resource Manager writes zero-length resource data to disk when it updates
the resource. If its value is either NULL or a handle to an existing resource, the function does nothing,
and the ResError (page 1692) function returns the result code addResFailed. If the resource map
becomes too large to fit in memory, the function does nothing, and ResError returns an appropriate
result code. The same is true if the resource data in memory can’t be written to the resource fork (for
example, because the disk is full).

theType
The resource type of the resource to be added.

theID
The resource ID of the resource to be added.

name
The name of the resource to be added.

Discussion
This function sets the resChanged attribute to 1 it does not set any of the resource’s other attributes—that
is, all other attributes are set to 0. If the resChanged attribute of a resource has been set and your application
calls the UpdateResFile (page 1700) function or quits, the Resource Manager writes both the resource map
and the resource data for that resource to the resource fork of the corresponding file on disk. If the
resChanged attribute for a resource has been set and your application calls the WriteResource (page 1702)
function, the Resource Manager writes only the resource data for that resource to disk.

If you add a resource to the current resource file, the Resource Manager writes the entire resource map to
disk when it updates the file. If you want any of your changes to the resource map or resource data to be
temporary, you must restore the original information before the Resource Manager updates the file on disk.

The function doesn’t verify whether the resource ID you pass in the parameter theID is already assigned to
another resource of the same type. You should call theUniqueID (page 1699) orUnique1ID (page 1698) function
to get a unique resource ID before adding a resource with this function.

1660 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

When your application calls this function, the Resource Manager attempts to reserve disk space for the new
resource. If the new resource data can’t be written to the resource fork (for example, if there’s not enough
room on disk), the resChanged attribute is not set to 1. If this is the case and you call UpdateResFile or
WriteResource, the Resource Manager won’t know that resource data has been added. Thus, the function
won’t write the new resource data to the resource fork and won’t return an error. For this reason, always
make sure that the ResError function returns the result code noErr after a call to AddResource.

To copy an existing resource, get a handle to the resource you want to copy, call the DetachResource (page
1665) function, then call AddResource. To add the same resource data to several different resource forks, call
the Memory Manager function HandToHand to duplicate the handle for each resource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ChangedResource
Sets a flag in the resource’s resource map entry in memory to show that you’ve made changes to a resource’s
data or to an entry in a resource map.

void ChangedResource (
 Handle theResource
);

Parameters
theResource

A handle to the resource whose data you’ve changed. The function sets the resChanged attribute
for that resource in the resource map in memory. If the resChanged attribute for a resource has been
set and your application calls the UpdateResFile (page 1700) function or quits, the Resource Manager
writes the resource data for that resource (and for all other resources whose resChanged attribute
is set) and the entire resource map to the resource fork of the corresponding file on disk. If the
resChanged attribute for a resource has been set and your application calls the WriteResource (page
1702) function, the Resource Manager writes only the resource data for that resource to disk.

If the given handle isn’t a handle to a resource, if the modified resource data can’t be written to the
resource fork, or if the resProtected attribute is set for the modified resource, the function does
nothing. To find out whether any of these errors occurred, call the ResError (page 1692) function.

Discussion
If you change information in the resource map with a call to theSetResInfo (page 1694) orSetResAttrs (page
1693) function and then call ChangedResource and UpdateResFile, the Resource Manager still writes both
the resource map and the resource data to disk. If you want any of your changes to the resource map or
resource data to be temporary, you must restore the original information before the Resource Manager
updates the resource fork on disk.

After writing a resource to disk, the Resource Manager clears the resource’s resChanged attribute in the
appropriate entry of the resource map in memory.

When your application calls this function, the Resource Manager attempts to reserve enough disk space to
contain the changed resource. The function reserves space every time you call it, but the resource is not
actually written until you call WriteResource or UpdateResFile. Thus, if you call ChangedResource

Functions 1661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

several times before the resource is actually written, the function reserves much more space than is needed.
If the resource is large, you may unexpectedly run out of disk space. When the resource is actually written,
the file’s end-of-file (EOF) is set correctly, and the next call to ChangedResource will work as expected.

If the modified resource data can’t be written to the resource fork (for example, if there’s not enough room
on disk), the resChanged attribute is not set to 1. If this is the case and you call UpdateResFile or
WriteResource, the Resource Manager won’t know that the resource data has been changed. Thus, the
function won’t write the modified resource data to the resource fork and won’t return an error. For this reason,
always make sure that the ResError function returns the result code noErr after a call to ChangedResource.

If your application frequently changes the contents of resources (especially large resources), you should call
WriteResource or UpdateResFile immediately after calling ChangedResource.

If you need to make changes to a purgeable resource using functions that may cause the Memory Manager
to purge the resource, you should make the resource temporarily not purgeable. To do so, use the Memory
Manager functions HGetState, HNoPurge, and HSetState to make sure the resource data remains in
memory while you change it and until the resource data is written to disk. (You can’t use the SetResAttrs
function for this purpose, because the changes don’t take effect immediately.) First call HGetState and
HNoPurge, then change the resource as necessary. To make a change to a resource permanent, use
ChangedResource and UpdateResFile or WriteResource; then call HSetState when you’re finished.
Or, instead of calling WriteResource to write the resource data immediately, you can call the
SetResPurge (page 1697) function with the install parameter set to TRUE before making changes to
purgeable resource data.

If your application doesn’t make its resources purgeable, or if the changes you are making to a purgeable
resource don’t involve functions that may cause the resource to be purged, you don’t need to take these
precautions

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

CloseResFile
Closes a resource fork before your application terminates.

void CloseResFile (
 ResFileRefNum refNum
);

Parameters
refNum

The file reference number for the resource fork to close. If this parameter does not contain a file
reference number for a file whose resource fork is open, the function does nothing, and the
ResError (page 1692) function returns the result code resFNotFound. If the value of this parameter
is 0, it represents the System file and is ignored. You cannot close the System file’s resource fork.

Discussion
This function performs four tasks. First, it updates the file by calling the UpdateResFile (page 1700) function.
Second, it releases the memory occupied by each resource in the resource fork by calling the DisposeHandle
function. Third, it releases the memory occupied by the resource map. The fourth task is to close the resource
fork.

1662 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

When your application terminates, the Resource Manager automatically closes every resource fork open to
your application except the System file’s resource fork. You need to call this function only if you want to close
a resource fork before your application terminates.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

Count1Resources
Returns the total number of resources of a given type in the current resource file.

ResourceCount Count1Resources (
 ResType theType
);

Parameters
theType

The resource type of the resources to count.

Return Value
The total number of resources of the given type in the current resource file.

Discussion
To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Count1Types
Returns the number of resource types in the current resource file.

ResourceCount Count1Types (
 void
);

Return Value
The total number of unique resource types in the current resource file.

Discussion
To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Functions 1663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Declared In
Resources.h

CountResources
Returns the total number of available resources of a given type.

ResourceCount CountResources (
 ResType theType
);

Parameters
theType

A resource type.

Return Value
The total number of resources of the given type in all resource forks open to your application.

Discussion
To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

CountTypes
Returns the number of resource types in all resource forks open to your application.

ResourceCount CountTypes (
 void
);

Return Value
The total number of unique resource types in all resource forks open to your application.

Discussion
To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

CurResFile
Gets the file reference number of the current resource file.

1664 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

ResFileRefNum CurResFile (
 void
);

Return Value
The file reference number associated with the current resource file. You can call this function when your
application starts up (before opening the resource fork of any other file) to get the file reference number of
your application’s resource fork. If the current resource file is the System file, the function returns the actual
file reference number. You can use this number or 0 with functions that take a file reference number for the
System file. All Resource Manager functions recognize both 0 and the actual file reference number as referring
to the System file.

Discussion
Most of the Resource Manager functions assume that the current resource file is the file on whose resource
fork they should operate or, in the case of a search, the file where they should begin. In general, the current
resource file is the last one whose resource fork your application opened unless you specify otherwise.

To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

DetachResource
Sets the value of a resource’s handle in the resource map in memory to NULL while keeping the resource
data in memory.

void DetachResource (
 Handle theResource
);

Parameters
theResource

A handle to the resource which you wish to detach. If this parameter doesn’t contain a handle to a
resource or if the resource’s resChanged attribute is set, the function does nothing. To determine
whether either of these errors occurred, call the ResError (page 1692) function.

Discussion
After this call, the Resource Manager no longer recognizes the handle as a handle to a resource. However,
this function does not release the memory used for the resource data, and the master pointer is still valid.
Thus, you can access the resource data directly by using the handle.

If your application subsequently calls a Resource Manager function to get the released resource, the Resource
Manager assigns a new handle. You can use DetachResource if you want to access the resource data directly
without using Resource Manager functions. You can also use the DetachResource function to keep resource
data in memory after closing a resource fork.

To copy a resource and install an entry for the duplicate in the resource map, call DetachResource, then
call the AddResource (page 1660) function using a different resource ID.

Functions 1665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Special Considerations

Do not use this function to detach a System resource that might be shared by several applications.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData

Declared In
Resources.h

DetachResourceFile
Removes a resource file from the resource chain.

OSErr DetachResourceFile (
 ResFileRefNum refNum
);

Return Value
A result code. See “Resource Manager Result Codes” (page 1711).

Discussion
If the file is not currently in the resource chain, this returns resNotFound. Otherwise, the resource file is
removed from the resource chain.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

DisposeResErrUPP
Disposes of the universal procedure pointer (UPP) to your callback function.

void DisposeResErrUPP (
 ResErrUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSCreateResFile
Creates a file with an empty resource fork.

1666 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

void FSCreateResFile (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo,
 FSRef *newRef,
 FSSpec *newSpec
);

Discussion
This function is not recommended. You should use a file’s data fork instead of its resource fork to store
resource data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSCreateResourceFile
Creates a file with a named fork for storing resource data.

OSErr FSCreateResourceFile (
 const FSRef *parentRef,
 UniCharCount nameLength,
 const UniChar *name,
 FSCatalogInfoBitmap whichInfo,
 const FSCatalogInfo *catalogInfo,
 UniCharCount forkNameLength,
 const UniChar *forkName,
 FSRef *newRef,
 FSSpec *newSpec
);

Parameters
parentRef

A pointer to the directory in which the resource file is to be created.

nameLength
The number of Unicode characters in the file's name.

name
A pointer to the Unicode name of the new resource file.

whichInfo
The catalog information fields to set. See the File Manager documentation for a description of the
FSCatalogInfoBitmap data type.

catalogInfo
A pointer to the values for the catalog information fields. This pointer may be set to NULL. See the
File Manager documentation for a description of the FSCatalogInfo data type.

forkNameLength
The number of Unicode characters in the fork’s name.

Functions 1667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

forkName
A pointer to the Unicode name of the fork to initialize. If you pass NULL in this parameter, the data
fork is used.

newRef
A pointer to a variable allocated by the caller, or NULL. On return, the new resource file.

newSpec
A pointer to a variable allocated by the caller, or NULL. On return, the new resource file.

Return Value
A result code. See “Resource Manager Result Codes” (page 1711).

Discussion
This function creates a new file and initializes the specified fork for storing resource data. If you don’t specify
the fork name, the data fork is used. This function makes it possible to store resources in the data fork of a
file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSCreateResourceFork
Creates a named fork for storing resource data.

OSErr FSCreateResourceFork (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName,
 UInt32 flags
);

Parameters
ref

A pointer to the file to which to add the fork.

forkNameLength
The number of Unicode characters in the fork’s name.

forkName
A pointer to the Unicode name of the fork to initialize. If you pass NULL in this parameter, the data
fork is used.

flags
A value of type UInt32. You should pass 0.

Return Value
A result code. See “Resource Manager Result Codes” (page 1711).

Discussion
This function creates the specified fork in an existing file and initializes the fork for storing resources. If the
named fork already exists, this function does nothing and returns errFSForkExists. If you don’t specify
the fork name, the data fork is used. This function makes it possible to store resources in the data fork of a
file.

1668 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
Resources.h

FSOpenOrphanResFile
Opens a resource file that is persistent across all contexts.

OSErr FSOpenOrphanResFile (
 const FSRef *ref,
 SignedByte permission,
 ResFileRefNum *refNum
);

Parameters
ref

A pointer to the resource file to open.

permission
A constant indicating the type of access with which to open the resource fork. For a description of
the types of access you can request, see File Access Permission Constants in File Manager Reference.

refNum
A pointer to a variable allocated by the caller. On return, the reference number for accessing the open
fork.

Return Value
A result code. See “Resource Manager Result Codes” (page 1711).

Discussion
This function loads a map and all preloaded resources into the system context and detaches the specified
file from the context in which it was opened. If the file is already in the resource chain and a new instance is
not opened, this function returns paramErr. Use this function with care, as it may fail if the map is very large
or many resources are preloaded.

Availability
Available in Mac OS X v10.5 and later.

Declared In
Resources.h

FSOpenResFile
Opens the resource fork in a file specified with an FSRef structure.

ResFileRefNum FSOpenResFile (
 const FSRef *ref,
 SInt8 permission
);

Discussion
This function is not recommended. You should use a file’s data fork instead of its resource fork to store
resource data.

Functions 1669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSOpenResourceFile
Opens a named fork in an existing resource file.

OSErr FSOpenResourceFile (
 const FSRef *ref,
 UniCharCount forkNameLength,
 const UniChar *forkName,
 SInt8 permissions,
 ResFileRefNum *refNum
);

Parameters
ref

A pointer to the file containing the fork to open.

forkNameLength
The number of Unicode characters in the fork’s name.

forkName
A pointer to the Unicode name of the fork to open. If you pass NULL in this parameter, the data fork
is used.

permissions
A constant indicating the type of access with which to open the fork. For a description of the types
of access you can request, see File Access Permission Constants in File Manager Reference.

refNum
A pointer to a variable allocated by the caller. On return, the reference number for accessing the open
fork.

Return Value
A result code. See “Resource Manager Result Codes” (page 1711).

Discussion
This function allows any named fork of a file to be used for storing resources. Passing in a null fork name will
result in the data fork being used. You should use a file’s data fork to store resource data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

FSpCreateResFile
Creates an empty resource fork in a new or existing file. (Deprecated in Mac OS X v10.5. Use
FSCreateResourceFile (page 1667) instead.)

1670 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

void FSpCreateResFile (
 const FSSpec *spec,
 OSType creator,
 OSType fileType,
 ScriptCode scriptTag
);

Discussion
This function is not recommended. You should use a file’s data fork instead of its resource fork to store
resource data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

FSpOpenOrphanResFile
Opens a resource file that is persistent across all contexts. (Deprecated in Mac OS X v10.5. Use
FSOpenOrphanResFile (page 1669) instead.)

OSErr FSpOpenOrphanResFile (
 const FSSpec *spec,
 SignedByte permission,
 ResFileRefNum *refNum
);

Return Value
A result code. See “Resource Manager Result Codes” (page 1711).

Discussion
FSpOpenOrphanResFile should be used to open a resource file that is persistent across all contexts.
FSpOpenOrphanResFile loads everything into the system context and detaches the file from the context
in which it was opened. If the file is already in the resource chain and a new instance is not opened,
FSpOpenOrphanResFile will return a paramErr. Use this function with care, as it can and will fail if the
map is very large or a lot of resources are preloaded.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

FSpOpenResFile
Opens the resource fork in a file specified with an FSSpec structure. (Deprecated in Mac OS X v10.5. Use
FSOpenResourceFile (page 1670) instead.)

Functions 1671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

ResFileRefNum FSpOpenResFile (
 const FSSpec *spec,
 SignedByte permission
);

Parameters
spec

A pointer to a file system specification record specifying the name and location of the file whose
resource fork is to be opened. This function also makes the specified file the current resource file.

permission
A constant indicating the type of access with which to open the resource fork. For a description of
the types of access you can request, see File Access Permission Constants in File Manager Reference.

Return Value
The file reference number for the resource fork. If the file reference number returned is greater than 0, you
can use this number to refer to the resource fork in some other Resource Manager functions.

If you attempt to use this function to open a resource fork that is already open, it returns the existing file
reference number or a new one, depending on the access permission for the existing access path. For example,
your application receives a new file reference number after a successful request for read-only access to a file
previously opened with write access, whereas it receives the same file reference number in response to a
second request for write access to the same file. In this case, the function doesn’t make that file the current
resource file.

If the function fails to open the specified file’s resource fork (for instance, because there’s no file with the
given file system specification record or because there are permission problems), it returns –1 as the file
reference number. Use the ResError (page 1692) function to determine what kind of error occurred.

If an application attempts to open a second access path with write access and the application is different
from the one that originally opened the resource fork, FSpOpenResFile returns –1, and the ResError
function returns the result code opWrErr.

Discussion
This function is available only in System 7 and later versions of system software. You can determine whether
FSpOpenResFile is available by calling the Gestalt function with the gestaltFSAttr selector code. If
this function is not available to your application, you can use HOpenResFile, OpenRFPerm, or OpenResFile
instead. The HOpenResFile (page 1686) function is preferred if FSpOpenResFile is not available. The
OpenRFPerm (page 1689) function is an earlier version of HOpenResFile that is still supported but is more
restricted in its capabilities.

The Resource Manager reads the resource map from the specified file’s resource fork into memory. It also
reads into memory every resource in the resource fork whose resPreload attribute is set.

You don’t have to call this function to open the System file’s resource fork or an application file’s resource
fork. These resource forks are opened automatically when the system and the application start up, respectively.
To get the file reference number for your application, call the CurResFile (page 1664) function after your
application starts up and before you open any other resource forks.

The FSpOpenResFile function checks that the information in the resource map is internally consistent. If
it isn’t, ResError returns the result code mapReadErr.

1672 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

It’s possible to create multiple, unique, read-only access paths to a resource fork using this function however,
you should avoid doing so. If a resource fork is opened twice—once with read/write permission and once
with read-only permission—two copies of the resource map exist in memory. If you change one of the
resources in memory using one of the resource maps, the two resource maps become inconsistent and the
file will appear damaged to the second resource map.

If you must use this technique for read-only access, call this function immediately before your application
reads information from the file and close the file immediately afterward. Otherwise, your application may
get unexpected results.

If you want to open the resource fork for another application (or any resource fork other than your application’s
that includes 'CODE' resources), you must bracket your calls to this function with calls to the
SetResLoad (page 1695) function with the load parameter set to FALSE and then to TRUE. You must also
avoid making intersegment calls while the other application’s resource fork is open. If you don’t do this, the
Segment Loader Manager treats any preloaded 'CODE' resources as your code resources when you make
an intersegment call that triggers a call to the LoadSeg function while the other application is first in the
resource chain. In this case, your application can begin executing the other application’s code, and severe
problems will ensue. If you need to get 'CODE' resources from the other application’s resource fork, you can
still prevent the Segment Loader Manager problem by calling the UseResFile (page 1700) function with your
application’s file reference number to make your application the current resource file.

To open a resource fork just for block-level operations, such as copying files without reading the resource
map into memory, use the File Manager function OpenRF.

Special Considerations

Because there is no support for locking and unlocking file ranges on local disks in Mac OS X, regardless of
whether File Sharing is enabled, you cannot open more than one path to a resource fork with read/ write
permission. If you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission,
only the first attempt will succeed. Subsequent attempts will return an invalid reference number and the
ResError function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

FSpResourceFileAlreadyOpen
Checks whether a resource file is open. (Deprecated in Mac OS X v10.5. Use
FSResourceFileAlreadyOpen (page 1674) instead.)

Functions 1673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Boolean FSpResourceFileAlreadyOpen (
 const FSSpec *resourceFile,
 Boolean *inChain,
 ResFileRefNum *refNum
);

Parameters
resourceFile

The resource file to check.

inChain
A pointer to a variable allocated by the caller. On return, true if the resource file is in the resource
chain, false otherwise.

refNum
A pointer to a variable allocated by the caller. On return, the reference number of the file if it is open.

Return Value
This function returns true if the resource file is already open and known by the Resource Manager—for
example, it is either in the current resource chain or it is a detached resource file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

FSResourceFileAlreadyOpen
Checks whether a resource file is open.

Boolean FSResourceFileAlreadyOpen (
 const FSRef *resourceFileRef,
 Boolean *inChain,
 ResFileRefNum *refNum
);

Parameters
resourceFileRef

The resource file to check.

inChain
A pointer to a variable allocated by the caller. On return, true if the resource file is in the resource
chain, false otherwise.

refNum
A pointer to a variable allocated by the caller. On return, the reference number of the file if it is open.

Return Value
This function returns true if the resource file is already open and known by the Resource Manager—for
example, it is either in the current resource chain or it is a detached resource file.

Availability
Available in Mac OS X v10.0 and later.

1674 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Declared In
Resources.h

Get1IndResource
Returns a handle to a resource of a given type in the current resource file.

Handle Get1IndResource (
 ResType theType,
 ResourceIndex index
);

Parameters
theType

A resource type.

index
An integer ranging from 1 to the number of resources of a given type returned by the
Count1Resources (page 1663) function, which is the number of resources of that type in the current
resource file.

Return Value
A handle to a resource of the given type. If you call Get1IndResource repeatedly over the entire range of
the index, it returns handles to all resources of the given type in the current resource file. If you provide an
index that is either 0 or negative, the function returns NULL, and the ResError (page 1692) function returns
the result code resNotFound. If the given index is larger than the value returned by Count1Resources (page
1663), Get1IndResource (page 1675) returns NULL, and ResError (page 1692) returns the result code
resNotFound. If the resource to be read won’t fit into memory, the function returns NULL, and
ResError (page 1692) returns the appropriate result code.

Discussion
The function reads the resource data into memory if it’s not already there, unless you’ve called the
SetResLoad (page 1695) function with the load parameter set to FALSE. If you’ve called SetResLoad with
the loadparameter set to FALSE and the data isn’t already in memory, Get1IndResource (page 1675) returns
an empty handle (that is, a handle whose master pointer is set to NULL). This can also happen if you read
resource data for a purgeable resource into memory and then call SetResLoad (page 1695) with the load
parameter set to FALSE. If the resource data is later purged and you call the Get1IndResource (page 1675)
function, the function returns an empty handle. You should test for an empty handle in these situations. To
make the handle a valid handle to resource data in memory, you can call the LoadResource (page 1688)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Get1IndType
Gets a resource types available in the current resource file.

Functions 1675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

void Get1IndType (
 ResType *theType,
 ResourceIndex index
);

Parameters
theType

On return, the resource type with the specified index in the current resource file.

You can call this function repeatedly over the entire range of the index to get all the resource types
available in the current resource file. If the given index isn’t in the range from 1 to the number of
resource types as returned by Count1Types, this parameter contains four null characters (ASCII code
0).

index
An integer ranging from 1 to the number of resource types in the current resource file, as returned
by the Count1Types (page 1663) function.

Discussion
To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Get1NamedResource
Gets a named resource in the current resource file.

Handle Get1NamedResource (
 ResType theType,
 ConstStr255Param name
);

Parameters
theType

The resource type of the resource about which you wish to retrieve data.

name
A name that uniquely identifies the resource about which you wish to retrieve data.

Return Value
If the function finds an entry for the resource in the current resource file’s resource map and the entry contains
a valid handle, the function returns that handle. If the entry contains a handle whose value is NULL, and if
you haven’t called the SetResLoad (page 1695) function with the load parameter set to FALSE,
Get1NamedResource attempts to read the resource into memory. If it can’t find the resource data, the
function returns NULL, and the ResError (page 1692) function returns the result code resNotFound. The
Get1NamedResource function also returns NULL if the resource data to be read into memory won’t fit, in
which case ResError returns an appropriate Memory Manager result code.

If you call this function with a resource type that can’t be found in the resource map of the current resource
file, the function returns NULL, but ResError returns the result code noErr. You should always check that
the value of the returned handle is not NULL.

1676 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Discussion
The function searches the current resource file’s resource map in memory for the specified resource. You can
change the search order by calling the UseResFile (page 1700) function before Get1NamedResource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Get1Resource
Gets resource data for a resource in the current resource file.

Handle Get1Resource (
 ResType theType,
 ResID theID
);

Parameters
theType

The resource type of the resource about which you wish to retrieve data.

theID
An integer that uniquely identifies the resource about which you wish to retrieve data.

Return Value
If the function finds an entry for the resource in the current resource file’s resource map and the entry contains
a valid handle, it returns that handle. If the entry contains a handle whose value is NULL, and if you haven’t
called the SetResLoad (page 1695) function with the load parameter set to FALSE, Get1Resource attempts
to read the resource into memory.

If the function can’t find the resource data, it returns NULL, and ResError returns the result code
resNotFound. The Get1Resource function also returns NULL if the resource data to be read into memory
won’t fit, in which case ResError returns an appropriate Memory Manager result code.

If you call this function with a resource type that can’t be found in the resource map of the current resource
file, the function returns NULL, but ResError returns the result code noErr. You should always check that
the value of the returned handle is not NULL.

Discussion
The function searches the current resource file’s resource map in memory for the specified resource.

You can change the resource map search order by calling the UseResFile (page 1700) function before
Get1Resource.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData

Declared In
Resources.h

Functions 1677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

GetIndResource
Returns a handle to a resource of a given type in resource forks open to your application.

Handle GetIndResource (
 ResType theType,
 ResourceIndex index
);

Parameters
theType

A resource type.

index
An integer ranging from 1 to the number of resources of a given type returned by the
CountResources (page 1664) function, which is the number of resources of that type in all resource
forks open to your application.

Return Value
A handle to a resource of the given type. If you call this function repeatedly over the entire range of the
index, it returns handles to all resources of the given type in all resource forks open to your application. The
function returns handles for all resources in the most recently opened resource fork first, and then for those
in resource forks opened earlier in reverse chronological order. If you provide an index to that is either 0 or
negative, the function returns NULL, and the ResError (page 1692) function returns the result code
resNotFound. If the given index is larger than the value returned by CountResources, the function returns
NULL, and ResError (page 1692) returns the result code resNotFound. If the resource to be read won’t fit
into memory, the function returns NULL, and ResError (page 1692) returns the appropriate result code.

Discussion
This function reads the resource data into memory if it’s not already there, unless you’ve called the
SetResLoad (page 1695) function with the load parameter set to FALSE.

If you’ve called SetResLoad (page 1695) with the load parameter set to FALSE and the data isn’t already in
memory, the function returns an empty handle (a handle whose master pointer is set to NULL). This can also
happen if you read resource data for a purgeable resource into memory and then call SetResLoad with the
load parameter set to FALSE. If the resource data is later purged and you call the GetIndResource function,
the function returns an empty handle. You should test for an empty handle in these situations. To make the
handle a valid handle to resource data in memory, you can call the LoadResource (page 1688) function.

The UseResFile (page 1700) function affects which file the Resource Manager searches first when looking
for a particular resource; this is not the case when you use GetIndResource to get an indexed resource.

If you want to find out how many resources of a given type are in a particular resource fork, set the current
resource file to that resource fork, then call the Count1Resources (page 1663) function and use the
Get1IndResource (page 1675) function to get handles to the resources of that type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetIndType
Gets a resource type available in resource forks open to your application.

1678 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

void GetIndType (
 ResType *theType,
 ResourceIndex index
);

Parameters
theType

On return, a pointer to the resource type for the specified index among all the resource forks open
to your application.

You can call this function repeatedly over the entire range of the index to get all the resource types
available in all resource forks open to your application. If the given index isn’t in the range from 1 to
the number of resource types as returned by CountTypes, this parameter contains four null characters
(ASCII code 0).

index
An integer ranging from 1 to the number of resource types in all resource forks open to your
application, as returned by CountTypes (page 1664) function.

Discussion
To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetMaxResourceSize
Returns the approximate size of a resource.

long GetMaxResourceSize (
 Handle theResource
);

Parameters
theResource

A handle to the resource whose size you wish to retrieve.

Return Value
The approximate size, in bytes, of the resource. Unlike the GetResourceSizeOnDisk (page 1684) function,
this function does not check the resource on disk instead, it either checks the resource size in memory or, if
the resource is not in memory, calculates its size on the basis of information in the resource map in memory.
This gives you an approximate size for the resource that you can count on as the resource’s maximum size.
It’s possible that the resource is actually smaller than the offsets in the resource map indicate because the
file has not yet been compacted. If you want the exact size of a resource on disk, either call
GetResourceSizeOnDisk or call the UpdateResFile (page 1700) function before calling
GetMaxResourceSize. If the handle isn’t a handle to a valid resource, the function returns –1, and the
ResError (page 1692) function returns the result code resNotFound.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Functions 1679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

GetNamedResource
Gets a named resource.

Handle GetNamedResource (
 ResType theType,
 ConstStr255Param name
);

Parameters
theType

The resource type of the resource about which you wish to retrieve data.

name
A name that uniquely identifies the resource about which you wish to retrieve data. Strings passed
in this parameter are case-sensitive.

Return Value
If the function finds the specified resource entry in one of the resource maps and the entry contains a valid
handle, the function returns that handle. If the entry contains a handle whose value is NULL, and if you haven’t
called the SetResLoad (page 1695) function with the load parameter set to FALSE, GetNamedResource
attempts to read the resource into memory.

If the function can’t find the resource data, it returns NULL, and the ResError (page 1692) function returns
the result code resNotFound. The function also returns NULL if the resource data to be read into memory
won’t fit, in which case ResError returns an appropriate Memory Manager result code. If you call
GetNamedResource with a resource type that can’t be found in any of the resource maps of the open
resource forks, the function returns NULL as well, but ResError returns the result code noErr. You should
always check that the value of the returned handle is not NULL.

Discussion
The function searches the resource maps in memory for the specified resource. The resource maps in memory,
which represent all the open resource forks, are arranged as a linked list. When the function searches this
list, it starts with the current resource file and progresses through the list in order (that is, in reverse
chronological order in which the resource forks were opened) until it finds the resource’s entry in one of the
resource maps.

You can change the resource map search order by calling the UseResFile (page 1700) function before
GetNamedResource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetNextFOND
Gets the next FOND handle.

Handle GetNextFOND (
 Handle fondHandle
);

Availability
Available in Mac OS X v10.0 and later.

1680 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Declared In
Resources.h

GetNextResourceFile
Retrieves the next resource file in the resource chain.

OSErr GetNextResourceFile (
 ResFileRefNum curRefNum,
 ResFileRefNum *nextRefNum
);

Parameters
curRefNum

A value of type SInt16 representing the current reference number of a resource file.

nextRefNum
A pointer to a value of type SInt16. On return, this points to the next resource file in the resource
chain.

Return Value
A result code. See “Resource Manager Result Codes” (page 1711).

Discussion
GetNextResourceFile can be used to iterate over resource files in the resource chain. By passing a valid
reference number in the curRefNum parameter, the function returns the reference number of the next file
in the resource chain. If the resource file specified by the curRefNum parameter is not found in the resource
chain, the GetNextResourceFile function returns the error code resFNotFound. When the end of the
chain is reached GetNextResourceFile returns noErr and the value of the nextRefNum parameter is NIL.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetResAttrs
Gets a resource’s attributes.

ResAttributes GetResAttrs (
 Handle theResource
);

Parameters
theResource

A handle to the resource whose attributes you wish to retrieve. If the value of this parameter isn’t a
handle to a valid resource, the function does nothing, and the ResError (page 1692) function returns
the result code resNotFound.

Return Value
The resource’s attributes as recorded in its entry in the resource map in memory. The function returns the
resource’s attributes in the low-order byte of the function result. Each attribute is identified by a specific bit
in the low-order byte. If the bit corresponding to an attribute contains 1, then that attribute is set if the bit
contains 0, then that attribute is not set.

Functions 1681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Discussion
To change a resource’s attributes in the resource map in memory, use the SetResAttrs (page 1693) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetResFileAttrs
Gets the attributes of a resource fork.

ResFileAttributes GetResFileAttrs (
 ResFileRefNum refNum
);

Parameters
refNum

A file reference number for the resource fork whose attributes you want to get. Specify 0 in this
parameter to get the attributes of the System file’s resource fork.

Return Value
The attributes of the file’s resource fork. If there’s no open resource fork for the given file reference number,
the function does nothing, and the ResError (page 1692) function returns the result code resFNotFound.
Like individual resources, resource forks have attributes that are specified by bits in the low-order byte of a
word.

Discussion
The Resource Manager sets the mapChanged attribute for the resource fork when you call the
ChangedResource (page 1661), theAddResource (page 1660), or theRemoveResource (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetResInfo
Gets a resource’s resource ID, resource type, and resource name.

void GetResInfo (
 Handle theResource,
 ResID *theID,
 ResType *theType,
 Str255 name
);

Parameters
theResource

A handle to the resource for which you want to retrieve information. If the handle isn’t a valid handle
to a resource, the function does nothing to determine whether this has occurred, call the
ResError (page 1692) function.

1682 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

theID
On return, a pointer to the resource ID of the specified resource.

theType
On return, a pointer to the resource type of the specified resource.

name
On return, the name of the specified resource.

Discussion
To set a resource’s ID, resource type, or resource name, use the SetResInfo (page 1694) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetResource
Gets resource data for a resource specified by resource type and resource ID.

Handle GetResource (
 ResType theType,
 ResID theID
);

Parameters
theType

The resource type of the resource about which you wish to retrieve data.

theID
An integer that uniquely identifies the resource about which you wish to retrieve data.

Return Value
If the function finds the specified resource entry in one of the resource maps and the entry contains a valid
handle, it returns that handle. If the entry contains a a handle whose value is NULL, and if you haven’t called
the SetResLoad (page 1695) function with the load parameter set to FALSE, GetResource attempts to read
the resource into memory.

If the function can’t find the resource data, it returns NULL, and the ResError (page 1692) function returns
the result code resNotFound. The GetResource function also returns NULL if the resource data to be read
into memory won’t fit, in which case ResError returns an appropriate Memory Manager result code. If you
call GetResource with a resource type that can’t be found in any of the resource maps of the open resource
forks, the function returns NULL, but ResError returns the result code noErr. You should always check that
the value of the returned handle is not NULL.

Discussion
The function searches the resource maps in memory for the specified resource. The resource maps in memory,
which represent all the open resource forks, are arranged as a linked list. When searching this list, the function
starts with the current resource file and progresses through the list (that is, searching the resource maps in
reverse order of opening) until it finds the resource’s entry in one of the resource maps.

Before reading the resource data into memory, the Resource Manager calls the Memory Manager to allocate
a relocatable block for the resource data. The Memory Manager allocates the block, assigns a master pointer
to the block, and returns to the Resource Manager a pointer to the master pointer. The Resource Manager
then installs this handle in the resource map.

Functions 1683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

You can change the resource map search order by calling the UseResFile (page 1700) function before calling
GetResource.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

GetResourceSizeOnDisk
Returns the exact size of a resource.

long GetResourceSizeOnDisk (
 Handle theResource
);

Parameters
theResource

A handle to the resource whose size you wish to retrieve.

Return Value
The exact size, in bytes, of the resource. If the handle isn’t a handle to a valid resource, the function returns
–1, and the ResError (page 1692) function returns the result code resNotFound.

Discussion
This function checks the resource on disk, not in memory. You can call this function before reading a resource
into memory to make sure there’s enough memory available to do so successfully.

The GetResourceSizeOnDisk function is also available as the SizeResource function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

GetTopResourceFile
Retrieves the topmost resource file in the current resource chain.

OSErr GetTopResourceFile (
 ResFileRefNum *refNum
);

Parameters
refNum

A pointer to a value of type SInt16. On return, this points to the top most resource file in the current
resource chain.

1684 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Return Value
A result code. See “Resource Manager Result Codes” (page 1711). If the resource chain is empty, resFNotFound
is returned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

HCreateResFile
Creates an empty resource fork, when the FSpCreateResFile function is not available. (Deprecated in Mac
OS X v10.5. Use FSCreateResourceFile (page 1667) instead.)

void HCreateResFile (
 FSVolumeRefNum vRefNum,
 long dirID,
 ConstStr255Param fileName
);

Discussion
This function is not recommended. You should use a file’s data fork instead of its resource fork to store
resource data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

HomeResFile
Gets the file reference number associated with a particular resource.

ResFileRefNum HomeResFile (
 Handle theResource
);

Parameters
theResource

A handle to the resource for which you wish to get the associated file reference number.

Return Value
The file reference number for the resource fork containing the specified resource. If the given handle isn’t a
handle to a resource, the function returns –1, and the ResError (page 1692) function returns the result code
resNotFound. If HomeResFile returns 0, the resource is in the System file’s resource fork. If it returns 1, the
resource is ROM-resident.

Availability
Available in Mac OS X v10.0 and later.

Functions 1685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Declared In
Resources.h

HOpenResFile
Opens a file’s resource fork, when the FSpOpenResFile function is not available. (Deprecated in Mac OS X
v10.5. Use FSOpenResourceFile (page 1670) instead.)

ResFileRefNum HOpenResFile (
 FSVolumeRefNum vRefNum,
 long dirID,
 ConstStr255Param fileName,
 SInt8 permission
);

Parameters
vRefNum

The volume reference number of the volume on which the file is located.

dirID
The directory ID of the directory where the file is located.

fileName
The name of the file whose resource fork is to be opened.

permission
A constant indicating the type of access with which to open the resource fork. For a description of
the types of access you can request, see File Access Permission Constants in File Manager Reference.

Return Value
The file reference number for the file. You can use this file reference number to refer to the file in other
Resource Manager functions. The function also makes this file the current resource file. If the file’s resource
fork is already open, the function returns the file reference number but does not make that file the current
resource file. If the function fails to open the specified file’s resource fork (because there’s no file with the
specified name or because there are permission problems), it returns –1 as the file reference number. Use
the ResError (page 1692) function to determine what kind of error occurred.

Versions of system software before System 7 do not allow you to use this function to open a second access
path, with write access, to a resource fork. In this case, the function returns the reference number already
assigned to the file.

Discussion
The Resource Manager reads the resource map from the resource fork of the specified file into memory. It
also reads into memory every resource whose resPreload attribute is set.

You don’t have to call this function to open the System file’s resource fork or an application file’s resource
fork. These files are opened automatically when the system and the application start up, respectively. To get
the file reference number for your application, call the CurResFile (page 1664) function after the application
starts up and before you open the resource forks for any other files.

The HOpenResFile function checks that the information in the resource map is internally consistent. If it
isn’t, ResError returns the result code mapReadErr. It’s possible to create multiple, unique, read-only access
paths to a resource fork using HOpenResFile; however, you should avoid doing so, to prevent inconsistencies
between multiple copies of the resource map. See the discussion of this issue in relation to
FSpOpenResFile (page 1671). The HOpenResFile function works the same way.

1686 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

To open a resource fork just for block-level operations, such as copying files without reading the resource
map into memory, use the File Manager function OpenRF.

If you want to open the resource fork for another application (or any resource fork other than your application’s
that includes 'CODE' resources), you must bracket your calls to HOpenResFile with calls to the
SetResLoad (page 1695) function with the load parameter set to FALSE and then to TRUE. You must also
avoid making intersegment calls while the other application’s resource fork is open. The discussion of this
issue in relation to FSpOpenResFile (page 1671) also applies to HOpenResFile.

Special Considerations

Because there is no support for locking and unlocking file ranges on local disks in Mac OS X, regardless of
whether File Sharing is enabled, you cannot open more than one path to a resource fork with read/write
permission. If you try to open a more than one path to a file's resource fork with fsRdWrShPerm permission,
only the first attempt will succeed. Subsequent attempts will return an invalid reference number and the
ResError function will return the error opWrErr.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

InsertResourceFile
Inserts a resource file into the current resource chain at the specified location.

OSErr InsertResourceFile (
 ResFileRefNum refNum,
 RsrcChainLocation where
);

Parameters
refNum

A value of type SInt16 indicating the reference number of the resource file to insert into the resource
chain.

where
A value of type RsrcChainLocation indicating where in the resource chain the resource file should be
inserted. See the RsrcChainLocation data type.

Return Value
A result code. See “Resource Manager Result Codes” (page 1711).

Discussion
If the file is already in the resource chain, it is removed and reinserted at the specified location. If the file has
been detached, it is added to the resource chain at the specified location Returns resFNotFound if it's not
currently open.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Functions 1687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

InvokeResErrUPP
Calls your callback function.

void InvokeResErrUPP (
 OSErr thErr,
 ResErrUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

LoadResource
Gets resource data after you’ve called the SetResLoad function with the load parameter set to FALSE or
when the resource is purgeable.

void LoadResource (
 Handle theResource
);

Parameters
theResource

A handle to a resource. Given this handle, the function reads the resource data into memory. If the
resource is already in memory, or if the this parameter doesn’t contain a handle to a resource, then
the function does nothing. To determine whether either of these situations occurred, call the
ResError (page 1692) function. If the resource is already in memory, ResError returns noErr; if the
handle is not a handle to a resource, ResError returns resNotFound.

Discussion
If you’ve changed the resource data for a purgeable resource and the resource is purged before being written
to the file, the changes will be lost. In this case, this function rereads the original resource from the file’s
resource fork. You should use theChangedResource (page 1661) orSetResPurge (page 1697) function before
calling LoadResource to ensure that changes made to purgeable resources are written to the resource fork.

Availability
Available in Mac OS X 10.0 and later.

Declared In
Resources.h

NewResErrUPP
Creates a new universal procedure pointer (UPP) to your callback function.

ResErrUPP NewResErrUPP (
 ResErrProcPtr userRoutine
);

Return Value
See ResErrUPP (page 1704) for more information.

1688 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

OpenRFPerm
Opens a file’s resource fork, when the FSpOpenResFile and HOpenResFile functions are not available.
(Deprecated in Mac OS X v10.5. Use FSOpenResourceFile (page 1670) instead.)

ResFileRefNum OpenRFPerm (
 ConstStr255Param fileName,
 FSVolumeRefNum vRefNum,
 SInt8 permission
);

Parameters
fileName

The name of the file whose resource fork is to be opened.

vRefNum
The volume reference number or directory ID for the volume or directory in which the file is located.

permission
A constant indicating the type of access with which to open the resource fork. For a description of
the types of access you can request, see File Access Permission Constants in File Manager Reference.

Return Value
The file reference number for the file whose resource fork it has opened. You can use this file reference
number to refer to the file in other Resource Manager functions. The function also makes this file the current
resource file. If the file’s resource fork is already open, the function returns the file reference number but
does not make that file the current resource file.

If the function fails to open the specified file’s resource fork (because there’s no file with the given name or
because there are permission problems), it returns –1 as the file reference number. Use the ResError (page
1692) function to determine what kind of error occurred.

Versions of system software before System 7 do not allow you to use this function to open a second access
path, with write access, to a resource fork. In this case, the function returns the reference number already
assigned to the file.

Discussion
You can use this function if the FSpOpenResFile (page 1671) function is not available. You can determine
whether FSpOpenResFile is available by calling the Gestalt function with the gestaltFSAttr selector
code. The HOpenResFile function allows you to specify both a directory ID and a volume reference number,
and is therefore preferred if FSpOpenResFile is not available. The OpenRFPerm is an earlier versions of
HOpenResFile that is still supported but is more restricted in its capabilities.

The Resource Manager reads the resource map from the resource fork for the specified file into memory. It
also reads into memory every resource in the resource fork whose resPreload attribute is set.

You don’t have to call this function to open the System file’s resource fork or an application file’s resource
fork. These files are opened automatically when the system and the application start up, respectively. To get
the file reference number for your application, call the CurResFile (page 1664) function after the application
starts up and before you open the resource forks for any other files.

Functions 1689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

This function checks that the information in the resource map is internally consistent. If it isn’t, ResError
returns the result code mapReadErr. It’s possible to create multiple, unique, read-only access paths to a
resource fork using this function however, you should avoid doing so, to prevent inconsistencies between
multiple copies of the resource map.

To open a resource fork just for block-level operations, such as copying files without reading the resource
map into memory, use the File Manager function OpenRF.

If you want to open the resource fork for another application (or any resource fork other than your application’s
that includes 'CODE' resources), you must bracket your calls to this function with calls to the
SetResLoad (page 1695) function with the load parameter set to FALSE and then to TRUE. You must also
avoid making intersegment calls while the other application’s resource fork is open.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Resources.h

ReadPartialResource
Reads part of a resource into memory and work with a small subsection of a large resource.

void ReadPartialResource (
 Handle theResource,
 long offset,
 void *buffer,
 long count
);

Parameters
theResource

A handle to the resource you wish to read.

offset
The beginning of the resource subsection to be read, measured in bytes from the beginning of the
resource.

buffer
A pointer to the buffer into which the partial resource is to be read. Your application is responsible
for the buffer’s memory management. You cannot use the ReleaseResource (page 1691) function
to release the memory the buffer occupies.

count
The length of the resource subsection.

Discussion
This function always tries to read resources from disk. If a resource is already in memory, the Resource Manager
still reads it from disk, and the ResError (page 1692) function returns the result code resourceInMemory.
If you try to read past the end of a resource or the value of the offset parameter is out of bounds, ResError
returns the result code inputOutOfBounds. If the handle in the parameter theResource doesn’t refer to
a resource in an open resource fork, ResError returns the result code resNotFound.

1690 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

You may experience problems if you have a copy of a resource in memory when you are using the partial
resource functions. If you have modified the copy in memory and then access the resource on disk using this
function, the function reads the data on disk, not the data in memory, which is referenced through the
resource’s handle.

When using partial resource functions, you should call the SetResLoad (page 1695) function, specifying FALSE
for the load parameter, before you call GetResource. Using the SetResLoad function prevents the Resource
Manager from reading the entire resource into memory. Be sure to restore the normal state by calling
SetResLoad again, with the load parameter set to TRUE, immediately after you call the GetResource (page
1683) function. Then use ReadPartialResource to read a portion of the resource into a buffer.

If the entire resource is in memory and you want only part of its data, it’s faster to use the Memory Manager
function BlockMove instead of the ReadPartialResource function. If you read a partial resource into
memory and then change its size, you can use the SetResourceSize (page 1696) function to change the
entire resource’s size on disk as necessary

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ReleaseResource
Releases the memory a resource occupies when you have finished using it.

void ReleaseResource (
 Handle theResource
);

Parameters
theResource

A handle to the resource which you wish to release. The function sets the master pointer of the
resource’s handle in the resource map in memory to NULL. If your application previously obtained a
handle to that resource, the handle is no longer valid. If your application subsequently calls the
Resource Manager to get the released resource, the Resource Manager assigns a new handle.

If the given resource isn’t a handle to a resource, the function does nothing, and the ResError (page
1692) function returns the result code resNotFound. Be aware that ReleaseResourcewon’t release
a resource whose resChanged attribute has been set, but ResError still returns the result code
noErr.

Special Considerations

Do not use this function to release a System resource that might be shared by several applications.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

Functions 1691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

RemoveResource
Removes a resource’s entry from the current resource file’s resource map in memory.

void RemoveResource (
 Handle theResource
);

Parameters
theResource

A handle to the resource which you wish to detach. If the resProtected attribute for the resource
is set or if this parameter doesn’t contain a handle to a resource, the function does nothing, and the
ResError (page 1692) function returns the result code rmvResFailed.

Discussion
The RemoveResource function does not dispose of the handle you pass into it; to do so you must call the
Memory Manager function DisposeHandle after calling RemoveResource. You should dispose the handle
if you want to release the memory before updating or closing the resource fork.

If you’ve removed a resource, the Resource Manager writes the entire resource map when it updates the
resource fork, and all changes made to the resource map become permanent. If you want any of the changes
to be temporary, you should restore the original information before the Resource Manager updates the
resource fork.

The RemoveResource function is also available as the RmveResource function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResError
Determines what error occurred, if any, after calling a Resource Manager function.

OSErr ResError (
 void
);

Return Value
A result code. See “Resource Manager Result Codes” (page 1711). If no error occurred, the function returns
noErr. If an error occurs at the Resource Manager level, the function returns one of the result codes specific
to the Resource Manager. If an error occurs at the Operating System level, the function returns an Operating
System result code. In certain cases, the ResError function returns noErr even though a Resource Manager
function was unable to perform the requested operation. See the individual function descriptions for details
about the circumstances under which this happens.

Discussion
Resource Manager functions do not report error information directly. Instead, after calling a Resource Manager
function, your application should call this function to determine whether an error occurred. You also can use
this function to check for an error after application startup (system software opens the resource fork of your
application during application startup).

1692 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Resource Manager functions usually return NULL or –1 as the function result when there’s an error. For
Resource Manager functions that return –1, your application can call the ResError function to determine
the specific error that occurred. For Resource Manager functions that return handles, your application should
always check whether the value of the returned handle is NULL. If it is, your application can use this function
to obtain specific information about the nature of the error. Note, however, that in some cases ResError
returns noErr even though the value of the returned handle is NULL.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTMetaData
Simple DrawSprocket

Declared In
Resources.h

SetResAttrs
Sets a resource’s attributes in the resource map in memory.

void SetResAttrs (
 Handle theResource,
 ResAttributes attrs
);

Parameters
theResource

A handle to the resource whose attributes you wish to set. If the value of this parameter isn’t a valid
handle to a resource, the function does nothing, and the ResError (page 1692) function returns the
result code resNotFound.

attrs
The resource attributes to set. The resProtected attribute changes immediately. Other attribute
changes take effect the next time the specified resource is read into memory but are not made
permanent until the Resource Manager updates the resource fork.

Each attribute is identified by a specific bit in the low-order byte of a word. If the bit corresponding
to an attribute contains 1, then that attribute is set; if the bit contains 0, then that attribute is not set.

Discussion
This function changes the information in the resource map in memory, not in the file on disk. If you want
the Resource Manager to write the modified resource map to disk after a subsequent call to the
UpdateResFile (page 1700) function or when your application terminates, call the ChangedResource (page
1661) function after you call SetResAttrs.

Do not use this function to change a purgeable resource. If you make a purgeable resource nonpurgeable
by setting the resPurgeable attribute with this function, the resource doesn’t become nonpurgeable until
the next time the specified resource is read into memory. Thus, the resource might be purged while you’re
changing it.

You can check for errors using the ResError function. SetResAttrs does not return an error if you are
setting the attributes of a resource in a resource file that has a read-only resource map. To find out whether
this is the case, use the GetResAttrs (page 1681) function.

Functions 1693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

SetResFileAttrs
Sets a resource fork’s attributes.

void SetResFileAttrs (
 ResFileRefNum refNum,
 ResFileAttributes attrs
);

Parameters
refNum

A file reference number for the resource fork whose attributes you want to set. If this value is 0, it
represents the System file’s resource fork. However, you shouldn’t change the attributes of the System
file’s resource fork. If there’s no resource fork with the given reference number, the function does
nothing, and the ResError (page 1692) function returns the result code noErr.

attrs
The attributes to set. Like individual resources, resource forks have attributes that are specified by
bits in the low-order byte of a word. When the Resource Manager first creates a resource fork after a
call to FSpOpenResFile (page 1671) or a related function, it does not set any of the resource fork’s
attributes—that is, they are all set to 0.

Discussion
The Resource Manager sets the mapChanged attribute for the resource fork when you call the
ChangedResource (page 1661), theAddResource (page 1660), or theRemoveResource (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

SetResInfo
Sets the name and resource ID of a resource.

void SetResInfo (
 Handle theResource,
 ResID theID,
 ConstStr255Param name
);

Parameters
theResource

A handle to the resource whose name and ID you wish to set.

1694 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

theID
The new resource ID. If the parameter theResource doesn’t contain a handle to an existing resource,
the function does nothing, and theResError (page 1692) function returns the result coderesNotFound.

name
The new name of the specified resource. If you pass an empty string for the name parameter, the
resource name is not changed.

Discussion
The function changes the information in the resource map in memory, not in the resource file itself. Do not
change a system resource’s resource ID or name. Other applications may already access the resource and
may not work properly if you change the resource ID, resource name, or both.

If the resource map becomes too large to fit in memory (for example, after an unnamed resource is given a
name), this function does nothing, and ResError returns an appropriate Memory Manager result code. The
same is true if the resource data in memory can’t be written to the resource fork (for example, because the
disk is full). If the resProtected attribute is set for the resource, SetResInfo does nothing, and ResError
returns the result code resAttrErr.

If you want to write changes to the resource map on disk after updating the resource map in memory, call
the ChangedResource (page 1661) function for the same resource after you call SetResInfo. Even if you
don’t call ChangedResource after using this function to change the name and resource ID of a resource,
the change may be written to disk when the Resource Manager updates the resource fork. If you call
ChangedResource for any resource in the same resource fork, or if you add or remove a resource, the
Resource Manager writes the entire resource map to disk after a call to the UpdateResFile (page 1700)
function or when your application terminates. In these cases, all changes to resource information in the
resource map become permanent. If you want any of the changes to be temporary, you should restore the
original information before the resource is updated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

SetResLoad
Enables and disables automatic loading of resource data into memory for functions that return handles to
resources.

Functions 1695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

void SetResLoad (
 Boolean load
);

Parameters
load

Determines whether Resource Manager functions should read resource data into memory. If you set
this parameter to TRUE, Resource Manager functions that return handles will, during subsequent calls,
automatically read resource data into memory if it is not already in memory; if you set this parameter
to FALSE, Resource Manager functions will not automatically read resource data into memory. Instead,
such functions return a handle whose master pointer is set to NULL unless the resource is already in
memory. In addition, when first opening a resource fork the Resource Manager won’t load into memory
resources whose resPreload attribute is set. The default setting is TRUE.

If you call the function with this parameter set to FALSE, be sure to call SetResLoad with this
parameter set to TRUE as soon as possible. Other parts of system software that call the Resource
Manager expect this value to be TRUE, and some functions won’t work if resources are not loaded
automatically.

Discussion
You can use the SetResLoad function when you want to read from the resource map without reading the
resource data into memory. To read the resource data into memory after a call to this function, call the
LoadResource function.

To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

SetResourceSize
Sets the size of a resource on disk.

void SetResourceSize (
 Handle theResource,
 long newSize
);

Parameters
theResource

A handle to the resource which you wish to change.

newSize
The size, in bytes, that you want the resource to occupy on disk. If the specified size is smaller than
the resource’s current size on disk, you lose any data from the cutoff point to the end of the resource.
If the specified size is larger than the resource’s current size on disk, all data is preserved, but the
additional area is uninitialized (arbitrary data).

1696 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Discussion
This function is normally used only with the ReadPartialResource (page 1690) and
WritePartialResource (page 1701) functions.

This function sets the size field of the specified resource on disk without writing the resource data. You can
change the size of any resource, regardless of the amount of memory you have available.

If you read a partial resource into memory and then change its size, you must use this function to change
the entire resource’s size on disk as necessary. For example, suppose the entire resource occupies 1 MB and
you use ReadPartialResource to read in a 200 KB portion of the resource. If you then increase the size of
this partial resource to 250 KB, you must call SetResourceSize to set the size of the resource on disk to
1.05 MB. Note that in this case you must also keep track of the resource data on disk and move any data that
follows the original partial resource on disk. Otherwise, there will be no space for the additional 50 KB when
you call WritePartialResource to write the modified partial resource to disk.

Under certain circumstances, the Resource Manager overrides the size you set with a call to this function.
For instance, suppose you read an entire resource into memory by calling GetResource (page 1683) or related
functions, then use SetResourceSize successfully to set the resource size on disk, and finally attempt to
write the resource to disk using the UpdateResFile (page 1700) or WriteResource (page 1702) functions. In
this case, the Resource Manager adjusts the resource size on disk to conform with the size of the resource
in memory.

If the disk is locked or full, or the file is locked, this function does nothing, and the ResError (page 1692)
function returns an appropriate File Manager result code. If the resource is in memory, the Resource Manager
tries to set the size of the resource on disk. If the attempt succeeds, ResError returns the result code
resourceInMemory, and the Resource Manager does not update the copy in memory. If the attempt fails,
ResError returns an appropriate File Manager result code.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

SetResPurge
Tells the Memory Manager to pass the handle of a resource to the Resource Manager before purging the
data specified by that handle.

Functions 1697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

void SetResPurge (
 Boolean install
);

Parameters
install

Specifies whether the Memory Manager checks with the Resource Manager before purging a resource
handle.

Specify TRUE to make the Memory Manager pass the handle for a resource to the Resource Manager
before purging the resource data to which the handle points. The Resource Manager determines
whether the handle points to a resource in the application heap. It also checks if the resource’s
resChanged attribute is set to 1. If these two conditions are met, the Resource Manager calls the
WriteResource (page 1702) function to write the resource’s resource data to the resource fork before
returning control to the Memory Manager.

If you call this function with this parameter set to TRUE and then call the Memory Manager function
MoveHHi to move a handle to a resource, the Resource Manager calls the WriteResource function
to write the resource data to disk even if the data has not been changed. To prevent this, call
SetResPurge with this parameter set to FALSE before you call MoveHHi, then call SetResPurge
again with this parameter set to TRUE immediately after you call MoveHHi.

Whenever you call this function with this parameter set to TRUE, the Resource Manager installs its
own purge-warning function, overriding any purge-warning function you’ve specified to the Memory
Manager.

Specify FALSE to restore the normal state, so that the Memory Manager purges resource data when
it needs to without calling the Resource Manager.

Discussion
You can use this function in applications that modify purgeable resources. You should also take precautions
in such applications to ensure that the resource won’t be purged while you’re changing it.

To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Unique1ID
Gets a resource ID that’s unique with respect to resources in the current resource file.

ResID Unique1ID (
 ResType theType
);

Parameters
theType

A resource type.

Return Value
A resource ID greater than 0 that isn’t currently assigned to any resource of the specified type in the current
resource file.

1698 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Discussion
You should use this function before adding a new resource to ensure that you don’t duplicate a resource ID
and override an existing resource.

To check for errors, call the ResError (page 1692) function.

For more information about restrictions on resource IDs for specific resource types, see ResID (page 1705).

In versions of system software earlier than System 7, this function may return a resource ID in the range 0
through 127, which is generally reserved for system resources. You should check that the resource ID returned
is not in this range. If it is, call Unique1ID again, and continue doing so until you get a resource ID greater
than 127.

In System 7 and later versions, this function won’t return a resource ID of less than 128.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

UniqueID
Gets a unique resource ID for a resource.

ResID UniqueID (
 ResType theType
);

Parameters
theType

A resource type.

Return Value
A resource ID greater than 0 that isn’t currently assigned to any resource of the specified type in any open
resource fork.

Discussion
You should use this function before adding a new resource to ensure that you don’t duplicate a resource ID
and override an existing resource.

To check for errors, call the ResError (page 1692) function.

For more information about restrictions on resource IDs for specific resource types, see ResID (page 1705).

In versions of system software earlier than System 7, this function may return a resource ID in the range 0
through 127, which is generally reserved for system resources. You should check that the resource ID returned
is not in this range. If it is, call UniqueID again, and continue doing so until you get a resource ID greater
than 127.

Version Notes
In System 7 and later versions, UniqueID won’t return a resource ID of less than 128.

Availability
Available in Mac OS X v10.0 and later.

Functions 1699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Declared In
Resources.h

UpdateResFile
Updates the resource map and resource data for a resource fork without closing it.

void UpdateResFile (
 ResFileRefNum refNum
);

Parameters
refNum

A file reference number for a resource fork. If there’s no open resource fork with the given reference
number, the function does nothing, and the ResError (page 1692) function returns the result code
resNotFound. If the value of the refNum parameter is 0, it represents the System file’s resource fork.
If you call this function but the mapReadOnly attribute of the resource fork is set, the function does
nothing, and the ResError function returns the result code resAttrErr.

Discussion
Given the reference number of a file whose resource fork is open, this function performs three tasks. The first
task is to change, add, or remove resource data in the file’s resource fork to match the resource map in
memory. Changed resource data for each resource is written only if that resource’s resChanged bit has been
set by a successful call to the ChangedResource (page 1661) or AddResource (page 1660) function. The
UpdateResFile function calls the WriteResource (page 1702) function to write changed or added resources
to the resource fork.

The second task is to compact the resource fork, closing up any empty space created when a resource was
removed, made smaller, or made larger. If a resource is made larger, the Resource Manager writes it at the
end of the resource fork rather than at its original location. It then compacts the space occupied by the
original resource data. The actual size of the resource fork is adjusted when a resource is removed or made
larger, but not when a resource is made smaller.

The third task is to write the resource map in memory to the resource fork if your application has called the
ChangedResource function for any resource listed in the resource map or if it has added or removed a
resource. All changes to resource information in the resource map become permanent at this time; if you
want any of these changes to be temporary, you must restore the original information before calling
UpdateResFile.

Because the CloseResFile (page 1662) function calls UpdateResFile before it closes the resource fork, you
need to call UpdateResFile directly only if you want to update the file without closing it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

UseResFile
Sets the current resource file.

1700 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

void UseResFile (
 ResFileRefNum refNum
);

Parameters
refNum

The file reference number for the resource fork which you wish to set as the current resource fork.

Return Value
The function searches the list of files whose resource forks have been opened for the file specified here. If
the specified file is found, the Resource Manager sets the current resource file to the specified file. If there’s
no resource fork open for a file with that reference number, the function does nothing. To set the current
resource file to the System file, use 0 here.

Discussion
Open resource forks are arranged as a linked list with the most recently opened resource fork at the beginning.
When searching open resource forks, the Resource Manager starts with the most recently opened file. You
can call this function to set the current resource file to a file opened earlier, and thereby start subsequent
searches with the specified file. In this way, you can cause any files higher in the resource chain to be left out
of subsequent searches.

When a new resource fork is opened, this action overrides previous calls to this function and the entire list
is searched. For example, if five resource forks are opened in the order R0, R1, R2, R3, and R4, the search order
is R4-R3-R2-R1-R0. Calling UseResFile(R2) changes the search order to R2-R1-R0; R4 and R3 are not searched.
When the resource fork of a new file (R5) is opened, the search order becomes R5-R4-R3-R2-R1-R0.

You typically call the CurResFile (page 1664) function to get and save the current resource file, UseResFile
to set the current resource file to the desired file, then (after you are finished using the resource) UseResFile
to restore the current resource file to its previous value. Calling UseResFile(0) causes the Resource Manager
to search only the System file’s resource map. This is useful if you no longer wish to override a system resource
with one by the same name in your application’s resource fork.

Most of the Resource Manager functions assume that the current resource file is the file on whose resource
fork they should operate or, in the case of a search, the file where they should begin. In general, the current
resource file is the last one whose resource fork your application opened unless you specify otherwise.

TheFSpOpenResFile (page 1671) andHOpenResFile (page 1686) functions, which also set the current resource
file, override previous calls to UseResFile.

To check for errors, call the ResError (page 1692) function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Simple DrawSprocket

Declared In
Resources.h

WritePartialResource
Writes part of a resource to disk when working with a small subsection of a large resource.

Functions 1701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

void WritePartialResource (
 Handle theResource,
 long offset,
 const void *buffer,
 long count
);

Parameters
theResource

A handle to the resource you wish to write to disk.

offset
The beginning of the resource subsection to write, measured in bytes from the beginning of the
resource.

buffer
A pointer to the buffer containing the data to write. Your application is responsible for the buffer’s
memory management.

count
The length of the resource subsection to write.

Discussion
If the disk or the file is locked, the ResError (page 1692) function returns an appropriate File Manager result
code. If you try to write past the end of a resource, the Resource Manager attempts to enlarge the resource.
The ResError function returns the result code writingPastEnd if the attempt succeeds. If the Resource
Manager cannot enlarge the resource, ResError returns an appropriate File Manager result code. If you
pass an invalid value in the offset parameter, ResError returns the result code inputOutOfBounds.

This function tries to write the data from the buffer to disk. If the attempt is successful and the resource data
(referenced through the resource’s handle) is in memory, ResError returns the result code
resourceInMemory. In this situation, be aware that the data of the resource subsection on disk matches
the data from the buffer, not the resource data referenced through the resource’s handle. If the attempt to
write the data from the buffer to the disk fails, ResError returns an appropriate error.

When using partial resource functions, you should call the SetResLoad (page 1695) function, specifying FALSE
for theloadparameter, before you call theGetResource (page 1683) function. Doing so prevents the Resource
Manager from reading the entire resource into memory. Be sure to restore the normal state by calling
SetResLoad again, with the load parameter set to TRUE, immediately after you call GetResource.

If you read a partial resource into memory and then change its size, you must use the SetResourceSize (page
1696) function to change the entire resource’s size on disk as necessary before you write the partial resource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

WriteResource
Writes resource data in memory immediately to a file’s resource fork.

1702 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

void WriteResource (
 Handle theResource
);

Parameters
theResource

A handle to a resource. The function checks the resChanged attribute of this resource. If the
resChanged attribute is set to 1, such as after a successful call to the ChangedResource (page 1661)
or AddResource (page 1660) function, WriteResource writes the resource data in memory to the
resource fork, then clears the resChanged attribute in the resource’s resource map in memory.

If the resource is purgeable and has been purged, the function writes zero-length resource data to
the resource fork. If the resource’s resProtected attribute is set to 1, the function does nothing,
and the ResError (page 1692) function returns the result code noErr. The same is true if the
resChanged attribute is not set (that is, set to 0). If the given handle isn’t a handle to a resource,
WriteResource does nothing, and ResError returns the result code resNotFound.

Discussion
Note that this function does not write the resource’s resource map entry to disk.

When your application calls ChangedResource or AddResource, the Resource Manager attempts to reserve
disk space for the changed resource. If the modified resource data can’t be written to the resource fork (for
example, if there’s not enough room on disk), the resChanged attribute is not set to 1. If this is the case and
you call WriteResource, the Resource Manager won’t know that the resource data has been changed. Thus,
the function won’t write the modified resource data to the resource fork and won’t return an error. For this
reason, always make sure that the ResError function returns the result code noErr after a call to
ChangedResource or AddResource.

The resource fork is updated automatically when your application quits, when you call the
UpdateResFile (page 1700) function, or when you call the CloseResFile (page 1662) function. Thus, you
should call WriteResource only if you want to write just one or a few resources immediately.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Callbacks

ResErrProcPtr
typedef void (*ResErrProcPtr) (
 OSErr thErr
);

If you name your function MyResErrProc, you would declare it like this:

void MyResErrProc (
 OSErr thErr
);

Callbacks 1703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResourceEndianFilterPtr
typedef OSErr (*ResourceEndianFilterPtr) (
 Handle theResource,
 Boolean currentlyNativeEndian
);

If you name your function MyResourceEndianFilter, you would declare it like this:

OSErr MyResourceEndianFilter (
 Handle theResource,
 Boolean currentlyNativeEndian
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Data Types

ResAttributes
typedef short ResAttributes;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResErrUPP
typedef ResErrProcPtr ResErrUPP;

Discussion
For more information, see the description of the ResErrProcPtr (page 1703) callback function.

Availability
Available in Mac OS X v10.0 and later.

1704 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Declared In
Resources.h

ResFileAttributes
typedef short ResFileAttributes;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResFileRefNum
typedef short ResFileRefNum;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

ResID
Defines a unique identifier for a resource of a given type.

typedef short ResID;

Discussion
A resource is identified by its resource type and resource ID (or, optionally, its resource type and resource
name). The IDs for resources used by the system software and those used by applications are assigned from
separate ranges. By using these ranges correctly, you can avoid resource ID conflicts.

In general, system resources use IDs in the range –32767 through 127, and application resources must use
IDs that fall between 128 and 32767. The IDs for some categories of resources, such as definition functions
and font families, fall in different ranges or in ranges that are broken down for more specific purposes.

You can use a resource name instead of a resource ID to identify a resource of a given type. Like a resource
ID, a resource name should be unique within each type. If you assign the same resource name to two resources
of the same type, the second assignment of the name overrides the first, thereby making the first resource
inaccessible by name. When comparing resource names, the Resource Manager ignores case (but does not
ignore diacritical marks).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Resources.h

Data Types 1705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

ResType
Defines a unique identifier for a type of resource.

typedef FourCharCode ResType;

Discussion
The Resource Manager uses the resource type along with the resource ID to identify a resource. A resource
type can be any sequence of four alphanumeric characters, including the space character.

You can define your own resource types, but they must not conflict with any of the standard resource types.
When identifying resource types, the Resource Manager distinguishes between uppercase letters and their
lowercase counterparts. Apple reserves for its own use all resource types that consist of all lowercase letters,
all spaces, or all international characters (characters greater than $7F).

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

Constants

Reference Number Constants
enum {
 kResFileNotOpened = -1,
 kSystemResFile = 0
};

Constants
kResFileNotOpened

Indicates the reference number returned as error when opening a resource file.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

kSystemResFile
Indicates the default reference number to the system file.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

1706 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Resource Attribute Bits
enum {
 resSysRefBit = 7,
 resSysHeapBit = 6,
 resPurgeableBit = 5,
 resLockedBit = 4,
 resProtectedBit = 3,
 resPreloadBit = 2,
 resChangedBit = 1,
};

Constants
resSysRefBit

If this attribute is set to 1, it is a system reference. If it is set to 0, it is a local reference.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resSysHeapBit
This attribute indicates whether the resource is read into the system heap (resSysHeapBit attribute
is set to 1) or your application’s heap (resSysHeapBit attribute is set to 0).

If you are setting your resource’s attributes with SetResAttrs, you should set this bit to 0 for your
application’s resources. Note that if you do set the resSysHeapBit attribute to 1 and the resource
is too large for the system heap, the bit is cleared and the resource is read into the application heap.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resPurgeableBit
If this attribute is set to 1, the resource is purgeable if it’s 0, the resource is nonpurgeable. However,
do not use SetResAttrs to make a purgeable resource nonpurgeable.

Because a locked resource is nonrelocatable and nonpurgeable, the resLockedBit attribute overrides
the resPurgeableBit attribute.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resLockedBit
If this attribute is 1, the resource is nonpurgeable regardless of whether resPurgeableBit is set. If
it’s 0, the resource is purgeable or nonpurgeable depending on the value of the resPurgeableBit
attribute.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resProtectedBit
If this attribute is set to 1, your application can’t use Resource Manager functions to change the
resource ID or resource name, modify the resource contents, or remove the resource from its resource
fork. However, you can use the SetResAttrs function to remove this protection. Note that this
attribute change takes effect immediately.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Constants 1707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

resPreloadBit
If this attribute is set to 1, the Resource Manager reads the resource’s resource data into memory
immediately after opening its resource fork. You can use this setting to make multiple resources
available for your application as soon as possible, rather than reading each one into memory
individually. If both the resPreloadBit attribute and the resLockedBit attribute are set, the
Resource Manager loads the resource as low in the heap as possible.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resChangedBit
If this attribute is set to 1, the resource has been changed. If it’s 0, the resource hasn’t been changed.
This attribute is used only while the resource map is in memory. The resChangedBit attribute must
be 0 in the resource fork on disk.

Do not use SetResAttrs to set the resChangedBit attribute. Be sure the attrs parameter passed
to SetResAttrs doesn’t change the current setting of this attribute. To set the resChangedBit
attribute, call the ChangedResource function.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Discussion
The SetResAttrs (page 1693) and GetResAttrs (page 1681) functions use these constants to refer to each
attribute.

Resource Attribute Masks
enum {
 resSysHeap = 64,
 resPurgeable = 32,
 resLocked = 16,
 resProtected = 8,
 resPreload = 4,
 resChanged = 2,
};

Constants
resSysHeap

Use to set or test for the resSysHeapBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resPurgeable
Use to set or test for the resPurgeableBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resLocked
Use to set or test for the resLockedBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

1708 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

resProtected
Use to set or test for the resProtectedBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resPreload
Use to set or test for the resPreloadBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

resChanged
Use to set or test for the resChangedBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Resource Chain Location
Specify the location of the resource chain.

typedef SInt16 RsrcChainLocation
enum {
 kRsrcChainBelowSystemMap = 0,
 kRsrcChainBelowApplicationMap = 1,
 kRsrcChainAboveApplicationMap = 2,
 kRsrcChainAboveAllMaps = 4
};

Constants
kRsrcChainBelowSystemMap

Indicates the resource chain is below the system's resource map.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

kRsrcChainBelowApplicationMap
Indicates the resource chain is below the application's resource map.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

kRsrcChainAboveApplicationMap
Indicates the resource chain is above the application's resource map.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

kRsrcChainAboveAllMaps
Indicates the resource chain is above all resource maps.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Discussion
These constants and data type are for use with the Resource Manager chain manipulation routines under
Carbon.

Constants 1709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Resource Fork Attribute Bits
enum {
 mapReadOnlyBit = 7,
 mapCompactBit = 6,
 mapChangedBit = 5
};

Constants
mapReadOnlyBit

If this bit is set to 1, the Resource Manager doesn’t write anything to the resource fork on disk. It also
doesn’t check whether the resource data can be written to disk when the resource map is modified.
When this attribute is set to 1, the ChangedResource (page 1661) and WriteResource (page 1702)
functions do nothing, but the function ResError (page 1692) returns the result code noErr.

If you set the mapReadOnlyBit attribute but later clear it, the resource data is written to disk even
if there’s no room for it. This operation may destroy the resource fork.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

mapCompactBit
If this bit is set to 1, the Resource Manager compacts the resource fork when it updates the file. The
Resource Manager sets this attribute when a resource is removed or when a resource is made larger
and thus must be written at the end of a resource fork. You may want to set the mapCompactBit
attribute to force the Resource Manager to compact a resource fork when your changes have made
resources smaller.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

mapChangedBit
If this bit is set to 1, the Resource Manager writes the resource map to disk when the file is updated.
For example, you can set mapChangedBit if you’ve changed resource attributes only and don’t want
to call the ChangedResource (page 1661) function because you don’t want to write the resource data
to disk.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Resource Fork Attribute Masks
enum{
 mapReadOnly = 128,
 mapCompact = 64,
 mapChanged = 32
};

Constants
mapReadOnly

Use to set or test for the mapReadOnlyBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

1710 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

mapCompact
Use to set or test for the mapCompactBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

mapChanged
Use to set or test for the mapChangedBit.

Available in Mac OS X v10.0 and later.

Declared in Resources.h.

Result Codes

The most common result codes returned by Resource Manager are listed in the table below. The Resource
Manager may also return the following result codes: noErr (0), dirFulErr (-33), dskFulErr (-34), nsvErr
(-35), ioErr (-36), bdNamErr (-37), eofErr (-39), tmfoErr (-42), fnfErr (-43), wPrErr (-44), fLckdErr (-45),
vLckdErr (-46),dupFNErr (-48),opWrErr (-49),permErr (-54),extFSErr (-58),memFullErr (-108),dirNFErr
(-120).

DescriptionValueResult Code

The extended resource has a bad format.-185badExtResource

Available in Mac OS X v10.0 and later.

Can’t decompress a compressed resource.-186CantDecompress

Available in Mac OS X v10.0 and later.

The resource is already in memory.-188resourceInMemory

Available in Mac OS X v10.0 and later.

Writing past the end of file.-189writingPastEnd

Available in Mac OS X v10.0 and later.

The offset or count is out of bounds.-190inputOutOfBounds

Available in Mac OS X v10.0 and later.

The resource was not found.-192resNotFound

Available in Mac OS X v10.0 and later.

The resource file was not found.-193resFNotFound

Available in Mac OS X v10.0 and later.

The AddResource function failed.-194addResFailed

Available in Mac OS X v10.0 and later.

The RemoveResource function failed.-196rmvResFailed

Available in Mac OS X v10.0 and later.

Result Codes 1711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

DescriptionValueResult Code

The attribute is inconsistent with the operation.-198resAttrErr

Available in Mac OS X v10.0 and later.

The map is inconsistent with the operation.-199mapReadErr

Available in Mac OS X v10.0 and later.

1712 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

Resource Manager Reference

Framework: CoreServices/CoreServices.h

Declared in Script.h

Overview

Important: The Script Manager is deprecated as of Mac OS X v10.5. Instead, you should update your application
to handle Unicode text using the facilities of the Cocoa system (see Text System Overview) or Core Text (see
Core Text Programming Guide). See also Internationalization Programming Topics.

The Script Manager makes script systems available and coordinates the interaction between many parts of
the Mac OS and those available script systems. A script system (or script for short) is a collection of resources
that provides for the representation of a particular writing system.

The Script Manager also provides several services directly to your application. Through them you can get
information about the current text environment, modify that environment, and perform a variety of
text-handling tasks.

The Script Manager has evolved through several versions. It started with sole responsibility for all
international-compatibility and multilingual text issues, but as more power and features have been added,
many of its specific functions have been moved to the other parts of system software.

For many text-related tasks, the Script Manager’s role is transparent when you make a script-aware Text
Utilities or QuickDraw call while processing text, that routine may get the information it needs through the
Script Manager. For example, when you call the QuickDraw function DrawText to draw a line of text, DrawText
in turn calls the Script Manager to determine which script system your text belongs to before drawing it. In
other situations you may need to call the Script Manager explicitly, to properly interpret the text you are
processing.

Carbon supports most Script Manager functions. However, Apple recommends that whenever possible you
should replace Script Manager calls with the appropriate Unicode functionality. For more information, see
Unicode Utilities Reference and Supporting Unicode Input.

See also the KeyScript function documentation.

Overview 1713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not
Recommended)

Functions by Task

Analyzing Characters

CharacterByteType (page 1716) Deprecated in Mac OS X v10.4
Identifies a byte in a text buffer as a single-byte character or as the first or second byte of a double-byte
character. (Deprecated. You should update your application to handle Unicode text. There is no
replacement function because Unicode handles encoding in a different manner.)

CharacterType (page 1717) Deprecated in Mac OS X v10.4
Returns a variety of information about the character represented by a given byte, including its type,
class, orientation, direction, case, and size (in bytes). (Deprecated. You should update your application
to handle Unicode text. There is no replacement function because Unicode handles encoding in a
different manner.)

FillParseTable (page 1720) Deprecated in Mac OS X v10.4
Helps your application to quickly process a buffer of mixed single-byte and double-byte characters.
(Deprecated. You should update your application to handle Unicode text. There is no replacement
function because Unicode handles encoding in a different manner.)

Checking and Setting Script Manager Variables

GetScriptManagerVariable (page 1724) Deprecated in Mac OS X v10.5
Retrieves the value of the specified Script Manager variable. (Deprecated. The replacement for this
function depends on the selector used with it, as described in the Special Considerations section.)

SetScriptManagerVariable (page 1731) Deprecated in Mac OS X v10.5
Sets the specified Script Manager variable to the value of the input parameter. (Deprecated. This is
mainly used to set the value of variables that control the internal operation of the Script Manager
(selectors smIntlForce and smGenFlags), and therefore there is no modern replacement.)

Checking and Setting Script Variables

GetScriptVariable (page 1726) Deprecated in Mac OS X v10.5
Retrieves the value of the specified script variable from the specified script system. (Deprecated. The
replacement for this function depends on the selector used with it, as described in the Special
Considerations section.)

SetScriptVariable (page 1732) Deprecated in Mac OS X v10.5
Sets the specified script variable for the specified script system to the value of the input parameter.
(Deprecated. The replacement for this function depends on the purpose for which it is used, as
described in the Special Considerations section.)

Checking and Setting the System Direction

GetSysDirection (page 1727) Deprecated in Mac OS X v10.4
Returns the current value of SysDirection, the global variable that determines the system direction
(primary line direction). (Deprecated. This function does not return anything useful in Mac OS X.)

1714 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

SetSysDirection (page 1733) Deprecated in Mac OS X v10.4
Sets the value of SysDirection, the global variable that determines the system direction (primary
line direction). (Deprecated. There is no replacement because this function is no longer needed in
Mac OS X.)

Determining Script Codes From Font Information

FontScript (page 1721) Deprecated in Mac OS X v10.4
Returns the script code for the current script (usually the font script). (Deprecated. Use
ATSFontFamilyGetEncoding instead.)

FontToScript (page 1722) Deprecated in Mac OS X v10.4
Translates a font family ID number into its corresponding script code, if that script system is currently
enabled. (Deprecated. Use ATSFontFamilyGetEncoding instead.)

IntlScript (page 1728) Deprecated in Mac OS X v10.4
Identifies the script system used by the Text Utilities date-formatting, time-formatting, and
string-sorting functions. (Deprecated. Use ATSFontFamilyGetEncoding instead.)

Directly Accessing International Resources

GetIntlResource (page 1722) Deprecated in Mac OS X v10.5
Returns a handle to one of the international resources. (Deprecated. The replacement for this function
depends on the purpose for which it is used, as described in the Special Considerations section.)

ClearIntlResourceCache (page 1719) Deprecated in Mac OS X v10.4
Clears the application’s international resources cache, which contains the resource ID numbers of the
string-manipulation ('itl2') and tokens ('itl4') resources for the current script. (Deprecated.
There is no replacement because this function is no longer needed in Mac OS X.)

GetIntlResourceTable (page 1723) Deprecated in Mac OS X v10.4
Obtains a specific word-selection, line-break, number-parts, untoken, or whitespace table from the
appropriate international resource. (Deprecated. There is no replacement because this function is no
longer needed in Mac OS X.)

Converting Text

IntlTokenize (page 1729) Deprecated in Mac OS X v10.4
Allows your application to convert text into a sequence of language-independent tokens. (Deprecated.
There is no replacement because this function is no longer needed in Mac OS X.)

TransliterateText (page 1733) Deprecated in Mac OS X v10.4
Converts characters from one subscript to the closest possible approximation in a different subscript
within the same double-byte script system. (Deprecated. Use CFStringUppercase instead.)

Functions by Task 1715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Functions

CharacterByteType
Identifies a byte in a text buffer as a single-byte character or as the first or second byte of a double-byte
character. (Deprecated in Mac OS X v10.4. You should update your application to handle Unicode text. There
is no replacement function because Unicode handles encoding in a different manner.)

short CharacterByteType (
 Ptr textBuf,
 short textOffset,
 ScriptCode script
);

Parameters
textBuf

A pointer to a text buffer containing the byte to be identified.

textOffset
The offset to the byte to be identified. The offset is measured in bytes; the first byte has an offset of
0.

script
A value that specifies the script system of the text in the buffer. Constants for all defined script codes
are listed on “Meta Script Codes” (page 1753). To specify the font script, pass smCurrentScript in
this parameter.

Return Value
One of three identifications: a single-byte character, the first byte of a double-byte character, or the second
byte of a double-byte character. The first byte of a double-byte character—the one at the lower offset in
memory—is the high-order byte the second byte of a double-byte character—the one at the higher offset—is
the low-order byte. This is the same order in which text is processed and numbers are represented.

Discussion
The script system associated with the character you wish to examine must be enabled in order for the function
to provide useful information. For example, if only the Roman script system is available and you attempt to
identify a byte in a run of double-byte characters, the CharacterByteType function returns 0, indicating
that the byte is a single-byte character.

For single-byte script systems, the character-type tables reside in the string-manipulation ('itl2') resource
and reflect region-specific or language-specific differences in uppercase conventions.

For double-byte script systems, the character-type tables reside in the encoding/rendering ('itl5') resource,
not the string-manipulation resource. Whenever you call CharacterByteType, the necessary character-set
encoding information is taken from the encoding/rendering resource. You cannot use the GetIntlResource
function to access double-byte character-type tables directly.

From byte value alone, it is not possible to distinguish the second byte of a double-byte character from a
single-byte character. CharacterByteType differentiates the second byte of a double-byte character from
a single-byte character by assuming that the byte at offset 0 is the first byte of a character. With that
assumption, it then sequentially identifies the size and starting position of each character in the buffer up
to textOffset.

1716 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Special Considerations

If you specify smCurrentScript for the script parameter, the value returned by CharacterByteType
can be affected by the state of the font force flag. It is unaffected by the state of the international resources
selection flag.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

CharacterType
Returns a variety of information about the character represented by a given byte, including its type, class,
orientation, direction, case, and size (in bytes). (Deprecated in Mac OS X v10.4. You should update your
application to handle Unicode text. There is no replacement function because Unicode handles encoding in
a different manner.)

short CharacterType (
 Ptr textBuf,
 short textOffset,
 ScriptCode script
);

Parameters
textBuf

A pointer to a text buffer containing the character to be examined.

textOffset
The offset to the location of the character to be examined. (It can be an offset to either the first or
the second byte of a double-byte character.) Offset is in bytes; the first byte of the first character has
an offset of 0.

script
A value that specifies the script system the byte belongs to. Constants for all defined script codes are
listed in “Meta Script Codes” (page 1753). To specify the font script, pass smCurrentScript in this
parameter.

Return Value
An integer bit field that provides information about the requested character.

Discussion
The CharacterType return value is an integer bit field that provides information about the requested
character. The field has the following format:

 ■ Bit range 0–3 (Type). The character types.

 ■ Bit range 4–7. Reserved.

 ■ Bit Range 8–11 (Class). Character classes (i.e., subtypes).

 ■ Bit 12 (Orientation). Horizontal or vertical.

 ■ Bit 13 (Direction). Left or right. In double-byte script systems, bit 13 indicates whether or not the character
is part of the main character set (not a user-defined character).

Functions 1717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

 ■ Bit 14 (Case). Uppercase or lowercase.

 ■ Bit 15 (Size). single-byte or double-byte.

The script system associated with the character you wish to examine must be enabled in order for any of
these three functions to provide useful information.

For single-byte script systems, the character-type tables reside in the string-manipulation ('itl2') resource
and reflect region-specific or language-specific differences in uppercase conventions. The CharacterType
function gets the tables from the string-manipulation resource using the GetIntlResource function.

For double-byte script systems, the character-type tables reside in the encoding/rendering ('itl5') resource,
not the string-manipulation resource. Whenever you call CharacterType, the necessary character-set
encoding information is taken from the encoding/rendering resource. You cannot use the GetIntlResource
function to access double-byte character-type tables directly.

The Script Manager defines the recognized character types, character classes, and character modifiers (bits
12–15), with constants to describe them. The CharacterType field masks are described in “Character Type
Field Masks” (page 1746).

The Script Manager also defines a set of masks with which you can isolate each of the fields in the
CharacterType return value. If you perform an AND operation with the CharacterType result and the
mask for a particular field, you select only the bits in that field. Once you’ve done that, you can test the result,
using the constants that represent the possible results.

The function CharacterType calls CharacterByteType to determine whether the byte at textOffset
is a single-byte character or the first byte or second byte of a double-byte character. The larger the text buffer,
the longer CharacterByteType takes to execute. To be most efficient, place the pointer textBuf at the
beginning of the character of interest before calling CharacterType. (If you want to be compatible with
older versions of CharacterType, also set textOffset to 1, rather than 0, for double-byte characters.)

Special Considerations

The function CharacterType may move memory; your application should not call this function at interrupt
time.

If you specify smCurrentScript for the script parameter, CharacterType always assumes that the text
in the buffer belongs to the font script. It is unaffected by the state of the font force flag or the international
resources selection flag.

For single-byte script systems, the character-type tables are in the string-manipulation ('itl2') resource.
For double-byte script systems, they are in the encoding/rendering ('itl5') resource. If the appropriate
resource does not include these tables, CharacterType exits without doing anything.

Some Roman fonts (for example, Symbol) substitute other characters for the standard characters in the
Standard Roman character set. Since the Roman script system CharacterType function assumes the Standard
Roman character set, it may return inappropriate results for nonstandard characters.

Version Notes
In versions of system software earlier than 7.0, the textOffset parameter to the CharacterType function
must point to the second byte of a double-byte character.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

1718 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Declared In
Script.h

ClearIntlResourceCache
Clears the application’s international resources cache, which contains the resource ID numbers of the
string-manipulation ('itl2') and tokens ('itl4') resources for the current script. (Deprecated in Mac OS
X v10.4. There is no replacement because this function is no longer needed in Mac OS X.)

Not recommended

void ClearIntlResourceCache (
 void
);

Discussion
At application launch, the script management system sets up an international resources cache for the
application. The cache contains the resource ID numbers of the string-manipulation and tokens resources
for all enabled scripts.

If you provide your own string manipulation or tokens resource to replace the default for a particular script,
call ClearIntlResourceCache at launch to ensure that your supplied resource is used instead of the script
system’s 'itl2' or 'itl4' resource.

The current default ID numbers for a script system’s 'itl2' and 'itl4' resources are stored in its script
variables. You can read and modify these values with the GetScriptVariable and SetScriptVariable
functions using the selectors smScriptSort (for the 'itl2' resource) and smScriptToken (for the
'itl4' resource). Before calling ClearIntlResourceCache, you should set the script’s default ID number
to the ID of the resource that you are supplying.

If the international resources selection flag is TRUE, the ID numbers of your supplied resources must be in
the system script range. Otherwise, the IDs must be in the range of the current script.

If you use the SetScriptVariable function to change the value of the 'itl2' or 'itl4' resource ID and
then call ClearIntlResourceCache to flush the cache, be sure to restore the original resource ID before
your application quits.

Special Considerations

The function ClearIntlResourceCache may move memory; your application should not call this function
at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

Functions 1719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

FillParseTable
Helps your application to quickly process a buffer of mixed single-byte and double-byte characters. (Deprecated
in Mac OS X v10.4. You should update your application to handle Unicode text. There is no replacement
function because Unicode handles encoding in a different manner.)

Boolean FillParseTable (
 CharByteTable table,
 ScriptCode script
);

Parameters
table

A 256-byte table to be filled in by FillParseTable.

script
A value that specifies the script system the parse table belongs to. Constants for all defined script
codes are listed in “Meta Script Codes” (page 1753). To specify the font script, pass smCurrentScript
in this parameter.

Return Value
If you specify smCurrentScript for the script parameter, the value returned by FillParseTable can
be affected by the state of the font force flag. It is unaffected by the international resources selection flag.

Discussion
Before calling FillParseTable, allocate space for a 256-byte table to pass to the function in the table
parameter.

This function returns a 256-byte table that distinguishes the character codes of all possible single-byte
characters from the first (high-order) byte values of all possible double-byte characters in the specified script
system. The script system associated with the character you wish to examine must be enabled in order for
any of these three functions to provide useful information.

For single-byte script systems, the character-type tables reside in the string-manipulation ('itl2') resource
and reflect region-specific or language-specific differences in uppercase conventions.

For double-byte script systems, the character-type tables reside in the encoding/rendering ('itl5') resource,
not the string-manipulation resource. Whenever you call FillParseTable, the necessary character-set
encoding information is taken from the encoding/rendering resource. You cannot use the GetIntlResource
function to access double-byte character-type tables directly.In every script system, double-byte characters
have distinctive high-order (first) bytes that allow them to be distinguished from single-byte characters.
FillParseTable fills a 256-byte table, conceptually equivalent to a single-byte character-set table, with
values that indicate, byte-for-byte, whether the character-code value represented by that byte index is the
first byte of a double-byte character. An entry in the CharByteTable is 0 for a single-byte character and 1
for the first byte of a double-byte character.

If your application is processing mixed characters, it can use the table to identify the locations of the
double-byte characters as it makes a single pass through the text, rather than having to call
CharacterByteType or CharacterType for each byte of the text buffer in turn. CharacterByteType
and CharacterType start anew at the beginning of the text buffer each time they are called, tracking
character positions up to the offset of the byte to be analyzed.

Special Considerations

FillParseTable may move memory; your application should not call this function at interrupt time.

1720 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

The table defined by CharByteTable is not dynamic; it does not get updated when the current font changes.
You need to call it separately for each script run in your text.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

FontScript
Returns the script code for the current script (usually the font script). (Deprecated in Mac OS X v10.4. Use
ATSFontFamilyGetEncoding instead.)

short FontScript (
 void
);

Parameters
Return Value
A script code. All recognized script codes and their defined constants are listed in “Meta Script Codes” (page
1753). FontScript returns only explicit script codes (0). If the font of the active graphics port is Roman and
the font force flag is TRUE, the script code returned is that of the system script and the script-forced result
flag is set to TRUE. If the font of the active graphics port is non-Roman, the state of the font force flag is
ignored. If the script system corresponding to the font of the active graphics port is not installed and enabled,
the script code returned is that of the system script and the script-defaulted result flag is set to TRUE.

Discussion
The information about the script code is subject to two control flags—the font force flag and the international
resources selection flag. You can test and set these flags with the GetScriptManagerVariable and
SetScriptManagerVariable selectors smFontForce and smIntlForce.

The function starts by initializing two result flags, the script-forced result flag and the script-defaulted result
flag, to FALSE. These flags are Script Manager variables, accessed through the GetScriptManagerVariable
function selectors smForced and smDefault.

Special Considerations

FontScript may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

Functions 1721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

FontToScript
Translates a font family ID number into its corresponding script code, if that script system is currently enabled.
(Deprecated in Mac OS X v10.4. Use ATSFontFamilyGetEncoding instead.)

short FontToScript (
 short fontNumber
);

Parameters
fontNumber

A font family ID number.

Return Value
A script code. All recognized script codes and their defined constants are listed in “Meta Script Codes” (page
1753). FontToScript returns only explicit script codes (0). If fontNumber is in the Roman range and the font
force flag is TRUE, the script code returned is that of the system script and the script-forced result flag is set
to TRUE. If fontNumber is in the non-Roman range, the state of the font force flag is ignored. If the script
system corresponding to fontNumber is not enabled, the script code returned is that of the system script
and the script-defaulted result flag is set to TRUE.

Discussion
The information about the script code is subject to two control flags—the font force flag and the international
resources selection flag. You can test and set these flags with the GetScriptManagerVariable and
SetScriptManagerVariable selectors smFontForce and smIntlForce.

The function starts by initializing two result flags, the script-forced result flag and the script-defaulted result
flag, to FALSE. These flags are Script Manager variables, accessed through the GetScriptManagerVariable
function selectors smForced and smDefault.

Do not use the function FontToScript to convert resource IDs to scripts codes.

Special Considerations

FontToScript may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

GetIntlResource
Returns a handle to one of the international resources. (Deprecated in Mac OS X v10.5. The replacement for
this function depends on the purpose for which it is used, as described in the Special Considerations section.)

1722 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Handle GetIntlResource (
 short theID
);

Parameters
theID

Contains an integer (0, 1, 2, 4, or 5 respectively for the 'itl0', 'itl1', 'itl2', 'itl4', and
'itl5'resources) to identify the type of the desired international resource.

Return Value
A handle to the correct resource of the requested type. The resource returned is that of the current script,
which is either the font script or the system script. The resource is of one of the following types: numeric-format
('itl0'), long-date-format ('itl1'), string-manipulation ('itl2'), tokens ('itl4'), or encoding/rendering
('itl5'). If GetIntlResource cannot return the requested resource, it returns a NULL handle and sets the
global variable resErr to the appropriate error code.

Special Considerations

Depending on the information that this function was called to obtain, it can be replaced by the use of
CFLocaleCopyCurrent to get an appropriate CFLocaleRef followed by one of the following:

 ■ CFLocaleGetValuewith keys such askCFLocaleUsesMetricSystem,kCFLocaleDecimalSeparator,
kCFLocaleCurrencySymbol.

 ■ CFDateFormatterCreate to get an appropriate CFDateFormatterRef object, followed by
CFDateFormatterCopyProperty with keys such as kCFDateFormatterMonthSymbols,
kCFDateFormatterWeekdaySymbols, and kCFDateFormatterAMSymbol.

 ■ CFNumberFormatterCreate to get an appropriate CFNumberFormatterRef object, followed by
CFNumberFormatterCopyProperty with keys such as
kCFNumberFormatterCurrencyDecimalSeparator, kCFNumberFormatterMinusSign,
kCFNumberFormatterPercentSymbol, and kCFNumberFormatterNegativePrefix.

GetIntlResource may move memory; your application should not call this function at interrupt time.

Carbon Porting Notes

While the return type of this function remains a Handle, in Mac OS X it returns an ordinary memory handle
instead of a resource handle.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Script.h

GetIntlResourceTable
Obtains a specific word-selection, line-break, number-parts, untoken, or whitespace table from the appropriate
international resource. (Deprecated in Mac OS X v10.4. There is no replacement because this function is no
longer needed in Mac OS X.)

Functions 1723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

void GetIntlResourceTable (
 ScriptCode script,
 short tableCode,
 Handle *itlHandle,
 long *offset,
 long *length
);

Parameters
script

A script code, the value that specifies a particular script system. Constants for all defined script codes
are listed in “Meta Script Codes” (page 1753).

tableCode
A number that specifies which table is requested. The constants for tableCode are detailed in “Table
Selectors” (page 1778).

itlHandle
On return, a handle to the string-manipulation ('itl2') or tokens ('itl4') resource containing the
table specified in the tableCode parameter. If the script system whose table is requested is not
available, GetIntlResourceTable returns a NULL handle.

offset
On return, a pointer to the offset (in bytes) to the specified table from the beginning of the resource.

length
On return, a pointer to the size of the table (in bytes).

Discussion
When you provide a script code in the script parameter, and a table code in the tableCode parameter,
GetIntlResourceTable returns a handle to the string-manipulation resource or tokens resource containing
that table, the offset of the specified table from the beginning of the resource, and the length of the table.

If you wish to manipulate the contents of the table you have requested, use the size returned in the length
parameter to allocate a buffer, and perform a block move of the table’s contents into that buffer.

Special Considerations

GetIntlResourceTable may move memory; your application should not call this function at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

GetScriptManagerVariable
Retrieves the value of the specified Script Manager variable. (Deprecated in Mac OS X v10.5. The replacement
for this function depends on the selector used with it, as described in the Special Considerations section.)

1724 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

long GetScriptManagerVariable (
 short selector
);

Parameters
selector

A value that specifies a particular Script Manager variable. To specify the Script Manager variable
whose value you need, use one of the selector constants listed in “Script Manager Selectors” (page
1768).

Return Value
The current value of the specified Script Manager variable or 0 if the selector is invalid. For some valid selectors,
0 may also be a valid return value. For example, when you call GetScriptManagerVariablewith a selector
value of smRegionCode on a version of Macintosh system software that has been localized for the United
States, it returns 0. Although GetScriptManagerVariable always returns a long integer, the actual value
may be a long integer, standard integer, or signed byte. If the value is not a long integer, it is stored in the
low-order word or byte of the long integer returned by GetScriptManagerVariable; the remaining bytes
are set to 0.

Discussion
The Script Manager maintains a set of variables that control general settings of the text environment, including
the identity of the system script and the keyboard script, and the settings of the font force flag and the
international resources selection flag.

You may want access to the Script Manager variables in order to understand the current environment or to
modify it.

Special Considerations

The replacement for this function depends on the selector used with it. Many of the selectors refer to
information that is not meaningful on a Unicode system or refer to details of the Script Manager itself; in
general there are no replacements for these. Selectors that have meaningful replacements are shown in the
following list. These are not direct replacements; they provide analogous but more modern functionality.

smSysScript. To obtain a text encoding for the legacy Mac OS encoding associated with the user's
preferred user interface language or with the application's default text encoding, use
CFStringGetSystemEncodingorGetApplicationTextEncoding. SometimessmSysScript is just
used to get a script code to pass to GetScriptVariable (page 1726); in this case the replacements for
GetScriptVariable (page 1726) selectors may provide more information.
smKeyScript. To obtain the intended language associated with the user's current keyboard input source
(plus other languages that can be input using it), use TISCopyCurrentKeyboardInputSource to get
that input source, then pass it to TISGetInputSourceProperty with the
kTISPropertyInputSourceLanguages key.
smKCHRCache. To obtain the key layout data for the keyboard layout currently in use, use
TISCopyCurrentKeyboardLayoutInputSource to get that input source, then pass it to
TISGetInputSourceProperty with the kTISPropertyUnicodeKeyLayoutData key (this returns
'uchr' Unicode ayout data only; it will not return any data for keyboard layouts that only have 'KCHR'
data).
smRegionCode. To obtain the locale associated with the user's preferred formats (for dates, times,
numbers, and so on) use the following code:
CFStringRef curLocaleStringRef = NULL;
localeRef = CFLocaleCopyCurrent();
if (localeRef) {
 curLocaleStringRef = CFLocaleGetIdentifier(localeRef);
 CFRelease(localeRef);

Functions 1725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

}

To obtain the user's preferred user interface language, use the following line of code:
CFArrayRef langArray = (CFArrayRef)CFPreferencesCopyAppValue(CFSTR("AppleLanguages"),
kCFPreferencesCurrentApplication);

The first entry in langArray indicates the preferred language. See also
CFLocaleCopyPreferredLanguages.

Selectors that have no meaningful replacement on a Unicode system include smEnabled, smBidirect, and
smDoubleByte. Selectors that pertain to internal operation of the Script Manager itself and thus have no
meaningful replacement include smVersion, smMunged, smPrint, and smSysRef.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Script.h

GetScriptVariable
Retrieves the value of the specified script variable from the specified script system. (Deprecated in Mac OS
X v10.5. The replacement for this function depends on the selector used with it, as described in the Special
Considerations section.)

long GetScriptVariable (
 short script,
 short selector
);

Parameters
script

A value that specifies the script system whose variable you are accessing. Use one of the script-code
constants listed in “Meta Script Codes” (page 1753).

selector
A value that specifies a particular script variable. Use one of the selector constants listed in “Script
Variable Selectors” (page 1773). Valid selector values are defined by each script system.

Return Value
0 if the selector value is invalid or if the specified script system is not installed. For some valid selectors, 0
may also be a valid return value. For example, calling GetScriptVariablewith a selector of smScriptLang
on a version of Macintosh system software that has been localized for the United States returns 0. Although
GetScriptVariable always returns a long integer, the actual value may be a long integer, standard integer,
or signed byte. If the value is not a long integer, it is stored in the low-order word or byte of the long integer
returned by GetScriptVariable; the remaining bytes are set to 0.

Discussion
Each enabled script system maintains a set of variables that control the current settings of that script system,
including the ID numbers of its international resources, its preferred fonts and font sizes, and its primary line
direction.

1726 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Special Considerations

The replacement for this function depends on the selector used with it. Many of the selectors refer to
information that is not meaningful on a Unicode system or refer to details of the Script Manager itself; in
general there are no replacements for these. Selectors that have meaningful replacements are shown in the
following list. These are not direct replacements; they provide analogous but more modern functionality.

smScriptLang. This was typically used with the system script to determine the system language. Instead,
to obtain the user's preferred user interface language, use the following line of code:

CFArrayRef langArray = (CFArrayRef)CFPreferencesCopyAppValue(CFSTR("AppleLanguages"),
kCFPreferencesCurrentApplication);

The first entry in langArray indicates the preferred language. See also
CFLocaleCopyPreferredLanguages.
Font selectorssmScriptSysFond,smScriptSysFondSize,smScriptAppFond,smScriptAppFondSize,
smScriptMonoFondSize, smScriptPrefFondSize, smScriptSmallFondSize, and
smScriptHelpFondSize. On Mac OS X you generally do not need to worry about setting an appropriate
font based on character script to ensure that characters are displayed correctly; Unicode encoding and
font fallbacks (to automatically find a font that can display a character) take care of this. However, for
cases where you do need to do this (such as Carbon applications that handle non-Unicode text), the
Core Text function CTFontCreateUIFontForLanguage (available in Mac OS X v10.5 and later) provides
a way to get a CTFontRef object for a specified language and user interface use.
Script resource ID selectors smScriptNumber, smScriptDate, smScriptSort, and smScriptToken.
These were used in several ways. Sometimes they were used to get a resource ID so specific fields in the
resource could be examined (for example, to determine the appropriate decimal separator or time
format). For this use CFLocaleGetValue can now be used with an appropriate key (for example,
kCFLocaleDecimalSeparator) to get similar information (much of the information associated with
the resource specified by smScriptToken is not relevant for a Unicode system). Another use was to get
a resource ID (or a handle) to pass to some other system function. For text sorting, this is replaced by
the collation functionality in CFString. For formatting of times, dates, and numbers, this is replaced by
functionality in CFLocale, CFDateFormatter, CFNumberFormatter.
smScriptKeys. To determine an appropriate keyboard input source for a particular language, use
TISCopyInputSourceForLanguage.
smScriptIcon. To obtain an icon for a particular keyboard input source, use
TISGetInputSourceProperty with the kTISPropertyIconRef or kTISPropertyIconImageURL
key.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Script.h

GetSysDirection
Returns the current value of SysDirection, the global variable that determines the system direction (primary
line direction). (Deprecated in Mac OS X v10.4. This function does not return anything useful in Mac OS X.)

Functions 1727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

short GetSysDirection (
 void
);

Parameters
Return Value
The current value of SysDirection: 0 if the system direction is left-to-right; -1 ($FFFF) if the system direction
is right-to-left.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

IntlScript
Identifies the script system used by the Text Utilities date-formatting, time-formatting, and string-sorting
functions. (Deprecated in Mac OS X v10.4. Use ATSFontFamilyGetEncoding instead.)

short IntlScript (
 void
);

Parameters
Return Value
A script code. All recognized script codes and their defined constants are listed in “Meta Script Codes” (page
1753). IntlScript returns only explicit script codes (0). If the international resources selection flag is TRUE,
the script code returned is that of the system script. If the identified script system is not enabled, the script
code returned is that of the system script and the script-defaulted result flag is set to TRUE.

Discussion
Information about the script system is subject to two control flags—the font force flag and the international
resources selection flag. You can test and set these flags with the GetScriptManagerVariable and
SetScriptManagerVariable selectors smFontForce and smIntlForce.

The function starts by initializing two result flags, the script-forced result flag and the script-defaulted result
flag, to FALSE. These flags are Script Manager variables, accessed through the GetScriptManagerVariable
function selectors smForced and smDefault.

The function also identifies the script system whose resources are returned by the Script Manager function
GetIntlResource. It is either the font script—the script system corresponding to the current font of the
active graphics port—or the system script.

Special Considerations

IntlScript may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

1728 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Declared In
Script.h

IntlTokenize
Allows your application to convert text into a sequence of language-independent tokens. (Deprecated in
Mac OS X v10.4. There is no replacement because this function is no longer needed in Mac OS X.)

TokenResults IntlTokenize (
 TokenBlockPtr tokenParam
);

Parameters
tokenParam

A pointer to a token block structure. The structure specifies the text to be converted to tokens, the
destination of the token list, a handle to the tokens ('itl4') resource, and a set of options. See the
TokenBlock (page 1736)data structure for information on what you need to pass in this structure and
what you obtain on return.

Return Value
A TokenResults value that specifies whether the function executed with errors. See “Token Results” (page
1818) for a list of the values that can be returned.

Discussion
Before calling the IntlTokenize function, allocate memory for and set up the following data structures:

 ■ A token block structure (data type TokenBlock). The token block structure is a parameter block that
holds both input and output parameters for the IntlTokenize function.

 ■ A token list to hold the results of the tokenizing operation. To set up the token list, estimate how many
tokens will be generated from your text, multiply that by the size of a token structure, and allocate a
memory block of that size in bytes. An upper limit to the possible number of tokens is the number of
characters in the source text.

 ■ A string list, if you want the IntlTokenize function to generate character strings for all the tokens. To
set up the string list, multiply the estimated number of tokens by the expected average size of a string,
and allocate a memory block of that size in bytes. An upper limit is twice the number of tokens plus the
number of bytes in the source text.

The function IntlTokenize creates tokens based on information in the tokens ('itl4') resource of the
script system under which the source text was created. You must load the tokens resource and place its
handle in the token block structure before calling the IntlTokenize function.

The token block structure contains both input and output values. At input, you must provide values for the
fields that specify the source text location, the token list location, the size of the token list, the tokens (
'itl4') resource to use, and several options that affect the operation. You must set reserved locations to 0
before calling IntlTokenize.

On output, the token block structure specifies how many tokens have been generated and the size of the
string list (if you have selected the option to generate strings).

The results of the tokenizing operation are contained in the token list, an array of token structures (data type
TokenRec (page 1739)).

Functions 1729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Pascal strings are generated if the doString parameter in the token block structure is set to TRUE. The string
is a normalized version of the source text that generated the token; alternate digits are replaced with ASCII
numerals, the decimal point is always an ASCII period, and double-byte Roman letters are replaced with
low-ASCII equivalents.

To make a series of calls to IntlTokenize and append the results of each call to the results of previous calls,
set doAppend to FALSE and initialize tokenCount and stringCount to 0 before making the first call to
IntlTokenize. (You can ignore stringCount if you set doString to FALSE.) Upon completion of the call,
tokenCount and stringCount will contain the number of tokens and the length in bytes of the string list,
respectively, generated by the call. On subsequent calls, set doAppend to TRUE, reset the source and
sourceLength parameters (and any other parameters as appropriate) for the new source text, but maintain
the output values for tokenCount and stringCount from each call as input values to the next call. At the
end of your sequence of calls, the token list and string list will contain, in order, all the tokens and strings
generated from the calls to IntlTokenize.

If you are making tokens from text that was created under more than one script system, you must load the
proper tokens resource and place its handle in the token block structure separately for each script run in the
text, appending the results each time.

Delimiters for quoted literals are passed to IntlTokenize in a two-integer array.

The individual delimiters, as specified in the leftDelims and rightDelims parameters, are paired by
position. The first (in storage order) opening delimiter in leftDelims is paired with the first closing delimiter
in rightDelims.

Comment delimiters may be 1 or 2 tokens each and there may be two sets of opening and closing pairs.
They are passed to IntlTokenize in a commentType array.

If only one token is needed for a delimiter, the second token must be specified to be delimPad. If only one
delimiter of an opening-closing pair is needed, then both of the tokens allocated for the other symbol must
be delimPad. The first token of a two-token sequence is at the higher position in the leftComment or
rightComment array.

When IntlTokenize encounters an escape character within a quoted literal, it places the portion of the
literal before the escape character into a single token (of type tokenLiteral), places the escape character
into another token (tokenEscape), places the character following the escape character into another token
(whatever token type it corresponds to), and places the portion of the literal following the escape sequence
into another token (tokenLiteral). Outside of a quoted literal, the escape character has no special
significance.

IntlTokenize considers the character specified in the decimalCode parameter to be a decimal character
only when it is flanked by numeric or alternate numeric characters, or when it follows them.

Special Considerations

IntlTokenize may move memory; your application should not call this function at interrupt time.

Because each call to IntlTokenize must be for a single script run, there can be no change of script within
a comment or quoted literal.

Comments and quoted literals must be complete within a single call to IntlTokenize in order to avoid
syntax errors.

1730 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

IntlTokenize always uses the tokens resource whose handle you pass it in the token block structure.
Therefore, it is not directly affected by the state of the font force flag or the international resources selection
flag. However, if you use the GetIntlResource function to get a handle to the tokens resource to pass to
IntlTokenize, remember that GetIntlResource is affected by the state of the international resources
selection flag.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

SetScriptManagerVariable
Sets the specified Script Manager variable to the value of the input parameter. (Deprecated in Mac OS X
v10.5. This is mainly used to set the value of variables that control the internal operation of the Script Manager
(selectors smIntlForce and smGenFlags), and therefore there is no modern replacement.)

OSErr SetScriptManagerVariable (
 short selector,
 long param
);

Parameters
selector

A value that specifies a particular Script Manager variable. To specify the Script Manager variable
whose value you wish to change, use one of the selector constants listed in “Script Manager
Selectors” (page 1768).

param
The new value for the specified Script Manager variable.

The actual values to be assigned may be long integers, standard integers, or signed bytes. If the value
is other than a long integer, you must store it in the low-order word or byte of the param parameter
and set the unused bytes to 0.

Return Value
A result code. See “Script Manager Result Codes” (page 1821). The value smBadVerb if the selector is not valid.
Otherwise, the function returns 0 (noErr).

Discussion
The Script Manager maintains a set of variables that control general settings of the text environment, including
the identity of the system script and the keyboard script, and the settings of the font force flag and the
international resources selection flag.

You may want access to the Script Manager variables in order to understand the current environment or to
modify it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 1731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Declared In
Script.h

SetScriptVariable
Sets the specified script variable for the specified script system to the value of the input parameter. (Deprecated
in Mac OS X v10.5. The replacement for this function depends on the purpose for which it is used, as described
in the Special Considerations section.)

OSErr SetScriptVariable (
 short script,
 short selector,
 long param
);

Parameters
script

A value that specifies the script system whose variable you are setting. Use one of the script-code
constants listed in “Meta Script Codes” (page 1753).

selector
A value that specifies a particular script variable. Use one of the selector constants listed in “Script
Variable Selectors” (page 1773).

param
The new value for the specified script variable. The actual value to be assigned may be a long integer,
standard integer, or signed byte. If the value is not a long integer, you must store it in the low-order
word or byte of the param parameter and set the unused bytes to 0.

Return Value
A result code. See “Script Manager Result Codes” (page 1821). The value smBadVerb if the selector is not valid,
and smBadScript if the script is invalid. Otherwise, 0 (noErr).

Discussion
Each enabled script system maintains a set of variables that control the current settings of that script system,
including the ID numbers of its international resources, its preferred fonts and font sizes, and its primary line
direction.

Special Considerations

The replacement for this function depends on whether the goal is to set the keyboard layout globally or for
a specific TSM document. To set it globally, use TISSelectInputSource. To set it for a specific document,
use the TSM document property kTSMDocumentInputSourceOverridePropertyTag.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Script.h

1732 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

SetSysDirection
Sets the value of SysDirection, the global variable that determines the system direction (primary line
direction). (Deprecated in Mac OS X v10.4. There is no replacement because this function is no longer needed
in Mac OS X.)

void SetSysDirection (
 short value
);

Parameters
value

The desired value for SysDirection:0 if you wish the system direction to be left-to-right and -1
($FFFF) if you wish the system direction to be right-to-left.

Return Value
Discussion
The value of SysDirection is initialized from the system’s international configuration resource, and may
be controlled by the user. Your application can use the SetSysDirection function to change SysDirection
while drawing, but should restore it when appropriate (such as when your application becomes inactive).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

TransliterateText
Converts characters from one subscript to the closest possible approximation in a different subscript within
the same double-byte script system. (Deprecated in Mac OS X v10.4. Use CFStringUppercase instead.)

OSErr TransliterateText (
 Handle srcHandle,
 Handle dstHandle,
 short target,
 long srcMask,
 ScriptCode script
);

Parameters
srcHandle

A handle to the source text to be transliterated. The TransliterateText function converts all of
the text that you pass it in this parameter. It determines the length of the source text (in bytes) from
the handle size.

Functions 1733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

dstHandle
A handle to a buffer that, upon completion of the call, contains the transliterated text.

Before calling TransliterateText, allocate a handle (of any size) to pass in the dstHandle
parameter. The length of the transliterated text may be different (as when converting between
single-byte and double-byte characters), and TransliterateText sets the size of the destination
handle as required. It is your responsibility to dispose of the destination handle when you no longer
need it.

target
A value that specifies what kind of text the source text is to be transliterated into.

The low byte of the target is the format to convert to (the target format). It determines what form
the text should be transliterated to. In all script systems, there are two currently supported values for
target format: smTransAscii and smTransNative. In double-byte script systems, additional values
are recognized.

The high byte is the target modifier; it contains modifiers, whose meanings depend on the script
code, providing additional formatting instructions. In all script systems, there are two values for target
modifier: smTransLower and smTransUpper.

srcMask
A bit array that specifies which parts of the source text are to be transliterated. A bit is set for each
script system or subscript that should be converted to the target format. In all script systems, the
srcMask parameter may have the following values: smMaskAscii, smMaskNative, and smMaskAll.
In double-byte script systems, additional values are recognized.

script
A value that specifies the script system of the text to be transliterated. Constants for all defined script
codes are listed in “Meta Script Codes” (page 1753). To specify the font script, pass smCurrentScript
in this parameter.

Return Value
A result code. See “Script Manager Result Codes” (page 1821).

Discussion
Transliteration is the conversion of text from one form or subscript to another within a single script system.
In the Roman script system, transliteration means case conversion. In double-byte script systems, it is the
automatic conversion of characters from one subscript to another. One common use for transliteration is as
an initial stage of text conversion for an input method.

TransliterateText also performs uppercasing and lowercasing, with consideration for regional variants,
in the Roman script system and on Roman text within double-byte script systems.

Because the low-ASCII character set (character codes $20–$7F) is present in all script systems, you could
theoretically use the TransliterateText function to convert characters from one script system into another
completely different script system. You could transliterate from a native subscript into ASCII under one script
system, and then transliterate from that ASCII into a native subscript under a different script system. Such a
function is not recommended, however, because of the imperfect nature of phonetic translation. Furthermore,
many script systems do not support transliteration from native subscripts to ASCII.

Special Considerations

TransliterateText may move memory; your application should not call this function at interrupt time.

If you pass smCurrentScript in the script parameter, the conversion performed by TransliterateText
can be affected by the state of the font force flag. It is unaffected by the international resources selection
flag.

1734 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Transliteration of a block of text does not work across script-run boundaries. Because the TransliterateText
function requires transliteration tables that are in a script system’s international resources, you need to call
it anew for each script run in your text.

Currently, the Roman version of TransliterateText checks the source mask only to ensure that at least
one of the bits corresponding to the smMaskAscii and smMaskNative constants is set.

The Arabic and Hebrew versions of TransliterateText perform case conversion only. They allow the
target values smTransAscii and smTransNative only; otherwise, they behave like the Roman version.

The TransliterateText tables for single-byte script systems reside in the script’s string-manipulation
('itl2') resource, so they can reflect region-specific or language-specific differences in uppercase conventions.
If the string-manipulation resource does not include these tables, TransliterateText exits without doing
anything.

The TransliterateText tables for double-byte script systems reside in the script’s transliteration ('trsl')
resource. If the 'trsl' resource does not include these tables, TransliterateText exits without doing
anything.

The Japanese, Traditional Chinese, and Simplified Chinese versions of TransliterateText have two modes
of operation. If either smMaskAscii or smMaskNative is specified in the source mask, and if the target is
smTransAscii, and if either of the target modifiers is specified, TransliterateText performs the specified
case conversion on both single-byte and double-byte Roman letters. Otherwise, TransliterateText
performs conversions according to the target format values. Any combination of source masks and target
format is permitted.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Script.h

Data Types

CharByteTable
Represents an array of char values.

typedef char CharByteTable[256];

Discussion
Used by the function FillParseTable (page 1720).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Script.h

Data Types 1735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

CommentType
Represents an array of ScriptTokenType values.

typedef ScriptTokenType CommentType[4];

Availability
Available in Mac OS X v10.0 and later.

Declared In
Script.h

DelimType
Represents an array of ScriptTokenType values.

typedef ScriptTokenType DelimType[2];

Availability
Available in Mac OS X v10.0 and later.

Declared In
Script.h

ScriptTokenType
Defins a data type for the script token type.

typedef short ScriptTokenType;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Script.h

TokenBlock
Contains information about text that is to be converted to tokens, the destination of the token list, a handle
to the tokens resource, and a set of options.

1736 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

struct TokenBlock {
 Ptr source;
 long sourceLength;
 Ptr tokenList;
 long tokenLength;
 long tokenCount;
 Ptr stringList;
 long stringLength;
 long stringCount;
 Boolean doString;
 Boolean doAppend;
 Boolean doAlphanumeric;
 Boolean doNest;
 ScriptTokenType leftDelims[2];
 ScriptTokenType rightDelims[2];
 ScriptTokenType leftComment[4];
 ScriptTokenType rightComment[4];
 ScriptTokenType escapeCode;
 ScriptTokenType decimalCode;
 Handle itlResource;
 long reserved[8];
};
typedef struct TokenBlock TokenBlock;
typedef TokenBlock * TokenBlockPtr;

Fields
source

A pointer to a stream of characters. On input to the function IntlTokenize (page 1729), a pointer to
the beginning of the source text (not a Pascal string) to be converted.

sourceLength
The length of the source stream. On input, the number of bytes in the source text.

tokenList
A pointer to an array of tokens. On input, a pointer to a buffer you have allocated. On output, a pointer
to a list of token structures generated by the IntlTokenize function.

tokenLength
The maximum length of TokenList. On input, the maximum size of token list (in number of tokens,
not bytes) that will fit into the buffer pointed to by the tokenList field.

tokenCount
The number of tokens generated by the tokenizer. On input (if doAppend = TRUE), must contain
the correct number of tokens currently in the token list. (Ignored if doAppend = FALSE.) On output,
the number of tokens currently in the token list.

stringList
A pointer to a stream of identifiers. On input (if doString = TRUE), a pointer to a buffer you have
allocated. (Ignored if doString = FALSE) On output, a pointer to a list of strings generated by the
IntlTokenize function.

stringLength
The length of the string list. On input (if doString = TRUE), the size in bytes of the string list buffer
pointed to by the stringList field. (Ignored if doString = FALSE.)

stringCount
The number of bytes currently used. On input (if doString = TRUE and doAppend = TRUE), the
correct current size in bytes of the string list. (Ignored if doString = FALSE or doAppend = FALSE.)
On output, the current size in bytes of the string list. (Indeterminate if doString = FALSE.)

Data Types 1737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

doString
A Boolean value. On input, if TRUE, instructs IntlTokenize to create a Pascal string representing
the contents of each token it generates. If FALSE, IntlTokenize generates a token list without an
associated string list.

doAppend
A Boolean value. On input, if TRUE, instructs IntlTokenize to append tokens and strings it generates
to the current token list and string list. If FALSE, IntlTokenize writes over any previous contents
of the buffer pointed to by tokenList and stringList.

doAlphanumeric
A Boolean value. On input, if TRUE, instructs IntlTokenize to interpret numeric characters as
alphabetic when mixed with alphabetic characters. If FALSE, all numeric characters are interpreted
as numbers.

doNest
A Boolean value. A value of type Boolean. On input, if TRUE, instructs IntlTokenize to allow nested
comments (to any depth of nesting). If FALSE, comment delimiters may not be nested within other
comment delimiters.

leftDelims
A value of type DelimType. On input, an array of two integers, each of which contains the token code
of the symbol that may be used as an opening delimiter for a quoted literal. If only one opening
delimiter is needed, the other must be specified to be delimPad.

rightDelims
A value of type DelimType. On input, an array of two integers, each of which contains the token code
of the symbol that may be used as the matching closing delimiter for the corresponding opening
delimiter in the leftDelims field.

leftComment
A value of type CommentType. On input, an array of two pairs of integers, each pair of which contains
codes for the two token types that may be used as opening delimiters for comments.

rightComment
A value of type CommentType. On input, an array of two pairs of integers, each pair of which contains
codes for the two token types that may be used as closing delimiters for comments.

escapeCode
A value of type TokenType. On input, a single integer that contains the token code for the symbol
that may be an escape character within a quoted literal.

decimalCode
A value of type TokenType. On input, a single integer that contains the token type of the symbol to
be used for a decimal point.

itlResource
A value of type Handle. On input, a handle to the tokens ('itl4') resource of the script system
under which the source text was created.

reserved
An 8-byte array of type LongInt.On input, this must be set to 0.

Discussion
The token block structure is a parameter block used to pass information to the IntlTokenize (page 1729)
function and to retrieve results from it.

Availability
Available in Mac OS X v10.0 and later.

1738 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Declared In
Script.h

TokenRec
Contains information about the conversion of a sequence of characters to a token.

struct TokenRec {
 ScriptTokenType theToken;
 Ptr position;
 long length;
 StringPtr stringPosition;
};
typedef struct TokenRec TokenRec;
typedef TokenRec * TokenRecPtr;

Fields
theToken

A numeric code that specifies the type of token (such as whitespace, opening parenthesis, alphabetic
or numeric sequence) described by this token structure. Constants for all defined token codes are
listed in “Obsolete Token Codes” (page 1821).

position
A pointer to the first character in the source text that caused this particular token to be generated.

length
The length, in bytes, of the source text that caused this particular token to be generated.

stringPosition
If doString = TRUE, a pointer to a null-terminated Pascal string, padded if necessary so that its total
number of bytes (length byte + text + null byte + padding) is even. If doString = FALSE, this field
is NULL.

The value in the length byte of the null-terminated Pascal string does not include either the terminating
zero byte or the possible additional padding byte. There may be as many as two additional bytes
beyond the specified length.

Discussion
The token structure holds the results of the conversion of a sequence of characters to a token by the
IntlTokenize (page 1729) function. When it analyzes text, IntlTokenize generates a token list, which is a
sequence of token structures.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Script.h

Data Types 1739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Constants

Assorted Constants

Calendar Codes
Specify constants for various calendars.

enum {
 calGregorian = 0,
 calArabicCivil = 1,
 calArabicLunar = 2,
 calJapanese = 3,
 calJewish = 4,
 calCoptic = 5,
 calPersian = 6
};

Constants
calGregorian

Specifies the Gregorian calendar.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

calArabicCivil
Specifies the Arabic civil calendar.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

calArabicLunar
Specifies the Arabic lunar calendar.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

calJapanese
Specifies the Japanese calendar.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

calJewish
Specifies the Jewish calendar.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

calCoptic
Specifies the Coptic calendar.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1740 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

calPersian
Specifies the Persian calendar.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Discussion
These calendar codes are bit numbers, not masks.

Character Byte Types
Specify character byte types.

enum {
 smSingleByte = 0,
 smFirstByte = -1,
 smLastByte = 1,
 smMiddleByte = 2
};

Constants
smSingleByte

Specifes a single byte.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smFirstByte
Specifies the first byte.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smLastByte
Specifies the last byte.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smMiddleByte
Specifies the middle byte.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Character Types
Specify basic character types.

Constants 1741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 smCharPunct = 0x0000,
 smCharAscii = 0x0001,
 smCharEuro = 0x0007,
 smCharExtAscii = 0x0007,
 smCharKatakana = 0x0002,
 smCharHiragana = 0x0003,
 smCharIdeographic = 0x0004,
 smCharTwoByteGreek = 0x0005,
 smCharTwoByteRussian = 0x0006,
 smCharBidirect = 0x0008,
 smCharContextualLR = 0x0009,
 smCharNonContextualLR = 0x000A,
 smCharHangul = 0x000C,
 smCharJamo = 0x000D,
 smCharBopomofo = 0x000E,
 smCharGanaKana = 0x000F,
 smCharFISKana = 0x0002,
 smCharFISGana = 0x0003,
 smCharFISIdeo = 0x0004
};

Constants
smCharPunct

Specifies punctuation characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharAscii
Specifies ASCII characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharEuro
Specifies smCharEuro.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharExtAscii
Specifies a more correct synonym for smCharEuro.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharKatakana
Specifies additional character types for Japanese Katakana.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharHiragana
Specifies additional character types for Japanese Hiragana.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1742 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smCharIdeographic
Specifies additional character types for Hanzi, Kanji, and Hanja.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharTwoByteGreek
Specifies additional character types for double-byte Greek in Far East systems.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharTwoByteRussian
Specifies additional character types for double-byte Cyrillic in Far East systems.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharBidirect
Specifies additional character types for Arabic/Hebrew.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharContextualLR
Specifies contextual left-right: Thai, Indic scripts.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharNonContextualLR
Specifies additional character types for non-contextual left-right: Cyrillic, Greek.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharHangul
Specifies additional character types for Korean Hangul.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharJamo
Specifies additional character types for Korean Jamo.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharBopomofo
Specifies additional character types for Chinese Bopomofo.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharGanaKana
Specifies additional character types shared for Japanese Hiragana and Katakana.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smCharFISKana
Specifies obsolete Katakana names, for backward compatibility.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharFISGana
Specifies obsolete Hiragana namde, for backward compatibility.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharFISIdeo
Specifies obsolete Hanzi, Kanji, and Hanja names, for backward compatibility.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Character Type Classes
Specify character-type classes for double-byte script systems.

enum {
 smCharFISGreek = 0x0005,
 smCharFISRussian = 0x0006,
 smPunctNormal = 0x0000,
 smPunctNumber = 0x0100,
 smPunctSymbol = 0x0200,
 smPunctBlank = 0x0300,
 smPunctRepeat = 0x0400,
 smPunctGraphic = 0x0500,
 smKanaSmall = 0x0100,
 smKanaHardOK = 0x0200,
 smKanaSoftOK = 0x0300,
 smIdeographicLevel1 = 0x0000,
 smIdeographicLevel2 = 0x0100,
 smIdeographicUser = 0x0200,
 smFISClassLvl1 = 0x0000,
 smFISClassLvl2 = 0x0100,
 smFISClassUser = 0x0200,
 smJamoJaeum = 0x0000,
 smJamoBogJaeum = 0x0100,
 smJamoMoeum = 0x0200,
 smJamoBogMoeum = 0x0300
};

Constants
smCharFISGreek

Specfies character-type classes for double-byte Greek in Far East systems.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharFISRussian
Specfies character-type classes for double-byte Cyrillic in Far East systems.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1744 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smPunctNormal
Specfies character-type classes for normal punctuation (smCharPunct).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smPunctNumber
Specfies character-type classes for number punctuation (smCharPunct).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smPunctSymbol
Specfies character-type classes for symbol punctuation (smCharPunct).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smPunctBlank
Specfies additional character-type classes for punctuation in double-byte systems.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smPunctRepeat
Specifies a character-type class for repeat markers.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smPunctGraphic
Specifies a character-type class forl ine graphics.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKanaSmall
Specfies character-type classes for Katakana and Hiragana double-byte systems.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKanaHardOK
Specfies character-type classes for Katakana and Hiragana double-byte systems; can have dakuten.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKanaSoftOK
Specfies character-type classes for Katakana and Hiragana double-byte systems; can have dakuten or
han-dakuten.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smIdeographicLevel1
Specfies character-type classes for Ideographic double-byte systems; level 1 char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smIdeographicLevel2
Specfies character-type classes for Ideographic double-byte systems; level 2 char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smIdeographicUser
Specfies character-type classes for Ideographic double-byte systems; user char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smFISClassLvl1
Obsolete, for backward compatibility; level 1 char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smFISClassLvl2
Obsolete, for backward compatibility; level 2 char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smFISClassUser
Obsolete, for backward compatibility; user char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smJamoJaeum
Specfies character-type Jamo classes for Korean systems; simple consonant char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smJamoBogJaeum
Specfies character-type Jamo classes for Korean systems; complex consonant char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smJamoMoeum
Specfies character-type Jamo classes for Korean systems; simple vowel char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smJamoBogMoeum
Specfies character-type Jamo classes for Korean systems; complex vowel char.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Character Type Field Masks
Specify masks used to extract information from the return value of the CharacterType function.

1746 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 smcTypeMask = 0x000F,
 smcReserved = 0x00F0,
 smcClassMask = 0x0F00,
 smcOrientationMask = 0x1000,
 smcRightMask = 0x2000,
 smcUpperMask = 0x4000,
 smcDoubleMask = 0x8000
};

Constants
smcTypeMask

Character-type mask.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smcReserved
Reserved.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smcClassMask
Character-class mask.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smcOrientationMask
Character orientation (double-byte scripts).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smcRightMask
Writing direction (bidirectional scripts); main character set or subset (double-byte scripts)

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smcUpperMask
Uppercase or lowercase.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smcDoubleMask
Size (1 or 2 bytes).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Discussion
These bit masks are used to extract fields from the return value of the CharacterType (page 1717) function.

The character type of the character in question is the result of performing an AND operation with smcTypeMask
and the CharacterType result.

The character class of the character in question is the result of performing an AND operation with
smcClassMask and the CharacterType result. Character classes can be considered as subtypes of character
types.

Constants 1747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

The orientation of the character in question is the result of performing an AND operation with
smcOrientationMask and the CharacterType result. The orientation value can be either
smCharHorizontal or smCharVertical.

The direction of the character in question is the result of performing an AND operation with smcRightMask
and the CharacterType result. The direction value can be either smCharLeft (left-to-right) or smCharRight
(right-to-left).

The case of the character in question is the result of performing an AND operation with smcUpperMask and
the CharacterType result. The case value can be either smCharLower or smCharUpper.

The size of the character in question is the result of performing an AND operation with smcDoubleMask and
the CharacterType result. The size value can be either smChar1byte or smChar2byte.

Character Set Extensions
Specify extensions to character sets.

1748 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 diaeresisUprY = 0xD9,
 fraction = 0xDA,
 intlCurrency = 0xDB,
 leftSingGuillemet = 0xDC,
 rightSingGuillemet = 0xDD,
 fiLigature = 0xDE,
 flLigature = 0xDF,
 dblDagger = 0xE0,
 centeredDot = 0xE1,
 baseSingQuote = 0xE2,
 baseDblQuote = 0xE3,
 perThousand = 0xE4,
 circumflexUprA = 0xE5,
 circumflexUprE = 0xE6,
 acuteUprA = 0xE7,
 diaeresisUprE = 0xE8,
 graveUprE = 0xE9,
 acuteUprI = 0xEA,
 circumflexUprI = 0xEB,
 diaeresisUprI = 0xEC,
 graveUprI = 0xED,
 acuteUprO = 0xEE,
 circumflexUprO = 0xEF,
 appleLogo = 0xF0,
 graveUprO = 0xF1,
 acuteUprU = 0xF2,
 circumflexUprU = 0xF3,
 graveUprU = 0xF4,
 dotlessLwrI = 0xF5,
 circumflex = 0xF6,
 tilde = 0xF7,
 macron = 0xF8,
 breveMark = 0xF9,
 overDot = 0xFA,
 ringMark = 0xFB,
 cedilla = 0xFC,
 doubleAcute = 0xFD,
 ogonek = 0xFE,
 hachek = 0xFF
};

Keyboard Script Synchronization
Specifies to disable font and keyboard script synchronization.

enum {
 smfDisableKeyScriptSync = 27
};

Glyph Orientations
Specify character-type glyph orientation for double-byte systems.

Constants 1749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 smCharHorizontal = 0x0000,
 smCharVertical = 0x1000,
 smCharLeft = 0x0000,
 smCharRight = 0x2000,
 smCharLower = 0x0000,
 smCharUpper = 0x4000,
 smChar1byte = 0x0000,
 smChar2byte = 0x8000
};

Constants
smCharHorizontal

Specifies horizontal character form.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharVertical
Specifies vertical character form.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharLeft
Specifies left character direction.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharRight
Specifies right character direction.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharLower
Specifies lowercase character modifers.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCharUpper
Specifies uppercase character modifers.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smChar1byte
Specifies character size modifiers (single or multiple bytes).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smChar2byte
Specifies character size modifiers (single or multiple bytes).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1750 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Keyboard Script Switching Selectors
Specify a keyboard script switching flag and mask.

enum {
 smKeyForceKeyScriptBit = 7,
 smKeyForceKeyScriptMask = 1 << smKeyForceKeyScriptBit
};

Constants
smKeyForceKeyScriptBit

A flag that specifies to force keyboard script switching.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeyForceKeyScriptMask
A mask that specifies to force keyboard script switching.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Keyboard Script Values
Specify actions for keyboard scripts.

enum {
 smKeyNextScript = -1,
 smKeySysScript = -2,
 smKeySwapScript = -3,
 smKeyNextKybd = -4,
 smKeySwapKybd = -5,
 smKeyDisableKybds = -6,
 smKeyEnableKybds = -7,
 smKeyToggleInline = -8,
 smKeyToggleDirection = -9,
 smKeyNextInputMethod = -10,
 smKeySwapInputMethod = -11,
 smKeyDisableKybdSwitch = -12,
 smKeySetDirLeftRight = -15,
 smKeySetDirRightLeft = -16,
 smKeyRoman = -17
};

Constants
smKeyNextScript

Specifies to switch to the next available script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeySysScript
Specfiies to switch to the system script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smKeySwapScript
Specifies to switch to the previously-used script

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeyNextKybd
Specifies to switch to the next keyboard in current keyscript.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeySwapKybd
Specfies to switch to a previously-used keyboard in the current keyscript.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeyDisableKybds
Specifies to disable keyboards not in the system or Roman script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeyEnableKybds
Specifies to enable keyboards for all enabled scripts.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeyToggleInline
Specifies to toggle inline input for the current keyscript

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeyToggleDirection
Specifies to toggle the default line direction (TESysJust).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeyNextInputMethod
Specfies to switch to the next input method in the current keyscript.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeySwapInputMethod
Specfies to switch to the last-used input method in the current keyscript.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeyDisableKybdSwitch
Specfies to disable switching from the current keyboard.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1752 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smKeySetDirLeftRight
Specfies to set the default line direction to left-right, align left.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeySetDirRightLeft
Specfies to set the default line direction to right-left, align right.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKeyRoman
Specfies to set the keyscript to Roman. Does nothing if on a Roman-only system. This is unlike
KeyScript(smRoman) which forces an update to current default Roman keyboard. See KeyScript
documentation for more information.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Keyboard Synchronization Mask
Disables font and keyboard script synchronization mask

enum {
 smfDisableKeyScriptSyncMask = 1L << smfDisableKeyScriptSync
};

Constants
smfDisableKeyScriptSyncMask

Disable font and keyboard script synchronization mask

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Discussion

Meta Script Codes
Specify implicit script codes.

enum {
 smSystemScript = -1,
 smCurrentScript = -2,
 smAllScripts = -3
};

Constants
smSystemScript

Specifies the system script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smCurrentScript
Specifies the font script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smAllScripts
Specfies any script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Discussion
You can specify script systems with implicit and explicit script code constants in the script parameter of
the GetScriptVariable (page 1726) and SetScriptVariable (page 1732) functions. The implicit script
codes smSystemScript and smCurrentScript are special negative values for the system script and the
font script, respectively.

Negative Verbs
Specify special negative verbs that were associated with WorldScript I.

enum {
 smLayoutCache = -309,
 smOldVerbSupport = -311,
 smSetKashidas = -291,
 smSetKashProp = -287,
 smScriptSysBase = -281,
 smScriptAppBase = -283,
 smScriptFntBase = -285,
 smScriptLigatures = -263,
 smScriptNumbers = -267
};

Constants
smLayoutCache

Specifies that HiWrd(param) is the number of entries, LoWrd is the maximum input length

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smOldVerbSupport
Specifies that a parameter is added to old verbs to map to WorldScript I verb.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smSetKashidas
Specifies parameter is on or off; obsolete verb = -36.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

1754 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smSetKashProp
Specifies parameter is kashida proportion; obsolete verb = -32.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptSysBase
Specifies parameter is associated font to use with the system font; obsolete verb = -26)

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptAppBase
Specifies parameter is associated font to use with application font; obsolete verb = -28.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptFntBase
Specifies that a parameter is associated font to use with all other fonts; obsolete verb = -30.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptLigatures
Obsolete verb = -8.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptNumbers
Obsolete verb = -12.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

Numeral Codes
Specify the kinds of numerals used by a script.

Constants 1755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 intWestern = 0,
 intArabic = 1,
 intRoman = 2,
 intJapanese = 3,
 intEuropean = 4,
 intOutputMask = 0x8000
};

Constants
intWestern

Specifies Western numerals.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

intArabic
Specifies Native Arabic numerals.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

intRoman
Specifies Roman numerals.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

intJapanese
Specifies Japanese numerals.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

intEuropean
Specifies European numerals.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

intOutputMask
Specifies an output mask.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Discussion
These constants specify bit numbers, not masks.

Script Redraw Selectors
Specify values for script redraw flags.

1756 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 smRedrawChar = 0,
 smRedrawWord = 1,
 smRedrawLine = -1
};

Constants
smRedrawChar

Specifies to redraw character only.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smRedrawWord
Specifies to redraw entire word (double-byte systems).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smRedrawLine
Specifies to redraw entire line (bidirectional systems).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

Script Codes
Specify Mac OS encodings that are related to a FOND ID range.

Constants 1757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 smRoman = 0,
 smJapanese = 1,
 smTradChinese = 2,
 smKorean = 3,
 smArabic = 4,
 smHebrew = 5,
 smGreek = 6,
 smCyrillic = 7,
 smRSymbol = 8,
 smDevanagari = 9,
 smGurmukhi = 10,
 smGujarati = 11,
 smOriya = 12,
 smBengali = 13,
 smTamil = 14,
 smTelugu = 15,
 smKannada = 16,
 smMalayalam = 17,
 smSinhalese = 18,
 smBurmese = 19,
 smKhmer = 20,
 smThai = 21,
 smLao = 22,
 smGeorgian = 23,
 smArmenian = 24,
 smSimpChinese = 25,
 smTibetan = 26,
 smMongolian = 27,
 smEthiopic = 28,
 smGeez = 28,
 smCentralEuroRoman = 29,
 smVietnamese = 30,
 smExtArabic = 31,
 smUninterp = 32
};

Constants
smRoman

Specifies the Roman script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smJapanese
Specifies the Japanese script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTradChinese
Specifies the traditional Chinese script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1758 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smKorean
Specifies the Korean script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smArabic
Specifies the Arabic script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smHebrew
Specifies the Hebrew script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smGreek
Specifies the Greek script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCyrillic
Specifies the Cyrillic script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smRSymbol
Specifies right-to-left symbols. The script code represented by the constant smRSymbol is available
as an alternative to smUninterp, for representation of special symbols that have a right-to-left line
direction. Note, however, that the script management system provides no direct support for
representation of text with this script code.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smDevanagari
Specifies the Devanagari script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smGurmukhi
Specifies the Gurmukhi script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smGujarati
Specifies the Gujarati script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smOriya
Specifies the Oriya script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smBengali
Specifies the Bengali script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTamil
Specifies the Tamil script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTelugu
Specifies the Telugu script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKannada
Specifies the Kannada/Kanarese script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smMalayalam
Specifies the Malayalam script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smSinhalese
Specifies the Sinhalese script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smBurmese
Specifies the Burmese script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smKhmer
Specifies the Khmer script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smThai
Specifies the Thai script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smLao
Specifies the Laotian script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1760 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smGeorgian
Specifies the Georgian script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smArmenian
Specifies the Armenian script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smSimpChinese
Specifies the simplified Chinese script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTibetan
Specifies the Tibetan script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smMongolian
Specifies the Mongolian script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smEthiopic
Specifies the Geez/Ethiopic script system. This constant is the same as smGeez.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smGeez
Specifies the Geez/Ethiopic script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smCentralEuroRoman
Used for Czech, Slovak, Polish, Hungarian, Baltic languages.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smVietnamese
Specifies the Extended Roman script system for Vietnamese.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smExtArabic
Specifies the extended Arabic for Sindhi script system.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smUninterp
Uninterpreted symbols. The script code represented by the constant smUninterp is available for
representation of special symbols, such as items in a tool palette, that must not be considered as part
of any actual script system. For manipulating and drawing such symbols, the smUninterp constant
should be treated as if it indicated the Roman script system rather than the system script; that is, the
default behavior of uninterpreted symbols should be Roman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Script Code - Unicode Input
Specifies the extended script code for full Unicode input.

enum {
 smUnicodeScript = 0x7E
};

Script Constants
Specify constants used to get and set script variables.

enum {
 smScriptNumDate = 30,
 smScriptKeys = 32,
 smScriptIcon = 34,
 smScriptPrint = 36,
 smScriptTrap = 38,
 smScriptCreator = 40,
 smScriptFile = 42,
 smScriptName = 44,
 smScriptMonoFondSize = 78,
 smScriptPrefFondSize = 80,
 smScriptSmallFondSize = 82,
 smScriptSysFondSize = 84,
 smScriptAppFondSize = 86,
 smScriptHelpFondSize = 88,
 smScriptValidStyles = 90,
 smScriptAliasStyle = 92
};

Constants
smScriptNumDate

(2 bytes) The numeral code and calendar code for the script. The numeral code specifies the kind of
numerals the script uses, and is in the high-order byte of the word the calendar code specifies the
type of calendar it uses and is in the low-order byte of the word. The value of this variable is initialized
from the script system’s international bundle resource. It may be changed during execution when
the user selects, for example, a new calendar from a script system’s control panel. See “Numeral
Codes” (page 1755) and “Calendar Codes” (page 1740) for the different codes.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

1762 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smScriptKeys
(2 bytes) The resource ID of the script’s current keyboard-layout ('KCHR') resource. The keyboard-layout
resource is used to map virtual key codes into the correct character codes for the script. The value of
this variable is initialized from the script system’s international bundle resource. It is updated when
the user selects a new keyboard layout, or when the application calls the KeyScript function. You
can force a particular keyboard layout to be used with your application by setting the value of this
variable and then calling KeyScript.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptIcon
(2 bytes) The resource ID of the script’s keyboard icon family (resource types 'kcs#', 'kcs4', and
'kcs8'). The keyboard icon family consists of the keyboard icons displayed in the keyboard menu.
The value of this variable is initialized from the script system’s international bundle resource. Note
that, unlike smScriptKeys, the value of this variable is not automatically updated when the keyboard
layout changes. (System software assumes that the icon family has an identical ID to the
keyboard-layout resource, and usually ignores this variable.)

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptPrint
(4 bytes) The print action function vector, set up by the script system (or by the Script Manager if the
smsfAutoInit bit is set) when the script is initialized.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptTrap
(4 bytes) A pointer to the script’s script-structure dispatch function (for internal use only).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptCreator
(4 bytes) The 4-character creator type for the script system’s file, that is, the file containing the script
system. For the Roman script system, it is 'ZSYS', for WorldScript I it is 'univ', and for World Script
II it is 'doub'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptFile
(4 bytes) A pointer to the Pascal string that contains the name of the script system’s file, that is, the
file containing the script system. For the Roman script system, the string is 'System'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

Constants 1763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smScriptName
(4 bytes) A pointer to a Pascal string that contains the script system’s name. For the Roman script
system and single-byte simple script systems, the string is 'Roman'. For single-byte complex script
systems, this name is taken from the encoding/rendering ('itl5') resource. For double-byte script
systems, it is taken from the WorldScript II extension and is 'WorldScript II'.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptMonoFondSize
(4 bytes) The default font family ID and size (in points) for monospaced text. The ID is stored in the
high-order word, and the size is stored in the low-order word. The value of this variable is taken from
the script system’s international bundle resource. Note that not all script systems have a monospaced
font.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptPrefFondSize
(4 bytes) Currently not used.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptSmallFondSize
(4 bytes) The default font family ID and size (in points) for small text, generally the smallest font and
size combination that is legible on screen. The ID is stored in the high-order word, and the size is
stored in the low-order word. Sizes are important for example, a 9-point font may be too small in
Chinese. The value of this variable is taken from the script system’s international bundle resource.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptSysFondSize
(4 bytes) The default font family ID and size (in points) for this script system’s preferred system font.
The ID is stored in the high-order word, and the size is stored in the low-order word. The value of this
variable is taken from the script system’s international bundle resource.

This variable holds similar information to the variable accessed through the smScriptSysFond
selector. If you need font family ID only and don’t want size information, it is simpler to use
smScriptSysFond. Note, however, that changing the value of this variable has no effect on the value
accessed through smScriptSysFond.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

1764 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smScriptAppFondSize
(4 bytes) The default font family ID and size (in points) for this script system’s preferred application
font. The ID is stored in the high-order word, and the size is stored in the low-order word. The value
of this variable is taken from the script system’s international bundle resource.

This variable holds similar information to the variable accessed through the smScriptAppFond
selector. If you need font family ID only and don’t want size information, it is simpler to use
smScriptAppFond. Note, however, that changing the value of this variable has no effect on the value
accessed through smScriptAppFond.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptHelpFondSize
(4 bytes) The default font family ID and size (in points) for Balloon Help. The ID is stored in the
high-order word, and the size is stored in the low-order word. Sizes are important for example, a
9-point font may be too small in Chinese. The value of this variable is taken from the script system’s
international bundle resource.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptValidStyles
(1 byte) The set of all valid styles for the script. For example, the Extended style is not valid in the
Arabic script. When the GetScriptVariable function is called with the smScriptValidStyles
selector, the low-order byte of the returned value is a style code that includes all of the valid styles
for the script (that is, the bit corresponding to each QuickDraw style is set if that style is valid for the
specified script). The value of this variable is taken from the script system’s international bundle
resource.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptAliasStyle
(1 byte) The style to use for indicating aliases. When the GetScriptVariable function is called with
smScriptAliasStyle, the low-order byte of the returned value is the style code that should be
used in that script for indicating alias names (for example, in the Roman script system, alias names
are indicated in italics). The value of this variable is taken from the script system’s international bundle
resource.

Some script systems, such as Arabic and Hebrew, have private script-system selectors that are unique
to those scripts. Those private selectors are negative, whereas selectors that extend across script
systems are positive.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

Script Flag Attributes
Specify bits used to examine attributes in the script flags word.

Constants 1765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 smsfIntellCP = 0,
 smsfSingByte = 1,
 smsfNatCase = 2,
 smsfContext = 3,
 smsfNoForceFont = 4,
 smsfB0Digits = 5,
 smsfAutoInit = 6,
 smsfUnivExt = 7,
 smsfSynchUnstyledTE = 8,
 smsfForms = 13,
 smsfLigatures = 14,
 smsfReverse = 15,
 smfShowIcon = 31,
 smfDualCaret = 30,
 smfNameTagEnab = 29,
 smfUseAssocFontInfo = 28
};

Constants
smsfIntellCP

Specifies the script can support intelligent cut and paste (it uses spaces as word delimiters).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfSingByte
Specifies the script has only single-byte characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfNatCase
Specifies the script has both uppercase and lowercase native characters.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfContext
Specifies the script is contextual.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfNoForceFont
Specifies the script does not support font forcing (ignores the font force flag).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfB0Digits
Specifies the script has alternate digits at $B0–$B9. Arabic and Hebrew, for example, have their native
numeric forms at this location in their character sets.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1766 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smsfAutoInit
Specifies the script is initialized by the Script Manager. Single-byte simple script systems can set this
bit to avoid having to initialize themselves.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfUnivExt
Specifies the script uses the WorldScript I extension.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfSynchUnstyledTE
Specifies the script synchronizes keyboard with font for monostyled TextEdit.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfForms
Specifies to use contextual forms if this bit is set; do not use them if it is cleared.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfLigatures
Specifies to use contextual ligatures if this bit is set; do not use them if it is cleared.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smsfReverse
Specifies reverse right-to-left text to draw it in (left-to-right) display order if this bit is set; do not
reorder text if this bit is cleared.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smfShowIcon
Specifies to show icon even if only one script; bits in the smGenFlags long.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smfDualCaret
Specifies to use dual caret for mixed direction text; bits in the smGenFlags long.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smfNameTagEnab
Reserved for internal use; bits in the smGenFlags long.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smfUseAssocFontInfo
Specifies to set the associated font info for FontMetrics calls; bits in the smGenFlags long.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Discussion
These constants are available for examining attributes in the script flags word. Bits above 8 are nonstatic,
meaning that they may change during program execution. (Note that the constant values represent bit
numbers in the flags word, not masks.)

Script Manager Selectors
Specify selectors you can use with the functions GetScriptManagerVariable and
SetScriptManagerVariable.

enum {
 smVersion = 0,
 smMunged = 2,
 smEnabled = 4,
 smBidirect = 6,
 smFontForce = 8,
 smIntlForce = 10,
 smForced = 12,
 smDefault = 14,
 smPrint = 16,
 smSysScript = 18,
 smLastScript = 20,
 smKeyScript = 22,
 smSysRef = 24,
 smKeyCache = 26,
 smKeySwap = 28,
 smGenFlags = 30,
 smOverride = 32,
 smCharPortion = 34,
 smDoubleByte = 36,
 smKCHRCache = 38,
 smRegionCode = 40,
 smKeyDisableState = 42
};

Constants
smVersion

The Script Manager version number (2 bytes) . This variable has the same format as the version number
obtained from calling the Gestalt function with the Gestalt selector gestaltScriptMgrVersion.
The high-order byte contains the major version number, and the low-order byte contains the minor
version number.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

1768 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smMunged
The modification count for Script Manager variables (2 bytes) . At startup, smMunged is initialized to
0, and it is incremented when the KeyScript function changes the current keyboard script and
updates the variables accessed via smKeyScript and smLastScript. The smMunged selector is also
incremented when the SetScriptManagerVariable function is used to change a Script Manager
variable. You can check this variable at any time to see whether any of your own data structures that
may depend on Script Manager variables need to be updated.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smEnabled
The script count (1 byte) ; the number of currently enabled script systems. At startup time, the Script
Manager initializes the script count to 0, then increments it for each installed and enabled script
system (including Roman). You can use smEnabled to determine whether more than one script
system is installed—that is, whether your application needs to handle non-Roman text.

Never call SetScriptManagerVariablewith the smEnabled selector. It could result in inconsistency
with other script system values.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smBidirect
The bidirectional flag, which indicates when at least one bidirectional script system is enabled. This
flag is set to TRUE ($FF) if the Arabic or Hebrew script system is enabled.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smFontForce
The font force flag (1 byte). At startup, the Script Manager sets its value from the system script’s
international configuration ('itlc') resource. The flag returns 0 for FALSE and $FF for TRUE. If the
system script is non-Roman, the font force flag controls whether a font with ID in the Roman script
range is interpreted as belonging to the Roman script or to the system script.

When you call SetScriptManagerVariable with the smFontForce selector, be sure to pass only
the value 0 or $FF, or a later call to GetScriptManagerVariablemay return an unrecognized value.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smIntlForce
The international resources selection flag (1 byte). At startup, the Script Manager sets its value from
the system script’s international configuration ('itlc') resource. The flag returns 0 for FALSE and
$FF for TRUE. This flag controls whether international resources of the font script or the system script
are used for string manipulation.

When you call SetScriptManagerVariable with the smIntlForce selector, be sure to pass only
the value 0 or $FF, or a later call to GetScriptManagerVariablemay return an unrecognized value.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

Constants 1769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smForced
The script-forced result flag (1 byte). If the current script has been forced to the system script, this
flag is set to TRUE. Use the smForced selector to obtain reports of the actions of the FontScript,
FontToScript, and IntlScript functions. This variable is for information only; never set its value
with SetScriptManagerVariable.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smDefault
The script-defaulted result flag (1 byte). If the script system corresponding to a specified font is not
available, this flag is set to TRUE. Use this selector to obtain reports of the actions of the FontScript,
FontToScript, and IntlScript functions. This variable is for information only; never set its value
with SetScriptManagerVariable.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smPrint
The print action function vector, set up by the Script Manager at startup (4 bytes).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smSysScript
The system script code (2 bytes) . At startup, the Script Manager initializes this variable from the
system script’s international configuration ('itlc') resource. This variable is for information only;
never set its value with SetScriptManagerVariable. Constants for all defined script codes are
listed in “Region Codes A” (page 1798).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smLastScript
The previously used keyboard script (2 bytes). When you change keyboard scripts with the KeyScript
function, the Script Manager moves the old value of smKeyScript into smLastScript. KeyScript
can also swap the current keyboard script with the previous keyboard script, in which case the contents
of smLastScript and smKeyScript are swapped. Constants for all defined script codes are listed
in “Region Codes A” (page 1798). Never set the value of this variable withSetScriptManagerVariable.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

1770 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smKeyScript
The current keyboard script (2 bytes) . The KeyScript function tests and updates this variable. When
you change keyboard scripts with the KeyScript function, the Script Manager moves the old value
of smKeyScript into smLastScript. KeyScript can also swap the current keyboard script with
the previous keyboard script, in which case the contents of smLastScript and smKeyScript are
swapped. The Script Manager also uses this variable to get the proper keyboard icon and to retrieve
the proper keyboard-layout ('KCHR') resource. Constants for all defined script codes are listed in
“Region Codes A” (page 1798). Never set the value of this variable directly with
SetScriptManagerVariable; call KeyScript to change keyboard scripts.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smSysRef
The System Folder volume reference number (2 bytes) . Its value is initialized from the system global
variable BootDrive at startup.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smKeyCache
An obsolete variable (4 bytes). This variable at one time held a pointer to the keyboard cache. The
value it provided was not correct and should not be used.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smKeySwap
A handle to the keyboard-swap ('KSWP') resource (4 bytes). The Script Manager initializes the handle
at startup. The keyboard-swap resource controls the key combinations with which the user can invoke
various actions with the KeyScript function, such as switching among script systems.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smGenFlags
The general flags used by the Script Manager (4 bytes). The Script Manager general flags is a long
word value its high-order byte is set from the flags byte in the system script’s international configuration
('itlc') resource. These constants are available to designate bits in the variable accessed through
smGenFlags:

 ■ smfNameTagEnab (a value of 29)Reserved for internal use.

 ■ smfDualCaret (a value of 30)Use a dual caret for mixed-directional text.

 ■ smfShowIcon (a value of 31)Show the keyboard menu even if only one keyboard layout or one
script (Roman) is available. (This bit is checked only at system startup.)

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

Constants 1771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smOverride
The script override flags (4 bytes). At present, these flags are not set or used by the Script Manager.
They are, however, reserved for future use.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smCharPortion
A value used by script systems to allocate intercharacter and interword spacing when justifying text
(2 bytes). It denotes the weight allocated to intercharacter space versus interword space. The value
of this variable is initialized to 10 percent by the Script Manager, although it currently has no effect
on text of the Roman script system. The variable is in 4.12 fixed-point format, which is a 16-bit signed
number with 4 bits of integer and 12 bits of fraction. (In that format, 10 percent has the hexadecimal
value $0199.)

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smDoubleByte
The double-byte flag, a Boolean value that is TRUE if at least one double-byte script system is enabled.
(1 byte)

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smKCHRCache
(A pointer to the cache that stores a copy of the current keyboard-layout ('KCHR') resource 4 bytes).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smRegionCode
The region code for this localized version of system software, obtained from the system script’s
international configuration ('itlc') resource. This variable identifies the localized version of the
system script. Constants for all defined region codes are listed in “Region Codes A” (page 1798) (2 bytes).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1772 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smKeyDisableState
The current disable state for keyboards (1 byte). The Script Manager disables some keyboard scripts
or keyboard switching when text input must be restricted to certain script systems or when script
systems are being moved into or out of the System file. These are the possible values for the variable
accessed through smKeyDisableState:

 ■ 0All keyboards are enabled; switching is enabled.

 ■ 1Keyboard switching is disabled.

 ■ $FFKeyboards for all non-Roman secondary scripts are disabled

The script management system maintains the keyboard disable state separately for each application.
Never set the value of this variable directly with SetScriptManagerVariable; call KeyScript to
change the keyboard disable state for your application.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

Discussion
This section lists and describes the selector constants for accessing the Script Manager variables through
calls to theGetScriptManagerVariable (page 1724) andSetScriptManagerVariable (page 1731) functions.
In every case the variable parameter passed to or from the function is a long integer (4 bytes); the number
in parentheses indicates how many of the 4 bytes are necessary to hold the input or return value for that
variable. If fewer than 4 bytes are needed, the low byte or low word contains the information.

Script Variable Selectors
Specify script variables to get or set using the functions GetScriptVariable and SetScriptVariable.

Constants 1773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 smScriptVersion = 0,
 smScriptMunged = 2,
 smScriptEnabled = 4,
 smScriptRight = 6,
 smScriptJust = 8,
 smScriptRedraw = 10,
 smScriptSysFond = 12,
 smScriptAppFond = 14,
 smScriptBundle = 16,
 smScriptNumber = 16,
 smScriptDate = 18,
 smScriptSort = 20,
 smScriptFlags = 22,
 smScriptToken = 24,
 smScriptEncoding = 26,
 smScriptLang = 28
};

Constants
smScriptVersion

The script system’s version number (2 bytes). When the Script Manager loads the script system, the
script system puts its current version number into this variable. The high-order byte contains the
major version number, and the low-order byte contains the minor version number.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptMunged
The modification count for this script system’s script variables. (2 bytes)The Script Manager increments
the variable accessed by the smScriptMunged selector each time the SetScriptVariable function
is called for this script system. You can check this variable at any time to see whether any of your own
data structures that depend on this script system’s script variables need to be updated.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptEnabled
The script-enabled flag, a Boolean value that indicates whether the script has been enabled (1 byte).
It is set to $FF when enabled and to 0 when not enabled. Note that this variable is not equivalent to
the Script Manager variable accessed by the smEnabled selector, which is a count of the total number
of enabled script systems.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptRight
The right-to-left flag, a Boolean value that indicates whether the primary line direction for text in this
script is right-to-left or left-to-right (1 byte). It is set to $FF for right-to-left text (used in Arabic and
Hebrew script systems) and to 0 for left-to-right (used in Roman and other script systems).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

1774 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smScriptJust
The script alignment flag, a byte that specifies the default alignment for text in this script system (1
byte). It is set to $FF for right alignment (common for Arabic and Hebrew), and it is set to 0 for left
alignment (common for Roman and other script systems). This flag usually has the same value as the
smScriptRight flag.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptRedraw
The script-redraw flag, a byte that provides redrawing recommendations for text of this script system
(1 byte). It describes how much of a line should be redrawn when a user adds, inserts, or deletes text.
It is set to 0 when only a character should be redrawn (used by the Roman script system), to 1 when
an entire word should be redrawn (used by the Japanese script system), and to –1 when the entire
line should be redrawn (used by the Arabic and Hebrew script systems). These constants are available
for the script-redraw flag:

 ■ smRedrawChar (a value of 0)Redraw the character only.

 ■ smRedrawWord (a value of 1)Redraw the entire word.

 ■ smRedrawLine (a value of –1)Redraw the entire line.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptSysFond
The preferred system font, the font family ID of the system font preferred for this script (2 bytes). In
the Roman script system, this variable specifies Chicago font, whose font family ID is 0 if Roman is
the system script. The preferred system font in the Japanese script system is 16384, the font family
ID for Osaka.

This variable holds similar information to the variable accessed through the smScriptSysFondSize
selector. However, changing the value of this variable has no effect on the value accessed through
smScriptSysFondSize.

Remember that in all localized versions of system software the special value of 0 is remapped to the
system font ID. Thus, if an application running under Japanese system software specifies a font family
ID of 0 in a function or in the txFont field of the current graphics port, Osaka will be used. However,
the variable accessed by smScriptSysFond will still show the true ID for Osaka (16384).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

Constants 1775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smScriptAppFond
The preferred application font (2 bytes); the font family ID of the application font preferred for this
script. In the Roman script system, the value of this variable is the font family ID for Geneva.

This variable holds similar information to the variable accessed through the smScriptAppFondSize
selector. However, changing the value of this variable has no effect on the value accessed through
smScriptAppFondSize.

Remember that in all localized versions of system software the special value of 1 is remapped to the
application font ID. For example, if an application running under Arabic system software specifies a
font family ID of 1 in a function, Nadeem will be used. However, the variable accessed by
smScriptSysFond will still show the true ID for Nadeem (17926).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptBundle
The beginning of itlb values.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptNumber
The resource ID of the script’s numeric-format ('itl0') resource (2 bytes). The numeric-format
resource includes formatting information for the correct display of numbers, times, and short dates.
The value of this variable is initialized from the script system’s international bundle resource.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptDate
The resource ID of the script’s long-date-format ('itl1') resource (2 bytes). The long-date-format
resource includes formatting information for the correct display of long dates (dates that include
month or day names). The value of this variable is initialized from the script system’s international
bundle resource.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptSort
The resource ID of the script’s string-manipulation ('itl2') resource (2 bytes). The string-manipulation
resource contains functions for sorting and tables for word selection, line breaks, character types, and
case conversion of text. The value of this variable is initialized from the script system’s international
bundle resource.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

1776 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smScriptFlags
The script flags word, which contains bit flags specifying attributes of the script (2 bytes). The value
of this variable is initialized from the script system’s international bundle resource. The “Language
Codes A” (page 1782) constants are available for examining attributes in the script flags word. Bits above
8 are nonstatic, meaning that they may change during program execution. (Note that the constant
values represent bit numbers in the flags word, not masks.)

The smsfIntellCP flag is set if this script system uses spaces as word delimiters. In such a script
system it is possible to implement intelligent cut and paste, in which extra spaces are removed when
a word is cut from text, and any needed spaces are added when a word is pasted into text. Macintosh
Human Interface Guidelines recommends that you implement intelligent cut and paste in script
systems that support it.

If you use the CharToPixel function to determine text widths, such as for line breaking, you need
to clear the smsfReverse bit first.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptToken
The resource ID of the script’s tokens ('itl4') resource (2 bytes). The tokens resource contains
information for tokenizing and number formatting. The value of this variable is initialized from the
script system’s international bundle resource.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptEncoding
The resource ID of the script’s (optional) encoding/rendering ('itl5') resource (2 bytes)For single-byte
scripts, the encoding/rendering resource specifies text-rendering behavior for double-byte scripts, it
specifies character-encoding information. The value of this variable is taken from the script system’s
international bundle resource.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

smScriptLang
The language code for this version of the script. A language is a specialized variation of a specific
script system (2 bytes). Constants for all defined language codes are listed in “Language Codes A” (page
1782). The value of this variable is initialized from the script system’s international bundle resource.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Script.h.

Discussion
This section lists and describes the selector constants for accessing script variables through calls to the
GetScriptManagerVariable (page 1724) andSetScriptManagerVariable (page 1731) functions. In every
case the variable parameter passed to or from the function is a long integer (4 bytes); the number in
parentheses indicates how many of the 4 bytes are necessary to hold the input or return value for that
variable. If fewer than 4 bytes are needed, the low byte or low word contains the information.

In many cases the value of a script variable is taken from the script system’s international bundle ('itlb')
resource.

Constants 1777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Script Token Types
Specify script token types.

enum {
 tokenIntl = 4,
 tokenEmpty = -1
};

Constants
tokenIntl

The 'itl' resource number of the tokenizer.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenEmpty
Represents an empty flag.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Source Masks
Specify general transliterate text source masks.

enum {
 smMaskAll = 0xFFFFFFFF,
 smMaskAscii = 0x00000001,
 smMaskNative = 0x00000002,
 smMaskAscii1 = 0x00000004,
 smMaskAscii2 = 0x00000008,
 smMaskKana1 = 0x00000010,
 smMaskKana2 = 0x00000020,
 smMaskGana2 = 0x00000080,
 smMaskHangul2 = 0x00000100,
 smMaskJamo2 = 0x00000200,
 smMaskBopomofo2 = 0x00000400
};

Table Selectors
Specify selectors for the international table

1778 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 smWordSelectTable = 0,
 smWordWrapTable = 1,
 smNumberPartsTable = 2,
 smUnTokenTable = 3,
 smWhiteSpaceList = 4,
 iuWordSelectTable = 0,
 iuWordWrapTable = 1,
 iuNumberPartsTable = 2,
 iuUnTokenTable = 3,
 iuWhiteSpaceList = 4
};

Constants
smWordSelectTable

Specifies to get the word select break table from 'itl2'.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smWordWrapTable
Specifies to get the word wrap break table from 'itl2' .

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smNumberPartsTable
Specifies to get the default number parts table from 'itl4'.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smUnTokenTable
Specifies to get the unToken table from 'itl4' .

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smWhiteSpaceList
Specifies to get the white space list from 'itl4' .

Available in Mac OS X v10.0 and later.

Declared in Script.h.

iuWordSelectTable
Obsolete; specifies to get the word select break table from 'itl2' .

Available in Mac OS X v10.0 and later.

Declared in Script.h.

iuWordWrapTable
Obsolete; specifies to get the word wrap break table from 'itl2' .

Available in Mac OS X v10.0 and later.

Declared in Script.h.

iuNumberPartsTable
Obsolete; specifies to get the default number parts table from ''itl4'.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

iuUnTokenTable
Obsolete; specifies to get the unToken table from 'itl4'.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

iuWhiteSpaceList
Obsolete; specifies to get the white space list from 'itl4'.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Discussion
These constants can be used as the value of the tableCode variable, passed as a parameter to the
GetIntlResourceTable (page 1723) function.

Transliteration Target Types 1
Specify transliterate text target types for Roman or for double-byte scripts

enum {
 smTransAscii = 0,
 smTransNative = 1,
 smTransCase = 0xFE,
 smTransSystem = 0xFF,
 smTransAscii1 = 2,
 smTransAscii2 = 3,
 smTransKana1 = 4,
 smTransKana2 = 5
};

Constants
smTransAscii

Specifies to convert to ASCII.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransNative
Specifies to convert to the font script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransCase
Specifies to convert case for all text.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransSystem
Specifies to convert to the system script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1780 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smTransAscii1
Specifies to single-byte Roman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransAscii2
Specifies to double-byte Roman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransKana1
Specifies to single-byte Japanese Katakana.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransKana2
Specifies to double-byte Japanese Katakana.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Transliteration Target Types 2
Specify transliteration targets for double-byte script systems.

enum {
 smTransGana2 = 7,
 smTransHangul2 = 8,
 smTransJamo2 = 9,
 smTransBopomofo2 = 10,
 smTransLower = 0x4000,
 smTransUpper = 0x8000,
 smTransRuleBaseFormat = 1,
 smTransHangulFormat = 2,
 smTransPreDoubleByting = 1,
 smTransPreLowerCasing = 2
};

Constants
smTransGana2

Specifies double-byte Japanese Hiragana (no single-byte Hiragana).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransHangul2
Specfies double-byte Korean Hangul.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransJamo2
Specifies double-byte Korean Jamo.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

smTransBopomofo2
Specifies double-byte Chinese Bopomofo.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransLower
Specifies target becomes lowercase.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransUpper
Specifies target becomes uppercase .

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransRuleBaseFormat
Specifies rule-based trsl resource format.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransHangulFormat
Specifies table-based Hangul trsl resource format.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransPreDoubleByting
Specifies to convert all text to double byte before transliteration.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

smTransPreLowerCasing
Specifies to convert all text to lower case before transliteration.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Language Codes

Language Codes A
Specify language codes (values 0 though 23).

1782 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 langEnglish = 0,
 langFrench = 1,
 langGerman = 2,
 langItalian = 3,
 langDutch = 4,
 langSwedish = 5,
 langSpanish = 6,
 langDanish = 7,
 langPortuguese = 8,
 langNorwegian = 9,
 langHebrew = 10,
 langJapanese = 11,
 langArabic = 12,
 langFinnish = 13,
 langGreek = 14,
 langIcelandic = 15,
 langMaltese = 16,
 langTurkish = 17,
 langCroatian = 18,
 langTradChinese = 19,
 langUrdu = 20,
 langHindi = 21,
 langThai = 22,
 langKorean = 23
};

Constants
langEnglish

Represents the English language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langFrench
Represents the French language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langGerman
Represents the German language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langItalian
Represents the Italian language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langDutch
Represents the Dutch language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langSwedish
Represents the Swedish language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSpanish
Represents the Spanish language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langDanish
Represents the Danish language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langPortuguese
Represents the Portuguese language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langNorwegian
Represents the Norwegian language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langHebrew
Represents the Hebrew language. The associated script code is smHebrew.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langJapanese
Represents the Japanese language. The associated script code is smJapanese.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langArabic
Represents the Arabic language. The associated script code is smArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langFinnish
Represents the Finnish language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langGreek
Represents the Greek language. The associated script code is smGreek.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1784 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langIcelandic
Represents the Icelandic language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langMaltese
Represents the Maltese language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTurkish
Represents the Turkish language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langCroatian
Represents the Croatian language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTradChinese
Represents the Chinese (traditional chararacters) language. The associated script code is
smTradChinese.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langUrdu
Represents the Urdu language. The associated script code is smArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langHindi
Represents the Hindi language. The associated script code is smDevanagari.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langThai
Represents the Thai language. The associated script code is smThai.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langKorean
Represents the Korean language. The associated script code is smKorean.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Language Codes B
Specify language codes (values 24 though 46).

Constants 1785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 langLithuanian = 24,
 langPolish = 25,
 langHungarian = 26,
 langEstonian = 27,
 langLatvian = 28,
 langSami = 29,
 langFaroese = 30,
 langFarsi = 31,
 langPersian = 31,
 langRussian = 32,
 langSimpChinese = 33,
 langFlemish = 34,
 langIrishGaelic = 35,
 langAlbanian = 36,
 langRomanian = 37,
 langCzech = 38,
 langSlovak = 39,
 langSlovenian = 40,
 langYiddish = 41,
 langSerbian = 42,
 langMacedonian = 43,
 langBulgarian = 44,
 langUkrainian = 45,
 langByelorussian = 46,
 langBelorussian = 46
};

Constants
langLithuanian

Represents the Lithuanian language. The associated script code is smEastEurRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langPolish
Represents the Polish language. The associated script code is smEastEurRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langHungarian
Represents the Hungarian language. The associated script code is smEastEurRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langEstonian
Represents the Estonian language. The associated script code is smEastEurRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langLatvian
Represents the Lettish language. The associated script code is smEastEurRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1786 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langSami
Represents the language of the Sami people of northern Scandinavia.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langFaroese
Modified smRoman/Icelandic script

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langFarsi
Represents the Farsi language. The associated script code is smArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langPersian
Represents the Farsi language. The associated script code is smArabic. This is the same as the language
code langFarsi.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langRussian
Represents the Russian language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSimpChinese
Represents the Chinese (simplified chararacters) language. The associated script code is
smSimpChinese.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langFlemish
Represents the Flemish language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langIrishGaelic
Represents Irish Gaelic. The associated script code is smRoman or modified smRoman/Celtic script
(without dot above).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langAlbanian
Represents the Albanian language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langRomanian
Represents the Romanian language. The associated script code is smEastEurRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langCzech
Represents the Czech language. The associated script code is smEastEurRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSlovak
Represents the Slovak language. The associated script code is smEastEurRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSlovenian
Represents the Slovenian language. The associated script code is smEastEurRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langYiddish
Represents the Yiddish language. The associated script code is smHebrew.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSerbian
Represents the Serbian language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langMacedonian
Represents the Macedonian language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langBulgarian
Represents the Bulgarian language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langUkrainian
Represents the Ukrainian language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langByelorussian
Represents the Byelorussian language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langBelorussian
Represents a synonym for langByelorussian.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1788 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Language Codes C
Specify language codes (values 47 though 70).

enum {
 langUzbek = 47,
 langKazakh = 48,
 langAzerbaijani = 49,
 langAzerbaijanAr = 50,
 langArmenian = 51,
 langGeorgian = 52,
 langMoldavian = 53,
 langKirghiz = 54,
 langTajiki = 55,
 langTurkmen = 56,
 langMongolian = 57,
 langMongolianCyr = 58,
 langPashto = 59,
 langKurdish = 60,
 langKashmiri = 61,
 langSindhi = 62,
 langTibetan = 63,
 langNepali = 64,
 langSanskrit = 65,
 langMarathi = 66,
 langBengali = 67,
 langAssamese = 68,
 langGujarati = 69,
 langPunjabi = 70
};

Constants
langUzbek

Represents the Uzbek language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langKazakh
Represents the Kazakh language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langAzerbaijani
Represents the Azerbaijani language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langAzerbaijanAr
Represents the Azerbaijani language. The associated script code is smArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langArmenian
Represents the Armenian language. The associated script code is smArmenian.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langGeorgian
Represents the Georgian language. The associated script code is smGeorgian.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langMoldavian
Represents the Moldovan language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langKirghiz
Represents the Kirghiz language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTajiki
Represents the Tajiki language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTurkmen
Represents the Turkmen language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langMongolian
Represents the Mongolian language. The associated script code is smMongolian.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langMongolianCyr
Represents the Mongolian language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langPashto
Represents the Pashto language. The associated script code is smArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langKurdish
Represents the Kurdish language. The associated script code is smArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1790 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langKashmiri
Represents the Kashmiri language. The associated script code is smArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSindhi
Represents the Sindhi language. The associated script code is smExtArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTibetan
Represents the Tibetan language. The associated script code is smTibetan.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langNepali
Represents the Nepali language. The associated script code is smDevanagari.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSanskrit
Represents the Sanskrit language. The associated script code is smDevanagari.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langMarathi
Represents the Marathi language. The associated script code is smDevanagari.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langBengali
Represents the Bengali language. The associated script code is smBengali.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langAssamese
Represents the Assamese language. The associated script code is smBengali.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langGujarati
Represents the Gujarati language. The associated script code is smGujarati.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langPunjabi
Represents the Punjabi language. The associated script code is smGurmukhi.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Language Codes D
Specify language codes (values 71 though 94).

enum {
 langOriya = 71,
 langMalayalam = 72,
 langKannada = 73,
 langTamil = 74,
 langTelugu = 75,
 langSinhalese = 76,
 langBurmese = 77,
 langKhmer = 78,
 langLao = 79,
 langVietnamese = 80,
 langIndonesian = 81,
 langTagalog = 82,
 langMalayRoman = 83,
 langMalayArabic = 84,
 langAmharic = 85,
 langTigrinya = 86,
 langOromo = 87,
 langSomali = 88,
 langSwahili = 89,
 langKinyarwanda = 90,
 langRuanda = 90,
 langRundi = 91,
 langNyanja = 92,
 langChewa = 92,
 langMalagasy = 93,
 langEsperanto = 94
};

Constants
langOriya

Represents the Oriya language. The associated script code is smOriya.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langMalayalam
Represents the Malayalam language. The associated script code is smMalayalam.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langKannada
Represents the Kannada language. The associated script code is smKannada.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTamil
Represents the Tamil language. The associated script code is smTamil.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1792 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langTelugu
Represents the Telugu language. The associated script code is smTelugu.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSinhalese
Represents the Sinhalese language. The associated script code is smSinhalese.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langBurmese
Represents the Burmese language. The associated script code is smBurmese.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langKhmer
Represents the Khmer language. The associated script code is smKhmer.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langLao
Represents the Lao language. The associated script code is smLaotian.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langVietnamese
Represents the Vietnamese language. The associated script code is smVietnamese.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langIndonesian
Represents the Indonesian language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTagalog
Represents the Tagalog language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langMalayRoman
Represents the Malay language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langMalayArabic
Represents the Malay language. The associated script code is smArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langAmharic
Represents the Amharic language. The associated script code is smEthiopic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTigrinya
Represents the Tigrinya language. The associated script code is smEthiopic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langOromo
Represents the Galla language. The associated script code is smEthiopic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSomali
Represents the Somali language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSwahili
Represents the Swahili language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langKinyarwanda
The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langRuanda
Represents the Ruanda language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langRundi
Represents the Rundi language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langNyanja
The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langChewa
Represents the Chewa language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1794 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langMalagasy
Represents the Malagasy language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langEsperanto
Represents the Esperanto language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Language Codes E
Specify lanaguage codes (values 128 though 141).

enum {
 langWelsh = 128,
 langBasque = 129,
 langCatalan = 130,
 langLatin = 131,
 langQuechua = 132,
 langGuarani = 133,
 langAymara = 134,
 langTatar = 135,
 langUighur = 136,
 langDzongkha = 137,
 langJavaneseRom = 138,
 langSundaneseRom = 139,
 langGalician = 140,
 langAfrikaans = 141
};

Constants
langWelsh

Represents the Welsh language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langBasque
Represents the Basque language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langCatalan
Represents the Catalan language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langLatin
Represents the Latin language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langQuechua
Represents the Quechua language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langGuarani
Represents the Guarani language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langAymara
Represents the Aymara language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTatar
Represents the Tatar language. The associated script code is smCyrillic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langUighur
Represents the Uighar language. The associated script code is smArabic.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langDzongkha
Represents the Bhutanese language. The associated script code is smTibetan.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langJavaneseRom
Represents the Javanese language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langSundaneseRom
Represents the Sundanese language. The associated script code is smRoman.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langGalician
Available in Mac OS X v10.0 and later.

Declared in Script.h.

langAfrikaans
Available in Mac OS X v10.0 and later.

Declared in Script.h.

Language Codes F
Specify language codes (values 142 through 150).

1796 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 langBreton = 142,
 langInuktitut = 143,
 langScottishGaelic = 144,
 langManxGaelic = 145,
 langIrishGaelicScript = 146,
 langTongan = 147,
 langGreekPoly = 148,
 langGreenlandic = 149,
 langAzerbaijanRoman = 150
};

Constants
langBreton

The associated script code is smRoman or modified smRoman/Celtic script

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langInuktitut
Inuit script using smEthiopic script code

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langScottishGaelic
The associated script code is smRoman or modified smRoman/Celtic script

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langManxGaelic
The associated script code is smRoman or modified smRoman/Celtic script

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langIrishGaelicScript
The associated script code is modified smRoman/Gaelic script (using dot above).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langTongan
The associated script code is smRoman script

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langGreekPoly
The associated script code is smGreek script

Available in Mac OS X v10.0 and later.

Declared in Script.h.

langGreenlandic
The associated script code is smRoman script

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

langAzerbaijanRoman
Represents the Azerbaijani language. The associated script code is Roman script.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Language Code - Unspecified
Indicates the language is not specified.

enum {
 langUnspecified = 32767
};

Region Codes

Range Checking Region Code
Specify values for the the minimum and maximum defined region codes.

enum {
 minCountry = verUS,
 maxCountry = verGreenland
};

Constants
minCountry

The lowest defined region code (for range-checking); currently this is equal to the region code verUS.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

maxCountry
The highest defined region code (for range-checking); currently this is equal to the region code
verThailand.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Region Codes A
Specify codes for a variety of regions (values 0 - 25).

1798 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 verUS = 0,
 verFrance = 1,
 verBritain = 2,
 verGermany = 3,
 verItaly = 4,
 verNetherlands = 5,
 verFlemish = 6,
 verSweden = 7,
 verSpain = 8,
 verDenmark = 9,
 verPortugal = 10,
 verFrCanada = 11,
 verNorway = 12,
 verIsrael = 13,
 verJapan = 14,
 verAustralia = 15,
 verArabic = 16,
 verFinland = 17,
 verFrSwiss = 18,
 verGrSwiss = 19,
 verGreece = 20,
 verIceland = 21,
 verMalta = 22,
 verCyprus = 23,
 verTurkey = 24,
 verYugoCroatian = 25
};

Constants
verUS

Represents the region of the United States.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verFrance
Represents the region of France.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verBritain
Represents the region of Great Britain.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verGermany
Represents the region of Germany.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verItaly
Represents the region of Italy.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

verNetherlands
Represents the region of the Netherlands.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verFlemish
Available in Mac OS X v10.0 and later.

Declared in Script.h.

verSweden
Represents the region of Sweden.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verSpain
Available in Mac OS X v10.0 and later.

Declared in Script.h.

verDenmark
Represents the region of Denmark.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verPortugal
Represents the region of Portugal.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verFrCanada
Represents the French Canadian region.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verNorway
Available in Mac OS X v10.0 and later.

Declared in Script.h.

verIsrael
Represents the region of Israel.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verJapan
Represents the region of Japan.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verAustralia
Represents the region of Australia.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1800 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

verArabic
Represents the Arabic world. This is the same as the region code verArabia.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verFinland
Represents the region of Finland.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verFrSwiss
Represents French for the region of Switzerland.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verGrSwiss
Represents German for the region of Switzerland.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verGreece
Represents the region of Greece.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verIceland
Represents the region of Iceland.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verMalta
Represents the region of Malta.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verCyprus
Represents the region of Cyprus.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verTurkey
Represents the region of Turkey.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verYugoCroatian
Represents the Croatian system for the region of Yugoslavia.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Discussion
Each region is associated with a particular language code and script code (not shown). The existence of a
defined region code does not necessarily imply the existence of a version of Macintosh system software
localized for that region.

Region Codes B
Specify region codes (values 26 though 32).

enum {
 verNetherlandsComma = 26,
 verBelgiumLuxPoint = 27,
 verCanadaComma = 28,
 verCanadaPoint = 29,
 vervariantPortugal = 30,
 vervariantNorway = 31,
 vervariantDenmark = 32
};

Constants
verNetherlandsComma

Specifies Dutch.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verBelgiumLuxPoint
Specifies Belgium.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verCanadaComma
Specifies Canadian ISO.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verCanadaPoint
Specifies Canadian; now unused.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

vervariantPortugal
Unused.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

vervariantNorway
Unused.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1802 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

vervariantDenmark
Specifies Danish Mac Plus.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Region Codes C
Specify region codes (values 33 through 61).

enum {
 verIndiaHindi = 33,
 verPakistanUrdu = 34,
 verTurkishModified = 35,
 verItalianSwiss = 36,
 verInternational = 37,
 verRomania = 39,
 verGreecePoly = 40,
 verLithuania = 41,
 verPoland = 42,
 verHungary = 43,
 verEstonia = 44,
 verLatvia = 45,
 verSami = 46,
 verFaroeIsl = 47,
 verIran = 48,
 verRussia = 49,
 verIreland = 50,
 verKorea = 51,
 verChina = 52,
 verTaiwan = 53,
 verThailand = 54,
 verScriptGeneric = 55,
 verCzech = 56,
 verSlovak = 57,
 verFarEastGeneric = 58,
 verMagyar = 59,
 verBengali = 60,
 verByeloRussian = 61
};

Constants
verIndiaHindi

The Hindi system for the region of India; hi_IN..

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verPakistanUrdu
Urdu for Pakistan; ur_PK.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verTurkishModified
Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

verItalianSwiss
Italian Swiss; it_CH.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verInternational
English for international use; Z en.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verRomania
Romaniza; ro_RO

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verGreecePoly
Polytonic Greek (classical); grc.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verLithuania
Lithuania; lt_LT.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verPoland
Poland; pl_PL.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verHungary
Represents the region of Hungary; hu_HU.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verEstonia
Represents the region of Estonia; et_EE.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verLatvia
Represents the region of Latvia; lv_LV.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verSami
se.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1804 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

verFaroeIsl
fo_FO.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verIran
Persian/Farsi Represents the region of Iran; fa_IR .

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verRussia
Represents the region of Russia; ru_RU.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verIreland
Represents Irish Gaelic for Ireland (without dot above); ga_IE.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verKorea
Represents the region of Korea; ko_KR.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verChina
Simplified Chinese; zh_CN.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verTaiwan
Traditional Chinese; zh_TW.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verThailand
Represents the region of Thailand; th_TH.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verScriptGeneric
Generic script system (no language or script).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verCzech
cs_CZ.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

verSlovak
sk_SK.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verFarEastGeneric
Generic Far East system (no language or script).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verMagyar
Unused; see verHungary.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verBengali
Bangladesh or India; bn.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

verByeloRussian
be_B,

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Region Codes D
Specify region codes (values 62 through 97).

1806 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 verUkraine = 62,
 verGreeceAlt = 64,
 verSerbian = 65,
 verSlovenian = 66,
 verMacedonian = 67,
 verCroatia = 68,
 verGermanReformed = 70,
 verBrazil = 71,
 verBulgaria = 72,
 verCatalonia = 73,
 verMultilingual = 74,
 verScottishGaelic = 75,
 verManxGaelic = 76,
 verBreton = 77,
 verNunavut = 78,
 verWelsh = 79,
 verIrishGaelicScript = 81,
 verEngCanada = 82,
 verBhutan = 83,
 verArmenian = 84,
 verGeorgian = 85,
 verSpLatinAmerica = 86,
 verTonga = 88,
 verFrenchUniversal = 91,
 verAustria = 92,
 verGujarati = 94,
 verPunjabi = 95,
 verIndiaUrdu = 96,
 verVietnam = 97
};

Regions Codes E
Specify region codes (values 98 through 109).

Constants 1807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 verFrBelgium = 98,
 verUzbek = 99,
 verSingapore = 100,
 verNynorsk = 101,
 verAfrikaans = 102,
 verEsperanto = 103,
 verMarathi = 104,
 verTibetan = 105,
 verNepal = 106,
 verGreenland = 107,
 verIrelandEnglish = 108
};

Token Constants

Tokens - Mathematical
Specify tokens used in mathematical operations.

enum {
 tokenLeftCurly = 20,
 tokenRightCurly = 21,
 tokenLeftEnclose = 22,
 tokenRightEnclose = 23,
 tokenPlus = 24,
 tokenMinus = 25,
 tokenAsterisk = 26,
 tokenDivide = 27,
 tokenPlusMinus = 28,
 tokenSlash = 29,
 tokenBackSlash = 30,
 tokenLess = 31,
 tokenGreat = 32,
 tokenEqual = 33,
 tokenLessEqual2 = 34,
 tokenLessEqual1 = 35,
 tokenGreatEqual2 = 36,
 tokenGreatEqual1 = 37,
 token2Equal = 38,
 tokenColonEqual = 39
};

Constants
tokenLeftCurly

Represents an opening curly bracket.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRightCurly
Represents a closing curly bracket.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1808 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

tokenLeftEnclose
Represents an opening European double quote.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRightEnclose
Represents a closing European double quote.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenPlus
Represents a plus sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenMinus
Represents a minus sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenAsterisk
Represents a times/multiply sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenDivide
Represents a divide.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenPlusMinus
Represents a plus-or-minus symbol.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenSlash
Represents a slash.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenBackSlash
Represents a backslash.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLess
Represents a less than sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

tokenGreat
Represents a greater than sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenEqual
Represents an equal.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLessEqual2
Represents a less than or equal to sign (2 symbols).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLessEqual1
Represents a less than or equal to sign (1 symbol).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenGreatEqual2
Represents a greater than or equal to sign (2 symbols).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenGreatEqual1
Represents a greater-than-or-equal-to sign (1 symbol).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

token2Equal
Represents a double equal sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenColonEqual
Represents a colon equal sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Tokens - Punctuation
Specify tokens for various punctuation marks.

1810 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 tokenNotEqual = 40,
 tokenLessGreat = 41,
 tokenExclamEqual = 42,
 tokenExclam = 43,
 tokenTilde = 44,
 tokenComma = 45,
 tokenPeriod = 46,
 tokenLeft2Quote = 47,
 tokenRight2Quote = 48,
 tokenLeft1Quote = 49,
 tokenRight1Quote = 50,
 token2Quote = 51,
 token1Quote = 52,
 tokenSemicolon = 53,
 tokenPercent = 54,
 tokenCaret = 55,
 tokenUnderline = 56,
 tokenAmpersand = 57,
 tokenAtSign = 58,
 tokenBar = 59
};

Constants
tokenNotEqual

Represents a not equal sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLessGreat
Represents a less/greater sign (not equal in Pascal).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenExclamEqual
Represents an exclamation equal sign (not equal in C).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenExclam
Represents as exclamation point.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenTilde
Represents a centered tilde.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenComma
Represents a comma.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

tokenPeriod
Represents a period.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLeft2Quote
Represents an opening double quote.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRight2Quote
Represents a closing double quote.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLeft1Quote
Represents an opening single quote.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRight1Quote
Represents a closing single quote.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

token2Quote
Represents a double quote.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

token1Quote
Represents a single quote.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenSemicolon
Represents a semicolon.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenPercent
Represents a percent sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenCaret
Represents a caret.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1812 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

tokenUnderline
Represents an underline.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenAmpersand
Represents an ampersand.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenAtSign
Represents an at sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenBar
Represents a vertical bar.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Tokens for Symbols
Specify tokens for various symbols.

enum {
 tokenQuestion = 60,
 tokenPi = 61,
 tokenRoot = 62,
 tokenSigma = 63,
 tokenIntegral = 64,
 tokenMicro = 65,
 tokenCapPi = 66,
 tokenInfinity = 67,
 tokenColon = 68,
 tokenHash = 69,
 tokenDollar = 70,
 tokenNoBreakSpace = 71,
 tokenFraction = 72,
 tokenIntlCurrency = 73,
 tokenLeftSingGuillemet = 74,
 tokenRightSingGuillemet = 75,
 tokenPerThousand = 76,
 tokenEllipsis = 77,
 tokenCenterDot = 78,
 tokenNil = 127
};

Constants
tokenQuestion

Represents a question mark.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

tokenPi
Represents a Pi token.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRoot
Represents a square root sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenSigma
Represents a capital sigma.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenIntegral
Represents an integral sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenMicro
Represents a micro.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenCapPi
Represents a capital pi.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenInfinity
Represents an infinity sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenColon
Represents a colon.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenHash
Represents a pound sign (U.S. weight).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenDollar
Represents a dollar sign.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1814 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

tokenNoBreakSpace
Represents a nonbreaking space.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenFraction
Represents a fraction.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenIntlCurrency
Represents an international currency token.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLeftSingGuillemet
Represents an opening single guillemet.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRightSingGuillemet
Represents a closing single guillemet.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenPerThousand
Represents a per thousands token.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenEllipsis
Represents an ellipsis character.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenCenterDot
Represents a center dot.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenNil
Available in Mac OS X v10.0 and later.

Declared in Script.h.

Token Types
Specify types of tokens.

Constants 1815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 tokenUnknown = 0,
 tokenWhite = 1,
 tokenLeftLit = 2,
 tokenRightLit = 3,
 tokenAlpha = 4,
 tokenNumeric = 5,
 tokenNewLine = 6,
 tokenLeftComment = 7,
 tokenRightComment = 8,
 tokenLiteral = 9,
 tokenEscape = 10,
 tokenAltNum = 11,
 tokenRealNum = 12,
 tokenAltReal = 13,
 tokenReserve1 = 14,
 tokenReserve2 = 15,
 tokenLeftParen = 16,
 tokenRightParen = 17,
 tokenLeftBracket = 18,
 tokenRightBracket = 19
};

Constants
tokenUnknown

Has no existing token type.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenWhite
Represents a whitespace character.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLeftLit
Represents an opening literal marker.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRightLit
Represents a closing literal marker.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenAlpha
Represents an alphabetic token.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenNumeric
Represents a numeric token.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1816 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

tokenNewLine
Represents a new line.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLeftComment
Represents an opening comment marker.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRightComment
Represents a closing comment marker.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLiteral
Represents a literal token.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenEscape
Represents an escape character.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenAltNum
Represents an alternate number (such as at $B0–$B9).

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRealNum
Represents a real number.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenAltReal
Represents an alternate real number.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenReserve1
Reserved.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenReserve2
Reserved.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Constants 1817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

tokenLeftParen
Represents an opening parenthesis.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRightParen
Represents a closing parenthesis.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenLeftBracket
Represents an opening square bracket.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenRightBracket
Represents a closing square bracket.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Token Results
Specify token conditions returned by the function IntlTokenize.

enum {
 tokenOK = 0,
 tokenOverflow = 1,
 stringOverflow = 2,
 badDelim = 3,
 badEnding = 4,
 crash = 5
};
typedef SInt8 TokenResults;

Constants
tokenOK

Indicates the function exectured without error.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

tokenOverflow
Indicates a token overflow.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

stringOverflow
Indicates a string overflow.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

1818 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

badDelim
Indicates a bad delimiter,

Available in Mac OS X v10.0 and later.

Declared in Script.h.

badEnding
Indicates a bad ending.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

crash
Indicates a crash.

Available in Mac OS X v10.0 and later.

Declared in Script.h.

Discussion
Token results are returned by the function IntlTokenize (page 1729).

Obsolete Constants

Obsolete Language Codes
Specify obsolete language codes provided for backward compatibility.

enum {
 langPortugese = 8,
 langMalta = 16,
 langYugoslavian = 18,
 langChinese = 19,
 langLettish = 28,
 langLapponian = 29,
 langLappish = 29,
 langSaamisk = 29,
 langFaeroese = 30,
 langIrish = 35,
 langGalla = 87,
 langAfricaans = 141
};

Discussion
These are obsolete language code names kept for backward compatibility. They have one or more of the
following problems: misspelled, ambiguous, misleading, archaic, inappropriate.

Obsolete Regions Codes
Specfiy obsolete region code names provided for backward compatibility.

Constants 1819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 verFrBelgiumLux = 6,
 verBelgiumLux = 6,
 verArabia = 16,
 verYugoslavia = 25,
 verIndia = 33,
 verPakistan = 34,
 verRumania = 39,
 verGreekAncient = 40,
 verLapland = 46,
 verFaeroeIsl = 47,
 verGenericFE = 58,
 verBelarus = 61,
 verUkrania = 62,
 verAlternateGr = 64,
 verSerbia = 65,
 verSlovenia = 66,
 verMacedonia = 67,
 verBrittany = 77,
 verWales = 79,
 verArmenia = 84,
 verGeorgia = 85,
 verAustriaGerman = 92,
 verTibet = 105
};

Discussion
Obsolete region code names (kept for backward compatibility): Misspelled or alternate form, ambiguous,
misleading, considered pejorative, archaic, etc.

Obsolete Roman Script Constants
Specify obsolete constants provided for backward compatibility.

enum {
 romanSysFond = 0x3FFF,
 romanAppFond = 3,
 romanFlags = 0x0007,
 smFondStart = 0x4000,
 smFondEnd = 0xC000,
 smUprHalfCharSet = 0x80
};

Discussion
You should use the function GetScriptVariable (page 1726) to obtain the information specified by these
constants.

Obsolete Script Codes
Specify obsolete script code names provided for backward compatibility.

1820 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

enum {
 smChinese = 2,
 smRussian = 7,
 smLaotian = 22,
 smAmharic = 28,
 smSlavic = 29,
 smEastEurRoman = 29,
 smSindhi = 31,
 smKlingon = 32
};

Obsolete System Script Codes
Specify obsolete script code values for International Utilities provided for backward compatibility.

enum {
 iuSystemScript = -1,
 iuCurrentScript = -2
};

Obsolete Token Codes
Specify obsolete token names provided for backward compatibility.

enum {
 delimPad = -2,
 tokenTilda = 44,
 tokenCarat = 55
};

Result Codes

The most common result codes returned by Script Manager are listed below.

DescriptionValueResult Code

Routine not available in script.0smNotInstalled

Available in Mac OS X v10.0 and later.

Bad verb passed to a routine.-1smBadVerb

Available in Mac OS X v10.0 and later.

Bad script code passed to a routine.-2smBadScript

Available in Mac OS X v10.0 and later.

Result Codes 1821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

1822 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

Script Manager Reference (Not Recommended)

Framework: CoreServices/CoreServices.h

Declared in SCSI.h

Overview

Carbon supports only the SCSIAction function in the SCSI Manager, although this function is no longer
recommended. For Mac OS X, the I/O Kit should be used to support more complex SCSI devices.

Important: The SCSI Manager is deprecated in Mac OS X v10.2 and later. You should use I/O Kit to support
SCSI devices instead. For more information, see SCSI Architecture Model Device Interface Guide.

Functions

DisposeSCSICallbackUPP
Disposes of a UPP to a completion routine. (Deprecated in Mac OS X v10.2. There is no replacement function.
For details about communicating with SCSI devices in Mac OS X v10.2 and later, see SCSI Architecture Model
Device Interface Guide.)

Not recommended

void DisposeSCSICallbackUPP (
 SCSICallbackUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.
Not available to 64-bit applications.

Declared In
SCSI.h

Overview 1823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

InvokeSCSICallbackUPP
Calls your completion routine. (Deprecated in Mac OS X v10.2. There is no replacement function. For details
about communicating with SCSI devices in Mac OS X v10.2 and later, see SCSI Architecture Model Device
Interface Guide.)

Not recommended

void InvokeSCSICallbackUPP (
 void *scsiPB,
 SCSICallbackUPP userUPP
);

Discussion
You should not have to call the InvokeSCSICallbackUPP function as the system calls your completion
routine for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.
Not available to 64-bit applications.

Declared In
SCSI.h

NewSCSICallbackUPP
Creates a new universal procedure pointer (UPP) to a completion routine. (Deprecated in Mac OS X v10.2.
There is no replacement function. For details about communicating with SCSI devices in Mac OS X v10.2 and
later, see SCSI Architecture Model Device Interface Guide.)

Not recommended

SCSICallbackUPP NewSCSICallbackUPP (
 SCSICallbackProcPtr userRoutine
);

Return Value
See the description of the SCSICallbackUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.
Not available to 64-bit applications.

Declared In
SCSI.h

SCSIAction
Initiates a SCSI transaction or request a service from the XPT or SIM. (Deprecated in Mac OS X v10.2. There is
no replacement function. For details about communicating with SCSI devices in Mac OS X v10.2 and later,
see SCSI Architecture Model Device Interface Guide.)

1824 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

Not recommended

OSErr SCSIAction (
 SCSI_PB *parameterBlock
);

Parameters
parameterBlock

A pointer to a SCSI Manager parameter block.

Return Value
A result code. See “SCSI Manager Result Codes” (page 1863).

Discussion
The SCSIAction function initiates the request specified by the scsiFunctionCode field of the parameter
block. Certain types of requests are handled by the XPT, but most are handled by the SIM.

When called asynchronously, SCSIAction normally returns the NoErr result code, indicating that the request
was queued successfully. The result of the SCSI transaction is returned in the scsiResult field upon
completion. If the SCSIAction function returns an error code, the request was not queued and the completion
routine will not be called.

When the completion routine is called, it receives the A5 world that existed when the SCSIAction request
was received. If A5 was invalid when the request was made, it is also invalid in the completion routine.

Your completion routine should use the following function prototype:

pascal void (*CallbackProc) (void * scsiPB);

There is no implied ordering of asynchronous requests made to different devices. An earlier request may be
started later, and a later request may complete earlier. However, a series of requests to the same device is
issued to that device in the order received, except when the scsiSIMQHead flag is set in the scsiFlags
field of the parameter block.

When called synchronously, the SCSIAction function returns the actual result of the operation. It also places
this result in the scsiResult field.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.
Not available to 64-bit applications.

Declared In
SCSI.h

Callbacks

SCSICallbackProcPtr
Defines a pointer to a completion routine.

Callbacks 1825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

typedef void (*SCSICallbackProcPtr) (
 void * scsiPB
);

If you name your function MySCSICallbackProc, you would declare it like this:

void MySCSICallbackProc (
 void * scsiPB
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

Data Types

CDB
You use the command descriptor block record to pass SCSI commands to the SCSIAction function.

union CDB {
 BytePtr cdbPtr;
 UInt8 cdbBytes[16];
};
typedef union CDB CDB;
typedef CDB * CDBPtr;

Fields
cdbPtr

A pointer to a buffer containing a CDB.

cdbBytes
A buffer in which you can place a CDB.

Discussion
The SCSI commands can be stored within this structure, or you can provide a pointer to them. You set the
scsiCDBIsPointer flag in the SCSI parameter block if this record contains a pointer.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

DeviceIdent
You use the device identification record to specify a target device by its bus, SCSI ID, and logical unit number
(LUN).

1826 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

struct DeviceIdent {
 UInt8 diReserved;
 UInt8 bus;
 UInt8 targetID;
 UInt8 LUN;
};
typedef struct DeviceIdent DeviceIdent;

Fields
diReserved

Reserved.

bus
The bus number of the SIM/HBA for the target device.

targetID
The SCSI ID number of the target device.

LUN
The target LUN, or 0 if the device does not support logical units.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

DeviceIdentATA
struct DeviceIdentATA {
 UInt8 diReserved;
 UInt8 busNum;
 UInt8 devNum;
 UInt8 diReserved2;
};
typedef struct DeviceIdentATA DeviceIdentATA;

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

SCSI_PB
You use the SCSI Manager parameter block to pass information to the SCSIAction function.

Data Types 1827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

struct SCSI_PB {
 SCSIHdr * qLink;
 short scsiReserved1;
 UInt16 scsiPBLength;
 UInt8 scsiFunctionCode;
 UInt8 scsiReserved2;
 volatile OSErr scsiResult;
 DeviceIdent scsiDevice;
 SCSICallbackUPP scsiCompletion;
 UInt32 scsiFlags;
 BytePtr scsiDriverStorage;
 Ptr scsiXPTprivate;
 long scsiReserved3;
};
typedef struct SCSI_PB SCSI_PB;

Fields
qLink

A pointer to the next entry in the request queue. This field is used internally by the SCSI Manager and
must be set to 0 when the parameter block is initialized. The SCSI Manager functions always set this
field to 0 before returning, so you do not need to set it to 0 again before reusing a parameter block.

scsiReserved1
Reserved.

scsiPBLength
The size of the parameter block, in bytes, including the parameter block header.

scsiFunctionCode
A function selector code that specifies the service being requested.

scsiReserved2
Reserved.

scsiResult
The result code returned by the XPT or SIM when the function completes. The value
scsiRequestInProgress indicates that the request is still in progress or queued.

scsiDevice
A 4-byte value that uniquely identifies the target device for a request. The DeviceIdent data type
designates the bus number, target SCSI ID, and logical unit number (LUN).

scsiCompletion
A pointer to a completion routine.

scsiFlags
Flags indicating the transfer direction and any special handling required for this request.

scsiDriverStorage
A pointer to the device driver's private storage. This field is not affected or used by the SCSI Manager.

scsiXPTprivate
Private field for use in XPT.

scsiReserved3
Reserved.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1828 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

Declared In
SCSI.h

SCSICallbackUPP
Defines a universal procedure pointer (UPP) to a completion routine.

typedef SCSICallbackProcPtr SCSICallbackUPP;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

SCSI_IO
Defines the SCSI I/O parameter block.

Data Types 1829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

struct SCSI_IO {
 SCSIHdr * qLink;
 short scsiReserved1;
 UInt16 scsiPBLength;
 UInt8 scsiFunctionCode;
 UInt8 scsiReserved2;
 volatile OSErr scsiResult;
 DeviceIdent scsiDevice;
 SCSICallbackUPP scsiCompletion;
 UInt32 scsiFlags;
 BytePtr scsiDriverStorage;
 Ptr scsiXPTprivate;
 long scsiReserved3;
 UInt16 scsiResultFlags;
 UInt16 scsiReserved3pt5;
 BytePtr scsiDataPtr;
 UInt32 scsiDataLength;
 BytePtr scsiSensePtr;
 UInt8 scsiSenseLength;
 UInt8 scsiCDBLength;
 UInt16 scsiSGListCount;
 UInt32 scsiReserved4;
 UInt8 scsiSCSIstatus;
 SInt8 scsiSenseResidual;
 UInt16 scsiReserved5;
 long scsiDataResidual;
 CDB scsiCDB;
 long scsiTimeout;
 BytePtr scsiReserved5pt5;
 UInt16 scsiReserved5pt6;
 UInt16 scsiIOFlags;
 UInt8 scsiTagAction;
 UInt8 scsiReserved6;
 UInt16 scsiReserved7;
 UInt16 scsiSelectTimeout;
 UInt8 scsiDataType;
 UInt8 scsiTransferType;
 UInt32 scsiReserved8;
 UInt32 scsiReserved9;
 UInt16 scsiHandshake[8];
 UInt32 scsiReserved10;
 UInt32 scsiReserved11;
 SCSI_IO * scsiCommandLink;
 UInt8 scsiSIMpublics[8];
 UInt8 scsiAppleReserved6[8];
 UInt16 scsiCurrentPhase;
 short scsiSelector;
 OSErr scsiOldCallResult;
 UInt8 scsiSCSImessage;
 UInt8 XPTprivateFlags;
 UInt8 XPTextras[12];
};
typedef struct SCSI_IO SCSI_IO;
typedef SCSI_IO SCSIExecIOPB;

Fields

1830 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

qLink
A pointer to the next entry in the request queue. This field is used internally by the SCSI Manager and
must be set to 0 when the parameter block is initialized. The SCSI Manager functions always set this
field to 0 before returning, so you do not need to set it to 0 again before reusing a parameter block.

scsiReserved1
Reserved.

scsiPBLength
The size of the parameter block, in bytes, including the parameter block header.

scsiFunctionCode
A function selector code that specifies the service being requested.

scsiReserved2
Reserved.

scsiResult
The result code returned by the XPT or SIM when the function completes. The value
scsiRequestInProgress indicates that the request is still in progress or queued.

scsiDevice
A 4-byte value that uniquely identifies the target device for a request. The DeviceIdent data type
designates the bus number, target SCSI ID, and logical unit number (LUN).

scsiCompletion
A pointer to a completion routine.

scsiFlags
Flags indicating the transfer direction and any special handling required for this request.

scsiDriverStorage
A pointer to the device driver's private storage. This field is not affected or used by the SCSI Manager.

scsiXPTprivate
Private field for use in XPT.

scsiReserved3
Reserved.

scsiResultFlags
Output flags that modify the scsiResult field.

scsiReserved3pt5
Reserved.

scsiDataPtr
A pointer to a data buffer or scatter/gather list. You specify the data type using the scsiDataType
field.

scsiDataLength
The amount of data to be transferred, in bytes.

scsiSensePtr
A pointer to the autosense data buffer. If autosense is enabled (the scsiDisableAutosense flag is
not set), the SCSI Manager returns REQUEST SENSE information in this buffer.

scsiSenseLength
The size of the autosense data buffer, in bytes.

scsiCDBLength
The length of the SCSI command descriptor block, in bytes.

Data Types 1831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiSGListCount
The number of elements in the scatter/gather list.

scsiReserved4
Reserved.

scsiSCSIstatus
The status returned by the SCSI device.

scsiSenseResidual
The automatic REQUEST SENSE residual length (that is, the number of bytes that were expected but
not transferred). This number is negative if extra bytes had to be transferred to force the target off
of the bus.

scsiReserved5
Reserved for output.

scsiDataResidual
The data transfer residual length (that is, the number of bytes that were expected but not transferred).
This number is negative if extra bytes had to be transferred to force the target off the bus.

scsiCDB
This field can contain either the actual CDB or a pointer to the CDB. You set the scsiCDBIsPointer
flag if this field contains a pointer.

scsiTimeout
The length of time the SIM should allow before reporting a timeout of the SCSI bus. The time value
is represented in Time Manager format (positive values for milliseconds, negative values for
microseconds). The timer is started when the I/O request is sent to the target. If the request does not
complete within the specified time, the SIM attempts to issue an ABORTmessage, either by reselecting
the device or by asserting the attention (/ATN) signal. A value of 0 specifies the default timeout for
the SIM. The default timeout for the SCSI Manager 4.3 SIM is infinite (that is, no timeout).

scsiReserved5pt5
Reserved.

scsiReserved5pt6
Reserved.

scsiIOFlags
Additional I/O flags describing the data transfer.

scsiTagAction
Reserved.

scsiReserved6
Reserved for input.

scsiReserved7
Reserved for input.

scsiSelectTimeout
An optional SELECT timeout value, in milliseconds. The default is 250 ms, as specified by SCSI-2. The
accuracy of this period is dependent on the HBA.A value of 0 specifies the default timeout. Some SIMs
ignore this parameter and always use a value of 250 ms.

scsiDataType
The data type pointed to by the scsiDataPtr field.

scsiTransferType
The type of transfer mode to use during the data phase.

1832 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiReserved8
Reserved for input.

scsiReserved9
Reserved for input.

scsiHandshake
Handshaking instructions for blind transfers, consisting of an array of word values, terminated by 0.
The SIM polls for data ready after transferring the amount of data specified in each successive
scsiHandshake entry. When it encounters a 0 value, the SIM starts over at the beginning of the list.
Handshaking always starts from the beginning of the list every time a device transitions to data phase.

scsiReserved10
Reserved for input.

scsiReserved11
Reserved for input.

scsiCommandLink
A pointer to a linked parameter block. This field provides support for SCSI linked commands. This
optional feature ensures that a set of commands sent to a device are executed in sequential order
without interference from other applications. You create a list of commands using this pointer to link
additional parameter blocks. Each parameter block except the last should have the scsiCDBLinked
flag set in the scsiFlags field. A CHECK CONDITION status from the device will abort linked command
execution. Linked commands may not be supported by all SIMs.

scsiSIMpublics
An additional input field available for use by SIM developers.

scsiCurrentPhase
The current SCSI bus phase reported by the SIM after handling an original SCSI Manager function.
This field is used only by the XPT and SIM during original SCSI Manager emulation.

scsiSelector
The function selector code that was passed to the _SCSIDispatch trap during original SCSI Manager
emulation. The SIM uses this field to determine which original SCSI Manager function to perform.

scsiOldCallResult
The result code from an emulated original SCSI Manager function. The SIM returns results to all original
SCSI Manager functions in this field, except for the SCSIComplete result, which it returns in
scsiResult .

scsiSCSImessage
The message byte returned by an emulated SCSIComplete function. This field is only used by the
XPT and SIM during original SCSI Manager emulation.

XPTprivateFlags
Reserved.

XPTextras
Reserved.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

Data Types 1833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

SCSIBusInquiryPB
Defines a SCSI bus inquiry parameter block.

1834 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

struct SCSIBusInquiryPB {
 SCSIHdr * qLink;
 short scsiReserved1;
 UInt16 scsiPBLength;
 UInt8 scsiFunctionCode;
 UInt8 scsiReserved2;
 volatile OSErr scsiResult;
 DeviceIdent scsiDevice;
 SCSICallbackUPP scsiCompletion;
 UInt32 scsiFlags;
 BytePtr scsiDriverStorage;
 Ptr scsiXPTprivate;
 long scsiReserved3;
 UInt16 scsiEngineCount;
 UInt16 scsiMaxTransferType;
 UInt32 scsiDataTypes;
 UInt16 scsiIOpbSize;
 UInt16 scsiMaxIOpbSize;
 UInt32 scsiFeatureFlags;
 UInt8 scsiVersionNumber;
 UInt8 scsiHBAInquiry;
 UInt8 scsiTargetModeFlags;
 UInt8 scsiScanFlags;
 UInt32 scsiSIMPrivatesPtr;
 UInt32 scsiSIMPrivatesSize;
 UInt32 scsiAsyncFlags;
 UInt8 scsiHiBusID;
 UInt8 scsiInitiatorID;
 UInt16 scsiBIReserved0;
 UInt32 scsiBIReserved1;
 UInt32 scsiFlagsSupported;
 UInt16 scsiIOFlagsSupported;
 UInt16 scsiWeirdStuff;
 UInt16 scsiMaxTarget;
 UInt16 scsiMaxLUN;
 char scsiSIMVendor[16];
 char scsiHBAVendor[16];
 char scsiControllerFamily[16];
 char scsiControllerType[16];
 char scsiXPTversion[4];
 char scsiSIMversion[4];
 char scsiHBAversion[4];
 UInt8 scsiHBAslotType;
 UInt8 scsiHBAslotNumber;
 UInt16 scsiSIMsRsrcID;
 UInt16 scsiBIReserved3;
 UInt16 scsiAdditionalLength;
};
typedef struct SCSIBusInquiryPB SCSIBusInquiryPB;

Fields
qLink

A pointer to the next entry in the request queue. This field is used internally by the SCSI Manager and
must be set to 0 when the parameter block is initialized. The SCSI Manager functions always set this
field to 0 before returning, so you do not need to set it to 0 again before reusing a parameter block.

scsiReserved1
Reserved.

Data Types 1835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiPBLength
The size of the parameter block, in bytes, including the parameter block header.

scsiFunctionCode
A function selector code that specifies the service being requested.

scsiReserved2
Reserved.

scsiResult
The result code returned by the XPT or SIM when the function completes. The value
scsiRequestInProgress indicates that the request is still in progress or queued.

scsiDevice
A 4-byte value that uniquely identifies the target device for a request. The DeviceIdent data type
designates the bus number, target SCSI ID, and logical unit number (LUN).

scsiCompletion
A pointer to a completion routine.

scsiFlags
Flags indicating the transfer direction and any special handling required for this request.

scsiDriverStorage
A pointer to the device driver's private storage. This field is not affected or used by the SCSI Manager.

scsiXPTprivate
Private field for use in XPT.

scsiReserved3
Reserved.

scsiEngineCount
The number of engines on the HBA. This value is 0 for a built-in SCSI bus.

scsiMaxTransferType
The number of data transfer types available on the HBA.

scsiDataTypes
A bit mask describing the data types supported by the SIM/HBA. Bits 3 through 15 and bit 31 are
reserved by Apple Computer, Inc. Bits 16 through 30 are available for use by SIM developers.

scsiIOpbSize
The minimum size of a SCSI I/O parameter block for this SIM.

scsiMaxIOpbSize
The minimum size of a SCSI I/O parameter block for all currently registered SIMs. That is, the largest
registered scsiIOpbSize.

scsiFeatureFlags
These flags describe various physical characteristics of the SCSI bus.

scsiVersionNumber
The version number of the SIM/HBA.

scsiHBAInquiry
Flags describing the capabilities of the bus.

scsiTargetModeFlags
Reserved.

scsiScanFlags
Reserved.

1836 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiSIMPrivatesPtr
A pointer to the SIM's private storage.

scsiSIMPrivatesSize
The size of the SIM's private storage, in bytes.

scsiAsyncFlags
Reserved.

scsiHiBusID
The highest bus number currently registered with the XPT. If no buses are registered, this field contains
0xFF (the ID of the XPT).

scsiInitiatorID
The SCSI ID of the HBA. This value is 7 for a built-in SCSI bus.

scsiBIReserved0
scsiBIReserved1
scsiFlagsSupported

A bit mask that defines which scsiFlags bits are supported.

scsiIOFlagsSupported
A bit mask that defines which scsiIOFlags bits are supported.

scsiWeirdStuff
Flags that identify unusual aspects of a SIM's operation.

scsiMaxTarget
The highest SCSI ID value supported by the HBA.

scsiMaxLUN
The highest logical unit number supported by the HBA.

scsiSIMVendor
An ASCII text string that identifies the SIM vendor. This field returns 'Apple Computer' for a built-in
SCSI bus.

scsiHBAVendor
An ASCII text string that identifies the HBA vendor. This field returns 'Apple Computer' for a built-in
SCSI bus.

scsiControllerFamily
An optional ASCII text string that identifies the family of parts to which the SCSI controller chip belongs.
This information is provided at the discretion of the HBA vendor.

scsiControllerType
An optional ASCII text string that identifies the specific type of SCSI controller chip. This information
is provided at the discretion of the HBA vendor.

scsiXPTversion
An ASCII text string that identifies the version number of the XPT. You should use the other fields of
this parameter block to check for specific features, rather than relying on this value.

scsiSIMversion
An ASCII text string that identifies the version number of the SIM. You should use the other fields of
this parameter block to check for specific features, rather than relying on this value.

scsiHBAversion
An ASCII text string that identifies the version number of the HBA. You should use the other fields of
this parameter block to check for specific features, rather than relying on this value.

scsiHBAslotType
The slot type, if any, used by this HBA.

Data Types 1837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiHBAslotNumber
The slot number for the SIM. Device drivers should copy this value into the dCtlSlot field of the
device control entry. This value is 0 for a built-in SCSI bus.

scsiSIMsRsrcID
The ID for the SIM. Device drivers should copy this value into the dCtlSlotID field of the device
control entry. This value is 0 for a built-in SCSI bus.

scsiAdditionalLength
The additional size of this parameter block, in bytes. If this structure includes extra fields to return
additional information, this field contains the number of additional bytes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

SCSIAbortCommandPB
Defines a SCSI abort command parameter block.

struct SCSIAbortCommandPB {
 SCSIHdr * qLink;
 short scsiReserved1;
 UInt16 scsiPBLength;
 UInt8 scsiFunctionCode;
 UInt8 scsiReserved2;
 volatile OSErr scsiResult;
 DeviceIdent scsiDevice;
 SCSICallbackUPP scsiCompletion;
 UInt32 scsiFlags;
 BytePtr scsiDriverStorage;
 Ptr scsiXPTprivate;
 long scsiReserved3;
 SCSI_IO * scsiIOptr;
};
typedef struct SCSIAbortCommandPB SCSIAbortCommandPB;

Fields
qLink

A pointer to the next entry in the request queue. This field is used internally by the SCSI Manager and
must be set to 0 when the parameter block is initialized. The SCSI Manager functions always set this
field to 0 before returning, so you do not need to set it to 0 again before reusing a parameter block.

scsiReserved1
Reserved.

scsiPBLength
The size of the parameter block, in bytes, including the parameter block header.

scsiFunctionCode
A function selector code that specifies the service being requested.

scsiReserved2
Reserved.

1838 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiResult
The result code returned by the XPT or SIM when the function completes. The value
scsiRequestInProgress indicates that the request is still in progress or queued.

scsiDevice
A 4-byte value that uniquely identifies the target device for a request. The DeviceIdent data type
designates the bus number, target SCSI ID, and logical unit number (LUN).

scsiCompletion
A pointer to a completion routine.

scsiFlags
Flags indicating the transfer direction and any special handling required for this request.

scsiDriverStorage
A pointer to the device driver's private storage. This field is not affected or used by the SCSI Manager.

scsiXPTprivate
Private field for use in XPT.

scsiReserved3
Reserved.

scsiIOptr
A pointer to the parameter block to be canceled.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

SCSITerminateIOPB
Defines a SCSI terminate I/O parameter block.

Data Types 1839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

struct SCSITerminateIOPB {
 SCSIHdr * qLink;
 short scsiReserved1;
 UInt16 scsiPBLength;
 UInt8 scsiFunctionCode;
 UInt8 scsiReserved2;
 volatile OSErr scsiResult;
 DeviceIdent scsiDevice;
 SCSICallbackUPP scsiCompletion;
 UInt32 scsiFlags;
 BytePtr scsiDriverStorage;
 Ptr scsiXPTprivate;
 long scsiReserved3;
 SCSI_IO * scsiIOptr;
};
typedef struct SCSITerminateIOPB SCSITerminateIOPB;

Fields
qLink

A pointer to the next entry in the request queue. This field is used internally by the SCSI Manager and
must be set to 0 when the parameter block is initialized. The SCSI Manager functions always set this
field to 0 before returning, so you do not need to set it to 0 again before reusing a parameter block.

scsiReserved1
Reserved.

scsiPBLength
The size of the parameter block, in bytes, including the parameter block header.

scsiFunctionCode
A function selector code that specifies the service being requested.

scsiReserved2
Reserved.

scsiResult
The result code returned by the XPT or SIM when the function completes. The value
scsiRequestInProgress indicates that the request is still in progress or queued.

scsiDevice
A 4-byte value that uniquely identifies the target device for a request. The DeviceIdent data type
designates the bus number, target SCSI ID, and logical unit number (LUN).

scsiCompletion
A pointer to a completion routine.

scsiFlags
Flags indicating the transfer direction and any special handling required for this request.

scsiDriverStorage
A pointer to the device driver's private storage. This field is not affected or used by the SCSI Manager.

scsiXPTprivate
Private field for use in XPT.

scsiReserved3
Reserved.

scsiIOptr
A pointer to the parameter block to be canceled.

1840 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

SCSIGetVirtualIDInfoPB
Defines a SCSI virtual ID information parameter block.

struct SCSIGetVirtualIDInfoPB {
 SCSIHdr * qLink;
 short scsiReserved1;
 UInt16 scsiPBLength;
 UInt8 scsiFunctionCode;
 UInt8 scsiReserved2;
 volatile OSErr scsiResult;
 DeviceIdent scsiDevice;
 SCSICallbackUPP scsiCompletion;
 UInt32 scsiFlags;
 Ptr scsiDriverStorage;
 Ptr scsiXPTprivate;
 long scsiReserved3;
 UInt16 scsiOldCallID;
 Boolean scsiExists;
 SInt8 filler;
};
typedef struct SCSIGetVirtualIDInfoPB SCSIGetVirtualIDInfoPB;

Fields
qLink

A pointer to the next entry in the request queue. This field is used internally by the SCSI Manager and
must be set to 0 when the parameter block is initialized. The SCSI Manager functions always set this
field to 0 before returning, so you do not need to set it to 0 again before reusing a parameter block.

scsiReserved1
Reserved.

scsiPBLength
The size of the parameter block, in bytes, including the parameter block header.

scsiFunctionCode
A function selector code that specifies the service being requested.

scsiReserved2
Reserved.

scsiResult
The result code returned by the XPT or SIM when the function completes. The value
scsiRequestInProgress indicates that the request is still in progress or queued.

scsiDevice
A 4-byte value that uniquely identifies the target device for a request. The DeviceIdent data type
designates the bus number, target SCSI ID, and logical unit number (LUN).

scsiCompletion
A pointer to a completion routine.

Data Types 1841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiFlags
Flags indicating the transfer direction and any special handling required for this request.

scsiDriverStorage
A pointer to the device driver's private storage. This field is not affected or used by the SCSI Manager.

scsiXPTprivate
Private field for use in XPT.

scsiReserved3
Reserved.

scsiOldCallID
The virtual SCSI ID of the device you are searching for.

scsiExists
The XPT returns true in this field if the scsiDevice field contains a valid device identification record.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

SCSILoadDriverPB
Defines a SCSI load driver parameter block.

struct SCSILoadDriverPB {
 SCSIHdr * qLink;
 short scsiReserved1;
 UInt16 scsiPBLength;
 UInt8 scsiFunctionCode;
 UInt8 scsiReserved2;
 volatile OSErr scsiResult;
 DeviceIdent scsiDevice;
 SCSICallbackUPP scsiCompletion;
 UInt32 scsiFlags;
 Ptr scsiDriverStorage;
 Ptr scsiXPTprivate;
 long scsiReserved3;
 short scsiLoadedRefNum;
 Boolean scsiDiskLoadFailed;
 SInt8 filler;
};
typedef struct SCSILoadDriverPB SCSILoadDriverPB;

Fields
qLink

A pointer to the next entry in the request queue. This field is used internally by the SCSI Manager and
must be set to 0 when the parameter block is initialized. The SCSI Manager functions always set this
field to 0 before returning, so you do not need to set it to 0 again before reusing a parameter block.

scsiReserved1
Reserved.

scsiPBLength
The size of the parameter block, in bytes, including the parameter block header.

1842 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiFunctionCode
A function selector code that specifies the service being requested.

scsiReserved2
Reserved.

scsiResult
The result code returned by the XPT or SIM when the function completes. The value
scsiRequestInProgress indicates that the request is still in progress or queued.

scsiDevice
A 4-byte value that uniquely identifies the target device for a request. The DeviceIdent data type
designates the bus number, target SCSI ID, and logical unit number (LUN).

scsiCompletion
A pointer to a completion routine.

scsiFlags
Flags indicating the transfer direction and any special handling required for this request.

scsiDriverStorage
A pointer to the device driver's private storage. This field is not affected or used by the SCSI Manager.

scsiXPTprivate
Private field for use in XPT.

scsiReserved3
Reserved.

scsiLoadedRefNum
If the driver is successfully loaded, this field contains the driver reference number returned by the
SIM.

scsiDiskLoadFailed
If this field is set to true, the SIM should attempt to load its own driver regardless of whether there is
one on the device. If this field is set to false, the SIM has the option of loading a driver from the device
or using one of its own.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

SCSIDriverPB
Defines a SCSI driver identification parameter block.

Data Types 1843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

struct SCSIDriverPB {
 SCSIHdr * qLink;
 short scsiReserved1;
 UInt16 scsiPBLength;
 UInt8 scsiFunctionCode;
 UInt8 scsiReserved2;
 volatile OSErr scsiResult;
 DeviceIdent scsiDevice;
 SCSICallbackUPP scsiCompletion;
 UInt32 scsiFlags;
 Ptr scsiDriverStorage;
 Ptr scsiXPTprivate;
 long scsiReserved3;
 short scsiDriver;
 UInt16 scsiDriverFlags;
 DeviceIdent scsiNextDevice;
};
typedef struct SCSIDriverPB SCSIDriverPB;

Fields
qLink

A pointer to the next entry in the request queue. This field is used internally by the SCSI Manager and
must be set to 0 when the parameter block is initialized. The SCSI Manager functions always set this
field to 0 before returning, so you do not need to set it to 0 again before reusing a parameter block.

scsiReserved1
Reserved.

scsiPBLength
The size of the parameter block, in bytes, including the parameter block header.

scsiFunctionCode
A function selector code that specifies the service being requested.

scsiReserved2
Reserved.

scsiResult
The result code returned by the XPT or SIM when the function completes. The value
scsiRequestInProgress indicates that the request is still in progress or queued.

scsiDevice
A 4-byte value that uniquely identifies the target device for a request. The DeviceIdent data type
designates the bus number, target SCSI ID, and logical unit number (LUN).

scsiCompletion
A pointer to a completion routine.

scsiFlags
Flags indicating the transfer direction and any special handling required for this request.

scsiDriverStorage
A pointer to the device driver's private storage. This field is not affected or used by the SCSI Manager.

scsiXPTprivate
scsiReserved3

Reserved.

scsiDriver
The driver reference number of the device driver associated with this device identification record.

1844 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiDriverFlags
Driver information flags. These flags are not interpreted by the XPT but can be used to provide
information about the driver to other clients.

scsiNextDevice
The device identification record of the next device in the driver registration list.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
SCSI.h

Constants

SCSI Flags
Used in the scsiFlags field of the SCSI_PB structure.

Constants 1845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

enum {
 scsiDirectionMask = 0xC0000000,
 scsiDirectionNone = 0xC0000000,
 scsiDirectionReserved = 0x00000000,
 scsiDirectionOut = 0x80000000,
 scsiDirectionIn = 0x40000000,
 scsiDisableAutosense = 0x20000000,
 scsiFlagReservedA = 0x10000000,
 scsiFlagReserved0 = 0x08000000,
 scsiCDBLinked = 0x04000000,
 scsiQEnable = 0x02000000,
 scsiCDBIsPointer = 0x01000000,
 scsiFlagReserved1 = 0x00800000,
 scsiInitiateSyncData = 0x00400000,
 scsiDisableSyncData = 0x00200000,
 scsiSIMQHead = 0x00100000,
 scsiSIMQFreeze = 0x00080000,
 scsiSIMQNoFreeze = 0x00040000,
 scsiDoDisconnect = 0x00020000,
 scsiDontDisconnect = 0x00010000,
 scsiDataReadyForDMA = 0x00008000,
 scsiFlagReserved3 = 0x00004000,
 scsiDataPhysical = 0x00002000,
 scsiSensePhysical = 0x00001000,
 scsiFlagReserved5 = 0x00000800,
 scsiFlagReserved6 = 0x00000400,
 scsiFlagReserved7 = 0x00000200,
 scsiFlagReserved8 = 0x00000100
};

Constants
scsiDirectionMask

A bit field that specifies transfer direction, using these constants: scsiDirectionIn,
scsiDirectionOut, and scsiDirectionNone

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDirectionNone
No data phase expected.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDirectionOut
Data out.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

1846 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiDirectionIn
Data in.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDisableAutosense
Disable the automatic REQUEST SENSE feature.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiCDBLinked
The parameter block contains a linked CDB. This option may not be supported by all SIMs.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiQEnable
Enable target queue actions. This option may not be supported by all SIMs.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiCDBIsPointer
Set if the scsiCDB field of a SCSI I/O parameter block contains a pointer. If clear, the scsiCDB field
contains the actual CDB. In either case, the scsiCDBLength field contains the number of bytes in
the SCSI command descriptor block.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiInitiateSyncData
Set if the SIM should attempt to initiate a synchronous data transfer by sending the SDTR message.
If successful, the device normally remains in the synchronous transfer mode until it is reset or until
you specify asynchronous mode by setting thescsiDisableSyncData flag. Because SDTR negotiation
occurs every time this flag is set, you should set it only when negotiation is actually needed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDisableSyncData
Disable synchronous data transfer. The SIM sends an SDTR message with a REQ/ACK offset of 0 to
indicate asynchronous data transfer mode. You should set this flag only when negotiation is actually
needed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

Constants 1847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiSIMQHead
Place the parameter block at the head of the SIM queue. This can be used to insert error handling at
the head of a frozen queue.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiSIMQFreeze
Freeze the SIM queue after completing this transaction.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiSIMQNoFreeze
Disable SIM queue freezing for this transaction.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDoDisconnect
Explicitly allow device to disconnect.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDontDisconnect
Explicitly prohibit device disconnection. If this flag and the scsiDoDisconnect flag are both 0, the
SIM determines whether to allow or prohibit disconnection, based on performance criteria.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDataReadyForDMA
Data buffer is locked and non-cacheable.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDataPhysical
Data buffer address is physical.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiSensePhysical
Autosense data pointer is physical.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

1848 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

SCSIAction function selector codes
Used in the scsiFunctionCode field of the parameter block passed to the SCSIAction function.

enum {
 SCSINop = 0x00,
 SCSIExecIO = 0x01,
 SCSIBusInquiry = 0x03,
 SCSIReleaseQ = 0x04,
 SCSIAbortCommand = 0x10,
 SCSIResetBus = 0x11,
 SCSIResetDevice = 0x12,
 SCSITerminateIO = 0x13
};
enum {
 SCSIGetVirtualIDInfo = 128,
 SCSILoadDriver = 130,
 SCSIOldCall = 132,
 SCSICreateRefNumXref = 133,
 SCSILookupRefNumXref = 134,
 SCSIRemoveRefNumXref = 135,
 SCSIRegisterWithNewXPT = 136
};

Constants
SCSINop

No operation.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSIExecIO
Execute a SCSI I/O transaction.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSIBusInquiry
Bus inquiry.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSIReleaseQ
Release a frozen SIM queue.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

Constants 1849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

SCSIAbortCommand
Abort a SCSI command.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSIResetBus
Reset the SCSI bus.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSIResetDevice
Reset a SCSI device.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSITerminateIO
Terminate I/O transaction.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSIGetVirtualIDInfo
Return DeviceIdent of a virtual SCSI ID.

SCSILoadDriver
Load a driver from a SCSI device.

SCSIOldCall
SIM support function for original SCSI Manager emulation.

SCSICreateRefNumXref
Register a device driver.

SCSILookupRefNumXref
Find a driver reference number.

SCSIRemoveRefNumXref
Deregister a device driver.

SCSIRegisterWithNewXPT
XPT was replaced; SIM needs to reregister.

kBusTypeSCSI
Used in the diReserved field of the DeviceIdent structure to identify the type of device described by the
structure.

1850 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

enum {
 kBusTypeSCSI = 0,
 kBusTypeATA = 1,
 kBusTypePCMCIA = 2,
 kBusTypeMediaBay = 3
};

Constants
kBusTypeSCSI

DeviceIdent holds information about a SCSI device.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

kBusTypeATA
DeviceIdent holds information about an ATA device.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

kBusTypePCMCIA
Not recommended.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

kBusTypeMediaBay
Not recommended.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSI Result Flags
Used in scsiResultFlags field of the SCSI_IO structure.

enum {
 scsiSIMQFrozen = 0x0001,
 scsiAutosenseValid = 0x0002,
 scsiBusNotFree = 0x0004
};

Constants
scsiSIMQFrozen

The SIM queue for this LUN is frozen because of an error. You must call the SCSIReleaseQ function
to release the queue and resume processing requests.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

Constants 1851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiAutosenseValid
An automatic REQUEST SENSE was performed after this I/O because of a CHECK CONDITION status
message from the device. The data contained in the scsiSensePtr buffer is valid.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusNotFree
The SCSI Manager was unable to clear the bus after an error. You may need to call the SCSIResetBus
function to restore operation.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSI IO Flags
Used in the scsiIOFlags field of the SCSI_IO structure.

enum {
 scsiNoParityCheck = 0x0002,
 scsiDisableSelectWAtn = 0x0004,
 scsiSavePtrOnDisconnect = 0x0008,
 scsiNoBucketIn = 0x0010,
 scsiNoBucketOut = 0x0020,
 scsiDisableWide = 0x0040,
 scsiInitiateWide = 0x0080,
 scsiRenegotiateSense = 0x0100,
 scsiDisableDiscipline = 0x0200,
 scsiIOFlagReserved0080 = 0x0080,
 scsiIOFlagReserved8000 = 0x8000
};

Constants
scsiNoParityCheck

Disable parity error detection for this transaction.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDisableSelectWAtn
Do not send the IDENTIFY message for LUN selection. The LUN is still required in the scsiDevice
field so that the request can be placed in the proper queue. The LUN field in the CDB is untouched.
The purpose is to provide compatibility with older devices that do not support this aspect of the
SCSI-2 specification.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

1852 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiSavePtrOnDisconnect
Perform a SAVE DATA POINTER operation automatically in response to a DISCONNECT message from
the target. The purpose of this flag is to provide compatibility with devices that do not properly
implement this aspect of the SCSI-2 specification.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiNoBucketIn
Prohibit bit-bucketing during the data-in phase of the transaction. Bit-bucketing is the practice of
throwing away excess data bytes when a target tries to supply more data than the initiator expects.
For example, if the CDB requests more data than you specified in the scsiDataLength field, the
SCSI Manager normally throws away the excess and returns the scsiDataRunError result code. If
this flag is set, the SCSI Manager refuses any extra data, terminates the I/O request, and leaves the
bus in the data-in phase. You must reset the bus to restore operation. This flag is intended only for
debugging purposes.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiNoBucketOut
Prohibit bit-bucketing during the data-out phase of the transaction. If a target requests more data
than you specified in the scsiDataLength field, the SCSI Manager normally sends an arbitrary
number of meaningless bytes (0xEE) until the target releases the bus. If this flag is set, the SCSI Manager
terminates the I/O request when the last byte is sent and leaves the bus in the data-out phase. You
must reset the bus to restore operation. This flag is intended only for debugging purposes.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDisableWide
Disable wide data transfer negotiation for this transaction if it had been previously enabled. This
option may not be supported by all SIMs.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiInitiateWide
Attempt wide data transfer negotiation for this transaction if it is not already enabled. This option
may not be supported by all SIMs.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

Constants 1853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiRenegotiateSense
Attempt to renegotiate synchronous or wide transfers before issuing a REQUEST SENSE. This is necessary
when the error was caused by problems operating in synchronous or wide transfer mode. It is optional
because some devices flush sense data after performing negotiation.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSI_IO Data Types
Used in the scsiDataType field of the SCSI_IO parameter block.

enum {
 scsiDataBuffer = 0,
 scsiDataTIB = 1,
 scsiDataSG = 2,
 scsiDataIOTable = 3
};

Constants
scsiDataBuffer

The scsiDataPtr field contains a pointer to a contiguous data buffer, and the scsiDataLength
field contains the length of the buffer, in bytes.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDataTIB
The scsiDataPtr field contains a pointer to a transfer instruction block. This is used by the XPT
during original SCSI Manager emulation, when communicating with a SIM that supports this.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDataSG
The scsiDataPtr field contains a pointer to a scatter/gather list. The scsiDataLength field contains
the total number of bytes to be transferred, and the scsiSGListCount field contains the number
of elements in the scatter/gather list.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSIBusInquiryPB Data Types
Used in the scsiDataTypes field of the SCSIBusInquiryPB structure.

1854 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

enum {
 scsiBusDataTIB = (1 << scsiDataTIB),
 scsiBusDataBuffer = (1 << scsiDataBuffer),
 scsiBusDataSG = (1 << scsiDataSG),
 scsiBusDataIOTable = (1 << scsiDataIOTable),
 scsiBusDataReserved = 0x80000000
};

Discussion
These types correspond to the scsiDataType field of the SCSI I/O parameter block.

SCSI Transfer Types
Used in the scsiTransferType field of the SCSI_IO structure.

enum {
 scsiTransferBlind = 0,
 scsiTransferPolled = 1
};

Constants
scsiTransferBlind

Use DMA, if available; otherwise, perform a blind transfer using the handshaking information contained
in the scsiHandshake field.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiTransferPolled
Use polled transfer mode. The scsiHandshake field is not required for this mode.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

SCSIBusInquiryPB Feature Flags
Used in the featureFlags field of the SCSIBusInquiryPB structure.

Constants 1855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

enum {
 scsiBusLVD = 0x00000400,
 scsiBusUltra3SCSI = 0x00000200,
 scsiBusUltra2SCSI = 0x00000100,
 scsiBusInternalExternalMask = 0x000000C0,
 scsiBusInternalExternalUnknown = 0x00000000,
 scsiBusInternalExternal = 0x000000C0,
 scsiBusInternal = 0x00000080,
 scsiBusExternal = 0x00000040,
 scsiBusCacheCoherentDMA = 0x00000020,
 scsiBusOldCallCapable = 0x00000010,
 scsiBusUltraSCSI = 0x00000008,
 scsiBusDifferential = 0x00000004,
 scsiBusFastSCSI = 0x00000002,
 scsiBusDMAavailable = 0x00000001
};

Constants
scsiBusInternalExternalUnknown

The internal/external state of the bus is unknown.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusInternalExternal
The bus is both internal and external.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusInternal
The bus is at least partly internal to the computer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusExternal
The bus extends outside of the computer.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusCacheCoherentDMA
DMA is cache coherent.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

1856 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiBusOldCallCapable
The SIM supports the original SCSI Manager interface.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusDifferential
The bus uses a differential SCSI interface.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusFastSCSI
The bus supports SCSI-2 fast data transfers.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusDMAavailables
DMA is available.

scsiBusMDP
Used in the scsiHBAInquiry field of the SCSIBusInquiryPB parameter block.

enum {
 scsiBusMDP = 0x80,
 scsiBusWide32 = 0x40,
 scsiBusWide16 = 0x20,
 scsiBusSDTR = 0x10,
 scsiBusLinkedCDB = 0x08,
 scsiBusTagQ = 0x02,
 scsiBusSoftReset = 0x01
};

Constants
scsiBusMDP

Supports the MODIFY DATA POINTER message.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusWide32
Supports 32-bit wide transfers.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

Constants 1857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiBusWide16
Supports 16-bit wide transfers.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusSDTR
Supports synchronous transfers.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusLinkedCDB
Supports linked commands.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusTagQ
Supports tagged queuing.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusSoftReset
Supports soft reset.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiOddDisconnectUnsafeRead1
Used in the scsiWeirdStuff field of the SCSIBusInquiryPB parameter block.

1858 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

enum {
 scsiOddDisconnectUnsafeRead1 = 0x0001,
 scsiOddDisconnectUnsafeWrite1 = 0x0002,
 scsiBusErrorsUnsafe = 0x0004,
 scsiRequiresHandshake = 0x0008,
 scsiTargetDrivenSDTRSafe = 0x0010,
 scsiOddCountForPhysicalUnsafe = 0x0020,
 scsiAbortCmdFixed = 0x0040,
 scsiMeshACKTimingFixed = 0x0080
};

Constants
scsiOddDisconnectUnsafeRead1

Indicates that a disconnect or other phase change on a odd byte boundary during a read operation
will result in inaccurate residual counts or data loss. If your device can disconnect on odd bytes, use
polled transfers instead of blind.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiOddDisconnectUnsafeWrite1
Indicates that a disconnect or other phase change on a odd byte boundary during a write operation
will result in inaccurate residual counts or data loss. If your device can disconnect on odd bytes, use
polled transfers instead of blind.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiBusErrorsUnsafe
Indicates that a delay of more than 16 microseconds or a phase change during a blind transfer on a
non-handshaked boundary may cause a system crash. If you cannot predict where delays or disconnects
will occur, use polled transfers.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiRequiresHandshake
Indicates that a delay of more than 16 microseconds or a phase change during a blind transfer on a
non-handshaked boundary may result in inaccurate residual counts or data loss. If you cannot predict
where delays or disconnects will occur, use polled transfers.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiTargetDrivenSDTRSafe
Indicates that the SIM supports target-initiated synchronous data transfer negotiation. If your device
supports this feature and this bit is not set, you must set the scsiDisableSelectWAtn flag in the
scsiIOFlags field.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

Constants 1859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiMotherboardBus
Used in the scsiHBAslotType field of the SCSIBusInquiryPB parameter block.

enum {
 scsiMotherboardBus = 0x00,
 scsiNuBus = 0x01,
 scsiPDSBus = 0x03,
 scsiPCIBus = 0x04,
 scsiPCMCIABus = 0x05,
 scsiFireWireBridgeBus = 0x06,
 scsiUSBBus = 0x07
};

Constants
scsiMotherboardBus

A built-in SCSI bus.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiNuBus
A NuBus slot.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiPDSBus
A processor-direct slot.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiPCIBus
A SIM on a PCI bus card.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiPCMCIABus
A SIM on a PCMCIA card.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiFireWireBridgeBus
A SIM connected through a FireWire bridge.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

1860 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

scsiUSBBus
A SIM connected on a USB bus.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

kDataOutPhase
Used in the scsiCurrentPhase field of the SCSI_IO structure.

Constants 1861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

enum {
 kDataOutPhase = ,
 kDataInPhase = 1,
 kCommandPhase = 2,
 kStatusPhase = 3,
 kPhaseIllegal0 = 4,
 kPhaseIllegal1 = 5,
 kMessageOutPhase = 6,
 kMessageInPhase = 7,
 kBusFreePhase = 8,
 kArbitratePhase = 9,
 kSelectPhase = 10,
 kMessageInPhaseNACK = 11
};

scsiErrorBase
enum {
 scsiErrorBase = -7936
};

scsiExecutionErrors
enum {
 scsiExecutionErrors = scsiErrorBase,
 scsiNotExecutedErrors = scsiTooManyBuses,
 scsiParameterErrors = scsiPBLengthError
};

scsiVERSION
enum {
 scsiVERSION = 43
};

vendorUnique
enum {
 vendorUnique = 0xC0
};

scsiDeviceSensitive
Used in the scsiDriverFlags field of the SCSIDriverPB parameter block.

1862 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

enum {
 scsiDeviceSensitive = 0x0001,
 scsiDeviceNoOldCallAccess = 0x0002
};

Constants
scsiDeviceSensitive

Only the device driver should access this device. SCSI utilities and other applications that bypass
drivers should check this flag before accessing a device.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

scsiDeviceNoOldCallAccess
This driver or device does not accept original SCSI Manager requests.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in SCSI.h.

Result Codes

The table below shows the result codes most commonly returned by the SCSI Manager.

DescriptionValueResult Code

Parameter block request is in progress1scsiRequestInProgress

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Communications error, operation timeout.2scCommErr

Bus busy, arbitration timeout.3scArbNBErr

Unrecognized TIB instruction.4scBadParmsErr

Phase error on the SCSI bus.5scPhaseErr

Comparison error from scComp instruction.6scCompareErr

SCSI Manager busy.7scMgrBusyErr

Attempted operation is out of sequence.8scSequenceErr

Bus timeout during blind transfer.9scBusTOErr

SCSI bus was not in status phase on entry to SCSIComplete.10scComplPhaseErr

Result Codes 1863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

DescriptionValueResult Code

Internal consistency check failed-7848scsiPluginInternalError

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Internal consistency check failed-7849scsiFamilyInternalError

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

No matching service category-7849scsiCannotLoadPlugin

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Bad connection type-7850scsiBadConnType

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Target already reserved-7853scsiTargetReserved

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Can’t close connection, I/O in progress-7854scsiIOInProgress

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Bad connection ID-7856scsiBadConnID

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Invalid message type-7858scsiInvalidMsgType

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Could not do full prepare mem for I/O-7859scsiPartialPrepared

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

A zero data length in the parameter block.-7860scsiBadDataLength

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

1864 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

DescriptionValueResult Code

The CDB length supplied is not supported by this SIM;
typically this means it was too big

-7863scsiCDBLengthInvalid

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The scsiTransferType requested is not supported by this
SIM

-7864scsiTransferTypeInvalid

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

SIM does not support the requested scsiDataType-7865scsiDataTypeInvalid

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The initiator ID is invalid-7866scsiIDInvalid

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The logical unit number is invalid-7867scsiLUNInvalid

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The target ID is invalid-7868scsiTIDInvalid

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The bus ID is invalid-7869scsiBusInvalid

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The parameter block request is invalid-7870scsiRequestInvalid

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The requested function is not supported by this SIM-7871scsiFunctionNotAvailable

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The parameter block length supplied was too small for this
SIM

-7872scsiPBLengthError

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Result Codes 1865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

DescriptionValueResult Code

The qLink field was not 0-7881scsiQLinkInvalid

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

No driver has been cross-referenced with this device-7882scsiNoSuchXref

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Attempt to register more than one driver to a device-7883scsiDeviceConflict

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

No HBA detected-7884scsiNoHBA

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

SCSI device not installed or available-7885scsiDeviceNotThere

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Unable to provide the requested service-7886scsiProvideFail

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

SCSI subsystem is busy-7887scsiBusy

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

SIM registration failed because the XPT registry is full-7888scsiTooManyBuses

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The SCSI CDB was received-7910scsiCDBReceived

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Nexus is not established-7911scsiNoNexus

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

1866 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

DescriptionValueResult Code

Parameter block request terminated by the host-7912scsiTerminated

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

A SCSI bus device reset (BDR) message was sent to the target-7913scsiBDRsent

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Data phase was in an unexpected direction-7915scsiWrongDirection

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Target bus phase sequence failure-7916scsiSequenceFailed

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Unexpected bus free phase-7917scsiUnexpectedBusFree

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Data overrun/underrun error-7918scsiDataRunError

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Automatic REQUEST SENSE command failed-7920scsiAutosenseFailed

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

An uncorrectable parity error occurred-7921scsiParityError

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Execution of this parameter block was halted because of a
SCSI bus reset

-7922scsiSCSIBusReset

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

REJECT message received-7923scsiMessageRejectReceived

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Result Codes 1867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

DescriptionValueResult Code

The target issued a REJECT message in response to the
IDENTIFY message; the LUN probably does not exist

-7924scsiIdentifyMessageRejected

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The timeout value for this parameter block was exceeded
and the parameter block was aborted

-7925scsiCommandTimeout

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Target selection timeout-7926scsiSelectTimeout

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Unable to terminate I/O parameter block request-7927scsiUnableToTerminate

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

The target returned non-zero status upon completion of the
request

-7932scsiNonZeroStatus

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Unable to abort parameter block request-7933scsiUnableToAbort

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Parameter block request aborted by the host-7934scsiRequestAborted

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

1868 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

SCSI Manager Reference (Not Recommended)

Framework: CoreServices/CoreServices.h

Declared in UnicodeConverter.h
TextCommon.h
Unicode.h
TextEncodingConverter.h
TextEncodingPlugin.h

Overview

The Text Encoding Conversion (TEC) Manager provides two facilities—the Text Encoding Converter and the
Unicode Converter—that your application can use to handle text encoding conversion on the Mac OS. You
will find the Text Encoding Conversion Manager helpful if you develop Internet applications, such as Web
browsers or e-mail applications, applications that transfer text across different platforms, or applications
based in Unicode.

Functions by Task

Creating a Text Encoding Specification

CreateTextEncoding (page 1890)
Creates and returns a text encoding specification.

Obtaining Information From a Text Encoding Specification

GetTextEncodingBase (page 1899)
Returns the base encoding of the specified text encoding.

GetTextEncodingFormat (page 1899)
Returns the format value of the specified text encoding.

GetTextEncodingName (page 1899)
Returns the localized name for a specified text encoding.

GetTextEncodingVariant (page 1901)
Returns the variant from the specified text encoding.

ResolveDefaultTextEncoding (page 1906)
Returns a text encoding specification in which any meta-values have been resolved to real values.
Currently, this affects only the base encoding values packed into the text encoding specification.

Overview 1869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Converting Between Script Manager Values and Text Encodings

RevertTextEncodingToScriptInfo (page 1907)
Converts the given Mac OS text encoding specification to the corresponding script code and, if
possible, language code and font name.

UpgradeScriptInfoToTextEncoding (page 1937)
Converts any combination of a Mac OS script code, a language code, a region code, and a font name
to a text encoding.

Obtaining Information About Available Text Encodings

TECCountAvailableTextEncodings (page 1914)
Counts and returns the number of text encodings currently configured in the Text Encoding Converter.

TECCountSubTextEncodings (page 1917)
Counts and returns the number of subencodings a text encoding supports.

TECGetAvailableTextEncodings (page 1926)
Returns the text encoding specifications currently configured in the Text Encoding Converter.

TECGetSubTextEncodings (page 1930)
Returns the text encoding specifications for the subencodings the encoding scheme supports.

NearestMacTextEncodings (page 1902)
Obtains the best and alternate Mac text encoding.

Identifying Direct Encoding Conversions

TECCountDirectTextEncodingConversions (page 1916)
Counts and returns the number of direct conversions currently configured in the Text Encoding
Converter.

TECGetDirectTextEncodingConversions (page 1927)
Returns the types of direct conversions currently configured in the Text Encoding Converter.

Identifying Possible Destination Encodings

TECCountDestinationTextEncodings (page 1915)
Counts and returns the number of destination encodings to which a specified source encoding can
be converted in one step.

TECGetDestinationTextEncodings (page 1926)
Returns the encoding specifications for all the destination text encodings to which the Text Encoding
Converter can directly convert the specified source encoding.

Obtaining Converter Information

TECGetInfo (page 1929)
Allocates a converter information structure of type TECInfo in the application heap using NewHandle,
fills it out, and returns a handle.

1870 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Creating and Deleting Converter Objects

TECCreateConverter (page 1918)
Determines a conversion path for a source and destination encoding, then creates a text encoding
converter object and returns a pointer to it.

TECCreateConverterFromPath (page 1919)
Creates a converter object for a specific conversion path—from a source encoding through intermediate
encodings to a destination encoding—and returns a pointer to it.

TECClearConverterContextInfo (page 1910)
Resets a converter object to its initial state so you can reuse it.

TECDisposeConverter (page 1921)
Disposes of a converter object.

Converting Text Between Encodings

TECConvertText (page 1911)
Converts a stream of text from a source encoding to a destination encoding. It uses the conversion
path specified by the converter object you supply.

TECFlushText (page 1924)
Flushes out any data in a converter object’s temporary buffers and resets the converter object.

Converting to Multiple Encoding Runs

TECConvertTextToMultipleEncodings (page 1912)
Converts text in the source encoding to runs of text in multiple destination encodings. It uses the
conversion path specified in the converter object you supply.

TECCreateOneToManyConverter (page 1920)
Determines a conversion path for the source encoding and destinations encodings you specify, creates
a text encoding converter object, and returns a reference to it.

TECFlushMultipleEncodings (page 1922)
Flushes out any encodings that may be stored in a converter object’s temporary buffers and shifts
encodings back to their default state, if any.

TECGetEncodingList (page 1928)
Gets the list of destination encodings from a converter object.

Using Sniffers to Investigate Encodings

TECCreateSniffer (page 1920)
Creates a sniffer object and returns a reference to it.

TECClearSnifferContextInfo (page 1910)
Resets a sniffer object to its initial settings so you can reuse it.

TECDisposeSniffer (page 1922)
Disposes of a sniffer object.

Functions by Task 1871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECCountAvailableSniffers (page 1914)
Counts and returns the number of sniffers available in all installed plug-ins.

TECGetAvailableSniffers (page 1925)
Returns the list of sniffers available in all installed plug-ins.

TECSniffTextEncoding (page 1933)
Analyzes a text stream and returns the probable encodings in a ranked list, based on an array of
possible encodings you supply. It also returns the number of errors and features for each encoding.

Getting Information About Internet and Regional Text Encoding Names

TECCountMailTextEncodings (page 1916)
Counts and returns the number of currently supported e-mail encodings for a specified region.

TECCountWebTextEncodings (page 1918)
Counts and returns the number of currently supported text encodings for a region code.

TECGetMailTextEncodings (page 1929)
Returns the currently supported mail encoding specifications for a region code.

TECGetTextEncodingFromInternetName (page 1931)
Returns the Mac OS text encoding specification that corresponds to an Internet encoding name.

TECGetTextEncodingInternetName (page 1931)
Returns the Internet encoding name that corresponds to a Mac OS text encoding.

TECGetWebTextEncodings (page 1932)
Returns the currently supported text encoding specifications for a region code.

Converting to Unicode

ChangeTextToUnicodeInfo (page 1875)
Changes the mapping information for the specified Unicode converter object used to convert text
to Unicode to the new mapping you provide.

ConvertFromTextToUnicode (page 1877)
Converts a string from any encoding to Unicode.

CreateTextToUnicodeInfo (page 1890)
Creates and returns a Unicode converter object containing information required for converting strings
from a non-Unicode encoding to Unicode.

CreateTextToUnicodeInfoByEncoding (page 1891)
Based on the given text encoding specification, creates and returns a Unicode converter object
containing information required for converting strings from the specified non-Unicode encoding to
Unicode.

DisposeTextToUnicodeInfo (page 1897)
Releases the memory allocated for the specified Unicode converter object.

ResetTextToUnicodeInfo (page 1905)
Reinitializes all state information kept by the context objects.

1872 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Converting From Unicode

ChangeUnicodeToTextInfo (page 1875)
Changes the mapping information contained in the specified Unicode converter object used to convert
Unicode text to a non-Unicode encoding.

ConvertFromUnicodeToText (page 1883)
Converts a Unicode text string to the destination encoding you specify.

CreateUnicodeToTextInfo (page 1892)
Creates and returns a Unicode converter object containing information required for converting strings
from Unicode to a non-Unicode encoding.

CreateUnicodeToTextInfoByEncoding (page 1893)
Based on the given text encoding specification for the converted text, creates and returns a Unicode
converter object containing information required for converting strings from Unicode to the specified
non-Unicode encoding.

DisposeUnicodeToTextInfo (page 1898)
Releases the memory allocated for the specified Unicode converter object.

ResetUnicodeToTextInfo (page 1905)
Reinitializes all state information kept by a Unicode converter object.

Converting From Unicode to Multiple Encodings

ConvertFromUnicodeToTextRun (page 1885)
Converts a string from Unicode to one or more encodings.

ConvertFromUnicodeToScriptCodeRun (page 1880)
Converts a string from Unicode to one or more scripts.

CreateUnicodeToTextRunInfo (page 1894)
Creates and returns a Unicode converter object containing the information required for converting
a Unicode text string to strings in one or more non-Unicode encodings.

CreateUnicodeToTextRunInfoByEncoding (page 1895)
Based on the given text encoding specifications for the converted text runs, creates and returns a
Unicode converter object containing information required for converting strings from Unicode to
one or more specified non-Unicode encodings.

CreateUnicodeToTextRunInfoByScriptCode (page 1896)
Based on the given script codes for the converted text runs, creates and returns a Unicode converter
object containing information required for converting strings from Unicode to one or more specified
non-Unicode encodings.

DisposeUnicodeToTextRunInfo (page 1898)
Releases the memory allocated for the specified Unicode converter object.

ResetUnicodeToTextRunInfo (page 1906)
Reinitializes all state information kept by the context objects in TextRun conversions.

Converting Between Unicode and Pascal Strings

ConvertFromPStringToUnicode (page 1876)
Converts a Pascal string in a Mac OS text encoding to a Unicode string.

Functions by Task 1873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

ConvertFromUnicodeToPString (page 1879)
Converts a Unicode string to Pascal in a Mac OS text encoding.

Obtaining Unicode Mapping Information

CountUnicodeMappings (page 1889)
Counts available mappings that meet the specified matching criteria.

QueryUnicodeMappings (page 1903)
Returns a list of the conversion mappings available on the system that meet specified matching criteria
and returns the number of mappings found.

Truncating Strings Before Converting Them

TruncateForTextToUnicode (page 1934)
Identifies where your application can safely break a multibyte string to be converted to Unicode so
that the string is not broken in the middle of a multibyte character.

TruncateForUnicodeToText (page 1935)
Identifies where your application can safely break a Unicode string to be converted to any encoding
so that the string is broken in a way that preserves the text element integrity.

Setting the Fallback Handler

SetFallbackUnicodeToText (page 1908)
Specifies a fallback handler to be used for converting a Unicode text segment to another encoding
when the Unicode Converter cannot convert the text using the mapping table specified by the Unicode
converter object.

SetFallbackUnicodeToTextRun (page 1909)
Specifies a fallback handler to be used for converting a Unicode text segment to another encoding
when the Unicode Converter cannot convert the text using the mapping table specified by a Unicode
converter object.

Working With Universal Procedure Pointers

NewUnicodeToTextFallbackUPP (page 1903)
Creates a new universal procedure pointer (UPP) to a Unicode-to-text fallback callback.

DisposeUnicodeToTextFallbackUPP (page 1897)
Disposes of a a new universal procedure pointer (UPP) to a Unicode-to-text fallback callback.

InvokeUnicodeToTextFallbackUPP (page 1901)
Calls your Unicode-to-text fallback callback.

1874 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Getting UniChar Property Values

UCGetCharProperty (page 1936)
Obtains the value associated with a property type for the specified UniChar characters.

Functions

ChangeTextToUnicodeInfo
Changes the mapping information for the specified Unicode converter object used to convert text to Unicode
to the new mapping you provide.

OSStatus ChangeTextToUnicodeInfo (
 TextToUnicodeInfo ioTextToUnicodeInfo,
 ConstUnicodeMappingPtr iUnicodeMapping
);

Parameters
ioTextToUnicodeInfo

The Unicode converter object of type TextToUnicodeInfo (page 1966) containing the mapping to
be modified. You use the function CreateTextToUnicodeInfo (page 1890) to obtain one.

iUnicodeMapping
A structure of type UnicodeMapping (page 1967) identifying the new mapping to be used. This is the
mapping that replaces the existing mapping in the Unicode converter object.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
The function replaces the mapping table information that currently exists in the Unicode converter object
pointed to by the ioTextToUnicodeInfoparameter with the information contained in the UnicodeMapping
structure you supply as the iUnicodeMapping parameter.

ChangeTextToUnicodeInfo resets the Unicode converter object’s fields as necessary.

If an error is returned, the Unicode converter object is invalid.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ChangeUnicodeToTextInfo
Changes the mapping information contained in the specified Unicode converter object used to convert
Unicode text to a non-Unicode encoding.

Functions 1875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus ChangeUnicodeToTextInfo (
 UnicodeToTextInfo ioUnicodeToTextInfo,
 ConstUnicodeMappingPtr iUnicodeMapping
);

Parameters
ioUnicodeToTextInfo

The Unicode converter object of type UnicodeToTextInfo (page 1969) to be modified. You use the
functionCreateUnicodeToTextInfo (page 1892) orCreateUnicodeToTextInfoByEncoding (page
1893) to obtain a Unicode converter object of this type.

iUnicodeMapping
The structure of type UnicodeMapping (page 1967) to be used. This is the new mapping that replaces
the existing mapping in the Unicode converter object.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
The function replaces the mapping table information that currently exists in the specified Unicode converter
object with the information contained in the new Unicode mapping structure you provide.

ChangeUnicodeToTextInfo resets the Unicode converter object’s fields as necessary. However, it does
not initialize or reset the conversion state maintained by the Unicode converter object.

This function is especially useful for converting a string from Unicode if the Unicode string contains characters
that require multiple destination encodings and you know the next destination encoding.

For example, you can change the other (destination) encoding of the Unicode mapping structure pointed
to by the iUnicodeMapping parameter before you call the function ConvertFromUnicodeToText (page
1883) to convert the next character or sequence of characters that require a different destination encoding.

If an error is returned, the Unicode converter object is invalid.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ConvertFromPStringToUnicode
Converts a Pascal string in a Mac OS text encoding to a Unicode string.

1876 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus ConvertFromPStringToUnicode (
 TextToUnicodeInfo iTextToUnicodeInfo,
 ConstStr255Param iPascalStr,
 ByteCount iOutputBufLen,
 ByteCount *oUnicodeLen,
 UniChar oUnicodeStr[]
);

Parameters
iTextToUnicodeInfo

A Unicode converter object of type TextToUnicodeInfo (page 1966) for the Pascal string to be
converted. You can use the function CreateTextToUnicodeInfo (page 1890) or
CreateTextToUnicodeInfoByEncoding (page 1891) to create the Unicode converter object.

iPascalStr
The Pascal string to be converted to Unicode.

iOutputBufLen
The length in bytes of the output buffer pointed to by the oUnicodeStr parameter. Your application
supplies this buffer to hold the returned converted string. The oUnicodeLen parameter may return
a byte count that is less than this value if the converted string is smaller than the buffer size you
allocated.

oUnicodeLen
On return, a pointer to the length in bytes of the converted Unicode string returned in the
oUnicodeStr parameter.

oUnicodeStr
A pointer to a Unicode character array. On return, this array holds the converted Unicode string.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
The ConvertFromPStringToUnicode function provides an easy and efficient way to convert a short Pascal
string to a Unicode string without incurring the overhead associated with the function
ConvertFromTextToUnicode (page 1877).

If necessary, this function automatically uses fallback characters to map the text elements of the string.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ConvertFromTextToUnicode
Converts a string from any encoding to Unicode.

Functions 1877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus ConvertFromTextToUnicode (
 TextToUnicodeInfo iTextToUnicodeInfo,
 ByteCount iSourceLen,
 ConstLogicalAddress iSourceStr,
 OptionBits iControlFlags,
 ItemCount iOffsetCount,
 const ByteOffset iOffsetArray[],
 ItemCount *oOffsetCount,
 ByteOffset oOffsetArray[],
 ByteCount iOutputBufLen,
 ByteCount *oSourceRead,
 ByteCount *oUnicodeLen,
 UniChar oUnicodeStr[]
);

Parameters
iTextToUnicodeInfo

A Unicode converter object of type TextToUnicodeInfo containing mapping and state information
used for the conversion. The contents of this Unicode converter object are modified by the function.
Your application obtains a Unicode converter object using the function
CreateTextToUnicodeInfo (page 1890).

iSourceLen
The length in bytes of the source string to be converted.

iSourceStr
The address of the source string to be converted.

iControlFlags
Conversion control flags. You can use “Conversion Masks” (page 1972) to set the iControlFlags
parameter.

iOffsetCount
The number of offsets in the iOffsetArray parameter. Your application supplies this value. The
number of entries in iOffsetArraymust be fewer than the number of bytes specified in iSourceLen.
If you don’t want offsets returned to you, specify 0 (zero) for this parameter.

iOffsetArray
An array of type ByteOffset.On input, you specify the array that contains an ordered list of significant
byte offsets pertaining to the source string. These offsets may identify font or style changes, for
example, in the source string. All array entries must be less than the length in bytes specified by the
iSourceLen parameter. If you don’t want offsets returned to your application, specify NULL for this
parameter and 0 (zero) for iOffsetCount.

oOffsetCount
On return, a pointer to the number of offsets that were mapped in the output stream.

oOffsetArray
An array of type ByteOffset. On return, this array contains the corresponding new offsets for the
Unicode string produced by the converter.

iOutputBufLen
The length in bytes of the output buffer pointed to by the oUnicodeStr parameter. Your application
supplies this buffer to hold the returned converted string. The oUnicodeLen parameter may return
a byte count that is less than this value if the converted byte string is smaller than the buffer size you
allocated. The relationship between the size of the source string and the Unicode string is complex
and depends on the source encoding and the contents of the string.

1878 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

oSourceRead
On return, a pointer to the number of bytes of the source string that were converted. If the function
returns a kTECUnmappableElementErr result code, this parameter returns the number of bytes
that were converted before the error occurred.

oUnicodeLen
On return, a pointer to the length in bytes of the converted stream.

oUnicodeStr
A pointer to an array used to hold a Unicode string. On input, this value points to the beginning of
the array for the converted string. On return, this buffer holds the converted Unicode string. (For
guidelines on estimating the size of the buffer needed, see the discussion.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). The function returns a noErr result code if it has
completely converted the input string to Unicode without using fallback characters.

Discussion
You specify the source string’s encoding in the Unicode mapping structure that you pass to the function
CreateTextToUnicodeInfo (page 1890) to obtain a Unicode converter object for the conversion. You pass
the Unicode converter object returned by CreateTextToUnicodeInfo to ConvertFromTextToUnicode
as the iTextToUnicodeInfo parameter.

In addition to converting a text string in any encoding to Unicode, the ConvertFromTextToUnicode
function can map offsets for style or font information from the source text string to the returned converted
string. The converter reads the application-supplied offsets, which apply to the source string, and returns
the corresponding new offsets in the converted string. If you do not want the offsets at which font or style
information occurs mapped to the resulting string, you should pass NULL for iOffsetArray and 0 (zero)
for iOffsetCount.

Your application must allocate a buffer to hold the resulting converted string and pass a pointer to the buffer
in the oUnicodeStr parameter. To determine the size of the output buffer to allocate, you should consider
the size of the source string, its encoding type, and its content in relation to the resulting Unicode string.

For example, for 1-byte encodings, such as MacRoman, the Unicode string will be at least double the size
(more if it uses noncomposed Unicode) for MacArabic and MacHebrew, the corresponding Unicode string
could be up to six times as big. For most 2-byte encodings, for example Shift-JIS, the Unicode string will be
less than double the size. For international robustness, your application should allocate a buffer three to four
times larger than the source string. If the output Unicode text is actually UTF-8—which could occur beginning
with the current release of the Text Encoding Conversion Manager, version 1.2.1—the UTF-8 buffer pointer
must be cast to UniCharArrayPtr before it can be passed as the oUnicodeStr parameter. Also, the output
buffer length will have a wider range of variation than for UTF-16; for ASCII input, the output will be the same
size; for Han input, the output will be twice as big, and so on.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ConvertFromUnicodeToPString
Converts a Unicode string to Pascal in a Mac OS text encoding.

Functions 1879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus ConvertFromUnicodeToPString (
 UnicodeToTextInfo iUnicodeToTextInfo,
 ByteCount iUnicodeLen,
 const UniChar iUnicodeStr[],
 Str255 oPascalStr
);

Parameters
iUnicodeToTextInfo

A Unicode converter object. You use the CreateUnicodeToTextInfo or
CreateUnicodeToTextInfoByEncoding function to obtain the Unicode converter object for the
conversion.

iUnicodeLen
The length in bytes of the Unicode string to be converted. This is the string your application provides
in the iUnicodeStr parameter.

iUnicodeStr
A pointer to an array containing the Unicode string to be converted.

oPascalStr
A buffer. On return, the converted Pascal string returned by the function.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
The ConvertFromUnicodeToPString function provides an easy and efficient way to convert a Unicode
string to a Pascal string in a Mac OS text encoding without incurring the overhead associated with use of the
functionConvertFromUnicodeToText (page 1883) orConvertFromUnicodeToScriptCodeRun (page 1880).

If necessary, this function uses the loose mapping and fallback characters to map the text elements of the
string. For fallback mappings, it uses the handler associated with the Unicode converter object.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ConvertFromUnicodeToScriptCodeRun
Converts a string from Unicode to one or more scripts.

1880 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus ConvertFromUnicodeToScriptCodeRun (
 UnicodeToTextRunInfo iUnicodeToTextInfo,
 ByteCount iUnicodeLen,
 const UniChar iUnicodeStr[],
 OptionBits iControlFlags,
 ItemCount iOffsetCount,
 const ByteOffset iOffsetArray[],
 ItemCount *oOffsetCount,
 ByteOffset oOffsetArray[],
 ByteCount iOutputBufLen,
 ByteCount *oInputRead,
 ByteCount *oOutputLen,
 LogicalAddress oOutputStr,
 ItemCount iScriptRunBufLen,
 ItemCount *oScriptRunOutLen,
 ScriptCodeRun oScriptCodeRuns[]
);

Parameters
iUnicodeToTextInfo

You use the functionCreateUnicodeToTextRunInfoByScriptCode (page 1896) to obtain a Unicode
converter object to specify for this parameter.

iUnicodeLen
The length in bytes of the Unicode string to be converted.

iUnicodeStr
A pointer to the Unicode string to be converted.

Functions 1881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

iControlFlags
Conversion control flags. The following constants define the masks for control flags valid for this
parameter. You can use “Conversion Masks” (page 1972) and “Directionality Masks” (page 1976) to set
the iControlFlags parameter.

If the text-run control flag is clear, ConvertFromUnicodeToScriptCodeRun attempts to convert
the Unicode text to the single script from the list of scripts in the Unicode converter object that
produces the best result, that is, that provides for the greatest amount of source text conversion. If
the complete source text can be converted into more than one of the scripts specified in the array,
then the converter chooses among them based on their order in the array. If this flag is clear, the
oScriptCodeRuns parameter always points to a value equal to 1.

If you set the use-fallbacks control flag, the converter uses the default fallback characters for the
current script. If the converter cannot handle a character using the current encoding, even using
fallbacks, the converter attempts to convert the character using the other scripts, beginning with the
first one specified in the list and skipping the one where it failed.

If you set the kUnicodeTextRunBit control flag, the converter attempts to convert the complete
Unicode text string into the first script specified in the Unicode mapping structures array you passed
to CreateUnicodeToTextRunInfo, CreateUnicodeToTextRunInfoByEncoding, or
CreateUnicodeToTextRunInfoByScriptCode to create the Unicode converter object used for
this conversion. If it cannot do this, the converter then attempts to convert the first text element that
failed to the remaining scripts, in their specified order in the array. What the converter does with the
next text element depends on the setting of the keep-same-encoding control flag:

If the keep-same-encoding control flag is clear, the converter returns to the original script and attempts
to continue conversion with that script; this is equivalent to converting each text element to the first
one that works, in the order specified.

If the Unicode-keep-same-encoding control flag is set, the converter continues with the new destination
script until it encounters a text element that cannot be converted using the new script. This attempts
to minimize the number of script code changes in the output text. When the converter cannot convert
a text element using any of the scripts in the list and the Unicode-keep-same-encoding control flag
is set, the converter uses the fallbacks default characters for the current script.

iOffsetCount
The number of offsets in the array pointed to by the iOffsetArray parameter. Your application
supplies this value. The number of entries in iOffsetArray must be fewer than half the number of
bytes specified in iUnicodeLen. If you don’t want offsets returned to you, specify 0 (zero) for this
parameter.

iOffsetArray
An array of type ByteOffset.On input, you specify the array that contains an ordered list of significant
byte offsets pertaining to the source Unicode string. These offsets may identify font or style changes,
for example, in the Unicode string. If you don’t want offsets returned to your application, specify NULL
for this parameter and 0 (zero) for iOffsetCount.

oOffsetCount
On return, a pointer to the number of offsets that were mapped in the output stream.

oOffsetArray
An array of type ByteOffset. On return, this array contains the corresponding new offsets for the
resulting converted string.

iOutputBufLen
The length in bytes of the output buffer pointed to by the oOutputStr parameter. Your application
supplies this buffer to hold the returned converted string. The oOutputLen parameter may return a
byte count that is less than this value if the converted byte string is smaller than the buffer size you
allocated.

1882 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

oInputRead
On return, a pointer to the number of bytes of the Unicode source string that were converted. If the
function returns a result code other than noErr, then this parameter returns the number of bytes
that were converted before the error occurred.

oOutputLen
On return, a pointer to the length in bytes of the converted string.

oOutputStr
A buffer address. On input, this value points to the beginning of the buffer for the converted string.
On return, this buffer contains the converted string in one or more encodings. When an error occurs,
the ConvertFromUnicodeToScriptCodeRun function returns the converted string up to the
character that caused the error.

iScriptRunBufLen
The number of script code run elements you allocated for the script code run array pointed to by the
oScriptCodeRuns parameter. The converter returns the number of valid script code runs in the
location pointed to by oScriptRunOutLen. Each entry in the script code run array specifies the
beginning offset in the converted text and its associated script code.

oScriptRunOutLen
A pointer to a value of type ItemCount. On output, this value contains the number of valid script
code runs returned in the oScriptCodeRuns parameter.

oScriptCodeRuns
An array of elements of type ScriptCodeRun. Your application should allocate an array with the
number of elements you specify in the iScriptRunBufLen parameter. On return, this array contains
the script code runs for the converted text string. Each entry in the array specifies the beginning offset
in the converted text string and the associated script code specification.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
To use the ConvertFromUnicodeToScriptCodeRun function, you must first set up an array of script codes
containing in order of precedence the scripts to be used for the conversion. To create a Unicode converter
object, you call the function CreateUnicodeToTextRunInfoByScriptCode (page 1896). You pass the
returned Unicode converter object as the iUnicodeToTextInfo parameter when you call the
ConvertFromUnicodeToScriptCodeRun function.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ConvertFromUnicodeToText
Converts a Unicode text string to the destination encoding you specify.

Functions 1883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus ConvertFromUnicodeToText (
 UnicodeToTextInfo iUnicodeToTextInfo,
 ByteCount iUnicodeLen,
 const UniChar iUnicodeStr[],
 OptionBits iControlFlags,
 ItemCount iOffsetCount,
 const ByteOffset iOffsetArray[],
 ItemCount *oOffsetCount,
 ByteOffset oOffsetArray[],
 ByteCount iOutputBufLen,
 ByteCount *oInputRead,
 ByteCount *oOutputLen,
 LogicalAddress oOutputStr
);

Parameters
iUnicodeToTextInfo

A Unicode converter object of type UnicodeToTextInfo for converting text from Unicode. You use
the function CreateUnicodeToTextInfo (page 1892) or
CreateUnicodeToTextInfoByEncoding (page 1893) to obtain a Unicode converter object to specify
for this parameter. This function modifies the contents of the iUnicodeToTextInfo parameter.

iUnicodeLen
The length in bytes of the Unicode string to be converted.

iUnicodeStr
A pointer to the Unicode string to be converted. If the input text is UTF-8, which is supported for
versions 1.2.1 or later of the converter, you must cast the UTF-8 buffer pointer to
ConstUniCharArrayPtr before you can pass it as this parameter.

iControlFlags
Conversion control flags. You can use “Conversion Masks” (page 1972) and “Directionality Masks” (page
1976) to set the iControlFlags parameter.

iOffsetCount
The number of offsets contained in the array provided by the iOffsetArray parameter. Your
application supplies this value. If you don’t want offsets returned to you, specify 0 (zero) for this
parameter.

iOffsetArray
An array of type ByteOffset. On input, you specify the array that gives an ordered list of significant
byte offsets pertaining to the Unicode source string to be converted. These offsets may identify font
or style changes, for example, in the source string. If you don’t want offsets returned to your application,
specify NULL for this parameter and 0 (zero) for iOffsetCount. All offsets must be less than
iUnicodeLen.

oOffsetCount
On return, a pointer to the number of offsets that were mapped in the output stream.

oOffsetArray
An array of type ByteOffset. On return, this array contains the corresponding new offsets for the
converted string in the new encoding.

iOutputBufLen
The length in bytes of the output buffer pointed to by the oOutputStr parameter. Your application
supplies this buffer to hold the returned converted string. The oOutputLen parameter may return a
byte count that is less than this value if the converted byte string is smaller than the buffer size you
allocated.

1884 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

oInputRead
On return, a pointer to a the number of bytes of the Unicode string that were converted. If the function
returns a kTECUnmappableElementErr result code, this parameter returns the number of bytes
that were converted before the error occurred.

oOutputLen
On return, a pointer to the length in bytes of the converted text stream.

oOutputStr
A value of type LogicalAddress. On input, this value points to a buffer for the converted string. On
return, the buffer holds the converted text string. (For guidelines on estimating the size of the buffer
needed, see the following discussion.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function can also map offsets for style or font information from the source text string to the returned
converted string. The converter reads the application-supplied offsets and returns the corresponding new
offsets in the converted string. If you do not want font or style information offsets mapped to the resulting
string, you should pass NULL for iOffsetArray and 0 (zero) for iOffsetCount.

Your application must allocate a buffer to hold the resulting converted string and pass a pointer to the buffer
in the oOutputStr parameter. To determine the size of the output buffer to allocate, you should consider
the size and content of the Unicode source string in relation to the type of encoding to which it will be
converted. For example, for many encodings, such as MacRoman and Shift-JIS, the size of the returned string
will be between half the size and the same size as the source Unicode string. However, for some encodings
that are not Mac OS ones, such as EUC-JP, which has some 3-byte characters for Kanji, the returned string
could be larger than the source Unicode string. For MacArabic and MacHebrew, the result will usually be less
than half the size of the Unicode string.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ConvertFromUnicodeToTextRun
Converts a string from Unicode to one or more encodings.

Functions 1885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus ConvertFromUnicodeToTextRun (
 UnicodeToTextRunInfo iUnicodeToTextInfo,
 ByteCount iUnicodeLen,
 const UniChar iUnicodeStr[],
 OptionBits iControlFlags,
 ItemCount iOffsetCount,
 const ByteOffset iOffsetArray[],
 ItemCount *oOffsetCount,
 ByteOffset oOffsetArray[],
 ByteCount iOutputBufLen,
 ByteCount *oInputRead,
 ByteCount *oOutputLen,
 LogicalAddress oOutputStr,
 ItemCount iEncodingRunBufLen,
 ItemCount *oEncodingRunOutLen,
 TextEncodingRun oEncodingRuns[]
);

Parameters
iUnicodeToTextInfo

You use the function CreateUnicodeToTextRunInfo (page 1894),
CreateUnicodeToTextRunInfoByEncoding (page 1895), or
CreateUnicodeToTextRunInfoByScriptCode (page 1896) to obtain a Unicode converter object to
specify for this parameter.

iUnicodeLen
The length in bytes of the Unicode string to be converted.

iUnicodeStr
A pointer to the Unicode string to be converted.

1886 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

iControlFlags
Conversion control flags. The following constants define the masks for control flags valid for this
parameter. You can use “Conversion Masks” (page 1972) and “Directionality Masks” (page 1976) to set
the iControlFlags parameter.

If the text-run control flag is clear, ConvertFromUnicodeToTextRun attempts to convert the Unicode
text to the single encoding it chooses from the list of encodings in the Unicode mapping structures
array that you provide when you create the Unicode converter object. This is the encoding that
produces the best result, that is, that provides for the greatest amount of source text conversion. If
the complete source text can be converted into more than one of the encodings specified in the
Unicode mapping structures array, then the converter chooses among them based on their order in
the array. If this flag is clear, the oEncodingRuns parameter always points to a value equal to 1.

If you set the use-fallbacks control flag, the converter uses the default fallback characters for the
current encoding. If the converter cannot handle a character using the current encoding, even using
fallbacks, the converter attempts to convert the character using the other encodings, beginning with
the first encoding specified in the list and skipping the encoding where it failed.

If you set the kUnicodeTextRunBit control flag, the converter attempts to convert the complete
Unicode text string into the first encoding specified in the Unicode mapping structures array you
passed to CreateUnicodeToTextRunInfo, CreateUnicodeToTextRunInfoByEncoding, or
CreateUnicodeToTextRunInfoByScriptCode when you created the Unicode converter object
for this conversion. If it cannot do this, the converter then attempts to convert the first text element
that failed to the remaining encodings, in their specified order in the array. What the converter does
with the next text element depends on the setting of the keep-same-encoding control flag.

If the keep-same-encoding control flag is clear, the converter returns to the original encoding and
attempts to continue conversion with that encoding; this is equivalent to converting each text element
to the first encoding that works, in the order specified.

If the keep-same-encoding control flag is set, the converter continues with the new destination
encoding until it encounters a text element that cannot be converted using the new encoding. This
attempts to minimize the number of encoding changes in the output text. When the converter cannot
convert a text element using any of the encodings in the list and the Unicode-keep-same-encoding
control flag is set, the converter uses the fallbacks default characters for the current encoding.

iOffsetCount
The number of offsets in the array pointed to by the iOffsetArray parameter. Your application
supplies this value. If you don’t want offsets returned to you, specify 0 (zero) for this parameter.

iOffsetArray
An array of type ByteOffset. On input, you specify the array that contains an ordered list of significant
byte offsets pertaining to the source Unicode string. These offsets may identify font or style changes,
for example, in the Unicode string. If you don’t want offsets returned to your application, specify NULL
for this parameter and 0 (zero) for iOffsetCount. All offsets must be less than iUnicodeLen.

oOffsetCount
On return, a pointer to the number of offsets that were mapped in the output stream.

oOffsetArray
An array of type ByteOffset. On return, this array contains the corresponding new offsets for the
resulting converted string.

iOutputBufLen
The length in bytes of the output buffer pointed to by the oOutputStr parameter. Your application
supplies this buffer to hold the returned converted string. The oOutputLen parameter may return a
byte count that is less than this value if the converted byte string is smaller than the buffer size you
allocated.

Functions 1887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

oInputRead
On return, a pointer to the number of bytes of the Unicode source string that were converted. If the
function returns a result code other than noErr, then this parameter returns the number of bytes
that were converted before the error occurred.

oOutputLen
On return, a pointer to the length in bytes of the converted string.

oOutputStr
A value of type LogicalAddress. On input, this value points to the start of the buffer for the converted
string. On output, this buffer contains the converted string in one or more encodings. When an error
occurs, theConvertFromUnicodeToTextRun function returns the converted string up to the character
that caused the error. (For guidelines on estimating the size of the buffer needed, see the discussion
following the parameter descriptions.

iEncodingRunBufLen
The number of text encoding run elements you allocated for the encoding run array pointed to by
the oEncodingRuns parameter. The converter returns the number of valid encoding runs in the
location pointed to by oEncodingRunOutLen. Each entry in the encoding runs array specifies the
beginning offset in the converted text and its associated text encoding.

oEncodingRunOutLen
On return, a pointer to a the number of valid encoding runs returned in the oEncodingRunsparameter.

oEncodingRuns
On input, an array of structures of type TextEncodingRun. Your application should allocate an array
with the number of elements you specify in the iEncodingRunBufLen parameter. On return, this
array contains the encoding runs for the converted text string. Each entry in the encoding run array
specifies the beginning offset in the converted text string and the associated encoding specification.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
To use the ConvertFromUnicodeToTextRun function, you must first set up an array of structures of type
UnicodeMapping (page 1967) containing, in order of precedence, the mapping information for the conversion.
To create a Unicode converter object, you call the CreateUnicodeToTextRunInfo function passing it the
Unicode mapping array, or you can the CreateUnicodeToTextRunInfoByEncoding or
CreateUnicodeToTextRunInfoByScriptCode functions, which take arrays of text encodings or script
codes instead of an array of Unicode mappings. You pass the returned Unicode converter object as the
iUnicodeToTextInfo parameter when you call the ConvertFromUnicodeToTextRun function.

Two of the control flags that you can set for the iControlFlags parameter allow you to control how the
Unicode Converter uses the multiple encodings in converting the text string. These flags are explained in
the description of the iControlFlags parameter. Here is a summary of how to use these two control flags:

 ■ To keep the converted text in a single encoding, clear the text-run control flag.

 ■ To keep as much contiguous converted text as possible in one encoding, set the text-run control flag
and clear the keep-same-encoding control flag.

 ■ To minimize the number of resulting encoding runs and the changes of destination encoding, set both
the text-run and keep-same-encoding control flags.

The ConvertFromUnicodeToTextRun function returns the converted string in the array pointed to by the
oOutputStr parameter. Beginning with the first text element in the oOutputStr array, the elements of the
array pointed to by the oEncodingRuns parameter identify the encodings of the converted string. The

1888 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

number of elements in the oEncodingRuns array may not correspond to the number of elements in the
oOutputStr array. This is because the oEncodingRuns array includes only elements for the beginning of
each new encoding run in the converted string.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

CountUnicodeMappings
Counts available mappings that meet the specified matching criteria.

OSStatus CountUnicodeMappings (
 OptionBits iFilter,
 ConstUnicodeMappingPtr iFindMapping,
 ItemCount *oActualCount
);

Parameters
iFilter

Filter control flags representing the six subfields of the Unicode mapping structure that this function
uses to match against in determining which mappings on the system to return to your application.
The filter control enumeration, described in “Unicode Matching Masks” (page 1980), define the constants
for the subfield’s flags and their masks. You can include in the search criteria any of the three text
encoding subfields for both the Unicode encoding and the other specified encoding. For any flag not
turned on, the subfield value is ignored and the function does not check the corresponding subfield
of the mappings on the system.

iFindMapping
A structure of type UnicodeMapping (page 1967) containing the text encodings whose field values
are to be matched.

oActualCount
On return, a pointer to the number of matching mappings found.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You can filter on any of the three text encoding subfields of the Unicode mapping structure’s
unicodeEncoding specification and on any of the three text encoding subfields of the structure’s
otherEncoding specification. The iFilter parameter consists of a set of six control flags that you set to
identify which of the corresponding six subfields to include in the match count. No filtering is performed on
fields for which you do not set the corresponding filter control flag.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

Functions 1889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

CreateTextEncoding
Creates and returns a text encoding specification.

TextEncoding CreateTextEncoding (
 TextEncodingBase encodingBase,
 TextEncodingVariant encodingVariant,
 TextEncodingFormat encodingFormat
);

Parameters
encodingBase

A base text encoding.

encodingVariant
A variant of the base text encoding. To specify the default variant for the base encoding given in the
encodingBase parameter, you can use the kTextEncodingDefaultVariant constant.

encodingFormat
A format for the base text encoding. To specify the default format for the base encoding, you can use
the kTextEncodingDefaultFormat constant. If you want to obtain a TextEncoding value that
references UTF-16 or UTF-8, pass kUnicode16BitFormat or kUnicodeUTF8Format .

Return Value
The text encoding specification that the function creates from the values you pass it.

Discussion
When you create a text encoding specification, the three values that you specify are packed into an unsigned
integer, which you can then pass by value to the functions that use text encodings. See the data type
TextEncodingRun (page 1965).

Availability
Available in CarbonLib 1.0 and later when Text Common 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Declared In
TextCommon.h

CreateTextToUnicodeInfo
Creates and returns a Unicode converter object containing information required for converting strings from
a non-Unicode encoding to Unicode.

1890 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus CreateTextToUnicodeInfo (
 ConstUnicodeMappingPtr iUnicodeMapping,
 TextToUnicodeInfo *oTextToUnicodeInfo
);

Parameters
iUnicodeMapping

A pointer to a structure of type UnicodeMapping. Your application provides this structure to identify
the mapping to use for the conversion. You must supply a value of type TextEncoding in the
unicodeEncoding field of this structure. A TextEncoding is a triple composed of an encoding base,
an encoding variant, and a format. You can obtain a UnicodeMapping (page 1967) value by calling
the function CreateTextEncoding.

oTextToUnicodeInfo
On return, the Unicode converter object holds mapping table information you supplied as the
UnicodeMapping parameter and state information related to the conversion. This information is
required for conversion of a text stream in a non-Unicode encoding to Unicode.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You pass a Unicode converter object returned from the function CreateTextToUnicodeInfo to the function
ConvertFromTextToUnicode (page 1877) or ConvertFromPStringToUnicode (page 1876) to identify the
information to be used for the conversion. These two functions modify the contents of the object.

You pass a Unicode converter object returned from CreateTextToUnicodeInfo to the function
TruncateForTextToUnicode (page 1934) to identify the information to be used to truncate the string. This
function does not modify the contents of the Unicode converter object.

If an error is returned, the Unicode converter object is invalid.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

CreateTextToUnicodeInfoByEncoding
Based on the given text encoding specification, creates and returns a Unicode converter object containing
information required for converting strings from the specified non-Unicode encoding to Unicode.

OSStatus CreateTextToUnicodeInfoByEncoding (
 TextEncoding iEncoding,
 TextToUnicodeInfo *oTextToUnicodeInfo
);

Parameters
iEncoding

The text encoding specification for the source text.

oTextToUnicodeInfo
The Unicode converter object of type TextToUnicodeInfo (page 1966) returned by the function.

Functions 1891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You can use this function instead of the CreateTextToUnicodeInfo (page 1890) function when you do not
need to create a Unicode mapping structure. You simply specify the text encoding of the source text. However,
this method is less efficient because the text encoding parameter must be resolved internally into a Unicode
mapping.

You cannot specify a version of Unicode. The function uses a 16-bit form of Unicode as the default.

You pass a Unicode converter object returned from CreateTextToUnicodeInfoByEncoding to the function
ConvertFromTextToUnicode (page 1877) or ConvertFromPStringToUnicode (page 1876) to identify the
information to be used for the conversion. These two functions modify the contents of the Unicode converter
object.

You pass a Unicode converter object returned from CreateTextToUnicodeInfoByEncoding to the function
TruncateForTextToUnicode (page 1934) to identify the information to be used to truncate the string. This
function does not modify the contents of the Unicode converter object.

If you are converting the text stream to Unicode as an intermediary encoding, and then from Unicode to the
final destination encoding, you use the function CreateUnicodeToTextInfo (page 1892) to create a Unicode
converter object for the second part of the process.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Declared In
UnicodeConverter.h

CreateUnicodeToTextInfo
Creates and returns a Unicode converter object containing information required for converting strings from
Unicode to a non-Unicode encoding.

OSStatus CreateUnicodeToTextInfo (
 ConstUnicodeMappingPtr iUnicodeMapping,
 UnicodeToTextInfo *oUnicodeToTextInfo
);

Parameters
iUnicodeMapping

A pointer to a structure of type UnicodeMapping (page 1967). Your application provides this structure
to identify the mapping to be used for the conversion. The unicodeEncoding field of this structure
can specify a Unicode format of kUnicode16BitFormat or kUnicodeUTF8Format. Note that the
versions of the Unicode Converter prior to 1.2.1 do not support kUnicodeUTF8Format.

1892 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

oUnicodeToTextInfo
On return, a pointer to a Unicode converter object that holds the mapping table information you
supply as the iUnicodeMapping parameter and the state information related to the conversion. The
information contained in the Unicode converter object is required for the conversion of a Unicode
string to a non-Unicode encoding.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You pass the Unicode converter object returned from CreateUnicodeToTextInfo to the function
ConvertFromUnicodeToText (page 1883) or ConvertFromUnicodeToPString (page 1879) to identify the
information to be used for the conversion. These two functions modify the contents of the Unicode converter
object.

If an error is returned, the Unicode converter object is invalid.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

CreateUnicodeToTextInfoByEncoding
Based on the given text encoding specification for the converted text, creates and returns a Unicode converter
object containing information required for converting strings from Unicode to the specified non-Unicode
encoding.

OSStatus CreateUnicodeToTextInfoByEncoding (
 TextEncoding iEncoding,
 UnicodeToTextInfo *oUnicodeToTextInfo
);

Parameters
iEncoding

The text encoding specification for the destination, or converted, text.

oUnicodeToTextInfo
A pointer to a Unicode converter object of type UnicodeToTextInfo (page 1969).

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You can use this function instead of the CreateUnicodeToTextInfo (page 1892) function to create a Unicode
converter. However, this method is less efficient internally because the destination text encoding you specify
must be resolved into a Unicode mapping. Using this function, you cannot specify a version of Unicode, so
a default version of Unicode is used; 16-bit format is assumed.

You pass a Unicode converter object returned from the function CreateUnicodeToTextInfoByEncoding
to the functionConvertFromUnicodeToText (page 1883) orConvertFromUnicodeToPString (page 1879)
to identify the information to be used for the conversion. These two functions modify the contents of the
Unicode converter object.

Functions 1893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

You pass a Unicode converter object returned from CreateUnicodeToTextInfoByEncoding to the function
TruncateForUnicodeToText (page 1935) to identify the information to be used to truncate the string. This
function does not modify the contents of the Unicode converter object.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

CreateUnicodeToTextRunInfo
Creates and returns a Unicode converter object containing the information required for converting a Unicode
text string to strings in one or more non-Unicode encodings.

OSStatus CreateUnicodeToTextRunInfo (
 ItemCount iNumberOfMappings,
 const UnicodeMapping iUnicodeMappings[],
 UnicodeToTextRunInfo *oUnicodeToTextInfo
);

Parameters
iNumberOfMappings

The number of mappings specified by your application for converting from Unicode to any other
encoding types, including other forms of Unicode. If you pass 0 for this parameter, the converter will
use all of the scripts installed in the system. The primary script is the one with highest priority;
ScriptOrder ('itlm' resource) determines the priority of the rest. If you set the high-order bit for
this parameter, the Unicode converter assumes that the iEncodings parameter contains a single
element specifying the preferred encoding. This feature is supported for versions 1.2 or later of the
converter.

iUnicodeMappings
A pointer to an array of structures of type UnicodeMapping (page 1967). Your application provides
this structure to identify the mappings to be used for the conversion. The order in which you specify
the mappings determines the priority of the destination encodings. For this function, the Unicode
mapping structure can specify a Unicode format ofkUnicode16BitFormatorkUnicodeUTF8Format.
Note that the versions of the Unicode Converter prior to the Text Encoding Conversion Manager 1.2.1
do not support kUnicodeUTF8Format. Also, note that the unicodeEncoding field should be the
same for all of the entries in iUnicodeMappings. If you pass NULL for the iUnicodeMappings
parameter, the converter uses all of the scripts installed in the system, assuming the default version
of Unicode with 16-bit format. The primary script is the one with the highest priority and
ScriptOrder('itlm' resource) determines the priority of the rest. This is supported beginning with
version 1.2 of the Text Encoding Conversion Manager.

oUnicodeToTextInfo
A pointer to a Unicode converter object for converting Unicode text strings to strings in one or more
non-Unicode encodings. On return, a pointer to a Unicode converter object that holds the mapping
table information you supply as the iUnicodeMappings parameter and the state information related
to the conversion.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

1894 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
You pass a Unicode converter object returned from the function CreateUnicodeToTextRunInfo to the
functionConvertFromUnicodeToTextRun (page 1885) orConvertFromUnicodeToScriptCodeRun (page
1880) to identify the information to be used for the conversion. These two functions modify the contents of
the Unicode converter object.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

CreateUnicodeToTextRunInfoByEncoding
Based on the given text encoding specifications for the converted text runs, creates and returns a Unicode
converter object containing information required for converting strings from Unicode to one or more specified
non-Unicode encodings.

OSStatus CreateUnicodeToTextRunInfoByEncoding (
 ItemCount iNumberOfEncodings,
 const TextEncoding iEncodings[],
 UnicodeToTextRunInfo *oUnicodeToTextInfo
);

Parameters
iNumberOfEncodings

The number of desired encodings. If you pass 0 for this parameter, the converter will use all of the
scripts installed in the system. The primary script is the one with highest priority; ScriptOrder('itlm'
resource) determines the priority of the rest. If you set the high-order bit for this parameter, the
Unicode converter assumes that the iEncodings parameter contains a single element specifying
the preferred encoding. This feature is supported for versions 1.2 or later of the converter.

iEncodings
An array of text encoding specifications for the desired encodings. Your application provides this
structure to identify the encodings to be used for the conversion. The order in which you specify the
encodings determines the priority of the destination encodings. If you pass NULL for this parameter,
the converter will use all of the scripts installed in the system. The primary script is the one with
highest priority and ScriptOrder('itlm' resource) determines the priority of the rest.This feature
is supported for versions 1.2 or later of the converter.

oUnicodeToTextInfo
A pointer to a Unicode converter object for converting Unicode text strings to strings in one or more
non-Unicode encodings. On return, a pointer to a Unicode converter object that holds the encodings
you supply as the iEncodings parameter and the state information related to the conversion.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You pass a Unicode converter object returned from CreateUnicodeToTextRunInfoByEncoding to the
functionConvertFromUnicodeToTextRun (page 1885) orConvertFromUnicodeToScriptCodeRun (page
1880) to identify the information to be used for the conversion. These two functions modify the contents of
the Unicode converter object.

Functions 1895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

If an error is returned, the converter object is invalid.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

CreateUnicodeToTextRunInfoByScriptCode
Based on the given script codes for the converted text runs, creates and returns a Unicode converter object
containing information required for converting strings from Unicode to one or more specified non-Unicode
encodings.

OSStatus CreateUnicodeToTextRunInfoByScriptCode (
 ItemCount iNumberOfScriptCodes,
 const ScriptCode iScripts[],
 UnicodeToTextRunInfo *oUnicodeToTextInfo
);

Parameters
iNumberOfScriptCodes

The number of desired scripts. If you pass 0 for this parameter, the converter uses all the scripts
installed in the system. In this case, the primary script is the one with highest priority; ScriptOrder
(’itlm’ resource) determines the priority of the rest. If you set the high-order bit for this parameter,
the Unicode converter assumes that the iScripts parameter contains a single element specifying
the preferred script. This feature is supported beginning with the Text Encoding Conversion Manager
1.2.

iScripts
An array of script codes for the desired scripts. Your application provides this structure to identify the
scripts to be used for the conversion. The order in which you specify the scripts determines their
priority. If you pass NULL for this parameter, the converter uses all of the scripts installed in the system.
In this case, the primary script is the one with the highest priority and the priority order of the remaining
scripts is defined by the ScriptOrder(itlm resource) resource. This feature is supported for
versions 1.2 or later of the converter.

oUnicodeToTextInfo
A pointer to a Unicode converter object for converting Unicode text strings to strings in one or more
non-Unicode encodings. On return, a pointer to Unicode converter object that holds the scripts you
supply as the iScripts parameter and the state information related to the conversion.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You pass a Unicode converter object returned from CreateUnicodeToTextRunInfoByScriptCode to the
functionConvertFromUnicodeToTextRun (page 1885) orConvertFromUnicodeToScriptCodeRun (page
1880) to identify the information to be used for the conversion. These two functions modify the contents of
the Unicode converter object.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

1896 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Carbon Porting Notes

Declared In
UnicodeConverter.h

DisposeTextToUnicodeInfo
Releases the memory allocated for the specified Unicode converter object.

OSStatus DisposeTextToUnicodeInfo (
 TextToUnicodeInfo *ioTextToUnicodeInfo
);

Parameters
ioTextToUnicodeInfo

A pointer to a Unicode converter object of type TextToUnicodeInfo (page 1966), used for converting
text to Unicode. On input, you specify the object to dispose. It must be an object which your application
created using the function CreateTextToUnicodeInfo (page 1890) or
CreateTextToUnicodeInfoByEncoding (page 1891). You must not point to any other type of
Unicode converter object. Your application should not use this function with the same structure more
than once.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). If your application specifies an invalid Unicode
converter object, such as NULL, the function returns a paramErr result code.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

DisposeUnicodeToTextFallbackUPP
Disposes of a a new universal procedure pointer (UPP) to a Unicode-to-text fallback callback.

void DisposeUnicodeToTextFallbackUPP (
 UnicodeToTextFallbackUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback UnicodeToTextFallbackProcPtr (page 1953) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

Functions 1897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

DisposeUnicodeToTextInfo
Releases the memory allocated for the specified Unicode converter object.

OSStatus DisposeUnicodeToTextInfo (
 UnicodeToTextInfo *ioUnicodeToTextInfo
);

Parameters
ioUnicodeToTextInfo

A pointer to a Unicode converter object for converting from Unicode to a non-Unicode encoding.
You specify a Unicode converter object that your application created using the function
CreateUnicodeToTextInfo (page 1892) orCreateUnicodeToTextInfoByEncoding (page 1893).
You must not point to any other type of Unicode converter object. Your application should not attempt
to dispose of the same Unicode converter object more than once.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). The function returns noErr if it disposes of the
Unicode converter object successfully. If your application specifies an invalid Unicode converter object, such
as NULL, the function returns a paramErr result code.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

DisposeUnicodeToTextRunInfo
Releases the memory allocated for the specified Unicode converter object.

OSStatus DisposeUnicodeToTextRunInfo (
 UnicodeToTextRunInfo *ioUnicodeToTextRunInfo
);

Parameters
ioUnicodeToTextRunInfo

A pointer to a Unicode converter object. On input, you specify a Unicode converter object that points
to the conversion information to dispose. It must be an object which your application created using
the function CreateUnicodeToTextRunInfo (page 1894),
CreateUnicodeToTextRunInfoByEncoding (page 1895), or
CreateUnicodeToTextRunInfoByScriptCode (page 1896). You must point to any other type of
Unicode converter object. Your application should not use this function with the same structure more
than once.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). If your application specifies an invalid Unicode
converter object, such as NULL, the function returns paramErr.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

1898 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Declared In
UnicodeConverter.h

GetTextEncodingBase
Returns the base encoding of the specified text encoding.

TextEncodingBase GetTextEncodingBase (
 TextEncoding encoding
);

Parameters
encoding

A text encoding specification whose base encoding you want to obtain.

Return Value
The base encoding portion of the specified text encoding.

Discussion
See the data type TextEncodingRun (page 1965)

Availability
Available in CarbonLib 1.0 and later when Text Common 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextCommon.h

GetTextEncodingFormat
Returns the format value of the specified text encoding.

TextEncodingFormat GetTextEncodingFormat (
 TextEncoding encoding
);

Parameters
encoding

A text encoding specification.

Return Value
The text encoding format value contained in the text encoding you specified.

Availability
Available in CarbonLib 1.0 and later when Text Common 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextCommon.h

GetTextEncodingName
Returns the localized name for a specified text encoding.

Functions 1899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus GetTextEncodingName (
 TextEncoding iEncoding,
 TextEncodingNameSelector iNamePartSelector,
 RegionCode iPreferredRegion,
 TextEncoding iPreferredEncoding,
 ByteCount iOutputBufLen,
 ByteCount *oNameLength,
 RegionCode *oActualRegion,
 TextEncoding *oActualEncoding,
 TextPtr oEncodingName
);

Parameters
iEncoding

A text encoding specification whose name you want to obtain.

iNamePartSelector
The portion of the encoding name you want to obtain. See “Text Encoding Name Selectors” (page
2012) for a list of possible values.

iPreferredRegion
The preferred region to use for the name. You can specify a Mac OS region code (which also implies
a language) for this parameter. If the function cannot return the name for the preferred region, it
returns the name using a region code with the same language or in a default language (for example,
English).

iPreferredEncoding
The preferred encoding to use for the name. For example, ASCII, Mac OS Roman, or Shift-JIS. If the
function cannot return the name using the preferred encoding, it returns the name using another
encoding, such as Unicode or ASCII.

iOutputBufLen
The length in bytes of the output buffer that your application provides for the returned encoding
name.

oNameLength
A pointer to a value of type ByteCount. On return, this parameter holds the actual length, in bytes,
of the text encoding name. The value represents the full length of the name, which might be greater
than the size of the output buffer, specified by the iOutputBufLen parameter. The length of the
portion of the name actually contained in the output buffer is the smaller of oNameLength and
iOutputBufLen.

oActualRegion
A pointer to a value of type RegionCode. On return, this parameter holds the actual region associated
with the returned encoding name.

oActualEncoding
A pointer to a value of type TextEncoding. On return, this parameter holds the actual encoding
associated with the returned encoding name.

oEncodingName
A pointer to a buffer you provide. On return, this parameter holds the text encoding name.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

1900 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
Names returned by GetTextEncodingName (in the buffer referred to by oEncodingName) can contain
parentheses and other menu item meta characters, and so cannot be used with AppendMenu or
InsertMenuItem. You can use them with SetMenuItemText.

This function can return resources and memory errors, and the following result codes:

 ■ kTextUnsupportedEncodingErr, which indicates that the encoding whose name you want to obtain
is not supported.

 ■ kTECMissingTableErr, which indicates the name resource associated with the encoding is missing.

 ■ kTECTableFormatErr or kTECTableCheckSumErr, which indicates that the name resource associated
with that encoding is invalid.

Availability
Available in CarbonLib 1.0 and later when Text Common 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextCommon.h

GetTextEncodingVariant
Returns the variant from the specified text encoding.

TextEncodingVariant GetTextEncodingVariant (
 TextEncoding encoding
);

Parameters
encoding

A text encoding specification.

Return Value
The text encoding variant portion of the specified text encoding.

Availability
Available in CarbonLib 1.0 and later when Text Common 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Declared In
TextCommon.h

InvokeUnicodeToTextFallbackUPP
Calls your Unicode-to-text fallback callback.

Functions 1901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus InvokeUnicodeToTextFallbackUPP (
 UniChar *iSrcUniStr,
 ByteCount iSrcUniStrLen,
 ByteCount *oSrcConvLen,
 TextPtr oDestStr,
 ByteCount iDestStrLen,
 ByteCount *oDestConvLen,
 LogicalAddress iInfoPtr,
 ConstUnicodeMappingPtr iUnicodeMappingPtr,
 UnicodeToTextFallbackUPP userUPP
);

Discussion
You should not need to use the function InvokeUnicodeToTextFallbackUPP, as the system calls your
Unicode-to-text fallback callback for you. See the callback UnicodeToTextFallbackProcPtr (page 1953)
for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

NearestMacTextEncodings
Obtains the best and alternate Mac text encoding.

OSStatus NearestMacTextEncodings (
 TextEncoding generalEncoding,
 TextEncoding *bestMacEncoding,
 TextEncoding *alternateMacEncoding
);

Parameters
generalEncoding

The text encoding for which you want to obtain a Mac text encoding.

bestMacEncoding
On return, the Mac text encoding that best matches the encoding specified by the generalEncoding
parameter.

alternateMacEncoding
On return, the Mac text encoding that is the second best match for the encoding specified by the
generalEncoding parameter.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in CarbonLib 1.0 and later when Text Common 1.5 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextCommon.h

1902 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

NewUnicodeToTextFallbackUPP
Creates a new universal procedure pointer (UPP) to a Unicode-to-text fallback callback.

UnicodeToTextFallbackUPP NewUnicodeToTextFallbackUPP (
 UnicodeToTextFallbackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your Unicode-to-text fallback callback.

Return Value
On return, a UPP to the Unicode-to-text fallback callback.

Discussion
See the callback UnicodeToTextFallbackProcPtr (page 1953) for more information.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

QueryUnicodeMappings
Returns a list of the conversion mappings available on the system that meet specified matching criteria and
returns the number of mappings found.

OSStatus QueryUnicodeMappings (
 OptionBits iFilter,
 ConstUnicodeMappingPtr iFindMapping,
 ItemCount iMaxCount,
 ItemCount *oActualCount,
 UnicodeMapping oReturnedMappings[]
);

Parameters
iFilter

Filter control flags representing the six values given in the Unicode mapping structure that this
function uses to match against in determining which mappings on the system to return to your
application. The filter control flag enumerations, described in “Unicode Matching Masks” (page 1980),
define the constants for the flags and their masks. You can include in the search criteria any of the
three text encoding values—base, variant, and format—for both the Unicode encoding and the other
specified encoding. For any flag not turned on, the value is ignored the function does not check the
corresponding value of the mapping tables on the system.

iFindMapping
A structure of type UnicodeMapping (page 1967) containing the text encodings whose values are to
be matched.

Functions 1903
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

iMaxCount
The maximum number of mappings that can be returned. You provide this value to identify the
number of elements in the array pointed to by the oReturnedMappings parameter that your
application allocated. If the function identifies more matching mappings than the array can hold, it
returns as many of them as fit. The function also returns a kTECArrayFullErr in this case.

oActualCount
On return, a pointer to the number of matching mappings found. This number may be greater than
the number of mappings specified by iMaxCount if more matching mappings are found than can fit
in the oReturnedMappings array.

oReturnedMappings
A pointer to an array of structures of type UnicodeMapping (page 1967). On input, this pointer refers
to an array for the matching mappings returned by the function. To allocate sufficient elements for
the array, you can use the function CountUnicodeMappings (page 1889) to determine the number
of mappings returned for given values of the iFilter and iFindMapping parameters. On return,
a pointer to an array that holds the matching mappings. If there are more matches than the array can
hold, the function returns as many of them as will fit and a kTECBufferBelowMinimumSizeErr
error result. The oActualCount parameter identifies the number of matching mappings actually
found, which may be greater than the number returned.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). If the function returns a noErr result code, the
value retuned in the oActualCount parameter is less than or equal to the value returned in the iMaxCount
parameter and the oReturnedMappings parameter contains all of the matching mappings found. If the
function returns a kTECArrayFullErr, the function found more mappings than your oReturnedMappings
array could accommodate.

Discussion
You can use the QueryUnicodeMappings function to obtain all mappings on the system up to the number
allowed by your oReturnedMappings array by specifying a value of zero for the iFilter field.

You can use the function to obtain very specific mappings by setting individual filter control flags. You can
filter on any of the three text encoding subfields of the Unicode mapping structure’s unicodeEncoding
specification and on any of the three text encoding subfields of the mapping’s otherEncoding specification.
The iFilter parameter consists of a set of six control flags that you set to identify which of the corresponding
six subfields to include in the match. The list provided in the oReturnedMappings parameter will contain
only mappings that match the fields of the Unicode mapping structure whose text encodings subfields you
identify in the filter control flags. No filtering is performed on subfields for which you do not set the
corresponding filter control flag.

For example, to obtain a list of all mappings in which one of the encodings is the default variant and default
format of the Unicode 1.1 base encoding and the other encoding is the default variant and default format
of a base encoding other than Unicode, you would set up the iFilter and iFindMappings parameter as
follows. To set up these parameters, you use the constants defined for the text encoding bases, the text
encoding default variants, the text encoding default formats, and the filter control flag bitmasks. In this
example, the text encoding base field of the Unicode mapping structure’s otherEncoding field is ignored,
so you can specify any value for it. When you call QueryUnicodeMappings, passing it these parameters,
the function will return a list of mappings between the Unicode encoding you specified and every other
available encoding in which each non-Unicode base encoding shows up once because you specified its
default variant and default format.

iFindMapping.unicodeMapping = CreateTextEncoding(
kTextEncodingUnicodeV1_1,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);

1904 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

iFindMapping.otherEncoding = CreateTextEncoding(
kTextEncodingMacRoman,
kTextEncodingDefaultVariant,
kTextEncodingDefaultFormat);
iFilter = kUnicodeMatchUnicodeBaseMask |
kUnicodeMatchUnicodeVariantMask |
kUnicodeMatchUnicodeFormatMask |
kUnicodeMatchOtherVariantMask |
kUnicodeMatchOtherFormatMask;

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ResetTextToUnicodeInfo
Reinitializes all state information kept by the context objects.

OSStatus ResetTextToUnicodeInfo (
 TextToUnicodeInfo ioTextToUnicodeInfo
);

Parameters
ioTextToUnicodeInfo

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.3 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ResetUnicodeToTextInfo
Reinitializes all state information kept by a Unicode converter object.

OSStatus ResetUnicodeToTextInfo (
 UnicodeToTextInfo ioUnicodeToTextInfo
);

Parameters
ioUnicodeToTextInfo

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1905
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Carbon Porting Notes

Declared In
UnicodeConverter.h

ResetUnicodeToTextRunInfo
Reinitializes all state information kept by the context objects in TextRun conversions.

OSStatus ResetUnicodeToTextRunInfo (
 UnicodeToTextRunInfo ioUnicodeToTextRunInfo
);

Parameters
ioUnicodeToTextRunInfo

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

ResolveDefaultTextEncoding
Returns a text encoding specification in which any meta-values have been resolved to real values. Currently,
this affects only the base encoding values packed into the text encoding specification.

TextEncoding ResolveDefaultTextEncoding (
 TextEncoding encoding
);

Parameters
encoding

A text encoding specification possibly containing meta-values that you want to resolve to a text
encoding specification containing only real values.

Return Value
A text encoding specification containing only real base encoding values.

Discussion
This function is useful for application developers who are providing APIs that take text encoding specifications
as parameters. All APIs in the Unicode Converter and Text Encoding Converter perform this translation
automatically.

Availability
Available in CarbonLib 1.0 and later when Text Common 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextCommon.h

1906 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

RevertTextEncodingToScriptInfo
Converts the given Mac OS text encoding specification to the corresponding script code and, if possible,
language code and font name.

OSStatus RevertTextEncodingToScriptInfo (
 TextEncoding iEncoding,
 ScriptCode *oTextScriptID,
 LangCode *oTextLanguageID,
 Str255 oTextFontname
);

Parameters
iEncoding

The text encoding specification to be converted.

oTextScriptID
A pointer to a value of type ScriptCode. On return, a Mac OS script code that corresponds to the
text encoding specification you identified in the iEncoding parameter. If you do not pass a pointer
for this parameter, the function returns a paramErr result code.

oTextLanguageID
A pointer to a value of type LangCode. On input, if you do not want the function to return the language
code, specify NULL as the value of this parameter. On return, the appropriate language code, if the
language can be unambiguously derived from the text encoding specification, for example, Japanese,
and you did not set the parameter to NULL.

If you do not specify NULL on input and the language is ambiguous—that is, the function cannot
accurately derive it from the text encoding specification—the function returns a value of
kTextLanguageDontCare.

oTextFontname
A Pascal string. On input, if you do not want the function to return the font name, specify NULL as
the value of this parameter. On return, the name of the appropriate font if the font can be
unambiguously derived from the text encoding specification, for example, Symbol, and you did not
set the parameter to NULL.

If you do not specify NULL on input and the font is ambiguous—that is, the function cannot accurately
derive it from the text encoding specification—the function returns a zero-length string.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). The function returns paramErr if the text encoding
specification input parameter value is invalid. The function returns a kTECTableFormatErr result code if
the internal mapping tables used for translation are invalid. For a list of other possible result codes, see “Data
Types”.

Discussion
If you have applications that use Mac OS Script Manager and Font Manager functions, you can use the
RevertTextEncodingToScriptInfo function to convert information in a text encoding specification into
the appropriate Mac OS script code, language code, and font name, if they can be unambiguously derived.
Your application can then use this information to display text to a user on the screen.

For more information see the UpgradeScriptInfoToTextEncoding (page 1937) function and “Base Text
Encodings” (page 1982).

Availability
Available in CarbonLib 1.0 and later when Text Common 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1907
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Declared In
TextCommon.h

SetFallbackUnicodeToText
Specifies a fallback handler to be used for converting a Unicode text segment to another encoding when
the Unicode Converter cannot convert the text using the mapping table specified by the Unicode converter
object.

OSStatus SetFallbackUnicodeToText (
 UnicodeToTextInfo iUnicodeToTextInfo,
 UnicodeToTextFallbackUPP iFallback,
 OptionBits iControlFlags,
 LogicalAddress iInfoPtr
);

Parameters
iUnicodeToTextInfo

\The Unicode converter object to which the fallback handler is to be associated. You use the function
CreateUnicodeToTextInfo (page 1892) orCreateUnicodeToTextInfoByEncoding (page 1893) to
obtain a Unicode converter object of this type.

iFallback
A universal procedure pointer to the application-defined fallback routine. For a description of the
function prototype that your fallback handler must adhere to and how to create your own fallback
handler, see UnicodeToTextFallbackProcPtr (page 1953). You should use the
NewUnicodeToTextFallbackProc macro to convert a pointer to your fallback handler into a
UnicodeToTextFallbackUPP.

iControlFlags
Control flags that stipulate which fallback handler the Unicode Converter should call—the
application-defined fallback handler or the default handler—if a fallback handler is required, and the
sequence in which the Unicode Converter should call the fallback handlers if either can be used when
the other fails or is unavailable. See “Fallback Handler Selectors” (page 1982).

iInfoPtr
A point to a block of memory to be passed to the application-defined fallback handler. The Unicode
Converter passes this pointer to the application-defined fallback handler as the last parameter when
it calls the fallback handler. Your application can use this memory block to store data required by
your fallback handler whenever it is called. This is similar in use to a reference constant (refcon). If
you don’t need to use a memory block, specify NULL for this parameter.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You can define multiple fallback handlers and associate them with different Unicode converter objects,
depending on your requirements. See UnicodeToTextFallbackProcPtr (page 1953) for a description of
how to create and install an application-defined fallback handler.

You can use a fallback handler when one of the Unicode conversion functions,
ConvertFromUnicodeToText (page 1883) , ConvertFromUnicodeToTextRun (page 1885) ,
ConvertFromUnicodeToPString (page 1879) , andConvertFromUnicodeToScriptCodeRun (page 1880) ,
cannot convert the text using the mapping table specified by the Unicode converter object passed to the
function.

1908 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

SetFallbackUnicodeToTextRun
Specifies a fallback handler to be used for converting a Unicode text segment to another encoding when
the Unicode Converter cannot convert the text using the mapping table specified by a Unicode converter
object.

OSStatus SetFallbackUnicodeToTextRun (
 UnicodeToTextRunInfo iUnicodeToTextRunInfo,
 UnicodeToTextFallbackUPP iFallback,
 OptionBits iControlFlags,
 LogicalAddress iInfoPtr
);

Parameters
iUnicodeToTextRunInfo

The Unicode converter object to which the fallback handler is to be associated. You use the function
CreateUnicodeToTextRunInfo (page 1894), CreateUnicodeToTextRunInfoByEncoding (page
1895), or CreateUnicodeToTextRunInfoByScriptCode (page 1896) to obtain a Unicode converter
object to specify for this parameter.

iFallback
A universal procedure pointer to the application-defined fallback routine. For a description of the
function prototype to which your fallback handler must adhere and how to create your own fallback
handler, see UnicodeToTextFallbackProcPtr (page 1953). You should use the
NewUnicodeToTextFallbackProc macro described in the discussion of the function
SetFallbackUnicodeToText (page 1908).

iControlFlags
Control flags that stipulate which fallback handler the Unicode Converter should call—the
application-defined fallback handler or the default handler—if a fallback handler is required, and the
sequence in which the Unicode Converter should call the fallback handlers if either can be used when
the other fails or is unavailable. See “Fallback Handler Selectors” (page 1982).

iInfoPtr
A pointer to a block of memory to be passed to the application-defined fallback handler. The Unicode
Converter passes this pointer to the application-defined fallback handler as the last parameter when
it calls the fallback handler. Your application can use this block to store data required by your fallback
handler whenever it is called. This is similar in use to a reference constant (refcon). If you don’t need
to use a memory block, specify NULL for this parameter.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You can define multiple fallback handlers and associate them with different Unicode converter objects,
depending on your requirements. See UnicodeToTextFallbackProcPtr (page 1953) for a description of
how to create and install an application-defined fallback handler.

Functions 1909
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

TECClearConverterContextInfo
Resets a converter object to its initial state so you can reuse it.

OSStatus TECClearConverterContextInfo (
 TECObjectRef encodingConverter
);

Parameters
encodingConverter

A reference to the text encoding converter object you want to reset. It can be a reference returned
by the TECCreateConverter (page 1918), TECCreateOneToManyConverter (page 1920), or
TECCreateConverterFromPath (page 1919) functions.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
It is more efficient to reuse an existing converter object than to create a new one that contains the same
conversion information. This function clears the text string, but does not alter the source and destination
encodings.

If you are converting multiple segments of a text string, you should not clear the converter object until you
have converted all the text segments.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECClearSnifferContextInfo
Resets a sniffer object to its initial settings so you can reuse it.

OSStatus TECClearSnifferContextInfo (
 TECSnifferObjectRef encodingSniffer
);

Parameters
encodingSniffer

A pointer to the sniffer object you want to reset.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

1910 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
Sniffers maintain state information about the input encoding buffer and the number of errors and features
found for each encoding; this information allows a caller to progressively sniff an input buffer in sequential
chunks. Before sniffing a buffer that contains completely new information you must clear any state information
by calling TECClearSnifferContextInfo.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECConvertText
Converts a stream of text from a source encoding to a destination encoding. It uses the conversion path
specified by the converter object you supply.

OSStatus TECConvertText (
 TECObjectRef encodingConverter,
 ConstTextPtr inputBuffer,
 ByteCount inputBufferLength,
 ByteCount *actualInputLength,
 TextPtr outputBuffer,
 ByteCount outputBufferLength,
 ByteCount *actualOutputLength
);

Parameters
encodingConverter

A reference to the text encoding converter object you want to use for the conversion. It can be a
reference returned by theTECCreateConverter (page 1918) orTECCreateConverterFromPath (page
1919) functions.

inputBuffer
The stream of text you want to convert.

inputBufferLength
The length in bytes (UInt8 or unsigned char) of the stream of text.

actualInputLength
On return, a pointer to the number of source text bytes that were converted from the input buffer.

outputBuffer
A pointer to a buffer for a byte stream. On output, the buffer holds the converted text.

outputBufferLength
The length in bytes of the outputBuffer parameter.

actualOutputLength
On return, a pointer to the number of bytes of converted text returned in the outputBuffer
parameter.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). If there is not enough memory available for
TECConvertText to convert the text when allocating internal buffers, the function returns the appropriate
Memory Manager result code.

Functions 1911
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
If the output buffer you allocate is too small to accommodate any of the converted text, the function fails.
For best results, you should follow these guidelines when you allocate an output buffer:

 ■ Base the buffer length on an estimate of the byte requirements of the destination encoding. Make sure
you account for additional bytes needed by the destination encoding (for example, an escape sequence)
in addition to the actual text.

 ■ Always allocate a buffer at least 32 bytes long.

 ■ If size is a concern, make sure the output buffer is at least large enough to hold a portion of the converted
text. You can convert part of the text, then use the value of the actualInputLength parameter to
identify the next byte to be taken and to determine how many bytes remain. To convert the remaining
text, you simply call the function again with the remaining text and a new output buffer.

 ■ If the destination encoding is a character encoding scheme—such as ISO-2022-JP, which begins in ASCII
and switches to other coded character sets through limited combinations of escape sequences—then
you need to allocate enough space to accommodate escape sequences that signal switches. ISO-2022-JP
requires 3 to 5 bytes for an escape sequence preceding the 1-byte or 2-byte character it introduces. If
you allocate a buffer that is less than 5 bytes, the TECConvertText function could fail, depending on the
text being converted.

To make sure that you receive all of the converted text, you should call the function TECFlushText (page
1924) when you are finished converting all the text in a text stream.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECConvertTextToMultipleEncodings
Converts text in the source encoding to runs of text in multiple destination encodings. It uses the conversion
path specified in the converter object you supply.

OSStatus TECConvertTextToMultipleEncodings (
 TECObjectRef encodingConverter,
 ConstTextPtr inputBuffer,
 ByteCount inputBufferLength,
 ByteCount *actualInputLength,
 TextPtr outputBuffer,
 ByteCount outputBufferLength,
 ByteCount *actualOutputLength,
 TextEncodingRun outEncodingsBuffer[],
 ItemCount maxOutEncodingRuns,
 ItemCount *actualOutEncodingRuns
);

Parameters
encodingConverter

The reference to the text encoding converter object to be used for the conversion. This is the reference
returned by the function TECCreateOneToManyConverter (page 1920).

1912 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

inputBuffer
The stream of text to be converted.

inputBufferLength
The length in bytes of the stream of text specified in the inputBuffer parameter.

actualInputLength
On return, a pointer to a the number of source text bytes that were converted.

outputBuffer
On return, a pointer to a buffer that holds the converted text.

outputBufferLength
The length in bytes of the outputBuffer parameter.

actualOutputLength
On return, a pointer to the number of bytes of the converted text returned in the outputBuffer
parameter.

outEncodingsBuffer
An array of text encoding runs for output. Note that the actual byte size of this buffer should be
actualOutEncodingRuns * sizeof(TextEncodingRun).

maxOutEncodingRuns
The maximum number of runs that can fit in the outEncodingsBuffer array.

actualOutEncodingRuns
On return, a pointer to the number of runs in outEncodingsBuffer array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). If there is not enough memory available to convert
the text when allocating internal buffers, the function returns the appropriate Memory Manager result code.

Discussion
For the function to return successfully, the output buffer you allocate must be large enough to accommodate
the converted text. If the output buffer is too small to accommodate any converted text, the function will
fail. For best results, you should follow these guidelines when you allocate an output buffer:

 ■ Base the buffer length on an estimate of the byte requirements of the destination encoding. Make sure
you account for additional bytes needed by the destination encoding (for example, an escape sequence)
in addition to the actual text.

 ■ Always allocate a buffer at least 32 bytes long.

 ■ If size is a concern, make sure the output buffer is at least large enough to hold a portion of the converted
text. You can convert part of the text, then use the value of the actualInputLength parameter to
identify the next byte to be taken and to determine how many bytes remain. To convert the remaining
text, you simply call the function again with the remaining text and a new output buffer.

 ■ If the destination encoding is a character encoding scheme—such as ISO-2022-JP, which begins in ASCII
and switches to other coded character sets through limited combinations of escape sequences—then
you need to allocate enough space to accommodate escape sequences that signal switches. ISO-2022-JP
requires 3 to 5 bytes for an escape sequence preceding the 1-byte or 2-byte character it introduces. If
you allocate a buffer that is less than 5 bytes, the TECConvertText function could fail, depending on
the text being converted.

The Text Encoding Converter creates internal buffers that hold intermediate results for indirect conversions

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.

Functions 1913
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECCountAvailableSniffers
Counts and returns the number of sniffers available in all installed plug-ins.

OSStatus TECCountAvailableSniffers (
 ItemCount *numberOfEncodings
);

Parameters
numberOfEncodings

On return, a pointer to the number of sniffers in all installed plug-ins. You can use this number to
determine what size array to allocate for a parameter of the TECGetAvailableSniffers (page 1925)
function.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function counts every instance of a sniffer. If different conversion plug-ins support a sniffer for the same
encoding, the sniffer is counted more than once. Since the TECGetAvailableSniffers function ignores
duplicate sniffers, TECCountAvailableSniffers may return a number greater than the number of array
elements needed for the availableSniffers[] parameter of the TECGetAvailableSniffers function.

Availability
Supported in Carbon. Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is
present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECCountAvailableTextEncodings
Counts and returns the number of text encodings currently configured in the Text Encoding Converter.

OSStatus TECCountAvailableTextEncodings (
 ItemCount *numberEncodings
);

Parameters
numberEncodings

On return, a pointer to the number of currently supported text encodings. You use this value to
determine the array size for a parameter of the TECGetAvailableTextEncodings (page 1926)
function.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

1914 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
The number of text encodings includes every instance of a text encoding. If different conversion plug-ins
support the same text encoding, the text encoding will be counted more than once. For example, the Japanese
Encodings plug-in supports Mac OS Japanese, and so does the Unicode Encodings plug-in. Since the
TECGetAvailableTextEncodings function ignores duplicate text encoding specifications,
TECCountAvailableTextEncodings may return a number greater than the number of array elements
needed for the availableEncodings [] parameter.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECCountDestinationTextEncodings
Counts and returns the number of destination encodings to which a specified source encoding can be
converted in one step.

OSStatus TECCountDestinationTextEncodings (
 TextEncoding inputEncoding,
 ItemCount *numberOfEncodings
);

Parameters
inputEncoding

The text encoding specification describing the source text.

numberOfEncodings
On return, a pointer to the number of text encodings to which the source encoding can be converted
in one step. You should use this to determine how large to make the array you pass to the
TECGetDestinationTextEncodings (page 1926) function.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function counts every instance of an encoding. If different conversion plug-ins support the same direct
text encoding, the direct text encoding is counted more than once.

Since the TECGetDestinationTextEncodings function ignores duplicate text encoding specifications,
TECCountDestinationTextEncodings may return a number greater than the number of array elements
needed for the destinationEncodings[] parameter.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Declared In
TextEncodingConverter.h

Functions 1915
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECCountDirectTextEncodingConversions
Counts and returns the number of direct conversions currently configured in the Text Encoding Converter.

OSStatus TECCountDirectTextEncodingConversions (
 ItemCount *numberOfEncodings
);

Parameters
numberOfEncodings

On return, a pointer to the number of direct conversions. You should use this value to determine the
array size for a parameter of the TECGetDirectTextEncodingConversions (page 1927) function.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
The number of direct conversions includes every instance of a conversion. If different conversion plug-ins
support the same direct conversion, the direct conversion is counted more than once.

Since the TECGetDirectTextEncodingConversions (page 1927) function ignores duplicate direct
conversions, TECCountDirectTextEncodingConversionsmay return a number greater than the number
of array elements needed for the directConversions parameter.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECCountMailTextEncodings
Counts and returns the number of currently supported e-mail encodings for a specified region.

OSStatus TECCountMailTextEncodings (
 RegionCode locale,
 ItemCount *numberEncodings
);

Parameters
locale

A Mac OS region code. A region code designates a combination of language, writing system, and
geographic region; the region may not correspond to a particular country (for example, Swiss French
or Arabic).

numberEncodings
On return, a pointer to the number of currently supported e-mail encodings for the region code. You
use this number to determine what size array to allocate for a parameter of the
TECGetMailTextEncodings (page 1929) function.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

1916 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
This function counts every instance of an encoding. If different conversion plug-ins support the same direct
text encoding, the direct text encoding is counted more than once. Since the TECGetMailTextEncodings
function ignores duplicate text encoding specifications, TECCountMailTextEncodingsmay return a number
greater than the number of array elements needed.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECCountSubTextEncodings
Counts and returns the number of subencodings a text encoding supports.

OSStatus TECCountSubTextEncodings (
 TextEncoding inputEncoding,
 ItemCount *numberOfEncodings
);

Parameters
inputEncoding

The text encoding specification that contains the subencodings.

numberOfEncodings
On return, a pointer to the number of currently supported subencodings. You use this value to
determine the array size for a parameter of the TECGetSubTextEncodings (page 1930) function.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
Subencodings are text encodings that are embedded as part of a larger text encoding specification. For
example, EUC-JP contains JIS Roman or ASCII, JIS X0208, JIS X0212, and half-width Katakana from JIS X0201.
Not every encoding that can be broken into multiple encodings necessarily supports this routine. It’s up to
the plug-in developer to decide which encodings might be useful to break up. Subencodings are not the
same as text encoding variants.

If an encoding can be converted to multiple runs of encodings (as indicated by a destination base encoding
of kTextEncodingMultiRun), you can call the TECGetSubTextEncodings function to get the list of output
encodings. See the TECCreateOneToManyConverter (page 1920) and
TECGetDestinationTextEncodings (page 1926) functions for information.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

Functions 1917
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECCountWebTextEncodings
Counts and returns the number of currently supported text encodings for a region code.

OSStatus TECCountWebTextEncodings (
 RegionCode locale,
 ItemCount *numberEncodings
);

Parameters
locale

A Mac OS region code indicating the locale for which you want to count encodings. A region code
designates a combination of language, writing system, and geographic region; the region may not
correspond to a particular country (for example, Swiss French or Arabic).

numberEncodings
On return, a pointer to the number of currently supported text encodings for a region code. You
should use this number to determine how large to make the array you pass to the
TECGetWebTextEncodings (page 1932) function.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function counts every instance of the same encoding. That is, if different conversion plug-ins support
the same text encoding for a conversion process, the text encoding is counted more than once. Since the
TECGetWebTextEncodings function ignores duplicate text encoding specifications,
TECCountWebTextEncodings may return a number greater than the number of array elements needed for
the availableEncodings[] parameter.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECCreateConverter
Determines a conversion path for a source and destination encoding, then creates a text encoding converter
object and returns a pointer to it.

OSStatus TECCreateConverter (
 TECObjectRef *newEncodingConverter,
 TextEncoding inputEncoding,
 TextEncoding outputEncoding
);

Parameters
newEncodingConverter

A pointer to a converter object. On return, this reference points to a newly created text converter
object.

inputEncoding
The text encoding specification for the source text encoding.

1918 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

outputEncoding
The text encoding specification for the destination text encoding.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You use this converter object reference with conversion functions such as TECConvertText (page 1911) to
convert text. This converter object describes the source, destination, and intermediate encodings; state
information; and references to required plug-ins.

If the function does not find a direct conversion path, it creates an indirect conversion path. You can use the
function TECCreateConverterFromPath (page 1919) to specify an explicit conversion path.

You must use the TECDisposeConverter (page 1921) function to remove a converter object.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECCreateConverterFromPath
Creates a converter object for a specific conversion path—from a source encoding through intermediate
encodings to a destination encoding—and returns a pointer to it.

OSStatus TECCreateConverterFromPath (
 TECObjectRef *newEncodingConverter,
 const TextEncoding inPath[],
 ItemCount inEncodings
);

Parameters
newEncodingConverter

A pointer to a converter object reference. On return, the reference points to a newly created text
converter object.

inPath
An ordered array of text encoding specifications, beginning with the source encoding specification
and ending with the destination encoding specification. Each adjacent pair of text encodings must
represent a conversion that is supported by the Text Encoding Converter.

inEncodings
The number of text encoding specifications in the inPath array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function is faster than the function TECCreateConverter (page 1918) since it does not need to search
for a conversion path. You can use theTECGetDestinationTextEncodings (page 1926) function to determine
each step in the sequence from the source to the destination encoding.

To remove a converter object, you must call the function TECDisposeConverter (page 1921).

Functions 1919
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECCreateOneToManyConverter
Determines a conversion path for the source encoding and destinations encodings you specify, creates a
text encoding converter object, and returns a reference to it.

OSStatus TECCreateOneToManyConverter (
 TECObjectRef *newEncodingConverter,
 TextEncoding inputEncoding,
 ItemCount numOutputEncodings,
 const TextEncoding outputEncodings[]
);

Parameters
newEncodingConverter

A pointer to a converter object. On return, this points to a newly created one-to-many converter
object.

inputEncoding
The text encoding specification for the source text encoding.

numOutputEncodings
The number of text encoding specifications in the outputEncoding array.

outputEncodings
An ordered array of text encoding specifications for the destination text encodings.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You use this converter object reference with conversion functions such as
TECConvertTextToMultipleEncodings (page 1912). The converter object describes the source, destination,
and intermediate encodings; state information; and references to required plug-ins.

To remove a converter object, you must call the function TECDisposeConverter (page 1921).

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECCreateSniffer
Creates a sniffer object and returns a reference to it.

1920 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus TECCreateSniffer (
 TECSnifferObjectRef *encodingSniffer,
 TextEncoding testEncodings[],
 ItemCount numTextEncodings
);

Parameters
encodingSniffer

A pointer to a sniffer object reference, which is of type TECSnifferObjectRef (page 1964). On return,
the reference pertains to the newly created sniffer object.

testEncodings
An array of text encoding specifications supplied by the caller; TECCreateSniffer creates a sniffer
that can detect each of these encodings.

numTextEncodings
The number of text encoding specifications in the testEncodings[] array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
The TECCreateSniffer function polls plug-ins for available sniffers, creates a sniffer object capable of
sniffing each of the specified encodings that it can find a sniffer function for, and returns a reference to it.
You use this sniffer object reference with sniffer functions such as TECSniffTextEncoding (page 1933). If
no sniffer function is available for an encoding, no error is returned and TECSniffTextEncoding indicates
later that the encoding was not examined.

To remove a sniffer object, you must call the function TECDisposeSniffer (page 1922).

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECDisposeConverter
Disposes of a converter object.

OSStatus TECDisposeConverter (
 TECObjectRef newEncodingConverter
);

Parameters
newEncodingConverter

A reference to the text encoding converter object you want to remove. This can be the reference
returned by theTECCreateConverter (page 1918),TECCreateConverterFromPath (page 1919), or
TECCreateOneToManyConverter (page 1920) functions.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Functions 1921
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
If you want to reuse the converter object for a different text stream with the same source and destination
encoding, you should clear the converter object using the TECClearConverterContextInfo (page 1910)
function rather than disposing of it and then creating a new converter object.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECDisposeSniffer
Disposes of a sniffer object.

OSStatus TECDisposeSniffer (
 TECSnifferObjectRef encodingSniffer
);

Parameters
encodingSniffer

The sniffer object reference you want to remove.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function releases all memory allocated to the sniffer object created by the TECCreateSniffer (page
1920) function.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECFlushMultipleEncodings
Flushes out any encodings that may be stored in a converter object’s temporary buffers and shifts encodings
back to their default state, if any.

1922 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

OSStatus TECFlushMultipleEncodings (
 TECObjectRef encodingConverter,
 TextPtr outputBuffer,
 ByteCount outputBufferLength,
 ByteCount *actualOutputLength,
 TextEncodingRun outEncodingsBuffer[],
 ItemCount maxOutEncodingRuns,
 ItemCount *actualOutEncodingRuns
);

Parameters
encodingConverter

The reference to the text encoding converter object whose contents are to be flushed. This is the
reference returned by the function TECCreateOneToManyConverter (page 1920).

outputBuffer
On return, a pointer to a buffer that holds the converted text. An error is returned is the buffer is not
large enough to hold the entire converted text stream.

outputBufferLength
The length in bytes of the outputBuffer parameter.

actualOutputLength
On return, a pointer to a the actual number of bytes of the converted text returned in the
outputBuffer parameter.

outEncodingsBuffer
An ordered array of text encoding runs for the destination text encoding. Note that the actual byte
size of this buffer should be actualOutEncodingRuns * sizeof(TextEncodingRun).

maxOutEncodingRuns
The maximum number of encoding runs that can fit in outEncodingsBuffer[].

actualOutEncodingRuns
On return, a pointer to a the number of runs in the buffer during conversion.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You should always call TECFlushMultipleEncodings at the end of the conversion process to flush out
any data that may be stored in the temporary buffers of the text encoding converter object or to perform
other end-of-encoding conversion tasks. Encodings such as ISO-2022-JP are reset to a default state when
you use this function.

For the function to return successfully, the output buffer you allocate must be large enough to accommodate
the converted text. If the output buffer is too small to accommodate any converted text, the function will
fail. For best results, you should follow these guidelines when you allocate an output buffer:

 ■ Base the buffer length on an estimate of the byte requirements of the destination encoding. Make sure
you account for additional bytes needed by the destination encoding (for example, an escape sequence)
in addition to the actual text.

 ■ Always allocate a buffer at least 32 bytes long.

 ■ If size is a concern, make sure the output buffer is at least large enough to hold a portion of the converted
text. You can convert part of the text, then use the value of the actualInputLength parameter to
identify the next byte to be taken and to determine how many bytes remain. To convert the remaining
text, you simply call the function again with the remaining text and a new output buffer.

Functions 1923
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

 ■ If the destination encoding is a character encoding scheme—such as ISO-2022-JP, which begins in ASCII
and switches to other coded character sets through limited combinations of escape sequences—then
you need to allocate enough space to accommodate escape sequences that signal switches. ISO-2022-JP
requires 3 to 5 bytes for an escape sequence preceding the 1-byte or 2-byte character it introduces. If
you allocate a buffer that is less than 5 bytes, the TECConvertText function could fail, depending on
the text being converted.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECFlushText
Flushes out any data in a converter object’s temporary buffers and resets the converter object.

OSStatus TECFlushText (
 TECObjectRef encodingConverter,
 TextPtr outputBuffer,
 ByteCount outputBufferLength,
 ByteCount *actualOutputLength
);

Parameters
encodingConverter

A reference to the text converter object whose contents are to be flushed. This can be a reference
returned by the TECCreateConverter (page 1918) or TECCreateConverterFromPath (page 1919)
functions.

outputBuffer
On return, a pointer to a buffer that holds the converted text.

outputBufferLength
The length in bytes of the buffer provided by the outputBuffer parameter.

actualOutputLength
On return, a pointer to the number of bytes of converted text returned in the buffer specified by the
outputBuffer parameter.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
You should always call TECFlushText when you finish converting a text stream. If you are converting a
single stream in multiple chunks using multiple calls to TECConvertText, you only need to call TECFlushText
after the last call to TECConvertText for that stream. The function uses the conversion path specified in
the converter object you supply.

For the function to return successfully, the output buffer you allocate must be large enough to accommodate
the flushed text. If the output buffer is too small to accommodate any flushed text, the function will fail. For
best results, you should follow these guidelines when you allocate an output buffer:

1924 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

 ■ Base the buffer length on an estimate of the byte requirements of the destination encoding. Make sure
you account for additional bytes needed by the destination encoding (for example, an escape sequence)
in addition to the actual text.

 ■ Always allocate a buffer at least 32 bytes long.

Encodings such as ISO-2022 that need to shift back to a certain default state at the end of a conversion can
do so when this function is called.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECGetAvailableSniffers
Returns the list of sniffers available in all installed plug-ins.

OSStatus TECGetAvailableSniffers (
 TextEncoding availableSniffers[],
 ItemCount maxAvailableSniffers,
 ItemCount *actualAvailableSniffers
);

Parameters
availableSniffers

On return, an array of text encoding specifications that the available sniffers currently support. You
should use the TECCountAvailableSniffers (page 1914) function to determine what size array to
allocate.

maxAvailableSniffers
The number of text encoding specifications the availableSniffers array can contain.

actualAvailableSniffers
On return, a pointer to the number of text encodings in the availableSniffers array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function ignores duplicate text encoding specifications. If you used the
TECCountAvailableSniffers (page 1914) function to determine the size of theTECGetAvailableSniffers
array, the number of available encodings may be fewer than the number of array elements, because
TECCountAvailableSniffers includes duplicate text encoding specifications in its count.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

Functions 1925
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECGetAvailableTextEncodings
Returns the text encoding specifications currently configured in the Text Encoding Converter.

OSStatus TECGetAvailableTextEncodings (
 TextEncoding availableEncodings[],
 ItemCount maxAvailableEncodings,
 ItemCount *actualAvailableEncodings
);

Parameters
availableEncodings

On return, an array of text encoding specifications. You should use the
TECCountAvailableTextEncodings (page 1914) function to determine what size array to allocate.

maxAvailableEncodings
The number of text encoding specifications the availableEncodings array can contain.

actualAvailableEncodings
On return, a pointer to the number of text encodings returned in the availableEncodings array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function ignores duplicate text encoding specifications. If you used the
TECCountAvailableTextEncodings (page 1914) function to determine the size of theavailableEncodings
[] array, the number of encodings may be fewer than the number of array elements, because
TECCountAvailableTextEncodings includes duplicate text encodings in its count.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECGetDestinationTextEncodings
Returns the encoding specifications for all the destination text encodings to which the Text Encoding Converter
can directly convert the specified source encoding.

OSStatus TECGetDestinationTextEncodings (
 TextEncoding inputEncoding,
 TextEncoding destinationEncodings[],
 ItemCount maxDestinationEncodings,
 ItemCount *actualDestinationEncodings
);

Parameters
inputEncoding

The text encoding specification describing the source text.

destinationEncodings
On return, an array of specifications for the destination encodings to which the converter can directly
convert the source encoding. You should use the TECCountDestinationTextEncodings (page
1915) function to determine how large an array to allocate.

1926 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

maxDestinationEncodings
The maximum number of destination text encodings that the array can contain.

actualDestinationEncodings
On return, a pointer to the number of text encoding specifications in the destination encodings array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function ignores duplicate direct text encoding specifications. If you used the
TECCountDestinationTextEncodings (page 1915) function to determine the size of the
destinationEncodings[] array, the number of available encodings may be fewer than the number of
array elements, because TECCountDestinationTextEncodings includes duplicates in its count.

You can display the names of these destination encodings to the user.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECGetDirectTextEncodingConversions
Returns the types of direct conversions currently configured in the Text Encoding Converter.

OSStatus TECGetDirectTextEncodingConversions (
 TECConversionInfo availableConversions[],
 ItemCount maxAvailableConversions,
 ItemCount *actualAvailableConversions
);

Parameters
availableConversions

An array composed of text encoding conversion information structures, each of which specifies a set
of source and destination encodings for a type of conversion. See TECConversionInfo (page 1959)
for more information. You should use the TECGetDirectTextEncodingConversions (page 1927)
function to determine how large to make the array.

maxAvailableConversions
The maximum number of text encoding conversion information structures that the
directConversions array can contain.

actualAvailableConversions
On return, a pointer to the number of text encoding conversion information structures returned in
the directConversions array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Functions 1927
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
This function ignores duplicate text encoding conversion information structures. If you used the
TECCountDirectTextEncodingConversions (page 1916) function to determine the size of the
directConversions[] array, the number of text encoding conversion information structures may be fewer
than the number of array elements, becauseTECCountDirectTextEncodingConversions counts duplicate
text encoding conversion information structures.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECGetEncodingList
Gets the list of destination encodings from a converter object.

OSStatus TECGetEncodingList (
 TECObjectRef encodingConverter,
 ItemCount *numEncodings,
 Handle *encodingList
);

Parameters
encodingConverter

A reference to the text encoding conversion object returned by the
TECCreateOneToManyConverter (page 1920) function.

numEncodings
On return, a pointer to the number of encodings specified by the encodingList handle.

encodingList
A handle to an array of text encoding specifications. On return, it contains an array of text encoding
specifications to which the converter object can convert. The memory for the array is allocated
automatically by the Text Encoding Converter.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
The TECDisposeConverter function automatically disposes of the pointer for you. This means you should
not reference the pointer after you have disposed of the converter object.

Plug-ins that perform one-to-many conversions use the TECGetEncodingList function to get the output
encoding list from the converter object reference.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Declared In
TextEncodingConverter.h

1928 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECGetInfo
Allocates a converter information structure of type TECInfo in the application heap using NewHandle, fills
it out, and returns a handle.

OSStatus TECGetInfo (
 TECInfoHandle *tecInfo
);

Parameters
tecInfo

A handle to a structure of type TECInfo (page 1961) containing information about the converter.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). This function can return memory errors.

Discussion
When you are finished with the handle, your application must dispose of it using DisposeHandle. You must
also perform any required preflighting or memory rearrangement before calling TECGetInfo.

Availability
Available in CarbonLib 1.0 and later when Text Common 1.2.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextCommon.h

TECGetMailTextEncodings
Returns the currently supported mail encoding specifications for a region code.

OSStatus TECGetMailTextEncodings (
 RegionCode locale,
 TextEncoding availableEncodings[],
 ItemCount maxAvailableEncodings,
 ItemCount *actualAvailableEncodings
);

Parameters
locale

A Mac OS region code. A region code designates a combination of language, writing system, and
geographic region; the region may not correspond to a particular country (for example, Swiss French
or Arabic).

availableEncodings
An array of text encoding specifications. On return, the array contains specifications for the e-mail
text encodings for a region code. You should use the function TECCountMailTextEncodings (page
1916) function to determine what size array to allocate.

maxAvailableEncodings
The number of text encoding specifications the availableEncodings array can contain.

actualAvailableEncodings
On return, a pointer to the number of text encodings in the availableEncodings array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Functions 1929
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
This function ignores duplicate text encoding specifications. If you used the
TECCountMailTextEncodings (page 1916) function to determine the size of the availableEncodings[]
array the number of available encodings may be fewer than the number of array elements, because
TECCountMailTextEncodings includes duplicate text encoding specifications in its count.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECGetSubTextEncodings
Returns the text encoding specifications for the subencodings the encoding scheme supports.

OSStatus TECGetSubTextEncodings (
 TextEncoding inputEncoding,
 TextEncoding subEncodings[],
 ItemCount maxSubEncodings,
 ItemCount *actualSubEncodings
);

Parameters
inputEncoding

A text encoding specification.

subEncodings
On return, the array contains the specifications for the subencodings of the inputEncodingparameter.
You should use the function TECCountSubTextEncodings (page 1917) function to determine what
size an array to allocate.

maxSubEncodings
The number of text encoding specifications the subEncodings array can contain.

actualSubEncodings
On return, a pointer to number of subencodings in the subEncodings array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
Subencodings are text encodings that are embedded as part of a larger text encoding specification. For
example, EUC-JP contains JIS Roman or ASCII, JIS X0208, JIS X0212, and half-width Katakana from JIS X0201.
Not every encoding that can be broken into multiple encodings necessarily supports this routine. It’s up to
the plug-in developer to decide which encodings might be useful to break up. Subencodings are not the
same as text encoding variants

If an encoding can be converted to multiple runs of encodings (as indicated by a destination base encoding
of kTextEncodingMultiRun), you can call the TECGetSubTextEncodings (page 1930) function to get the
list of output encodings. See the TECCreateOneToManyConverter (page 1920) and
TECGetDestinationTextEncodings (page 1926) functions for information about multiple output encoding
run conversions.

1930 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECGetTextEncodingFromInternetName
Returns the Mac OS text encoding specification that corresponds to an Internet encoding name.

OSStatus TECGetTextEncodingFromInternetName (
 TextEncoding *textEncoding,
 ConstStr255Param encodingName
);

Parameters
textEncoding

On return, a pointer to a structure that contains a Mac OS text encoding specification.

encodingName
An Internet encoding name, in 7-bit US ASCII.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
Internet encoding names are stored as strings, while the Text Encoding Converter uses numeric values.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECGetTextEncodingInternetName
Returns the Internet encoding name that corresponds to a Mac OS text encoding.

OSStatus TECGetTextEncodingInternetName (
 TextEncoding textEncoding,
 Str255 encodingName
);

Parameters
textEncoding

A Mac OS text encoding specification.

encodingName
On return, the Internet encoding name, in 7-bit US ASCII. If there are several Internet encoding names
for the same text encoding, the encodingName parameter contains the preferred name.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Functions 1931
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

TECGetWebTextEncodings
Returns the currently supported text encoding specifications for a region code.

OSStatus TECGetWebTextEncodings (
 RegionCode locale,
 TextEncoding availableEncodings[],
 ItemCount maxAvailableEncodings,
 ItemCount *actualAvailableEncodings
);

Parameters
locale

A Mac OS region code. A region code designates a combination of language, writing system, and
geographic region and may not correspond to a particular country (for example, Swiss French or
Arabic).

availableEncodings
On return, an array that contains specifications for the currently supported text encodings in the
specified region. You should use the TECCountWebTextEncodings (page 1918) function to determine
how large an array to allocate.

maxAvailableEncodings
The number of text encodings specifications the availableEncodings array can contain.

actualAvailableEncodings
On return, a pointer to the number of text encodings specifications in the availableEncodings
array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
This function ignores duplicate text encoding specifications. If you used the
TECCountWebTextEncodings (page 1918) function to determine the size of the availableEncodings[]
array the number of available encodings may be fewer than the number of array elements, because
TECCountWebTextEncodings includes duplicate text encoding specifications in its count.

You can use the list of available encodings to create an encoding selection menu for a Web browser.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextEncodingConverter.h

1932 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECSniffTextEncoding
Analyzes a text stream and returns the probable encodings in a ranked list, based on an array of possible
encodings you supply. It also returns the number of errors and features for each encoding.

OSStatus TECSniffTextEncoding (
 TECSnifferObjectRef encodingSniffer,
 ConstTextPtr inputBuffer,
 ByteCount inputBufferLength,
 TextEncoding testEncodings[],
 ItemCount numTextEncodings,
 ItemCount numErrsArray[],
 ItemCount maxErrs,
 ItemCount numFeaturesArray[],
 ItemCount maxFeatures
);

Parameters
encodingSniffer

A reference to a sniffer object.

inputBuffer
The text to be sniffed.

inputBufferLength
The length of the input buffer.

testEncodings
An array of text encoding specifications. You must fill the array with the text encodings for which you
want to sniff. On output, the array elements are reordered from the most likely to the least likely text
encodings.

numTextEncodings
The number of entries in the testEncodings[] parameter.

numErrsArray
An array that must contain at least numTextEncodings elements. On return, an array of the number
of errors found for each possible text encoding. The array elements are in the same order as the
testEncodings[] array elements at output.

maxErrs
The maximum number of errors a sniffer can encounter. The sniffer stops looking for an encoding
after this number is reached.

numFeaturesArray
An array of that must contain at least numTextEncodings elements. On return, an array of the number
of features found for each possible text encoding. The array elements are in the same order as the
testEncodings[] array elements at output.

maxFeatures
The maximum number of features a sniffer can encounter. The sniffer stops looking for a features
after this number is reached.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
An error indicates a code point or sequence that is illegal in the specified encoding. A feature indicates the
presence of a sequence that is characteristic of that encoding.

Functions 1933
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

For example, the byte sequence which is interpreted in Mac OS Roman as “é” could legally be interpreted
either as Mac OS Roman text or as Mac OS Japanese text. Both sniffers would return zero errors, but the Mac
OS Japanese sniffer would also return two features of Mac OS Japanese (representing two legal 2-byte
characters.)

The arrays are returned in a ranked list with the most likely text encodings first. The results are sorted first
by number of errors (fewest to most), then by number of features (most to fewest), and then by the original
order in the list. On return, the most likely encoding is in testEncodings[0] or testEncodings[1].

If an encoding is not examined, its number of errors and features are set to 0xFFFFFFFF, and the encoding
is sorted to the end of the list.

Availability
Available in CarbonLib 1.0 and later when Text Encoding Convertor 1.2 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Declared In
TextEncodingConverter.h

TruncateForTextToUnicode
Identifies where your application can safely break a multibyte string to be converted to Unicode so that the
string is not broken in the middle of a multibyte character.

OSStatus TruncateForTextToUnicode (
 ConstTextToUnicodeInfo iTextToUnicodeInfo,
 ByteCount iSourceLen,
 ConstLogicalAddress iSourceStr,
 ByteCount iMaxLen,
 ByteCount *oTruncatedLen
);

Parameters
iTextToUnicodeInfo

The Unicode converter object of typeTextToUnicodeInfo (page 1966) for the text string to be divided
up with each segment properly truncated. The TruncateForTextToUnicode function does not
modify the object’s contents.

iSourceLen
The length in bytes of the multibyte string to be divided up.

iSourceStr
The address of the multibyte string to be divided up.

iMaxLen
The maximum allowable length of the string to be truncated. This must be less than or equal to
iSourceLen.

oTruncatedLen
A pointer to a value of type ByteCount. On return, this value contains the length of the longest
portion of the multibyte string, pointed to by iSourceStr, that is less than or equal to the length
specified by iMaxLen. This identifies the byte after which you can break the string.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

1934 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
Your application can use this function to break a string properly before you call the function
ConvertFromTextToUnicode (page 1877) so that the string you pass it is terminated with complete characters.
You can call this function repeatedly to properly divide up a text segment, each time identifying the new
beginning of the string, until the last portion of the text is less than or equal to the maximum allowable
length. Each time you use the function, you get a properly terminated string within the allowable length
range.

Because the TruncateForTextToUnicode function does not modify the contents of the Unicode converter
object, you can call this function safely between calls to the function ConvertFromTextToUnicode (page
1877).

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

TruncateForUnicodeToText
Identifies where your application can safely break a Unicode string to be converted to any encoding so that
the string is broken in a way that preserves the text element integrity.

OSStatus TruncateForUnicodeToText (
 ConstUnicodeToTextInfo iUnicodeToTextInfo,
 ByteCount iSourceLen,
 const UniChar iSourceStr[],
 OptionBits iControlFlags,
 ByteCount iMaxLen,
 ByteCount *oTruncatedLen
);

Parameters
iUnicodeToTextInfo

A Unicode converter object UnicodeToTextInfo (page 1969) for the Unicode string to be divided up.
The TruncateForUnicodeToText function does not modify the contents of this private structure.

iSourceLen
The length in bytes of the Unicode string to be divided up.

iSourceStr
A pointer to the Unicode string to be divided up.

iControlFlags
Truncation control flags. Specify the flag kUnicodeStringUnterminatedMask if truncating a buffer
of text that belongs to a longer stream containing a subsequent buffer of text that could have
characters belonging to a text element that begins at the end of the current buffer. If you set this
flag, typically you would set the iMaxLen parameter equal to iSourceLen.

iMaxLen
The maximum allowable length of the string to be truncated. This must be less than or equal to
iSourceLen.

Functions 1935
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

oTruncatedLen
A pointer to a value of type ByteCount. On return, this value contains the length of the longest
portion of the Unicode source string, pointed to by the iSourceStr parameter, that is less than or
equal to the value of the iMaxLen parameter. This returned parameter identifies the byte after which
you can truncate the string.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Discussion
Your application can use this function to divide up a Unicode string properly truncating each portion before
you call ConvertFromUnicodeToText or ConvertFromUnicodeToScriptCodeRun to convert the string.
You can call this function repeatedly to properly truncate a text segment, each time identifying the new
beginning of the string, until the last portion of the text is less than or equal to the maximum allowable
length. Each time you use the function, you get a properly terminated string within the allowable length
range.

Because this function does not modify the contents of the Unicode converter object, you can call this function
between conversion calls.

Availability
Available in CarbonLib 1.0 and later when Unicode Utilities 1.1 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeConverter.h

UCGetCharProperty
Obtains the value associated with a property type for the specified UniChar characters.

OSStatus UCGetCharProperty (
 const UniChar *charPtr,
 UniCharCount textLength,
 UCCharPropertyType propType,
 UCCharPropertyValue *propValue
);

Parameters
charPtr

A pointer to the Unicode text whose property value you want to obtain.

textLength
The length of the text pointed to by charPtr.

propType
The property type for the UniChar character whose value you want to obtain. See “Unicode Character
Property Types” (page 2020) for a list of the constants you can supply.

propValue
On return, the value associated with the property type specified by the propType parameter. See
“Unicode Character Property Values” (page 2020) for a list of the constants that can be returned.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

1936 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Availability
Available in CarbonLib 1.0 and later when Text Common 1.5 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextCommon.h

UpgradeScriptInfoToTextEncoding
Converts any combination of a Mac OS script code, a language code, a region code, and a font name to a
text encoding.

OSStatus UpgradeScriptInfoToTextEncoding (
 ScriptCode iTextScriptID,
 LangCode iTextLanguageID,
 RegionCode iRegionID,
 ConstStr255Param iTextFontname,
 TextEncoding *oEncoding
);

Parameters
iTextScriptID

A valid Script Manager script code. The Mac OS Script Manager defines constants for script codes
using this format: smXxx. To designate the system script, specify the meta-value of smSystemScript.
To designate the current script based on the font specified in the graphics port (grafPort), specify
the metavalue of smCurrentScript. To indicate that you do not want to provide a script code for
this parameter, specify the constant kTextScriptDontCare.

iTextLanguageID
A valid Script Manager language code. The Mac OS Script Manager defines constants for language
codes using this format: langXxx. To indicate that you do not want to provide a language code for
this parameter, specify the constant kTextLanguageDontCare.

iRegionID
A valid Script Manager region code. The Mac OS Script Manager defines constants for region codes
using this format: verXxx. To indicate that you do not want to provide a region code for this parameter,
specify the constant kTextRegionDontCare.

iTextFontname
The name of a font associated with a particular text encoding specification, such as Symbol or Zapf
Dingbats, or the name of any font that is currently installed on the system. To indicate that you do
not want to provide a font name, specify a value of NULL.

oEncoding
A pointer to a value of type TextEncoding. On return, this value holds the text encoding specification
that the function created from the other values you provided.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). This function returns paramErr if two or more of
the input parameter values conflict in some way—for example, the Mac OS language code does not belong
to the script whose script code you specified, or if the input parameter values are invalid. The function returns
a kTECTableFormatErr result code if the internal mapping tables used for translation are invalid.

Functions 1937
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Discussion
The UpgradeScriptInfoToTextEncoding function allows you to derive a text encoding specification
from script codes, language codes, region codes, and font names. A one-to-one correspondence exists
between many of the Script Manager’s script codes and a particular Mac OS text encoding base value.
However, because text encodings are a superset of script codes, some combinations of script code, language
code, region code, and font name might result in a different text encoding base value than would be the
case if the translation were based on the script code alone.

When you call the UpgradeScriptInfoToTextEncoding function, you can specify any combination of its
parameters, but you must specify at least one.

If you don’t specify an explicit value for a script, language, or region code parameter, you must pass the
do-not-care constant appropriate to that parameter. If you do not specify an explicit value for iTextFontName,
you must pass NULL. UpgradeScriptInfoToTextEncoding uses as much information as you supply to
determine the equivalent text encoding or the closest approximation. If you provide more than one parameter,
all parameters are checked against one another to ensure that they are valid in combination.

A font name, such as 'Symbol' or 'Zapf Dingbats,' can indicate a particular text encoding base. Other
font names can indicate particular variants associated with a particular text encoding base. Otherwise, the
font name is used to obtain a script code, and this script code will be checked against any script code you
supply (in this case, the font must be installed; if it is not, the function returns a paramErr result code). If
you do not supply either a language code or a region code and the script code you supply or the one that
is derived matches the system script, then the system’s localization is used to determine the appropriate
region and language code. This is used for deriving text encoding base values that depend on region and
language, such as kTextEncodingMacTurkish.

For more information see the RevertTextEncodingToScriptInfo (page 1907) function and “Base Text
Encodings” (page 1982).

Availability
Available in CarbonLib 1.0 and later when Text Common 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
TextCommon.h

Callbacks by Task

Setting Up a Fallback Handler

UnicodeToTextFallbackProcPtr (page 1953)
Defines a pointer to a function that converts a Unicode text element for which there is no destination
encoding equivalent in the appropriate mapping table to the fallback character sequence defined by
your fallback handler, and returns the converted character sequence to the Unicode Converter.

Setting Up a TEC Plug-in

TECPluginGetPluginDispatchTablePtr (page 1949)
Defines a pointer to a function that returns a pointer to a plug-in dispatch table.

1938 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECPluginNewEncodingConverterPtr (page 1951)
Defines a pointer to a function that determines a conversion path for a source and destination
encoding, then creates a text encoding converter object and returns a pointer to it.

TECPluginClearContextInfoPtr (page 1940)
Defines a pointer to a function that resets a converter object to its initial state.

TECPluginConvertTextEncodingPtr (page 1941)
Defines a pointer to a function that converts stream of text from a source encoding to a destination
encoding, using the conversion path specified by the converter object you supply.

TECPluginFlushConversionPtr (page 1943)
Defines a pointer to a function that flushes out any data in a converter object’s temporary buffers
and resets the converter object.

TECPluginDisposeEncodingConverterPtr (page 1941)
Defines a pointer to a function that disposes of a converter object.

TECPluginNewEncodingSnifferPtr (page 1952)
Defines a pointer to a function that creates a sniffer object and returns a reference to it.

TECPluginClearSnifferContextInfoPtr (page 1940)
Defines a pointer to a function that resets a sniffer object to its initial settings.

TECPluginSniffTextEncodingPtr (page 1952)
Defines a pointer to a function that analyzes a text stream and returns the probable encodings in a
ranked list, based on an array of possible encodings you supply; it also returns the number of errors
and features for each encoding.

TECPluginDisposeEncodingSnifferPtr (page 1942)
Defines a pointer to a function that disposes of a sniffer object.

TECPluginGetCountAvailableTextEncodingsPtr (page 1945)
Defines a pointer to a function that obtains the available text encodings.

TECPluginGetCountAvailableTextEncodingPairsPtr (page 1944)
Defines a pointer to a function that obtains the available text encoding pairs.

TECPluginGetCountDestinationTextEncodingsPtr (page 1946)
Defines a pointer to a function that counts and returns the number of destination encodings to which
a specified source encoding can be converted in one step.

TECPluginGetCountSubTextEncodingsPtr (page 1947)
Defines a pointer to a function that obtains the text encoding specifications for the subencodings
the encoding scheme supports.

TECPluginGetCountAvailableSniffersPtr (page 1943)
Defines a pointer to a function that counts and returns the number of sniffers available in all installed
plug-ins.

TECPluginGetCountWebEncodingsPtr (page 1948)
Defines a pointer to a function that obtains the available web text encodings.

TECPluginGetCountMailEncodingsPtr (page 1947)
Defines a pointer to a function that obtains the text encodings available for email.

TECPluginGetTextEncodingInternetNamePtr (page 1950)
Defines a pointer to a function that obtains the Internet text encoding name for a text encoding
specification.

TECPluginGetTextEncodingFromInternetNamePtr (page 1949)
Defines a pointer to a function that obtains the text encoding for an Internet text encoding name.

Callbacks by Task 1939
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Callbacks

TECPluginClearContextInfoPtr
Defines a pointer to a function that resets a converter object to its initial state.

typedef OSStatus (*TECPluginClearContextInfoPtr)
(
 TECObjectRef encodingConverter,
 TECConverterContextRec * plugContext
);

If you name your function MyTECPluginClearContextInfo, you would declare it like this:

OSStatus MyTECPluginClearContextInfoPtr
(
 TECObjectRef encodingConverter,
 TECConverterContextRec * plugContext
);

Parameters
encodingConverter

A reference to the text encoding converter object that needs to be reset.

plugContext
A pointer to a TEC converter context record.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginClearSnifferContextInfoPtr
Defines a pointer to a function that resets a sniffer object to its initial settings.

typedef OSStatus (*TECPluginClearSnifferContextInfoPtr)
(
 TECSnifferObjectRef encodingSniffer,
 TECSnifferContextRec * snifContext
);

If you name your function MyTECPluginClearSnifferContextInfo, you would declare it like this:

OSStatus MyTECPluginClearSnifferContextInfoPtr
(
 TECSnifferObjectRef encodingSniffer,
 TECSnifferContextRec * snifContext
);

1940 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Parameters
encodingSniffer

A reference to the sniffer object that needs to be reset.

snifContext
A pointer to a TEC sniffer context record.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginConvertTextEncodingPtr
Defines a pointer to a function that converts stream of text from a source encoding to a destination encoding,
using the conversion path specified by the converter object you supply.

typedef OSStatus (*TECPluginConvertTextEncodingPtr)
(
 TECObjectRef encodingConverter,
 TECConverterContextRec * plugContext
);

If you name your function MyTECPluginConvertTextEncoding, you would declare it like this:

OSStatus MyTECPluginConvertTextEncodingPtr
(
 TECObjectRef encodingConverter,
 TECConverterContextRec * plugContext
);

Parameters
encodingConverter

A reference to the text encoding converter object to use for the conversion.

plugContext
A pointer to a TEC converter context record that contains the text and other information needed for
the conversion.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginDisposeEncodingConverterPtr
Defines a pointer to a function that disposes of a converter object.

Callbacks 1941
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

typedef OSStatus (*TECPluginDisposeEncodingConverterPtr)
(
 TECObjectRef newEncodingConverter,
 TECConverterContextRec * plugContext
);

If you name your function MyTECPluginDisposeEncodingConverter, you would declare it like this:

OSStatus MyTECPluginDisposeEncodingConverterPtr
(
 TECObjectRef newEncodingConverter,
 TECConverterContextRec * plugContext
);

Parameters
newEncodingConverter

A reference to the converter object to dispose of.

plugContext
A pointer to a TEC converter context record.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginDisposeEncodingSnifferPtr
Defines a pointer to a function that disposes of a sniffer object.

typedef OSStatus (*TECPluginDisposeEncodingSnifferPtr)
(
 TECSnifferObjectRef encodingSniffer,
 TECSnifferContextRec * snifContext
);

If you name your function MyTECPluginDisposeEncodingSniffer, you would declare it like this:

OSStatus MyTECPluginDisposeEncodingSnifferPtr
(
 TECSnifferObjectRef encodingSniffer,
 TECSnifferContextRec * snifContext
);

Parameters
encodingSniffer

A reference to the sniffer object you want to dispose.

snifContext
A pointer to a TEC sniffer context record.

1942 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginFlushConversionPtr
Defines a pointer to a function that flushes out any data in a converter object’s temporary buffers and resets
the converter object.

typedef OSStatus (*TECPluginFlushConversionPtr)
(
 TECObjectRef encodingConverter,
 TECConverterContextRec * plugContext
);

If you name your function MyTECPluginFlushConversion, you would declare it like this:

OSStatus MyTECPluginFlushConversionPtr
(
 TECObjectRef encodingConverter,
 TECConverterContextRec * plugContext
);

Parameters
encodingConverter

A reference to the text converter object whose contents are to be flushed.

plugContext
A pointer to a TEC converter context record.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginGetCountAvailableSniffersPtr
Defines a pointer to a function that counts and returns the number of sniffers available in all installed plug-ins.

Callbacks 1943
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

typedef OSStatus (*TECPluginGetCountAvailableSniffersPtr)
(
 TextEncoding * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings
);

If you name your function MyTECPluginGetCountAvailableSniffers, you would declare it like this:

OSStatus MyTECPluginGetCountAvailableSniffersPtr
(
 TextEncoding * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings
);

Parameters
availableEncodings

On return, a pointer to the currently available sniffer text encoding specifications.

maxAvailableEncodings
The number of text encoding specifications the availableEncodings array can contain.

actualAvailableEncodings
On the return, the number of text encoding specifications the availableEncodings array actually
contains.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginGetCountAvailableTextEncodingPairsPtr
Defines a pointer to a function that obtains the available text encoding pairs.

typedef OSStatus (*TECPluginGetCountAvailableTextEncodingPairsPtr)
(
 TECConversionInfo * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings
);

If you name your function MyTECPluginGetCountAvailableTextEncodingPairs, you would declare it
like this:

OSStatus MyTECPluginGetCountAvailableTextEncodingPairsPtr
(
 TECConversionInfo * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings

1944 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

);

Parameters
availableEncodings

On return, an array of text encoding conversion information structures, each of which specifies a set
of source and destination encodings for a type of conversion.

maxAvailableEncodings
The number of text encoding information structures the availableEncodings array can contain.

actualAvailableEncodings
On the return, the number of text encoding information structures the availableEncodings array
actually contains.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginGetCountAvailableTextEncodingsPtr
Defines a pointer to a function that obtains the available text encodings.

typedef OSStatus (*TECPluginGetCountAvailableTextEncodingsPtr)
(
 TextEncoding * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings
);

If you name your function MyTECPluginGetCountAvailableTextEncodings, you would declare it like
this:

OSStatus MyTECPluginGetCountAvailableTextEncodingsPtr
(
 TextEncoding * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings
);

Parameters
availableEncodings

On return, a pointer to the currently available text encoding specifications.

maxAvailableEncodings
The number of text encoding specifications the availableEncodings array can contain.

actualAvailableEncodings
On the return, the number of text encoding specifications the availableEncodings array actually
contains.

Callbacks 1945
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginGetCountDestinationTextEncodingsPtr
Defines a pointer to a function that counts and returns the number of destination encodings to which a
specified source encoding can be converted in one step.

typedef OSStatus (*TECPluginGetCountDestinationTextEncodingsPtr)
(
 TextEncoding inputEncoding,
 TextEncoding * destinationEncodings,
 ItemCount maxDestinationEncodings,
 ItemCount * actualDestinationEncodings
);

If you name your function MyTECPluginGetCountDestinationTextEncodings, you would declare it like
this:

OSStatus MyTECPluginGetCountDestinationTextEncodingsPtr
(
 TextEncoding inputEncoding,
 TextEncoding * destinationEncodings,
 ItemCount maxDestinationEncodings,
 ItemCount * actualDestinationEncodings
);

Parameters
inputEncoding

The text encoding specification describing the source text.

destinationEncodings
On return, a pointer to text encodings to which the source encoding can be converted in one step.

maxDestinationEncodings
The maximum number of text encodings that can be specified by the destinationEncodings
parameter.

actualDestinationEncodings
On return, the actual number of text encodings specified by the destinationEncodings parameter.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

1946 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECPluginGetCountMailEncodingsPtr
Defines a pointer to a function that obtains the text encodings available for email.

typedef OSStatus (*TECPluginGetCountMailEncodingsPtr)
(
 TextEncoding * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings
);

If you name your function MyTECPluginGetCountMailEncodings, you would declare it like this:

OSStatus MyTECPluginGetCountMailEncodingsPtr
(
 TextEncoding * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings
);

Parameters
availableEncodings

On return, a pointer to the text encodings available for email.

maxAvailableEncodings
The maximum number of text encodings that can be specified by the availableEncodings
parameter.

actualAvailableEncodings
On return, the number of text encoding specifications availableEncodings actually contains.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginGetCountSubTextEncodingsPtr
Defines a pointer to a function that obtains the text encoding specifications for the subencodings the encoding
scheme supports.

typedef OSStatus (*TECPluginGetCountSubTextEncodingsPtr)
(
 TextEncoding inputEncoding,
 TextEncoding subEncodings[],
 ItemCount maxSubEncodings,
 ItemCount * actualSubEncodings
);

If you name your function MyTECPluginGetCountSubTextEncodings, you would declare it like this:

OSStatus MyTECPluginGetCountSubTextEncodingsPtr
(

Callbacks 1947
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

 TextEncoding inputEncoding,
 TextEncoding subEncodings[],
 ItemCount maxSubEncodings,
 ItemCount * actualSubEncodings
);

Parameters
inputEncoding

A text encoding specification.

subEncodings
On return, the array contains the specifications for the subencodings of the inputEncodingparameter.

maxSubEncodings
The number of text encoding specifications the subEncodings array can contain.

actualSubEncodings
On return, a pointer to number of subencodings in the subEncodings array.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginGetCountWebEncodingsPtr
Defines a pointer to a function that obtains the available web text encodings.

typedef OSStatus (*TECPluginGetCountWebEncodingsPtr)
(
 TextEncoding * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings
);

If you name your function MyTECPluginGetCountWebEncodings, you would declare it like this:

OSStatus MyTECPluginGetCountWebEncodingsPtr
(
 TextEncoding * availableEncodings,
 ItemCount maxAvailableEncodings,
 ItemCount * actualAvailableEncodings
);

Parameters
availableEncodings

On return, points to the currently supported text encodings available for the web.

maxAvailableEncodings
The number of text encodings specifications that availableEncodings can specify.

1948 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

actualAvailableEncodings
On return, the number of text encodings specifications availableEncodings actually contains.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginGetPluginDispatchTablePtr
Defines a pointer to a function that returns a pointer to a plug-in dispatch table.

typedef TECPluginDispatchTable * (*TECPluginGetPluginDispatchTablePtr)
(
);

If you name your function ConverterPluginGetPluginDispatchTable, you would declare it like this:

TECPluginDispatchTable * ConverterPluginGetPluginDispatchTable();

Parameters
Return Value
A pointer to the function dispatch table for the plug-in.

Discussion
You need this callback only for Mac OS X plug-ins. When you create a TEC plug-in in Mac OS X you must
export a function named ConverterPluginGetPluginDispatchTable with the following prototype:

extern TECPluginDispatchTable *ConverterPluginGetPluginDispatchTable (void)

This function must return a pointer to the function dispatch table for the plug-in. It is important you name
the function ConverterPluginGetPluginDispatchTable because
TECPluginGetPluginDispatchTablePtr is a function pointer to a function of this exact name.

Availability
Available in Mac OS X v10.1 and later.

Declared In
TextEncodingPlugin.h

TECPluginGetTextEncodingFromInternetNamePtr
Defines a pointer to a function that obtains the text encoding for an Internet text encoding name.

Callbacks 1949
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

typedef OSStatus (*TECPluginGetTextEncodingFromInternetNamePtr)
(
 TextEncoding * textEncoding,
 ConstStr255Param encodingName
);

If you name your function MyTECPluginGetTextEncodingFromInternetName, you would declare it like
this:

OSStatus MyTECPluginGetTextEncodingFromInternetNamePtr
(
 TextEncoding * textEncoding,
 ConstStr255Param encodingName
);

Parameters
textEncoding

On return, a pointer to a structure that contains a text encoding specification for the text encoding
name specified by the encodingName parameter.

encodingName
An Internet encoding name, in 7-bit US ASCII.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginGetTextEncodingInternetNamePtr
Defines a pointer to a function that obtains the Internet text encoding name for a text encoding specification.

typedef OSStatus (*TECPluginGetTextEncodingInternetNamePtr)
(
 TextEncoding textEncoding,
 Str255 encodingName
);

If you name your function MyTECPluginGetTextEncodingInternetName, you would declare it like this:

OSStatus MyTECPluginGetTextEncodingInternetNamePtr
(
 TextEncoding textEncoding,
 Str255 encodingName
);

Parameters
textEncoding

A text encoding specification.

1950 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

encodingName
On return, the Internet encoding name, in 7-bit US ASCII. If there are several Internet encoding names
for the same text encoding, the encodingName parameter contains the preferred name.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginNewEncodingConverterPtr
Defines a pointer to a function that determines a conversion path for a source and destination encoding,
then creates a text encoding converter object and returns a pointer to it.

typedef OSStatus (*TECPluginNewEncodingConverterPtr)
(
 TECObjectRef * newEncodingConverter,
 TECConverterContextRec * plugContext,
 TextEncoding inputEncoding,
 TextEncoding outputEncoding
);

If you name your function MyTECPluginNewEncodingConverter, you would declare it like this:

OSStatus MyTECPluginNewEncodingConverterPtr
(
 TECObjectRef * newEncodingConverter,
 TECConverterContextRec * plugContext,
 TextEncoding inputEncoding,
 TextEncoding outputEncoding
);

Parameters
newEncodingConverter

A pointer to a converter object. On return, this points to a newly created text converter object.

plugContext
A pointer to a TEC converter context record.

inputEncoding
The text encoding specification for the source text.

outputEncoding
The text encoding specification for the destination text.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

Callbacks 1951
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECPluginNewEncodingSnifferPtr
Defines a pointer to a function that creates a sniffer object and returns a reference to it.

typedef OSStatus (*TECPluginNewEncodingSnifferPtr)
(
 TECSnifferObjectRef * encodingSniffer,
 TECSnifferContextRec * snifContext,
 TextEncoding inputEncoding
);

If you name your function MyTECPluginNewEncodingSniffer, you would declare it like this:

OSStatus MyTECPluginNewEncodingSnifferPtr
(
 TECSnifferObjectRef * encodingSniffer,
 TECSnifferContextRec * snifContext,
 TextEncoding inputEncoding
);

Parameters
encodingSniffer

A pointer to a sniffer object reference, which is of type TECSnifferObjectRef (page 1964). On return,
the reference pertains to the newly created sniffer object.

snifContext
A pointer to a TEC sniffer context record.

inputEncoding
The text encoding specification to be detected by the sniffer object.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginSniffTextEncodingPtr
Defines a pointer to a function that analyzes a text stream and returns the probable encodings in a ranked
list, based on an array of possible encodings you supply; it also returns the number of errors and features for
each encoding.

typedef OSStatus (*TECPluginSniffTextEncodingPtr)
(
 TECSnifferObjectRef encodingSniffer,
 TECSnifferContextRec * snifContext
);

If you name your function MyTECPluginSniffTextEncoding, you would declare it like this:

OSStatus MyTECPluginSniffTextEncodingPtr
(
 TECSnifferObjectRef encodingSniffer,

1952 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

 TECSnifferContextRec * snifContext
);

Parameters
encodingSniffer

A reference to a sniffer object.

snifContext
A pointer to a TEC sniffer context record.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

UnicodeToTextFallbackProcPtr
Defines a pointer to a function that converts a Unicode text element for which there is no destination encoding
equivalent in the appropriate mapping table to the fallback character sequence defined by your fallback
handler, and returns the converted character sequence to the Unicode Converter.

typedef OSStatus (*UnicodeToTextFallbackProcPtr)
(
 UniChar * iSrcUniStr,
 ByteCount iSrcUniStrLen,
 ByteCount * oSrcConvLen,
 TextPtr oDestStr,
 ByteCount iDestStrLen,
 ByteCount * oDestConvLen,
 LogicalAddress iInfoPtr,
 ConstUnicodeMappingPtr iUnicodeMappingPtr
);

If you name your function MyUnicodeToTextFallbackProc, you would declare it like this:

OSStatus MyUnicodeToTextFallbackProcPtr
(
 UniChar * iSrcUniStr,
 ByteCount iSrcUniStrLen,
 ByteCount * oSrcConvLen,
 TextPtr oDestStr,
 ByteCount iDestStrLen,
 ByteCount * oDestConvLen,
 LogicalAddress iInfoPtr,
 ConstUnicodeMappingPtr iUnicodeMappingPtr
);

Parameters
iSrcUniStr

A pointer to a single UTF-16 character to be mapped by the fallback handler.

Callbacks 1953
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

iSrcUniStrLen
The length in bytes of the UTF-16 character indicated by the iSrcUniStr parameter. Usually this is
2 bytes, but it could be 4 bytes for a non-BMP character.

oSrcConvLen
On return, a pointer to the length in bytes of the portion of the Unicode character that was actually
processed by your fallback handler. Your fallback handler returns this value. It should set this to 0 if
none of the text was handled, or 2 or 4 if the Unicode character was handled. This value is initialized
to 0 before the fallback handler is called.

oDestStr
A pointer to the output buffer where your handler should place any converted text.

iDestStrLen
The maximum size in bytes of the buffer provided by the oDestStr parameter.

oDestConvLen
On return, a pointer to the length in bytes of the fallback character sequence generated by your
fallback handler. Your handler should return this length. It is initialized to 0 (zero) before the fallback
handler is called.

iInfoPtr
A pointer to a block of memory allocated by your application, which can be used by your fallback
handler in any way that you like. This is the same pointer passed as the last parameter of
SetFallbackUnicodeToText or SetFallbackUnicodeToTextRun. How you use the data passed
to you in this memory block is particular to your handler. This is similar in use to a reference constant
(refcon).

iUnicodeMappingPtr
A constant pointer to a structure of type UnicodeMapping (page 1967). This structure identifies a
Unicode encoding specification and a particular base encoding specification.

Return Value
A result code. See “TEC Manager Result Codes” (page 2026). Your handler should return noErr if it can handle
the fallback, or kTECUnmappableElementErr if it cannot. It can return other errors for exceptional conditions,
such as when the output buffer is too small. If your handler returns kTECUnmappableElementErr, then
oSrcConvLen and oDestConvLen are ignored because either the default handler will be called or the default
fallback sequence will be used.

Discussion
The Unicode Converter calls your fallback handler when it cannot convert a text string using the mapping
table specified by the Unicode converter object passed to either ConvertFromUnicodeToText or
ConvertFromUnicodeToPString. The control flags you set for the controlFlagsparameter of the function
SetFallbackUnicodeToText (page 1908) or theSetFallbackUnicodeToTextRun (page 1909) stipulate
which fallback handler the Unicode Converter should call and which one to try first if both can be used.

When the Unicode Converter calls your handler, it passes to it the Unicode character to be converted and
its length, a buffer for the converted string you return and the buffer length, and a pointer to a block of
memory containing the data your application supplied to be passed on to your fallback handler.

After you convert the Unicode text segment to fallback characters, you return the fallback character sequence
of the converted text in the buffer provided to you and the length in bytes of this fallback character sequence.
You also return the length in bytes of the portion of the source Unicode text element that your handler
actually processed.

1954 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

You provide a fallback-handler function for use with the function
CreateUnicodeToTextInfoByEncoding (page 1893), ConvertFromUnicodeToPString (page 1879),
ConvertFromUnicodeToTextRun (page 1885), orConvertFromUnicodeToScriptCodeRun (page 1880). You
associate an application-defined fallback handler with a particular Unicode converter object you intend to
pass to the conversion function when you call it.

Text converted from UTF-8 will already have been converted to UTF-16 before the fallback handler is called
to process it. Your fallback handler should do all of its processing on text encoded in UTF-16.

Your application-defined fallback handler should not move memory or call any toolbox function that would
move memory. If it needs memory, the memory should be allocated before the call to
SetFallbackUnicodeToText or SetFallbackUnicodeToTextRun, and a memory reference should be
passed either directly as iInfoPtr or in the data referenced by iInfoPtr.

To associate a fallback-handler function with a Unicode converter object you use the
SetFallbackUnicodeToText (page 1908) andSetFallbackUnicodeToTextRun (page 1909) functions. For
these functions, you must pass a universal procedure pointer (UniversalProcPtr). This is derived from a
pointer to your function by using the predefined macro NewUnicodeToTextFallbackProc.

For versions of the Unicode Converter prior to 1.2, the fallback handler may receive a multiple character text
element, so the source string length value could be greater than 2 and the fallback handler may set
srcConvLen to a value greater than 2. In versions earlier than 1.2.1, the srcConvLen and destConvLen
variables are not initialized to 0; both values are ignored unless the fallback handler returns noErr.

The following example shows how to install an application-defined fallback handler. You can name your
application-defined fallback handler anything you choose. The name, MyUnicodeToTextFallbackProc,
used in this example is not significant. However, you must adhere to the parameters, the return type, and
the calling convention as expressed in this example, which follows the prototype, because a pointer to this
function must be of type UnicodeToTextFallbackProcPtr as defined in the UnicodeConverter.h
header file.

The UnicodeConverter.h header file also defines the UnicodeToTextFallbackUPP type and the
NewUnicodeToTextFallbackProc macro.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeConverter.h

Data Types

ConstScriptCodeRunPtr
Defines a constant script code run pointer.

typedef const ScriptCodeRun * ConstScriptCodeRunPtr;

Availability
Available in Mac OS X v10.0 and later.

Data Types 1955
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Declared In
TextCommon.h

ConstTextEncodingRunPtr
Defines a constant text encoding run pointer.

typedef const TextEncodingRun * ConstTextEncodingRunPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextCommon.h

ConstTextPtr
Defines a constant text pointer.

typedef const UInt8 * ConstTextPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextCommon.h

ConstTextToUnicodeInfo
Defines a constant text to Unicode converter object.

typedef TextToUnicodeInfo ConstTextToUnicodeInfo;

Discussion
The TruncateForTextToUnicode (page 1934) function requires a Unicode converter object as a parameter.
This function does not modify the contents of the private structure to which the Unicode converter object
refers, so it uses the constant Unicode converter object defined by the ConstTextToUnicodeInfo data
type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeConverter.h

ConstUniCharArrayPtr
Defines a constant Unicode character array pointer.

1956 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

typedef const UniChar * ConstUniCharArrayPtr;

Discussion
You specify a constant Unicode character array pointer for Unicode strings used within the scope of a function
whose contents are not modified by that function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextCommon.h

ConstUnicodeMappingPtr
Defines a constant Unicode mapping pointer.

typedef const UnicodeMapping * ConstUnicodeMappingPtr;

Discussion
Many Unicode Converter functions take a pointer to a Unicode mapping structure as a parameter. For functions
that do not modify the Unicode mapping contents, the Unicode Converter provides a constant pointer to a
Unicode mapping structure defined by the ConstUnicodeMappingPtr data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeConverter.h

ConstUnicodeToTextInfo
Defines a constant Unicode to text converter object.

typedef UnicodeToTextInfo ConstUnicodeToTextInfo;

Discussion
The TruncateForUnicodeToText (page 1935) function requires a Unicode converter object as a parameter.
This function does not modify the contents of the private structure to which the Unicode converter object
refers, so it uses the constant Unicode converter object defined by the ConstUnicodeToTextInfo data
type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeConverter.h

ScriptCodeRun
Contains script code information for a text run.

Data Types 1957
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

struct ScriptCodeRun {
 ByteOffset offset;
 ScriptCode script;
};
typedef struct ScriptCodeRun ScriptCodeRun;
typedef ScriptCodeRun * ScriptCodeRunPtr;

Fields
offset

The beginning character position of a text run and its script code in the converted text.

script
The script code for the text that begins at the position specified.

Discussion
To return the result of a multiple encoding conversion, the ConvertFromUnicodeToScriptCodeRun (page
1880) function uses a script code run structure.

The script code run structure uses an extended script code with values in the range 0–254, which are the
text encoding base equivalents to Mac OS encodings. Values 0–32 correspond directly to traditional script
codes. This allows a script code run to distinguish Icelandic, Turkish, Symbol, Zapf Dingbats, and so on.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextCommon.h

TECBufferContextRec
Contains buffers for text and text encoding runs.

struct TECBufferContextRec {
 TextPtr textInputBuffer;
 TextPtr textInputBufferEnd;
 TextPtr textOutputBuffer;
 TextPtr textOutputBufferEnd;
 TextEncodingRunPtr encodingInputBuffer;
 TextEncodingRunPtr encodingInputBufferEnd;
 TextEncodingRunPtr encodingOutputBuffer;
 TextEncodingRunPtr encodingOutputBufferEnd;
};
typedef struct TECBufferContextRec TECBufferContextRec;

Discussion
This structure is used in the TECConverterContextRec (page 1959) data structure that is used for a TEC
plug-in.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

1958 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECConversionInfo
Contains text encoding conversion information.

struct TECConversionInfo {
 TextEncoding sourceEncoding;
 TextEncoding destinationEncoding;
 UInt16 reserved1;
 UInt16 reserved2;
};
typedef struct TECConversionInfo TECConversionInfo;

Fields
sourceEncoding

The text encoding specification for the source text.

destinationEncoding
The text encoding specification for the destination text.

reserved1
Reserved.

reserved2
Reserved.

Discussion
When you call the function TECGetDirectTextEncodingConversions (page 1927), you pass an array of
text encoding conversion information structures. The function fills these structures with information about
each type of supported conversion.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingConverter.h

TECConverterContextRec
Contains converter information used by a Text Encoding Converter plug-in.

Data Types 1959
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

struct TECConverterContextRec {
 Ptr pluginRec;
 TextEncoding sourceEncoding;
 TextEncoding destEncoding;
 UInt32 reserved1;
 UInt32 reserved2;
 TECBufferContextRec bufferContext;
 UInt32 contextRefCon;
 ProcPtr conversionProc;
 ProcPtr flushProc;
 ProcPtr clearContextInfoProc;
 UInt32 options1;
 UInt32 options2;
 TECPluginStateRec pluginState;
};
typedef struct TECConverterContextRec TECConverterContextRec;

Fields
pluginRec
sourceEncoding

The text encoding specification for the source text.

destEncoding
The text encoding specification for the destination text.

reserved1
Reserved.

reserved2
Reserved.

bufferContext
contextRefCon

A 32-bit value containing or referring to plug-in-specific data.

conversionProc
A pointer to a callback for your conversion procedure.

flushProc
A pointer to a callback for your reset procedure.

clearContextInfoProc
A pointer to a callback for our clear procedure.

options1
A 32-bit value that specfies options needed by your plug-in.

options2
A 32-bit value that specfies options needed by your plug-in.

pluginState

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

1960 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECInfo
Contains information about the Unicode Converter, the Text Encoding Converter, and Basic Text Types.

struct TECInfo {
 UInt16 format;
 UInt16 tecVersion;
 UInt32 tecTextConverterFeatures;
 UInt32 tecUnicodeConverterFeatures;
 UInt32 tecTextCommonFeatures;
 Str31 tecTextEncodingsFolderName;
 Str31 tecExtensionFileName;
 UInt16 tecLowestTEFileVersion;
 UInt16 tecHighestTEFileVersion;
};
typedef struct TECInfo TECInfo;
typedef TECInfo * TECInfoPtr;

Fields
format

The current format of the returned structure. The format of the structure is indicated by the
kTECInfoCurrentFormat constant. Any future changes to the format will always be backwardly
compatible; any new fields will be added to the end of the structure.

tecVersion
The current version of the Text Encoding Conversion Manager extension in BCD (binary coded decimal),
with the first byte indicating the major version; for example, 0x0121 for 1.2.1.

tecTextConverterFeatures
New features or bug fixes in the Text Encoding Converter. No bits are currently defined.

tecUnicodeConverterFeatures
Bit flags indicating new features or bug fixes in the Unicode Converter. See “Unicode Converter
Flags” (page 1977) for the currently defined bit flags.

tecTextCommonFeatures
Bit flags indicating new features or bug fixes in Basic Text Types (the Text Common static library). No
bits are currently defined.

tecTextEncodingsFolderName
A Pascal string with the (possibly localized) name of the Text Encodings folder.

tecExtensionFileName
A Pascal string with the (possibly localized) name of the Text Encoding Conversion Manager extension
file.

tecLowestTEFileVersion
tecHighestTEFileVersion

Discussion
The converter information structure is used by the function TECGetInfo (page 1929) to hold returned
information about the Unicode Converter, the Text Encoding Converter, and Basic Text Types.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextCommon.h

Data Types 1961
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TECObjectRef
Defines an opaque reference to a converter object.

typedef struct OpaqueTECObjectRef * TECObjectRef;

Discussion
When making a text conversion, the Text Encoding Converter requires a reference to a converter object that
indicates how to accomplish the conversion. Functions, such as TECCreateConverter (page 1918), that create
a converter object return this reference, which you can then pass to other functions when converting text.
A converter object reference is defined by the TECObjectRef data type.

The structure of the OpaqueTECObjectRef data type is private, and a converter object is not accessible
directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingConverter.h

TECPluginDispatchTable
Contains version and signature information and pointers to the callback functions used by a text encoding
converter plug-in.

struct TECPluginDispatchTable {
 TECPluginVersion version;
 TECPluginVersion compatibleVersion;
 TECPluginSignature PluginID;
 TECPluginNewEncodingConverterPtr PluginNewEncodingConverter;
 TECPluginClearContextInfoPtr PluginClearContextInfo;
 TECPluginConvertTextEncodingPtr PluginConvertTextEncoding;
 TECPluginFlushConversionPtr PluginFlushConversion;
 TECPluginDisposeEncodingConverterPtr PluginDisposeEncodingConverter;
 TECPluginNewEncodingSnifferPtr PluginNewEncodingSniffer;
 TECPluginClearSnifferContextInfoPtr PluginClearSnifferContextInfo;
 TECPluginSniffTextEncodingPtr PluginSniffTextEncoding;
 TECPluginDisposeEncodingSnifferPtr PluginDisposeEncodingSniffer;
 TECPluginGetCountAvailableTextEncodingsPtr PluginGetCountAvailableTextEncodings;
 TECPluginGetCountAvailableTextEncodingPairsPtr
PluginGetCountAvailableTextEncodingPairs;
 TECPluginGetCountDestinationTextEncodingsPtr
PluginGetCountDestinationTextEncodings;
 TECPluginGetCountSubTextEncodingsPtr PluginGetCountSubTextEncodings;
 TECPluginGetCountAvailableSniffersPtr PluginGetCountAvailableSniffers;
 TECPluginGetCountWebEncodingsPtr PluginGetCountWebTextEncodings;
 TECPluginGetCountMailEncodingsPtr PluginGetCountMailTextEncodings;
 TECPluginGetTextEncodingInternetNamePtr PluginGetTextEncodingInternetName;
 TECPluginGetTextEncodingFromInternetNamePtr
PluginGetTextEncodingFromInternetName;
};
typedef struct TECPluginDispatchTable TECPluginDispatchTable;

Availability
Available in Mac OS X v10.0 and later.

1962 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Declared In
TextEncodingPlugin.h

TECPluginSig
Defines a data type for a Text Encoding Converter plug-in signature.

typedef OSType TECPluginSig;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingConverter.h

TECPluginSignature
Defines a data type for a Text Encoding Converter plug-in signature.

typedef OSType TECPluginSignature;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingConverter.h

TECPluginStateRec
Contains state information for a Text Encoding Converter plug-in.

struct TECPluginStateRec {
 UInt8 state1;
 UInt8 state2;
 UInt8 state3;
 UInt8 state4;
 UInt32 longState1;
 UInt32 longState2;
 UInt32 longState3;
 UInt32 longState4;
};
typedef struct TECPluginStateRec TECPluginStateRec;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECPluginVersion
Defines a data type for Text Encoding Converter plug-in version.

Data Types 1963
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

typedef UInt32 TECPluginVersion;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingConverter.h

TECSnifferContextRec
Contains infomation used by a sniffer object.

struct TECSnifferContextRec {
 Ptr pluginRec;
 TextEncoding encoding;
 ItemCount maxErrors;
 ItemCount maxFeatures;
 TextPtr textInputBuffer;
 TextPtr textInputBufferEnd;
 ItemCount numFeatures;
 ItemCount numErrors;
 UInt32 contextRefCon;
 ProcPtr sniffProc;
 ProcPtr clearContextInfoProc;
 TECPluginStateRec pluginState;
};
typedef struct TECSnifferContextRec TECSnifferContextRec;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingPlugin.h

TECSnifferObjectRef
Defines a reference to an opaque sniffer object.

typedef struct OpaqueTECSnifferObjectRef * TECSnifferObjectRef;

Discussion
When analyzing text for possible encodings, the Text Encoding Converter requires a reference to a sniffer
object that specifies what types of encodings can be detected. You receive this reference when calling the
functionTECCreateSniffer (page 1920). A sniffer object reference is defined by theTECSnifferObjectRef
data type. The structure of the OpaqueTECObjectRef data type is private, and a sniffer object is not accessible
directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEncodingConverter.h

1964 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

TextEncoding
Defines a data type for a text encoding value.

typedef UInt32 TextEncoding;

Discussion
A TextEncoding value is specified by a text encoding base, a text encoding variant, and a text encoding
format. You can obtain a TextEncoding value by calling the function CreateTextEncoding (page 1890).
When you call this function, you can provide the TextEncodingBase, TextEncodingVariant, and
TextEncodingFormat data types.

A TextEncoding value is used, for example, to identify the encoding of text passed to a text converter. Two
TextEncoding values are needed—for source and destination encoding—when calling the Text Encoding
Converter or the Unicode Converter to convert text.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextCommon.h

TextEncodingRun
Contains text encoding information for a text run.

struct TextEncodingRun {
 ByteOffset offset;
 TextEncoding textEncoding;
};
typedef struct TextEncodingRun TextEncodingRun;
typedef TextEncodingRun * TextEncodingRunPtr;

Fields
offset

The beginning character position of a run of text in the converted text string.

textEncoding
The encoding of the text run that begins at the position specified.

Discussion
It is not always possible to convert text expressed in Unicode to another single encoding because no other
single encoding encompasses the Unicode character encoding range. To adjust for this, you can create a
Unicode mapping structure array that specifies the target encodings the Unicode text should be converted
to when multiple encodings must be used.

If the kUnicodeTextRunMask flag is set, ConvertFromUnicodeToTextRun (page 1885) and
ConvertFromUnicodeToScriptCodeRun (page 1880) may convert Unicode text to a string of text containing
multiple text encoding runs. Each run contains text expressed in a different encoding from that of the
preceding or following text segment. For each text encoding run in the string, a TextEncodingRun structure
indicates the beginning offset and the text encoding for that run.

Functions that convert text from Unicode to a text run return the converted text in an array of text encoding
run structures. A text encoding run structure is defined by the TextEncodingRun data type.

Data Types 1965
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextCommon.h

TextEncodingVariant
Defines a data type for a text encoding variant.

typedef UInt32 TextEncodingVariant;

Discussion
The following enumerations define text encoding variant constants: “Encoding Variants for Big-5” (page 1988),
“Encoding Variants for MacArabic” (page 1989), “Encoding Variants for MacCroatian” (page 1990), “Encoding
Variants for MacCyrillic” (page 1991), “Encoding Variants for MacFarsi” (page 1991), “Encoding Variants for
MacHebrew” (page 1992), “Encoding Variants for MacIcelandic” (page 1992), “Encoding Variants for
MacJapanese” (page 1993), “Encoding Variants for MacRoman Related to Currency” (page 1996), “Encoding
Variants for MacRomanian” (page 1997), “Encoding Variants for MacRomanLatin1” (page 1997), “Encoding Variants
for MacRoman” (page 1994), and “Encoding Variants for MacVT100” (page 1998).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextCommon.h

TextToUnicodeInfo
Defines reference to an opaque Unicode converter object.

typedef struct OpaqueTextToUnicodeInfo * TextToUnicodeInfo;

Discussion
A Unicode converter object is a private object containing mapping and state information. Many of the Unicode
Converter functions that perform conversions require a Unicode converter object containing information
used for the conversion process. There are three types of Unicode converter objects, all serving the same
purpose but used for different types of conversions. You use the TextToUnicodeInfo type, described here,
for converting from non-Unicode text to Unicode text.

Because your application cannot directly create or modify the contents of the private Unicode converter
object, the Unicode Converter provides functions to create and dispose of it. To create a Unicode converter
object for converting from non-Unicode text to Unicode text, your application must first call either the
function CreateTextToUnicodeInfo (page 1890) or the function
CreateTextToUnicodeInfoByEncoding (page 1891) to provide the mapping information required for the
conversion. You can then pass this object to the function ConvertFromTextToUnicode (page 1877) or
ConvertFromPStringToUnicode (page 1876) to identify the information to be used in performing the actual
conversion. After you have finished using the object, you should release the memory allocated for it by calling
the function DisposeTextToUnicodeInfo (page 1897). The TextToUnicodeInfo data type defines the
Unicode converter object.

Availability
Available in Mac OS X v10.0 and later.

1966 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Declared In
UnicodeConverter.h

UniCharArrayOffset
Represents the boundary between two characters.

typedef UInt32 UniCharArrayOffset;

Discussion
A UniCharArrayOffset represents the boundary between two characters. For example, the first character
in a buffer lies between offsets 0 and 1. So the first character in the buffer can be referred to as either “offset
0, leading” or “offset 1, trailing.” This distinction is useful when you deal with caret positions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextCommon.h

UnicodeMapping
Contains information for mapping to or from Unicode encoding.

struct UnicodeMapping {
 TextEncoding unicodeEncoding;
 TextEncoding otherEncoding;
 UnicodeMapVersion mappingVersion;
};
typedef struct UnicodeMapping UnicodeMapping;
typedef UnicodeMapping * UnicodeMappingPtr;

Fields
unicodeEncoding

A Unicode text encoding specification of type TextEncoding.

otherEncoding
A text encoding specification for the text to be converted to or from Unicode.

mappingVersion
The version of the Unicode mapping table to be used.

Discussion
A Unicode mapping structure contains a complete text encoding specification for a Unicode encoding, a
complete non-Unicode text encoding specification giving the encoding for the text to be converted to or
from Unicode, and the version of the mapping table to be used for conversion. You use a structure of this
type to specify the text encodings to and from which the text string is to be converted. A Unicode mapping
structure is defined by the UnicodeMapping data type.

You can specify a variety of normalization options by setting up the Unicode mapping structure as described
in the following.

To specify normal canonical decomposition according to Unicode 3.2 rules, with no exclusions ("Canonical
decomposition 3.2"), set up the UnicodeMapping structure as follows:

Data Types 1967
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

mapping.unicodeEncoding (in) = Unicode 2.x-3.x, kUnicodeNoSubset,
kUnicode16BitFormat
mapping.otherEncoding (out) = Unicode 2.x-3.x, kUnicodeCanonicalDecompVariant,
 kUnicode16BitFormat
mapping.mappingVersion = kUnicodeUseLatestMapping

Examples:

u00E0 -> u0061 + u0300
u0061 + u0300 -> u0061 + u0300
u03AC -> u03B1 + u0301 (3.2 rules)
uF900 -> u8C48
u00E0 + u0323 -> u0061 + u0323 + u0300 (correct)

To specify canonical decomposition according to Unicode 3.2 rules, with HFS+ exclusions ("HFS+ decomposition
3.2"), set up the UnicodeMapping structure in one of the following ways. The second method is for
compatibility with the old method of using mappingVersion = kUnicodeUseHFSPlusMapping.

// Method 1
mapping.unicodeEncoding (in) = Unicode 2.x-3.x, kUnicodeNoSubset,
kUnicode16BitFormat
mapping.otherEncoding (out) = Unicode 2.x-3.x, kUnicodeHFSPlusDecompVariant,
kUnicode16BitFormat
mapping.mappingVersion = kUnicodeUseLatestMapping
// Method 2
mapping.unicodeEncoding (in) = Unicode 2.x-3.x, kUnicode16BitFormat,
kUnicode16BitFormat
mapping.otherEncoding (out) = Unicode 2.x, kUnicodeCanonicalDecompVariant,
kUnicode16BitFormat
mapping.mappingVersion = kUnicodeUseHFSPlusMapping

Examples:

u00E0 -> u0061 + u0300
u0061 + u0300 -> u0061 + u0300
u03AC -> u03B1 + u0301 (3.2 rules)
uF900 -> uF900 (decomposition excluded for HFS+)
u00E0 + u0323 -> u0061 + u0323 + u0300 (correct)

To specify normal canonical composition according to Unicode 3.2 rules, set up the UnicodeMapping
structure as follows:

mapping.unicodeEncoding (in) = Unicode 2.x-3.x, kUnicodeNoSubset,
kUnicode16BitFormat
mapping.otherEncoding (out) = Unicode 2.x-3.x, kUnicodeCanonicalCompVariant,
kUnicode16BitFormat
mapping.mappingVersion = kUnicodeUseLatestMapping

Examples:

u00E0 -> u00E0
u0061 + u0300 -> u00E0
u03AC -> u03AC
uF900 -> u8C48
u00E0 + u0323 -> u1EA1 u0300 (correct)

1968 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

To specify canonical composition according to Unicode 3.2 rules, but using the HFS+ decomposition exclusions,
set up the UnicodeMapping structure as follows. This is the form to use if you want to obtain a composed
form that dervide from the decomposed form used for HFS+ filenames.

mapping.unicodeEncoding (in) = Unicode 2.x-3.x, kUnicodeNoSubset,
kUnicode16BitFormat
mapping.otherEncoding (out) = Unicode 2.x-3.x, kUnicodeHFSPlusCompVariant,
kUnicode16BitFormat
mapping.mappingVersion = kUnicodeUseLatestMapping

Examples:

u00E0 -> u00E0
u0061 + u0300 -> u00E0
u03AC -> u03AC
uF900 -> uF900
u00E0 + u0323 -> u1EA1 u0300 (correct)

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeConverter.h

UnicodeToTextFallbackUPP
Defines a universal procedure pointer to a Unicode-to-text-fallback callback function.

typedef UnicodeToTextFallbackProcPtr UnicodeToTextFallbackUPP;

Discussion
For more information, see the description of the UnicodeToTextFallbackProcPtr (page 1953) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeConverter.h

UnicodeToTextInfo
Defines a reference to an opaque Unicode to text converter object.

typedef struct OpaqueUnicodeToTextInfo * UnicodeToTextInfo;

Discussion
Many of the Unicode Converter functions that perform conversions require a Unicode converter object
containing information used for the conversion process. There are three types of Unicode converter objects
used for different types of conversions. You use the UnicodeToTextInfo type, described here, for converting
from Unicode to text.

Data Types 1969
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Because your application cannot directly create or modify the contents of the private Unicode converter
object, the Unicode Converter provides functions to create and dispose of it. To create a Unicode converter
object for converting from Unicode to text, your application must first call either the function
CreateUnicodeToTextInfo (page 1892) or CreateUnicodeToTextInfoByEncoding (page 1893).

You can then pass this object to the function ConvertFromUnicodeToText (page 1883) or
ConvertFromUnicodeToPString (page 1879) to identify the information used to perform the actual
conversion. After you have finished using the object, you should release the memory allocated for it by calling
the function DisposeUnicodeToTextInfo (page 1898).

A Unicode converter object for this purpose is defined by the UnicodeToTextInfo data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeConverter.h

UnicodeToTextRunInfo
Defines a reference to an opaque Unicode to text run information converter object.

typedef struct OpaqueUnicodeToTextRunInfo * UnicodeToTextRunInfo;

Discussion
Many of the Unicode Converter functions that perform conversions require a Unicode converter object
containing information used for the conversion process. There are three types of Unicode converter objects
used for different types of conversions. You use the UnicodeToTextRunInfo type, described here, for
converting from Unicode to multiple encodings.

Because your application cannot directly create or modify the contents of the private Unicode converter
object, the Unicode Converter provides functions to create and dispose of it. You can use any of three functions
to create a Unicode converter object for converting from Unicode to multiple encodings. You can use
CreateUnicodeToTextRunInfo (page 1894),CreateUnicodeToTextRunInfoByEncoding (page 1895), or
CreateUnicodeToTextRunInfoByScriptCode (page 1896).

You can then pass this object to the function ConvertFromUnicodeToTextRun (page 1885) or
ConvertFromUnicodeToScriptCodeRun (page 1880) to identify the information used to perform the actual
conversion. After you have finished using the object, you should release the memory allocated for it by calling
the function DisposeUnicodeToTextRunInfo (page 1898).

A Unicode converter object for this purpose is defined by the UnicodeToTextRunInfo data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeConverter.h

1970 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Constants

Feature Selectors

Conversion Flags
Specify how to perform conversion of text from one encoding to another.

enum {
 kUnicodeUseFallbacksBit = 0,
 kUnicodeKeepInfoBit = 1,
 kUnicodeDirectionalityBits = 2,
 kUnicodeVerticalFormBit = 4,
 kUnicodeLooseMappingsBit = 5,
 kUnicodeStringUnterminatedBit = 6,
 kUnicodeTextRunBit = 7,
 kUnicodeKeepSameEncodingBit = 8,
 kUnicodeForceASCIIRangeBit = 9,
 kUnicodeNoHalfwidthCharsBit = 10,
 kUnicodeTextRunHeuristicsBit = 11,
 kUnicodeMapLineFeedToReturnBit = 12
};

Constants
kUnicodeUseFallbacksBit

Enables use of fallback mappings.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeKeepInfoBit
Sets the keep-information control flag.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeDirectionalityBits
Sets directionality.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeVerticalFormBit
Sets the vertical form control flag.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeLooseMappingsBit
Enables use of the loose-mapping portion of a character mapping table.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

Constants 1971
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUnicodeStringUnterminatedBit
Sets the string-unterminated control flag.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeTextRunBit
Sets the text-run control flag.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeKeepSameEncodingBit
Sets the keep-same-encoding control flag.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeForceASCIIRangeBit
Sets the force ASCII range control flag.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeNoHalfwidthCharsBit
Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeTextRunHeuristicsBit
Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMapLineFeedToReturnBit
Available in Mac OS X v10.2 and later.

Declared in UnicodeConverter.h.

Conversion Masks
Set or text for conversion flags.

1972 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kUnicodeUseFallbacksMask = 1L << kUnicodeUseFallbacksBit,
 kUnicodeKeepInfoMask = 1L << kUnicodeKeepInfoBit,
 kUnicodeDirectionalityMask = 3L << kUnicodeDirectionalityBits,
 kUnicodeVerticalFormMask = 1L << kUnicodeVerticalFormBit,
 kUnicodeLooseMappingsMask = 1L << kUnicodeLooseMappingsBit,
 kUnicodeStringUnterminatedMask = 1L << kUnicodeStringUnterminatedBit,
 kUnicodeTextRunMask = 1L << kUnicodeTextRunBit,
 kUnicodeKeepSameEncodingMask = 1L << kUnicodeKeepSameEncodingBit,
 kUnicodeForceASCIIRangeMask = 1L << kUnicodeForceASCIIRangeBit,
 kUnicodeNoHalfwidthCharsMask = 1L << kUnicodeNoHalfwidthCharsBit,
 kUnicodeTextRunHeuristicsMask = 1L << kUnicodeTextRunHeuristicsBit,
 kUnicodeMapLineFeedToReturnMask = 1L << kUnicodeMapLineFeedToReturnBit
};

Constants
kUnicodeUseFallbacksMask

A mask for setting the Unicode-use-fallbacks conversion flag. The Unicode Converter uses fallback
mappings when it encounters a source text element for which there is no equivalent destination
encoding. Fallback mappings are mappings that do not preserve the meaning or identity of the source
character but represent a useful approximation of it. See the function
SetFallbackUnicodeToText (page 1908).

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeKeepInfoMask
A mask for setting the keep-information control flag which governs whether the Unicode Converter
keeps the current state stored in the Unicode converter object before converting the text string.

If you clear this flag, the converter will initialize the Unicode converter object before converting the
text string and assume that subsequent calls do not need any context, such as direction state for the
current call.

If you set the flag, the converter uses the current state. This is useful if your application must convert
a stream of text in pieces that are not block delimited. You should set this flag for each call in a series
of calls on the same text stream.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeDirectionalityMask
A mask for setting the directionality control flag

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeVerticalFormMask
A mask for setting the vertical form control flag. The vertical form control flag tells the Unicode
Converter how to map text elements for which there are both abstract and vertical presentation forms
in the destination encoding.

If set, the converter maps these text elements to their vertical forms, if they are available.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

Constants 1973
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUnicodeLooseMappingsMask
A mask that determines whether the Unicode Converter should use the loose-mapping portion of a
mapping table for character mapping if the strict mapping portion of the table does not include a
destination encoding equivalent for the source text element.

If you clear this flag, the converter will use only the strict equivalence portion.

If set this flag and a conversion for the source text element does not exist in the strict equivalence
portion of the mapping table, then the converter uses the loose mapping section.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeStringUnterminatedMask
A mask for setting the string-unterminated control flag. Determines how the Unicode Converter
handles text-element boundaries and direction resolution at the end of an input buffer.

If you clear this bit, the converter treats the end of the buffer as the end of text.

If you set this bit, the converter assumes that the next call you make using the current context will
supply another buffer of text that should be treated as a continuation of the current text. For example,
if the last character in the input buffer is 'A', ConvertFromUnicodeToText stops conversion at the
'A' and returns kTECIncompleteElementErr, because the next buffer could begin with a combining
diacritical mark that should be treated as part of the same text element. If the last character in the
input buffer is a control character, ConvertFromUnicodeToText does not return
kTECIncompleteElementErr because a control character could not be part of a multiple character
text element.

In attempting to analyze the text direction, when the Unicode Converter reaches the end of the
current input buffer and the direction of the current text element is still unresolved, if you clear this
flag, the converter treats the end of the buffer as a block separator for direction resolution. If you set
this flag, it sets the direction as undetermined

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeTextRunMask
A mask for setting the text-run control flag which determines how the Unicode Converter converts
Unicode text to a non-Unicode encoding when more than one possible destination encoding exists.

If you clear this flag, the function ConvertFromUnicodeToTextRun (page 1885) or
ConvertFromUnicodeToScriptCodeRun (page 1880) attempts to convert the Unicode text to the
single encoding from the list of encodings in the Unicode converter object that produces the best
result, that is, that provides for the greatest amount of source text conversion.

If you set this flag, ConvertFromUnicodeToTextRun or ConvertFromUnicodeToScriptCodeRun,
which are the only functions to which it applies, may generate a destination string that combines
text in any of the encodings specified by the Unicode converter object.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

1974 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUnicodeKeepSameEncodingMask
A mask for setting the keep-same-encoding control flag. Determines how the Unicode Converter
treats the conversion of Unicode text following a text element that could not be converted to the
first destination encoding when multiple destination encodings exist. This control flag applies only
if the kUnicodeTextRunMask control flag is set.

If you set this flag, the function ConvertFromUnicodeToTextRun (page 1885) attempts to minimize
encoding changes in the conversion of the source text string; that is, once it is forced to make an
encoding change, it attempts to use that encoding as the conversion destination for as long as possible.

If you clear this flag, ConvertFromUnicodeToTextRun attempts to keep most of the converted
string in one encoding, switching to other encodings only when necessary.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeForceASCIIRangeMask
A mask for setting the force ASCII range control flag. If an encoding normally treats 1-byte code points
0x00–0x7F as an ISO 646 national variant that is different from ASCII, setting this flag forces 0x00–0x7F
to be treated as ASCII. For example, Japanese encodings such as Shift-JIS generally treat 0x00–0x7F
as JIS Roman, with 0x5C as YEN SIGN instead of REVERSE SOLIDUS, but when converting a DOS file
path you may want to set this flag so that 0x5C is mapped as REVERSE SOLIDUS.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeNoHalfwidthCharsMask
Sets the no halfwidth characters control flag.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeTextRunHeuristicsMask
Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMapLineFeedToReturnMask
Specifies mapping o the LF (LineFeed) character used in Unix to represent new lines to the CR
(CarriageReturn) used in Mac encodings. This option has an effect only when used with the constant
kUnicodeLooseMappingsMask. You can pass both constants as iControlFlags parameters to
the functions ConvertFromUnicodeToText, ConvertFromUnicodeToTextRun, and
ConvertFromUnicodeToScriptCodeRun.

Available in Mac OS X v10.2 and later.

Declared in UnicodeConverter.h.

Discussion
You use these constants to specify how the conversion of text from one encoding to another is performed.
You use these masks as the controlFlags parameter in the ConvertFromTextToUnicode (page 1877),
ConvertFromUnicodeToText (page 1883), ConvertFromUnicodeToScriptCodeRun (page 1880),
ConvertFromUnicodeToTextRun (page 1885), and TruncateForUnicodeToText (page 1935) functions. A
different subset of control masks applies to each of these functions. Using the bitmask constants, you can
perform a bitwise OR operation to set the pertinent flags for a particular function’s parameters. For example,
when you call a function, you might pass the following controlFlags parameter setting:

controlflags=kUnicodeUseFallbacksMask | kUnicodeLooseMappingsMask;

Constants 1975
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Directionality Flags
Specify a text direction.

enum {
 kUnicodeDefaultDirection = 0,
 kUnicodeLeftToRight = 1,
 kUnicodeRightToLeft = 2
};

Constants
kUnicodeDefaultDirection

Use the default direction.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeLeftToRight
Indicates left to right direction.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeRightToLeft
Indicates right to left direction.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

Directionality Masks
Set or text for directionality bits.

enum {
 kUnicodeDefaultDirectionMask = kUnicodeDefaultDirection <<
kUnicodeDirectionalityBits,
 kUnicodeLeftToRightMask = kUnicodeLeftToRight << kUnicodeDirectionalityBits,
 kUnicodeRightToLeftMask = kUnicodeRightToLeft << kUnicodeDirectionalityBits
};

Constants
kUnicodeDefaultDirectionMask

A mask for setting the global, or base, line direction for the text being converted. The value
kUnicodeDefaultDirectionMask tells the converter to use the value of the first strong direction
character in the string. This determines which direction the converter should use for resolution of
neutral coded characters, such as spaces that occur between sets of coded characters having different
directions—for example, between Latin and Arabic characters—rendering ambiguous the direction
of the space character.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

1976 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUnicodeLeftToRightMask
A mask for setting the global, or base, line direction for the text being converted. The value
kUnicodeLeftToRightMask tells the converter that the base paragraph direction is left to right.
This determines which direction the converter should use for resolution of neutral coded characters,
such as spaces that occur between sets of coded characters having different directions—for example,
between Latin and Arabic characters—rendering ambiguous the direction of the space character.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeRightToLeftMask
The value kUnicodeRightToLeftMask tells the converter that the base paragraph direction is right
to left. This determines which direction the converter should use for resolution of neutral coded
characters, such as spaces that occur between sets of coded characters having different directions—for
example, between Latin and Arabic characters—rendering ambiguous the direction of the space
character.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

Unicode Converter Flags
Specify features for bug fixes in the Unicode Converter.

enum {
 kTECKeepInfoFixBit = 0,
 kTECFallbackTextLengthFixBit = 1,
 kTECTextRunBitClearFixBit = 2,
 kTECTextToUnicodeScanFixBit = 3,
 kTECAddForceASCIIChangesBit = 4,
 kTECPreferredEncodingFixBit = 5,
 kTECAddTextRunHeuristicsBit = 6,
 kTECAddFallbackInterruptBit = 7
};

Constants
kTECKeepInfoFixBit

This is set if the Unicode Converter has a bug fix to stop ignoring certain control flags

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTECFallbackTextLengthFixBit
This is set if the Unicode Converter has a bug fix to use the source length (srcConvLen) and
destination length (destConvLen) returned by a caller-supplied fall-back handler for any status it
returns except kTECUnmappableElementErr. Previously it honored only these values if noErr was
returned.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTECTextRunBitClearFixBit
This is set if ConvertFromUnicodeToTextRun and ConvertFromUnicodeToScriptCodeRun
function correctly if the kUnicodeTextRunBit is clear.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 1977
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTECTextToUnicodeScanFixBit
This is set if ConvertFromTextToUnicode is enhanced so mappings can depend on context and
saved state. The consequences of this are (1) malformed input results in kTextMalformedInputErr;
(2) ConvertFromTextToUnicode accepts the control flags kUnicodeLooseMappingsMask,
kUnicodeKeepInfoMask, and kUnicodeStringUnterminatedMask; (3) elimination of redundant
direction overrides when converting Mac OS Arabic and Hebrew to Unicode; and (4) improved mapping
of 0x30-0x39 digits in Mac OS Arabic when loose mappings are used.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTECAddForceASCIIChangesBit
This is set if the new control flag bits kUnicodeForceASCIIRangeBit and
kUnicodeNoHalfwidthCharsBit are supported for use with the functions
ConvertFromTextToUnicode, ConvertFromUnicodeToText, and so forth.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTECPreferredEncodingFixBit
This is set to indicate that if a preferred encoding is specified for CreateUnicodeToTextRunInfo
and related functions, they handle it correctly even if it does not match the system script.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTECAddTextRunHeuristicsBit
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTECAddFallbackInterruptBit
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Discussion
These are bit flags to indicate new features for bug fixes in the Unicode Converter. They are used by the
TECInfo (page 1961) data type.

Unicode Converter Masks
Set or test for Unicode converter flags.

1978 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kTECKeepInfoFixMask = 1L << kTECKeepInfoFixBit,
 kTECFallbackTextLengthFixMask = 1L << kTECFallbackTextLengthFixBit,
 kTECTextRunBitClearFixMask = 1L << kTECTextRunBitClearFixBit,
 kTECTextToUnicodeScanFixMask = 1L << kTECTextToUnicodeScanFixBit,
 kTECAddForceASCIIChangesMask = 1L << kTECAddForceASCIIChangesBit,
 kTECPreferredEncodingFixMask = 1L << kTECPreferredEncodingFixBit,
 kTECAddTextRunHeuristicsMask = 1L << kTECAddTextRunHeuristicsBit,
 kTECAddFallbackInterruptMask = 1L << kTECAddFallbackInterruptBit
};

Unicode Fallback Sequencing Flag
Specifies options for setting fallback sequencing.

enum {
 kUnicodeFallbackSequencingBits = 0
};

Unicode Fallback Sequencing Masks
Set or text for Unicode sequencing flag.

enum {
 kUnicodeFallbackSequencingMask = 3L << kUnicodeFallbackSequencingBits,
 kUnicodeFallbackInterruptSafeMask = 1L << 2
};

Constants
kUnicodeFallbackSequencingMask

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeFallbackInterruptSafeMask
Indicate that the caller’s fallback routine doesn’t move memory.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

Unicode Matching Flags
Specify matching criteria for Unicode mappings.

Constants 1979
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kUnicodeMatchUnicodeBaseBit = 0,
 kUnicodeMatchUnicodeVariantBit = 1,
 kUnicodeMatchUnicodeFormatBit = 2,
 kUnicodeMatchOtherBaseBit = 3,
 kUnicodeMatchOtherVariantBit = 4,
 kUnicodeMatchOtherFormatBit = 5
};

Constants
kUnicodeMatchUnicodeBaseBit

Excludes mappings that do not match the text encoding base of the unicodeEncoding field of the
structure UnicodeMapping (page 1967).

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchUnicodeVariantBit
Excludes mappings that do not match the text encoding variant of the unicodeEncoding field of
the specified Unicode mapping structure.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchUnicodeFormatBit
Excludes mappings that do not match the text encoding format of the unicodeEncoding field of
the specified Unicode mapping structure.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchOtherBaseBit
Excludes mappings that do not match the text encoding base of the otherEncoding field of the
structure UnicodeMapping (page 1967).

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchOtherVariantBit
Excludes mappings that do not match the text encoding variant of the otherEncoding field of the
specified Unicode mapping structure.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchOtherFormatBit
Excludes mappings that do not match the text encoding format of the otherEncoding field of the
specified Unicode mapping structure.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

Unicode Matching Masks
Used to set or test for Unicode matching flags.

1980 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kUnicodeMatchUnicodeBaseMask = 1L << kUnicodeMatchUnicodeBaseBit,
 kUnicodeMatchUnicodeVariantMask = 1L << kUnicodeMatchUnicodeVariantBit,
 kUnicodeMatchUnicodeFormatMask = 1L << kUnicodeMatchUnicodeFormatBit,
 kUnicodeMatchOtherBaseMask = 1L << kUnicodeMatchOtherBaseBit,
 kUnicodeMatchOtherVariantMask = 1L << kUnicodeMatchOtherVariantBit,
 kUnicodeMatchOtherFormatMask = 1L << kUnicodeMatchOtherFormatBit
};

Constants
kUnicodeMatchUnicodeBaseMask

If set, excludes mappings that do not match the text encoding base of the unicodeEncoding field
of the structure UnicodeMapping (page 1967). If not set, the function ignores the text encoding base
of that field.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchUnicodeVariantMask
If set, excludes mappings that do not match the text encoding variant of the unicodeEncoding field
of the specified Unicode mapping structure. If not set, the function ignores the text encoding variant
of that field.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchUnicodeFormatMask
If set, excludes mappings that do not match the text encoding format of the unicodeEncoding field
of the specified Unicode mapping structure. If not set, the function ignores the text encoding format
of that field.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchOtherBaseMask
If set, excludes mappings that do not match the text encoding base of the otherEncoding field of
the structure UnicodeMapping (page 1967). If not set, the function ignores the text encoding base of
that field.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchOtherVariantMask
If set, excludes mappings that do not match the text encoding variant of the otherEncoding field
of the specified Unicode mapping structure. If not set, the function ignores the text encoding variant
of that field.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeMatchOtherFormatMask
If set, excludes mappings that do not match the text encoding format of the otherEncoding field
of the specified Unicode mapping structure. If not set, the function ignores the text encoding format
of that field.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

Constants 1981
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Fallback Handler Selectors
Specify a fallback handler for the Unicode Converter to use.

enum {
 kUnicodeFallbackDefaultOnly = 0,
 kUnicodeFallbackCustomOnly = 1,
 kUnicodeFallbackDefaultFirst = 2,
 kUnicodeFallbackCustomFirst = 3
};

Constants
kUnicodeFallbackDefaultOnly

Use the default fallback handler only.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeFallbackCustomOnly
Use the custom fallback handler only.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeFallbackDefaultFirst
Use the default fallback handler first, then the custom one.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

kUnicodeFallbackCustomFirst
Use the custom fallback handler first, then the default one.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

Discussion
Used to specify which fallback handler the Unicode Converter should use. If you use both the custom and
default handlers, you can set the order in which they are called. You use these constants to set the
controlFlags parameter of the SetFallbackUnicodeToText (page 1908) and
SetFallbackUnicodeToTextRun (page 1909) functions.

Encodings and Variants

Base Text Encodings
Specify base text encodings.

1982 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

typedef UInt32 TextEncodingBase;
enum {
 kTextEncodingMacRoman = 0,
 kTextEncodingMacJapanese = 1,
 kTextEncodingMacChineseTrad = 2,
 kTextEncodingMacKorean = 3,
 kTextEncodingMacArabic = 4,
 kTextEncodingMacHebrew = 5,
 kTextEncodingMacGreek = 6,
 kTextEncodingMacCyrillic = 7,
 kTextEncodingMacDevanagari = 9,
 kTextEncodingMacGurmukhi = 10,
 kTextEncodingMacGujarati = 11,
 kTextEncodingMacOriya = 12,
 kTextEncodingMacBengali = 13,
 kTextEncodingMacTamil = 14,
 kTextEncodingMacTelugu = 15,
 kTextEncodingMacKannada = 16,
 kTextEncodingMacMalayalam = 17,
 kTextEncodingMacSinhalese = 18,
 kTextEncodingMacBurmese = 19,
 kTextEncodingMacKhmer = 20,
 kTextEncodingMacThai = 21,
 kTextEncodingMacLaotian = 22,
 kTextEncodingMacGeorgian = 23,
 kTextEncodingMacArmenian = 24,
 kTextEncodingMacChineseSimp = 25,
 kTextEncodingMacTibetan = 26,
 kTextEncodingMacMongolian = 27,
 kTextEncodingMacEthiopic = 28,
 kTextEncodingMacCentralEurRoman = 29,
 kTextEncodingMacVietnamese = 30,
 kTextEncodingMacExtArabic = 31,
 kTextEncodingMacSymbol = 33,
 kTextEncodingMacDingbats = 34,
 kTextEncodingMacTurkish = 35,
 kTextEncodingMacCroatian = 36,
 kTextEncodingMacIcelandic = 37,
 kTextEncodingMacRomanian = 38,
 kTextEncodingMacCeltic = 39,
 kTextEncodingMacGaelic = 40,
 kTextEncodingMacKeyboardGlyphs = 41
};

Constants
kTextEncodingMacRoman

The encoding for Mac OS Roman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacJapanese
The encoding for Mac OS Japanese.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 1983
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingMacChineseTrad
The encoding for Mac OS traditional Chinese.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacKorean
The encoding for Mac OS Korean.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacArabic
The encoding for Mac OS Arabic.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacHebrew
The encoding for Mac OS Hebrew.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacGreek
The encoding for Mac OS Greek.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacCyrillic
The encoding for Mac OS Cyrillic.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacDevanagari
The encoding for Mac OS Devanagari.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacGurmukhi
The encoding for Mac OS Gurmukhi.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacGujarati
The encoding for Mac OS Gujurati.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacOriya
The encoding for Mac OS Oriya.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

1984 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingMacBengali
The encoding for Mac OS Bengali.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacTamil
The encoding for Mac OS Tamil.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacTelugu
The encoding for Mac OS Telugu.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacKannada
The encoding for Mac OS Kannada.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacMalayalam
The encoding for Mac OS Malayalam.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacSinhalese
The encoding for Mac OS Sinhalese.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacBurmese
The encoding for Mac OS Burmese.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacKhmer
The encoding for Mac OS Khmer.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacThai
The encoding for Mac OS Thai.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacLaotian
The encoding for Mac OS Laotian.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 1985
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingMacGeorgian
The encoding for Mac OS Georgian.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacArmenian
The encoding for Mac OS Armenian.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacChineseSimp
The encoding for Mac OS simple Chinese.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacTibetan
The encoding for Mac OS Tibetan.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacMongolian
The encoding for Mac OS Mongolian.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacEthiopic
The encoding for Mac OS Ethiopic.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacCentralEurRoman
The encoding for Mac OS Central European Roman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacVietnamese
The encoding for Mac OS Vietnamese.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacExtArabic
The encoding for Mac OS ExtArabic.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacSymbol
This Mac OS encoding uses script code 0, smRoman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

1986 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingMacDingbats
This Mac OS encoding uses script code 0, smRoman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacTurkish
This Mac OS encoding uses script code 0, smRoman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacCroatian
This Mac OS encoding uses script code 0, smRoman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacIcelandic
This Mac OS encoding uses script code 0, smRoman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacRomanian
This Mac OS encoding uses script code 0, smRoman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacCeltic
This Mac OS encoding uses script code 0, smRoman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacGaelic
This Mac OS encoding uses script code 0, smRoman.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacKeyboardGlyphs
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Discussion
You use a base text encoding data type to specify which text encoding or text encoding scheme you have
used to express a given text. The text encoding base value is the primary specification of the source or target
encoding. Values 0 through 32 correspond directly to Mac OS script codes. Values 33 through 254 are for
other Mac OS encodings that do not have their own script codes, such as the Symbol encoding implemented
by the Symbol font. You can also specify a meta-value as a base text encoding, such as kTextEncodingMacHFS
and kTextEncodingUnicodeDefault. A meta-value is mapped to a real value.

The function GetTextEncodingBase (page 1899) returns the text encoding base of a text encoding
specification.

A base text encoding is defined by the TextEncodingBase data type.

Constants 1987
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Compatibility TextEncodings
Specify text encodings that are provided for backward compatibility.

enum {
 kTextEncodingMacTradChinese = kTextEncodingMacChineseTrad,
 kTextEncodingMacRSymbol = 8,
 kTextEncodingMacSimpChinese = kTextEncodingMacChineseSimp,
 kTextEncodingMacGeez = kTextEncodingMacEthiopic,
 kTextEncodingMacEastEurRoman = kTextEncodingMacCentralEurRoman,
 kTextEncodingMacUninterp = 32
};

EBCDIC and IBM Host Text Encodings
Specify text encodings used by IBM computers.

enum {
 kTextEncodingEBCDIC_US = 0x0C01,
 kTextEncodingEBCDIC_CP037 = 0x0C02
};

Constants
kTextEncodingEBCDIC_US

Basic EBCDIC-US encoding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingEBCDIC_CP037
Code page 037, extended EBCDIC-US Latin1.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Discussion
EBCDIC (Extended Binary- Coded Decimal Interchange Code) is used by IBM computers to represent characters
as numbers.

Encoding Variants for Big-5
Specify variants of Big-5 encoding.

enum {
 kBig5_BasicVariant = 0,
 kBig5_StandardVariant = 1,
 kBig5_ETenVariant = 2
};

Constants
kBig5_BasicVariant

The basic encoding variant.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

1988 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kBig5_StandardVariant
The standard variant; 0xC6A1-0xC7FC: kana, Cyrillic, enclosed numerics.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kBig5_ETenVariant
Adds kana, Cyrillic, radicals, and so forth with high-bytes C6-C8, F9.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Discussion
Big-5 encoding was developed by five companies as a character set standard in Tawain.

Encoding Variants for Mac OS Encodings
Specify variant Mac OS encodings that use script codes other than 0

enum {
 kTextEncodingMacFarsi = 0x8C,
 kTextEncodingMacUkrainian = 0x98,
 kTextEncodingMacInuit = 0xEC,
 kTextEncodingMacVT100 = 0xFC
};

Constants
kTextEncodingMacFarsi

Uses script code 4, smArabic. It is similar to Mac Arabic but uses Farsi digits.]

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacUkrainian
Uses script code 7, smCyrillic.]

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacInuit
Uses script code 28, smEthiopic.]

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacVT100
Uses script code 32, smUninterp; VT100/102 font from the common toolbox; Latin-1 characters plus
box drawing.]

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacArabic
Specify variants of MacArabic.

Constants 1989
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kMacArabicStandardVariant = 0,
 kMacArabicTrueTypeVariant = 1,
 kMacArabicThuluthVariant = 2,
 kMacArabicAlBayanVariant = 3
};

Constants
kMacArabicStandardVariant

A Mac OS Arabic variant is supported by the Cairo font (the system font for Arabic) and is the encoding
supported by the text processing utilities.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacArabicTrueTypeVariant
A Mac OS Arabic variant used for most of the Arabic TrueType fonts: Baghdad, Geeza, Kufi, Nadeem.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacArabicThuluthVariant
A Mac OS Arabic variant used for the Arabic PostScript-only fonts: Thuluth and Thuluth bold.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacArabicAlBayanVariant
A Mac OS Arabic variant used for the Arabic TrueType font Al Bayan.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacCroatian
Specify variants of MacCroation.

enum {
 kMacCroatianDefaultVariant = 0,
 kMacCroatianCurrencySignVariant = 1,
 kMacCroatianEuroSignVariant = 2
};

Constants
kMacCroatianDefaultVariant

This is a meta value that maps to one of the following constants, depending on version of the Mac
OS.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacCroatianCurrencySignVariant
In versions of Mac OS earlier than 8.5, 0xDB is the currency sign.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

1990 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kMacCroatianEuroSignVariant
In Mac OS version 8.5 and later, 0xDB is the Euro sign.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacCyrillic
Specify variants of MacCyrillic.

enum {
 kMacCyrillicDefaultVariant = 0,
 kMacCyrillicCurrSignStdVariant = 1,
 kMacCyrillicCurrSignUkrVariant = 2,
 kMacCyrillicEuroSignVariant = 3
};

Constants
kMacCyrillicDefaultVariant

This is a meta value that maps to one of the following constants, depending on version of the Mac
OS.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacCyrillicCurrSignStdVariant
In Mac OS versions prior to 9.0 (RU, BG), 0xFF = currency sign, 0xA2/0xB6 = CENT / PARTIAL DIFF.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacCyrillicCurrSignUkrVariant
In Mac OS version 9.0 and later (UA, LangKit), 0xFF = currency sign, 0xA2/0xB6 = GHE with upturn.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacCyrillicEuroSignVariant
In Mac OS 9.0 and later, 0xFF is Euro sign, 0xA2/0xB6 = GHE with upturn.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacFarsi
Specify variants of MacFarsi.

Constants 1991
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kMacFarsiStandardVariant = 0,
 kMacFarsiTrueTypeVariant = 1
};

Constants
kMacFarsiStandardVariant

This Mac OS Farsi variant is supported by the Tehran font (the system font for Farsi) and is the encoding
supported by the text processing utilities.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacFarsiTrueTypeVariant
This Mac OS Farsi variant is used for most of the Farsi TrueType fonts: Ashfahan, Amir, Kamran, Mashad,
NadeemFarsi.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacHebrew
Specify variants of MacHebrew.

enum {
 kMacHebrewStandardVariant = 0,
 kMacHebrewFigureSpaceVariant = 1
};

Constants
kMacHebrewStandardVariant

The standard Mac OS Hebrew variant.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacHebrewFigureSpaceVariant
The Mac OS Hebrew variant in which 0xD4 represents figure space, not left single quotation mark as
in the standard variant.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacIcelandic
Specify variants of MacIcelandic.

1992 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kMacIcelandicStdDefaultVariant = 0,
 kMacIcelandicTTDefaultVariant = 1,
 kMacIcelandicStdCurrSignVariant = 2,
 kMacIcelandicTTCurrSignVariant = 3,
 kMacIcelandicStdEuroSignVariant = 4,
 kMacIcelandicTTEuroSignVariant = 5
};

Constants
kMacIcelandicStdDefaultVariant

This is a meta value that maps to kMacIcelandicStdCurrSignVariant or
kMacIcelandicStdEuroSignVariant, depending on version of the Mac OS.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacIcelandicTTDefaultVariant
This is a meta value that maps to kMacIcelandicTTCurrSignVariant or
kMacIcelandicTTEuroSignVariant, depending on version of the Mac OS.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacIcelandicStdCurrSignVariant
In Mac OS versions prior to 8.5, 0xDB is the currency sign; 0xBB/0xBC are fem./masc. ordinal indicators.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacIcelandicTTCurrSignVariant
In Mac OS versions prior to 8.5, 0xDB is the currency sign; 0xBB/0xBC are fi/fl ligatures

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacIcelandicStdEuroSignVariant
In Mac OS version 8.5 and later , 0xDB is the Euro sign ; 0xBB/0xBC are fem./masc. ordinal indicators.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacIcelandicTTEuroSignVariant
In Mac OS versions earlier than 8.5, 0xDB is the Euro sign; 0xBB/0xBC are fi/fl ligatures.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacJapanese
Specify variants of MacJapanese.

Constants 1993
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kMacJapaneseStandardVariant = 0,
 kMacJapaneseStdNoVerticalsVariant = 1,
 kMacJapaneseBasicVariant = 2,
 kMacJapanesePostScriptScrnVariant = 3,
 kMacJapanesePostScriptPrintVariant = 4,
 kMacJapaneseVertAtKuPlusTenVariant = 5
};

Constants
kMacJapaneseStandardVariant

The standard Mac OS Japanese variant. Shift-JIS with JIS Roman modifications, extra 1-byte characters,
2-byte Apple extensions, and some vertical presentation forms in the range 0xEB40—0xEDFE (“ku
plus 84").

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacJapaneseStdNoVerticalsVariant
An artificial Mac OS Japanese variant for callers who don’t want to use separately encoded vertical
forms (for example, developers using QuickDraw GX).

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacJapaneseBasicVariant
An artificial Mac OS Japanese variant without Apple double-byte extensions.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacJapanesePostScriptScrnVariant
The Mac OS Japanese variant for the screen bitmap version of the Sai Mincho and Chu Gothic fonts.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacJapanesePostScriptPrintVariant
The Mac OS Japanese variant for PostScript printing versions of the Sai Mincho and Chu Gothic
PostScript fonts. This version includes double-byte half-width characters in addition to single-byte
half-width characters.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacJapaneseVertAtKuPlusTenVariant
The Mac OS Japanese variant for the Hon Mincho and Maru Gothic fonts used in the Japanese localized
version of System 7.1. It does not include the standard Apple extensions, and encodes vertical forms
at a different location.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacRoman
Specify variants of MacRoman.

1994 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kMacRomanStandardVariant = 0,
 kMacIcelandicStandardVariant = 0,
 kMacIcelandicTrueTypeVariant = 1,
 kJapaneseStandardVariant = 0,
 kJapaneseStdNoVerticalsVariant = 1,
 kJapaneseBasicVariant = 2,
 kJapanesePostScriptScrnVariant = 3,
 kJapanesePostScriptPrintVariant = 4,
 kJapaneseVertAtKuPlusTenVariant = 5,
 kHebrewStandardVariant = 0,
 kHebrewFigureSpaceVariant = 1,
 kUnicodeMaxDecomposedVariant = 2,
 kUnicodeNoComposedVariant = 3,
 kJapaneseNoOneByteKanaOption = 0x20,
 kJapaneseUseAsciiBackslashOption = 0x40
};

Constants
kMacRomanStandardVariant

The standard variant of Mac OS Roman for Mac OS 8.5 and later; 0xDB is the Euro sign.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacIcelandicStandardVariant
The standard Mac OS Icelandic encoding supported by the bitmap versions of Chicago, Geneva,
Monaco, and New York in the Icelandic system. This is also the variant supported by the text processing
utilities.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacIcelandicTrueTypeVariant
The Mac OS Icelandic variant used for the bitmap versions of Courier, Helvetica, Palatino, and Times
in the Icelandic system, and for the TrueType versions of Chicago, Geneva, Monaco, New York, Courier,
Helvetica, Palatino, and Times.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kJapaneseStandardVariant
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kJapaneseStdNoVerticalsVariant
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kJapaneseBasicVariant
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kJapanesePostScriptScrnVariant
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 1995
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kJapanesePostScriptPrintVariant
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kJapaneseVertAtKuPlusTenVariant
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kHebrewStandardVariant
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kHebrewFigureSpaceVariant
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUnicodeMaxDecomposedVariant
Replaced by kUnicodeCanonicalDecompVariant.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUnicodeNoComposedVariant
Replaced by kUnicodeCanonicalCompVariant.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kJapaneseNoOneByteKanaOption
Replaced by Unicode Converter option kUnicodeNoHalfwidthCharsBit.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in TextCommon.h.

kJapaneseUseAsciiBackslashOption
Replaced by Unicode Converter option kUnicodeForceASCIIRangeBit.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in TextCommon.h.

Encoding Variants for MacRoman Related to Currency
Specify variants of MacRoman that are related to currency.

enum {
 kMacRomanDefaultVariant = 0,
 kMacRomanCurrencySignVariant = 1,
 kMacRomanEuroSignVariant = 2
};

Constants
kMacRomanDefaultVariant

This is a meta value that maps to one of the following constants, depending on version of the Mac
OS.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

1996 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kMacRomanCurrencySignVariant
In Mac OS versions earlier than 8.5 0xDB is the currency sign; still used for some older fonts even in
Mac OS 8.5.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacRomanEuroSignVariant
In Mac OS version 8.5 and later, 0xDB is the Euro sign.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacRomanian
Specify variants of MacRomanian.

enum {
 kMacRomanianDefaultVariant = 0,
 kMacRomanianCurrencySignVariant = 1,
 kMacRomanianEuroSignVariant = 2
};

Constants
kMacRomanianDefaultVariant

This is a meta value that maps to one of the following constants, depending on version of the Mac
OS.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacRomanianCurrencySignVariant
In Mac OS versions earlier than 8.5, 0xDB is the currency sign.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacRomanianEuroSignVariant
In Mac OS version 8.5 and later, 0xDB is the Euro sign.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacRomanLatin1
Specify variants of MacRomanLatin1.

Constants 1997
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kMacRomanLatin1DefaultVariant = 0,
 kMacRomanLatin1StandardVariant = 2,
 kMacRomanLatin1TurkishVariant = 6,
 kMacRomanLatin1CroatianVariant = 8,
 kMacRomanLatin1IcelandicVariant = 11,
 kMacRomanLatin1RomanianVariant = 14
};

Constants
kMacRomanLatin1DefaultVariant

This is a meta value that maps to one of the following constants, depending on version of the Mac
OS.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacRomanLatin1StandardVariant
Permuted MacRoman, Euro sign variant.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacRomanLatin1TurkishVariant
Permuted MacTurkish.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacRomanLatin1CroatianVariant
Permuted MacCroatian, Euro sign variant.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacRomanLatin1IcelandicVariant
Permuted MacIcelandic, standard Euro sign variant.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacRomanLatin1RomanianVariant
Permuted MacRomanian, Euro sign variant.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for MacVT100
Specify variants of MacVT100.

1998 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kMacVT100DefaultVariant = 0,
 kMacVT100CurrencySignVariant = 1,
 kMacVT100EuroSignVariant = 2
};

Constants
kMacVT100DefaultVariant

This is a meta value that maps to one of the following constants, depending on version of the Mac
OS.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacVT100CurrencySignVariant
In Mac OS versions earlier than 8.5, 0xDB is the currency sign.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kMacVT100EuroSignVariant
In Mac OS version 8.5 and later, 0xDB is the Euro sign.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Encoding Variants for Unicode
Specify variants of Unicode.

enum {
 kUnicodeNoSubset = 0,
 kUnicodeCanonicalDecompVariant = 2,
 kUnicodeCanonicalCompVariant = 3,
 kUnicodeHFSPlusDecompVariant = 8,
 kUnicodeHFSPlusCompVariant = 9
};

Constants
kUnicodeNoSubset

The standard Unicode encoded character set in which the full set of Unicode characters are supported.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUnicodeCanonicalDecompVariant
A variant of Unicode using maximal decomposition with characters in canonical order. This variant
does not include most characters which have a canonical decomposition, such as single characters
for accented Latin letters or single characters for Korean Hangul syllables (however, this restriction is
relaxed for symbol characters in the range U+2000 to U+2FFF). In TEC Manager 1.3, the Unicode
Converter supports this variant for converting to and from Mac OS encodings.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 1999
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUnicodeCanonicalCompVariant
This is the normal canonical composition according to Unicode 3.2 rules.

Available in Mac OS X v10.2 and later.

Declared in TextCommon.h.

kUnicodeHFSPlusDecompVariant
Specifies canonical decomposition according to Unicode 3.2 rules, with HFS+ exclusions ("HFS+
decomposition 3.2"). That is, it doesn't decompose in 2000-2FFF, F900-FAFF, 2F800-2FAFF. You can
use ths option when converting HFS file names.

Available in Mac OS X v10.2 and later.

Declared in TextCommon.h.

kUnicodeHFSPlusCompVariant
Specifies canonical composition according to Unicode 3.2 rules, but using the HFS+ decomposition
exclusions. You can use ths option when converting HFS file names. You should use this form when
you want to obtain a composed form that can be converted to and from the decomposed form
specified by kUnicodeHFSPlusDecompVariant. This is the recommended way to request
decompositions with HFS+ exclusions, instead of using mappingVersion =
kUnicodeUseHFSPlusMapping.

Available in Mac OS X v10.2 and later.

Declared in TextCommon.h.

EUC Text Encodings
Specify Extendec Unix Code text encodings.

enum {
 kTextEncodingEUC_JP = 0x0920,
 kTextEncodingEUC_CN = 0x0930,
 kTextEncodingEUC_TW = 0x0931,
 kTextEncodingEUC_KR = 0x0940
};

Constants
kTextEncodingEUC_JP

ISO 646,1-byte katakana,JIS 208 ,JIS 212.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingEUC_CN
ISO 646, GB 2312-80.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingEUC_TW
ISO 646, CNS 11643-1992 Planes 1-16.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2000 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingEUC_KR
ISO 646, KS C 5601-1987.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

HFS Text Encoding
Specifies a Mac OS HFS text encoding.

enum {
 kTextEncodingMacHFS = 0xFF
};

Constants
kTextEncodingMacHFS

This is a metavalue for a special Mac OS encoding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

ISO 2022 Text Encodings
Specify text encodings for ISO 2002.

enum {
 kTextEncodingISO_2022_JP = 0x0820,
 kTextEncodingISO_2022_JP_2 = 0x0821,
 kTextEncodingISO_2022_JP_1 = 0x0822,
 kTextEncodingISO_2022_JP_3 = 0x0823,
 kTextEncodingISO_2022_CN = 0x0830,
 kTextEncodingISO_2022_CN_EXT = 0x0831,
 kTextEncodingISO_2022_KR = 0x0840
};

Constants
kTextEncodingISO_2022_JP

See RFC 1468.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISO_2022_JP_2
See RFC 1554.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISO_2022_JP_1
See RFC 2237.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 2001
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingISO_2022_JP_3
JIS X0213

Available in Mac OS X v10.1 and later.

Declared in TextCommon.h.

kTextEncodingISO_2022_CN
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISO_2022_CN_EXT
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISO_2022_KR
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

ISO 8-bit and 7-bit Text Encodings
Specify text encodings for ISO 8-bit and 7-bit.

enum {
 kTextEncodingISOLatin1 = 0x0201,
 kTextEncodingISOLatin2 = 0x0202,
 kTextEncodingISOLatin3 = 0x0203,
 kTextEncodingISOLatin4 = 0x0204,
 kTextEncodingISOLatinCyrillic = 0x0205,
 kTextEncodingISOLatinArabic = 0x0206,
 kTextEncodingISOLatinGreek = 0x0207,
 kTextEncodingISOLatinHebrew = 0x0208,
 kTextEncodingISOLatin5 = 0x0209,
 kTextEncodingISOLatin6 = 0x020A,
 kTextEncodingISOLatin7 = 0x020D,
 kTextEncodingISOLatin8 = 0x020E,
 kTextEncodingISOLatin9 = 0x020F
};

Constants
kTextEncodingISOLatin1

ISO 8859-1.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatin2
ISO 8859-2.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatin3
ISO 8859-3.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2002 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingISOLatin4
ISO 8859-4.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatinCyrillic
ISO 8859-5.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatinArabic
ISO 8859-6; equivalent to ASMO 708 and DOS CP 708.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatinGreek
ISO 8859-7.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatinHebrew
ISO 8859-8.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatin5
ISO 8859-9.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatin6
ISO 8859-10.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatin7
ISO 8859-13; Baltic Rim

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatin8
ISO 8859-14; Celtic

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISOLatin9
ISO 8859-15, 8859-1; changed for Euro & CP1252 letters

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 2003
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Mac Unicode Text Encoding
Specifies a script code that should be handled as a special Mac OS script code.

enum {
 kTextEncodingMacUnicode = 0x7E
};

Constants
kTextEncodingMacUnicode

Beginning with Mac OS 8.5, the set of Mac OS script codes has been extended for some Mac OS
components to include Unicode. Some of these components have only 7 bits available for script code,
so kTextEncodingUnicodeDefault cannot be used to indicate Unicode. Instead,
kTextEncodingMacUnicode is used as a meta-value to indicate that Unicode handles the script
code a special Mac OS script code. The Text Encoding Converter handles this value similar to the way
it handles the constant kTextEncodingUnicodeDefault.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Miscellaneous Text Encoding Standards
Specify miscellaneous text encodings.

enum {
 kTextEncodingShiftJIS = 0x0A01,
 kTextEncodingKOI8_R = 0x0A02,
 kTextEncodingBig5 = 0x0A03,
 kTextEncodingMacRomanLatin1 = 0x0A04,
 kTextEncodingHZ_GB_2312 = 0x0A05,
 kTextEncodingBig5_HKSCS_1999 = 0x0A06
};

Constants
kTextEncodingShiftJIS

Plain Shift-JIS.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingKOI8_R
Russian Internet standard.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingBig5
Big-5 encoding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingMacRomanLatin1
Mac OS Roman permuted to align with 8859-1.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2004 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingHZ_GB_2312
See RFC 1842; for Chinese mail and news.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingBig5_HKSCS_1999
Available in Mac OS X v10.1 and later.

Declared in TextCommon.h.

MS-DOS and Windows Text Encodings
Specify text encodings for MS-DOS and Windows.

enum {
 kTextEncodingDOSLatinUS = 0x0400,
 kTextEncodingDOSGreek = 0x0405,
 kTextEncodingDOSBalticRim = 0x0406,
 kTextEncodingDOSLatin1 = 0x0410,
 kTextEncodingDOSGreek1 = 0x0411,
 kTextEncodingDOSLatin2 = 0x0412,
 kTextEncodingDOSCyrillic = 0x0413,
 kTextEncodingDOSTurkish = 0x0414,
 kTextEncodingDOSPortuguese = 0x0415,
 kTextEncodingDOSIcelandic = 0x0416,
 kTextEncodingDOSHebrew = 0x0417,
 kTextEncodingDOSCanadianFrench = 0x0418,
 kTextEncodingDOSArabic = 0x0419,
 kTextEncodingDOSNordic = 0x041A,
 kTextEncodingDOSRussian = 0x041B,
 kTextEncodingDOSGreek2 = 0x041C,
 kTextEncodingDOSThai = 0x041D,
 kTextEncodingDOSJapanese = 0x0420,
 kTextEncodingDOSChineseSimplif = 0x0421,
 kTextEncodingDOSKorean = 0x0422,
 kTextEncodingDOSChineseTrad = 0x0423,
 kTextEncodingWindowsLatin1 = 0x0500,
 kTextEncodingWindowsANSI = 0x0500,
 kTextEncodingWindowsLatin2 = 0x0501,
 kTextEncodingWindowsCyrillic = 0x0502,
 kTextEncodingWindowsGreek = 0x0503,
 kTextEncodingWindowsLatin5 = 0x0504,
 kTextEncodingWindowsHebrew = 0x0505,
 kTextEncodingWindowsArabic = 0x0506,
 kTextEncodingWindowsBalticRim = 0x0507,
 kTextEncodingWindowsVietnamese = 0x0508,
 kTextEncodingWindowsKoreanJohab = 0x0510
};

Constants
kTextEncodingDOSLatinUS

Code page 437.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 2005
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingDOSGreek
Code page 737, formerly 437G.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSBalticRim
Code page 775.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSLatin1
Code page 860. “multilingual.”

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSGreek1
Code page 851.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSLatin2
Code page 852, Slavic.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSCyrillic
Code page 855, IBM Cyrillic.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSTurkish
Code page 857, IBM Turkish.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSPortuguese
Code page 860.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSIcelandic
Code page 861.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSHebrew
Code page 862.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2006 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingDOSCanadianFrench
Code page 863.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSArabic
Code page 864.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSNordic
Cde page 865.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSRussian
Code page 866.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSGreek2
Code page 869, IBM Modern Green.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSThai
Code page 874, also for Windows.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSJapanese
Code page 932, also for Windows

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSChineseSimplif
Code page 936, also for Windows.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSKorean
Code page 949, also for Windows; unified Hangul.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingDOSChineseTrad
Code page 950, also for Windows.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 2007
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingWindowsLatin1
Code page 1252.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingWindowsANSI
Code page 1252 (alternate name).

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingWindowsLatin2
Code page 1250, Central Europe.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingWindowsCyrillic
Code page 1251, Slavic Cyrillic.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingWindowsGreek
Code page 1253.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingWindowsLatin5
Code page 1254, Turkish.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingWindowsHebrew
Code page 1255.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingWindowsArabic
Code page 1256.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingWindowsBalticRim
Code page 1257.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingWindowsVietnamese
Code page 1258.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2008 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingWindowsKoreanJohab
Code page 1361, for Window NT.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

National Standard Text Encodings
Specify text encodings for various national standards.

enum {
 kTextEncodingUS_ASCII = 0x0600,
 kTextEncodingJIS_X0201_76 = 0x0620,
 kTextEncodingJIS_X0208_83 = 0x0621,
 kTextEncodingJIS_X0208_90 = 0x0622,
 kTextEncodingJIS_X0212_90 = 0x0623,
 kTextEncodingJIS_C6226_78 = 0x0624,
 kTextEncodingShiftJIS_X0213_00 = 0x0628,
 kTextEncodingGB_2312_80 = 0x0630,
 kTextEncodingGBK_95 = 0x0631,
 kTextEncodingGB_18030_2000 = 0x0632,
 kTextEncodingKSC_5601_87 = 0x0640,
 kTextEncodingKSC_5601_92_Johab = 0x0641,
 kTextEncodingCNS_11643_92_P1 = 0x0651,
 kTextEncodingCNS_11643_92_P2 = 0x0652,
 kTextEncodingCNS_11643_92_P3 = 0x0653
};

Constants
kTextEncodingUS_ASCII

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingJIS_X0201_76
JIS Roman and 1-byte katakana (halfwidth).

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingJIS_X0208_83
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingJIS_X0208_90
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingJIS_X0212_90
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingJIS_C6226_78
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 2009
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingShiftJIS_X0213_00
Shift-JIS format encoding of JIS X0213 planes 1 and 2

Available in Mac OS X v10.1 and later.

Declared in TextCommon.h.

kTextEncodingGB_2312_80
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingGBK_95
Annex to GB13000-93, for Windows 95; EUC-CN extended.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingGB_18030_2000
Available in Mac OS X v10.1 and later.

Declared in TextCommon.h.

kTextEncodingKSC_5601_87
This is the same as KSC 5601-92 without Johab annex.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingKSC_5601_92_Johab
KSC 5601-92 Johab annex.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingCNS_11643_92_P1
CNS 11643-1992 plane 1.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingCNS_11643_92_P2
CNS 11643-1992 plane 2.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingCNS_11643_92_P3
CNS 11643-1992 plane 3 (11643-1986 plane 14).

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

NextStep Platform Encodings
Specify text encodings for the NextStep platform.

2010 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kTextEncodingNextStepLatin = 0x0B01,
 kTextEncodingNextStepJapanese = 0x0B02
};

Special Text Encoding Values
Specify special cases of text encodings.

enum {
 kTextEncodingMultiRun = 0x0FFF,
 kTextEncodingUnknown = 0xFFFF
};

Constants
kTextEncodingMultiRun

This is a special value for multiple encoded text, external run information.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingUnknown
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Text Encoding Formats
Specify a text encoding format.

typedef UInt32 TextEncodingFormat;
enum {
 kTextEncodingDefaultFormat = 0,
 kUnicode16BitFormat = 0,
 kUnicodeUTF7Format = 1,
 kUnicodeUTF8Format = 2,
 kUnicode32BitFormat = 3
};

Constants
kTextEncodingDefaultFormat

The standard default format for any base encoding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUnicode16BitFormat
The 16-bit character encoding format specified by the Unicode standard, equivalent to the UCS-2
format for ISO 10646. This includes support for the UTF-16 method of including non-BMP characters
in a stream of 16-bit values.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 2011
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUnicodeUTF7Format
The Unicode transformation format in which characters encodings are represented by a sequence of
7-bit values. This format cannot be handled by the Unicode Converter, only by the Text Encoding
Converter.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUnicodeUTF8Format
The Unicode transformation format in which characters are represented by a sequence of 8-bit values.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUnicode32BitFormat
The UCS-4 32-bit format defined for ISO 10646. This format is not currently supported.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Discussion
A text encoding format specifies a way of formatting or algorithmically transforming a particular base encoding.
For example, the UTF-7 format is the Unicode standard formatted for transmission through channels that
can handle only 7-bit values. Other text encoding formats for Unicode include UTF-8 and 16-bit or 32-bit
formats. These transformations are not viewed as different base encodings. Rather, they are different formats
for representing the same base encoding.

Similar to text encoding variant values, text encoding format values are specific to a particular text encoding
base value or to a small set of text encoding base values. A text encoding format is defined by the
TextEncodingFormat data type.

The function GetTextEncodingFormat (page 1899) returns the text encoding format of a text encoding
specification.

Text Encoding Name Selectors
Specify the part of an encoding name you want to obtain.

typedef UInt32 TextEncodingNameSelector;
enum {
 kTextEncodingFullName = 0,
 kTextEncodingBaseName = 1,
 kTextEncodingVariantName = 2,
 kTextEncodingFormatName = 3
};

Constants
kTextEncodingFullName

Requests the full name of the text encoding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingBaseName
Requests the name of the base encoding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2012 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingVariantName
Requests the name of the encoding variant, if available.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingFormatName
Requests the name of the encoding format, if available.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Discussion
You use a selector for the GetTextEncodingName function to indicate which part of an encoding name you
want to determine. The text encoding name selector is defined by the TextEncodingNameSelector data
type.

Text Encoding Variants
Specify minor variants of a base encoding or group of base encodings.

enum {
 kTextEncodingDefaultVariant = 0
};

Constants
kTextEncodingDefaultVariant

The standard default variant for any base encoding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Discussion
This enumeration defines constants for the default variant of any base text encoding and for variants of the
Mac OS Japanese, Mac OS Arabic, Mac OS Farsi, Mac OS Hebrew, and Unicode base encodings.

A text encoding variant specifies one among possibly several minor variants of a particular base encoding
or group of base encodings. Text encoding variants are often used to support special cases such as the
following:

 ■ Differences among fonts that are all intended to support the same encoding. For example, different
fonts associated with the MacJapanese and MacArabic encodings support slightly different encoding
variants. These fonts would typically coexist on the same system without the user being aware of any
differences.

 ■ Artificial variants created by excluding some of the characters in an encoding. For example, the
MacJapanese encoding includes separately-encoded vertical forms for some characters. In some contexts
(such as with QuickDraw GX), it may be desirable to exclude these.

 ■ Different mappings of a particular character or group of characters for different usages.

For a given text encoding base or small set of related text encoding base values, there may be an enumeration
of TextEncodingVariant values, which always begins with 0, the default variant. In addition, for a possibly
larger set of related text encoding base values, there may be bit masks that can be used independently to
designate additional artificial variants. For example, there is an enumeration of six variants for the Mac OS

Constants 2013
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Japanese encoding. In addition, there are bit masks that can also be used as part of the variant for any
Japanese encoding to exclude 1-byte kana or to control the mapping of the reverse solidus (backslash)
character.

Languages that are dissimilar but use similar character sets are generally not designated as variants of the
same base encoding (for example, MacIcelandic and MacTurkish both use a slight modification of the
MacRoman character set, but they are considered separate base encodings).

When you create a new text encoding, you can specify an explicit variant of a base encoding or you can
specify the default variant of that base. A text encoding variant is defined by the TextEncodingVariant
data type. The function GetTextEncodingVariant (page 1901) returns the text encoding variant of a text
encoding specification.

Unicode and ISO UCS Text Encodings
Specify Unicode and IOS UCS text encodings.

enum {
 kTextEncodingUnicodeDefault = 0x0100,
 kTextEncodingUnicodeV1_1 = 0x0101,
 kTextEncodingISO10646_1993 = 0x0101,
 kTextEncodingUnicodeV2_0 = 0x0103,
 kTextEncodingUnicodeV2_1 = 0x0103,
 kTextEncodingUnicodeV3_0 = 0x0104,
 kTextEncodingUnicodeV3_1 = 0x0105,
 kTextEncodingUnicodeV3_2 = 0x0106
};

Constants
kTextEncodingUnicodeDefault

This is a meta value that takes on one of the following values, depending on the system.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingUnicodeV1_1
This is a Unicode encoding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingISO10646_1993
This ISO UCS encoding has code points identical to Unicode 1.1.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingUnicodeV2_0
This is the new location for Korean Hangul.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingUnicodeV2_1
For the Text Encoding Converter, Unicode 2.0 is equivalent to Unicode 2.1.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2014 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kTextEncodingUnicodeV3_0
Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextEncodingUnicodeV3_1
Adds characters requiring surrogate pairs in UTF-16

Available in Mac OS X v10.1 and later.

Declared in TextCommon.h.

kTextEncodingUnicodeV3_2
Available in Mac OS X v10.1 and later.

Declared in TextCommon.h.

Unsupported Unicode Variants
Represent Unicode variants that are not yet supported or fully defined.

enum {
 kUnicodeNoCompatibilityVariant = 1,
 kUnicodeNoCorporateVariant = 4
};

Assorted Constants

Bidirectional Character Values
Specify bidirectional character properties.

Constants 2015
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kUCBidiCatNotApplicable = 0,
 kUCBidiCatLeftRight = 1,
 kUCBidiCatRightLeft = 2,
 kUCBidiCatEuroNumber = 3,
 kUCBidiCatEuroNumberSeparator = 4,
 kUCBidiCatEuroNumberTerminator = 5,
 kUCBidiCatArabicNumber = 6,
 kUCBidiCatCommonNumberSeparator = 7,
 kUCBidiCatBlockSeparator = 8,
 kUCBidiCatSegmentSeparator = 9,
 kUCBidiCatWhitespace = 10,
 kUCBidiCatOtherNeutral = 11,
 kUCBidiCatRightLeftArabic = 12,
 kUCBidiCatLeftRightEmbedding = 13,
 kUCBidiCatRightLeftEmbedding = 14,
 kUCBidiCatLeftRightOverride = 15,
 kUCBidiCatRightLeftOverride = 16,
 kUCBidiCatPopDirectionalFormat = 17,
 kUCBidiCatNonSpacingMark = 18,
 kUCBidiCatBoundaryNeutral = 19
};

Constants
kUCBidiCatNotApplicable

Unassigned.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatLeftRight
Strong types: L left-to-right.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatRightLeft
Strong types: R right-to-left.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatEuroNumber
Weak types: EN European number.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatEuroNumberSeparator
Weak types: ES European number separator.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatEuroNumberTerminator
Weak types: ET European number terminator.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2016 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUCBidiCatArabicNumber
Weak types: AN Arabic number.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatCommonNumberSeparator
Weak types: CS common number separator.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatBlockSeparator
Separators: B paragraph separator (was block separator).

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatSegmentSeparator
Separators: S segment separator.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatWhitespace
Neutrals: WS whitespace.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatOtherNeutral
Neutrals: ON other neutrals (unassigned codes could use this).

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatRightLeftArabic
Unicode 3.0; AL right-to-left Arabic (was Arabic letter).

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatLeftRightEmbedding
Unicode 3.0; LRE eft-to-right embedding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatRightLeftEmbedding
Unicode 3.0; RLE right-to-left embedding.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatLeftRightOverride
Unicode 3.0; LRO left-to-right override.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 2017
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUCBidiCatRightLeftOverride
Unicode 3.0; RLO right-to-left override.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatPopDirectionalFormat
Unicode 3.0; PDF pop directional Format.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatNonSpacingMark
Unicode 3.0; NSM non-spacing mark.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCBidiCatBoundaryNeutral
Unicode 3.0; BN boundary neutral.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Discussion
These values are requested by kUCCharPropTypeBidiCategory.

Common and Special Unicode Values
Specify sommon and special Unicode code values.

enum {
 kUnicodeByteOrderMark = 0xFEFF,
 kUnicodeObjectReplacement = 0xFFFC,
 kUnicodeReplacementChar = 0xFFFD,
 kUnicodeSwappedByteOrderMark = 0xFFFE,
 kUnicodeNotAChar = 0xFFFF
};

Constants
kUnicodeByteOrderMark

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUnicodeObjectReplacement
A placeholder for a non-text object.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUnicodeReplacementChar
Unicode replacement for an input character that cannot be converted.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2018 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUnicodeSwappedByteOrderMark
Not a Unicode character; byte-swapped version of FEFF.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUnicodeNotAChar
Not a Unicode character; may be used as a terminator.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

TEC Plugin Dispatch Table Versions
Specify a version for a TEC plug-in dispatch table.

enum {
 kTECPluginDispatchTableVersion1 = 0x00010000,
 kTECPluginDispatchTableVersion1_1 = 0x00010001,
 kTECPluginDispatchTableVersion1_2 = 0x00010002,
 kTECPluginDispatchTableCurrentVersion = kTECPluginDispatchTableVersion1_2
};

Constants
kTECPluginDispatchTableVersion1

Specifies versions 1.0 through 1.0.3.

Available in Mac OS X v10.0 and later.

Declared in TextEncodingPlugin.h.

kTECPluginDispatchTableVersion1_1
Specifies version 1.1.

Available in Mac OS X v10.0 and later.

Declared in TextEncodingPlugin.h.

kTECPluginDispatchTableVersion1_2
Specifies version 1.2.

Available in Mac OS X v10.0 and later.

Declared in TextEncodingPlugin.h.

kTECPluginDispatchTableCurrentVersion
A meta value that specifies the current version.

Available in Mac OS X v10.0 and later.

Declared in TextEncodingPlugin.h.

TEC Plug-in Signatures
Specify a TEC plug-in signature.

Constants 2019
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

enum {
 kTECSignature = 'encv',
 kTECUnicodePluginSignature = 'puni',
 kTECJapanesePluginSignature = 'pjpn',
 kTECChinesePluginSignature = 'pzho',
 kTECKoreanPluginSignature = 'pkor'
};

Unicode Character Property Types
Specify property types for a Unicode charater.

typedef SInt32 UCCharPropertyType;
enum {
 kUCCharPropTypeGenlCategory = 1,
 kUCCharPropTypeCombiningClass = 2,
 kUCCharPropTypeBidiCategory = 3
};

Constants
kUCCharPropTypeGenlCategory

Requests enumeration value.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCCharPropTypeCombiningClass
Requests numeric value 0 to 255.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCCharPropTypeBidiCategory
Requests enumeration value.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Unicode Character Property Values
Specify a propery value for a Unicode character.

2020 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

typedef UInt32 UCCharPropertyValue;
enum {
 kUCGenlCatOtherNotAssigned = 0,
 kUCGenlCatOtherControl = 1,
 kUCGenlCatOtherFormat = 2,
 kUCGenlCatOtherSurrogate = 3,
 kUCGenlCatOtherPrivateUse = 4,
 kUCGenlCatMarkNonSpacing = 5,
 kUCGenlCatMarkSpacingCombining = 6,
 kUCGenlCatMarkEnclosing = 7,
 kUCGenlCatNumberDecimalDigit = 8,
 kUCGenlCatNumberLetter = 9,
 kUCGenlCatNumberOther = 10,
 kUCGenlCatSeparatorSpace = 11,
 kUCGenlCatSeparatorLine = 12,
 kUCGenlCatSeparatorParagraph = 13,
 kUCGenlCatLetterUppercase = 14,
 kUCGenlCatLetterLowercase = 15,
 kUCGenlCatLetterTitlecase = 16,
 kUCGenlCatLetterModifier = 17,
 kUCGenlCatLetterOther = 18,
 kUCGenlCatPunctConnector = 20,
 kUCGenlCatPunctDash = 21,
 kUCGenlCatPunctOpen = 22,
 kUCGenlCatPunctClose = 23,
 kUCGenlCatPunctInitialQuote = 24,
 kUCGenlCatPunctFinalQuote = 25,
 kUCGenlCatPunctOther = 26,
 kUCGenlCatSymbolMath = 28,
 kUCGenlCatSymbolCurrency = 29,
 kUCGenlCatSymbolModifier = 30,
 kUCGenlCatSymbolOther = 31
};

Constants
kUCGenlCatOtherNotAssigned

Cn other; not assigned.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatOtherControl
Cc other; control.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatOtherFormat
Cf other; format.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatOtherSurrogate
Cs other; surrogate.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 2021
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUCGenlCatOtherPrivateUse
Co other; private use.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatMarkNonSpacing
Mn mark; non-spacing.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatMarkSpacingCombining
Mc mark; spacing combining.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatMarkEnclosing
Me mark; enclosing.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatNumberDecimalDigit
Nd number; decimal digit.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatNumberLetter
Nl number; letter.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatNumberOther
No number; other.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatSeparatorSpace
Zs separator; space.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatSeparatorLine
Zl separator; Line.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatSeparatorParagraph
Zp separator; paragraph.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

2022 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUCGenlCatLetterUppercase
Lu Letter; uppercase.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatLetterLowercase
Ll Letter; lowercase.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatLetterTitlecase
Lt Letter; titlecase.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatLetterModifier
Lm Letter; modifier.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatLetterOther
Lo Letter; other.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatPunctConnector
Pc punctuation; connector.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatPunctDash
Pd punctuation; dash.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatPunctOpen
Ps punctuation; open.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatPunctClose
Pe punctuation; close.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatPunctInitialQuote
Pi punctuation; initial quote.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Constants 2023
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUCGenlCatPunctFinalQuote
Pf punctuation; final quote.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatPunctOther
Po punctuation; other.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatSymbolMath
Sm symbol; math.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatSymbolCurrency
Sc symbol; currency.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatSymbolModifier
Sk symbol; modifier.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kUCGenlCatSymbolOther
So symbol; other.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Unicode Mapping Versions
Specify a Unicode mapping version.

typedef SInt32 UnicodeMapVersion;
enum {
 kUnicodeUseLatestMapping = -1,
 kUnicodeUseHFSPlusMapping = 4
};

Constants
kUnicodeUseLatestMapping

Instead of explicitly specifying the mapping version of the Unicode mapping table to be used for
conversion of a text string, you can use this constant to specify that the latest version be used.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

2024 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

kUnicodeUseHFSPlusMapping
Indicates the mapping version used by HFS Plus to convert filenames between Mac OS encodings
and Unicode. Only one constant is defined so far for a specific mapping version.

Available in Mac OS X v10.0 and later.

Declared in UnicodeConverter.h.

Discussion
When performing conversions, you specify the version of the Unicode mapping table to be used for the
conversion. You provide the version number in the mapping version field of the structure
UnicodeMapping (page 1967) that is passed to a function. A Unicode mapping version is defined by the
UnicodeMapVersion data type.

Unwanted Data Constants
Specify data you don’t care about receiving.

enum {
 kTextScriptDontCare = -128,
 kTextLanguageDontCare = -128,
 kTextRegionDontCare = -128
};

Constants
kTextScriptDontCare

Indicates that the code is not provided for the derivation.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextLanguageDontCare
Indicates that language code is not provided for the derivation.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

kTextRegionDontCare
The region code is not provided for the derivation.

Available in Mac OS X v10.0 and later.

Declared in TextCommon.h.

Discussion
For backward compatibility with earlier releases of the Mac OS, the Text Encoding Conversion Manager
provides the functions UpgradeScriptInfoToTextEncoding (page 1937) and
RevertTextEncodingToScriptInfo (page 1907) that you can use to derive Script Manager values from a
text encoding or vice versa.

When using these functions, you can specify a Script Manager language code, script code, and/or font values
to derive a text encoding. These three constants are defined to allow you to identify any part of the derivation
you don’t care about. When reverting from a text encoding to Script Manager values, the Unicode Converter
returns these constants for a corresponding value it does not derive: kTextLanguageDontCare,
kTextScriptDontCare, and kTextRegionDontCare.

Constants 2025
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Result Codes

The most common result codes returned by Text Encoding Conversion Manager are listed below.

DescriptionValueResult Code

The encoding or mapping is not supported for this function
by the current set of tables or plug-ins.

-8738kTextUnsupportedEncodingErr

Available in Mac OS X v10.0 and later.

The text input contains a sequence that is not legal in the
specified encoding, such as a DBCS high byte followed by
an invalid low byte (0x8120 in Shift-JIS).

-8739kTextMalformedInputErr

Available in Mac OS X v10.0 and later.

The text input contains a code point that is undefined in
the specified encoding. The function did not completely
convert the input string. You can resume conversion from
a point beyond the offending character, or take some other
action.

-8740kTextUndefinedElementErr

Available in Mac OS X v10.0 and later.

The specified encoding is partially supported, but a specific
table required for this function is missing.

-8745kTECMissingTableErr

Available in Mac OS X v10.0 and later.

A specific table required for this function has a checksum
error, indicating that it has become corrupted.

-8746kTECTableChecksumErr

Available in Mac OS X v10.0 and later.

The table format is either invalid or it cannot be handled
by the current version of the code. The function did not
convert the string

-8747kTECTableFormatErr

Available in Mac OS X v10.0 and later.

The converter object is invalid. Returned by the Text
Encoding Converter functions only.

-8748kTECCorruptConverterErr

Available in Mac OS X v10.0 and later.

The converter supports both the source and target
encodings, but cannot convert between them either
directly or indirectly. Returned by the Text Encoding
Converter functions only.

-8749kTECNoConversionPathErr

Available in Mac OS X v10.0 and later.

2026 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

DescriptionValueResult Code

The output text buffer is too small to accommodate the
result of processing of the first input text element. No part
of the input string was processed.

-8750kTECBufferBelowMinimumSizeErr

Available in Mac OS X v10.0 and later.

The supplied TextEncodingRun, ScriptCodeRun, or
UnicodeMapping array is too small, and the input was not
completely converted. Call the function again with another
output buffer—or with the same output buffer after
copying its contents—to convert the remainder of the
string

-8751kTECArrayFullErr

Available in Mac OS X v10.0 and later.

The input text ends in the middle of a multibyte character
and conversion stopped. Append the unconverted input
from this call to the beginning of the subsequent input
text and call the function again.

-8753kTECPartialCharErr

Available in Mac OS X v10.0 and later.

An input text element cannot be mapped to the specified
output encoding(s) using the specified options. For the
Unicode Converter, this error can occur only if
kUnicodeUseFallbacksBit control flag is not set.

-8754kTECUnmappableElementErr

Available in Mac OS X v10.0 and later.

The input text ends with a text element that might be
incomplete, or contains a text element that is too long for
the internal buffers.

-8755kTECIncompleteElementErr

Available in Mac OS X v10.0 and later.

An error, such as a direction stack overflow, occurred in
directionality processing.

-8756kTECDirectionErr

Available in Mac OS X v10.0 and later.

Global variables have already been deallocated, premature
termination. The function did not convert the string.

-8770kTECGlobalsUnavailableErr

Available in Mac OS X v10.0 and later.

An item (for example, a name) is not available for the
specified region (and encoding, if relevant).

-8771kTECItemUnavailableErr

Available in Mac OS X v10.0 and later.

The function has completely converted the input string to
the specified target using one or more fallbacks. For the
Unicode Converter, this status code can only occur if the
kUnicodeUseFallbacksBit control flag is set.

-8783kTECUsedFallbacksStatus

Available in Mac OS X v10.0 and later.

Result Codes 2027
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

DescriptionValueResult Code

The application disposed of a converter object by calling
TECDisposeConverter, but there is still text contained in
internal buffers. Returned by the Text Encoding Converter
functions only.

-8784kTECNeedFlushStatus

Available in Mac OS X v10.0 and later.

The converter successfully converted part of the input text,
but the output buffer was not large enough to
accommodate the entire input text after conversion.
Convert the remaining text beginning from the position
where the conversion stopped.

-8785kTECOutputBufferFullStatus

Available in Mac OS X v10.0 and later.

2028 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

Text Encoding Conversion Manager Reference

Framework: CoreServices/CoreServices.h, Carbon/Carbon.h

Declared in TextUtils.h
StringCompare.h
NumberFormatting.h
TypeSelect.h

Overview

The Text Utilities provide you with an integrated collection of routines for performing a variety of operations
on textual information, ranging from modifying the contents of a string, to sorting strings from different
languages, to converting times, dates, and numbers from internal representations to formatted strings and
back. These routines work in conjunction with QuickDraw text drawing routines to help you display and
modify text in applications that are distributed to an international audience.

The Text Utilities functions are used for numerous text-handling tasks, including

 ■ defining strings–including functions for allocating strings in the heap and for loading strings from
resources

 ■ comparing and sorting strings–including functions for testing whether two strings are equal and functions
for finding the sorting relationship between two strings

 ■ modifying the contents of strings–including routines for converting the case of characters, stripping
diacritical marks, replacing substrings, and truncating strings

 ■ finding breaks and boundaries in text–including routines for finding word and line breaks, and for finding
different script runs in a line of text

 ■ converting and formatting date and time strings–including routines that convert numeric and string
representations of dates and times into record format, and routines that convert numeric and record
representations of dates and times into strings

 ■ converting and formatting numeric strings–including routines that convert string representations of
numbers into numeric representations

Carbon supports the majority of Text Utilities. However, Apple recommends that you use the comparison
and word breaking utilities supplied by Unicode Utilities instead.

A number of obsolete Text Utilities functions-such as those prefixed with iu or IU-are not supported.

Overview 2029
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Functions by Task

Comparing Strings for Equality

EqualString (page 2038) Deprecated in Mac OS X v10.4
Compares two Pascal strings for equality, using the comparison rules of the Macintosh file system.
(Deprecated. Use CFStringCompare instead.)

IdenticalString (page 2046) Deprecated in Mac OS X v10.4
Compares two Pascal strings for equality, making use of the string comparison information from a
resource that you specify as a parameter. (Deprecated. Use CFStringCompare instead.)

IdenticalText (page 2046) Deprecated in Mac OS X v10.4
Compares two text strings for equality, making use of the string comparison information from a
resource that you specify as a parameter. (Deprecated. Use CFStringCompare instead.)

Converting Between Integers and Strings

NumToString (page 2052) Deprecated in Mac OS X v10.4
Converts a long integer value into a Pascal string. (Deprecated. Use CFStringCreateWithFormat
instead.)

StringToNum (page 2062) Deprecated in Mac OS X v10.4
Converts the Pascal string representation of a base-10 number into a long integer value. (Deprecated.
Use CFStringGetIntValue instead.)

Converting Between Strings and Floating-Point Numbers

ExtendedToString (page 2039) Deprecated in Mac OS X v10.4
Converts an internal floating-point representation of a number into a string that can be presented to
the user, using a NumFormatStringRec structure to specify how the output number string is formatted
(Deprecated. Use CFNumberFormatterCreateNumberFromString instead.)

StringToExtended (page 2059) Deprecated in Mac OS X v10.4
Converts a string representation of a number into a floating-point number, using a
NumFormatStringRec structure to specify how the input number string is formatted. (Deprecated.
Use CFNumberFormatterCreateStringWithNumber instead.)

Converting Between C and Pascal Strings

c2pstr (page 2034) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.4
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

C2PStr (page 2034) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.4 Deprecated in Mac OS X
v10.4

Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

2030 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

c2pstrcpy (page 2034) Deprecated in Mac OS X v10.4
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

CopyCStringToPascal (page 2037) Deprecated in Mac OS X v10.4
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

CopyPascalStringToC (page 2037) Deprecated in Mac OS X v10.4
Converts a Pascal String to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

p2cstr (page 2053) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.4
Converts a Pascal string to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

P2CStr (page 2053) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.4 Deprecated in Mac OS X
version 10.4

Converts a Pascal string to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

p2cstrcpy (page 2054) Deprecated in Mac OS X v10.4
Converts a Pascal string to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

Defining and Specifying Strings

GetIndString (page 2044) Deprecated in Mac OS X v10.4
Loads a string from a string list ('STR#') resource into memory, given the resource ID of the string
list and the index of the individual string. (Deprecated. Use CFBundleCopyLocalizedString instead.)

GetString (page 2045) Deprecated in Mac OS X v10.4
Loads a string from a string ('STR') resource into memory. (Deprecated. Use
CFBundleCopyLocalizedString instead.)

NewString (page 2051) Deprecated in Mac OS X v10.4
Allocates memory in the heap for a string, copies its contents, and produces a handle for the heap
version of the string. (Deprecated. Use CFStringCreateCopy instead.)

SetString (page 2057) Deprecated in Mac OS X v10.4
Changes the contents of a string referenced by a string handle, replacing the previous contents by
copying the specified string. (Deprecated. Use CFStringCreateWithPascalString and
CFStringReplaceAll.)

Determining Sorting Order for Strings in Different Languages

LanguageOrder (page 2048) Deprecated in Mac OS X v10.4
Determines the order in which strings in two different languages should be sorted. (Deprecated. Use
CFStringCompare or UCCompareText (page 2151) instead.)

ScriptOrder (page 2057) Deprecated in Mac OS X v10.4
Determines the order in which strings in two different scripts should be sorted. (Deprecated. Use
CFStringCompare or UCCompareText (page 2151) instead.)

Functions by Task 2031
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

StringOrder (page 2058) Deprecated in Mac OS X v10.4
Compares two Pascal strings, taking into account the script system and language for each of the
strings. (Deprecated. Use CFStringCompare or UCCompareText (page 2151) instead.)

TextOrder (page 2064) Deprecated in Mac OS X v10.4
Compares two text strings, taking into account the script and language for each of the strings.
(Deprecated. Use CFStringCompare or UCCompareText (page 2151) instead.)

Determining Sorting Order for Strings in the Same Language

CompareString (page 2035) Deprecated in Mac OS X v10.4
Compares two Pascal strings, making use of the string comparison information from a resource that
you specify as a parameter. (Deprecated. Use CFStringCompare or UCCompareText (page 2151)
instead.)

CompareText (page 2036) Deprecated in Mac OS X v10.4
Compares two text strings, making use of the string comparison information from a resource that
you specify as a parameter. (Deprecated. Use CFStringCompare or UCCompareText (page 2151)
instead.)

RelString (page 2054) Deprecated in Mac OS X v10.4
Compares two Pascal strings using the string comparison rules of the Macintosh file system and
returns a value that indicates the sorting order of the first string relative to the second string.
(Deprecated. Use CFStringCompare or UCCompareText (page 2151) instead.)

relstring (page 2055) Deprecated in Mac OS X v10.4
Compares two strings. (Deprecated. Use CFStringCompare or UCCompareText (page 2151) instead.)

Modifying Characters and Diacritical Marks

LowercaseText (page 2049) Deprecated in Mac OS X v10.4
Converts any uppercase characters in a text string into their lowercase equivalents. (Deprecated. Use
CFStringLowercase instead.)

StripDiacritics (page 2063) Deprecated in Mac OS X v10.4
Strips any diacritical marks from a text string. (Deprecated. Use CFStringTransform instead.)

UppercaseStripDiacritics (page 2068) Deprecated in Mac OS X v10.4
Converts any lowercase characters in a text string into their uppercase equivalents and strips any
diacritical marks from the text. (Deprecated. Use CFStringTransform instead.)

UppercaseText (page 2069) Deprecated in Mac OS X v10.4
Converts any lowercase characters in a text string into their uppercase equivalents. (Deprecated. Use
CFStringUppercase instead.)

UpperString (page 2070) Deprecated in Mac OS X v10.4
Converts any lowercase letters in a Pascal string to their uppercase equivalents, using the Macintosh
file system rules. (Deprecated. Use CFStringUppercase instead.)

upperstring (page 2071) Deprecated in Mac OS X v10.4
Converts any lowercase letters in a Pascal string to their uppercase equivalents. (Deprecated. Use
CFStringUppercase instead.)

2032 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Searching for and Replacing Strings

Munger (page 2049)
Searches text for a specified string pattern and replaces it with another string.

ReplaceText (page 2056) Deprecated in Mac OS X v10.4
Searches text on a character-by-character basis, replacing all instances of a string in that text with
another string. (Deprecated. Use CFStringReplace instead.)

Using Number Format Specification Strings for International Number
Formatting

FormatRecToString (page 2043) Deprecated in Mac OS X v10.4
Converts an internal representation of number formatting information into a number format
specification string, which can be displayed and modified. (Deprecated. Use
CFNumberFormatterGetFormat instead.)

StringToFormatRec (page 2060) Deprecated in Mac OS X v10.4
Creates a number format specification string structure from a number format specification string that
you supply in a Pascal string. (Deprecated. Use CFNumberFormatterSetFormat instead.)

Working With Word, Script, and Line Boundaries

FindScriptRun (page 2040) Deprecated in Mac OS X v10.4
Finds the next block of subscript text within a script run. (Deprecated. There is no replacement function
because this capability is no longer needed in Mac OS X.)

FindWordBreaks (page 2041) Deprecated in Mac OS X v10.4
Determines the beginning and ending boundaries of a word in a text string. (Deprecated. Use
UCFindTextBreak (page 2159) instead.)

Working With Universal Procedure Pointers

DisposeIndexToStringUPP (page 2038) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer to an index-to-string callback.

InvokeIndexToStringUPP (page 2047) Deprecated in Mac OS X v10.4
Call an index-to-string callback.

NewIndexToStringUPP (page 2051) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to an index-to-string callback.

Working With Type Select Records

TypeSelectClear (page 2065) Deprecated in Mac OS X v10.4
Clears the key list and resets the type select record. (Deprecated. Use
UCTypeSelectFlushSelectorData instead.)

TypeSelectCompare (page 2066) Deprecated in Mac OS X v10.4
Compares a text buffer to the keystroke buffer. (Deprecated. Use UCTypeSelectCompare instead.)

Functions by Task 2033
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

TypeSelectFindItem (page 2066) Deprecated in Mac OS X v10.4
Finds the closest match between a specified list of characters and the keystrokes stored in the type
select record. (Deprecated. Use UCTypeSelectFindItem instead.)

TypeSelectNewKey (page 2067) Deprecated in Mac OS X v10.4
Creates a new type select record. (Deprecated. Use UCTypeSelectCreateSelector instead.)

Functions

c2pstr
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

StringPtr c2pstr (
 char *aStr
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

C2PStr
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

StringPtr C2PStr (
 Ptr cString
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

c2pstrcpy
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

2034 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

void c2pstrcpy (
 Str255 dst,
 const char *src
);

Parameters
dst

On output, the Pascal string.

src
The C string you want to convert.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
SoftVDigX

Declared In
TextUtils.h

CompareString
Compares two Pascal strings, making use of the string comparison information from a resource that you
specify as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText (page
2151) instead.)

short CompareString (
 ConstStr255Param aStr,
 ConstStr255Param bStr,
 Handle itl2Handle
);

Parameters
aStr

One of the Pascal strings to be compared.

bStr
The other Pascal string to be compared.

itl2Handle
The handle to the string-manipulation resource that contains string comparison information. If the
value of this parameter is NULL, CompareString makes use of the resource for the current script.
The string-manipulation resource includes functions and tables for modifying string comparison and
tables for case conversion and stripping of diacritical marks.

Return Value
Returns –1 if the first string is less than the second string, 0 if the first string is equal to the second string,
and 1 if the first string is greater than the second string.

Functions 2035
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates the sorting order of the first string relative to the second string.

Special Considerations

CompareString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

CompareText
Compares two text strings, making use of the string comparison information from a resource that you specify
as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText (page 2151)
instead.)

short CompareText (
 const void *aPtr,
 const void *bPtr,
 short aLen,
 short bLen,
 Handle itl2Handle
);

Parameters
aPtr

A pointer to the first character of the first text string.

bPtr
A pointer to the first character of the second text string.

aLen
The length, in bytes, of the first text string.

bLen
The length, in bytes, of the second text string.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string comparison information. If
the value of this parameter is NULL, CompareText makes use of the resource for the current script.
The string-manipulation resource includes functions and tables for modifying string comparison and
tables for case conversion and stripping of diacritical marks.

Return Value
Returns –1 if the first string is less than the second string, 0 if the first string is equal to the second string,
and 1 if the first string is greater than the second string.

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates the sorting order of the first string relative to the second string.

2036 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Special Considerations

CompareText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

CopyCStringToPascal
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

void CopyCStringToPascal (
 const char *src,
 Str255 dst
);

Parameters
src

The C string you want to convert.

dst
On output, the Pascal string.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
TextUtils.h

CopyPascalStringToC
Converts a Pascal String to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

Functions 2037
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

void CopyPascalStringToC (
 ConstStr255Param src,
 char *dst
);

Parameters
src

The Pascal string you want to convert.

dst
On output, the C string.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

DisposeIndexToStringUPP
Disposes of a universal procedure pointer to an index-to-string callback. (Deprecated in Mac OS X v10.4.)

void DisposeIndexToStringUPP (
 IndexToStringUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback IndexToStringProcPtr (page 2071) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

EqualString
Compares two Pascal strings for equality, using the comparison rules of the Macintosh file system. (Deprecated
in Mac OS X v10.4. Use CFStringCompare instead.)

2038 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Boolean EqualString (
 ConstStr255Param str1,
 ConstStr255Param str2,
 Boolean caseSensitive,
 Boolean diacSensitive
);

Parameters
str1

One of the Pascal strings to be compared.

str2
The other Pascal string to be compared.

caseSensitive
A flag that indicates how to handle case-sensitive information during the comparison. If the value of
caseSens is TRUE, uppercase characters are distinguished from the corresponding lowercase
characters. If it is FALSE, case information is ignored.

diacSensitive
A flag that indicates how to handle information about diacritical marks during the string comparison.
If the value of diacSens is TRUE, characters with diacritical marks are distinguished from the
corresponding characters without diacritical marks during the comparison. If it is FALSE, diacritical
marks are ignored.

Return Value
TRUE if the two strings are equal and FALSE if they are not equal. If its value is TRUE, EqualString
distinguishes uppercase characters from the corresponding lowercase characters. If its value is FALSE,
EqualString ignores diacritical marks during the comparison.

Discussion
The comparison is a simple, character-by-character value comparison. This function does not make use of
any script or language information (i.e., is not localizable); it assumes the use of a Roman script system.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

ExtendedToString
Converts an internal floating-point representation of a number into a string that can be presented to the
user, using a NumFormatStringRec structure to specify how the output number string is formatted
(Deprecated in Mac OS X v10.4. Use CFNumberFormatterCreateNumberFromString instead.)

Functions 2039
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

FormatStatus ExtendedToString (
 const extended80 *x,
 const NumFormatString *myCanonical,
 const NumberParts *partsTable,
 Str255 outString
);

Parameters
x

A pointer to a floating-point value in 80-bit SANE representation.

myCanonical
A pointer to the internal representation of the formatting information for numbers, as produced by
the StringToFormatRec function.

partsTable
A pointer to a structure, obtained from the tokens ('itl4') resource, that shows the correspondence
between generic number part separators (tokens) and their localized version (for example, a thousand
separator is a comma in the United States and a decimal point in France).

outString
On output, contains the number formatted according to the information in myFormatRec.

Return Value
A value that denotes the confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType. Be sure to cast the result of ExtendedToString to a
type FormatResultType before working with it. See the description of the FormatStatus data type.

Discussion
ExtendedToString creates a string representation of a floating-point number, using the formatting
information in the myFormatRec parameter (which was created by a previous call to StringToFormatRec)
to determine how the number should be formatted for output. It uses the number parts table to determine
the component parts of the number string.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

FindScriptRun
Finds the next block of subscript text within a script run. (Deprecated in Mac OS X v10.4. There is no
replacement function because this capability is no longer needed in Mac OS X.)

2040 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

ScriptRunStatus FindScriptRun (
 Ptr textPtr,
 long textLen,
 long *lenUsed
);

Parameters
textPtr

A pointer to the text string to be analyzed.

textLen
The number of bytes in the text string.

lenUsed
On output, a pointer to the length, in bytes, of the script run that begins with the first character in
the string; this length is always greater than or equal to 1, unless the string passed in is of length 0.

Return Value
Identifies the run as either native text, Roman, or one of the defined subscripts of the script system and
returns a structure of type ScriptRunStatus (page 2078). See the description of the ScriptRunStatus data
type.

Discussion
The FindScriptRun function is used to identify blocks of subscript text in a string, taking into account script
and language considerations, making use of tables in the string-manipulation ('itl2') resource in its
computations. Some script systems include subscripts, which are character sets that are subsidiary to the
main character set. One useful subscript is the set of all character codes that have the same meaning in
Roman as they do in a non-Roman script. For other scripts such as Japanese, there are additional useful
subscripts. For example, a Japanese script system might include some Hiragana characters that are useful
for input methods.

FindScriptRun computes the length of the current run of subscript text in the text string specified by
textPtr and textLen. It assigns the length, in bytes, to the lenUsed parameter and returns a status code.
You can advance the text pointer by the value of lenUsed to make subsequent calls to this function. You
can use this function to identify runs of subscript characters so that you can treat them separately.

Word processors and other applications can call FindScriptRun to separate style runs of native text from
non-native text. You can use this capability to extract those characters and apply a different font to them.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

FindWordBreaks
Determines the beginning and ending boundaries of a word in a text string. (Deprecated in Mac OS X v10.4.
Use UCFindTextBreak (page 2159) instead.)

Functions 2041
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

void FindWordBreaks (
 Ptr textPtr,
 short textLength,
 short offset,
 Boolean leadingEdge,
 BreakTablePtr breaks,
 OffsetTable offsets,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be examined.

textLength
The number of bytes in the text string.

offset
A byte offset into the text. This parameter plus the leadingEdge parameter determine the position
of the character at which to start the search.

leadingEdge
A flag that specifies which character should be used to start the search. If leadingEdge is TRUE, the
search starts with the character specified in the offset parameter; if it is FALSE, the search starts
with the character preceding the offset.

breaks
A pointer to a word-break table of type NBreakTable or BreakTable. If the value of this pointer is
0, the default word-break table of the script system specified by the script parameter is used. If the
value of this pointer is –1, the default line-break table of the specified script system is used.

offsets
On output, the values in this table indicate the boundaries of the word that has been found.

script
The script code for the script system whose tables are used to determine where word boundaries
occur.

Discussion
FindWordBreaks searches for a word in a text string, taking into account script and language considerations,
making use of tables in the string-manipulation ('itl2') resource in its computations. The textPtr and
textLength parameters specify the text string that you want searched. The offset parameter and
leadingEdge parameter together indicate where the search begins.

FindWordBreaks searches backward through the text string for one of the word boundaries and forward
through the text string for its other boundary. It uses the definitions in the table specified by nbreaks to
determine what constitutes the boundaries of a word. Each script system’s word-break table is part of its
string-manipulation ('itl2') resource.

FindWordBreaks returns its results in an OffsetTable structure. FindWordBreaks uses only the first
element of this three-element table. Each element is a pair of integers: offFirst and offSecond.

FindWordBreaks places the offset from the beginning of the text string to just before the leading edge of
the character of the word that it finds in the offFirst field.

FindWordBreaks places the offset from the beginning of the text string to just after the trailing edge of the
last character of the word that it finds in the offSecond field. For example, if the text “This is it” is passed
with offset set to 0 and leadingEdge set to TRUE, then FindWordBreaks returns the offset pair (0,4).

2042 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

If leadingEdge is TRUE and the value of offset is 0, then FindWordBreaks returns the offset pair (0,0).
If leadingEdge is FALSE and the value of offset equals the value of textLength, then FindWordBreaks
returns the offset pair with values (textLength, textLength).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

FormatRecToString
Converts an internal representation of number formatting information into a number format specification
string, which can be displayed and modified. (Deprecated in Mac OS X v10.4. Use
CFNumberFormatterGetFormat instead.)

FormatStatus FormatRecToString (
 const NumFormatString *myCanonical,
 const NumberParts *partsTable,
 Str255 outString,
 TripleInt positions
);

Parameters
myCanonical

A pointer to the internal representation of number formatting information, as created by a previous
call to the StringToFormatRec function.

partsTable
A pointer to a structure, obtained from the tokens ('itl4') resource, that shows the correspondence
between generic number part separators (tokens) and their localized version (for example, a thousand
separator is a comma in the United States and a decimal point in France).

outString
On output, contains the number format specification string.

positions
An array that specifies the starting position and length of each of the three possible format strings
(positive, negative, or zero) in the number format specification string. Semicolons are used as separators
in the string.

Return Value
A value that denotes the confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType. Be sure to cast the result of FormatRecToString to
a type FormatResultType before working with it. See the description of the FormatStatus data type.

Discussion
FormatRecToString is the inverse operation ofStringToFormatRec (page 2060). The internal representation
of the formatting information in myFormatRec must have been created by a prior call to the
StringToFormatRec function. The information in the number parts table specifies how to build the string
representation.

Functions 2043
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

The output number format specification string in outString specifies how numbers appear. This string
contains three parts, which are separated by semicolons. The first part is the positive number format, the
second is the negative number format, and the third part is the zero number format.

The positions parameter is an array of three integers (a TripleInt value), which specifies the starting
position in outString of each of three formatting specifications:

 ■ positions[fPositive]. The index in outString of the first byte of the formatting specification for
positive number values.

 ■ positions[fNegative]. The index in outString of the first byte of the formatting specification for
negative number values.

 ■ positions[fZero]. The index in outString of the first byte of the formatting specification for zero
number values.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

GetIndString
Loads a string from a string list ('STR#') resource into memory, given the resource ID of the string list and
the index of the individual string. (Deprecated in Mac OS X v10.4. Use CFBundleCopyLocalizedString
instead.)

void GetIndString (
 Str255 theString,
 short strListID,
 short index
);

Parameters
theString

On output, the Pascal string result; specifically, a copy of the string from a string list that has the
resource ID provided in the strListID parameter. If the resource that you specify cannot be read
or the index that you specify is out of range for the string list, GetIndString sets theString to an
empty string.

strListID
The resource ID of the 'STR#' resource that contains the string list.

index
The index of the string in the list. This is a value from 1 to the number of strings in the list that is
referenced by the strListID parameter.

2044 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Discussion
If necessary, GetIndString reads the string list from the resource file by calling the Resource Manager
function GetResource. GetIndString accesses the string specified by the index parameter and copies it
into theString.

Special Considerations

GetIndString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

GetString
Loads a string from a string ('STR') resource into memory. (Deprecated in Mac OS X v10.4. Use
CFBundleCopyLocalizedString instead.)

StringHandle GetString (
 short stringID
);

Parameters
stringID

The resource ID of the string ('STR ') resource containing the string.

Return Value
A handle to a string with the specified resource ID. If necessary, GetString reads the handle form the
resource file. If GetString cannot read the resource, it returns NULL.

Discussion
GetString calls the GetResource function of the Resource Manager to access the string. This means that
if the specified resource is already in memory, GetString simply returns its handle.

Like the NewString (page 2051) function, GetString returns a handle whose size is based upon the actual
length of the string.

If your application uses a large number of strings, it is more efficient to store them in a string list ('STR#')
resource than as individual resources in the resource file. You then use the GetIndString (page 2044) function
to access each string in the list.

Special Considerations

GetString does not create a copy of the string.

GetString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2045
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Declared In
TextUtils.h

IdenticalString
Compares two Pascal strings for equality, making use of the string comparison information from a resource
that you specify as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare instead.)

short IdenticalString (
 ConstStr255Param aStr,
 ConstStr255Param bStr,
 Handle itl2Handle
);

Parameters
aStr

One of the Pascal strings to be compared.

bStr
The other Pascal string to be compared.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string comparison information.

The itl2Handle parameter is used to specify a string-manipulation resource. If the value of this
parameter is NULL, IdenticalString makes use of the resource for the current script. The
string-manipulation resource includes tables for modifying string comparison and tables for case
conversion and stripping of diacritical marks.

Return Value
Returns 0 if the two strings are equal; 1 if they are not equal. It compares the two strings without regard for
secondary sorting order, the meaning of which depends on the language of the strings. For example, for the
English language, using only primary differences means that IdenticalString ignores diacritical marks
and does not distinguish between lowercase and uppercase. For example, if the two strings are 'Rose' and
'rosé', IdenticalString considers them equal and returns 0.

Discussion
IdenticalString uses only primary differences in its comparison.

Special Considerations

IdenticalString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

IdenticalText
Compares two text strings for equality, making use of the string comparison information from a resource
that you specify as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare instead.)

2046 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

short IdenticalText (
 const void *aPtr,
 const void *bPtr,
 short aLen,
 short bLen,
 Handle itl2Handle
);

Parameters
aPtr

A pointer to the first character of the first text string.

bPtr
A pointer to the first character of the second text string.

aLen
The length, in bytes, of the first text string.

bLen
The length, in bytes, of the second text string.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string comparison information.

The itl2Handle parameter is used to specify a string-manipulation resource. If the value of this
parameter is NULL, IdenticalText makes use of the resource for the current script. The
string-manipulation resource includes functions and tables for modifying string comparison and
tables for case conversion and stripping of diacritical marks.

Return Value
0 if the two text strings are equal; 1 if they are not equal. It compares the strings without regard for secondary
sorting order, which means that it ignores diacritical marks and does not distinguish between lowercase and
uppercase. For example, if the two text strings are 'Rose' and 'rosé', IdenticalText considers them
equal and returns 0.

Discussion
IdenticalText uses only primary sorting order in its comparison.

Special Considerations

IdenticalText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

InvokeIndexToStringUPP
Call an index-to-string callback. (Deprecated in Mac OS X v10.4.)

Functions 2047
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Boolean InvokeIndexToStringUPP (
 short item,
 ScriptCode *itemsScript,
 StringPtr *itemsStringPtr,
 void *yourDataPtr,
 IndexToStringUPP userUPP
);

Discussion
You should not need to use the function InvokeIndexToStringUPP, as the system calls your index-to-string
callback function for you. See the callback IndexToStringProcPtr (page 2071) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

LanguageOrder
Determines the order in which strings in two different languages should be sorted. (Deprecated in Mac OS
X v10.4. Use CFStringCompare or UCCompareText (page 2151) instead.)

short LanguageOrder (
 LangCode language1,
 LangCode language2
);

Parameters
language1

The language code of the first language.

language2
The language code of the second language.

Return Value
A value that indicates the sorting order: –1 if strings in the first language should be sorted before sorting
text in the second language, 1 if strings in the first language should be sorted after sorting strings in the
second language, or 0 if the sorting order does not matter (that is, if the languages are the same).

Discussion
LanguageOrder takes a pair of language codes and determines in which order strings from the first language
should be sorted relative to strings from the second language.

“Implicit Language Codes” (page 2082) are listed in the Constants section. The implicit language codes
scriptCurLang and scriptDefLang are not valid for LanguageOrder because the script system being
used is not specified as a parameter to this function.

Special Considerations

LanguageOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

2048 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

LowercaseText
Converts any uppercase characters in a text string into their lowercase equivalents. (Deprecated in Mac OS
X v10.4. Use CFStringLowercase instead.)

void LowercaseText (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be converted.

len
The number of bytes in the text string. The text string can be up to 32 KB in length.

script
The script code for the script system whose resources are used to determine the results of converting
characters.

The conversion uses tables in the string-manipulation ('itl2') resource of the script specified by
the value of the script parameter. You can specify smSystemScript to use the system script and
smCurrentScript to use the script of the current font in the current graphics port.

Discussion
LowercaseText traverses the characters starting at the address specified by textPtr and continues for
the number of characters specified in len. It converts any uppercase characters in the text into lowercase.

If LowercaseText cannot access the specified resource, it generates an error code and does not modify the
string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

LowercaseText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Munger
Searches text for a specified string pattern and replaces it with another string.

Functions 2049
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

long Munger (
 Handle h,
 long offset,
 const void *ptr1,
 long len1,
 const void *ptr2,
 long len2
);

Parameters
h

A handle to the text string that is being manipulated.

offset
The byte offset in the destination string at which Munger begins its operation.

ptr1
A pointer to the first character in the string for which Munger is searching.

len1
The number of bytes in the string for which Munger is searching.

ptr2
A pointer to the first character in the substitution string.

len2
The number of bytes in the substitution string.

Return Value
A negative value if Munger cannot find the designated string.

Discussion
Munger manipulates bytes in a string to which you specify a handle in the h parameter. The manipulation
begins at a byte offset, specified in offset, in the string. Munger searches for the string specified by ptr1
and len1; when it finds an instance of that string, it replaces it with the substitution string, which is specified
by ptr2 and len2.

Munger operates on a byte-by-byte basis, which can produce inappropriate results for 2-byte script systems.
The ReplaceText (page 2056) function works properly for all languages. You are encouraged to use
ReplaceText instead of Munger whenever possible.

Munger takes special action if either of the specified pointer values is NULL or if either of the length values
is 0.

 ■ If ptr1 is NULL, Munger replaces characters without searching. It replaces len1 characters starting at
the offset location with the substitution string.

 ■ If ptr1 is NULL and len1 is negative, Munger replaces all of the characters from the offset location
to the end of the string with the substitution string.

 ■ If len1 is 0, Munger inserts the substitution string without replacing anything. Munger inserts the string
at the offset location and returns the offset of the first byte past where the insertion occurred.

 ■ If ptr2 is NULL, Munger searches but does not replace. In this case, Munger returns the offset at which
the string was found.

 ■ If len2 is 0 and ptr2 is not NULL, Munger searches and deletes. In this case, Munger returns the offset
at which it deleted.

2050 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

 ■ If the portion of the string from the offset location to its end matches the beginning of the string that
Munger is searching for, Munger replaces that portion with the substitution string.

Be careful not to specify an offset with a value that is greater than the length of the destination string.
Unpredictable results may occur.

Munger calls the GetHandleSize and SetHandleSize functions to access or modify the length of the
string it is manipulating.

Special Considerations

Munger may move memory; your application should not call this function at interrupt time.

The destination string must be in a relocatable block that was allocated by the Memory Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextUtils.h

NewIndexToStringUPP
Creates a new universal procedure pointer (UPP) to an index-to-string callback. (Deprecated in Mac OS X
v10.4.)

IndexToStringUPP NewIndexToStringUPP (
 IndexToStringProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your index-to-string callback.

Return Value
On return, a UPP to the index-to-string callback.

Discussion
See the callback IndexToStringProcPtr (page 2071) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

NewString
Allocates memory in the heap for a string, copies its contents, and produces a handle for the heap version
of the string. (Deprecated in Mac OS X v10.4. Use CFStringCreateCopy instead.)

Functions 2051
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

StringHandle NewString (
 ConstStr255Param theString
);

Parameters
theString

A Pascal string that you want copied onto the heap.

Return Value
A handle to the newly allocated string. If the string cannot be allocated, NewString returns NULL. The size
of the allocated string is based on the actual length of theString, which may not be 255 bytes.

Discussion
Before using Pascal string functions that can change the length of the string, it is a good idea to maximize
the size of the string object on the heap. You can call either the SetString (page 2057) function or the Memory
Manager function SetHandleSize to modify the string’s size.

Special Considerations

NewString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

NumToString
Converts a long integer value into a Pascal string. (Deprecated in Mac OS X v10.4. Use
CFStringCreateWithFormat instead.)

void NumToString (
 long theNum,
 Str255 theString
);

Parameters
theNum

A long integer value. If the value of the number in the parameter theNum is negative, the string begins
with a minus sign; otherwise, the sign is omitted.

theString
On output, contains the Pascal string representation of the number. Leading zeros are suppressed,
except that a value of 0 produces the string “0”. NumToString does not include thousand separators
or decimal points in its formatted output.

Discussion
NumToString creates a string representation of theNum as a base-10 value and returns the result in
theString.

Unless patched by a script system with different rules, this function assumes that you are using standard
numeric token processing, meaning that the Roman script system number processing rules are used.

2052 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

For functions that make use of the token-processing information that is found in the tokens ('itl4') resource
of script systems for converting numbers, see the sections “Using Number Format Specification Strings for
International Number Formatting” and “Converting Between Strings and Floating-Point Numbers”.

Special Considerations

NumToString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

p2cstr
Converts a Pascal string to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

char * p2cstr (
 StringPtr aStr
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

P2CStr
Converts a Pascal string to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

Ptr P2CStr (
 StringPtr pString
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Functions 2053
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

p2cstrcpy
Converts a Pascal string to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

void p2cstrcpy (
 char *dst,
 ConstStr255Param src
);

Parameters
dst

On output, the C string.

src
The Pascal string you want to convert.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

RelString
Compares two Pascal strings using the string comparison rules of the Macintosh file system and returns a
value that indicates the sorting order of the first string relative to the second string. (Deprecated in Mac OS
X v10.4. Use CFStringCompare or UCCompareText (page 2151) instead.)

short RelString (
 ConstStr255Param str1,
 ConstStr255Param str2,
 Boolean caseSensitive,
 Boolean diacSensitive
);

Parameters
str1

One of the Pascal strings to be compared.

str2
The other Pascal string to be compared.

caseSensitive
A flag that indicates how to handle case-sensitive information during the comparison. If the value of
caseSens is TRUE, uppercase characters are distinguished from the corresponding lowercase
characters. If it is FALSE, case information is ignored.

2054 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

diacSensitive
A flag that indicates how to handle information about diacritical marks during the string comparison.
If the value of diacSensitive is TRUE, characters with diacritical marks are distinguished from the
corresponding characters without diacritical marks during the comparison. If it is FALSE, diacritical
marks are ignored.

Return Value
Returns –1 if the first string is less than the second string, 0 if the two strings are equal, and 1 if the first string
is greater than the second string. It compares the two strings in the same manner as does the EqualString
function, by simply looking at the ASCII values of their characters. However, RelString provides more
information about the two strings—it indicates their relationship to each other, rather than determining if
they are exactly equal.

Discussion
This function does not make use of any script or language information; it assumes the original Macintosh
character set only.

Special Considerations

The RelString function is not localizable and does not work properly with non-Roman script systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

relstring
Compares two strings. (Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText (page
2151) instead.)

Not recommended

short relstring (
 const char *str1,
 const char *str2,
 Boolean caseSensitive,
 Boolean diacSensitive
);

Parameters
str1

The string to be compared to str2.

str2
The string to be compared to str1.

caseSensitive
A flag that indicates how to handle case-sensitive information during the comparison.

diacSensitive
A flag that indicates how to handle information about diacritical marks during the string comparison.

Functions 2055
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Return Value
Returns –1 if the first string is less than the second string, 0 if the two strings are equal, and 1 if the first string
is greater than the second string.

Discussion
This function is not recommended. Instead, see the function RelString (page 2054).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

ReplaceText
Searches text on a character-by-character basis, replacing all instances of a string in that text with another
string. (Deprecated in Mac OS X v10.4. Use CFStringReplace instead.)

short ReplaceText (
 Handle baseText,
 Handle substitutionText,
 Str15 key
);

Parameters
baseText

A handle to the string in which ReplaceText is to substitute text.

substitutionText
A handle to the string that ReplaceText uses as substitute text.

key
A Pascal string of less than 16 bytes that ReplaceText searches for.

Return Value
An integer value; if positive, it indicates the number of substitutions performed; if negative, it indicates an
error. The constant noErr is returned if there was no error and no substitutions were performed.

Discussion
ReplaceText searches the text specified by the baseText parameter for instances of the string in the key
parameter and replaces each instance with the text specified by the substitutionText parameter.
ReplaceText searches on a character-by-character basis (as opposed to byte-by-byte), so it works properly
for all script systems, including 2-byte script systems. It recognizes 2-byte characters in script systems that
contain them and advances the search appropriately after encountering a 2-byte character.

Special Considerations

ReplaceText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2056 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Declared In
StringCompare.h

ScriptOrder
Determines the order in which strings in two different scripts should be sorted. (Deprecated in Mac OS X
v10.4. Use CFStringCompare or UCCompareText (page 2151) instead.)

short ScriptOrder (
 ScriptCode script1,
 ScriptCode script2
);

Parameters
script1

The script code of the first script.

script2
The script code of the second script.

Return Value
A value that indicates the sorting order: –1 if strings in the first script should be sorted before strings in the
second script are sorted, 1 if strings in the first script should be sorted after strings in the second script are
sorted, or 0 if the sorting order does not matter (that is, if the scripts are the same).

Discussion
Text of the system script is always first in a sorted list, regardless of the result returned by this function. When
determining the order in which text from two different script systems should be sorted, the system script
always sorts first, and scripts that are not enabled and installed always sort last. Invalid script or language
codes always sort after valid ones.

Special Considerations

ScriptOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

SetString
Changes the contents of a string referenced by a string handle, replacing the previous contents by copying
the specified string. (Deprecated in Mac OS X v10.4. Use CFStringCreateWithPascalString and
CFStringReplaceAll.)

Functions 2057
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

void SetString (
 StringHandle theString,
 ConstStr255Param strNew
);

Parameters
theString

A Pascal string.

strNew
A handle to the string in memory whose contents you are replacing. If the new string (theString)
is larger than the string originally referenced by strNew, SetString automatically resizes the handle
and copies in the contents of the specified string.

Special Considerations

SetString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

StringOrder
Compares two Pascal strings, taking into account the script system and language for each of the strings.
(Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText (page 2151) instead.)

short StringOrder (
 ConstStr255Param aStr,
 ConstStr255Param bStr,
 ScriptCode aScript,
 ScriptCode bScript,
 LangCode aLang,
 LangCode bLang
);

Parameters
aStr

One of the Pascal strings to be compared.

bStr
The other Pascal string to be compared.

aScript
The script code for the second string.

bScript
The script code for the first string.

aLang
The language code for the first string.

bLang
The language code for the second string.

2058 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Return Value
–1 if the first string is less than the second string, 0 if the first string is equal to the second string, and 1 if the
first string is greater than the second string. The ordering of script and language codes, which is based on
information in the script-sorting resource, is considered in determining the relationship of the two strings.

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates whether the first string is less than, equal to, or greater than the second string.

“Implicit Language Codes” (page 2082) are listed in the Constants section. Most applications specify the language
code scriptCurLang for both the aLang and bLang values.

StringOrder first calls ScriptOrder (page 2057); if the result of ScriptOrder is not 0 (that is, if the strings
use different scripts), StringOrder returns the same result.

StringOrder next calls LanguageOrder (page 2048); if the result of LanguageOrder is not 0 (that is, if the
strings use different languages), StringOrder returns the same result.

At this point, StringOrder has two strings that are in the same script and language, so it compares them
by using the sorting rules for that script and language, applying both the primary and secondary sorting
orders. If that script is not installed and enabled, it uses the sorting rules specified by the system script or
the font script, depending on the state of the international resources selection flag.

The StringOrder function is primarily used to insert Pascal strings in a sorted list; for sorting, rather than
using this function, it may be faster to sort first by script and language by using the ScriptOrder and
LanguageOrder functions, and then to call the CompareString (page 2035) function, to sort strings within
a script or language group.

Special Considerations

StringOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

StringToExtended
Converts a string representation of a number into a floating-point number, using a NumFormatStringRec
structure to specify how the input number string is formatted. (Deprecated in Mac OS X v10.4. Use
CFNumberFormatterCreateStringWithNumber instead.)

Functions 2059
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

FormatStatus StringToExtended (
 ConstStr255Param source,
 const NumFormatString *myCanonical,
 const NumberParts *partsTable,
 extended80 *x
);

Parameters
source

A Pascal string that contains the string representation of a number.

myCanonical
A pointer to the internal representation of the formatting information for numbers, as produced by
the StringToFormatRec function.

partsTable
A pointer to a structure, obtained from the tokens ('itl4') resource, that shows the correspondence
between generic number part separators (tokens) and their localized version (for example, a thousand
separator is a comma in the United States and a decimal point in France).

x
On output, contains a pointer to the 80-bit SANE representation of the floating-point number.

Return Value
A value that denotes the confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType. Be sure to cast the result of StringToExtended to a
type FormatResultType before working with it. StringToExtended returns an 80-bit, not a 96-bit,
representation. See the description of the FormatStatus data type.

Discussion
StringToExtended uses the internal representation of number formatting information that was created
by a prior call to StringToFormatRec to parse the input number string. It uses the number parts table to
determine the components of the number string that is being converted. StringToExtended parses the
string and then converts the string to a simple form, stripping nondigits and replacing the decimal point
before converting it into a floating-point number. If the input string does not match any of the patterns, then
StringToExtended parses the string as well as it can and returns a confidence level result that indicates
the parsing difficulties.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

StringToFormatRec
Creates a number format specification string structure from a number format specification string that you
supply in a Pascal string. (Deprecated in Mac OS X v10.4. Use CFNumberFormatterSetFormat instead.)

2060 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

FormatStatus StringToFormatRec (
 ConstStr255Param inString,
 const NumberParts *partsTable,
 NumFormatString *outString
);

Parameters
inString

A Pascal string that contains the number formatting specification.

The inString parameter contains a number format specification string that specifies how numbers
appear. This string contains up to three specifications, separated by semicolons. The positive number
format is specified first, the negative number format is second, and the zero number format is last. If
the string contains only one part, that is the format of all three types of numbers. If the string contains
two parts, the first part is the format for positive and zero number values, and the second part is the
format for negative numbers.

partsTable
A pointer to a structure, usually obtained from the tokens ('itl4') resource, that shows the
correspondence between generic number part separators (tokens) and their localized version (for
example, a thousand separator is a comma in the United States and a decimal point in France).

outString
On output, a pointer to a NumFormatStringRec structure that contains the values that form the
internal representation of the format specification. The format of the data in this structure is private.

Return Value
A value that denotes the confidence level for the conversion that was performed. The low byte of the value
is of type FormatResultType. Be sure to cast the result of StringToFormatRec to a type
FormatResultType before working with it. See the description of the FormatStatus data type.

Discussion
StringToFormatRec converts a number format specification string into the internal representation contained
in a number format string structure. It uses information in the current script’s tokens resource to determine
the components of the number. StringToFormatRec checks the validity both of the input format string
and of the number parts table (since this table can be programmed by the application). StringToFormatRec
ignores spurious characters.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Special Considerations

StringToFormatRec may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

Functions 2061
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

StringToNum
Converts the Pascal string representation of a base-10 number into a long integer value. (Deprecated in Mac
OS X v10.4. Use CFStringGetIntValue instead.)

void StringToNum (
 ConstStr255Param theString,
 long *theNum
);

Parameters
theString

A Pascal string representation of a base-10 number. The numeric string can be padded with leading
zeros or with a sign.

theNum
On output, contains a pointer to the numeric value.

Discussion
Unless patched by a script system with different rules, this function assumes that you are using standard
numeric token processing, meaning that the Roman script system number processing rules are used.

For functions that make use of the token-processing information that is found in the tokens ('itl4') resource
of script systems for converting numbers, see the sections “Using Number Format Specification Strings for
International Number Formatting” and “Converting Between Strings and Floating-Point Numbers”.

The 32-bit result is negated if the string begins with a minus sign. Integer overflow occurs if the magnitude
is greater than or equal to 2 raised to the 31st power. StringToNum performs the negation using the two’s
complement method: the state of each bit is reversed and then 1 is added to the result. For example, here
are possible results produced by StringToNum:

 ■ The value of theString is “-23”. StringToNum returns the value -23 in theNum.

 ■ The value of theString is “-0”. StringToNum returns the value 0 in theNum.

 ■ The value of theString is “055”. StringToNum returns the value 55 in theNum.

 ■ The value of theString is “2147483648” (magnitude is 2^31). StringToNum returns the value
–2147483648 in theNum.

 ■ The value of theString is “–2147483648”. StringToNum returns the value –2147483648 in theNum.

 ■ The value of theString is “4294967295” (magnitude is 2^32–1). StringToNum returns the value -1 in
theNum.

 ■ The value of theString is “–4294967295”. StringToNum returns the value 1 in theNum.

StringToNum does not check whether the characters in the string are between 0 and 9; instead, it takes
advantage of the fact that the ASCII values for these characters are $30 through $39, and masks the last four
bits for use as a digit. For example, StringToNum converts 2: to the number 30 since the character code for
the colon (:) is $3A. Because StringToNum operates this way, spaces are treated as zeros (the character code
for a space is $20), and other characters do get converted into numbers. For example, the character codes
for 'C', 'A', and 'T' are $43, $41, and $54 respectively. Hence, the strings ‘CAT’, ‘+CAT’, and ‘-CAT’ would produce
the results 314, 314, and -314.

One consequence of this conversion method is that StringToNum does not ignore thousand separators (the
“,” character in the United States), which can lead to improper conversions. It is a good idea to ensure that
all characters in theString are valid digits before you call StringToNum.

2062 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Special Considerations

StringToNum may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

StripDiacritics
Strips any diacritical marks from a text string. (Deprecated in Mac OS X v10.4. Use CFStringTransform
instead.)

void StripDiacritics (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be stripped.

len
The length, in bytes, of the text string. The text string can be up to 32 KB in length.

script
The script code for the script system whose rules are used for determining which character results
from stripping a diacritical mark.

The conversion uses tables in the string-manipulation ('itl2') resource of the script specified by
the value of the script parameter. You can specify smSystemScript to use the system script and
smCurrentScript to use the script of the current font in the current graphics port.

Discussion
StripDiacritics traverses the characters starting at the address specified by textPtr and continues for
the number of characters specified in len. It strips any diacritical marks from the text.

If StripDiacritics cannot access the specified resource, it generates an error code and does not modify
the string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

StripDiacritics may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Functions 2063
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

TextOrder
Compares two text strings, taking into account the script and language for each of the strings. (Deprecated
in Mac OS X v10.4. Use CFStringCompare or UCCompareText (page 2151) instead.)

short TextOrder (
 const void *aPtr,
 const void *bPtr,
 short aLen,
 short bLen,
 ScriptCode aScript,
 ScriptCode bScript,
 LangCode aLang,
 LangCode bLang
);

Parameters
aPtr

A pointer to the first character of the first text string.

bPtr
A pointer to the first character of the second text string.

aLen
The length, in bytes, of the first text string.

bLen
The length, in bytes, of the second text string.

aScript
The script code for the first text string.

bScript
The script code for the second text string.

aLang
The language code for the first text string.

bLang
The language code for the second text string.

Return Value
Returns –1 if the first string is less than the second string, 0 if the first string is equal to the second string,
and 1 if the first string is greater than the second string. The ordering of script and language codes, which
is based on information in the script-sorting resource, is considered in determining the relationship of the
two strings.

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates whether the first string is less than, equal to, or greater than the second string.

“Implicit Language Codes” (page 2082) are listed in the Constants section. Most applications specify the language
code scriptCurLang for both the aLang and bLang values.

TextOrder first calls ScriptOrder (page 2057); if the result of ScriptOrder is not 0 (that is, if the strings
use different scripts), TextOrder returns the same result.

TextOrder next calls LanguageOrder (page 2048); if the result of LanguageOrder is not 0 (that is, if the
strings use different languages), TextOrder returns the same result.

2064 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

At this point, TextOrder has two strings that are in the same script and language, so it compares them by
using the sorting rules for that script and language, applying both the primary and secondary sorting orders.
If that script is not installed and enabled, it uses the sorting rules specified by the system script or the font
script, depending on the state of the international resources selection flag.

The TextOrder function is primarily used to insert text strings in a sorted list; for sorting, rather than using
this function, it may be faster to sort first by script and language by using the ScriptOrder and
LanguageOrder functions, and then to call the CompareText (page 2036) function, to sort strings within a
script or language group.

Special Considerations

TextOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

TypeSelectClear
Clears the key list and resets the type select record. (Deprecated in Mac OS X v10.4. Use
UCTypeSelectFlushSelectorData instead.)

Not recommended.

void TypeSelectClear (
 TypeSelectRecord *tsr
);

Parameters
tsr

A pointer to the type-select record you want to clear.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

Functions 2065
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

TypeSelectCompare
Compares a text buffer to the keystroke buffer. (Deprecated in Mac OS X v10.4. Use UCTypeSelectCompare
instead.)

Not recommended.

short TypeSelectCompare (
 const TypeSelectRecord *tsr,
 ScriptCode testStringScript,
 StringPtr testStringPtr
);

Parameters
tsr

A type select record that contains the keystroke buffer.

testStringScript
The script code of the test string.

testStringPtr
A pointer to the text you want to compare to the keystroke buffer.

Return Value
A numerical value that represents the ordering of the characters in the keystroke buffer with respect to the
test string buffer. The value -1 is returned if characters in the keystroke buffer sort before those in
testStringPtr; 0 if characters in the keystroke buffer are the same as those in testStringPtr, and 1 if
the characters in the keystroke buffer sort after those in testStringPtr.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

TypeSelectFindItem
Finds the closest match between a specified list of characters and the keystrokes stored in the type select
record. (Deprecated in Mac OS X v10.4. Use UCTypeSelectFindItem instead.)

Not recommended.

2066 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

short TypeSelectFindItem (
 const TypeSelectRecord *tsr,
 short listSize,
 TSCode selectMode,
 IndexToStringUPP getStringProc,
 void *yourDataPtr
);

Parameters
tsr

A pointer to the type select record that contains the keystrokes you want to compare.

listSize
The size of the list to search through.

selectMode
The select mode. See Type Select Modes (page 2083)for a list of the constants you can supply.

getStringProc
A pointer to your index-to-string callback function. See IndexToStringProcPtr (page 2071) for more
information.

yourDataPtr
A pointer to your data structure. This is passed to your index-to-string callback, and can be NULL,
depending on how you implement your callback function.

Return Value
Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

TypeSelectNewKey
Creates a new type select record. (Deprecated in Mac OS X v10.4. Use UCTypeSelectCreateSelector
instead.)

Not recommended.

Functions 2067
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Boolean TypeSelectNewKey (
 const EventRecord *theEvent,
 TypeSelectRecord *tsr
);

Parameters
theEvent

A pointer to an event record.

tsr
A pointer to a type select record.

Return Value
Returns true if the function executed successfully; false otherwise.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

UppercaseStripDiacritics
Converts any lowercase characters in a text string into their uppercase equivalents and strips any diacritical
marks from the text. (Deprecated in Mac OS X v10.4. Use CFStringTransform instead.)

void UppercaseStripDiacritics (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be converted.

len
The length, in bytes, of the text string. The text string can be up to 32 KB in length.

2068 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

script
The script code of the script system whose resources are used to determine the results of converting
characters.

The conversion uses tables in the string-manipulation ('itl2') resource of the script specified by
the value of the script parameter. You can specify smSystemScript to use the system script and
smCurrentScript to use the script of the current font in the current graphics port.

Discussion
UppercaseStripDiacritics traverses the characters starting at the address specified by textPtr and
continues for the number of characters specified in len. It converts lowercase characters in the text into their
uppercase equivalents and also strips diacritical marks from the text string. This function combines the effects
of the UppercaseText (page 2069) and StripDiacritics (page 2063) functions.

If UppercaseStripDiacritics cannot access the specified resource, it generates an error code and does
not modify the string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

UppercaseStripDiacriticsmay move memory; your application should not call this function at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

UppercaseText
Converts any lowercase characters in a text string into their uppercase equivalents. (Deprecated in Mac OS
X v10.4. Use CFStringUppercase instead.)

void UppercaseText (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be converted.

len
The length, in bytes, of the text string. The text string can be up to 32 KB in length.

Functions 2069
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

script
The script code of the script system whose case conversion rules are used for determining uppercase
character equivalents.

The conversion uses tables in the string-manipulation ('itl2') resource of the specified script.
You can specify smSystemScript to use the system script and smCurrentScript to use the script
of the current font in the current graphics port.

Discussion
UppercaseText traverses the characters starting at the address specified by textPtr and continues for
the number of characters specified in len. It converts any lowercase characters in the text into uppercase.

If UppercaseText cannot access the specified resource, it generates an error code and does not modify the
string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

UppercaseText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

UpperString
Converts any lowercase letters in a Pascal string to their uppercase equivalents, using the Macintosh file
system rules. (Deprecated in Mac OS X v10.4. Use CFStringUppercase instead.)

void UpperString (
 Str255 theString,
 Boolean diacSensitive
);

Parameters
theString

On input, this is the Pascal string to be converted. On output, this contains the string resulting from
the conversion. UpperString traverses the characters in theString and converts any lowercase
characters with character codes in the range 0x00 through 0xD8 into their uppercase equivalents.
UpperString places the converted characters in theString.

diacSensitive
A flag that indicates whether the case conversion is to strip diacritical marks. If the value of this
parameter is TRUE, diacritical marks are considered in the conversion; if it is FALSE, any diacritical
marks are stripped.

Discussion
Only a subset of the Roman character set (character codes with values through $D8) are converted. Use this
function to emulate the behavior of the Macintosh file system.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

2070 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Not available to 64-bit applications.

Declared In
TextUtils.h

upperstring
Converts any lowercase letters in a Pascal string to their uppercase equivalents. (Deprecated in Mac OS X
v10.4. Use CFStringUppercase instead.)

Not recommended

void upperstring (
 char *theString,
 Boolean diacSensitive
);

Parameters
theString

On input, this is the Pascal string to be converted. On output, this contains the string resulting from
the conversion.

diacSensitive
A flag that indicates whether the case conversion is to strip diacritical marks. If the value of this
parameter is TRUE, diacritical marks are considered in the conversion; if it is FALSE, any diacritical
marks are stripped.

Discussion
You should use the function CFStringUppercase instead of this one.

Carbon Porting Notes

Use UpperString instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Callbacks

IndexToStringProcPtr
Defines a pointer to your index-to-string callback function that retrieves the string associated with an index
value.

Not recommended.

Callbacks 2071
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

typedef Boolean (*IndexToStringProcPtr)
(
 short item,
 ScriptCode * itemsScript,
 StringPtr * itemsStringPtr,
 void * yourDataPtr
);

If you name your function MyIndexToStringProc, you would declare it like this:

Boolean MyIndexToStringProcPtr (
 short item,
 ScriptCode * itemsScript,
 StringPtr * itemsStringPtr,
 void * yourDataPtr
);

Parameters
item

The index value for which the TypeSelect function requests a string.

itemsScript
The script code of the string specified by itemsStringPtr.

itemsStringPtr
On return, points to the string that matches the index specify by the item parameter.

yourDataPtr
A pointer to your data structure. This is passed to your index-to-string callback, and can be NULL,
depending on how you implement your callback function.

Return Value
Returns true if a string matching that index value was found; false otherwise.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Availability
Not recommended. Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
TypeSelect.h

Data Types

BreakTable
Contains information used to determine the boundaries of a word.

2072 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

struct BreakTable {
 char charTypes[256];
 short tripleLength;
 short triples[1];
};
typedef struct BreakTable BreakTable;
typedef BreakTable * BreakTablePtr;

Discussion
You can supply a BreakTable as a parameter to the function FindWordBreaks (page 2041).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TextUtils.h

FormatClass
Defines a data type used to access entries in a triple integer array.

typedef SInt8 FormatClass;

Discussion
Each of the three FVector entries in a triple integer array is accessed by one of the values of the FormatClass
type. See FVector (page 2073) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

FormatStatus
Defines a data type used to denote the confidence level for a conversion.

typedef short FormatStatus;

Discussion
A FormatStatus value is returned by the functions ExtendedToString (page 2039),
StringToExtended (page 2059),FormatRecToString (page 2043), andStringToFormatRec (page 2060).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

FVector
Contains position and length information for one portion of a formatted numeric string.

Data Types 2073
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

struct FVector {
 short start;
 short length;
};
typedef struct FVector FVector;
typedef FVector TripleInt[3];

Fields
start

The starting byte position in the string of the specification information.

length
The number of bytes used in the string for the specification information.

Discussion
The FVector data structure is used in the TripleInt (page 2078) array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

IndexToStringUPP
Defines a universal procedure pointer to an index-to-string callback.

typedef IndexToStringProcPtr IndexToStringUPP;

Discussion
For more information, see the description of the IndexToStringProcPtr (page 2071) callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TypeSelect.h

NBreakTable
Contains information used by the FindWordBreaks function to determine word boundaries.

2074 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

struct NBreakTable {
 SInt8 flags1;
 SInt8 flags2;
 short version;
 short classTableOff;
 short auxCTableOff;
 short backwdTableOff;
 short forwdTableOff;
 short doBackup;
 short length;
 char charTypes[256];
 short tables[1];
};
typedef struct NBreakTable NBreakTable;
typedef NBreakTable * NBreakTablePtr;

Fields
flags1

The high-order byte of the break table format flags. If the high-order bit of this byte is set to 1, this
break table is in the format used by FindWordBreaks.

flags2
The low-order byte of the break table format flags. If the value in this byte is 0, the break table belongs
to a 1-byte script system; in this case FindWordBreaks does not check for 2-byte characters.

version
The version of this break table.

classTableOff
The offset in bytes from the beginning of the break table to the beginning of the class table.

auxCTableOff
The offset in bytes from the beginning of the break table to the beginning of the auxiliary class table.

backwdTableOff
The offset in bytes from the beginning of the break table to the beginning of the backward-processing
table.

forwdTableOff
The offset in bytes from the beginning of the break table to the beginning of the forward-processing
table.

doBackup
The minimum byte offset into the buffer for doing backward processing. If the selected character for
FindWordBreaks has a byte offset less than doBackup, FindWordBreaks skips backward processing
altogether and starts from the beginning of the buffer.

length
The length in bytes of the entire break table, including the individuals tables.

charTypes
The class table.

tables
The data of the auxiliary class table, backward table, and forward table.

Discussion
The tables have this format and content:

Data Types 2075
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

 ■ The class table is an array of 256 signed bytes. Offsets into the table represent byte values; if the entry
at a given offset in the table is positive, it means that a byte whose value equals that offset is a single-byte
character, and the entry at that offset is the class number for the character. If the entry is negative, it
means that the byte is the first byte of a 2-byte character code, and the auxiliary class table must be
used to determine the character class. Odd negative numbers are handled differently from even negative
numbers.

 ■ The auxiliary class table assigns character classes to 2-byte characters. It is used when the class table
determines that a byte value represents the first byte of a 2-byte character.

 ❏ The auxiliary class table handles odd negative values from the class table as follows. If the first word
of the auxiliary class table is equal to or greater than zero, it represents the default class number for
2-byte character codes—the class assigned to every odd negative value from the class table. If the
first word is less than zero, it is the negative of the offset from the beginning of the auxiliary class
table to a first-byte class table (a table of 2-byte character classes that can be determined from just
the first byte). The value from the class table is negated, 1 is subtracted from it to obtain an even
offset, and the value at that offset into the first-byte class table is the class to be assigned.

 ❏ The auxiliary class table handles even negative values from the class table as follows. The auxiliary
class table begins with a variable-length word array. The words that follow the first word are offsets
to row tables. Row tables have the same format as the class table, but are used to map the second
byte of a 2-byte character code to a class number. If the entry in the class table for a given byte is
an even negative number, FindWordBreaks negates this value to obtain the offset from the
beginning of the auxiliary class table to the appropriate word, which in turn contains an offset to
the appropriate row table. That row table is then used to map the second byte of the character to
a class number.

 ■ The backward-processing table is a state table used by FindWordBreaks for backward searching. Using
the backward-processing table, FindWordBreaks starts at a specified character, moving backward as
necessary until it encounters a word boundary.

 ■ The forward-processing table is a state table used by FindWordBreaks for forward searching. Using
the forward-processing table, FindWordBreaks starts at one word boundary and moves forward until
it encounters another word boundary.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TextUtils.h

NumFormatString
Contains data that represents the internal number formatting specification.

2076 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

struct NumFormatString {
 UInt8 fLength;
 UInt8 fVersion;
 char data[254];
};
typedef struct NumFormatString NumFormatString;
typedef NumFormatString NumFormatStringRec;

Fields
fLength

The number of bytes in the data actually used for this number formatting specification.

fVersion
The version number of the number formatting specification.

data
The data that comprises the number formatting specification.

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

NumFormatStringRec
Defines an internal numeric representation that is independent of region, language, and other multicultural
consideration.

typedef NumFormatString NumFormatStringRec;

Discussion
To allow for all of the international variations in numeric presentation styles, you need to include in your
function calls a number parts table from a tokens ('itl4') resource. You can usually use the number parts
table in the standard tokens resource that is supplied with the system. You also need to define the format
of input and output numeric strings, including which characters (if any) to use as thousand separators, whether
to indicate negative values with a minus sign or by enclosing the number in parentheses, and how to display
zero values.

To make it possible to map a number that was formatted for one specification into another format, the Mac
OS defines an internal numeric representation that is independent of region, language, and other multicultural
considerations: the NumFormatStringRec structure. This structure is created from a number format
specification string that defines the appearance of numeric strings.

Four of the numeric string functions use the number formatting specification, defined by the
NumFormatStringRec data type: StringToFormatRec (page 2060), FormatRecToString (page 2043),
StringToExtended (page 2059), and ExtendedToString (page 2039). The number format specification
structure contains the data that represents the internal number formatting specification information. This
data is stored in a private format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

Data Types 2077
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

ScriptRunStatus
Contains script-specific information for a script run.

struct ScriptRunStatus {
 SInt8 script;
 SInt8 runVariant;
};
typedef struct ScriptRunStatus ScriptRunStatus;

Fields
script

The script code of the subscript run. Zero indicates the Roman script system.

runVariant
Script-specific information about the run, in the same format as that returned by the CharacterType
function. This information includes the type of subscript—for example, Kanji, Katakana, or Hiragana
for a Japanese script system.

Discussion
The FindScriptRun (page 2040) function returns the script run status structure, defined by the
ScriptRunStatus data type, when it completes its processing, which is to find a run of subscript text in a
string.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TextUtils.h

TripleInt
Defines a data type used to return the position and length information for three different portions of a
formatted numeric string.

typedef FVector TripleInt[3];

Discussion
The FormatRecToString (page 2043) function uses the triple-integer array, defined by the TripleInt data
type, to return the starting position and length in a string of three different portions of a formatted numeric
string: the positive value string, the negative value string, and the zero value string. Each element of the
triple integer array is an FVector structure. Each of the three FVector entries in the triple integer array is
accessed by one of the values of the FormatClass type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

TypeSelectRecord
Contains a buffer of keystrokes, the script code associated with the keystrokes, and timer information.

2078 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

struct TypeSelectRecord {
 unsigned long tsrLastKeyTime;
 ScriptCode tsrScript;
 Str63 tsrKeyStrokes;
};
typedef struct TypeSelectRecord TypeSelectRecord;

Fields
tsrLastKeyTime

A value that indicates timeout information.

tsrScript
A script code.

tsrKeyStrokes
The keystroke buffer.

Discussion
The TypeSelectRecord data structure is passed as a parameter to the functions TypeSelectNewKey (page
2067), TypeSelectFindItem (page 2066), TypeSelectCompare (page 2066), and TypeSelectClear (page
2065).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TypeSelect.h

Constants

Format Result Types
Specify values that can be returned in the low byte of a format status (FormatStatus) value.

Constants 2079
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

enum {
 fFormatOK = 0,
 fBestGuess = 1,
 fOutOfSynch = 2,
 fSpuriousChars = 3,
 fMissingDelimiter = 4,
 fExtraDecimal = 5,
 fMissingLiteral = 6,
 fExtraExp = 7,
 fFormatOverflow = 8,
 fFormStrIsNAN = 9,
 fBadPartsTable = 10,
 fExtraPercent = 11,
 fExtraSeparator = 12,
 fEmptyFormatString = 13
};
typedef SInt8 FormatResultType;

Constants
fFormatOK

Specifies format is okay.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fBestGuess
Specifies the format is the best guess.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fOutOfSynch
Specifies the format is out of sync.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fSpuriousChars
Specifies the format contains spurious characters.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fMissingDelimiter
Specifies a missing delimiter.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fExtraDecimal
Specifies the format contains an extra decimal sign.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fMissingLiteral
Specifies the format is missing a literal.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

2080 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

fExtraExp
Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fFormatOverflow
Specifies a format overflow.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fFormStrIsNAN
Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fBadPartsTable
Specifies the parts table is bad.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fExtraPercent
Specifies the format contains an extra percent sign.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fExtraSeparator
Specifies an extra separator.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fEmptyFormatString
Specifies the format string is empty.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

Discussion
A format result type is returned in the low byte of a format status (FormatStatus) value. A
FormatStatus (page 2073) value is returned by the functions ExtendedToString (page 2039),
StringToExtended (page 2059),FormatRecToString (page 2043), andStringToFormatRec (page 2060). A
format status value denotes the confidence level for a conversion.

TripleInt Index Values
Specify an index for a TripleInt array.

Constants 2081
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

enum {
 fPositive = 0,
 fNegative = 1,
 fZero = 2
};

Constants
fPositive

Specifies the positive value string.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fNegative
Specifies the negative value string.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fZero
Specifies the zero value string.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

Discussion
See TripleInt (page 2078) for more information.

NumFormatString Version
Specifies the first version of the NumFormatString data structure.

enum {
 fVNumber = 0
};

Discussion
See NumFormatString (page 2076) for more information.

Implicit Language Codes
Specify implicit language codes.

2082 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

enum {
 systemCurLang = -2,
 systemDefLang = -3,
 currentCurLang = -4,
 currentDefLang = -5,
 scriptCurLang = -6,
 scriptDefLang = -7
};

Constants
systemCurLang

Specifies the current language for system script (from 'itlb').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

systemDefLang
Specifies the default language for system script (from 'itlm').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

currentCurLang
Specifies the current language for current script (from 'itlb').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

currentDefLang
Specifies the default language for current script (from 'itlm').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

scriptCurLang
Specifies the current language for specified script (from 'itlb')

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

scriptDefLang
Specifies the default language for specified script (from 'itlm')

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

Discussion
The functionsLanguageOrder (page 2048),StringOrder (page 2058), andTextOrder (page 2064) accept as
parameters implicit language codes listed here, as well as explicit language codes.

Type Select Modes
Contains type-select code information.

Constants 2083
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

typedef SInt16 TSCode;
enum {
 tsPreviousSelectMode = -1,
 tsNormalSelectMode = 0,
 tsNextSelectMode = 1
};

Constants
tsPreviousSelectMode

Specifies previous-select mode.

Available in Mac OS X v10.0 and later.

Declared in TypeSelect.h.

tsNormalSelectMode
Specifies normal-select mode.

Available in Mac OS X v10.0 and later.

Declared in TypeSelect.h.

tsNextSelectMode
Specifies next-select mode.

Available in Mac OS X v10.0 and later.

Declared in TypeSelect.h.

Discussion
This structure is passed as a parameter to the function TypeSelectFindItem (page 2066).

Obsolete Language Code Values
Specify language code values that are no longer used.

enum {
 iuSystemCurLang = systemCurLang,
 iuSystemDefLang = systemDefLang,
 iuCurrentCurLang = currentCurLang,
 iuCurrentDefLang = currentDefLang,
 iuScriptCurLang = scriptCurLang,
 iuScriptDefLang = scriptDefLang
};

2084 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

Text Utilities Reference

Framework: CoreServices/CoreServices.h

Declared in Threads.h

Overview

You can use the Thread Manager to provide cooperatively scheduled threads, or multiple points of execution,
in an application. You can think of the Thread Manager as an enhancement to the classic Mac OS Process
Manager, which governs how applications work together in the Mac OS cooperative multitasking environment.

Important: Active development with the Thread Manager is not recommended. The API is intended only
for developers who are porting their applications to Mac OS X and whose code relies on the cooperative
threading model. If you are writing a new Carbon application, you should use POSIX threads or the
Multiprocessing Services API instead. See Threading Programming Guide for more information.

Consider using the Thread Manager for applications with more than one thread if these threads can execute
only in the cooperative multitasking environment of the classic Mac OS Process Manager.

Alternatively, you should consider using the Multiprocessing Services to implement separate paths of execution
for tasks that are reentrant and can therefore can be preemptively scheduled.

Using Thread Manager routines, you can create threads and thread pools and set them up to run; turn
scheduling on and off; work with stacks; create dialog boxes that yield control to other threads; pass
information between threads; install custom scheduling and context-switching functions; and use threads
to make asynchronous I/O calls.

The Thread Manager provides only cooperative threading for PowerPC applications. Applications can use
the Multiprocessing Services API to create preemptively scheduled tasks.

Note that several Thread Manager functions that did not require you to pass universal procedure pointers
(UPPs) for callbacks now require them in Carbon. See the Carbon Porting Notes for more information.

Functions by Task

Creating and Disposing of Threads

DisposeThread (page 2091)
Deletes a thread when it finishes executing.

Overview 2085
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

NewThread (page 2104)
Creates a new thread or allocates one from the existing pool of threads.

Creating and Getting Information About Thread Pools

CreateThreadPool (page 2088)
Creates a pool of threads for your application.

GetDefaultThreadStackSize (page 2095)
Determines the default stack size required by a thread.

GetFreeThreadCount (page 2095) Deprecated in Mac OS X v10.3
Determines how many threads are available to be allocated in a thread pool. (Deprecated. There is
no replacement.)

GetSpecificFreeThreadCount (page 2096) Deprecated in Mac OS X v10.3
Determines how many threads with a stack size equal to or greater than the specified size are available
to be allocated in a thread pool. (Deprecated. There is no replacement.)

Getting Information About Specific Threads

GetCurrentThread (page 2094)
Obtains the thread ID of the currently executing thread.

GetThreadState (page 2098)
Obtains the state of a thread.

ThreadCurrentStackSpace (page 2117)
Determines the amount of stack space that is available for any thread in your application.

Getting Information and Scheduling Threads During Interrupts

GetThreadCurrentTaskRef (page 2097)
Obtains a thread task reference.

GetThreadStateGivenTaskRef (page 2099)
Obtains the state of a thread when your application is not necessarily the current process—for example,
during execution of an interrupt function.

SetThreadReadyGivenTaskRef (page 2110)
Changes the state of a thread from stopped to ready when your application is not the current process.

Installing Custom Scheduling, Switching, Terminating, and Debugging
Functions

SetDebuggerNotificationProcs (page 2108)
Installs functions that notify the debugger when a thread is created, disposed of, or scheduled.

SetThreadScheduler (page 2110)
Installs a custom scheduling function (custom scheduler).

2086 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

SetThreadSwitcher (page 2114)
Installs a custom context-switching function for any thread.

SetThreadTerminator (page 2115)
Installs a custom thread-termination function for a thread.

Preventing Scheduling

SetThreadStateEndCritical (page 2113)
Changes the state of the current thread and exits that thread’s critical section at the same time.

ThreadBeginCritical (page 2116)
Indicates that the thread is entering a critical code section.

ThreadEndCritical (page 2118)
Indicates that the thread is leaving a critical code section.

Scheduling Threads

SetThreadState (page 2112)
Changes the state of any thread.

YieldToAnyThread (page 2118)
Relinquishes the current thread’s control.

YieldToThread (page 2119)
Relinquishes the current thread’s control to a particular thread.

Miscellaneous

DisposeDebuggerDisposeThreadUPP (page 2090)

DisposeDebuggerNewThreadUPP (page 2090)

DisposeDebuggerThreadSchedulerUPP (page 2091)

DisposeThreadEntryUPP (page 2092)

DisposeThreadSchedulerUPP (page 2093)

DisposeThreadSwitchUPP (page 2093)

DisposeThreadTerminationUPP (page 2094)

InvokeDebuggerDisposeThreadUPP (page 2100)

InvokeDebuggerNewThreadUPP (page 2100)

Functions by Task 2087
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

InvokeDebuggerThreadSchedulerUPP (page 2101)

InvokeThreadEntryUPP (page 2101)

InvokeThreadSchedulerUPP (page 2102)

InvokeThreadSwitchUPP (page 2102)

InvokeThreadTerminationUPP (page 2103)

NewDebuggerDisposeThreadUPP (page 2103)

NewDebuggerNewThreadUPP (page 2104)

NewDebuggerThreadSchedulerUPP (page 2104)

NewThreadEntryUPP (page 2106)

NewThreadSchedulerUPP (page 2107)

NewThreadSwitchUPP (page 2107)

NewThreadTerminationUPP (page 2108)

Functions

CreateThreadPool
Creates a pool of threads for your application.

OSErr CreateThreadPool (
 ThreadStyle threadStyle,
 SInt16 numToCreate,
 Size stackSize
);

Parameters
threadStyle

The type of thread to create for this set of threads in the pool. Cooperative is the only type that you
can specify. Historically, the Thread Manger supported two types of threads, preemptive and
cooperative. However, due to severe limitations on their use, the Thread Manager no longer supports
preemptive threads.

numToCreate
The number of threads to create for the pool.

2088 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

stackSize
The stack size for this set of threads in the pool. This stack must be large enough to handle saved
thread context, normal application stack usage, interrupt handling functions, and CPU exceptions.
Specify a stack size of 0 to request the Thread Manager’s default stack size for the specified type of
thread.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The CreateThreadPool function creates the specified number of threads with the specified stack
requirements. It places the threads that it creates into a pool for use by your application.

When you call CreateThreadPool, if the Thread Manager is unable to create all the threads that you specify,
it does not create any at all and returns the memFullErr result code.

The threads in the pool are indistinguishable except by stack size. That is, you cannot refer to them individually.
When you want to use a thread to execute some code in your application, you allocate a thread of a specific
size from the pool using the NewThread function. The NewThread function assigns a thread ID to the thread
and specifies the function that is the entry point to the thread.

Note that it is not strictly necessary to create a pool of threads before allocating a thread. If you wish, you
can use the NewThread function to create and allocate a thread in one step. The advantage of using
CreateThreadPool is that you can allocate memory for threads early in your application’s execution before
memory is used or fragmented.

Before making any calls to CreateThreadPool, be certain that you first have called the Memory Manager
function MaxApplZone to extend the application heap to its limit. You must call MaxApplZone from the
main application thread before any other threads in your application run.

To allocate a thread from the pool created with CreateThreadPool, use the NewThread (page 2104) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 2089
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

DisposeDebuggerDisposeThreadUPP

void DisposeDebuggerDisposeThreadUPP (
 DebuggerDisposeThreadUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DisposeDebuggerNewThreadUPP

void DisposeDebuggerNewThreadUPP (
 DebuggerNewThreadUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

2090 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

DisposeDebuggerThreadSchedulerUPP

void DisposeDebuggerThreadSchedulerUPP (
 DebuggerThreadSchedulerUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DisposeThread
Deletes a thread when it finishes executing.

OSErr DisposeThread (
 ThreadID threadToDump,
 void *threadResult,
 Boolean recycleThread
);

Parameters
threadToDump

The thread ID of the thread to delete.

threadResult
A pointer to the thread’s result. The DisposeThread function places this result to an address which
you originally specify with the threadResult parameter of the NewThread function when you create
or allocate the thread. Pass a value of NULL if you are not interested in obtaining a function result.

recycleThread
A Boolean value that specifies whether to return the thread to the allocation pool or to remove it
entirely. Specify False to dispose of the thread entirely and True to return it to the thread pool.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
When a thread finishes executing, the Thread Manager automatically calls DisposeThread to delete it.
Therefore, the only reason for you to explicitly call DisposeThread is to recycle a terminating thread. To do
so, set the recycleThread parameter to True. The Thread Manager clears out the thread’s internal data
structure, resets it, and puts the thread in the thread pool where it can be used again as necessary.

The DisposeThread function sets the threadResult parameter to the thread’s function result. You allocate
the storage for the thread result when you create or allocate a thread with the NewThread function.

Functions 2091
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

You cannot explicitly dispose of the main application thread. If you attempt to do so, DisposeThread returns
the threadProtocolErr result code.

When your application terminates, the Thread Manager calls DisposeThread to terminate any active threads.
It terminates stopped and ready threads first but in no special order. It terminates the currently running
thread last. This thread should always be the main application thread.

To install a callback function to do special cleanup when a thread terminates, use the
SetThreadTerminator (page 2115) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DisposeThreadEntryUPP

void DisposeThreadEntryUPP (
 ThreadEntryUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

2092 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

DisposeThreadSchedulerUPP

void DisposeThreadSchedulerUPP (
 ThreadSchedulerUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DisposeThreadSwitchUPP

void DisposeThreadSwitchUPP (
 ThreadSwitchUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 2093
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

DisposeThreadTerminationUPP

void DisposeThreadTerminationUPP (
 ThreadTerminationUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

GetCurrentThread
Obtains the thread ID of the currently executing thread.

OSErr GetCurrentThread (
 ThreadID * currentThreadID
);

Parameters
currentThreadID

On return, a pointer to the thread ID of the current thread.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
You can use the thread ID obtained by GetCurrentThread in functions such as GetThreadState and
SetThreadState to get and set the state of a thread.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

2094 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

GetDefaultThreadStackSize
Determines the default stack size required by a thread.

OSErr GetDefaultThreadStackSize (
 ThreadStyle threadStyle,
 Size *stackSize
);

Parameters
threadStyle

The type of thread to get information about. Cooperative is the only type that you can specify.
Historically, the Thread Manger supported two types of threads, preemptive and cooperative, but the
Thread Manager no longer supports preemptive threads.

stackSize
On return, a pointer to the default stack size (in bytes). When you create a thread pool or an individual
thread, this is the stack size that the Thread Manager allocates when you specify the default size.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
Keep in mind that the default stack size is not an absolute value that you must use but is a rough estimate.

To determine how much stack space is available for a particular thread, use the
ThreadCurrentStackSpace (page 2117) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

GetFreeThreadCount
Determines how many threads are available to be allocated in a thread pool. (Deprecated in Mac OS X v10.3.
There is no replacement.)

OSErr GetFreeThreadCount (
 ThreadStyle threadStyle,
 SInt16 *freeCount
);

Parameters
threadStyle

The type of thread to get information about. Cooperative is the only type that you can specify.
Historically, the Thread Manger supported two types of threads, preemptive and cooperative, but the
Thread Manager no longer supports preemptive threads.

Functions 2095
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

freeCount
On return, a pointer to the number of threads available to be allocated.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The number of threads in the pool varies throughout execution of your application. Calls to
CreateThreadPool add threads to the pool and calls to the function NewThread (page 2104) , when an
existing thread is allocated, reduce the number of threads. You also add threads to the pool when you dispose
of a thread with the DisposeThread (page 2091) function and specify that the thread be recycled.

Use the GetSpecificFreeThreadCount (page 2096) function to determine how many threads of a particular
stack size are available.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Threads.h

GetSpecificFreeThreadCount
Determines how many threads with a stack size equal to or greater than the specified size are available to
be allocated in a thread pool. (Deprecated in Mac OS X v10.3. There is no replacement.)

OSErr GetSpecificFreeThreadCount (
 ThreadStyle threadStyle,
 Size stackSize,
 SInt16 *freeCount
);

Parameters
threadStyle

The type of thread to get information about. Cooperative is the only type that you can specify.
Historically, the Thread Manger supported two types of threads, preemptive and cooperative, but the
Thread Manager no longer supports preemptive threads.

stackSize
The stack size of the threads to get information about.

freeCount
On return, a pointer to the number of threads of the specified stack size available to be allocated.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

2096 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Discussion
The GetSpecificFreeThreadCount function determines how many threads with a stack size equal to or
greater than the specified size are available to be allocated. Use this function instead of
GetFreeThreadCount (page 2095) when you are interested not simply in the total number of available threads
but when you want to know the number of available threads of a specified stack size as well.

The number of threads in the pool varies throughout execution of your application. Calls to the function
CreateThreadPool (page 2088) add threads to the pool and calls to the function NewThread (page 2104) ,
when an existing thread is allocated, reduce the number of threads. You also add threads to the pool when
you dispose of a thread with the DisposeThread (page 2091) function and specify that the thread be recycled.

To determine how many threads of any stack size are available, use the GetFreeThreadCount function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Threads.h

GetThreadCurrentTaskRef
Obtains a thread task reference.

OSErr GetThreadCurrentTaskRef (
 ThreadTaskRef *threadTRef
);

Parameters
threadTRef

On return, a pointer to a thread task reference.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The thread task reference is somewhat of a misnomer because it identifies your application context, not a
particular thread. Identifying your application context is necessary in situations where you aren’t guaranteed
that your application is the current context—such as during the execution of an interrupt function. In such
cases, you need both the thread ID to identify the thread and the thread task reference to identify the
application context.

After you obtain the thread task reference, you can use it in the GetThreadStateGivenTaskRef (page 2099)
and SetThreadReadyGivenTaskRef (page 2110) functions to get and set information about specific threads
in your application at times when you are not guaranteed that your application is the current context.

Functions 2097
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

To get information about a thread when your application is not the current process, use the
GetThreadStateGivenTaskRef function.

To change the state of a thread from stopped to ready when your application is not the current process, use
the SetThreadReadyGivenTaskRef function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

GetThreadState
Obtains the state of a thread.

OSErr GetThreadState (
 ThreadID threadToGet,
 ThreadState *threadState
);

Parameters
threadToGet

The thread ID of the thread about which you want information.

threadState
On return, a pointer to the state of the thread specified by threadToGet.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
A thread can be in one of three states: ready to execute (kReadyThreadState), stopped (
kStoppedThreadState), or executing (kRunningThreadState).

To change the state of a specified thread, use SetThreadState (page 2112).

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

2098 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

GetThreadStateGivenTaskRef
Obtains the state of a thread when your application is not necessarily the current process—for example,
during execution of an interrupt function.

OSErr GetThreadStateGivenTaskRef (
 ThreadTaskRef threadTRef,
 ThreadID threadToGet,
 ThreadState *threadState
);

Parameters
threadTRef

The thread task reference of the application containing the thread whose state you want to determine.

threadToGet
The thread ID of the thread whose state you want to determine.

threadState
A pointer to a thread state variable in which the function places the state of the specified thread.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
You can use GetThreadStateGivenTaskRef at times when you aren’t guaranteed that your application
is the current context, such as during execution of an interrupt function. In such cases you must identify the
thread task reference (the application context) as well as the thread ID.

To determine the thread task reference (application context) for your application, use the
GetThreadCurrentTaskRef (page 2097) function.

To change the state of a thread from stopped to ready when your application is not the current process, use
the SetThreadReadyGivenTaskRef (page 2110) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 2099
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

InvokeDebuggerDisposeThreadUPP

void InvokeDebuggerDisposeThreadUPP (
 ThreadID threadDeleted,
 DebuggerDisposeThreadUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

InvokeDebuggerNewThreadUPP

void InvokeDebuggerNewThreadUPP (
 ThreadID threadCreated,
 DebuggerNewThreadUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

2100 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

InvokeDebuggerThreadSchedulerUPP

ThreadID InvokeDebuggerThreadSchedulerUPP (
 SchedulerInfoRecPtr schedulerInfo,
 DebuggerThreadSchedulerUPP userUPP
);

Parameters
schedulerInfo
userUPP

Return Value
See the description of the ThreadID data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

InvokeThreadEntryUPP

voidPtr InvokeThreadEntryUPP (
 void *threadParam,
 ThreadEntryUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 2101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

InvokeThreadSchedulerUPP

ThreadID InvokeThreadSchedulerUPP (
 SchedulerInfoRecPtr schedulerInfo,
 ThreadSchedulerUPP userUPP
);

Parameters
schedulerInfo
userUPP

Return Value
See the description of the ThreadID data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

InvokeThreadSwitchUPP

void InvokeThreadSwitchUPP (
 ThreadID threadBeingSwitched,
 void *switchProcParam,
 ThreadSwitchUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

2102 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

InvokeThreadTerminationUPP

void InvokeThreadTerminationUPP (
 ThreadID threadTerminated,
 void *terminationProcParam,
 ThreadTerminationUPP userUPP
);

Parameters
userUPP

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewDebuggerDisposeThreadUPP

DebuggerDisposeThreadUPP NewDebuggerDisposeThreadUPP (
 DebuggerDisposeThreadProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the DebuggerDisposeThreadUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 2103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

NewDebuggerNewThreadUPP

DebuggerNewThreadUPP NewDebuggerNewThreadUPP (
 DebuggerNewThreadProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the DebuggerNewThreadUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewDebuggerThreadSchedulerUPP

DebuggerThreadSchedulerUPP NewDebuggerThreadSchedulerUPP (
 DebuggerThreadSchedulerProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the DebuggerThreadSchedulerUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThread
Creates a new thread or allocates one from the existing pool of threads.

Modified

2104 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

OSErr NewThread (
 ThreadStyle threadStyle,
 ThreadEntryTPP threadEntry,
 void *threadParam,
 Size stackSize,
 ThreadOptions options,
 void **threadResult,
 ThreadID *threadMade
);

Parameters
threadStyle

The type of thread to create. Cooperative is the only type that you can specify. Historically, the Thread
Manger supported two types of threads, preemptive and cooperative, but the Thread Manager no
longer supports preemptive threads.

threadEntry
A pointer to the thread entry function.

threadParam
A pointer to a value that the Thread Manager passes as a parameter to the thread entry function.
Specify NULL if you are passing no information.

stackSize
The stack size (in bytes) to allocate for this thread. This stack must be large enough to handle saved
thread context, normal application stack usage, interrupt handling functions, and CPU exceptions.
Specify a stack size of 0 (zero) to request the Thread Manager’s default stack size.

options
Options that define characteristics of the new thread. See the Thread Option Constants (page
2132) data type for details on the options. You sum the options together to create a single options
parameter.

threadResult
On return, a pointer to the address of a location to hold the function result provided by the Thread
Option Constants (page 2132) function when the thread terminates. Specify NULL for this parameter
if you are not interested in the function result.

threadMade
On return, a pointer to the thread ID of the newly created or allocated thread. If there is an error,
threadMade points to a value of kNoThreadID.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The NewThread function obtains a thread ID that you can use in other Thread Manager functions to identify
the thread. If you want to allocate a thread from the pool of threads, specify the kUsePremadeThread option
of the options parameter. Otherwise, NewThread creates a new thread.

When you request a thread from the existing pool, the Thread Manager allocates one that best fits your
specified stack size. If you specify the kExactMatchThread option of the options parameter, the Thread
Manager allocates a thread whose stack exactly matches your stack-size requirement or, if it can’t allocate
one because no such thread exists, it returns the threadTooManyReqsErr result code.

Before making any calls to NewThread, be certain that you first have called the Memory Manager function
MaxApplZone to extend the application heap to its limit. You must call MaxApplZone from the main
application thread before any other threads in your application run.

Functions 2105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

When you call the NewThread function, you pass, as the threadEntry parameter, a pointer to the name of
the entry function to the thread. When the newly created thread runs initially, it begins by executing this
function.

You can use the threadParam parameter to pass thread-specific information to a newly created or allocated
thread. In the data structure pointed to by this parameter, you could place something like A5 information
or the address of a window to update. You could also use this parameter to specify a place for a thread’s
local storage.

Be sure to create the storage for the threadResult parameter in a place that is guaranteed to be available
when the thread terminates—for example, in an application global variable or in a local variable of the
application’s main function (the main thread, by definition, cannot be disposed of so it is always available).
Do not create the storage in a local variable of a subfunction that completes before the thread terminates
or the storage will become invalid.

For Carbon applications, the pointer to your thread entry function must be a universal procedure pointer
(UPP).

To dispose of a thread, use the DisposeThread function.

See the description of the Thread Option Constants (page 2132) data type for details on the characteristics
you can specify in the options parameter.

For more information about the thread entry function, see the ThreadEntryProcPtr (page 2122) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the new
thread callback. Use theNewThreadEntryUPP (page 2106) andDisposeThreadEntryUPP (page 2092) functions
to create and remove the UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThreadEntryUPP

ThreadEntryUPP NewThreadEntryUPP (
 ThreadEntryProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ThreadEntryUPP data type.

2106 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThreadSchedulerUPP

ThreadSchedulerUPP NewThreadSchedulerUPP (
 ThreadSchedulerProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ThreadSchedulerUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThreadSwitchUPP

ThreadSwitchUPP NewThreadSwitchUPP (
 ThreadSwitchProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ThreadSwitchUPP data type.

Functions 2107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

NewThreadTerminationUPP

ThreadTerminationUPP NewThreadTerminationUPP (
 ThreadTerminationProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ThreadTerminationUPP data type.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetDebuggerNotificationProcs
Installs functions that notify the debugger when a thread is created, disposed of, or scheduled.

Modified

OSErr SetDebuggerNotificationProcs (
 DebuggerNewThreadTPP notifyNewThread,
 DebuggerDisposeThreadTPP notifyDisposeThread,
 DebuggerThreadSchedulerTPP notifyThreadScheduler
);

Parameters
notifyNewThread

A pointer to the callback function that notifies the debugger when a thread is created.

2108 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

notifyDisposeThread
A pointer to the callback function that notifies the debugger when a thread is disposed of. This
function is called whether you manually dispose of a thread with the DisposeThread function or if
a thread disposes of itself automatically when it returns from its highest level of code.

notifyThreadScheduler
A pointer to the callback function that notifies the debugger when a thread is scheduled.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
You generally use this function only during development of an application.

The SetDebuggerNotificationProcs function installs three separate callback functions that return the
thread ID of a newly created thread, the thread ID of a newly disposed of thread, and the thread ID of a newly
scheduled thread.

The SetDebuggerNotificationProcs function always installs all three of the debugging functions. You
cannot set only one or two of these functions, nor can you chain them together. These restrictions ensure
that the function that calls SetDebuggerNotificationProcs owns all three of the debugging functions.
If you want to prevent one or two of these debugging functions from being called, you can do so by setting
them to NULL.

To guarantee that the debugger is getting an accurate view of scheduling, the Thread Manager doesn’t call
the scheduling-notification callback function until both the generic Thread Manager scheduler and any
custom thread scheduler have decided on a thread to schedule.

For Carbon applications, the pointers you pass to specify the callbacks must be universal procedure pointers
(UPPs).

To create or allocate a new thread, use the NewThread (page 2104) function.

To dispose of a thread, use the DisposeThread function.

To schedule a thread, you can use a yield function such as YieldToAnyThread (page 2118) or
YieldToThread (page 2119) or a function to change the state of a thread, such as SetThreadState (page
2112).

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the
notification callbacks. You must use the designated UPP creation and disposal functions. For example, for
the new thread notifier, you call the NewDebuggerNewThreadUPP (page 2104) and
DisposeDebuggerNewThreadUPP (page 2090) functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 2109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

SetThreadReadyGivenTaskRef
Changes the state of a thread from stopped to ready when your application is not the current process.

OSErr SetThreadReadyGivenTaskRef (
 ThreadTaskRef threadTRef,
 ThreadID threadToSet
);

Parameters
threadTRef

The thread task reference of the application containing the thread whose state you want to change.

threadToSet
The thread ID of the thread whose state you want to change.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
When you mark a thread as ready to run with this function, the Thread Manager does not put it immediately
into the scheduling queue but does so the next time it reschedules threads.

You can use SetThreadStateGivenTaskRef at times when you aren’t guaranteed that your application
is the current context, such as during execution of an interrupt function. In such cases you must identify the
thread task reference (the application context) as well as the thread ID.

You obtain the thread task reference for your application with the GetThreadCurrentTaskRef (page 2097)
function.

The SetThreadReadyGivenTaskRef function allows you to do one thing only—change a thread from
stopped to ready to execute. You cannot change the state of an executing thread to ready or stopped, nor
can you change the state of a ready thread to executing or stopped with this call.

To determine the state of a thread when your application is not the current process, use the
GetThreadStateGivenTaskRef (page 2099) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetThreadScheduler
Installs a custom scheduling function (custom scheduler).

Modified

2110 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

OSErr SetThreadScheduler (
 ThreadSchedulerTPP threadScheduler
);

Parameters
threadScheduler

A pointer to a custom scheduler. Specify NULL if you want to remove an installed custom scheduler
and use the default Thread Manager scheduling mechanism.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The SetThreadScheduler function installs a custom scheduler that runs in conjunction with the default
Thread Manager scheduling mechanism. The Thread Manager uses a scheduler information structure to pass
the custom scheduler the ID of the current thread and the ID of the thread that the Thread Manager has
scheduled to run next.

A custom scheduler should return to the Thread Manager the ID of the thread that it determines to schedule.
If it does not determine a particular thread to schedule, it should return the constant kNoThreadID and the
Thread Manager default scheduling mechanism schedules the next thread.

If you already have a custom scheduler installed when you call SetThreadScheduler, it replaces the old
one with a new one. If you want to remove your custom scheduler and return to using the default Thread
Manager scheduling mechanism, call SetThreadScheduler and specify a value of NULL for the parameter.

The SetThreadScheduler function automatically disables scheduling to avoid any reentrancy problems
with the custom scheduling function. Therefore, in your custom scheduling function, you should make no
yield calls or other calls that would cause scheduling to occur.

For Carbon applications, the pointer to your thread scheduler function must be a universal procedure pointer
(UPP).

For more information on the custom scheduling function, see the ThreadSchedulerProcPtr (page 2123)
function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the thread
scheduler callback. Use theNewThreadSchedulerUPP (page 2107) andDisposeThreadSchedulerUPP (page
2093) functions to create and remove the UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Functions 2111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

SetThreadState
Changes the state of any thread.

OSErr SetThreadState (
 ThreadID threadToSet,
 ThreadState newState,
 ThreadID suggestedThread
);

Parameters
threadToSet

The thread ID of the thread whose state is to be changed.

newState
The new state for the thread. You can specify ready to execute (kReadyThreadState), stopped
(kStoppedThreadState), or executing (kRunningThreadState).

suggestedThread
The thread ID of the next thread to run. You specify this thread if you are changing the state of the
currently executing thread to stopped or ready to run. Pass kNoThreadID if you do not want to
specify a particular thread to run next. In this case, the Thread Manager schedules the next available
thread to run.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The effect of SetThreadState depends on whether the thread you specify for changing is the currently
executing thread or another thread. If you specify the current thread and thus change the state to stopped
or ready, SetThreadState invokes the Thread Manager scheduling mechanism. The current thread
relinquishes control (it is put in the state you specify, stopped or ready) and the Thread Manager schedules
the thread that you specify with the suggestedThread parameter. If this thread is unavailable for running,
or if you passed kNoThreadID, the Thread Manager schedules the next available thread.

If you change the state of the current thread to ready, the Thread Manager suspends it awaiting of the CPU.
When it is rescheduled, SetThreadState regains control and returns to the function that called it.

If you have installed a custom scheduler, the Thread Manager passes it the thread ID of the suspended thread.

If you specify a thread other than the currently executing thread, no rescheduling occurs. If you change the
state from ready to stopped, the thread is removed from the scheduling queue. The Thread Manager does
not schedule this thread for execution again until you change its state to ready. On the other hand, if you
change the state from stopped to ready, you have in effect put the thread in the scheduling queue, and the
Thread Manager gives it CPU time as soon as it reaches the top of the scheduling queue.

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the application was launched.

To obtain the state of any thread, use the GetThreadState (page 2098) function.

To relinquish control to the next available thread, use the YieldToAnyThread (page 2118) function. To
relinquish control to a specific thread, use the YieldToThread (page 2119) function.

To set the state of the current thread before it exits a critical section of code, use the
SetThreadStateEndCritical (page 2113) function.

2112 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetThreadStateEndCritical
Changes the state of the current thread and exits that thread’s critical section at the same time.

OSErr SetThreadStateEndCritical (
 ThreadID threadToSet,
 ThreadState newState,
 ThreadID suggestedThread
);

Parameters
threadToSet

The thread ID of the thread whose state is to be changed.

newState
The new state for the thread. You can specify ready to execute (kReadyThreadState), stopped
(kStoppedThreadState) or executing (kRunningThreadState).

suggestedThread
The thread ID of the next thread to run. You specify this thread if you are changing the state of the
currently executing thread to stopped or ready to run. Pass kNoThreadID if you do not want to
specify a particular thread to run next. In this case, the Thread Manager schedules the next available
thread to run.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The SetThreadStateEndCritical function does in one step the same thing that ThreadEndCritical
and SetThreadState functions do in two steps.

Historically, the primary purpose of the SetThreadStateEndCritical function was to close the scheduling
window at the end of a critical section. A preemptive thread that was waiting while the critical section of
code was executing could begin executing before you changed the state of the current thread to stopped
with the SetThreadState function. Obviously, because the Thread Manager no longer supports preemptive
threads, this function is no longer necessary to close the scheduling window, but you can still use it to change
the state of a thread and exit a critical section in one step instead of two.

When you change the state of the currently executing thread, the Thread Manager schedules the thread you
specify with the suggestedThread parameter. If this thread is unavailable or if you pass kNoThreadID, the
Thread Manager schedules the next available thread.

Functions 2113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

To mark a section of code as critical, use the ThreadBeginCritical (page 2116) and the
ThreadEndCritical (page 2118) functions.

To change the state of any thread, use the SetThreadState (page 2112) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetThreadSwitcher
Installs a custom context-switching function for any thread.

Modified

OSErr SetThreadSwitcher (
 ThreadID thread,
 ThreadSwitchTPP threadSwitcher,
 void *switchProcParam,
 Boolean inOrOut
);

Parameters
thread

The thread ID of the thread to associate with a context-switching function.

threadSwitcher
A pointer to the context-switching function.

switchProcParam
A pointer to a thread-specific parameter that you pass to the context-switching function.

inOrOut
A Boolean value that indicates whether the Thread Manager calls the context-switching function
when the specified thread switches in (True) or when it is switched out by another thread (False).

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The custom switching function allows you to save context information in addition to the default context
information that the Thread Manager automatically saves when it switches contexts. The default context
information consists of the CPU registers, the FPU registers (if any), and the location of the thread’s context.

2114 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

You must actually define two context-switching functions, one for leaving a thread and another for entering
a thread. When leaving a thread, you call the outer context-switching function to save additional context
information. When reentering a thread, you call the inner context-switching function to restore the extra
information that was saved on exit. Use the inOrOut parameter of the SetThreadSwitcher function to
specify which type of context-switching function is being installed.

You can pass a different switchProcParam parameter to each thread, which allows you to write a single,
application-wide custom switching function and then pass any thread-specific information when the Thread
Manager calls the switching function for that thread.

The SetThreadSwitcher function automatically disables scheduling to avoid any reentrancy problems
with the custom switching function. Therefore, in the custom switching function, you should make no yield
calls or other calls that would cause scheduling to occur.

For Carbon applications, the pointer to your thread switcher function must be a universal procedure pointer
(UPP).

For more information on the custom context-switching function, see the ThreadSwitchProcPtr (page 2124)
function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the thread
switcher callback. Use the NewThreadSwitchUPP (page 2107) and DisposeThreadSwitchUPP (page 2093)
functions to create and remove the UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

SetThreadTerminator
Installs a custom thread-termination function for a thread.

Modified

OSErr SetThreadTerminator (
 ThreadID thread,
 ThreadTerminationTPP threadTerminator,
 void *terminationProcParam
);

Parameters
thread

The thread ID of the thread to associate with the thread-termination function.

Functions 2115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

threadTerminator
A pointer to the thread-termination function.

terminationProcParam
A pointer to a thread-specific parameter that you pass to the thread-termination function.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The Thread Manager calls the custom termination function whenever the specified thread completes execution
of its code or when you manually dispose of the thread with the DisposeThread (page 2091) function.

You can pass a different terminationProcParam parameter to each thread, which allows you to write a
single, application-wide custom thread-termination function and then pass any thread-specific information
when the Thread Manager calls the termination function for that thread.

For Carbon applications, the pointer to your thread terminator function must be a universal procedure pointer
(UPP).

For more information on the custom thread-termination function, see theThreadTerminationProcPtr (page
2125) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Carbon Porting Notes

For Carbon applications, you must create and pass a universal procedure pointer (UPP) to specify the thread
terminator callback. Use the NewThreadTerminationUPP (page 2108) and
DisposeThreadTerminationUPP (page 2094) functions to create and remove the UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadBeginCritical
Indicates that the thread is entering a critical code section.

OSErr ThreadBeginCritical (
 void
);

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

2116 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Discussion
The ThreadBeginCritical function disables scheduling by marking the beginning of a section of critical
code. That is, no other threads in the current application can run—even if the current thread yields
control—until the current thread exits the critical section (by calling the ThreadEndCritical function).
Disabling scheduling allows the currently executing function to look at or change shared or global data safely.
You can nest critical sections within a thread.

To mark the end of a critical code section and turn scheduling back on, use the ThreadEndCritical (page
2118) function. If you also need to set the state of the current thread before scheduling is turned back on, use
the SetThreadStateEndCritical (page 2113) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadCurrentStackSpace
Determines the amount of stack space that is available for any thread in your application.

OSErr ThreadCurrentStackSpace (
 ThreadID thread,
 ByteCount *freeStack
);

Parameters
thread

The thread ID of the thread about which you want information.

freeStack
On return, a pointer to the amount of stack space (in bytes) that is available to the specified thread.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
This function is primarily useful during debugging since you determine the maximum amount of stack space
you need for any particular thread before you ship your application. However, if your application calls a
recursive function that could call itself many times, you might want to use ThreadCurrentStackSpace to
keep track of the stack space and take appropriate action if it becomes too low.

To determine the default size that the Thread Manager assigns to threads use the
GetDefaultThreadStackSize (page 2095) function.

Functions 2117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadEndCritical
Indicates that the thread is leaving a critical code section.

OSErr ThreadEndCritical (
 void
);

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
After a call to the Thread, all scheduling operations are now available to the application.

Use the ThreadBeginCritical (page 2116) function to mark the beginning of a critical code section and
turn scheduling off.

If you need to set the state of the current thread before scheduling is turned back on, use the
SetThreadStateEndCritical (page 2113) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

YieldToAnyThread
Relinquishes the current thread’s control.

2118 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

OSErr YieldToAnyThread (
 void
);

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Discussion
The YieldToAnyThread function invokes the Thread Manager’s scheduling mechanism. The current thread
relinquishes control and the Thread Manager schedules the next available thread.

The current thread is suspended in the ready state and awaits rescheduling when the CPU is available. When
the suspended thread is scheduled again, YieldToAnyThread regains control and returns to the function
that called it.

If you have installed a custom scheduler, the Thread Manager passes it the thread ID of the suspended thread.

In each thread you must make one or more strategically placed calls to relinquish control to another thread.
You can either make this yield call or another yield call such as YieldToThread; or you can make a call such
as SetThreadState to explicitly change the state of the thread.

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the application was launched.

To relinquish control to a specific thread, use the YieldToThread (page 2119) function.

To change the state of a specified thread, use the SetThreadState (page 2112) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

YieldToThread
Relinquishes the current thread’s control to a particular thread.

OSErr YieldToThread (
 ThreadID suggestedThread
);

Parameters
suggestedThread

The ID of the thread to yield control to.

Return Value
A result code. See “Thread Manager Result Codes” (page 2134).

Functions 2119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Discussion
The YieldToThread function invokes the Thread Manager’s scheduling mechanism. The current thread
relinquishes control and passes the thread ID of a thread for the Thread Manager to schedule. The Thread
Manager schedules this thread if it is available. Otherwise, the Thread Manager schedules the next available
thread.

The current thread is suspended in the ready state and awaits rescheduling when the CPU is available. When
the suspended thread is scheduled again, YieldToThread regains control and returns to the function that
called it.

If you have installed a custom scheduler, the Thread Manager passes it the thread ID of the suspended thread.

In each thread you must make one or more strategically placed calls to relinquish control to another thread.
You can either make this yield call or another yield call such as YieldToAnyThread; or you can make a call
such as SetThreadState to explicitly change the state of the thread.

Threads must yield in the CPU addressing mode (24-bit or 32-bit) in which the application was launched.

To relinquish control without naming a specific thread, use the YieldToAnyThread (page 2118) function.

To change the state of a specified thread, use the SetThreadState (page 2112) function.

Special Considerations

Active development with the Thread Manager is not recommended. The API is intended only for developers
who are porting their applications to Mac OS X and whose code relies on the cooperative threading model.
If you are writing a new Carbon application, you should use POSIX threads or the Multiprocessing Services
API instead. See Threading Programming Guide for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Callbacks

DebuggerDisposeThreadProcPtr
Defines a pointer to a dispose thread debugging callback function. A dispose thread debugging callback
function is a debugging function that the Thread Manager calls whenever it disposes of a thread.

typedef void (*DebuggerDisposeThreadProcPtr)
(
 ThreadID threadDeleted
);

If you name your function MyDebuggerDisposeThreadProc, you would declare it like this:

void MyDebuggerDisposeThreadProcPtr (
 ThreadID threadDeleted
);

2120 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Parameters
threadDeleted

The thread ID of the thread being disposed of.

Return Value
Discussion
The MyDebuggerDisposeThreadCallback function is one of three debugging functions that you can
install with the SetDebuggerNotificationProcs (page 2108) function. The Thread Manager calls
MyDebuggerDisposeThreadCallback whenever an application disposes of a thread. The thread manager
calls this debugging function whether you manually call DisposeThread (page 2091) to dispose of a thread
or if a thread finishes executing its code and the Thread Manager automatically disposes of it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerNewThreadProcPtr
Defines a pointer to a new thread debugging callback function. A new thread debugging callback function
is a debugging function that the Thread Manager calls whenever it creates a new thread.

typedef void (*DebuggerNewThreadProcPtr)
(
 ThreadID threadCreated
);

If you name your function MyDebuggerNewThreadProc, you would declare it like this:

void MyDebuggerNewThreadProcPtr (
 ThreadID threadCreated
);

Parameters
threadCreated

The thread ID of the thread being created.

Return Value
Discussion
The MyDebuggerNewThreadCallback function is one of three debugging functions that you can install
with the SetDebuggerNotificationProcs (page 2108) function. The Thread Manager calls
MyDebuggerNewThreadCallback whenever an application creates or allocates a new thread with the
NewThread (page 2104) function. The Thread Manager does not call MyDebuggerNewThreadCallbackwhen
an application creates a thread pool with the CreateThreadPool function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Callbacks 2121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

DebuggerThreadSchedulerProcPtr
Defines a pointer to a thread scheduler debugging callback function. A thread scheduler debugging callback
function is a debugging function that the Thread Manager calls whenever a thread is scheduled.

typedef ThreadID (*DebuggerThreadSchedulerProcPtr)
(
 SchedulerInfoRecPtr schedulerInfo
);

If you name your function MyDebuggerThreadSchedulerProc, you would declare it like this:

ThreadID MyDebuggerThreadSchedulerProcPtr
(
 SchedulerInfoRecPtr schedulerInfo
);

Parameters
schedulerInfo

A pointer to a scheduler information structure that the SetDebuggerNotificationProcs function
passes to the MyDebuggerThreadSchedulerCallback function. Among other information, the
scheduler information structure contains the ID of the current thread and the ID of the thread that
the Thread Manager has scheduled to run next.

Return Value
See the description of the ThreadID data type.

Discussion
The MyDebuggerThreadSchedulerCallback function is one of three debugging functions that you can
install with the SetDebuggerNotificationProcs (page 2108) function. The Thread Manager calls
MyDebuggerThreadSchedulerCallback whenever an application schedules a new thread to run. The
MyDebuggerThreadSchedulerCallback function gets the last look at the thread being scheduled—that
is, the Thread Manager calls this function after the Thread Manager default scheduling mechanism and a
custom scheduler, if you have installed one, decide on the next thread to schedule.

If you wish, you can use this debugging callback function to schedule a different thread than that chosen by
the Thread Manager and any custom scheduling function. The MyDebuggerThreadSchedulerCallback
returns the thread ID of the next thread to schedule. The MyDebuggerThreadSchedulerCallback can
specify kNoThreadID for the thread ID if you do not want to change the decision of the Thread Manager
default scheduler or a custom scheduler.

To schedule a thread, use functions such as YieldToAnyThread (page 2118) , YieldToThread (page 2119) ,
and SetThreadState (page 2112).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadEntryProcPtr
Defines a pointer to a thread entry callback function. Your thread entry callback function provides an entry
point to a thread that you create in your application.

2122 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

typedef voidPtr (*ThreadEntryProcPtr)
(
 void * threadParam
);

If you name your function MyThreadEntryProc, you would declare it like this:

voidPtr MyThreadEntryProcPtr (
 void * threadParam
);

Parameters
threadParam

A pointer to a void data structure passed to this function by the NewThread function.

Return Value
Discussion
When you create or allocate a new thread with the NewThread function, you pass the name of this entry
function. You also pass a parameter that the Thread Manager passes on to the MyThreadEntryCallback
function. You can use this parameter to pass thread-specific information to the newly created or allocated
thread. For example, you could pass something like A5 information or the address of a window to update.
Or you could use this parameter to specify local storage for a thread that other threads could access.

When the code in a thread finishes executing, the Thread Manager automatically calls the
DisposeThread (page 2091) function to dispose of the thread. TheMyThreadEntryCallback function passes
its function result to DisposeThread. The DisposeThread function passes this result back to the NewThread
function that called MyThreadEntryCallback to begin with.

This mechanism allows you to spawn a thread that does some work and then continue with your original
thread. When the spawned thread is finished doing its work—for example a calculation—it returns the result
to the original thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSchedulerProcPtr
Defines a pointer to a thread scheduler callback function. Your thread scheduler callback function supplements
the Thread Manager default scheduling mechanism.

typedef ThreadID (*ThreadSchedulerProcPtr)
(
 SchedulerInfoRecPtr schedulerInfo
);

If you name your function MyThreadSchedulerProc, you would declare it like this:

ThreadID MyThreadSchedulerProcPtr (
 SchedulerInfoRecPtr schedulerInfo
);

Callbacks 2123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Parameters
schedulerInfo

A pointer to the scheduler information structure that the Thread Manager uses to pass information
to MyThreadSchedulerCallback.

Return Value
See the description of the ThreadID data type.

Discussion
The MyThreadSchedulerCallback function does not supplant the Thread Manager scheduling mechanism
but rather works in conjunction with it.

Whenever scheduling occurs, the Thread Manager passes a scheduler information structure to
MyThreadSchedulerCallback. Among other information, the scheduler information structure contains
the thread ID of the current thread and the thread ID of the thread that the application has scheduled to run
next.

The MyThreadSchedulerCallback function returns to the Thread Manager the thread ID of the thread
that it has chosen to schedule and the Thread Manager does the actual scheduling. If
MyThreadSchedulerCallback decides not to schedule a thread, it returns the constant kNoThreadID
and the Thread Manager default scheduling mechanism schedules the next thread.

When the SetThreadScheduler function installs the custom scheduler, it automatically disables scheduling
to avoid any reentrancy problems. Therefore, in the custom scheduler, you should make no yield calls or
other calls that would cause scheduling to occur.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSwitchProcPtr
Defines a pointer to a thread switch callback function. Your thread switch callback function adds to the thread
context information that the Thread Manager saves and restores.

typedef void (*ThreadSwitchProcPtr) (
 ThreadID threadBeingSwitched,
 void * switchProcParam
);

If you name your function MyThreadSwitchProc, you would declare it like this:

void MyThreadSwitchProcPtr (
 ThreadID threadBeingSwitched,
 void * switchProcParam
);

Parameters
threadBeingSwitched

The thread ID of the thread whose context is being switched.

2124 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

switchProcParam
A pointer to a parameter that the SetThreadSwitcher function passes to
MyThreadSwitchCallback.

Return Value
Discussion
The custom switching function allows you to save and restore context information in addition to the default
context information that the Thread Manager automatically saves and restores when it switches contexts.
You must actually define two context-switching functions, one for leaving a thread and another for entering
a thread. When leaving a thread, you call the outer context-switching function to save additional context
information. When reentering a thread, you call the inner context-switching function to restore the extra
information that was saved on exit.

The default context information consists of the CPU registers, the FPU registers (if any), and the location of
the thread’s context.

When the SetThreadSwitcher function installs the custom switching function, it automatically disables
scheduling to avoid any reentrancy problems. Therefore, in the custom switching function, you should make
no yield calls or other calls that would cause scheduling to occur.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadTerminationProcPtr
Defines a pointer to a thread termination callback function. Your thread termination callback function does
additional cleanup when the code in a thread finishes executing.

typedef void (*ThreadTerminationProcPtr)
(
 ThreadID threadTerminated,
 void * terminationProcParam
);

If you name your function MyThreadTerminationProc, you would declare it like this:

void MyThreadTerminationProcPtr (
 ThreadID threadTerminated,
 void * terminationProcParam
);

Parameters
threadTerminated

The thread ID of the thread being disposed of.

terminationProcParam
A pointer to a void data structure that the SetThreadTerminator function passes to
MyThreadTerminationCallback.

Callbacks 2125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Return Value
Discussion
You use the SetThreadTerminator function to install the MyThreadTerminationCallback custom
termination function. The custom termination function allows you to do additional cleanup when the code
in a thread finishes executing or when you call the DisposeThread (page 2091) function to manually dispose
of a thread.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Data Types

DebuggerDisposeThreadUPP

typedef DebuggerDisposeThreadProcPtr DebuggerDisposeThreadUPP;

Discussion
For more information, see the description of the DebuggerDisposeThreadUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerDisposeThreadTPP

typedef DebuggerDisposeThreadUPP DebuggerDisposeThreadTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerNewThreadTPP

typedef DebuggerNewThreadUPP DebuggerNewThreadTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

2126 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Declared In
Threads.h

DebuggerNewThreadUPP

typedef DebuggerNewThreadProcPtr DebuggerNewThreadUPP;

Discussion
For more information, see the description of the DebuggerNewThreadUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerThreadSchedulerUPP

typedef DebuggerThreadSchedulerProcPtr DebuggerThreadSchedulerUPP;

Discussion
For more information, see the description of the DebuggerThreadSchedulerUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

DebuggerThreadSchedulerTPP

typedef DebuggerThreadSchedulerUPP DebuggerThreadSchedulerTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Data Types 2127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

SchedulerInfoRec

struct SchedulerInfoRec {
 UInt32 InfoRecSize;
 ThreadID CurrentThreadID;
 ThreadID SuggestedThreadID;
 ThreadID InterruptedCoopThreadID;
};
typedef struct SchedulerInfoRec SchedulerInfoRec;
typedef SchedulerInfoRec * SchedulerInfoRecPtr;

Fields
InfoRecSize

The size of the structure.

CurrentThreadID
The thread ID of the current thread.

SuggestedThreadID
The thread ID of the thread that the application has suggested to run.

InterruptedCoopThreadID
Historically, the thread ID of a preempted cooperative thread if a cooperative thread has been
interrupted and has not yet resumed execution. Because it no longer supports preemptive threads,
the Thread Manager always passes the constant kNoThreadID to indicate that there is no thread
that has been interrupted.

Discussion
You can, if you wish, use the SetThreadScheduler (page 2110) function to install a custom scheduling
function to work in conjunction with the default Thread Manager scheduling mechanism. The Thread Manager
uses the scheduler information structure to pass information to the custom scheduling function that allows
it to decide which thread, if any, to schedule next.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadEntryTPP

typedef ThreadEntryUPP ThreadEntryTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

2128 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

ThreadEntryUPP

typedef ThreadEntryProcPtr ThreadEntryUPP;

Discussion
For more information, see the description of the ThreadEntryUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSchedulerTPP

typedef ThreadSchedulerUPP ThreadSchedulerTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSchedulerUPP

typedef ThreadSchedulerProcPtr ThreadSchedulerUPP;

Discussion
For more information, see the description of the ThreadSchedulerUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadSwitchTPP

typedef ThreadSwitchUPP ThreadSwitchTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Data Types 2129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

ThreadSwitchUPP

typedef ThreadSwitchProcPtr ThreadSwitchUPP;

Discussion
For more information, see the description of the ThreadSwitchUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadTaskRef
Represents a thread task reference.

typedef void* ThreadTaskRef;

Discussion
In certain cases, such as during execution of an interrupt function, your application is not guaranteed to be
the current process. Since threads are defined within an application context, it follows that in cases such as
these, you cannot get or set information about any particular threads in your application unless you have a
way of identifying the application context. The thread task reference gives you a way of doing this.

You can obtain the thread task reference by calling GetThreadCurrentTaskRef (page 2097) at a time when
you know your application is the current context. Later, during execution of an interrupt function, you can
use the thread task reference to identify your application. For example, you can pass the thread task reference
to functions such asGetThreadStateGivenTaskRef (page 2099) andSetThreadReadyGivenTaskRef (page
2110) in an interrupt function to get and set information about the state of particular threads in your application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

ThreadTerminationTPP

typedef ThreadTerminationUPP ThreadTerminationTPP;

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

2130 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

ThreadTerminationUPP

typedef ThreadTerminationProcPtr ThreadTerminationUPP;

Discussion
For more information, see the description of the ThreadTerminationUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Threads.h

Constants

Thread ID Constants
The ThreadID data type defines the thread ID.

typedef UInt32 ThreadID;
enum {
 kNoThreadID = 0,
 kCurrentThreadID = 1,
 kApplicationThreadID = 2
};

Constants
kNoThreadID

Indicates no thread; for example, you can use a function such as SetThreadState (page 2112) to put
the current thread in the stopped state and pass kNoThreadID to indicate that you don’t care which
thread runs next.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kCurrentThreadID
Identifies the currently executing thread.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kApplicationThreadID
Identifies the main application thread this is the cooperative thread that the Thread Manager creates
at launch time. You cannot dispose of this thread. All applications—even those that are not aware of
the Thread Manager—have one main application thread. The Thread Manager assumes that the main
application thread is responsible for event gathering when an operating-system event occurs, the
Thread Manager schedules the main application thread as the next thread to execute.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

Constants 2131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Discussion
The Thread Manager assigns a thread ID to each thread that you create or allocate with the NewThread (page
2104) function. The thread ID uniquely identifies a thread within an application context. You can use the thread
ID in functions that schedule execution of a particular thread, dispose of a thread, and get and set information
about a thread; for example, you pass the thread ID to functions such as YieldToThread (page 2119) ,
DisposeThread (page 2091) , and GetThreadState (page 2098) .

In addition to the specific thread IDs that the NewThread function returns, you can use the three Thread
Manager constants described here.

Thread Option Constants

typedef UInt32 ThreadOptions;
enum {
 kNewSuspend = (1 << 0),
 kUsePremadeThread = (1 << 1),
 kCreateIfNeeded = (1 << 2),
 kFPUNotNeeded = (1 << 3),
 kExactMatchThread = (1 << 4)
};

Constants
kNewSuspend

Begin a new thread in the stopped state.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kUsePremadeThread
Use a thread from the existing supply.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kCreateIfNeeded
Create a new thread if one with the proper style and stack size requirements does not exist.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kFPUNotNeeded
Do not save the FPU context. This saves time when switching contexts. Note, however, that for PowerPC
threads, the Thread Manager always saves the FPU registers regardless of how you set this option.
Because the PowerPC microprocessor uses the FPU registers for optimizations, they could contain
necessary information.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kExactMatchThread
Allocate a thread from the pool only if it exactly matches the stack-size request. Without this option,
a thread is allocated that best fits the request—that is, a thread whose stack is greater than or equal
to the requested size.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

2132 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Discussion
When you create or allocate a new thread with the NewThread (page 2104) function, you can specify thread
options that define certain characteristics of the thread, using the values described here. To specify more
than one option, you sum them together and pass them as a single parameter to the NewThread function.

The ThreadOptions data type defines the thread options.

Thread State Constants

typedef UInt16 ThreadState;
enum {
 kReadyThreadState = 0,
 kStoppedThreadState = 1,
 kRunningThreadState = 2
};

Constants
kReadyThreadState

The thread is ready to run.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kStoppedThreadState
The thread is stopped and not ready to run.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kRunningThreadState
The thread is running.

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

Discussion
The Thread Manager functions which get and set information about the state of a thread, such as
GetThreadState (page 2098) and SetThreadState (page 2112) , use these values.

Thread Style Constants

typedef UInt32 ThreadStyle;
enum {
 kCooperativeThread = 1L << 0,
 kPreemptiveThread = 1L << 1
};

Constants
kCooperativeThread

Available in Mac OS X v10.0 and later.

Declared in Threads.h.

kPreemptiveThread
Available in Mac OS X v10.0 and later.

Declared in Threads.h.

Constants 2133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Discussion
Historically, the Thread Manager defined two types of threads to run in an application context: cooperative
and preemptive, but now it supports only cooperative threads.

Although the Thread Manager only supports a single type of thread, many Thread Manager functions (for
historical reasons) require you to use the thread type to specify the type of the thread.

The ThreadStyle data type specifies the type of a thread.

Because there is only one type of thread (cooperative) the thread type accepts a single value,
kCooperativeThread.

Result Codes

The most common result codes returned by Thread Manager are listed below.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-617threadTooManyReqsErr

Available in Mac OS X v10.0 and later.-618threadNotFoundErr

Available in Mac OS X v10.0 and later.-619threadProtocolErr

Gestalt Constants

You can check for version and feature availability information by using the Thread Manager selectors defined
in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.

2134 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

Thread Manager Reference

Framework: CoreServices/CoreServices.h

Declared in Timer.h

Overview

The Time Manager allows applications and other software to schedule routines for execution at a later time.
By suitably defining the routine that is to be executed later, you can use the Time Manager to accomplish a
wide range of time-related activities. For example, because a routine can reschedule itself for later execution,
the Time Manager allows your application to perform periodic or repeated actions. You can use the Time
Manager to schedule routines for execution after a specified delay; set up tasks that run periodically; compute
the time a routine takes to run; and coordinate and synchronize actions in the Macintosh computer.

The Time Manager provides a hardware-independent method of performing these time-related tasks. In
general, you should use the Time Manager instead of timing loops, which can vary in duration because they
depend on clock speed and interrupt-handling speed.

Carbon supports the Time Manager. However, the interface for callbacks will change because the current
task record is accessible only from 68K code.

Functions by Task

Installing and Removing Tasks

InstallTimeTask (page 2137) Deprecated in Mac OS X v10.4
Installs a task structure into the Time Manager task queue. (Deprecated. Use Carbon Event Loop timers
or Cocoa NSTImers instead.)

InstallXTimeTask (page 2138) Deprecated in Mac OS X v10.4
Installs a task, taking advantage of the drift-free, fixed-frequency timing services of the extended Time
Manager. (Deprecated. Use Carbon Event Loop timers or Cocoa NSTImers instead.)

RemoveTimeTask (page 2143) Deprecated in Mac OS X v10.4
Removes a task from the Time Manager queue. (Deprecated. Use Carbon Event Loop timers or Cocoa
NSTImers instead.)

Overview 2135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

Activating Tasks

PrimeTimeTask (page 2142) Deprecated in Mac OS X v10.4
Activates a task in the Time Manager queue. (Deprecated. Use Carbon Event Loop timers or Cocoa
NSTImers instead.)

Measuring Time

Microseconds (page 2141)
Determines the number of microseconds that have elapsed since system startup time.

Working With Your Time Manager Callback Function

NewTimerUPP (page 2141)
Creates a new universal procedure pointer (UPP) to your Time Manager task callback. (Deprecated.
Use Carbon Event Loop timers or Cocoa NSTImers instead.)

InvokeTimerUPP (page 2140)
Invokes your Time Manager task callback function. (Deprecated. Use Carbon Event Loop timers or
Cocoa NSTImers instead.)

DisposeTimerUPP (page 2137)
Disposes of the universal procedure pointer (UPP) to your Time Manager task callback function.
(Deprecated. Use Carbon Event Loop timers or Cocoa NSTImers instead.)

Obsolete Functions

InsTime (page 2139) Deprecated in Mac OS X v10.4
Installs a task record into the Time Manager task queue. (Deprecated. Use Carbon Event Loop timers
or Cocoa NSTImers instead.)

InsXTime (page 2139) Deprecated in Mac OS X v10.4
Installs an extended task record into the Time Manager task queue. (Deprecated. Use Carbon Event
Loop timers or Cocoa NSTImers instead.)

PrimeTime (page 2142) Deprecated in Mac OS X v10.4
Activates a task in the Time Manager queue. (Deprecated. Use Carbon Event Loop timers or Cocoa
NSTImers instead.)

RmvTime (page 2144) Deprecated in Mac OS X v10.4
Remove a task from the Time Manager queue. (Deprecated. Use Carbon Event Loop timers or Cocoa
NSTImers instead.)

2136 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

Functions

DisposeTimerUPP
Disposes of the universal procedure pointer (UPP) to your Time Manager task callback function. (Deprecated.
Use Carbon Event Loop timers or Cocoa NSTImers instead.)

void DisposeTimerUPP (
 TimerUPP userUPP
);

Parameters
userUPP

A UPP to your callback function.

Discussion
See the callback TimerProcPtr (page 2145) for more information.

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Timer.h

InstallTimeTask
Installs a task structure into the Time Manager task queue. (Deprecated in Mac OS X v10.4. Use Carbon Event
Loop timers or Cocoa NSTImers instead.)

OSErr InstallTimeTask (
 QElemPtr tmTaskPtr
);

Parameters
tmTaskPtr

A pointer to an original task structure to be installed in the queue.

Return Value
A result code. See “Time Manager Result Codes” (page 2147).

Discussion
The InstallTimeTask function adds the Time Manager task structure specified by the tmTaskPtrparameter
to the Time Manager queue. Your application should fill in the tmAddr field of the task structure and should
set the tmCount field to 0. The tmTaskPtr parameter must point to an original Time Manager task structure.

Functions 2137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

With the revised and extended Time Managers, you can set the tmAddr field to NULL if you do not want a
task to execute when the delay passed to the PrimeTime function expires. Also, the revised Time Manager
resets the high-order bit of the qType field to 0 when you call the InsTime function.

The InstallTimeTask function, which returns a value of type OSErr, takes the place of InsTime.

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0.2 and later when running Mac OS 9.1 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Timer.h

InstallXTimeTask
Installs a task, taking advantage of the drift-free, fixed-frequency timing services of the extended Time
Manager. (Deprecated in Mac OS X v10.4. Use Carbon Event Loop timers or Cocoa NSTImers instead.)

OSErr InstallXTimeTask (
 QElemPtr tmTaskPtr
);

Parameters
tmTaskPtr

A pointer to an extended task structure to be installed in the queue.

Return Value
A result code. See “Time Manager Result Codes” (page 2147).

Discussion
The InstallXTimeTask function adds the Time Manager task structure specified by tmTaskPtr to the
Time Manager queue. Use InstallXTimeTask only if you wish to use the drift-free, fixed-frequency timing
services of the extended Time Manager; use InstallTimeTask in all other cases. The tmTaskPtr parameter
must point to an extended Time Manager task structure. Your application must fill in the tmAddr field of
that task. You should set the tmWakeUp and tmReserved fields to 0 the first time you call InsXTime.

With the extended Time Manager, you can set tmAddr to NULL if you do not want a task to execute when
the delay passed to PrimeTime expires. Also, InsXTime resets the high-order bit of the qType field to 0.

The InstallXTimeTask function, which returns a value of type OSErr, takes the place of InsXTime.

2138 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0.2 and later when running Mac OS 9.1 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Timer.h

InsTime
Installs a task record into the Time Manager task queue. (Deprecated in Mac OS X v10.4. Use Carbon Event
Loop timers or Cocoa NSTImers instead.)

Not Recommended

void InsTime (
 QElemPtr tmTaskPtr
);

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Timer.h

InsXTime
Installs an extended task record into the Time Manager task queue. (Deprecated in Mac OS X v10.4. Use
Carbon Event Loop timers or Cocoa NSTImers instead.)

Not Recommended

Functions 2139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

void InsXTime (
 QElemPtr tmTaskPtr
);

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Timer.h

InvokeTimerUPP
Invokes your Time Manager task callback function. (Deprecated. Use Carbon Event Loop timers or Cocoa
NSTImers instead.)

void InvokeTimerUPP (
 TMTaskPtr tmTaskPtr,
 TimerUPP userUPP
);

Parameters
tmTaskPtr

A pointer to a structure of type TMTask containing the information about the task.

userUPP
A UPP to your callback function.

Discussion
See the callback TimerProcPtr (page 2145) for more information.

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Timer.h

2140 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

Microseconds
Determines the number of microseconds that have elapsed since system startup time.

void Microseconds (
 UnsignedWide *microTickCount
);

Parameters
microTickCount

The number of microseconds elapsed since system startup.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.

Declared In
Timer.h

NewTimerUPP
Creates a new universal procedure pointer (UPP) to your Time Manager task callback. (Deprecated. Use
Carbon Event Loop timers or Cocoa NSTImers instead.)

TimerUPP NewTimerUPP (
 TimerProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your Time Manager event callback function. For information on how to create a Time
Manager event callback see TimerProcPtr (page 2145)

Return Value
A UPP to your callback function. See the description of the TimerUPP data type.

Discussion
See the callback TimerProcPtr (page 2145) for more information.

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Timer.h

Functions 2141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

PrimeTime
Activates a task in the Time Manager queue. (Deprecated in Mac OS X v10.4. Use Carbon Event Loop timers
or Cocoa NSTImers instead.)

Not Recommended

void PrimeTime (
 QElemPtr tmTaskPtr,
 long count
);

Discussion
This function is deprecated. You should use the function PrimeTimeTask (page 2142) instead.

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Timer.h

PrimeTimeTask
Activates a task in the Time Manager queue. (Deprecated in Mac OS X v10.4. Use Carbon Event Loop timers
or Cocoa NSTImers instead.)

OSErr PrimeTimeTask (
 QElemPtr tmTaskPtr,
 long count
);

Parameters
tmTaskPtr

A pointer to a task structure already installed in the queue.

count
The desired delay before execution of the task.

Return Value
A result code. See “Time Manager Result Codes” (page 2147).

Discussion
The PrimeTimeTask function schedules the task specified by the tmAddr field of the structure pointed to
by the tmTaskPtr parameter for execution after the delay specified by the count parameter has elapsed.

2142 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

If the count parameter is a positive value, it is interpreted as milliseconds. If count is a negative value, it is
interpreted in negated microseconds. Microsecond delays are allowable only in the revised and extended
Time Managers.

The task record specified by the tmTaskPtr parameter must already be installed in the queue (by a previous
call to the functionsInstallTimeTask (page 2137) orInstallXTimeTask (page 2138)) before your application
calls the PrimeTimeTask function. The PrimeTimeTask function returns immediately, and the specified
task is executed after the specified delay has elapsed. If you call the PrimeTimeTask function with a time
delay of 0, the task runs as soon as interrupts are enabled.

In the revised and extended Time Managers, the PrimeTimeTask function sets the high-order bit of the
qType field to 1. In addition, any value of the count parameter that exceeds the maximum millisecond delay
is reduced to the maximum. If you stop an unexpired task (by calling the function RemoveTimeTask (page
2143)) and then reinstall it (by calling the InstallXTimeTask function), you can continue the previous delay
by calling the PrimeTimeTask function with the count parameter set to 0.

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0.2 and later when running Mac OS 9.1 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Timer.h

RemoveTimeTask
Removes a task from the Time Manager queue. (Deprecated in Mac OS X v10.4. Use Carbon Event Loop timers
or Cocoa NSTImers instead.)

OSErr RemoveTimeTask (
 QElemPtr tmTaskPtr
);

Parameters
tmTaskPtr

A pointer to a task structure to be removed from the queue.

Return Value
A result code. See “Time Manager Result Codes” (page 2147).

Discussion
The RemoveTimeTask function removes the Time Manager task structure specified by the tmTaskPtr
parameter from the Time Manager queue. In both the revised and extended Time Managers, if the specified
task record is active (that is, if it has been activated but the specified time has not yet elapsed), the tmCount
field of the task structure returns the amount of time remaining. To provide the greatest accuracy, the unused

Functions 2143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

time is reported as negated microseconds if that value is small enough to fit into the tmCount field (even if
the delay was originally specified in milliseconds); otherwise, the unused time is reported in positive
milliseconds. If the time has already expired, the tmCount field contains 0.

In the revised and extended Time Managers, the RemoveTimeTask function sets the high-order bit of the
qType field to 0.

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0.2 and later when running Mac OS 9.1 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Timer.h

RmvTime
Remove a task from the Time Manager queue. (Deprecated in Mac OS X v10.4. Use Carbon Event Loop timers
or Cocoa NSTImers instead.)

Not Recommended

void RmvTime (
 QElemPtr tmTaskPtr
);

Special Considerations

Carbon Event timers and Cocoa NSTimers provide a simpler and more efficient way to handle timed or
periodic tasks. For more information about using Carbon Event timers, see the timers section in Carbon Event
Manager Programming Guide. For information about NSTimers, see Timer Programming Topics for Cocoa. Both
Carbon event timers and NSTimers are built on top of the lower-level Core Foundation CFRunLoop timers.
For CFRunLoop information, see Run Loops.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
Timer.h

2144 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

Callbacks

TimerProcPtr
Defines a pointer to your application-defined Time Manager task that is executed after a specified delay.

typedef void (*TimerProcPtr) (
 TMTaskPtr tmTaskPtr
);

If you name your function MyTimerProc, you would declare it like this:

void MyTimerProc (
 TMTaskPtr tmTaskPtr
);

Parameters
tmTaskPtr

A pointer to a structure of type TMTask containing the information about the task.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Timer.h

Data Types

TimerUPP
Defines a data type for the TimerProcPtr callback function.

typedef TimerProcPtr TimerUPP;

Discussion
For more information, see the description of the TimerProcPtr (page 2145) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Timer.h

TMTask
Contains information for a Time Manager task.

Callbacks 2145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

struct TMTask {
 QElemPtr qLink;
 short qType;
 TimerUPP tmAddr;
 long tmCount;
 long tmWakeUp;
 long tmReserved;
};
typedef struct TMTask TMTask;
typedef TMTask * TMTaskPtr;

Fields
qLink

A pointer to the next element in the Time Manager queue. This field is used internally by the Time
Manager.

qType
The type of queue. The Time Manager automatically sets this field to the appropriate value. The
high-order bit of this field is a flag that indicates whether the task is active.

tmAddr
A pointer to the function that is to execute after the delay specified in a call to PrimeTime.

tmCount
Reserved in the original Time Manager. In the revised or extended Time Manager, the amount of time
remaining until the task’s scheduled execution time. This field is valid only after you call RmvTime
with a task that has not yet executed.

tmWakeUp
In the extended Time Manager, the time when the task specified in the tmAddr field was last executed.
This field is used internally by the Time Manager. You should set it to 0 when you first install a task
structure.

tmReserved
Reserved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Timer.h

Constants

Active Task Constant
Defines a constant for an active task.

2146 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

enum {
 kTMTaskActive = (1L << 15)
};

Constants
kTMTaskActive

The high bit of the qType field in the TMTask structure is set if the task is active.

Available in Mac OS X v10.0 and later.

Declared in Timer.h.

Result Codes

The most common result codes returned by Time Manager is noErr, which has a value of 0.

Gestalt Constants

You can check for version and feature availability information by using the Time Manager Version selectors
defined in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference.

Result Codes 2147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

2148 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

Time Manager Reference

Framework: CoreServices/CoreServices.h

Declared in UnicodeUtilities.h

Overview

Unicode Utilities allow applications and text service components (such as input methods) to perform various
operations on Unicode text; for example, Unicode key translation. Resources defined for use with Unicode
Utilities permit control of Unicode-related text behavior, such as the specification of Unicode keyboard
layouts.

Carbon fully supports the Unicode Utilities.

Functions by Task

Inputting Unicode Text

UCKeyTranslate (page 2162)
Converts a combination of a virtual key code, a modifier key state, and a dead-key state into a string
of one or more Unicode characters.

Comparing Unicode Strings

UCCreateCollator (page 2155)
Creates an object encapsulating locale and collation information, for the purpose of performing
Unicode string comparison.

UCCompareText (page 2151)
Uses locale-specific collation information to compare Unicode strings.

UCGetCollationKey (page 2160)
Uses locale-specific collation information to generate a collation key for a Unicode string.

UCCompareCollationKeys (page 2150)
Uses collation keys to compare Unicode strings.

UCDisposeCollator (page 2158)
Disposes a collator object.

UCCompareTextDefault (page 2153)
Uses the default system locale to compare Unicode strings.

Overview 2149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

UCCompareTextNoLocale (page 2154)
Uses a fixed, locale-insensitive order to compare Unicode strings.

Identifying Unicode Text Boundaries

UCCreateTextBreakLocator (page 2156)
Creates an object encapsulating locale and text-break information, for the purpose of finding
boundaries in Unicode text.

UCFindTextBreak (page 2159)
Uses locale-specific text-break information to find boundaries in Unicode text.

UCDisposeTextBreakLocator (page 2158)
Disposes a text-break locator object.

Functions

UCCompareCollationKeys
Uses collation keys to compare Unicode strings.

OSStatus UCCompareCollationKeys (
 const UCCollationValue *key1Ptr,
 ItemCount key1Length,
 const UCCollationValue *key2Ptr,
 ItemCount key2Length,
 Boolean *equivalent,
 SInt32 *order
);

Parameters
key1Ptr

A pointer to the collation key (a UCCollationValue array) for the first string to compare. You can
obtain a collation key with the function UCGetCollationKey (page 2160). The collation key supplied
in key1Ptr for the first string must be generated with the same collator object as that used to generate
the collation key supplied in key2Ptr for the second string.

key1Length
An ItemCount value specifying the actual length of the collation key supplied in the key1Ptr
parameter. You can obtain this value from the function UCGetCollationKey (page 2160) when you
obtain the new collation key.

key2Ptr
A pointer to the collation key (a UCCollationValue array) for the second string to compare. You
can obtain a collation key with the function UCGetCollationKey (page 2160). The collation key
supplied in key2Ptr for the second string must be generated with the same collator object as that
used to generate the collation key supplied in key1Ptr for the first string.

key2Length
An ItemCount value specifying the actual length of the collation key supplied in the key2Ptr
parameter. You can obtain this value from the function UCGetCollationKey (page 2160) when you
obtain the new collation key.

2150 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

equivalent
A pointer to a Boolean value or pass NULL. On return, UCCompareCollationKeys produces a value
of true if the strings represented by the collation keys are equivalent for the options you have
specified in the collator object. If you wish simply to sort a list of strings in order, using your specified
options, you can pass NULL for the equivalent parameter and only use the order parameter’s
result. In this case, all available comparison criteria are used to put the strings in a deterministic order,
even if they are considered “equivalent” for the options you have specified. Note that you can set
either the equivalent or the order parameters to NULL, but not both.

order
A pointer to a signed, 32-bit integer value, or pass NULL. If you wish simply to test the strings
represented by the collation keys for equivalence, using your specified options (which can be much
faster than determining ordering), you can pass NULL for the order parameter and only use the
equivalent parameter’s result. (Note that either the equivalent or the order parameters may be
NULL, but not both.

Return Value
A result code. This function can return paramErr, for example, if key1Ptr or key2Ptr are NULL.

Discussion
If you wish to compare the same strings several times, as when sorting a list of strings, it may be most efficient
for you to derive a collation key for each string and then compare the collation keys. A collation key is a
transformation of the string that depends on the collator object (that is, it depends on the locale, the collation
variant if any, and the collation options).

Collation keys that are generated using the same collator object—but for different strings—can quickly be
compared with each other, without further reference to the collator object or collation tables. The disadvantage
is that the collation keys may be rather large. After you use the function UCGetCollationKey (page 2160) to
create a collation key from a given string and collator object, you can call the UCCompareCollationKeys
function to compare two collation keys that were generated with the same collator object.

If you are comparing different strings, it may be more efficient for you to call the function
UCCompareText (page 2151) multiple times using the same collator object.

Note that collation keys should be used only in a runtime context. They should not be stored in a persistent
state (such as to disk) because the format of a collation key could change in the future.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCompareText
Uses locale-specific collation information to compare Unicode strings.

Functions 2151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

OSStatus UCCompareText (
 CollatorRef collatorRef,
 const UniChar *text1Ptr,
 UniCharCount text1Length,
 const UniChar *text2Ptr,
 UniCharCount text2Length,
 Boolean *equivalent,
 SInt32 *order
);

Parameters
collatorRef

A valid reference to a collator object; NULL is not allowed. You can use the function
UCCreateCollator (page 2155) to obtain a collator reference.

text1Ptr
A pointer to the first Unicode string (a UniChar array) to compare.

text1Length
The total count of Unicode characters in the first string being compared.

text2Ptr
A pointer to the second Unicode string to compare.

text2Length
The total count of Unicode characters in the second string being compared.

equivalent
A pointer to a Boolean value or NULL. On return, UCCompareText produces a value of true if the
strings are equivalent for the options you have specified in the collator object. If you wish simply to
sort a list of strings in order, using your specified options, you can pass NULL for the equivalent
parameter and only use the order parameter’s result. In this case, all available comparison criteria
are used to put the strings in a deterministic order, even if they are considered “equivalent” for the
options you have specified. Note that you can set either the equivalent or the order parameters
to NULL, but not both.

order
A pointer to a signed, 32-bit integer value, or pass NULL. If you wish simply to test strings for
equivalence, using your specified options (which can be much faster than determining ordering), you
can pass NULL for the order parameter and only use the equivalent parameter’s result. (Note that
either the equivalent or the order parameters may be NULL, but not both.

Return Value
A result code. The function can return paramErr (for example, if collatorRef, text1Ptr, or text2Ptr
are NULL.

Discussion
You can use the UCCompareText function to perform various types of string comparison for a given set of
locale and collation specifications. You can

 ■ simply test whether two strings are equivalent

 ■ determine the relative ordering of two strings

 ■ check whether a given string is equivalent to any string in an ordered list

2152 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

You can also call the UCCompareText function multiple times to compare different strings using the same
collator object. If you wish to compare the same strings several times, as when sorting a list of strings, it may
be more efficient for you to derive a collation key for each string and then compare the collation keys. For
more on comparison using collation keys, see the functions UCGetCollationKey (page 2160) and
UCCompareCollationKeys (page 2150).

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCompareTextDefault
Uses the default system locale to compare Unicode strings.

OSStatus UCCompareTextDefault (
 UCCollateOptions options,
 const UniChar *text1Ptr,
 UniCharCount text1Length,
 const UniChar *text2Ptr,
 UniCharCount text2Length,
 Boolean *equivalent,
 SInt32 *order
);

Parameters
options

A UCCollateOptions value specifying any collation options for the string comparison.

text1Ptr
A pointer to the first Unicode string (a UniChar array) to compare.

text1Length
The total count of Unicode characters in the first string being compared.

text2Ptr
A pointer to the second Unicode string to compare.

text2Length
The total count of Unicode characters in the second string being compared.

equivalent
A pointer to a Boolean value or pass NULL. On return, UCCompareTextDefault produces a value
of true if the strings are equivalent for the options you have specified. If you wish simply to sort a
list of strings in order, using your specified options, you can pass NULL for the equivalent parameter
and only use the order parameter’s result. In this case, all available comparison criteria are used to
put the strings in a deterministic order, even if they are considered “equivalent” for the options you
have specified. Note that you can set either the equivalent or the order parameters to NULL, but
not both.

Functions 2153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

order
A pointer to a signed, 32-bit integer value, or pass NULL. If you wish simply to test the strings for
equivalence, using your specified options (which can be much faster than determining ordering), you
can pass NULL for the order parameter and only use the equivalent parameter’s result. (Note that
either the equivalent or the order parameters may be NULL, but not both.

Return Value
A result code.

Discussion
You can call the UCCompareTextDefault function when you want to use a simple collation function that
requires minimum setup. This function uses the system default collation order (that is, the collation order
for a LocaleRef of NULL and a variant of 0), and it does not require a collator object or collation keys.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCompareTextNoLocale
Uses a fixed, locale-insensitive order to compare Unicode strings.

OSStatus UCCompareTextNoLocale (
 UCCollateOptions options,
 const UniChar *text1Ptr,
 UniCharCount text1Length,
 const UniChar *text2Ptr,
 UniCharCount text2Length,
 Boolean *equivalent,
 SInt32 *order
);

Parameters
options

A UCCollateOptions value specifying the fixed ordering scheme to use for the string comparison.
This value must be nonzero. Bits 24-31 of UCCollateOptionsValue specify which fixed ordering
scheme to use. Currently there is only scheme—kUCCollateTypeHFSExtended. See “Fixed Ordering
Scheme” (page 2177) for additional details.

text1Ptr
A pointer to the first Unicode string (a UniChar array) to compare.

text1Length
The total count of Unicode characters in the first string being compared.

text2Ptr
A pointer to the second Unicode string to compare.

text2Length
The total count of Unicode characters in the second string being compared.

2154 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

equivalent
A pointer to a Boolean value or pass NULL. On return, UCCompareTextNoLocale produces a value
of true if the strings are equivalent for the ordering scheme you have specified. If you wish simply
to sort a list of strings in order, using the specified ordering scheme, you can pass NULL for the
equivalentparameter and only use the orderparameter’s result. In this case, all available comparison
criteria are used to put the strings in a deterministic order, even if they are considered “equivalent”
for the specified ordering scheme. Note that you can set either the equivalent or the order
parameters to NULL, but not both.

order
A pointer to a signed, 32-bit integer value, or pass NULL. If you wish simply to test the strings for
equivalence, using the specified ordering scheme (which can be much faster than determining
ordering), you can pass NULL for the order parameter and only use the equivalent parameter’s
result. (Note that either the equivalent or the order parameters may be NULL, but not both.

Return Value
A result code. This function can return paramErr if you pass an invalid value for one of the parameters. For
example, if you pass 0 for the options paramter, the function returns paramErr.

Discussion
You can call the UCCompareTextNoLocale function when you want to perform a fixed, locale-insensitive
comparison that is guaranteed not to change from one system release to the next. This type of comparison
could be used for sorting a Unicode key string in a database, for example. The UCCompareTextNoLocale
function can provide comparison according to various fixed ordering schemes (only one is supported for
Mac OS 8.6 and 9.0). This type of comparison is not usually used for a user-visible ordering, so the ordering
schemes need not match any user’s expectation of a sensible collation order.

TheUCCompareTextNoLocale function does not require a collator object or collation keys. Another advantage
of UCCompareTextNoLocale on Mac OS 9 is that it is exported from the UnicodeUtilitiesCoreLib
library, which does not depend on other libraries (the other comparison functions exported from
UnicodeUtilitiesLib, which depends on LocalesLib and TextCommon).

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCreateCollator
Creates an object encapsulating locale and collation information, for the purpose of performing Unicode
string comparison.

Functions 2155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

OSStatus UCCreateCollator (
 LocaleRef locale,
 LocaleOperationVariant opVariant,
 UCCollateOptions options,
 CollatorRef *collatorRef
);

Parameters
locale

A valid LocaleRef representing a specific locale, or pass NULL to request the default system locale.
You can supply the value kUnicodeCollationClass in the opClass parameter of the Locales
Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocales to obtain
the locales available for collation on the current system.

opVariant
A LocaleOperationVariant value identifying a collation variant within the locale specified in the
locale parameter. You can also pass 0 to request the default collation variant for any locale. To
obtain the varieties of locale-specific collation that are currently available, you can supply the value
kUnicodeCollationClass in the opClass parameter of the Locales Utilities functions
LocaleOperationCountLocales and LocaleOperationGetLocales.

options
A UCCollateOptions value specifying any collation options that you want to use for the string
comparison.

collatorRef
A pointer to a value of type CollatorRef. On return, the CollatorRef value contains a valid
reference to a new collator object.

Return Value
A result code. The function can return memory errors and paramErr, for example, if the collatorRef
parameter is NULL. It can also return resource errors in Mac OS 9 and CarbonLib.

Discussion
To perform Unicode string comparison, you must supply locale and collation specifications to a collation
function such as UCCompareText (page 2151). You provide this information by means of a collator object,
created via the UCCreateCollator function. When finished with the collator object, you dispose of it using
the function UCDisposeCollator (page 2158).

Special Considerations

The collator object is allocated in the current heap. This function can move memory.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCCreateTextBreakLocator
Creates an object encapsulating locale and text-break information, for the purpose of finding boundaries in
Unicode text.

2156 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

OSStatus UCCreateTextBreakLocator (
 LocaleRef locale,
 LocaleOperationVariant opVariant,
 UCTextBreakType breakTypes,
 TextBreakLocatorRef *breakRef
);

Parameters
locale

A valid LocaleRef representing a specific locale, or pass NULL to request the default system locale.
You can supply the value kUnicodeTextBreakClass in the opClass parameter of the Locales
Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocales to obtain
the locales available for finding text boundaries on the current system.

opVariant
A LocaleOperationVariant value identifying a text-break operation variant within the locale
specified in the locale parameter. You can also pass 0 to request the default text-break variant for
any locale. To obtain the varieties of locale-specific text-break variants that are currently available,
you can supply the value kUnicodeTextBreakClass in the opClass parameter of the Locales
Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocales.

breakTypes
A UCTextBreakType value specifying each type of text boundary that the text-break locator should
support. You do not need to create a text-break locator solely for the BreakChar type; it is
locale-independent and automatically supported by the function UCFindTextBreak (page 2159). If
BreakChar is the only type for which you call the UCCreateTextBreakLocator function, on return
the breakRef parameter returns a NULL value (with no error).

breakRef
A pointer to a value of type TextBreakLocatorRef. On return, the TextBreakLocatorRef value
contains a valid reference to a new text-break locator object.

Return Value
A result code. The function can return memory errors and paramErr (for example, if the breakRef parameter
is NULL or if invalid bits are set in the breakTypes parameter). It can also return resource errors in Mac OS
9 and CarbonLib.

Discussion
To find boundaries in Unicode text, you must supply locale and text-break specifications to the function
UCFindTextBreak (page 2159). You provide this information by means of a text-break locator object, created
via the UCCreateTextBreakLocator function. When finished with the text-break locator object, you should
dispose of it using the function UCDisposeTextBreakLocator (page 2158).

The UCCreateTextBreakLocator function creates a text-break locator object for a specified locale, a
specified text-break variant within that locale, and a specified set of break types. The different types of breaks
or boundaries in a line of Unicode text can include

 ■ Boundaries of characters (treating surrogate pairs as a single character).

 ■ Boundaries of character clusters. A cluster is a group of characters that should be treated as single text
element for editing operations such as cursor movement. Typically this includes groups such as a base
character followed by a sequence of combining characters, for example, a Hangul syllable represented
as a sequence of conjoining jamo characters or an Indic consonant cluster.

 ■ Boundaries of words. This can be used to determine what to highlight as the result of a double-click.

 ■ Potential line break locations.

Functions 2157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

Special Considerations

This function can move memory.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCDisposeCollator
Disposes a collator object.

OSStatus UCDisposeCollator (
 CollatorRef *collatorRef
);

Parameters
collatorRef

A reference to a valid collator object. The UCDisposeCollator function sets *collatorRef to
NULL.

Return Value
A result code.

Discussion
To perform Unicode string comparison, you must supply locale and collation specifications to a collation
function such as UCCompareText (page 2151). You provide this information by means of a collator object,
created via the function UCCreateCollator (page 2155). When finished with the collator object, you should
dispose of it using the function UCDisposeCollator.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCDisposeTextBreakLocator
Disposes a text-break locator object.

OSStatus UCDisposeTextBreakLocator (
 TextBreakLocatorRef *breakRef
);

Parameters
breakRef

A reference to a valid text-break locator object. The UCDisposeTextBreakLocator function sets
*breakRef to NULL.

Return Value
A result code. This function can return paramErr, for example, if the breakRef parameter is NULL.

2158 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

Discussion
To find boundaries in Unicode text, you must supply locale and text-break specifications to the function
UCFindTextBreak (page 2159). You provide this information by means of a text-break locator object, created
via the function UCCreateTextBreakLocator (page 2156). When finished with the text-break locator object,
you should dispose of it using the function UCDisposeTextBreakLocator.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCFindTextBreak
Uses locale-specific text-break information to find boundaries in Unicode text.

OSStatus UCFindTextBreak (
 TextBreakLocatorRef breakRef,
 UCTextBreakType breakType,
 UCTextBreakOptions options,
 const UniChar *textPtr,
 UniCharCount textLength,
 UniCharArrayOffset startOffset,
 UniCharArrayOffset *breakOffset
);

Parameters
breakRef

A valid reference to a text-break locator object. If the type of boundary specified by the breakType
parameter is BreakChar, you can pass NULL. You use the function
UCCreateTextBreakLocator (page 2156) to obtain a text-break locator object reference. If non-NULL,
the text-break locator object must support the type of boundary specified in the breakTypeparameter.

breakType
A value of type UCTextBreakType, with exactly one bit set to specify a single type of boundary to
be located. Since support for finding character boundaries is locale-independent and built into the
UCFindTextBreak function, if you specify BreakChar as the type of boundary, then the breakRef
parameter is ignored and may be NULL.

options
A UCTextBreakOptions value to specify the operation of the UCFindTextBreak function. You can
use text-break locator options to control some location-independent aspects of a text-boundary
search. Note that if you do not specify any UCTextBreakOptions values, UCFindTextBreak searches
forward, but assumes that the startOffset value refers to the character preceding the offset rather
than the one at the offset. This can result in UCFindTextBreak returning an offset that is equal to
the start offset.

textPtr
A pointer to the initial character of the Unicode string to search.

textLength
The total count of Unicode characters in the string to search.

Functions 2159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

startOffset
A UniCharArrayOffset value specifying the offset from which UCFindTextBreak is to begin
searching for the next text boundary of the type specified in the breakType parameter. If
startOffset == 0 then kUCTextBreakLeadingEdgeMask must be set in the options parameter;
if startOffset == textLength then kUCTextBreakLeadingEdgeMask must not be set.

breakOffset
A pointer to a UniCharArrayOffset value. On return, the value pointed to by the breakOffset
parameter is set to the offset of the text boundary located by UCFindTextBreak. In normal usage
(when exactly one ofkUCTextBreakLeadingEdgeMask andkUCTextBreakGoBackwardsMask are
set), the result returned in breakOffset is not equal to that supplied in the startOffset parameter
unless an error occurs (and the function result is other than noErr). However, when
kUCTextBreakLeadingEdgeMask and kUCTextBreakGoBackwardsMask are both set or both
clear, the result produced in breakOffset can be equal to the value of startOffset.

Return Value
A result code. The text-break locator referenced by the breakRef parameter must support the type of
boundary specified in the breakType parameter; otherwise, the function returns
kUCTextBreakLocatorMissingType.

Discussion
The UCFindTextBreak function starts from a specified offset in a text buffer, and then proceeds forward
or backward (as requested) until it finds the next text boundary of a particular locale-specific type, using a
given set of options. The different types of breaks or boundaries in a line of Unicode text can include

 ■ Boundaries of characters (treating surrogate pairs as a single character).

 ■ Boundaries of character clusters. A cluster is a group of characters that should be treated as single text
element for editing operations such as cursor movement. Typically this includes groups such as a base
character followed by a sequence of combining characters, for example, a Hangul syllable represented
as a sequence of conjoining jamo characters or an Indic consonant cluster.

 ■ Boundaries of words. This can be used to determine what to highlight as the result of a double-click.

 ■ Potential line break locations.

Finding boundaries of characters is a locale-independent operation, and support for it is built directly into
the UCFindTextBreak function. If that is the only type of text boundary that you wish to locate, it is not
necessary to call UCCreateTextBreakLocator and create a text-break locator object.

When finished with the text-break locator object, dispose it using the function
UCDisposeTextBreakLocator (page 2158).

Availability
Available in CarbonLib 1.0 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCGetCollationKey
Uses locale-specific collation information to generate a collation key for a Unicode string.

2160 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

OSStatus UCGetCollationKey (
 CollatorRef collatorRef,
 const UniChar *textPtr,
 UniCharCount textLength,
 ItemCount maxKeySize,
 ItemCount *actualKeySize,
 UCCollationValue collationKey[]
);

Parameters
collatorRef

A valid reference to a collator object; NULL is not allowed. You can use the function
UCCreateCollator (page 2155) to obtain a collator reference.

textPtr
A pointer to the Unicode string (a UniChar array) for which to generate a collation key.

textLength
The total count of Unicode characters in the string referenced by the textPtr parameter.

maxKeySize
An ItemCount value specifying the length of the UCCollationValue array passed in the
collationKey parameter. This dimension should typically be at least 5*textLength, as the byte
length of a collation key is typically more than 16 times the number of Unicode characters in the
string.

actualKeySize
On return, the actual length of the UCCollationValue array returned in the collationKey
parameter.

collationKey
An array of UCCollationValue values. On return, the array contains the new collation key. The
collation key consists of a sequence of primary weights for all of the collation text elements in the
string, followed by a separator and a sequence of secondary weights for all of the text elements in
the string, and so on for several levels of significance. The separator is usually 0; however, 1 is used
as the separator at the boundary between levels that are significant and levels that are insignificant
for the options you supply in the collator object.

Return Value
A result code. The function can return paramErr, for example, if the parameters collatorRef, textPtr,
actualKeySize, or collationKey are NULL. It can also return memory errors. If maxKeySize is too small
for the collation key, the function returns kUCOutputBufferTooSmall.

Discussion
If you want to compare the same strings several times, as when sorting a list of strings, it may be most efficient
for you to derive a collation key for each string and then compare the collation keys. A collation key is a
transformation of the string that depends on the collator object (that is, it depends on the locale, the collation
variant if any, and the collation options).

Collation keys that are generated using the same collator object—but for different strings—can quickly be
compared with each other, without further reference to the collator object or collation tables. The disadvantage
is that the collation keys may be rather large. After you use the UCGetCollationKey function to create a
collation key from a given string and collator object, you can call the function
UCCompareCollationKeys (page 2150) to compare two collation keys that were generated with the same
collator object.

If you are comparing different strings, it may be more efficient for you to call the function
UCCompareText (page 2151) multiple times using the same collator object.

Functions 2161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

Note that collation keys should be used only in a runtime context. They should not be stored in a persistent
state (such as to disk) because the format of a collation key could change in the future.

Special Considerations

This function can move memory.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.6 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyTranslate
Converts a combination of a virtual key code, a modifier key state, and a dead-key state into a string of one
or more Unicode characters.

OSStatus UCKeyTranslate (
 const UCKeyboardLayout *keyLayoutPtr,
 UInt16 virtualKeyCode,
 UInt16 keyAction,
 UInt32 modifierKeyState,
 UInt32 keyboardType,
 OptionBits keyTranslateOptions,
 UInt32 *deadKeyState,
 UniCharCount maxStringLength,
 UniCharCount *actualStringLength,
 UniChar unicodeString[]
);

Parameters
keyLayoutPtr

A pointer to the first element in a resource of type 'uchr'. Pass a pointer to the 'uchr' resource
that you wish the UCKeyTranslate function to use when converting the virtual key code to a Unicode
character. The resource handle associated with this pointer need not be locked, since the
UCKeyTranslate function does not move memory.

virtualKeyCode
An unsigned 16-bit integer. Pass a value specifying the virtual key code that is to be translated. For
ADB keyboards, virtual key codes are in the range from 0 to 127.

keyAction
An unsigned 16-bit integer. Pass a value specifying the current key action. See “Key Actions” (page
2178) for descriptions of possible values.

modifierKeyState
An unsigned 32-bit integer. Pass a bit mask indicating the current state of various modifier keys. You
can obtain this value from the modifiers field of the event record as follows:

modifierKeyState = ((EventRecord.modifiers) >> 8) & 0xFF;

keyboardType
An unsigned 32-bit integer. Pass a value specifying the physical keyboard type (that is, the keyboard
shape shown by Key Caps). You can call the function LMGetKbdType for this value.

2162 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

keyTranslateOptions
A bit mask of options for controlling the UCKeyTranslate function. See “Key Translation Options
Flag” (page 2181) and “Key Translation Options Mask” (page 2182) for descriptions of possible values.

deadKeyState
A pointer to an unsigned 32-bit value, initialized to zero. The UCKeyTranslate function uses this
value to store private information about the current dead key state.

maxStringLength
A value of type UniCharCount. Pass the number of 16-bit Unicode characters that are contained in
the buffer passed in the unicodeString parameter. This may be a value of up to 255, although it
would be rare to get more than 4 characters.

actualStringLength
A pointer to a value of type UniCharCount. On return this value contains the actual number of
Unicode characters placed into the buffer passed in the unicodeString parameter.

unicodeString
An array of values of type UniChar. Pass a pointer to the buffer whose sized is specified in the
maxStringLength parameter. On return, the buffer contains a string of Unicode characters resulting
from the virtual key code being handled. The number of characters in this string is less than or equal
to the value specified in the maxStringLength parameter.

Return Value
A result code. If you pass NULL in the keyLayoutPtr parameter, UCKeyTranslate returns paramErr. The
UCKeyTranslate function also returns paramErr for an invalid 'uchr' resource format or for invalid
virtualKeyCode or keyAction values, as well as for NULL pointers to output values.The result
kUCOutputBufferTooSmall (-25340) is returned for an output string length greater thanmaxStringLength.

Discussion
The UCKeyTranslate function uses the data in a Unicode keyboard-layout ('uchr') resource to map a
combination of virtual key code and modifier key state to a sequence of up to 255 Unicode characters. This
mapping process depends on, and may update, a dead key state; the UCKeyTranslate function and the
'uchr' resource support multiple dead keys. The mapping may also depend on the specific type of key
action and the type of physical keyboard being used. The UCKeyTranslate function supports non-ADB
keyboards, an extensible set of modifier keys, and other possible extensions.

In most cases, your application does not need to call the UCKeyTranslate function, since the Text Services
Manager automatically calls it on your behalf to handle input from a Unicode keyboard layout. However,
there may be some circumstances in which your application should call UCKeyTranslate. For example,
your application may need to determine what character(s) would have been generated for the virtual key
code in the current key-down event if a different modifier-and-key combination had been used.

The basic process by which UCKeyTranslate uses the 'uchr' resource to translate virtual key codes into
Unicode characters is detailed in the following steps:

1. The bit pattern specifying the modifier key state is mapped by the UCKeyModifiersToTableNum
structure to a table number.

2. The table number maps to an offset within a UCKeyToCharTableIndex structure that refers to the
actual key-code-to-character tables.

3. The key-code-to-character tables map the virtual key code to UCKeyOutput values, for which there are
two possibilities:

Functions 2163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

 ■ If bits 15 and 14 of the UCKeyOutput value are 01, the UCKeyOutput value is an index into the
offsets contained in a UCKeyStateRecordsIndex structure. If this occurs, the mapping process
for the virtual key code continues on to the next step

 ■ Otherwise, the UCKeyOutput value produces one or more Unicode characters, either directly or via
reference to a UCKeySequenceDataIndex structure. This ends the mapping process for a given
virtual key code.

4. The offsets in a UCKeyStateRecordsIndex structure refer to UCKeyStateRecord dead-key state
records.

5. The dead-key state records map from the current dead-key state to one or more Unicode characters to
be output or the following dead-key state (if any). The mapping process for a given virtual key code may
end with the dead-key state record or, if there is no dead-key state record entry for the key code, with
a default state terminator, as specified in the resource’s UCKeyStateTerminators table.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.5 or later.
Available in Mac OS X 10.0 and later.

Declared In
UnicodeUtilities.h

Data Types

CollatorRef
Refers to an opaque object that encapsulates locale and collation information for the purpose of performing
Unicode string comparison.

typedef struct OpaqueCollatorRef * CollatorRef;

Discussion
You can obtain a CollatorRef value from the function UCCreateCollator (page 2155).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

TextBreakLocatorRef
Refers to an opaque object that encapsulates locale and text-break information for the purpose of finding
boundaries in Unicode text.

2164 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

typedef struct OpaqueTextBreakLocatorRef * TextBreakLocatorRef;

Discussion
You can obtain a TextBreakLocatorRef value from the function UCCreateTextBreakLocator (page
2156).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCCollationValue
Specifies a Unicode collation key.

typedef UInt32 UCCollationValue;

Discussion
Collation keys consist of an array of UCCollationValue values. The collation key consists of a sequence of
primary weights for all of the collation text elements in the string, followed by a separator and a sequence
of secondary weights for all of the text elements in the string, and so on for several levels of significance. The
separator is usually 0; however, 1 is used as the separator at the boundary between levels that are significant
and levels that are insignificant for the options you supply in the collator object. You can obtain a collation
key with the function UCGetCollationKey (page 2160).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyboardLayout
Provides header data for a 'uchr' resource.

struct UCKeyboardLayout {
 UInt16 keyLayoutHeaderFormat;
 UInt16 keyLayoutDataVersion;
 ByteOffset keyLayoutFeatureInfoOffset;
 ItemCount keyboardTypeCount;
 UCKeyboardTypeHeader keyboardTypeList[1];
};
typedef struct UCKeyboardLayout UCKeyboardLayout;

Fields
keyLayoutHeaderFormat

An unsigned 16-bit integer identifying the format of the structure. Set to kUCLayoutHeaderFormat.

keyLayoutDataVersion
An unsigned 16-bit integer identifying the version of the data in the resource, in binary code decimal
format. For example, 0x0100 would equal version 1.0.

Data Types 2165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

keyLayoutFeatureInfoOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeyLayoutFeatureInfo (page
2168), if such is used in the resource. May be 0 if no UCKeyLayoutFeatureInfo table is included in
the resource.

keyboardTypeCount
An unsigned 32-bit integer specifying the number of UCKeyboardTypeHeader structures in the
keyboardTypeList[] field’s array.

keyboardTypeList
A variable-length array containing structures of type UCKeyboardTypeHeader. Each
UCKeyboardTypeHeader entry specifies a range of physical keyboard types and contains offsets to
each of the key mapping sections to be used for that range of keyboard types.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyboardLayout type is used in the 'uchr' resource
header. It specifies version and format information, offsets to the various subtables, and an array of
UCKeyboardTypeHeader entries.

You should use low-ASCII (0 - 0x7F) only for the KCHR/uchr resource names and you should use Unicode in
the Info.plist file when you specify strings for the user-interface (UI).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyboardTypeHeader
Specifies a range of physical keyboard types in a 'uchr' resource.

struct UCKeyboardTypeHeader {
 UInt32 keyboardTypeFirst;
 UInt32 keyboardTypeLast;
 ByteOffset keyModifiersToTableNumOffset;
 ByteOffset keyToCharTableIndexOffset;
 ByteOffset keyStateRecordsIndexOffset;
 ByteOffset keyStateTerminatorsOffset;
 ByteOffset keySequenceDataIndexOffset;
};
typedef struct UCKeyboardTypeHeader UCKeyboardTypeHeader;

Fields
keyboardTypeFirst

An unsigned 32-bit integer specifying the first keyboard type in this entry. For the initial entry (that
is, the default entry) in an array of UCKeyboardTypeHeader structures, you should set this value to
0. The initial UCKeyboardTypeHeader entry is used if the keyboard type passed to the function
UCKeyTranslate (page 2162) does not match any other entry, that is, if it is not within the range of
values specified by keyboardTypeFirst and keyboardTypeLast for any entry.

2166 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

keyboardTypeLast
An unsigned 32-bit integer specifying the last keyboard type in this entry. For the initial entry (that
is, the default entry) in an array of UCKeyboardTypeHeader structures, you should set this value to
0.

keyModifiersToTableNumOffset
An unsigned 32-bit integer providing an offset to a structure of type
UCKeyModifiersToTableNum (page 2169). The 'uchr' resource requires a
UCKeyModifiersToTableNum structure, therefore this field must contain a non-zero value.

keyToCharTableIndexOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeyToCharTableIndex (page
2176). The 'uchr' resource requires a UCKeyToCharTableIndex structure, therefore this field must
contain a non-zero value.

keyStateRecordsIndexOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeyStateRecordsIndex (page
2174), if such is used in the resource. This value may be 0 if no dead-key state records are included in
the resource.

keyStateTerminatorsOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeyStateTerminators (page
2175), if such is used in the resource. This value may be 0 if no dead-key state terminators are included
in the resource.

keySequenceDataIndexOffset
An unsigned 32-bit integer providing an offset to a structure of type UCKeySequenceDataIndex (page
2170), if such is used in the resource. This value may be 0 if no character key sequences are included in
the resource.

Discussion
The UCKeyboardTypeHeader type is used in a structure of type UCKeyboardLayout (page 2165) to specify
a range of physical keyboard types and contains offsets to each of the key mapping sections to be used for
that range of keyboard types. Typically, you use an array of UCKeyboardTypeHeader structures, of which
the first entry in the array is the default and will be used if the keyboard type does not fall within the range
for any other entry. See UCKeyboardLayout (page 2165) for a further discussion of the context for use of the
UCKeyboardTypeHeader type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyCharSeq
Specifies the output of a dead-key state in a 'uchr' resource.

typedef UInt16 UCKeyCharSeq;

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyCharSeq type is a 16-bit value used in the third key
mapping section of the 'uchr' resource to specify the output of a dead-key state.

Data Types 2167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

Specifically, the dead-key state record—a structure of type UCKeyStateRecord (page 2173) —uses a
UCKeyCharSeq value to contain the character output that results from the resolution of a given dead-key
state. You can use a UCKeyCharSeq value in a dead-key state record to represent either an index to a Unicode
character sequence or a single Unicode character. The UCKeyCharSeq type is similar to the type
UCKeyOutput (page 2169) , but does not itself support indices into dead-key state records.

The interpretation of UCKeyCharSeq depends on bits 15 and 14.

If they are 10 (that is, for values in the range of 0x8000–0xBFFF), then bits 0–13 are an index into the
charSequenceOffsets[field of a structure of type UCKeySequenceDataIndex (page 2170) , which contains
offsets to a separate resource-wide list of Unicode character sequences. If a UCKeySequenceDataIndex
structure is not present in the resource or the index is beyond the end of the list, then the entire value (that
is, bits 0–15) is a single Unicode character to emit. Otherwise (for values in the range of 0x0000–0x7FFF and
0xC000–0xFFFD), bits 0–15 are a single Unicode character, with the exception that a value of 0xFFFE–0xFFFF
means no character output (these are invalid Unicode codes).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyLayoutFeatureInfo
Specifies the longest possible output string to be produced by the current 'uchr' resource.

struct UCKeyLayoutFeatureInfo {
 UInt16 keyLayoutFeatureInfoFormat;
 UInt16 reserved;
 UniCharCount maxOutputStringLength;
};
typedef struct UCKeyLayoutFeatureInfo UCKeyLayoutFeatureInfo;

Fields
keyLayoutFeatureInfoFormat

An unsigned 16-bit integer identifying the format of the UCKeyLayoutFeatureInfo structure. Set
to kUCKeyLayoutFeatureInfoFormat.

reserved
Reserved. Set to 0.

maxOutputStringLength
An unsigned 32-bit integer specifying the longest possible output string of Unicode characters to be
produced by this 'uchr' resource.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyLayoutFeatureInfo type is used in the header
section of the 'uchr' resource.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

2168 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

UCKeyModifiersToTableNum
Maps a modifier key combination to a particular key-code-to-character table number in a 'uchr' resource.

struct UCKeyModifiersToTableNum {
 UInt16 keyModifiersToTableNumFormat;
 UInt16 defaultTableNum;
 ItemCount modifiersCount;
 UInt8 tableNum[1];
};
typedef struct UCKeyModifiersToTableNum UCKeyModifiersToTableNum;

Fields
keyModifiersToTableNumFormat

An unsigned 16-bit integer identifying the format of the UCKeyModifiersToTableNum structure.
Set to kUCKeyModifiersToTableNumFormat.

defaultTableNum
An unsigned 16-bit integer identifying the table number to use for modifier combinations that are
outside of the range included in the tableNum field.

modifiersCount
An unsigned 32-bit integer specifying the range of modifier bit combinations for which there are
entries in the tableNum[] field.

tableNum
An array of unsigned 8-bit integers that map modifier bit combinations to table numbers. These values
are indexes into the keyToCharTableOffsets array in a UCKeyToCharTableIndex (page
2176)structure; these, in turn, are offsets to the actual key-code-to character tables, which follow the
UCKeyToCharTableIndex structure in the 'uchr' resource.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyModifiersToTableNum type is used in the first key
mapping section of the 'uchr' resource. It maps a modifier key combination to a particular
key-code-to-character table number.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyOutput
Specifies values in key-code-to-character tables in a 'uchr' resource.

typedef UInt16 UCKeyOutput;

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyOutput type is a 16-bit value used in the second key
mapping section of a 'uchr' resource to specify values in key-code-to-character tables.

Data Types 2169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

You use a UCKeyOutput value in a key-code-to-character table to represent one of the following: an index
to a dead-key state record, an index to a Unicode character sequence, or a single Unicode character.

The interpretation of a UCKeyOutput value depends on bits 15 and 14.

If they are 01 (that is, for values in the range of 0x4000-0x7FFF), then bits 0-13 are an index into the
keyStateRecordOffsets field of a structure of typeUCKeyStateRecordsIndex (page 2174) , which contains
offsets to a separate resource-wide list of dead-key state records.

If they are 10 (that is, for values in the range of 0x8000-0xBFFF), then bits 0-13 are an index into the
charSequenceOffsets field of a structure of type UCKeySequenceDataIndex (page 2170) , which contains
offsets to a separate resource-wide list of Unicode character sequences. If a UCKeySequenceDataIndex
structure is not present in the resource or the index is beyond the end of the list, then the entire value (that
is, bits 0-15) is a single Unicode character to emit.

Otherwise (for values in the range of 0x0000-0x3FFF and 0xC000-0xFFFD), bits 0-15 are a single Unicode
character, with the exception that a value of 0xFFFE-0xFFFF means no character output (these are invalid
Unicode codes).

Most single Unicode characters that are likely to be generated by direct keyboard input are in the range
0x0000-0x33FF or 0xE000-0xFFFD, and so are covered by the single-character cases above. Characters outside
this range can still be generated by direct keyboard input, in which case they must be represented as
1-character sequences. The fifth key mapping section of the 'uchr' resource, introduced by the
UCKeySequenceDataIndex type, provides for this option.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeySequenceDataIndex
Contains offsets to a list of character sequences for a 'uchr' resource.

struct UCKeySequenceDataIndex {
 UInt16 keySequenceDataIndexFormat;
 UInt16 charSequenceCount;
 UInt16 charSequenceOffsets[1];
};
typedef struct UCKeySequenceDataIndex UCKeySequenceDataIndex;

Fields
keySequenceDataIndexFormat

An unsigned 16-bit integer identifying the format of the UCKeySequenceDataIndex structure. Set
to kUCKeySequenceDataIndexFormat.

charSequenceCount
An unsigned 16-bit integer specifying the number of Unicode character sequences that follow the
end of the UCKeySequenceDataIndex structure.

2170 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

charSequenceOffsets
An array of offsets from the beginning of the UCKeySequenceDataIndex structure to the Unicode
character sequences that follow it. Because a given offset indicates both the beginning of a new
character sequence and the end of the sequence that precedes it, the length of each sequence is
determined by the difference between the offset to that sequence and the value of the next offset
in the array. The array contains one more entry than the number of character sequences; the final
entry is the offset to the end of the final character sequence.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeySequenceDataIndex type is used in the fifth key
mapping section of the 'uchr' resource.

The UCKeySequenceDataIndex structure contains offsets to a list of character sequences for the 'uchr'
resource. This permits a single keypress to generate a sequence of characters, or to generate a single character
outside the range that can be represented directly by values of type UCKeyOutput (page 2169) or
UCKeyCharSeq (page 2167).

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateEntryRange
Maps from a dead-key state to either the resultant Unicode character(s) or the new dead key state produced
when the current state is terminated by a given character key for a 'uchr' resource.

struct UCKeyStateEntryRange {
 UInt16 curStateStart;
 UInt8 curStateRange;
 UInt8 deltaMultiplier;
 UCKeyCharSeq charData;
 UInt16 nextState;
};
typedef struct UCKeyStateEntryRange UCKeyStateEntryRange;

Fields
curStateStart

An unsigned 16-bit integer specifying the beginning of a given dead-key state range.

curStateRange
An unsigned 8-bit integer specifying the number of entries in a given dead-key state range.

deltaMultiplier
An unsigned 8-bit integer.

charData
A value of type UCKeyCharSeq. This base character value is used to determine the actual Unicode
character(s) produced when a given dead-key state terminates.

nextState
An unsigned 16-bit integer. This base dead-key state value is used to determine the following dead-key
state, if any.

Data Types 2171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

Discussion
The UCKeyStateEntryRange type is used in the stateEntryData[] field of a structure of type
UCKeyStateRecord (page 2173). You should use the UCKeyStateEntryRange format for complex (multiple)
dead-key states.

For each virtual key code, an entry in its dead-key state record maps from the current dead-key state to the
Unicode character(s) produced or to the next dead-key state, as follows.

If the current dead-key state is within a valid dead-key state range for the given input character—that is, if
its value is greater than or equal to curStateStart and less than or equal to curStateStart +
curStateRange—then

 ■ If the base charData value for the given dead-key state range is in the range of valid Unicode characters,
a character is produced and the dead-key state may be terminated.

and/or

 ■ If the base nextState value is not 0, a new dead-key state is produced.

In the first case, the output character is determined as follows: The base charData value is incremented by
the resulting product of (the difference between the current state and the start of that state’s range) and (a
multiplier). That is:

charData += (curState - curStateStart) * deltaMultiplier

Similarly, in the second case, the resulting dead-key state, which is the new curState value, is determined
as follows: The base nextState value is incremented by the resulting product of (the difference between
the current state and the start of that state’s range) and (a multiplier). That is:

nextState += (curState - curStateStart) * deltaMultiplier

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateEntryTerminal
Maps from a dead-key state to the Unicode character(s) produced when that state is terminated by a given
character key for a 'uchr' resource.

struct UCKeyStateEntryTerminal {
 UInt16 curState;
 UCKeyCharSeq charData;
};
typedef struct UCKeyStateEntryTerminal UCKeyStateEntryTerminal;

Fields
curState

An unsigned 16-bit integer specifying the current dead-key state.

2172 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

charData
A value of type UCKeyCharSeq specifying the Unicode character(s) produced when a given character
key is pressed.

Discussion
The UCKeyStateEntryTerminal type is used in the stateEntryData[] field of a structure of type
UCKeyStateRecord (page 2173). You should use theUCKeyStateEntryTerminal format for simple dead-key
states that are terminated by a single keystroke, as in the U.S. keyboard layout. Each entry maps from the
current dead-key state to the Unicode character(s) produced when a given character key is pressed that
terminates the dead-key state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateRecord
Determines dead-key state transitions in a 'uchr' resource.

struct UCKeyStateRecord {
 UCKeyCharSeq stateZeroCharData;
 UInt16 stateZeroNextState;
 UInt16 stateEntryCount;
 UInt16 stateEntryFormat;
 UInt32 stateEntryData[1];
};
typedef struct UCKeyStateRecord UCKeyStateRecord;

Fields
stateZeroCharData

A value of type UCKeyCharSeq specifying the Unicode character(s) produced from a given key code
while no dead-key state is in effect.

stateZeroNextState
An unsigned 16-bit integer specifying the dead-key state produced from a given key code when no
previous dead-key state is in effect. If the UCKeyStateRecord structure does not initiate a dead-key
state (but only provides terminators for other dead-key states), this will be 0. A non-zero value specifies
the resulting new dead-key state and refers to the current state entry within the stateEntryData[]
field for the following dead-key state record that is applied.

stateEntryCount
An unsigned 16-bit integer specifying the number of elements in the stateEntryData field’s array
for a given dead-key state record.

stateEntryFormat
An unsigned 16-bit integer specifying the format of the data in the stateEntryData field’s array.
This should be 0 if the stateEntryCount field is set to 0. Currently available values are
kUCKeyStateEntryTerminalFormat and kUCKeyStateEntryRangeFormat; see “Key State Entry
Formats” (page 2181) for descriptions of these values.

Data Types 2173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

stateEntryData
An array of dead-key state entries, whose size depends on their format, but which will always be a
multiple of 4 bytes. Each entry maps from the current dead-key state to the Unicode character(s) that
result when a given character key is pressed or to the next dead-key state, if any. The format of the
entry is specified by the stateEntryFormat field to be either that of type
UCKeyStateEntryTerminal (page 2172) or UCKeyStateEntryRange (page 2171).

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyStateRecord type is used in the third key mapping
section of the 'uchr' resource to determine dead-key state transitions. The UCKeyStateRecord structure
permits complex dead-key state processing, such as a series of transitions from one dead-key state directly
into another, in which each transition can emit a sequence of one or more Unicode characters.

Any modifier key combination which initiates a dead-key state or which is a valid terminator of a dead-key
state refers to one of these records via the UCKeyOutput (page 2169) values in key-code-to-character tables.
A UCKeyOutput value may index the offsets contained in a UCKeyStateRecordsIndex (page 2174) structure,
which in turn refers to the actual dead-key state records.

Each UCKeyStateRecord structure maps from the current dead-key state to the character data to be output
or the following dead-key state (if any), as follows:

 ■ If the current dead-key state is zero (that is, there are no dead keys in effect) the value in
stateZeroCharData is output and the state is set to the value in stateZeroNextState (this can
be used to initiate a dead-key state).

 ■ If the current dead-key state is non-zero and there is an entry for the state in stateEntryData, then
the corresponding value in stateEntryData.charData is output. The next state is then set to either
a kUCKeyStateEntryTerminalFormat or a kUCKeyStateEntryRangeFormat value; in either case,
if the next dead-key state is 0, this implements a valid dead-key state terminator.

 ■ If the current dead-key state is non-zero, and there is no entry for the state in stateEntryData, the
default state terminator is output from the 'uchr' resource’s UCKeyStateTerminators (page 2175)
table for the current state (or nothing may be output, if there is no UCKeyStateTerminators table or
it has no entry for the current state). Then the value in stateZeroCharData is output, and the state is
set to the value in stateZeroNextState.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateRecordsIndex
Provides a count of, and offsets to, dead-key state records in a 'uchr' resource.

2174 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

struct UCKeyStateRecordsIndex {
 UInt16 keyStateRecordsIndexFormat;
 UInt16 keyStateRecordCount;
 ByteOffset keyStateRecordOffsets[1];
};
typedef struct UCKeyStateRecordsIndex UCKeyStateRecordsIndex;

Fields
keyStateRecordsIndexFormat

An unsigned 16-bit integer identifying the format of the UCKeyStateRecordsIndex structure. Set
to kUCKeyStateRecordsIndexFormat.

keyStateRecordCount
An unsigned 16-bit integer specifying the number of dead-key state records that are included in the
resource.

keyStateRecordOffsets
An array of offsets from the beginning of the resource to each of the UCKeyStateRecord values that
follow this structure in the 'uchr' resource.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyStateRecordsIndex type is used in the third key
mapping section of the 'uchr' resource.

The UCKeyStateRecordsIndex structure is an index to dead-key state records of type
UCKeyStateRecord (page 2173). Any keycode-modifier combination which initiates a dead-key state or which
is a valid terminator of a dead-key state refers to one of these records, via the UCKeyStateRecordsIndex
structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyStateTerminators
Lists the default terminators for each dead-key state handled by a 'uchr' resource.

struct UCKeyStateTerminators {
 UInt16 keyStateTerminatorsFormat;
 UInt16 keyStateTerminatorCount;
 UCKeyCharSeq keyStateTerminators[1];
};
typedef struct UCKeyStateTerminators UCKeyStateTerminators;

Fields
keyStateTerminatorsFormat

An unsigned 16-bit integer identifying the format of the UCKeyStateTerminators structure. Set to
kUCKeyStateTerminatorsFormat.

keyStateTerminatorCount
An unsigned 16-bit integer specifying the number of default dead-key state terminators contained
in the keyStateTerminators[] array.

Data Types 2175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

keyStateTerminators
An array of default dead-key state terminators, described as values of type UCKeyCharSeq (page 2167);
the value keyStateTerminators[0] is the terminator for state 1, and so on.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyStateTerminators type is used in the fourth key
mapping section of the 'uchr ' resource.

The UCKeyStateTerminators structure contains the list of default terminators (characters or sequences)
for each dead-key state that is handled by a 'uchr' resource. When a dead-key state is in effect but a
modifier-and-key combination is typed which has no special handling for that state, the default terminator
for the state is output before the modifier-and-key combination is processed. If this table is not present or
does not extend far enough to have a terminator for the state, nothing is output when the state terminates.

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

UCKeyToCharTableIndex
Provides a count of, and offsets to, key-code-to-character tables in a 'uchr' resource.

struct UCKeyToCharTableIndex {
 UInt16 keyToCharTableIndexFormat;
 UInt16 keyToCharTableSize;
 ItemCount keyToCharTableCount;
 ByteOffset keyToCharTableOffsets[1];
};
typedef struct UCKeyToCharTableIndex UCKeyToCharTableIndex;

Fields
keyToCharTableIndexFormat

An unsigned 16-bit integer identifying the format of the UCKeyToCharTableIndex structure. Set to
kUCKeyToCharTableIndexFormat.

keyToCharTableSize
An unsigned 16-bit integer specifying the number of virtual key codes supported by this resource;
for ADB keyboards this is 128 (with virtual key codes ranging from 0 to 127).

keyToCharTableCount
An unsigned 32-bit integer specifying the number of key-code-to-character tables, typically 6 to 12.

keyToCharTableOffsets
An array of offsets from the beginning of the 'uchr' resource to each of the UCKeyOutput
key-code-to-character tables in the keyToCharData[] array that follows this structure in the resource.

Discussion
The Unicode keyboard-layout ('uchr') resource contains the data necessary to map virtual key codes to
Unicode character codes for a given keyboard layout. The 'uchr' format consists of a header information
section and five key mapping data sections. The UCKeyToCharTableIndex type is used in the second key
mapping section of the 'uchr' resource. The UCKeyToCharTableIndex structure precedes the list of
key-code-to-character tables, each of which maps a key code to a 16-bit value of type UCKeyOutput (page
2169).

2176 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
UnicodeUtilities.h

Constants

Fixed Ordering Scheme
Specifies to use the fixed ordering scheme.

enum {
 kUCCollateTypeHFSExtended = 1
};

Constants
kUCCollateTypeHFSExtended

ThekUCCollateTypeHFSExtendedordering scheme sorts maximally decomposed Unicode according
to the rules used by the HFS Extended volume format for its catalog. When this order is used, other
collation options are ignored; this order is always case-insensitive (for decomposed characters) and
ignores the Unicode characters 200C-200F, 202A-202E, 206A-206F, FEFF.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
UCCollateOptions is a 32-bit value. Bits 0-23 are described in “String Comparison Options” (page 2183). The
field consisting of bits 24-31 is used for values that specify which fixed ordering scheme to use with the
function UCCompareTextNoLocale (page 2154). Currently only one such scheme is provided.

Constants are provided for setting and testing the UCCollateOptions field that specifies the ordering
scheme. These values are described in “Fixed Ordering Masks 1” (page 2177) and “Fixed Ordering Masks 2” (page
2178).

Fixed Ordering Masks 1
Set and test the UCCollateOptions field that specifies a fixed ordering scheme.

enum {
 kUCCollateTypeSourceMask = 0x000000FF,
 kUCCollateTypeShiftBits = 24
};

Constants
kUCCollateTypeSourceMask

You can use this mask, in conjunction with the kUCCollateTypeShiftBits constant, to obtain a
value identifying a fixed ordering scheme.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Constants 2177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

kUCCollateTypeShiftBits
You can use this value, along with one of the constants described in “Fixed Ordering Scheme” (page
2177), to specify a fixed ordering scheme. You can also use this value, in conjunction with the
kUCCollateTypeSourceMask constant, to obtain a value identifying a fixed ordering scheme.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
You can use these constants to set or obtain a value that specifies a fixed ordering scheme. For a description
of the available types of fixed ordering schemes, see “Fixed Ordering Scheme” (page 2177).

For example, to specify kUCCollateTypeHFSExtended in the options parameter of the function
UCCompareTextNoLocale (page 2154) , the kUCCollateTypeHFSExtended value must be shifted by
kUCCollateTypeShiftBits :

options = kUCCollateTypeHFSExtended kUCCollateTypeShiftBits;

You would obtain the ordering scheme value from the options parameter as follows:

fixedOrderType = ((options > > kUCCollateTypeShiftBits) &
kUCCollateTypeSourceMask);

See also “Fixed Ordering Masks 2” (page 2178).

Fixed Ordering Masks 2
Test the UCCollateOptions field that specifies a fixed ordering scheme.

enum {
 kUCCollateTypeMask = kUCCollateTypeSourceMask << kUCCollateTypeShiftBits
};

Constants
kUCCollateTypeMask

You can use this mask to directly test bits 24-31 of a UCCollateOptions value.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
See also “Fixed Ordering Scheme” (page 2177).

See also “Fixed Ordering Masks 1” (page 2177).

Key Actions
Indicate the current key action.

2178 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

enum {
 kUCKeyActionDown = 0,
 kUCKeyActionUp = 1,
 kUCKeyActionAutoKey = 2,
 kUCKeyActionDisplay = 3
};

Constants
kUCKeyActionDown

The user is pressing the key.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyActionUp
The user is releasing the key.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyActionAutoKey
The user has the key in an “auto-key” pressed state that is, the user is holding down the key for an
extended period of time and is thereby generating multiple key strokes from the single key.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyActionDisplay
The user is requesting information for key display, as in the Key Caps application.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
You can supply the following constants for the keyAction parameter of the function UCKeyTranslate (page
2162) to indicate the current key action.

Key Format Codes
Indicate a structure format used in a 'uchr' resource.

enum {
 kUCKeyLayoutHeaderFormat = 0x1002,
 kUCKeyLayoutFeatureInfoFormat = 0x2001,
 kUCKeyModifiersToTableNumFormat = 0x3001,
 kUCKeyToCharTableIndexFormat = 0x4001,
 kUCKeyStateRecordsIndexFormat = 0x5001,
 kUCKeyStateTerminatorsFormat = 0x6001,
 kUCKeySequenceDataIndexFormat = 0x7001
};

Constants
kUCKeyLayoutHeaderFormat

The format of a structure of type UCKeyboardLayout (page 2165).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Constants 2179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

kUCKeyLayoutFeatureInfoFormat
The format of a structure of type UCKeyLayoutFeatureInfo (page 2168).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyModifiersToTableNumFormat
The format of a structure of type UCKeyModifiersToTableNum (page 2169).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyToCharTableIndexFormat
The format of a structure of type UCKeyToCharTableIndex (page 2176).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyStateRecordsIndexFormat
The format of a structure of type UCKeyStateRecordsIndex (page 2174).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyStateTerminatorsFormat
The format of a structure of type UCKeyStateTerminators (page 2175).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeySequenceDataIndexFormat
The format of a structure of type UCKeySequenceDataIndex (page 2170).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
These constants are those currently defined to be used within the various structures in a 'uchr' resource
to indicate each structure’s format.

Key Output Index Masks
Test the bits in UCKeyOutput values.

enum {
 kUCKeyOutputStateIndexMask = 0x4000,
 kUCKeyOutputSequenceIndexMask = 0x8000,
 kUCKeyOutputTestForIndexMask = 0xC000,
 kUCKeyOutputGetIndexMask = 0x3FFF
};

Constants
kUCKeyOutputStateIndexMask

If the bit specified by this mask is set, the UCKeyStateRecordsIndex (page 2174) UCKeyOutput value
contains an index into a structure of type UCKeyStateRecordsIndex (page 2174).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

2180 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

kUCKeyOutputSequenceIndexMask
If the bit specified by this mask is set, the UCKeyOutput value contains an index into a structure of
type UCKeySequenceDataIndex (page 2170).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyOutputTestForIndexMask
You can use this mask to test the bits (14–15) in the UCKeyOutput value that determine whether the
value contains an index to any other structure. If both bits specified by this mask are clear, the
UCKeyOutput value does not contain an index to any other structure.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyOutputGetIndexMask
You can use this mask to test the bits (0–13) in a UCKeyOutput value that provide the actual index
to another structure.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
You can use these masks to test the bits in UCKeyOutput values.

Key State Entry Formats
Indicate the format for dead-key state records.

enum {
 kUCKeyStateEntryTerminalFormat = 0x0001,
 kUCKeyStateEntryRangeFormat = 0x0002
};

Constants
kUCKeyStateEntryTerminalFormat

Specifies that the entry format is that of a structure of type UCKeyStateEntryTerminal (page 2172).
Use this format for simple (single) dead-key states, as in the U.S. keyboard layout.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCKeyStateEntryRangeFormat
Specifies that the entry format is that of a structure of type UCKeyStateEntryRange (page 2171). Use
this format for complex (multiple) dead-key states, as in the hex input and Hangul input keyboard
layouts.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
These constants are used in UCKeyStateRecord structures to indicate the format for dead-key state records.

Key Translation Options Flag
Indicates the dead-key processing state.

Constants 2181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

enum {
 kUCKeyTranslateNoDeadKeysBit = 0
};

Constants
kUCKeyTranslateNoDeadKeysBit

The bit number of the bit that turns off dead-key processing. This prevents setting any new dead-key
states, but allows completion of any dead-key states currently in effect.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
Theis constant is the currently defined bit assignment for the keyTranslateOptions parameter of the
function UCKeyTranslate (page 2162).

Key Translation Options Mask
Specifies the mask for the bit that controls dead-key processing state.

enum {
 kUCKeyTranslateNoDeadKeysMask = 1L << kUCKeyTranslateNoDeadKeysBit
};

Constants
kUCKeyTranslateNoDeadKeysMask

The mask for the bit that turns off dead-key processing. This prevents setting any new dead-key states,
but allows completion of any dead-key states currently in effect.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
This constant is the currently defined mask for the keyTranslateOptions parameter of the function
UCKeyTranslate (page 2162).

Operation Class
Identifies collation as a class of Unicode utility operations.

enum {
 kUnicodeCollationClass = 'ucol'
};

Constants
kUnicodeCollationClass

Identifies collation as a class of operations.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
The locales and collation variants available for collation operations can be determined by calling the Locales
Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocaleswith the opClass
parameter set to the kUnicodeCollationClass constant.

2182 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

Standard Options Mask
Specifies standard options for Unicode string comparison.

enum {
 kUCCollateStandardOptions = kUCCollateComposeInsensitiveMask
| kUCCollateWidthInsensitiveMask
};

Constants
kUCCollateStandardOptions

If the kUCCollateComposeInsensitiveMask and kUCCollateWidthInsensitiveMask bits are
set, then (1) precomposed and decomposed representations of the same text element will be treated
as equivalent, and (2) fullwidth and halfwidth compatibility forms will be treated as equivalent to the
corresponding non-compatibility characters.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
For descriptions of other collation options, see “String Comparison Options” (page 2183).

String Comparison Options
Specifies options for Unicode string comparison.

typedef UInt32 UCCollateOptions;
enum {
 kUCCollateComposeInsensitiveMask = 1L << 1,
 kUCCollateWidthInsensitiveMask = 1L << 2,
 kUCCollateCaseInsensitiveMask = 1L << 3,
 kUCCollateDiacritInsensitiveMask = 1L << 4,
 kUCCollatePunctuationSignificantMask = 1L << 15,
 kUCCollateDigitsOverrideMask = 1L << 16,
 kUCCollateDigitsAsNumberMask = 1L << 17
};

Constants
kUCCollateComposeInsensitiveMask

If the corresponding bit is set, then precomposed and decomposed representations of the same text
element are treated as equivalent. This option is among those set by the
kUCCollateStandardOptions constant, as described in “Standard Options Mask” (page 2183).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollateWidthInsensitiveMask
If the corresponding bit is set, then fullwidth and halfwidth compatibility forms are treated as equivalent
to the corresponding non-compatibility characters. This option is among those set by the
kUCCollateStandardOptions constant, as described in “Standard Options Mask” (page 2183).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Constants 2183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

kUCCollateCaseInsensitiveMask
If the corresponding bit is set, then uppercase and titlecase characters are treated as equivalent to
the corresponding lowercase characters.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollateDiacritInsensitiveMask
If the corresponding bit is set, then characters with diacritics are treated as equivalent to the
corresponding characters without diacritics.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollatePunctuationSignificantMask
If the corresponding bit is set, then punctuation and symbols are treated as significant instead of
ignorable. This will produce results closer to the behavior of the older non-Unicode Mac OS collation
functions. This option is available with Mac OS 9 and later.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollateDigitsOverrideMask
If the corresponding bit is set, then the number-handling behavior is specified by the remaining
number-handling option bits, instead of by the collation information for the locale. If the bit is clear,
the locale controls how numbers are handled and the remaining number-handling option bits are
ignored. This option is available with Mac OS 9 and later.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCCollateDigitsAsNumberMask
If the corresponding bit is set (and if the bit corresponding to kUCCollateDigitsOverrideMask
is also set), then numeric substrings up to six digits long are collated by their numeric value—that is,
they are treated as a single text element whose primary weight depends on the numeric value of the
digit string. This primary weight will be greater than the weight of any valid Unicode character, but
less than the primary weight of any unassigned Unicode character. For example, this will result in
“Chapter 9” sorting before “Chapter 10.” Currently, these digit strings can include digits with numeric
value 0-9 in any script (excluding the ideographic characters for 1-9). If the bit is clear, digits are treated
like other characters for sorting. Numeric substrings longer than 6 digits are always treated as normal
characters. This option is available with Mac OS 9 and later.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
For a description of the UCCollateOptions values, see “Standard Options Mask” (page 2183).

Text Break Options
Specifies options for locating boundaries in Unicode text.

2184 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

typedef UInt32 UCTextBreakOptions;
enum {
 kUCTextBreakLeadingEdgeMask = 1L << 0,
 kUCTextBreakGoBackwardsMask = 1L << 1,
 kUCTextBreakIterateMask = 1L << 2
};

Constants
kUCTextBreakLeadingEdgeMask

If the corresponding bit is set, then the starting offset for the UCFindTextBreak function is assumed
to be in the word containing the character following the offset; this is the normal case when searching
forward. If the corresponding bit is clear, then the starting offset for UCFindTextBreak is assumed
to be in the word containing the character preceding the offset; this is the normal case when searching
backward.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCTextBreakGoBackwardsMask
If the corresponding bit is set, then UCFindTextBreak searches backward from the value provided
in its startOffset parameter to find the next text break. If the corresponding bit is clear, then
UCFindTextBreak searches forward from the startOffset value to find the next text break.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCTextBreakIterateMask
The corresponding bit may be set to indicate to the UCFindTextBreak function that the specified
starting offset is a known break of the type specified in the breakType parameter. This permits
UCFindTextBreak to optimize its search for the subsequent break of the same type. When iterating
through all the breaks of a particular type in a particular buffer, this bit should be set for all calls except
the first (since the initial startOffset value may not be a known break of the specified type).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Text Break Types
Specifies kinds of text boundaries.

typedef UInt32 UCTextBreakType;
enum {
 kUCTextBreakCharMask = 1L << 0,
 kUCTextBreakClusterMask = 1L << 2,
 kUCTextBreakWordMask = 1L << 4,
 kUCTextBreakLineMask = 1L << 6
};

Constants
kUCTextBreakCharMask

If the bit specified by this mask is set, boundaries of characters may be located (with surrogate pairs
treated as a single character).

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Constants 2185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

kUCTextBreakClusterMask
If the bit specified by this mask is set, boundaries of character clusters may be located. A cluster is a
group of characters that should be treated as single text element for editing operations such as cursor
movement. Typically this includes groups such as a base character followed by a sequence of combining
characters, for example, a Hangul syllable represented as a sequence of conjoining jamo characters
or an Indic consonant cluster.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCTextBreakWordMask
If the bit specified by this mask is set, boundaries of words may be located. This can be used to
determine what to highlight as the result of a double-click.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

kUCTextBreakLineMask
If the bit specified by this mask is set, potential line breaks may be located.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Text Boundary Operation Class
Identifies the class of Unicode utility operations that find text boundaries.

enum {
 kUnicodeTextBreakClass = 'ubrk'
};

Constants
kUnicodeTextBreakClass

Identifies the class of Unicode utility operations that find text boundaries.

Available in Mac OS X v10.0 and later.

Declared in UnicodeUtilities.h.

Discussion
The locales and text-break variants available for finding boundaries in Unicode text can be determined by
calling the Locales Utilities functions LocaleOperationCountLocales and LocaleOperationGetLocales
with the opClass parameter set to the kUnicodeTextBreakClass constant.

2186 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Unicode Utilities Reference

2187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART III

Other References

2188
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART III

Other References

Framework: CoreServices/CoreServices.h

Declared in BackupCore.h

Overview

Backup Core is a C language API that supplies a low-level interface to file and folder settings used by Backup.
Introduced in Mac OS X v10.5, Backup is a built-in, user-configurable backup solution that protects user data
from accidental loss.

The Backup Core API includes a function you can use to exclude from Backup temporary or otherwise
unimportant folders and files your application creates. In addition, you can use this function to allow your
users to make backup decisions from within the context of your application.

Functions

CSBackupIsItemExcluded
Returns a Boolean value indicating whether an item is currently excluded from the backup.

Boolean CSBackupIsItemExcluded (
 CFURLRef item,
 Boolean * excludeByPath
);

Parameters
item

The URL of the item.

excludeByPath
If true, the item’s backup exclusion status applies to its location; if false, the item's backup exclusion
status applies to itself, regardless of its location. See CSBackupSetItemExcluded (page 2190) for
more information. Can be NULL.

Return Value
true if the item or any of its ancestors are currently excluded from backup, false otherwise.

Availability
Available in Mac OS X v10.5 and later.

Declared In
BackupCore.h

Overview 2189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Backup Core Reference

CSBackupSetItemExcluded
Includes or excludes an item from the backup.

OSStatus CSBackupSetItemExcluded (
 CFURLRef item,
 Boolean exclude,
 Boolean excludeByPath
);

Parameters
item

The URL of the file or folder to be included or excluded from the backup.

exclude
Pass true to exclude this item from backup (Backup will not back up this item). Pass false to stop
excluding this item (Backup will back up this item if the user so chooses).

excludeByPath
Pass true to indicate that this item is excluded because of its location (its absolute path). Pass false
to indicate that this item is excluded regardless of its location (and regardless of whether the user
moves the item).

Return Value
A result code. Returns noErr if the item was successfully included or excluded from the backup.

Discussion
Backup skips files and folders marked for exclusion. If a folder is marked for exclusion, the folder and all its
contents are excluded from the backup process. You can exclude specific paths that do not exist yet, but
that you plan to create later, by passing the planned URL in item and passing true in excludeByPath.
Note that if you pass false in excludeByPath, the URL must already exist.

Your application can allow users to change the backup exclusion status of any file or folder to which it has
write access. To change the backup exclusion status of a path, your application must be running with
administrator privileges.

Availability
Available in Mac OS X v10.5 and later.

Declared In
BackupCore.h

2190 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Backup Core Reference

Framework: CoreServices/CoreServices.h

Declared in LowMem.h

Overview

Note: This document was previously titled Carbon Specification for Low Memory Accessors.

Low-memory accessors are functions you can use to obtain or update information stored in low-memory
variables. In general, don’t think of the values returned by low-memory accessors as residing in low
memory—think of them as global information for a process, possibly associated with a specific manager or
service, that is set or returned by Mac OS X. These functions allow you to access useful system information
(such as the location of the mouse) stored as global variables in so-called "low memory."

The practice of accessing low memory directly was questionable in earlier versions of Mac OS, and certainly
is not suggested now. In some cases, better, safer functions exist in other interfaces for obtaining the same
information. To facilitate the porting of legacy applications, Carbon supports many of the low-memory
accessors. However, you should always avoid using low-memory accessors if there are direct calls to obtain
the same information.

Functions

LMGetApFontID
(Deprecated in Mac OS X v10.4. Use GetAppFont instead.)

SInt16 LMGetApFontID (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
LowMem.h

Overview 2191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

LMGetBootDrive

SInt16 LMGetBootDrive (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMGetBufPtr
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Ptr LMGetBufPtr (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetBufTgDate
(Deprecated in Mac OS X v10.5.)

SInt32 LMGetBufTgDate (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetBufTgFBkNum
(Deprecated in Mac OS X v10.5.)

2192 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

SInt16 LMGetBufTgFBkNum (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetBufTgFFlg
(Deprecated in Mac OS X v10.5.)

SInt16 LMGetBufTgFFlg (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetBufTgFNum
(Deprecated in Mac OS X v10.5.)

SInt32 LMGetBufTgFNum (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetCPUFlag
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Functions 2193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

UInt8 LMGetCPUFlag (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetCurApName
(Deprecated in Mac OS X v10.5.)

StringPtr LMGetCurApName (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetCurApRefNum
(Deprecated in Mac OS X v10.5.)

FSIORefNum LMGetCurApRefNum (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetCurPageOption
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

2194 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

SInt16 LMGetCurPageOption (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetCurPitch
(Deprecated in Mac OS X v10.5.)

SInt16 LMGetCurPitch (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetCurStackBase
(Deprecated in Mac OS X v10.4. Use the Thread Manager function ThreadCurrentStackSpace (page 2117)
or the POSIX threads function pthread_get_stackaddr_np instead.)

Ptr LMGetCurStackBase (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetDefltStack
(Deprecated in Mac OS X v10.5.)

Functions 2195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

SInt32 LMGetDefltStack (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetDiskFormatingHFSDefaults
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Ptr LMGetDiskFormatingHFSDefaults (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetFinderName
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

StringPtr LMGetFinderName (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetGZMoveHnd
(Deprecated in Mac OS X v10.5.)

2196 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Handle LMGetGZMoveHnd (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetGZRootHnd
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Handle LMGetGZRootHnd (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetHeapEnd
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Ptr LMGetHeapEnd (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetHighHeapMark
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Functions 2197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Ptr LMGetHighHeapMark (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetIntlSpec

Ptr LMGetIntlSpec (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMGetJStash
(Deprecated in Mac OS X v10.5.)

UniversalProcPtr LMGetJStash (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetLvl2DT
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

2198 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

UniversalProcPtr LMGetLvl2DT (
 short vectorNumber
);

Parameters
vectorNumber

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetMemTop
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Ptr LMGetMemTop (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetMinStack
(Deprecated in Mac OS X v10.5.)

SInt32 LMGetMinStack (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetMinusOne
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Functions 2199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

SInt32 LMGetMinusOne (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetOneOne
(Deprecated in Mac OS X v10.5.)

SInt32 LMGetOneOne (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetPrintErr
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

SInt16 LMGetPrintErr (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

2200 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

LMGetResErr

SInt16 LMGetResErr (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMGetResLoad

UInt8 LMGetResLoad (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMGetRndSeed
(Deprecated in Mac OS X v10.5.)

SInt32 LMGetRndSeed (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetScrDmpEnb
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

UInt8 LMGetScrDmpEnb (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 2201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Not available to 64-bit applications.

Declared In
LowMem.h

LMGetSdVolume
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

UInt8 LMGetSdVolume (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetSEvtEnb
Returns a value that specifies the system event enabled bit. (Deprecated in Mac OS X v10.4. There is no
replacement; this function was included to facilitate porting legacy applications to Carbon, but it serves no
useful purpose in Mac OS X.)

UInt8 LMGetSEvtEnb (
 void
);

Discussion
LMGetSEvtEnb returns a signed 16-bit integer that describes the low-memory system event enabled bit, a
byte that, if set to 0, causes SystemEvent to always return false.

The value obtained by LMGetSEvtEnb is also accessible in the system global variable SEvtEnb.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetSoundBase
(Deprecated in Mac OS X v10.5.)

2202 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Ptr LMGetSoundBase (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetSoundLevel
(Deprecated in Mac OS X v10.5.)

UInt8 LMGetSoundLevel (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetSoundPtr
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Ptr LMGetSoundPtr (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetStackLowPoint
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Functions 2203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Ptr LMGetStackLowPoint (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetSysFontFam
(Deprecated in Mac OS X v10.4. Use GetSysFont instead.)

SInt16 LMGetSysFontFam (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetSysFontSize
(Deprecated in Mac OS X v10.4. Use GetDefFontSize instead.)

SInt16 LMGetSysFontSize (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
LowMem.h

LMGetSysMap

SInt16 LMGetSysMap (
 void
);

Availability
Available in Mac OS X v10.0 and later.

2204 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Declared In
LowMem.h

LMGetSysResName
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

StringPtr LMGetSysResName (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMGetTmpResLoad

UInt8 LMGetTmpResLoad (
 void
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMGetToExtFS
(Deprecated in Mac OS X v10.5.)

UniversalProcPtr LMGetToExtFS (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

Functions 2205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

LMGetToolScratch
(Deprecated in Mac OS X v10.4. Use process global data instead.)

Ptr LMGetToolScratch (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetApFontID
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetApFontID (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
LowMem.h

LMSetBootDrive

void LMSetBootDrive (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMSetBufPtr
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

2206 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

void LMSetBufPtr (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetBufTgDate
(Deprecated in Mac OS X v10.5.)

void LMSetBufTgDate (
 SInt32 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetBufTgFBkNum
(Deprecated in Mac OS X v10.5.)

void LMSetBufTgFBkNum (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetBufTgFFlg
(Deprecated in Mac OS X v10.5.)

Functions 2207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

void LMSetBufTgFFlg (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetBufTgFNum
(Deprecated in Mac OS X v10.5.)

void LMSetBufTgFNum (
 SInt32 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetCPUFlag
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetCPUFlag (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetCurApName
(Deprecated in Mac OS X v10.5.)

2208 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

void LMSetCurApName (
 ConstStr31Param curApNameValue
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetCurApRefNum
(Deprecated in Mac OS X v10.5.)

void LMSetCurApRefNum (
 FSIORefNum value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetCurPageOption
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetCurPageOption (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetCurPitch
(Deprecated in Mac OS X v10.5.)

Functions 2209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

void LMSetCurPitch (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetCurStackBase
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetCurStackBase (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetDefltStack
(Deprecated in Mac OS X v10.5.)

void LMSetDefltStack (
 SInt32 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetDiskFormatingHFSDefaults
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

2210 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

void LMSetDiskFormatingHFSDefaults (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetFinderName
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetFinderName (
 ConstStr15Param finderNameValue
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetGZMoveHnd
(Deprecated in Mac OS X v10.5.)

void LMSetGZMoveHnd (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetGZRootHnd
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Functions 2211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

void LMSetGZRootHnd (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetHeapEnd
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetHeapEnd (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetHighHeapMark
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetHighHeapMark (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

2212 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

LMSetIntlSpec

void LMSetIntlSpec (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMSetJStash
(Deprecated in Mac OS X v10.5.)

void LMSetJStash (
 UniversalProcPtr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetLvl2DT
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetLvl2DT (
 UniversalProcPtr Lvl2DTValue,
 short vectorNumber
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetMemTop
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

Functions 2213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

void LMSetMemTop (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetMinStack
(Deprecated in Mac OS X v10.5.)

void LMSetMinStack (
 SInt32 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetMinusOne
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetMinusOne (
 SInt32 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetOneOne
(Deprecated in Mac OS X v10.5.)

2214 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

void LMSetOneOne (
 SInt32 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetPrintErr
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetPrintErr (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetResErr

void LMSetResErr (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMSetResLoad

void LMSetResLoad (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.

Functions 2215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Declared In
LowMem.h

LMSetRndSeed
(Deprecated in Mac OS X v10.5.)

void LMSetRndSeed (
 SInt32 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetScrDmpEnb
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetScrDmpEnb (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetSdVolume
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetSdVolume (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

2216 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

LMSetSEvtEnb
Sets the low-memory system event enabled bit. (Deprecated in Mac OS X v10.4. There is no replacement;
this function was included to facilitate porting legacy applications to Carbon, but it serves no useful purpose
in Mac OS X.)

void LMSetSEvtEnb (
 UInt8 value
);

Parameters
value

An unsigned 8-bit integer that describes the value of the system event enabled bit.

Discussion
LMSetSEvtEnb specifies an unsigned 8-bit integer that sets the low-memory system event enabled bit, a
byte that, if set to 0, causes the SystemEvent to always return false.

The value set by LMSetSEvtEnb is also accessible in the system global variable SEvtEnb.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetSoundBase
(Deprecated in Mac OS X v10.5.)

void LMSetSoundBase (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetSoundLevel
(Deprecated in Mac OS X v10.5.)

void LMSetSoundLevel (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.

Functions 2217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetSoundPtr
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetSoundPtr (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetStackLowPoint
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetStackLowPoint (
 Ptr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetSysFontFam
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetSysFontFam (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

2218 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Declared In
LowMem.h

LMSetSysFontSize

void LMSetSysFontSize (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMSetSysMap

void LMSetSysMap (
 SInt16 value
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMSetSysResName
(Deprecated in Mac OS X v10.4. There is no replacement; this function was included to facilitate porting
legacy applications to Carbon, but it serves no useful purpose in Mac OS X.)

void LMSetSysResName (
 ConstStr15Param sysResNameValue
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

Functions 2219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

LMSetTmpResLoad

void LMSetTmpResLoad (
 UInt8 value
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
LowMem.h

LMSetToExtFS
(Deprecated in Mac OS X v10.5.)

void LMSetToExtFS (
 UniversalProcPtr value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
LowMem.h

LMSetToolScratch
(Deprecated in Mac OS X v10.4. Use process global data instead.)

void LMSetToolScratch (
 const void *toolScratchValue
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
LowMem.h

2220 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Low Memory Accessors Reference

Framework: CoreServices/CoreServices.h

Declared in Endian.h

Overview

Core Endian Reference provides routines for converting data between big endian and little endian format.
These routines are useful for developers who write code that must compile for multiple architectures, including:

 ■ Macintosh developers who want to produce a universal binary.

 ■ QuickTime developers who want their code to run in Windows as well as in Mac OS X.

Both QuickTime and Macintosh developers can use this API to handle reading or writing data to a file or
network packet.

Macintosh developers can use this API to create and install callbacks that are invoked by Mac OS X
automatically when your application:

 ■ reads and writes custom resource data

 ■ sends or receives custom Apple events

 ■ reads and writes custom pasteboard data

The functions in this API are designed to do nothing when the target runtime is already in the desired format.

For more information see:

 ■ Universal Binary Programming Guidelines

 ■ QuickTime API Reference

Functions by Task

Working With Flippers

CoreEndianInstallFlipper (page 2226)
Installs a flipper callback for the specified data type.

Overview 2221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

CoreEndianGetFlipper (page 2225)
Obtains the flipper callback that is installed for the specified data type.

CoreEndianFlipData (page 2224)
Calls the flipper callback associated with the specified data type.

Changing the Endian Format

Endian16_Swap (page 2227)
Changes the endian format of an unsigned 16-bit integer.

Endian32_Swap (page 2227)
Changes the endian format of an unsigned 32-bit integer.

Endian64_Swap (page 2227)
Changes the endian format of an unsigned 64-bit integer.

Converting from Big-Endian to Native Format

EndianS16_BtoN (page 2228)
Converts a signed 16-bit big-endian value to the equivalent value in the computer’s native format.

EndianS32_BtoN (page 2231)
Converts a signed 32-bit big-endian value to the equivalent value in the computer’s native format.

EndianS64_BtoN (page 2233)
Converts a signed 64-bit big-endian value to the equivalent value in the computer’s native format.

EndianU16_BtoN (page 2236)
Converts an unsigned 16-bit big-endian value to the equivalent value in the computer’s native format.

EndianU32_BtoN (page 2238)
Converts an unsigned 32-bit big-endian value to the equivalent value in the computer’s native format.

EndianU64_BtoN (page 2240)
Converts an unsigned 64-bit big-endian value to the equivalent value in the computer’s native format.

Converting from Native Format to Big-Endian Format

EndianS16_NtoB (page 2229)
Converts a signed 16-bit value in the computer’s native format to the equivalent big-endian value.

EndianS32_NtoB (page 2232)
Converts a signed 32-bit value in the computer’s native format to the equivalent big-endian value.

EndianS64_NtoB (page 2234)
Converts a signed 64-bit value in the computer’s native format to the equivalent big-endian value.

EndianU16_NtoB (page 2237)
Converts an unsigned 16-bit value in the computer’s native format to the equivalent big-endian value.

EndianU32_NtoB (page 2239)
Converts an unsigned 32-bit value in the computer’s native format to the equivalent big-endian value.

EndianU64_NtoB (page 2242)
Converts an unsigned 64-bit value in the computer’s native format to the equivalent big-endian value.

2222 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Converting from Little-Endian Format to Native Format

EndianS16_LtoN (page 2229)
Converts a signed 16-bit little-endian value to the equivalent value in the computer’s native format.

EndianS32_LtoN (page 2232)
Converts a signed 32-bit little-endian value to the equivalent value in the computer’s native format.

EndianS64_LtoN (page 2234)
Converts a signed 64-bit little-endian value to the equivalent value in the computer’s native format.

EndianU16_LtoN (page 2236)
Converts an unsigned 16-bit little-endian value to the equivalent value in the computer’s native
format.

EndianU32_LtoN (page 2239)
Converts an unsigned 32-bit little-endian value to the equivalent value in the computer’s native
format.

EndianU64_LtoN (page 2241)
Converts an unsigned 64-bit little-endian value to the equivalent value in the computer’s native
format.

Converting from Native Format to Little-Endian Format

EndianS16_NtoL (page 2230)
Converts a signed 16-bit value in the computer’s native format to the equivalent little-endian value.

EndianS32_NtoL (page 2232)
Converts a signed 32-bit value in the computer’s native format to the equivalent little-endian value.

EndianS64_NtoL (page 2235)
Converts a signed 64-bit value in the computer’s native format to the equivalent little-endian value.

EndianU16_NtoL (page 2237)
Converts an unsigned 16-bit value in the computer’s native format to the equivalent little-endian
value.

EndianU32_NtoL (page 2240)
Converts an unsigned 32-bit value in the computer’s native format to the equivalent little-endian
value.

EndianU64_NtoL (page 2242)
Converts an unsigned 64-bit value in the computer’s native format to the equivalent little-endian
value.

Converting from Big-Endian to Little-Endian Format

EndianS16_BtoL (page 2228)
Converts a signed 16-bit big-endian value to the equivalent little-endian value.

EndianS32_BtoL (page 2230)
Converts a signed 32-bit big-endian value to the equivalent little-endian value.

EndianS64_BtoL (page 2233)
Converts a signed 64-bit big-endian value to the equivalent little-endian value.

Functions by Task 2223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

EndianU16_BtoL (page 2235)
Converts an unsigned 16-bit big-endian value to the equivalent little-endian value.

EndianU32_BtoL (page 2238)
Converts an unsigned 32-bit big-endian value to the equivalent little-endian value.

EndianU64_BtoL (page 2240)
Converts an unsigned 64-bit big-endian value to the equivalent little-endian value.

Converting From Little-Endian to Big-Endian Format

EndianS16_LtoB (page 2229)
Converts a signed 16-bit little-endian value to the equivalent big-endian value.

EndianS32_LtoB (page 2231)
Converts a signed 32-bit little-endian value to the equivalent big-endian value.

EndianS64_LtoB (page 2234)
Converts a signed 64-bit little-endian value to the equivalent big-endian value.

EndianU16_LtoB (page 2236)
Converts an unsigned 16-bit little-endian value to the equivalent big-endian value.

EndianU32_LtoB (page 2238)
Converts an unsigned 32-bit little-endian value to the equivalent big-endian value.

EndianU64_LtoB (page 2241)
Converts an unsigned 64-bit little-endian value to the equivalent big-endian value.

Functions

CoreEndianFlipData
Calls the flipper callback associated with the specified data type.

OSStatus CoreEndianFlipData (
 OSType dataDomain,
 OSType dataType,
 SInt16 id,
 void *data,
 ByteCount dataLen,
 Boolean currentlyNative
);

Parameters
dataDomain

An OSType value that specifies the domain of the flipper callback you want to invoke. Pass
kCoreEndianResourceManagerDomain (page 2248) if your callback applies to resource data. Pass
kCoreEndianAppleEventManagerDomain (page 2248) if your callback applies to Apple event data.
See “Domain Types” (page 2247) for more information.

2224 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

dataType
An OSType value that specifies the type of data that needs to be byte-swapped. This is the four
character code of the resource type or Apple event. This never needs to be byte-swapped even though
GDB and Xcode display the resource in byte-swapped order.

id
The resource ID of the data type. The Resource Manager byte-swaps this for you so you can compare
the resource ID against constants in your code. If the data is not a resource, pass 0.

data
A pointer to the first byte of the data to be byte swapped.

dataLen
The length of the data (in bytes) to be byte swapped.

currentlyNative
A Boolean value that indicates the direction to byte swap. Pass true when the data specified by the
data parameter uses the byte ordering of the currently executing code. On a PowerPC system, true
specifies that the data is in big-endian format. On an x86 system, true specifies that the data is in
little-endian format.

Return Value
A result code. Returns noErr if the data is byte swapped and handlerNotFound if the data is not byte
swapped. Note that data is only byte swapped if it needs to be byte swapped.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Endian.h

CoreEndianGetFlipper
Obtains the flipper callback that is installed for the specified data type.

OSStatus CoreEndianGetFlipper (
 OSType dataDomain,
 OSType dataType,
 CoreEndianFlipProc *proc,
 void **refcon
);

Parameters
dataDomain

An OSType value that specifies the domain of the flipper callback you want to obtain. Pass
kCoreEndianResourceManagerDomain (page 2248) to obtain a callback that applies to resource
data. Pass kCoreEndianAppleEventManagerDomain (page 2248) to obtain a callback that applies
to Apple event data. See “Domain Types” (page 2247) for more information.

dataType
An OSType value that specifies the type of data associated with the flipper callback you want to
obtain. This is the four character code of the resource type or Apple event. This never needs to be
byte-swapped even though GDB and Xcode display the resource in byte-swapped order.

proc
On output, points to the flipper callback that is installed for the data type specified by the dataType
parameter.

Functions 2225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

refCon
On output, points to a 32-bit value that references callback-specific data.

Return Value
A result code. Returns noErr if the flipper callback is found.

Discussion
You can call the function CoreEndianGetFlipper to determine whether a flipper for a given data type is
available.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Endian.h

CoreEndianInstallFlipper
Installs a flipper callback for the specified data type.

OSStatus CoreEndianInstallFlipper (
 OSType dataDomain,
 OSType dataType,
 CoreEndianFlipProc proc,
 void *refcon
);

Parameters
dataDomain

An OSType value that specifies the domain to which the flipper callback applies. Pass
kCoreEndianResourceManagerDomain (page 2248) if your callback applies to resource data. Pass
kCoreEndianAppleEventManagerDomain (page 2248) if your callback applies to Apple event data.
See “Domain Types” (page 2247) for more information.

dataType
An OSType value that specifies the type of data for which you want your flipper callback installed.
This is the four character code of the resource type or Apple event.

proc
A pointer to your flipper callback. The flipper callback is installed into a per-process table that is
searched before the system table.

refCon
A 32-bit value containing or referring to data needed by the callback.

Return Value
A result code. Returns noErr if your flipper callback is installed.

Discussion
You should install the callback by calling the function CoreEndianInstallFlipperwhen your application
calls its initialization routine or when you open your resource file.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Endian.h

2226 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Endian16_Swap
Changes the endian format of an unsigned 16-bit integer.

UInt16 Endian16_Swap (
 UInt16 value
);

Parameters
value

An unsigned 16-bit integer input.

Return Value
The unsigned 16-bit integer result.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 5 and later for Windows.

Declared In
Endian.h

Endian32_Swap
Changes the endian format of an unsigned 32-bit integer.

UInt32 Endian32_Swap (
 UInt32 value
);

Parameters
value

An unsigned 32-bit integer input.

Return Value
The unsigned 32-bit integer result.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 5 and later for Windows.

Declared In
Endian.h

Endian64_Swap
Changes the endian format of an unsigned 64-bit integer.

static UInt64 Endian64_Swap (
 UInt64 value
);

Parameters
value

An unsigned 64-bit integer input.

Functions 2227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Return Value
The unsigned 64-bit integer result.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 5 and later for Windows.

Declared In
Endian.h

EndianS16_BtoL
Converts a signed 16-bit big-endian value to the equivalent little-endian value.

SInt16 EndianS16_BtoL (
 SInt16 value
);

Parameters
value

A signed 16-bit big-endian value.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS16_BtoN
Converts a signed 16-bit big-endian value to the equivalent value in the computer’s native format.

SInt16 EndianS16_BtoN (
 SInt16 value
);

Parameters
value

A signed 16-bit big-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Related Sample Code
QTCarbonShell

2228 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Declared In
Endian.h

EndianS16_LtoB
Converts a signed 16-bit little-endian value to the equivalent big-endian value.

SInt16 EndianS16_LtoB (
 SInt16 value
);

Parameters
value

A signed 16-bit little-endian value.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Endian.h

EndianS16_LtoN
Converts a signed 16-bit little-endian value to the equivalent value in the computer’s native format.

SInt16 EndianS16_LtoN (
 SInt16 value
);

Parameters
value

A signed 16-bit little-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS16_NtoB
Converts a signed 16-bit value in the computer’s native format to the equivalent big-endian value.

Functions 2229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

SInt16 EndianS16_NtoB (
 SInt16 value
);

Parameters
value

A signed 16-bit value in the computer’s native format.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS16_NtoL
Converts a signed 16-bit value in the computer’s native format to the equivalent little-endian value.

SInt16 EndianS16_NtoL (
 SInt16 value
);

Parameters
value

A signed 16-bit value in the computer’s native format.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS32_BtoL
Converts a signed 32-bit big-endian value to the equivalent little-endian value.

SInt32 EndianS32_BtoL (
 SInt32 value
);

Parameters
value

A signed 32-bit big-endian value.

Return Value
The equivalent little-endian value.

2230 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS32_BtoN
Converts a signed 32-bit big-endian value to the equivalent value in the computer’s native format.

SInt32 EndianS32_BtoN (
 SInt32 value
);

Parameters
value

A signed 32-bit big-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS32_LtoB
Converts a signed 32-bit little-endian value to the equivalent big-endian value.

SInt32 EndianS32_LtoB (
 SInt32 value
);

Parameters
value

A signed 32-bit little-endian value.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

Functions 2231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

EndianS32_LtoN
Converts a signed 32-bit little-endian value to the equivalent value in the computer’s native format.

SInt32 EndianS32_LtoN (
 SInt32 value
);

Parameters
value

A signed 32-bit little-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS32_NtoB
Converts a signed 32-bit value in the computer’s native format to the equivalent big-endian value.

SInt32 EndianS32_NtoB (
 SInt32 value
);

Parameters
value

A signed 32-bit value in the computer’s native format.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS32_NtoL
Converts a signed 32-bit value in the computer’s native format to the equivalent little-endian value.

SInt32 EndianS32_NtoL (
 SInt32 value
);

Parameters
value

A signed 32-bit value in the computer’s native format.

2232 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS64_BtoL
Converts a signed 64-bit big-endian value to the equivalent little-endian value.

SInt64 EndianS64_BtoL (
 SInt64 value
);

Parameters
value

A signed 64-bit big-endian value.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS64_BtoN
Converts a signed 64-bit big-endian value to the equivalent value in the computer’s native format.

SInt64 EndianS64_BtoN (
 SInt64 value
);

Parameters
value

A signed 64-bit big-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

Functions 2233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

EndianS64_LtoB
Converts a signed 64-bit little-endian value to the equivalent big-endian value.

SInt64 EndianS64_LtoB (
 SInt64 value
);

Parameters
value

A signed 64-bit little-endian value.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS64_LtoN
Converts a signed 64-bit little-endian value to the equivalent value in the computer’s native format.

SInt64 EndianS64_LtoN (
 SInt64 value
);

Parameters
value

A signed 64-bit little-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS64_NtoB
Converts a signed 64-bit value in the computer’s native format to the equivalent big-endian value.

SInt64 EndianS64_NtoB (
 SInt64 value
);

Parameters
value

A signed 64-bit value in the computer’s native format.

2234 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianS64_NtoL
Converts a signed 64-bit value in the computer’s native format to the equivalent little-endian value.

SInt64 EndianS64_NtoL (
 SInt64 value
);

Parameters
value

A signed 64-bit value in the computer’s native format.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU16_BtoL
Converts an unsigned 16-bit big-endian value to the equivalent little-endian value.

UInt16 EndianU16_BtoL (
 UInt16 value
);

Parameters
value

An unsigned 16-bit big-endian value.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

Functions 2235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

EndianU16_BtoN
Converts an unsigned 16-bit big-endian value to the equivalent value in the computer’s native format.

UInt16 EndianU16_BtoN (
 UInt16 value
);

Parameters
value

An unsigned 16-bit big-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU16_LtoB
Converts an unsigned 16-bit little-endian value to the equivalent big-endian value.

UInt16 EndianU16_LtoB (
 UInt16 value
);

Parameters
value

An unsigned 16-bit little-endian value.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU16_LtoN
Converts an unsigned 16-bit little-endian value to the equivalent value in the computer’s native format.

UInt16 EndianU16_LtoN (
 UInt16 value
);

Parameters
value

An unsigned 16-bit little-endian value.

2236 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU16_NtoB
Converts an unsigned 16-bit value in the computer’s native format to the equivalent big-endian value.

UInt16 EndianU16_NtoB (
 UInt16 value
);

Parameters
value

An unsigned 16-bit value in the computer’s native format.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU16_NtoL
Converts an unsigned 16-bit value in the computer’s native format to the equivalent little-endian value.

UInt16 EndianU16_NtoL (
 UInt16 value
);

Parameters
value

An unsigned 16-bit value in the computer’s native format.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

Functions 2237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

EndianU32_BtoL
Converts an unsigned 32-bit big-endian value to the equivalent little-endian value.

UInt32 EndianU32_BtoL (
 UInt32 value
);

Parameters
value

An unsigned 32-bit big-endian value.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU32_BtoN
Converts an unsigned 32-bit big-endian value to the equivalent value in the computer’s native format.

UInt32 EndianU32_BtoN (
 UInt32 value
);

Parameters
value

An unsigned 32-bit big-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU32_LtoB
Converts an unsigned 32-bit little-endian value to the equivalent big-endian value.

UInt32 EndianU32_LtoB (
 UInt32 value
);

Parameters
value

An unsigned 32-bit little-endian value.

2238 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU32_LtoN
Converts an unsigned 32-bit little-endian value to the equivalent value in the computer’s native format.

UInt32 EndianU32_LtoN (
 UInt32 value
);

Parameters
value

An unsigned 32-bit little-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU32_NtoB
Converts an unsigned 32-bit value in the computer’s native format to the equivalent big-endian value.

UInt32 EndianU32_NtoB (
 UInt32 value
);

Parameters
value

An unsigned 32-bit value in the computer’s native format.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Related Sample Code
QTMetaData

Functions 2239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Declared In
Endian.h

EndianU32_NtoL
Converts an unsigned 32-bit value in the computer’s native format to the equivalent little-endian value.

UInt32 EndianU32_NtoL (
 UInt32 value
);

Parameters
value

An unsigned 32-bit value in the computer’s native format.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU64_BtoL
Converts an unsigned 64-bit big-endian value to the equivalent little-endian value.

UInt64 EndianU64_BtoL (
 UInt64 value
);

Parameters
value

An unsigned 64-bit big-endian value.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU64_BtoN
Converts an unsigned 64-bit big-endian value to the equivalent value in the computer’s native format.

2240 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

UInt64 EndianU64_BtoN (
 UInt64 value
);

Parameters
value

An unsigned 64-bit big-endian value.

Return Value
The equivalent value in the computer’s native format.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU64_LtoB
Converts an unsigned 64-bit little-endian value to the equivalent big-endian value.

UInt64 EndianU64_LtoB (
 UInt64 value
);

Parameters
value

An unsigned 64-bit little-endian value.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU64_LtoN
Converts an unsigned 64-bit little-endian value to the equivalent value in the computer’s native format.

UInt64 EndianU64_LtoN (
 UInt64 value
);

Parameters
value

An unsigned 64-bit little-endian value.

Return Value
The equivalent value in the computer’s native format.

Functions 2241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU64_NtoB
Converts an unsigned 64-bit value in the computer’s native format to the equivalent big-endian value.

UInt64 EndianU64_NtoB (
 UInt64 value
);

Parameters
value

An unsigned 64-bit value in the computer’s native format.

Return Value
The equivalent big-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

EndianU64_NtoL
Converts an unsigned 64-bit value in the computer’s native format to the equivalent little-endian value.

UInt64 EndianU64_NtoL (
 UInt64 value
);

Parameters
value

An unsigned 64-bit value in the computer’s native format.

Return Value
The equivalent little-endian value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

2242 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Callbacks

CoreEndianFlipProc
Defines a pointer to a callback function that byte-swaps your custom data.

typedef CALLBACK_API (OSStatus, CoreEndianFlipProc)
 (OSType dataDomain,
 OSType dataType,
 short id,
 void *dataPtr,
 UInt32 dataSize,
 Boolean currentlyNative,
 void *refcon
);

You would declare your flipper callback function as follows if your were to name it MyCoreEndianFlipProc:

OSStatus MyCoreEndianFlipProc (
 OSType dataDomain,
 OSType dataType,
 short id,
 void *dataPtr,
 UInt32 dataSize,
 Boolean currentlyNative,
 void *refcon
);

Parameters
dataDomain

An OSType value that specifies the domain to which the flipper callback applies. The value
kCoreEndianResourceManagerDomain signifies the domain is resource data. The value
kCoreEndianAppleEventManagerDomain signifies the domain is Apple event data. See “Domain
Types” (page 2247) for more information on the values that can be passed to your callback.

dataType
The type of data to be byte swapped by the callback. This is the four character code of the resource
type or Apple event.

id
The resource id of the data type. The value 0 signifies the data is not a resource.

dataPtr
On input, points to the data to be flipped. On output, points to the byte-swapped data.

dataSize
The size of the data pointed to the by the dataPtr parameter.

currentlyNative
A Boolean value that indicates the direction to byte swap. The value true specifies the data pointed
to by the dataPtr parameter uses the byte ordering of the currently executing code. On a PowerPC
system, true specifies that the data is in big-endian format. On an x86 system, true specifies that
the data is in little-endian format.

refcon
A 32-bit value that contains or refers to data needed by the callback.

Callbacks 2243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Return Value
A result code that indicates whether the byte swapping is successful. Your callback should return noErr if
the resource is byte swapped without error, handlerNotFound if you chose not to byte swap the data, and
the appropriate result code to indicate an error condition if the data is bad. The result code you return is
propagated through the appropriate manager (Resource Manager (ResError) or Apple Event Manager) to
the caller.

Discussion
You should write each flipper callback so it traverses the data structure that contains the data and performs
the following tasks:

 ■ Byte swaps all Resource Manager counts and lengths so that array indexes are associated with the
appropriate value

 ■ Byte swaps all integers and longs so that when you read them into variables of a compatible type the
values can be operated on correctly (such as numerical, offset, and shift operations)

A flipper callback must be bidirectional because it can be called by the Resource Manager or Apple Event
Manager when you read data as well as when you write data. The system ensures that your flipper callback
is invoked at the appropriate times.

Your flipper callback is not invoked on a microprocessor that uses big-endian byte ordering. It is called with
currentlyNative set to false when data is read (or received) and true when the data is set to be written
(or sent).

Availability
Available in Mac OS X 10.3 and later.

Declared In
Endian.h

Data Types

BigEndianLong
Protects a big-endian long value from being changed by little-endian code.

// Little-endian host
struct BigEndianLong {
long bigEndianValue;
};
typedef struct BigEndianLong BigEndianLong;
// Big-endian host
typedef long BigEndianLong;

Fields
bigEndianValue

A long value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

2244 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Declared In
Endian.h

BigEndianUnsignedLong
Protects a big-endian unsigned long value from being changed by little-endian code.

// Little-endian host
struct BigEndianUnsignedLong {
 unsigned long bigEndianValue;
 };
typedef struct BigEndianUnsignedLong BigEndianUnsignedLong;
// Big-endian host
typedef unsigned long BigEndianUnsignedLong;

Fields
bigEndianValue

An unsigned long value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

BigEndianShort
Protects a big-endian short value from being changed by little-endian code.

// Little-endian host
struct BigEndianShort {
 short bigEndianValue;
};
typedef struct BigEndianShort BigEndianShort;
// Big-endian host
typedef short BigEndianShort;

Fields
bigEndianValue

A short value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

BigEndianUnsignedShort
Protects a big-endian unsigned short value from being changed by little-endian code.

Data Types 2245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

// Little-endian host
struct BigEndianUnsignedShort {
 unsigned short bigEndianValue;
};
typedef struct BigEndianUnsignedShort BigEndianUnsignedShort;
// Big-endian host
typedef unsigned short BigEndianUnsignedShort;

Fields
bigEndianValue

An unsigned short value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

BigEndianFixed
Protects a big-endian Fixed value from being changed by little-endian code.

// Little-endian host
struct BigEndianFixed {
Fixed bigEndianValue;
};
typedef struct BigEndianFixed BigEndianFixed;
// Big-endian host
typedef Fixed BigEndianFixed;

Fields
bigEndianValue

A fixed value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

BigEndianUnsignedFixed
Protects a big-endian unsigned Fixed value from being changed by little-endian code.

2246 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

// Little-endian host
struct BigEndianUnsignedFixed {
UnsignedFixed bigEndianValue;
};
typedef struct BigEndianUnsignedFixed BigEndianUnsignedFixed;
// Big-endian host
typedef UnsignedFixed BigEndianUnsignedFixed;

Fields
bigEndianValue

An unsigned fixed value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Declared In
Endian.h

BigEndianOSType
Protects a big-endian OSType value from being changed by little-endian code.

// Little-endian host
struct BigEndianOSType {
OSType bigEndianValue;
};
typedef struct BigEndianOStype BigEndianOStype;
// Big-endian host
typedef OSType BigEndianOSType;

Fields
bigEndianValue

An OSType value.

Availability
Available in Mac OS X v10.0 and later.
Available in QuickTime 4 and later for Windows.

Constants

Domain Types
Specify the domain to which a flipper callback should be applied.

Constants 2247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

enum {
 kCoreEndianResourceManagerDomain = 'rsrc',
 kCoreEndianAppleEventManagerDomain = 'aevt'
};

Constants
kCoreEndianResourceManagerDomain

Specifies that the domain is limited to the resources for a specific application.

Available in Mac OS X v10.4 and later.

Declared in Endian.h.

kCoreEndianAppleEventManagerDomain
Specifies that the domain is limited to Apple events.

Available in Mac OS X v10.4 and later.

Declared in Endian.h.

Discussion
The data types have specific meanings within their domain, although some data types can be registered
with the same callback in several domains.

Availability
Available in Mac OS X 10.3 and later.

2248 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

Core Endian Reference

Framework: CoreServices/CoreServices.h

Declared in MacErrors.h
MacTypes.h

Overview

In Mac OS 9, Error Handler provides a system service that displays system alerts seen during startup, and
assumes control when certain low-level errors occur. For detailed information, see the chapter “System Error
Handler” in Inside Macintosh: Operating System Utilities. A PDF version of this chapter is available at
http://developer.apple.com/documentation/mac/pdf/Operating_System_Utilities/pdf.html.

Note: In Mac OS X, Error Handler is no longer used for this purpose—for more information, see
SysError (page 2249).

The header MacErrors.h defines result codes that are used by many Carbon functions to indicate their
return status. Developers can also define custom result codes for their own applications, using the range
1000 through 9999 inclusive (Apple reserves all values outside of this range for internal use.) For more
information, see Technical Q&A OV02 at http://developer.apple.com/qa/ov/ov02.html.

Functions

SysError
In Mac OS 9, displays a low-level system alert or dialog. The appearance and semantics of the alert or dialog
can vary, depending on the error code passed in.

Not recommended

void SysError (
 short errorCode
);

Parameters
errorCode

A value or code that indicates a specific condition.

Discussion
A Carbon application running in Mac OS 9 can use this function to simulate a low-level system error. To exit
in a more graceful manner when a serious error occurs, your application should call ExitToShell instead.

Overview 2249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Error Handler Reference

http://developer.apple.com/documentation/mac/pdf/Operating_System_Utilities/pdf.html
http://developer.apple.com/qa/ov/ov02.html

In Mac OS X, this function:

1. Prints a message containing the value of errorCode in the console log. Does not display a system alert
or dialog.

2. If the variable USERBREAK is defined in the process environment, raises a SIGINT signal. Otherwise,
returns control to the caller.

If a signal is raised and the caller does not handle the signal, the calling process is automatically terminated.

Availability
Not recommended in Carbon. Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.

Declared In
MacErrors.h

Data Types

OSErr
A numeric code used in Carbon to indicate the return status of a function.

typedef SInt16 OSErr;

Discussion
The system software sometimes uses error codes to inform an application that a requested service is not
possible. Many functions return a result code of type OSErr that indicates whether the function completed
successfully, and if not, what the reason for failure was.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

OSStatus
A numeric code used in Carbon to indicate the return status of a function.

typedef SInt32 OSStatus;

Discussion
The system software sometimes uses error codes to inform an application that a requested service is not
possible. Many functions return a result code of type OSStatus that indicates whether the function completed
successfully, and if not, what the reason for failure was.

If you want to use OSStatus to define error codes for your application, Apple recommends that you use
values in the range 1000 through 9999 inclusive. Values outside of this range are reserved by Apple for
internal use.

2250 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Error Handler Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSTypes.h

Data Types 2251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Error Handler Reference

2252 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 40

Error Handler Reference

Framework: CoreServices/CoreServices.h, Carbon/Carbon.h

Declared in Finder.h
FinderRegistry.h

Overview

The Finder is an application that works with the system software to keep track of files and manage the user’s
desktop display. This document describes the programming interface your application should use to interact
with the Finder. For example, you can use this interface to:

 ■ Set up the resources the Finder needs to display and start up your application

 ■ Set up the resources the Finder uses to display information about other files related to your application

 ■ Examine or change Finder-related information stored in a volume’s catalog file

 ■ Support stationery pads

Overview 2253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

Data Types

CustomBadgeResource

struct CustomBadgeResource {
 SInt16 version;
 SInt16 customBadgeResourceID;
 OSType customBadgeType;
 OSType customBadgeCreator;
 OSType windowBadgeType;
 OSType windowBadgeCreator;
 OSType overrideType;
 OSType overrideCreator;
};
typedef struct CustomBadgeResource CustomBadgeResource;
typedef CustomBadgeResource * CustomBadgeResourcePtr;

Fields
version
customBadgeResourceID
customBadgeType
customBadgeCreator
windowBadgeType
windowBadgeCreator
overrideType
overrideCreator

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

ExtendedFolderInfo
Defines an extended directory information structure. The ExtendedFolderInfo structure is preferred over
the DXInfo structure.

struct ExtendedFolderInfo {
 Point scrollPosition;
 SInt32 reserved1;
 UInt16 extendedFinderFlags;
 SInt16 reserved2;
 SInt32 putAwayFolderID;
};
typedef struct ExtendedFolderInfo ExtendedFolderInfo;

Fields
scrollPosition

Scroll position within the Finder window. The Finder does not necessarily save this position immediately
upon user action.

2254 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

reserved1
Reserved (set to 0).

extendedFinderFlags
Extended Finder flags. See “Extended Finder Flags ” (page 2262).

reserved2
Reserved (set to 0).

putAwayFolderID
If the user moves the folder onto the desktop, the directory ID of the folder from which the user moves
it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

FolderInfo
Defines a directory information structure. The FolderInfo structure is preferred over the DInfo structure.

struct FolderInfo {
 Rect windowBounds;
 UInt16 finderFlags;
 Point location;
 UInt16 reservedField;
};
typedef struct FolderInfo FolderInfo;

Fields
windowBounds

The rectangle for the window that the Finder displays when the user opens the folder.

finderFlags
Finder flags. See “Finder Flags” (page 2261).

location
Location of the folder in the parent window.

reservedField
Reserved. Set to 0.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

DInfo
Defines a directory information structure.

Data Types 2255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

struct DInfo {
 Rect frRect;
 UInt16 frFlags;
 Point frLocation;
 SInt16 frView;
};
typedef struct DInfo DInfo;

Fields
frRect

The rectangle for the window that the Finder displays when the user opens the folder.

frFlags
Reserved.

frLocation
Location of the folder in the parent window.

frView
The manner in which folders are displayed; this is set by the user with commands from the View menu
of the Finder.

Discussion
The Finder manipulates the fields in the directory information record. Your application shouldn't have to
check or set any of these fields directly

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

DXInfo
Defines an extended directory information structure.

struct DXInfo {
 Point frScroll;
 SInt32 frOpenChain;
 SInt8 frScript;
 SInt8 frXFlags;
 SInt16 frComment;
 SInt32 frPutAway;
};
typedef struct DXInfo DXInfo;

Fields
frScroll

Scroll position within the Finder window. The Finder does not necessarily save this position immediately
upon user action.

frOpenChain
Chain of directory IDs for open folders. The Finder numbers directory IDs. The Finder does not
necessarily save this information immediately upon user action.

2256 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

frScript
Extended flags. If the high-bit is set, the script system for displaying the folder's name. Ordinarily, the
Finder (and the Standard File Package) displays the names of all desktop objects in the current system
script, which depends on the region-specific configuration of the system. The high bit of the byte in
the fdScript field is set by default to 0, which causes the Finder to display the folder's name in the
current system script. If the high bit is set to 1, the Finder (and the Standard File Package) displays
the filename and directory name in the script whose code is recorded in the remaining 7 bits. However,
as of system software version 7.1, the Window Manager and Dialog Manager do not support multiple
simultaneous scripts, so the system script is always used for displaying filenames and directory names
in dialog boxes, window titles, and other user interface elements used by the Finder. Therefore, until
the system software's script capability is fully implemented, you should treat this field as reserved.

frXFlags
Extended flags. See “Extended Finder Flags ” (page 2262).

frComment
Reserved (set to 0). If the high-bit is clear, an ID number for the comment that is displayed in the
information window when the user selects a folder and chooses the Get Info command from the File
menu. The numbers that identify comments are assigned by the Finder.

frPutAway
If the user moves the folder onto the desktop, the directory ID of the folder from which the user moves
it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

ExtendedFileInfo
Defines an extended file information structure. The ExtendedFileInfo structure is preferred over the
FXInfo structure.

struct ExtendedFileInfo {
 SInt16 reserved1[4];
 UInt16 extendedFinderFlags;
 SInt16 reserved2;
 SInt32 putAwayFolderID;
};
typedef struct ExtendedFileInfo ExtendedFileInfo;

Fields
reserved1

Reserved (set to 0).

extendedFinderFlags
Extended flags. See “Extended Finder Flags ” (page 2262).

reserved2
Reserved (set to 0).

putAwayFolderID
If the user moves the file onto the desktop, the directory ID of the folder from which the user moves
the file.

Data Types 2257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

FileInfo
Defines a file information structure. The FileInfo structure is preferred over the FInfo structure.

struct FileInfo {
 OSType fileType;
 OSType fileCreator;
 UInt16 finderFlags;
 Point location;
 UInt16 reservedField;
};
typedef struct FileInfo FileInfo;

Fields
fileType

File type.

fileCreator
The signature of the application that created the file.

finderFlags
Finder flags. See “Finder Flags” (page 2261).

location
The location--specified in coordinates local to the window--of the file's icon within its window.

reservedField
The window in which the file's icon appears; this information is meaningful only to the Finder.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

FInfo
Defines a file information structure.

2258 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

struct FInfo {
 OSType fdType;
 OSType fdCreator;
 UInt16 fdFlags;
 Point fdLocation;
 SInt16 fdFldr;
};
typedef struct FInfo FInfo;

Fields
fdType

File type.

fdCreator
The signature of the application that created the file.

fdFlags
Finder flags. See “Finder Flags” (page 2261).

fdLocation
The location--specified in coordinates local to the window--of the file's icon within its window.

fdFldr
The window in which the file's icon appears; this information is meaningful only to the Finder.

Discussion
You typically set a file's type and creator when you create the file. The Finder manipulates the other fields in
the file information record, which is a data structure of type FInfo. After you have created a file, you can
use the File Manager function FSpGetFInfo to return the file information record, then change the fdType
and fdCreator fields by using the File Manager function FSpSetFInfo

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

FXInfo
Defines an extended file information structure.

struct FXInfo {
 SInt16 fdIconID;
 SInt16 fdReserved[3];
 SInt8 fdScript;
 SInt8 fdXFlags;
 SInt16 fdComment;
 SInt32 fdPutAway;
};
typedef struct FXInfo FXInfo;

Fields
fdIconID

An ID number for the file's icon; the numbers that identify icons are assigned by the Finder.

fdReserved
Reserved.

Data Types 2259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

fdScript
Extended flags. Script code if high-bit is set.

fdXFlags
Extended flags.

fdComment
Reserved (set to 0). If the high-bit is clear, an ID number for the comment that is displayed in the
information window when the user selects a file and chooses the Get Info command from the File
menu. The numbers that identify comments are assigned by the Finder.

fdPutAway
If the user moves the file onto the desktop, the directory ID of the folder from which the user moves
the file.

Discussion
The Finder manipulates the fields in the extended file information records ; your application shouldn't have
to check or set any of these fields directly.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

RoutingResourceEntry

struct RoutingResourceEntry {
 OSType creator;
 OSType fileType;
 OSType targetFolder;
 OSType destinationFolder;
 OSType reservedField;
};
typedef struct RoutingResourceEntry RoutingResourceEntry;
typedef RoutingResourceEntry * RoutingResourcePtr;

Fields
creator
fileType
targetFolder
destinationFolder
reservedField

Availability
Available in Mac OS X v10.0 and later.

Declared In
Finder.h

2260 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

Constants

Finder Flags
Specify flags used by the Finder.

enum {
 kIsOnDesk = 0x0001,
 kColor = 0x000E,
 kIsShared = 0x0040,
 kHasNoINITs = 0x0080,
 kHasBeenInited = 0x0100,
 kHasCustomIcon = 0x0400,
 kIsStationery = 0x0800,
 kNameLocked = 0x1000,
 kHasBundle = 0x2000,
 kIsInvisible = 0x4000,
 kIsAlias = 0x8000
};

Constants
kIsOnDesk

Unused and reserved in System 7; set to 0.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kColor
Three bits of color coding.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kIsShared
The file is an application that can be executed by multiple users simultaneously. Defined only for
applications; otherwise, set to 0.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kHasNoINITs
The file contains no 'INIT' resources; set to 0. Reserved for directories; set to 0.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kHasBeenInited
The Finder has recorded information from the file's bundle resource into the desktop database and
given the file or folder a position on the desktop.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kHasCustomIcon
The file or directory contains a customized icon.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

Constants 2261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

kIsStationery
For a file, this bit indicates that the file is a stationery pad. For directories, this bit is reserved--in which
case, set to 0.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kNameLocked
The file or directory can't be renamed from the Finder, and the icon cannot be changed.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kHasBundle
For a file, this bit indicates that the file contains a bundle resource. For a directory, this bit indicates
that the directory is a file package. Note that not all file packages have this bit set; many file packages
are identified by other means, such as a recognized package extension in the name. The proper way
to determine if an item is a package is through Launch Services.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kIsInvisible
The file or directory is invisible from the Finder and from the Navigation Services dialogs.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kIsAlias
For a file, this bit indicates that the file is an alias file. For directories, this bit is reserved--in which case,
set to 0.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

Extended Finder Flags
Define flags used by the extended file and folder information structures.

enum {
 kExtendedFlagsAreInvalid = 0x8000,
 kExtendedFlagHasCustomBadge = 0x0100,
 kExtendedFlagHasRoutingInfo = 0x0004
};

Constants
kExtendedFlagsAreInvalid

If set the other extended flags are ignored.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

kExtendedFlagHasCustomBadge
Set if the file or folder has a badge resource.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

2262 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

kExtendedFlagHasRoutingInfo
Set if the file contains routing info resource.

Available in Mac OS X v10.0 and later.

Declared in Finder.h.

Constants 2263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

Finder Error Codes

enum {
 errFinderIsBusy = -15260,
 errFinderWindowNotOpen = -15261,
 errFinderCannotPutAway = -15262,
 errFinderWindowMustBeIconView = -15263,
 errFinderWindowMustBeListView = -15264,
 errFinderCantMoveToDestination = -15265,
 errFinderCantMoveSource = -15266,
 errFinderCantOverwrite = -15267,
 errFinderIncestuousMove = -15268,
 errFinderCantMoveToAncestor = -15269,
 errFinderCantUseTrashedItems = -15270,
 errFinderItemAlreadyInDest = -15271,
 errFinderUnknownUser = -15272,
 errFinderSharePointsCantInherit = -15273,
 errFinderWindowWrongType = -15274,
 errFinderPropertyNowWindowBased = -15275,
 errFinderAppFolderProtected = -15276,
 errFinderSysFolderProtected = -15277,
 errFinderBoundsWrong = -15278,
 errAEValueOutOfRange = -15279,
 errFinderPropertyDoesNotApply = -15280,
 errFinderFileSharingMustBeOn = -15281,
 errFinderMustBeActive = -15282,
 errFinderVolumeNotFound = -15283,
 errFinderLockedItemsInTrash = -15284,
 errFinderOnlyLockedItemsInTrash = -15285,
 errFinderProgramLinkingMustBeOn = -15286,
 errFinderWindowMustBeButtonView = -15287,
 errFinderBadPackageContents = -15288,
 errFinderUnsupportedInsidePackages = -15289,
 errFinderCorruptOpenFolderList = -15290,
 errFinderNoInvisibleFiles = -15291,
 errFinderCantDeleteImmediately = -15292,
 errFinderLastReserved = -15379
};

Finder Events

enum {
 kAECleanUp = 'fclu',
 kAEEject = 'ejct',
 kAEEmpty = 'empt',
 kAEErase = 'fera',
 kAEGestalt = 'gstl',
 kAEPutAway = 'ptwy',
 kAERebuildDesktopDB = 'rddb',
 kAESync = 'fupd',
 kAEInterceptOpen = 'fopn'
};

kAEDatabaseSuite

2264 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

enum {
 kAEDatabaseSuite = 'DATA',
 kAESort = 'SORT'
};

kAEFinderSuite

enum {
 kAEFinderSuite = 'fndr'
};

cAliasFile

enum {
 cAliasFile = 'alia',
 cApplicationFile = 'appf',
 cControlPanelFile = 'ccdv',
 cDeskAccessoryFile = 'dafi',
 cDocumentFile = 'docf',
 cFontFile = 'fntf',
 cSoundFile = 'sndf',
 cClippingFile = 'clpf',
 cContainer = 'ctnr',
 cDesktop = 'cdsk',
 cSharableContainer = 'sctr',
 cDisk = 'cdis',
 cFolder = 'cfol',
 cSuitcase = 'stcs',
 cAccessorySuitcase = 'dsut',
 cFontSuitcase = 'fsut',
 cTrash = 'ctrs',
 cDesktopPrinter = 'dskp',
 cPackage = 'pack',
 cContentSpace = 'dwnd',
 cContainerWindow = 'cwnd',
 cInfoWindow = 'iwnd',
 cSharingWindow = 'swnd',
 cStatusWindow = 'qwnd',
 cClippingWindow = 'lwnd',
 cPreferencesWindow = 'pwnd',
 cDTPWindow = 'dtpw',
 cProcess = 'prcs',
 cAccessoryProcess = 'pcda',
 cApplicationProcess = 'pcap',
 cGroup = 'sgrp',
 cUser = 'cuse',
 cSharingPrivileges = 'priv',
 cPreferences = 'cprf',
 cLabel = 'clbl',
 cSound = 'snd ',
 cAliasList = 'alst',
 cSpecialFolders = 'spfl',
 cOnlineDisk = 'cods',
 cOnlineLocalDisk = 'clds',

Constants 2265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

 cOnlineRemoteDisk = 'crds',
 cEntireContents = 'ects',
 cIconFamily = 'ifam'
};

cInternalFinderObject

enum {
 cInternalFinderObject = 'obj '
};

enumAllDocuments

enum {
 enumAllDocuments = 'alld',
 enumFolders = 'fold',
 enumAliases = 'alia',
 enumStationery = 'stat'
};

enumArrangement

enum {
 enumArrangement = 'earr'
};

enumDate

enum {
 enumDate = 'enda',
 enumAnyDate = 'anyd',
 enumToday = 'tday',
 enumYesterday = 'yday',
 enumThisWeek = 'twek',
 enumLastWeek = 'lwek',
 enumThisMonth = 'tmon',
 enumLastMonth = 'lmon',
 enumThisYear = 'tyer',
 enumLastYear = 'lyer',
 enumBeforeDate = 'bfdt',
 enumAfterDate = 'afdt',
 enumBetweenDate = 'btdt',
 enumOnDate = 'ondt'
};

enumIconSize

enum {

2266 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

 enumIconSize = 'isiz',
 enumSmallIconSize = pSmallIcon,
 enumMiniIconSize = 'miic',
 enumLargeIconSize = 'lgic'
};

enumInfoWindowPanel

enum {
 enumInfoWindowPanel = 'ipnl',
 enumGeneralPanel = 'gpnl',
 enumSharingPanel = 'spnl',
 enumStatusNConfigPanel = 'scnl',
 enumFontsPanel = 'fpnl',
 enumMemoryPanel = 'mpnl'
};

enumPrefsWindowPanel

enum {
 enumPrefsWindowPanel = 'pple',
 enumPrefsGeneralPanel = 'pgnp',
 enumPrefsLabelPanel = 'plbp',
 enumPrefsIconViewPanel = 'pivp',
 enumPrefsButtonViewPanel = 'pbvp',
 enumPrefsListViewPanel = 'plvp'
};

enumSortDirection

enum {
 enumSortDirection = 'sodr',
 enumSortDirectionNormal = 'snrm',
 enumSortDirectionReverse = 'srvs'
};

enumViewBy

enum {
 enumViewBy = 'vwby',
 enumGestalt = 'gsen',
 enumConflicts = 'cflc',
 enumExistingItems = 'exsi',
 enumOlderItems = 'oldr'
};

enumWhere

Constants 2267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

enum {
 enumWhere = 'wher',
 enumAllLocalDisks = 'aldk',
 enumAllRemoteDisks = 'ardk',
 enumAllDisks = 'alld',
 enumAllOpenFolders = 'aofo'
};

fOnDesk
Obsolete. Use the constants described in "Finder Flags."

enum {
 fOnDesk = kIsOnDesk,
 fHasBundle = kHasBundle,
 fInvisible = kIsInvisible
};

formAlias

enum {
 formAlias = typeAlias,
 formCreator = pFileCreator
};

fTrash
Obsolete.

2268 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

enum {
 fTrash = -3,
 fDesktop = -2,
 fDisk = 0
};

Clipping File Creator and Types

enum {
 kClippingCreator = 'drag',
 kClippingPictureType = 'clpp',
 kClippingTextType = 'clpt',
 kClippingSoundType = 'clps',
 kClippingUnknownType = 'clpu'
};

kContainerFolderAliasType

enum {
 kContainerFolderAliasType = 'fdrp',
 kContainerTrashAliasType = 'trsh',
 kContainerHardDiskAliasType = 'hdsk',
 kContainerFloppyAliasType = 'flpy',
 kContainerServerAliasType = 'srvr',
 kApplicationAliasType = 'adrp',
 kContainerAliasType = 'drop',
 kDesktopPrinterAliasType = 'dtpa',
 kContainerCDROMAliasType = 'cddr',
 kApplicationCPAliasType = 'acdp',
 kApplicationDAAliasType = 'addp',
 kPackageAliasType = 'fpka',
 kAppPackageAliasType = 'fapa'
};

kCustomBadgeResourceType

enum {
 kCustomBadgeResourceType = 'badg',
 kCustomBadgeResourceID = kCustomIconResource,
 kCustomBadgeResourceVersion = 0
};

kCustomIconResource

enum {
 kCustomIconResource = -16455
};

Constants 2269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

kExportedFolderAliasType

enum {
 kExportedFolderAliasType = 'faet',
 kDropFolderAliasType = 'fadr',
 kSharedFolderAliasType = 'fash',
 kMountedFolderAliasType = 'famn'
};

keyASPrepositionHas

enum {
 keyASPrepositionHas = 'has ',
 keyAll = 'kyal',
 keyOldFinderItems = 'fsel'
};

Constants
keyASPrepositionHas

Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyAll
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyOldFinderItems
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

2270 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

keyIconAndMask

enum {
 keyIconAndMask = 'ICN#',
 key32BitIcon = 'il32',
 key8BitIcon = 'icl8',
 key4BitIcon = 'icl4',
 key8BitMask = 'l8mk',
 keySmallIconAndMask = 'ics#',
 keySmall8BitIcon = 'ics8',
 keySmall4BitIcon = 'ics4',
 keySmall32BitIcon = 'is32',
 keySmall8BitMask = 's8mk',
 keyMini1BitMask = 'icm#',
 keyMini4BitIcon = 'icm4',
 keyMini8BitIcon = 'icm8',
 keyAEUsing = 'usin',
 keyAEReplacing = 'alrp',
 keyAENoAutoRouting = 'rout',
 keyLocalPositionList = 'mvpl',
 keyGlobalPositionList = 'mvpg',
 keyRedirectedDocumentList = 'fpdl'
};

Constants
keyIconAndMask

Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

key32BitIcon
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

key8BitIcon
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

key4BitIcon
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

key8BitMask
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keySmallIconAndMask
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keySmall8BitIcon
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keySmall4BitIcon
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

Constants 2271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

keySmall32BitIcon
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keySmall8BitMask
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyMini1BitMask
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyMini4BitIcon
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyMini8BitIcon
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyAEUsing
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyAEReplacing
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyAENoAutoRouting
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyLocalPositionList
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyGlobalPositionList
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

keyRedirectedDocumentList
Available in Mac OS X v10.0 and later.

Declared in FinderRegistry.h.

2272 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

kFirstMagicBusyFiletype

enum {
 kFirstMagicBusyFiletype = 'bzy ',
 kLastMagicBusyFiletype = 'bzy?'
};

kInternetLocationCreator

enum {
 kInternetLocationCreator = 'drag',
 kInternetLocationHTTP = 'ilht',
 kInternetLocationFTP = 'ilft',
 kInternetLocationFile = 'ilfi',
 kInternetLocationMail = 'ilma',
 kInternetLocationNNTP = 'ilnw',
 kInternetLocationAFP = 'ilaf',
 kInternetLocationAppleTalk = 'ilat',
 kInternetLocationNSL = 'ilns',
 kInternetLocationGeneric = 'ilge'
};

kIsStationary

enum {
 kIsStationary = kIsStationery
};

kMagicBusyCreationDate

enum {
 kMagicBusyCreationDate = 0x4F3AFDB0
};

kRoutingResourceType

enum {
 kRoutingResourceType = 'rout',
 kRoutingResourceID = 0
};

kSystemFolderAliasType

enum {
 kSystemFolderAliasType = 'fasy',
 kAppleMenuFolderAliasType = 'faam',
 kStartupFolderAliasType = 'fast',

Constants 2273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

 kPrintMonitorDocsFolderAliasType = 'fapn',
 kPreferencesFolderAliasType = 'fapf',
 kControlPanelFolderAliasType = 'fact',
 kExtensionFolderAliasType = 'faex'
};

pAboutMacintosh

enum {
 pAboutMacintosh = 'abbx',
 pAppleMenuItemsFolder = 'amnu',
 pControlPanelsFolder = 'ctrl',
 pDesktop = 'desk',
 pExtensionsFolder = 'extn',
 pFinderPreferences = 'pfrp',
 pFontsFolder = 'font',
 pFontsFolderPreAllegro = 'ffnt',
 pLargestFreeBlock = 'mfre',
 pPreferencesFolder = 'pref',
 pShortCuts = 'scut',
 pShutdownFolder = 'shdf',
 pStartupItemsFolder = 'strt',
 pSystemFolder = 'macs',
 pTemporaryFolder = 'temp',
 pViewPreferences = 'pvwp',
 pStartingUp = 'awak'
};

pApplicationFile

enum {
 pApplicationFile = cApplicationFile
};

pCanConnect

enum {
 pCanConnect = 'ccon',
 pCanChangePassword = 'ccpw',
 pCanDoProgramLinking = 'ciac',
 pIsOwner = 'isow',
 pARADialIn = 'arad',
 pShouldCallBack = 'calb',
 pCallBackNumber = 'cbnm'
};

pCapacity

enum {
 pCapacity = 'capa',

2274 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

 pEjectable = 'isej',
 pFreeSpace = 'frsp',
 pLocal = 'isrv',
 pIsStartup = 'istd'
};

pComment

enum {
 pComment = 'comt',
 pContainer = cContainer,
 pContentSpace = cContentSpace,
 pCreationDateOld = 'crtd',
 pCreationDate = 'ascd',
 pDescription = 'dscr',
 pDisk = cDisk,
 pFolderOld = cFolder,
 pFolder = 'asdr',
 pIconBitmap = 'iimg',
 pInfoWindow = cInfoWindow,
 pKind = 'kind',
 pLabelIndex = 'labi',
 pModificationDateOld = 'modd',
 pModificationDate = 'asmo',
 pPhysicalSize = 'phys',
 pPosition = 'posn',
 pIsSelected = 'issl',
 pSize = pPointSize,
 pWindow = cWindow,
 pPreferencesWindow = cPreferencesWindow
};

pCompletelyExpanded

enum {
 pCompletelyExpanded = 'pexc',
 pContainerWindow = cContainerWindow,
 pEntireContents = cEntireContents,
 pExpandable = 'pexa',
 pExpanded = 'pexp',
 pPreviousView = 'svew',
 pView = 'pvew',
 pIconSize = pListViewIconSize,
 pKeepArranged = 'arrg',
 pKeepArrangedBy = 'arby'
};

pDeskAccessoryFile

enum {
 pDeskAccessoryFile = cDeskAccessoryFile
};

Constants 2275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

pFile

enum {
 pFile = cFile,
 pPartitionSpaceUsed = 'pusd',
 pLocalAndRemoteEvents = 'revt',
 pHasScriptingTerminology = 'hscr'
};

pFileCreator

enum {
 pFileCreator = 'fcrt',
 pFileType = 'asty',
 pFileTypeOld = 'fitp',
 pIsLocked = 'aslk',
 pIsLockedOld = 'islk',
 pProductVersion = 'ver2'
};

pFileShareOn

enum {
 pFileShareOn = 'fshr',
 pFileShareStartingUp = 'fsup',
 pProgramLinkingOn = 'iac '
};

pInfoPanel

enum {
 pInfoPanel = 'panl'
};

pInternetLocation

enum {
 pInternetLocation = 'iloc'
};

pIsZoomedFull

enum {
 pIsZoomedFull = 'zumf',
 pIsPopup = 'drwr',
 pIsPulledOpen = 'pull',
 pIsCollapsed = 'wshd'

2276 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

};

pMinAppPartition

enum {
 pMinAppPartition = 'mprt',
 pAppPartition = 'appt',
 pSuggestedAppPartition = 'sprt',
 pIsScriptable = 'isab'
};

pNoArrangement

enum {
 pNoArrangement = 'narr',
 pSnapToGridArrangement = 'grda',
 pByNameArrangement = 'nama',
 pByModificationDateArrangement = 'mdta',
 pByCreationDateArrangement = 'cdta',
 pBySizeArrangement = 'siza',
 pByKindArrangement = 'kina',
 pByLabelArrangement = 'laba'
};

pObject

enum {
 pObject = cObject
};

pOriginalItem

enum {
 pOriginalItem = 'orig'
};

pOwner

enum {
 pOwner = 'sown',
 pOwnerPrivileges = 'ownr',
 pGroup = cGroup,
 pGroupPrivileges = 'gppr',
 pGuestPrivileges = 'gstp',
 pArePrivilegesInherited = 'iprv',
 pExported = 'sexp',
 pMounted = 'smou',
 pSharingProtection = 'spro',

Constants 2277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

 pSharing = 'shar',
 pSharingWindow = cSharingWindow
};

pSeeFiles

enum {
 pSeeFiles = 'prvr',
 pSeeFolders = 'prvs',
 pMakeChanges = 'prvw'
};

pSharableContainer

enum {
 pSharableContainer = cSharableContainer
};

pShowFolderSize

enum {
 pShowFolderSize = 'sfsz',
 pShowComment = 'scom',
 pShowDate = 'sdat',
 pShowCreationDate = 'scda',
 pShowKind = 'sknd',
 pShowLabel = 'slbl',
 pShowSize = 'ssiz',
 pShowVersion = 'svrs',
 pSortDirection = 'sord',
 pShowDiskInfo = 'sdin',
 pListViewIconSize = 'lvis',
 pGridIcons = 'fgrd',
 pStaggerIcons = 'fstg',
 pViewFont = 'vfnt',
 pViewFontSize = 'vfsz'
};

pShowModificationDate

enum {
 pShowModificationDate = pShowDate,
 pUseRelativeDate = 'urdt',
 pDelayBeforeSpringing = 'dela',
 pSpringOpenFolders = 'sprg',
 pUseShortMenus = 'usme',
 pUseWideGrid = 'uswg',
 pLabel1 = 'lbl1',
 pLabel2 = 'lbl2',
 pLabel3 = 'lbl3',

2278 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

 pLabel4 = 'lbl4',
 pLabel5 = 'lbl5',
 pLabel6 = 'lbl6',
 pLabel7 = 'lbl7',
 pDefaultIconViewIconSize = 'iisz',
 pDefaultButtonViewIconSize = 'bisz',
 pDefaultListViewIconSize = 'lisz',
 pIconViewArrangement = 'iarr',
 pButtonViewArrangement = 'barr'
};

pSmallIcon

enum {
 pSmallIcon = 'smic',
 pSmallButton = 'smbu',
 pLargeButton = 'lgbu',
 pGrid = 'grid'
};

pSound

enum {
 pSound = 'snd '
};

pStartupDisk

enum {
 pStartupDisk = 'sdsk',
 pTrash = 'trsh'
};

pWarnOnEmpty

enum {
 pWarnOnEmpty = 'warn'
};

typeIconFamily

enum {
 typeIconFamily = cIconFamily,
 typeIconAndMask = 'ICN#',
 type8BitMask = 'l8mk',
 type32BitIcon = 'il32',
 type8BitIcon = 'icl8',
 type4BitIcon = 'icl4',

Constants 2279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

 typeSmallIconAndMask = 'ics#',
 typeSmall8BitMask = 's8mk',
 typeSmall32BitIcon = 'is32',
 typeSmall8BitIcon = 'ics8',
 typeSmall4BitIcon = 'ics4',
 typeRelativeTime = 'rtim',
 typeConceptualTime = 'timc'
};

Result Codes

The most common result codes returned by Finder Interface are listed below.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-1800errOffsetInvalid

Available in Mac OS X v10.0 and later.-1801errOffsetIsOutsideOfView

Available in Mac OS X v10.0 and later.-1810errTopOfDocument

Available in Mac OS X v10.0 and later.-1811errTopOfBody

Available in Mac OS X v10.0 and later.-1812errEndOfDocument

Available in Mac OS X v10.0 and later.-1813errEndOfBody

The desktop database has become corrupted-1305desktopDamagedErr

Available in Mac OS X v10.0 and later.

2280 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 41

Finder Interface Reference

Framework: CoreServices/CoreServices.h

Declared in MDImporter.h

Companion guides Spotlight Overview
Spotlight Importer Programming Guide
Plug-ins

Overview

An MDImporter is responsible for returning the metadata contained with a file. The Spotlight server is notified
when a file is changed and loads the appropriate importer to extract the metadata. An importer is implemented
as a CFPlugin.

Callbacks

ImporterImportData
Defines a pointer to an importer import callback that imports importers.

typedef Boolean (* ImporterImportData)
(
void *thisInterface,
CFMutableDictionaryRef attributes,
CFStringRef contentTypeUTI,
CFStringRef pathToFile
)

If you name your function GetMetadataForFile, you would declare it like this:

Boolean GetMetadataForFile
(
void *thisInterface,
CFMutableDictionaryRef attributes,
CFStringRef contentTypeUTI,
CFStringRef pathToFile
)

Overview 2281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

MDImporter Reference

Parameters
thisInterface

The CFPlugin object that is called. This value is passed to the callback function.

attributes
A mutable dictionary that you should populate with the metadata key/value pairs. This dictionary is
created and passed to the callback function.

contentTypeUTI
The content type of the file as a uniform type identifier. This value is passed to the callback function.

pathToFile
The full path to the file. This value is passed to the callback function.

Return Value
Your callback function should return true if the metadata was successfully returned, false if the metadata
was not returned.

Constants

kMDImporterTypeID
Type ID of an importer plug-in.

#define kMDImporterTypeID
CFUUIDGetConstantUUIDWithBytes(kCFAllocatorDefault,0x8B,0x08,0xC4,0xBF,0x41,0x5
B,0x11,0xD8,0xB3,0xF9,0x00,0x03,0x93,0x67,0x26,0xFC);

Constants
kMDImporterTypeID

Only importers with this type ID are loaded.

Available in Mac OS X v10.4 and later.

Declared in MDImporter.h.

Discussion
The string representation of this UUID is 8B08C4BF-415B-11D8-B3F9-0003936726FC.

kMDImporterInterfaceID
Interface required by a importer plug-in.

#define kMDImporterInterfaceID
CFUUIDGetConstantUUIDWithBytes(kCFAllocatorDefault,0x6E,0xBC,0x27,0xC4,0x89,0x9
C,0x11,0xD8,0x84,0xAE,0x00,0x03,0x93,0x67,0x26,0xFC);

Constants
kMDImporterInterfaceID

Importers must implement an interface corresponding to this UUID.

Available in Mac OS X v10.4 and later.

Declared in MDImporter.h.

Discussion
The string representation of this UUID is 6EBC27C4-899C-11D8-84A3-0003936726FC.

2282 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 42

MDImporter Reference

Framework: CoreServices/CoreServices.h

Declared in MDSchema.h

Companion guide Spotlight Overview

Overview

The MDSchema functions provide information about the metadata returned for an item including the type
of metadata provided for a file type, the localized display name for a metadata attribute key, and the schema
for a metadata attribute key.

Functions

MDSchemaCopyAllAttributes
Returns an array containing all the metadata attributes defined in the schema.

CFArrayRef MDSchemaCopyAllAttributes (
 void
);

Availability
Available in Mac OS X version 10.4 or later.

Declared In
MDSchema.h

MDSchemaCopyAttributesForContentType
Returns a dictionary containing the metadata attributes for the specified UTI type.

MD_BEGIN_C_DECLS CFDictionaryRef MDSchemaCopyAttributesForContentType (
 CFStringRef contentTypeUTI
);

Parameters
utiType

The UTI type.

Overview 2283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

MDSchema Reference

Return Value
A dictionary containing kMDAttributeDisplayValues and kMDAttributeAllValues keys. Returns NULL
if the UTI type is unknown.

Discussion
This function returns the metadata attributes for the specified UTI type only.

Availability
Available in Mac OS X version 10.4 or later.

Declared In
MDSchema.h

MDSchemaCopyDisplayDescriptionForAttribute
Returns the localized description of a metadata attribute key.

CFStringRef MDSchemaCopyDisplayDescriptionForAttribute (
 CFStringRef name
);

Parameters
name

The name of the metadata attribute key.

Return Value
The localized description of the metadata attribute, or NULL if no localized description is available.

Availability
Available in Mac OS X version 10.4 or later.

Declared In
MDSchema.h

MDSchemaCopyDisplayNameForAttribute
Returns the localized display name of a metadata attribute key.

CFStringRef MDSchemaCopyDisplayNameForAttribute (
 CFStringRef name
);

Parameters
name

The name of the metadata attribute key.

Return Value
The localized display name of the metadata attribute, or NULL if no localized display name is available.

Availability
Available in Mac OS X version 10.4 or later.

Declared In
MDSchema.h

2284 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

MDSchema Reference

MDSchemaCopyMetaAttributesForAttribute
Returns a dictionary describing the values for the specified metadata attribute key.

CFDictionaryRef MDSchemaCopyMetaAttributesForAttribute (
 CFStringRef name
);

Parameters
name

The name of the metadata attribute key.

Return Value
A dictionary describing the schema of the metadata attribute key.

Availability
Available in Mac OS X version 10.4 or later.

Declared In
MDSchema.h

Constants

Available Metadata Attribute Keys
Specify the available metadata attribute keys for a content type.

const CFStringRef kMDAttributeDisplayValues;
const CFStringRef kMDAttributeAllValues;

Constants
kMDAttributeDisplayValues

An array of strings containing the available display metadata attribute keys, or NULL if the type is not
known by the system.

Available in Mac OS X v10.4 and later.

Declared in MDSchema.h.

kMDAttributeAllValues
An array of strings containing available the metadata attribute keys, or NULL if the type is not known
by the system.

Available in Mac OS X v10.4 and later.

Declared in MDSchema.h.

Discussion
These keys are in the dictionary returned by the function MDSchemaCopyAttributesForContentType.

Availability
Available in Mac OS X version 10.4 and later.

Metadata Attribute Schema Description Keys
Specify the schema of a metadata attribute key.

Constants 2285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

MDSchema Reference

const CFStringRef kMDAttributeName;
const CFStringRef kMDAttributeType;
const CFStringRef kMDAttributeMultiValued;

Constants
kMDAttributeName

A string containing the name of the metadata attribute key.

Available in Mac OS X v10.4 and later.

Declared in MDSchema.h.

kMDAttributeType
A CFNumberRef or CFTypeId describing the type of data returned as the value of the metadata attribute
key.

Available in Mac OS X v10.4 and later.

Declared in MDSchema.h.

kMDAttributeMultiValued
A boolean that indicates if the metadata attribute value is multi-valued. If this is TRUE, the metadata
attribute value is an array of the types specified in kMDAttributeType.

Available in Mac OS X v10.4 and later.

Declared in MDSchema.h.

Discussion
These keys are in the dictionary returned by the function MDSchemaCopyMetaAttributesForAttribute.

Availability
Available in Mac OS X version 10.4 and later.

2286 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 43

MDSchema Reference

Framework: CoreServices/CoreServices.h

Declared in OpenTransport.h
OpenTransportProviders.h
OpenTransportProtocol.h

Overview

Open Transport is the Mac OS 8 and 9 API for accessing TCP/IP networks, such as the Internet, at the transport
level. For Mac OS X, Apple provides Open Transport as a compatibility library to ease migration of legacy
applications. As such, Mac OS X does not support the entire Open Transport API.

In new Mac OS X applications you should not use Open Transport but should instead use BSD Sockets or,
when possible, higher-level Core Services and Core Foundation APIs such as CFNetwork, CFURL, CFSocket,
and CFStream. You can also use Cocoa networking classes such as NSURL, NSURLHandle, and NSNetService.

In Mac OS X, Open Transport provides limited support for endpoints and port access, and no support for the
XTI or UNIX STREAMS interfaces. If you want your application to run in Mac OS 8 and 9 and in Mac OS X, use
Open Transport for your Mac OS 8 and 9 version and Apple’s newer APIs for your Mac OS X version.

For more information about Open Transport, see:

http://developer.apple.com/macos/opentransport/

Mac OS X supports only these Open Transport providers:

 ■ TCP, UDP, and Raw IP Endpoints

 ■ TCP/IP Services Providers and TCP/IP Mapper Providers (for the Domain Name Resolver protocol)

 ■ DDP endpoints, AppleTalk Services Providers, and AppleTalk Mappers (for the Name Binding Protocol)

 ■ OT/PPP endpoints

Mac OS X does not support ADSP, ATP, ASP, PAP, or serial endpoints.

You may have to revise your code if it uses Open Transport in one of the following ways:

 ■ Your application uses a function that directly gains access to a network port. Ports are read-only in Mac
OS X. Code that communicates directly with network interfaces must use the IOKit API.

 ■ Your application uses the transaction-based endpoint feature of Open Transport. This feature is not
supported in Mac OS X. Removal of this capability should affect only users of AppleTalk protocols such
as ASP.

Overview 2287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

http://developer.apple.com/macos/opentransport/

 ■ Your application uses Open Transport’s XTI interfaces or UNIX STREAMS interfaces. Mac OS X will not
support these interfaces. You can obtain similar functionality using supported high-level functions.

 ■ In Mac OS X, one cannot assume that Open Transport deferred tasks and notifiers procedures run at
deferred task level. They may be preempted by the main event loop or another Mac OS X thread. You
should always use atomic operations to access data shared between deferred tasks and notifiers and
main system tasks.

Mac OS X does not support functions for:

 ■ accessing Open Transport hash lists

 ■ accessing the Open Transport port name or icon

 ■ directly manipulating CFM or ASLM libraries

Client context parameters have been added to a number of OT functions. (An OT client is an application or
a shared library.) Each client of Open Transport now has its own client context so that OT can track resources
it allocates on behalf of the client. OT resources are objects like endpoints, timer tasks, and blocks of memory.
To find out more about Open Transport resources management, see “Understanding Open Transport Asset
Tracking” at:

http://developer.apple.com/technotes/tn/tn1173.html

Mac OS X introduces a new type, OTClientContextPtr, that represents the OT client context. This new
type is passed as an extra parameter to functions that allocate OT resources. Before Mac OS X, the OT client
context was determined by the Open Transport static libraries that you linked to your application. Now the
OT client context is determined explicitly. The same Carbon binary can run on Mac OS 8/9 and Mac OS X,
and you do not have to link your application to the static libraries.

You can use InitOpenTransportinContext to replace InitOpenTransport. It functions identically
except that it also takes a client context pointer and a flags parameter to indicate whether you are initializing
OT for an application or a shared library. When your application or shared library is done using Open Transport
you should call CloseOpenTransportInContext to dispose of the Open Transport resources allocated for
the client.

The following functions now take a client context:

 ■ CloseOpenTransportInContext (page 2301)

 ■ OTAllocInContext (page 2308)

 ■ OTAllocMemInContext (page 2309)

 ■ OTAsyncOpenAppleTalkServicesInContext (page 2310)

 ■ OTAsyncOpenEndpointInContext (page 2310)

 ■ OTAsyncOpenInternetServicesInContext (page 2311)

 ■ OTAsyncOpenMapperInContext (page 2312)

 ■ OTCreateDeferredTaskInContext (page 2329)

 ■ OTCreateTimerTaskInContext (page 2330)

 ■ OTOpenAppleTalkServicesInContext (page 2372)

 ■ OTOpenEndpointInContext (page 2373)

2288 Overview
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

http://developer.apple.com/technotes/tn/tn1173.html

 ■ OTOpenInternetServicesInContext (page 2374)

 ■ OTOpenMapperInContext (page 2374)

As a convenience, applications may pass a null pointer to these routines and Open Transport will use the
context that was passed to InitOpenTransport. However, shared libraries must always pass a valid
OTClientContextPtr.

If you want to keep your application source code compatible with pre-Mac OS X systems, you may define
the C preprocessor constant OTCARBONAPPLICATION to 1 to use the old routine names without the “InContext”
suffix.

Mac OS X applications must pass UPPs instead of procedure pointers for Open Transport callback routines.
You can use these new functions to create UPPs:

OTNotifyUPP replaces OTNotifyProcPtr

OTProcessUPP replaces OTNotifyProcPtr

OTListSearchUPP replaces OTListSearchProcPtr

You can use these functions to allocate and free UPPs:

 ■ NewOTNotifyUPP (page 2305)

 ■ DisposeOTNotifyUPP (page 2302)

 ■ NewOTProcessUPP (page 2306)

 ■ DisposeOTProcessUPP (page 2303)

 ■ NewOTListSearchUPP (page 2305)

 ■ DisposeOTListSearchUPP (page 2302)

These functions have been modified to take an OTNotifyUPP UPP instead of a procedure pointer:

 ■ OTAsyncOpenAppleTalkServicesInContext (page 2310)

 ■ OTAsyncOpenInternetServicesInContext (page 2311)

 ■ OTInstallNotifier (page 2361)

 ■ OTAsyncOpenEndpointInContext (page 2310)

 ■ OTAsyncOpenMapperInContext (page 2312)

These functions have been modified to take an OTProcessUPP UPP instead of a procedure pointer:

 ■ OTCreateTimerTaskInContext (page 2330)

 ■ OTCreateDeferredTaskInContext (page 2329)

These functions have been modified to take an OTListSearchUPP UPP instead of a procedure pointer:

 ■ OTFindLink (page 2339)

 ■ OTFindAndRemoveLink (page 2338)

Overview 2289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Functions by Task

Initializing and Closing Open Transport

CloseOpenTransportInContext (page 2301) Deprecated in Mac OS X v10.4
Unregisters your application or code resource connection to Open Transport.

InitOpenTransportInContext (page 2303) Deprecated in Mac OS X v10.4
Initializes the parts of Open Transport for use by the application or code resource.

Creating, Cloning, and Disposing of a Configuration Structure

OTCloneConfiguration (page 2322) Deprecated in Mac OS X v10.4
Copies an OTConfiguration structure.

OTCreateConfiguration (page 2328) Deprecated in Mac OS X v10.4
Creates a structure defining a provider’s configuration.

OTDestroyConfiguration (page 2333) Deprecated in Mac OS X v10.4
Deletes an OTConfiguration structure.

Opening and Closing Providers

OTCloseProvider (page 2323) Deprecated in Mac OS X v10.4
Closes a provider of any type—endpoint, mapper, or service provider.

Controlling a Provider’s Modes of Operation

OTAckSends (page 2307) Deprecated in Mac OS X v10.4
Specifies that a provider make an internal copy of data being sent and that it notify you when it has
finished sending data.

OTCancelSynchronousCalls (page 2321) Deprecated in Mac OS X v10.4
Cancels any currently executing synchronous function for a specified provider.

OTDontAckSends (page 2335) Deprecated in Mac OS X v10.4
Specifies that a provider copy data before sending it.

OTIsAckingSends (page 2363) Deprecated in Mac OS X v10.4
Determines whether a provider is acknowledging sends.

OTIsSynchronous (page 2364) Deprecated in Mac OS X v10.4
Returns a provider’s current mode of execution.

OTSetAsynchronous (page 2390) Deprecated in Mac OS X v10.4
Sets a provider’s mode of execution to asynchronous.

OTSetBlocking (page 2391) Deprecated in Mac OS X v10.4
Allows a provider to wait or block until it is able to send or receive data.

2290 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTSetNonBlocking (page 2396) Deprecated in Mac OS X v10.4
Disallows a provider from waiting if it cannot currently complete a function that sends or receives
data.

OTSetSynchronous (page 2397) Deprecated in Mac OS X v10.4
Sets a provider’s mode of execution to synchronous.

Using Notifier Functions with Providers

OTEnterNotifier (page 2336) Deprecated in Mac OS X v10.4
Limits the notifications that can be sent to your notifier.

OTInstallNotifier (page 2361) Deprecated in Mac OS X v10.4
Installs a notifier function.

OTLeaveNotifier (page 2364) Deprecated in Mac OS X v10.4
Allows Open Transport to resume sending primary and completion events.

OTRemoveNotifier (page 2386) Deprecated in Mac OS X v10.4
Removes a provider’s notifier function.

OTUseSyncIdleEvents (page 2406) Deprecated in Mac OS X v10.4
Allows synchronous idle events to be sent to your notifier.

Sending Module-Specific Commands to Providers

OTIoctl (page 2362) Deprecated in Mac OS X v10.4
Sends a module-specific command to an Open Transport protocol module.

Creating Endpoints

OTAsyncOpenEndpointInContext (page 2310) Deprecated in Mac OS X v10.4
Opens an endpoint and installs a notifier callback function for the endpoint.

OTOpenEndpointInContext (page 2373) Deprecated in Mac OS X v10.4
Opens an endpoint that operates synchronously.

Binding and Unbinding Endpoints

OTBind (page 2319) Deprecated in Mac OS X v10.4
Assigns an address to an endpoint.

OTUnbind (page 2405) Deprecated in Mac OS X v10.4
Dissociates an endpoint from its address or cancels an asynchronous call to the OTBind function.

Obtaining Information About an Endpoint

OTGetEndpointInfo (page 2344) Deprecated in Mac OS X v10.4
Obtains information about an endpoint that has been opened.

Functions by Task 2291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTGetEndpointState (page 2345) Deprecated in Mac OS X v10.4
Obtains the current state of an endpoint.

OTGetProtAddress (page 2348) Deprecated in Mac OS X v10.4
Obtains the address to which an endpoint is bound and, if the endpoint is currently connected, obtains
the address of its peer.

OTLook (page 2367) Deprecated in Mac OS X v10.4
Determines the current asynchronous event pending for an endpoint.

OTResolveAddress (page 2387) Deprecated in Mac OS X v10.4
Returns the protocol address that corresponds to the name of an endpoint.

Allocating Structures for Endpoints

OTFree (page 2341) Deprecated in Mac OS X v10.4
Frees memory allocated using the OTAlloc function.

Determining if Bytes Are Available for Endpoints

OTCountDataBytes (page 2327) Deprecated in Mac OS X v10.4
Returns the amount of data currently available to be read.

Functions for Connectionless Transactionless Endpoints

OTRcvUData (page 2381) Deprecated in Mac OS X v10.4
Reads data sent by a client using a connectionless transactionless protocol.

OTRcvUDErr (page 2382) Deprecated in Mac OS X v10.4
Clears an error condition indicated by a T_UDERR event and returns the reason for the error.

OTSndUData (page 2400) Deprecated in Mac OS X v10.4
Sends data using a connectionless transactionless endpoint.

Establishing Connection for Endpoints

OTAccept (page 2306) Deprecated in Mac OS X v10.4
Accepts an incoming connection request.

OTConnect (page 2326) Deprecated in Mac OS X v10.4
Requests a connection to a remote peer.

OTListen (page 2366) Deprecated in Mac OS X v10.4
Listens for an incoming connection request.

OTRcvConnect (page 2379) Deprecated in Mac OS X v10.4
Reads the status of an outstanding or completed asynchronous call to theOTConnect function.

2292 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Functions for Connection-Oriented Transactionless Endpoints

OTRcv (page 2377) Deprecated in Mac OS X v10.4
Reads data sent using a connection-oriented transactionless protocol.

OTSnd (page 2397) Deprecated in Mac OS X v10.4
Sends data to a remote peer.

Tearing Down an Endpoint Connection

OTRcvDisconnect (page 2379) Deprecated in Mac OS X v10.4
Identifies the cause of a connection break or of a connection rejection, acknowledges and clears the
corresponding disconnection event.

OTRcvOrderlyDisconnect (page 2380) Deprecated in Mac OS X v10.4
Acknowledges a request for an orderly disconnect.

OTSndDisconnect (page 2399) Deprecated in Mac OS X v10.4
Tears down an open connection (abortive disconnect) or rejects an incoming connection request.

OTSndOrderlyDisconnect (page 2399) Deprecated in Mac OS X v10.4
Initiates or completes an orderly disconnection.

Checking Synchronous Calls

OTCanMakeSyncCall (page 2322) Deprecated in Mac OS X v10.4
Checks whether you can call a synchronous function.

Working With Timer Tasks

OTCancelTimerTask (page 2321) Deprecated in Mac OS X v10.4
Cancels a task that was already scheduled for execution.

OTCreateTimerTaskInContext (page 2330) Deprecated in Mac OS X v10.4
Creates a task to be scheduled.

OTDestroyTimerTask (page 2334) Deprecated in Mac OS X v10.4
Disposes of a timer task.

OTScheduleTimerTask (page 2389) Deprecated in Mac OS X v10.4
Schedules a timer task to be executed at the specified time.

Working With Deferred Tasks

OTCreateDeferredTaskInContext (page 2329) Deprecated in Mac OS X v10.4
Creates a reference to a task that can be scheduled to run at deferred task time.

OTDestroyDeferredTask (page 2334) Deprecated in Mac OS X v10.4
Destroys a deferred task created with the OTCreateDeferredTask function.

OTScheduleDeferredTask (page 2388) Deprecated in Mac OS X v10.4
Schedules a task for execution at deferred task time.

Functions by Task 2293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Creating Mappers

OTAsyncOpenMapperInContext (page 2312) Deprecated in Mac OS X v10.4
Creates an asynchronous mapper and installs a notifier function for the mapper provider.

OTOpenMapperInContext (page 2374) Deprecated in Mac OS X v10.4
Creates a synchronous mapper provider and returns a mapper reference.

Registering and Deleting Names with Mappers

OTDeleteName (page 2331) Deprecated in Mac OS X v10.4
Removes a previously registered entity name.

OTDeleteNameByID (page 2332) Deprecated in Mac OS X v10.4
Removes a previously registered name as specified by its name ID.

OTRegisterName (page 2384) Deprecated in Mac OS X v10.4
Registers an entity name on the network.

Looking Up Names for Mappers

OTLookupName (page 2368) Deprecated in Mac OS X v10.4
Finds and returns all addresses that correspond to a particular name or name pattern, or confirms
that a name is registered.

Determining and Changing Option Values

OTOptionManagement (page 2375) Deprecated in Mac OS X v10.4
Determines an endpoint’s current or default option values or changes these values.

Finding Options

OTFindOption (page 2339) Deprecated in Mac OS X v10.4
Finds a specific option in an options buffer.

OTNextOption (page 2371) Deprecated in Mac OS X v10.4
Locates the next TOption structure in a buffer.

Getting Information About Ports

OTFindPort (page 2340) Deprecated in Mac OS X v10.4
Obtains information about a port that corresponds to a given port name.

OTFindPortByRef (page 2341) Deprecated in Mac OS X v10.4
Obtains information about a port that corresponds to its given port reference.

OTGetBusTypeFromPortRef (page 2343) Deprecated in Mac OS X v10.4
Extracts the value of the bus type from a port reference.

2294 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTGetDeviceTypeFromPortRef (page 2343) Deprecated in Mac OS X v10.4
Extracts the value of the hardware device type from a port reference.

OTGetIndexedPort (page 2346) Deprecated in Mac OS X v10.4
Iterates through the ports available on your computer.

OTGetSlotFromPortRef (page 2349) Deprecated in Mac OS X v10.4
Extracts slot information from a port reference.

Registering New Ports

OTCreatePortRef (page 2329) Deprecated in Mac OS X v10.4
Creates a port reference that describes a port’s hardware characteristics.

Registering as a Client

OTRegisterAsClientInContext (page 2383) Deprecated in Mac OS X v10.4
Registers your application as a client of Open Transport and gives Open Transport a notifier function
it can use to send you events.

OTUnregisterAsClientInContext (page 2405) Deprecated in Mac OS X v10.4
Removes your application as a client of Open Transport.

Allocating and Freeing Memory

OTAllocMemInContext (page 2309) Deprecated in Mac OS X v10.4
Allocates memory using an explicit client context.

OTFreeMem (page 2342) Deprecated in Mac OS X v10.4
Frees memory allocated with the OTAllocMem function.

Memory Manipulation Utility Functions

OTMemcmp (page 2369) Deprecated in Mac OS X v10.4
Compares the contents of two memory locations.

OTMemcpy (page 2370) Deprecated in Mac OS X v10.4
Copies data from one memory location to another; the source and destination locations must not
overlap.

OTMemmove (page 2370) Deprecated in Mac OS X v10.4
Copies data from one memory location to another; the source and destination locations may overlap.

OTMemset (page 2370) Deprecated in Mac OS X v10.4
Sets the specified memory range to a specific value.

OTMemzero (page 2371) Deprecated in Mac OS X v10.4
Initializes the specified memory range to 0.

Functions by Task 2295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Idling and Delaying Processing

OTDelay (page 2331) Deprecated in Mac OS X v10.4
Delays processing for a specified number of seconds. This function is only provided for compatibility
with the UNIX sleep function.

OTIdle (page 2350) Deprecated in Mac OS X v10.4
Idles your computer.

String Manipulation Utility Functions

OTStrCat (page 2401) Deprecated in Mac OS X v10.4
Concatenates two C strings.

OTStrCopy (page 2402) Deprecated in Mac OS X v10.4
Copies a C string.

OTStrEqual (page 2402) Deprecated in Mac OS X v10.4
Determines whether two C strings are the same.

OTStrLength (page 2402) Deprecated in Mac OS X v10.4
Returns the length of a C string.

Timestamp Utility Functions

OTElapsedMicroseconds (page 2335) Deprecated in Mac OS X v10.4
Calculates the time elapsed in microseconds since a specified time.

OTElapsedMilliseconds (page 2335) Deprecated in Mac OS X v10.4
Calculates the time elapsed in milliseconds since a specified time.

OTGetClockTimeInSecs (page 2343) Deprecated in Mac OS X v10.4
Returns the number of seconds that have elapsed since system boot time.

OTGetTimeStamp (page 2350) Deprecated in Mac OS X v10.4
Obtains the current timestamp.

OTSubtractTimeStamps (page 2403) Deprecated in Mac OS X v10.4
Subtracts one timestamp value from another.

OTTimeStampInMicroseconds (page 2404) Deprecated in Mac OS X v10.4
Calculates the time elapsed in microseconds since since a specified time.

OTTimeStampInMilliseconds (page 2404) Deprecated in Mac OS X v10.4
Calculates the time elapsed in milliseconds since since a specified time.

OTLIFO List Utility Functions

OTLIFODequeue (page 2365) Deprecated in Mac OS X v10.4
Removes the first link in a LIFO list and returns a pointer to it.

OTLIFOEnqueue (page 2365) Deprecated in Mac OS X v10.4
Places a link at the front of a LIFO list.

2296 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTLIFOStealList (page 2366) Deprecated in Mac OS X v10.4
Removes all links in a LIFO list and returns a pointer to the first link in the list.

OTReverseList (page 2387) Deprecated in Mac OS X v10.4
Reverses the order in which entries are linked in a list.

OTFIFO List Utility Functions

OTAddFirst (page 2308) Deprecated in Mac OS X v10.4
Places a link at the front of a FIFO list.

OTAddLast (page 2308) Deprecated in Mac OS X v10.4
Adds a link to the end of a FIFO list.

OTFindAndRemoveLink (page 2338) Deprecated in Mac OS X v10.4
Finds a link in a FIFO list and removes it.

OTFindLink (page 2339) Deprecated in Mac OS X v10.4
Finds a link in a FIFO list and returns a pointer to it.

OTGetFirst (page 2345) Deprecated in Mac OS X v10.4
Returns a pointer to the first element in a FIFO list.

OTGetIndexedLink (page 2346) Deprecated in Mac OS X v10.4
Returns a pointer to the link at a specified position in a FIFO list.

OTGetLast (page 2347) Deprecated in Mac OS X v10.4
Returns the last element in a FIFO list.

OTIsInList (page 2363) Deprecated in Mac OS X v10.4
Determines whether the specified link is in the specified list.

OTRemoveFirst (page 2385) Deprecated in Mac OS X v10.4
Removes the first link in a FIFO list.

OTRemoveLast (page 2385) Deprecated in Mac OS X v10.4
Removes the last link in a FIFO list.

OTRemoveLink (page 2386) Deprecated in Mac OS X v10.4
Removes the last link in a FIFO list.

Adding and Removing List Elements

OTDequeue (page 2333) Deprecated in Mac OS X v10.4
Removes an element from a list.

OTEnqueue (page 2336) Deprecated in Mac OS X v10.4
Adds an element to a list.

Atomic Operations

OTAtomicAdd16 (page 2316) Deprecated in Mac OS X v10.4
Atomically adds a 16-bit value to a memory location.

OTAtomicAdd32 (page 2316) Deprecated in Mac OS X v10.4
Atomically adds a 32-bit value to a memory location.

Functions by Task 2297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTAtomicAdd8 (page 2317) Deprecated in Mac OS X v10.4
Atomically adds an 8-bit value to a memory location.

OTAtomicClearBit (page 2317) Deprecated in Mac OS X v10.4
Clears a bit in a byte.

OTAtomicSetBit (page 2318) Deprecated in Mac OS X v10.4
Sets a specified bit in a byte.

OTAtomicTestBit (page 2318) Deprecated in Mac OS X v10.4
Tests a bit in a byte and returns its current state.

OTCompareAndSwap16 (page 2324) Deprecated in Mac OS X v10.4
Atomically compares two 16-bit values and changes one of these values if they are the same.

OTCompareAndSwap32 (page 2324) Deprecated in Mac OS X v10.4
Atomically compares two 32-bit values and changes one of these values if they are the same.

OTCompareAndSwap8 (page 2325) Deprecated in Mac OS X v10.4
Atomically compares two 8-bit values and changes one of these values if they are the same.

OTCompareAndSwapPtr (page 2325) Deprecated in Mac OS X v10.4
Atomically compares the value of a pointer at a memory location and atomically swaps it with a
second pointer value if the compare is successful.

Handling No-Copy Receives

OTBufferDataSize (page 2320) Deprecated in Mac OS X v10.4
Obtains the size of the no-copy receive buffer.

OTReadBuffer (page 2383) Deprecated in Mac OS X v10.4
Copies data out of a no-copy receive buffer.

OTReleaseBuffer (page 2384) Deprecated in Mac OS X v10.4
Returns the no-copy receive buffer to the system.

Resolving Internet Addresses

OTInetAddressToName (page 2350) Deprecated in Mac OS X v10.4
Determines the canonical domain name of the host associated with an internet address.

OTInetStringToAddress (page 2355) Deprecated in Mac OS X v10.4
Resolves a domain name to its equivalent internet addresses.

Opening a TCP/IP Service Provider

OTAsyncOpenInternetServicesInContext (page 2311) Deprecated in Mac OS X v10.4
Opens the TCP/IP service provider and returns an Internet services reference.

OTOpenInternetServicesInContext (page 2374) Deprecated in Mac OS X v10.4
Opens the TCP/IP service provider and returns an internet services reference.

2298 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Getting Information About an Internet Host

OTInetMailExchange (page 2353) Deprecated in Mac OS X v10.4
Returns mail-exchange-host names and preference information for a domain name you specify.

OTInetSysInfo (page 2356) Deprecated in Mac OS X v10.4
Returns details about a host’s processor and operating system.

Retrieving DNS Query Information

OTInetQuery (page 2354) Deprecated in Mac OS X v10.4
Executes a generic DNS query.

Internet Address Utilities

OTInetGetInterfaceInfo (page 2351) Deprecated in Mac OS X v10.4
Returns internet address information about the local host.

OTInetHostToString (page 2352) Deprecated in Mac OS X v10.4
Converts an an address in InetHost format into a character string in dotted-decimal notation.

OTInetStringToHost (page 2356) Deprecated in Mac OS X v10.4
Converts an IP address string from dotted-decimal notation or hexadecimal notation to an InetHost
data type.

OTInitDNSAddress (page 2358) Deprecated in Mac OS X v10.4
Fills in a DNSAddress structure with the data you provide.

OTInitInetAddress (page 2359) Deprecated in Mac OS X v10.4
Fills in an InetAddress structure with the data you provide.

Single Link Multi-Homing

OTInetGetSecondaryAddresses (page 2352) Deprecated in Mac OS X v10.4
Returns the active secondary IP addresses.

AppleTalk Utility Functions

OTCompareDDPAddresses (page 2325) Deprecated in Mac OS X v10.4
Compares two DDP address structures.

OTExtractNBPName (page 2337) Deprecated in Mac OS X v10.4
Extracts the name part of an NBP name from an NBP entity structure.

OTExtractNBPType (page 2337) Deprecated in Mac OS X v10.4
Extracts the type part of an NBP name from an NBP entity structure.

OTExtractNBPZone (page 2338) Deprecated in Mac OS X v10.4
Extracts the zone part of an NBP name from an NBP entity structure.

OTGetNBPEntityLengthAsAddress (page 2348) Deprecated in Mac OS X v10.4
Obtains the size of an NBP entity structure.

Functions by Task 2299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTInitDDPAddress (page 2357) Deprecated in Mac OS X v10.4
Initializes a DDP address structure.

OTInitDDPNBPAddress (page 2358) Deprecated in Mac OS X v10.4
Initializes a combined DDP-NBP address structure.

OTInitNBPAddress (page 2360) Deprecated in Mac OS X v10.4
Initializes an NBP address structure.

OTInitNBPEntity (page 2360) Deprecated in Mac OS X v10.4
Initializes an NBP entity structure.

OTSetAddressFromNBPEntity (page 2389) Deprecated in Mac OS X v10.4
Stores an NBP entity structure as an NBP address string.

OTSetAddressFromNBPString (page 2390) Deprecated in Mac OS X v10.4
Copies an NBP name string into an NBP address buffer.

OTSetNBPEntityFromAddress (page 2394) Deprecated in Mac OS X v10.4
Parses and stores an NBP address into an NBP entity.

OTSetNBPName (page 2394) Deprecated in Mac OS X v10.4
Stores the name part of an NBP name into an NBP entity structure.

OTSetNBPType (page 2395) Deprecated in Mac OS X v10.4
Stores the type part of an NBP name in an NBP entity structure.

OTSetNBPZone (page 2396) Deprecated in Mac OS X v10.4
Stores the zone part of an NBP name in an NBP entity structure.

Opening an AppleTalk Service Provider

OTAsyncOpenAppleTalkServicesInContext (page 2310) Deprecated in Mac OS X v10.4
Opens an asynchronous AppleTalk service provider in context.

OTOpenAppleTalkServicesInContext (page 2372) Deprecated in Mac OS X v10.4
Opens a synchronous AppleTalk service provider.

Obtaining Information About Zones

OTATalkGetLocalZones (page 2314) Deprecated in Mac OS X v10.4
Obtains a list of the zones available on your network.

OTATalkGetMyZone (page 2314) Deprecated in Mac OS X v10.4
Obtains the AppleTalk zone name of the node on which your application is running.

OTATalkGetZoneList (page 2315) Deprecated in Mac OS X v10.4
Obtains a list of all the zones available on the AppleTalk internet.

Obtaining Information About Your AppleTalk Environment

OTATalkGetInfo (page 2313) Deprecated in Mac OS X v10.4
Obtains information about the AppleTalk environment for a given node.

2300 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Miscellaneous Functions

DisposeOTListSearchUPP (page 2302) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a list search callback.

DisposeOTNotifyUPP (page 2302) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a notification callback.

DisposeOTProcessUPP (page 2303) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a process callback.

InvokeOTListSearchUPP (page 2304) Deprecated in Mac OS X v10.4
Calls a list search callback.

InvokeOTNotifyUPP (page 2304) Deprecated in Mac OS X v10.4
Calls a notification callback.

InvokeOTProcessUPP (page 2305) Deprecated in Mac OS X v10.4
Calls a process callback.

NewOTListSearchUPP (page 2305) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a list search callback.

NewOTNotifyUPP (page 2305) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a notification callback.

NewOTProcessUPP (page 2306) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a process callback.

OTAllocInContext (page 2308) Deprecated in Mac OS X v10.4
Allocates a data structure of a specified type.

OTClearBit (page 2322) Deprecated in Mac OS X v10.4
Clears a bit atomically.

OTIsBlocking (page 2363) Deprecated in Mac OS X v10.4
Returns a boolean indicating whether a provider is blocking.

OTSetBit (page 2391) Deprecated in Mac OS X v10.4
Sets a bit atomically.

OTSetBusTypeInPortRef (page 2392) Deprecated in Mac OS X v10.4
Sets bus type for a port reference.

OTSetDeviceTypeInPortRef (page 2393) Deprecated in Mac OS X v10.4
Sets device type for a port reference.

OTSetFirstClearBit (page 2393) Deprecated in Mac OS X v10.4
Atomcially sets the first clear bit in a specified bit map.

OTTestBit (page 2403) Deprecated in Mac OS X v10.4
Atomically tests a bit in a specified bit map.

Functions

CloseOpenTransportInContext
Unregisters your application or code resource connection to Open Transport. (Deprecated in Mac OS X v10.4.)

Functions 2301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

void CloseOpenTransportInContext (
 OTClientContextPtr clientContext
);

Parameters
clientContext

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Carbon Porting Notes

The CloseOpenTransportinContext function acts like the pre-Carbon CloseOpenTransport function
except that it takes an additional parameter, an OTClientContextPtr,which can be NULL for applications.
Other types of clients must provide a valid client context pointer.

Declared In
OpenTransport.h

DisposeOTListSearchUPP
Disposes of a universal procedure pointer (UPP) to a list search callback. (Deprecated in Mac OS X v10.4.)

void DisposeOTListSearchUPP (
 OTListSearchUPP userUPP
);

Parameters
userUPP

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
OpenTransport.h

DisposeOTNotifyUPP
Disposes of a universal procedure pointer (UPP) to a notification callback. (Deprecated in Mac OS X v10.4.)

void DisposeOTNotifyUPP (
 OTNotifyUPP userUPP
);

Parameters
userUPP

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

2302 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Deprecated in Mac OS X v10.4.

Declared In
OpenTransport.h

DisposeOTProcessUPP
Disposes of a universal procedure pointer (UPP) to a process callback. (Deprecated in Mac OS X v10.4.)

void DisposeOTProcessUPP (
 OTProcessUPP userUPP
);

Parameters
userUPP

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
OpenTransport.h

InitOpenTransportInContext
Initializes the parts of Open Transport for use by the application or code resource. (Deprecated in Mac OS X
v10.4.)

OSStatus InitOpenTransportInContext (
 OTInitializationFlags flags,
 OTClientContextPtr *outClientContext
);

Parameters
flags

Tells Open Transport whether your code is an application or a plug-in.

outClientContext
Returns the client context pointer.

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
In Carbon, the InitOpenTransportInContext function acts like the pre-Carbon InitOpenTransport function,
except that it takes parameters that specify initialization context explicitly.

Use the flags parameter to tell Open Transport whether your code is an application or some other target (for
example, a plug-in that runs in an application context but is not the application itself). The second parameter
returns the client context pointer, which you must pass to other asset-creation routines. For more information,
see Understanding Open Transport Asset Tracking at http://developer.apple.com/technotes/tn/tn1173.html.

Availability
Available in CarbonLib 1.0 and later.

Functions 2303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

http://developer.apple.com/technotes/tn/tn1173.html

Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

InvokeOTListSearchUPP
Calls a list search callback. (Deprecated in Mac OS X v10.4.)

Boolean InvokeOTListSearchUPP (
 const void *ref,
 OTLink *linkToCheck,
 OTListSearchUPP userUPP
);

Parameters
ref
linkToCheck
userUPP

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
OpenTransport.h

InvokeOTNotifyUPP
Calls a notification callback. (Deprecated in Mac OS X v10.4.)

void InvokeOTNotifyUPP (
 void *contextPtr,
 OTEventCode code,
 OTResult result,
 void *cookie,
 OTNotifyUPP userUPP
);

Parameters
contextPtr
code
result
cookie
userUPP

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

2304 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

InvokeOTProcessUPP
Calls a process callback. (Deprecated in Mac OS X v10.4.)

void InvokeOTProcessUPP (
 void *arg,
 OTProcessUPP userUPP
);

Parameters
arg
userUPP

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
OpenTransport.h

NewOTListSearchUPP
Creates a new universal procedure pointer (UPP) to a list search callback. (Deprecated in Mac OS X v10.4.)

OTListSearchUPP NewOTListSearchUPP (
 OTListSearchProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the OTListSearchUPP data type.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
OpenTransport.h

NewOTNotifyUPP
Creates a new universal procedure pointer (UPP) to a notification callback. (Deprecated in Mac OS X v10.4.)

Functions 2305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTNotifyUPP NewOTNotifyUPP (
 OTNotifyProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the OTNotifyUPP data type.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
OpenTransport.h

NewOTProcessUPP
Creates a new universal procedure pointer (UPP) to a process callback. (Deprecated in Mac OS X v10.4.)

OTProcessUPP NewOTProcessUPP (
 OTProcessProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the OTProcessUPP data type.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
OpenTransport.h

OTAccept
Accepts an incoming connection request. (Deprecated in Mac OS X v10.4.)

2306 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTAccept (
 EndpointRef listener,
 EndpointRef worker,
 TCall *call
);

Parameters
listener
worker
call

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAckSends
Specifies that a provider make an internal copy of data being sent and that it notify you when it has finished
sending data. (Deprecated in Mac OS X v10.4.)

OSStatus OTAckSends (
 ProviderRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
By default, providers make an internal copy of data before sending it and they do not acknowledge sends.
If you use the OTAckSends function to specify that the provider acknowledge sends and you call a function
that sends data, the provider does not copy the data before sending it. Instead, it reads data directly from
your buffer while sending. For this reason, you must not change the contents of your buffer until the provider
is no longer using it. The provider lets you know that it has finished using the buffer by calling your notifier
function and passing T_MEMORYRELEASED event code for the code parameter, a pointer to the buffer that
was sent in the cookie parameter, and the size of the buffer in the result parameter.

If you have not installed a notifier function for the provider, this function returns the kOTAccessErr result.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTAddFirst
Places a link at the front of a FIFO list. (Deprecated in Mac OS X v10.4.)

void OTAddFirst (
 OTList *list,
 OTLink *link
);

Parameters
list
link

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAddLast
Adds a link to the end of a FIFO list. (Deprecated in Mac OS X v10.4.)

void OTAddLast (
 OTList *list,
 OTLink *link
);

Parameters
list
link

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAllocInContext
Allocates a data structure of a specified type. (Deprecated in Mac OS X v10.4.)

2308 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

void * OTAllocInContext (
 EndpointRef ref,
 OTStructType structType,
 UInt32 fields,
 OSStatus *err,
 OTClientContextPtr clientContext
);

Parameters
ref
structType
fields
err
clientContext

Discussion
In general, Apple recommends that you avoid the OTAllocInContext call because using it extensively causes
your program to allocate and deallocate many memory blocks, with each extra memory allocation costing
time.

Under Carbon, OTAllocInContext takes a client context pointer. Applications may pass NULL after calling
InitOpenTransport(kInitOTForApplicationMask, ...). Non-applications must always pass a valid client context.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAllocMemInContext
Allocates memory using an explicit client context. (Deprecated in Mac OS X v10.4.)

void * OTAllocMemInContext (
 OTByteCount size,
 OTClientContextPtr clientContext
);

Parameters
size
clientContext

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

Functions 2309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTAsyncOpenAppleTalkServicesInContext
Opens an asynchronous AppleTalk service provider in context. (Deprecated in Mac OS X v10.4.)

OSStatus OTAsyncOpenAppleTalkServicesInContext (
 OTConfigurationRef cfig,
 OTOpenFlags flags,
 OTNotifyUPP proc,
 void *contextPtr,
 OTClientContextPtr clientContext
);

Parameters
cfig
flags
proc
contextPtr
clientContext

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
Applications may pass a NULL context pointer but nonapplications must always pass a valid client context
pointer.

You receive a client context pointer when you call the function InitOpenTransportInContext (page 2303).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTAsyncOpenEndpointInContext
Opens an endpoint and installs a notifier callback function for the endpoint. (Deprecated in Mac OS X v10.4.)

2310 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTAsyncOpenEndpointInContext (
 OTConfigurationRef config,
 OTOpenFlags oflag,
 TEndpointInfo *info,
 OTNotifyUPP upp,
 void *contextPtr,
 OTClientContextPtr clientContext
);

Parameters
config
oflag
info
upp
contextPtr
clientContext

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
Applications may pass a NULL context pointer but nonapplications must always pass a valid client context
pointer.

You receive a client context pointer when you call the function InitOpenTransportInContext (page 2303).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAsyncOpenInternetServicesInContext
Opens the TCP/IP service provider and returns an Internet services reference. (Deprecated in Mac OS X v10.4.)

Functions 2311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTAsyncOpenInternetServicesInContext (
 OTConfigurationRef cfig,
 OTOpenFlags oflag,
 OTNotifyUPP upp,
 void *contextPtr,
 OTClientContextPtr clientContext
);

Parameters
cfig
oflag
upp
contextPtr
clientContext

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
Applications may pass a NULL context pointer but nonapplications must always pass a valid client context
pointer.

You receive a client context pointer when you call the function InitOpenTransportInContext (page 2303).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTAsyncOpenMapperInContext
Creates an asynchronous mapper and installs a notifier function for the mapper provider. (Deprecated in
Mac OS X v10.4.)

OSStatus OTAsyncOpenMapperInContext (
 OTConfigurationRef config,
 OTOpenFlags oflag,
 OTNotifyUPP upp,
 void *contextPtr,
 OTClientContextPtr clientContext
);

Parameters
config
oflag
upp
contextPtr
clientContext

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

2312 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Discussion
Applications may pass a NULL context pointer but nonapplications must always pass a valid client context
pointer.

You receive a client context pointer when you call the function InitOpenTransportInContext (page 2303).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTATalkGetInfo
Obtains information about the AppleTalk environment for a given node. (Deprecated in Mac OS X v10.4.)

OSStatus OTATalkGetInfo (
 ATSvcRef ref,
 TNetbuf *info
);

Parameters
ref
info

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTATalkGetInfo function returns the information contained in the AppleTalkInfo data structure
that describes your current AppleTalk environment. This includes your network number and node ID, the
network number and node ID of a local router, and the current network range for the extended network to
which the machine is connected.

If you execute this function asynchronously, Open Transport calls your notifier with a
T_GETATALKINFOCOMPLETE completion event to signal the function’s completion and uses your notifier’s
cookie parameter for the AppleTalk information. The cookie parameter actually holds a pointer to a TNetbuf
structure, which points in turn to a buffer containing the AppleTalkInfo structure. The maximum size of
this buffer is 22 bytes.

If the machine is multihomed—that is, if multiple network numbers and node numbers are associated with
the same machine—the OTATalkGetInfo function returns information about the node whose network
number and node ID are selected in the AppleTalk control panel.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProviders.h

OTATalkGetLocalZones
Obtains a list of the zones available on your network. (Deprecated in Mac OS X v10.4.)

OSStatus OTATalkGetLocalZones (
 ATSvcRef ref,
 TNetbuf *zones
);

Parameters
ref
zones

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTATalkGetLocalZones function returns a list of the zone names in your application’s network if it is
an extended network. These are all the zones to which your node can belong. If your application is in a
nonextended network, this function returns only one zone name, the same one returned by the
OTATalkGetMyZone function.

If you execute this function asynchronously, Open Transport calls your notifier function with a
T_GETLOCALZONESCOMPLETE completion event to signal the function’s completion and uses your notifier’s
cookie parameter for the list of zones. The cookie parameter actually holds a pointer to a TNetbuf structure,
which points to a buffer containing a list of zone names, each of which is stored as a Pascal-style string. Using
a Pascal-style string for the zone name is redundant since you can determine the length of the string from
the maxlen field of the TNetbuf structure, but the other zone-related calls use Pascal-style strings, so this
call also uses them for consistency.

Each string can be up to 32 characters in length, and if you add a length byte, each can have a maximum
size of 33 bytes. As there can be a maximum of 254 zones on an extended network, the maximum size of
the buffer is 8382 bytes.

Because zone names are often less than 32 characters long and AppleTalk service providers don’t pad short
names, 6 KB bytes is likely to be a safe value for the buffer’s size, defined by the TNetbuf->maxlen field.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTATalkGetMyZone
Obtains the AppleTalk zone name of the node on which your application is running. (Deprecated in Mac OS
X v10.4.)

2314 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTATalkGetMyZone (
 ATSvcRef ref,
 TNetbuf *zone
);

Parameters
ref
zone

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTATalkGetMyZone function gets the name of your application’s AppleTalk zone. If you call this function
asynchronously, Open Transport calls your application’s notifier with a T_GETMYZONECOMPLETE completion
event to signal the function’s completion and uses your notifier’s cookie parameter for the zone name.
More precisely, the cookie parameter points to a TNetbuf structure that in turn points to a buffer containing
the zone name, which is stored as a Pascal-style string. The string can be up to 32 characters in length, so
with the addition of a length byte, the buffer can have a maximum size of 33 bytes. Using a Pascal-style string
for the zone name is redundant since you can determine the length of the string from the maxlen field of
the TNetbuf structure, but the other zone-related calls use Pascal-style strings, so this call also uses them
for consistency.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTATalkGetZoneList
Obtains a list of all the zones available on the AppleTalk internet. (Deprecated in Mac OS X v10.4.)

OSStatus OTATalkGetZoneList (
 ATSvcRef ref,
 TNetbuf *zones
);

Parameters
ref
zones

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTATalkGetZoneList function returns a list of all the zones on the AppleTalk internet to which your
network belongs.

If you execute this function asynchronously, Open Transport calls your notifier function with a
T_GETZONELISTCOMPLETE completion event to signal the function’s completion and uses your notifier’s
cookie parameter for the list of zones. The cookie parameter actually holds a pointer to a TNetbuf structure,

Functions 2315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

which points to a buffer containing a list of zone names, each of which is a Pascal-style string. Using a
Pascal-style string for the zone name is redundant since you can determine the length of the string from the
maxlen field of the TNetbuf structure, but the other zone-related calls use Pascal-style strings, so this call
also uses them for consistency.

Each string can be up to 32 characters in length, and if you add a length byte, each can have a maximum
size of 33 bytes. As AppleTalk internets can have a number of extended networks, you need to allocate a
buffer (using the TNetbuf->maxlen field) that holds as much as 64 KB of memory. To keep the buffer size
as small and efficient as possible, you can set up a large buffer, test for the kOTBufferOverflowErr error,
and then increase the size of the buffer and reissue the call if this error is returned.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTAtomicAdd16
Atomically adds a 16-bit value to a memory location. (Deprecated in Mac OS X v10.4.)

SInt16 OTAtomicAdd16 (
 SInt32 toAdd,
 SInt16 *dest
);

Parameters
toAdd
dest

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAtomicAdd32
Atomically adds a 32-bit value to a memory location. (Deprecated in Mac OS X v10.4.)

2316 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

SInt32 OTAtomicAdd32 (
 SInt32 toAdd,
 SInt32 *dest
);

Parameters
toAdd
dest

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAtomicAdd8
Atomically adds an 8-bit value to a memory location. (Deprecated in Mac OS X v10.4.)

SInt8 OTAtomicAdd8 (
 SInt32 toAdd,
 SInt8 *dest
);

Parameters
toAdd
dest

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAtomicClearBit
Clears a bit in a byte. (Deprecated in Mac OS X v10.4.)

Functions 2317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Boolean OTAtomicClearBit (
 UInt8 *bytePtr,
 OTByteCount bitNumber
);

Parameters
bytePtr
bitNumber

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAtomicSetBit
Sets a specified bit in a byte. (Deprecated in Mac OS X v10.4.)

Boolean OTAtomicSetBit (
 UInt8 *bytePtr,
 OTByteCount bitNumber
);

Parameters
bytePtr
bitNumber

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTAtomicTestBit
Tests a bit in a byte and returns its current state. (Deprecated in Mac OS X v10.4.)

2318 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Boolean OTAtomicTestBit (
 UInt8 *bytePtr,
 OTByteCount bitNumber
);

Parameters
bytePtr
bitNumber

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTBind
Assigns an address to an endpoint. (Deprecated in Mac OS X v10.4.)

OSStatus OTBind (
 EndpointRef ref,
 TBind *reqAddr,
 TBind *retAddr
);

Parameters
ref
reqAddr

If you specify NIL for the reqAddr parameter, Open Transport chooses a protocol address for you
and requests 0 as the endpoint’s maximum number of concurrent outstanding connect indications.

If you want Open Transport to assign an address for you, setthe addr.len field of the TBind structure
to 0.

retAddr
You can set this parameter to nil if you do not care to know what address the endpoint is bound to
or what the negotiated value of qlen is.

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
You call the OTBind function to request an address that an endpoint be bound to. You can either use the
reqAddr parameter to request that the endpoint be bound to a specific address or allow the endpoint provider
to assign an address dynamically by passing nil for this parameter. Consult the documentation for the top-level
protocol you are using to determine whether it is preferable to have the address assigned dynamically. The
function returns the address to which the endpoint is actually bound in the retAddr parameter. This might
be different from the address you requested, if you requested a specific address.

Functions 2319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

If you are binding a connection-oriented endpoint, you must use the reqAddr->qlen field to specify the
number of connection requests that may be outstanding for this endpoint. The retAddr->qlen field specifies,
on return, the actual number of connection requests allowed for the endpoint. This number might be smaller
than the number you requested. Note that when the endpoint is actually connected, the number might be
further decreased by negotiations taking place at that time.

If you call the OTBind function asynchronously and you have not installed a notifier function, the only way
to determine when the function completes is to poll the endpoint using the OTGetEndpointState function.
This function returns a kOTStateChangeErr until the bind completes. When the endpoint is bound, the state
is either T_UNBND if the bind failed, or T_IDLE if it succeeded.

You can cancel an asynchronous bind that is still in progress by calling the OTUnbind function.

You must not bind more than one connectionless endpoint to a single address. Some connection-oriented
protocols let you bind two or more endpoints to the same address. In such instances, you must use only one
of the endpoints to listen for connection requests for that address. When binding the endpoint listening for
a connection, you must set the reqAddr->qlen field of the OTBind function to a value greater than or equal
to 1. When binding the other endpoints, you must set the reqAddr->qlen field to 0.

If you accept a connection for an endpoint that is also listening for connection requests, the address of that
endpoint is deemed “busy” for the duration of the connection, and you must not bind another endpoint for
listening to that same address. This requirement prevents more than one endpoint bound to the same address
from accepting connection requests. If you have to bind another listening endpoint to the same address,
you must first use the OTUnbind function to unbind the first endpoint or use the OTCloseProvider function
to close it.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTBufferDataSize
Obtains the size of the no-copy receive buffer. (Deprecated in Mac OS X v10.4.)

OTByteCount OTBufferDataSize (
 OTBuffer *buffer
);

Parameters
buffer

Return Value
See the description of the OTByteCount data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2320 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

OTCancelSynchronousCalls
Cancels any currently executing synchronous function for a specified provider. (Deprecated in Mac OS X
v10.4.)

OSStatus OTCancelSynchronousCalls (
 ProviderRef ref,
 OSStatus err
);

Parameters
ref
err

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTCancelSynchronousCalls function cancels any currently executing synchronous function for the
provider that you specify. The provider need not be in synchronous mode when you call this function.

Typically, you would call the OTCancelSynchronousCalls function at interrupt time by installing a Time
Manager task that executes after a given amount of time has passed. You could do this to prevent a
synchronous function from hanging the system.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTCancelTimerTask
Cancels a task that was already scheduled for execution. (Deprecated in Mac OS X v10.4.)

Boolean OTCancelTimerTask (
 OTTimerTask timerTask
);

Parameters
timerTask

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

OTCanMakeSyncCall
Checks whether you can call a synchronous function. (Deprecated in Mac OS X v10.4.)

Boolean OTCanMakeSyncCall (
 void
);

Parameters
Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTClearBit
Clears a bit atomically. (Deprecated in Mac OS X v10.4.)

Boolean OTClearBit (
 UInt8 *bitMap,
 OTByteCount bitNo
);

Parameters
bitMap
bitNo

Discussion
OTClearBit is available to client and kernel code, but only to native architecture clients.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProtocol.h

OTCloneConfiguration
Copies an OTConfiguration structure. (Deprecated in Mac OS X v10.4.)

2322 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTConfigurationRef OTCloneConfiguration (
 OTConfigurationRef cfig
);

Parameters
cfig

Return Value
See the description of the OTConfigurationRef data type.

Discussion
The OTCloneConfiguration function copies the OTConfiguration structure that you specify in the cfig
parameter and returns a pointer to the copy. Because the internal format of an OTConfiguration structure
is private, you must use the OTCloneConfiguration function to obtain two identical structures. For example,
you can use this function when another application passes you a configuration structure that you want to
reuse but for which you do not have the original configuration string. By cloning the structure, you have
access to an additional copy of the configuration even without knowing its configuration string.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTCloseProvider
Closes a provider of any type—endpoint, mapper, or service provider. (Deprecated in Mac OS X v10.4.)

OSStatus OTCloseProvider (
 ProviderRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTCloseProvider function closes the provider that you specify in the ref parameter. Closing the
provider deletes all memory reserved for it in the system heap, deletes its resources, and cancels any provider
functions that are currently executing.

Open Transport does not guarantee that all outstanding functions have completed before it closes the
provider. It is ultimately your responsibility to make sure that all provider functions that you care about have
finished executing, before you close and delete a provider.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTCompareAndSwap16
Atomically compares two 16-bit values and changes one of these values if they are the same. (Deprecated
in Mac OS X v10.4.)

Boolean OTCompareAndSwap16 (
 UInt32 oldValue,
 UInt32 newValue,
 UInt16 *dest
);

Parameters
oldValue
newValue
dest

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTCompareAndSwap32
Atomically compares two 32-bit values and changes one of these values if they are the same. (Deprecated
in Mac OS X v10.4.)

Boolean OTCompareAndSwap32 (
 UInt32 oldValue,
 UInt32 newValue,
 UInt32 *dest
);

Parameters
oldValue
newValue
dest

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

2324 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTCompareAndSwap8
Atomically compares two 8-bit values and changes one of these values if they are the same. (Deprecated in
Mac OS X v10.4.)

Boolean OTCompareAndSwap8 (
 UInt32 oldValue,
 UInt32 newValue,
 UInt8 *dest
);

Parameters
oldValue
newValue
dest

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTCompareAndSwapPtr
Atomically compares the value of a pointer at a memory location and atomically swaps it with a second
pointer value if the compare is successful. (Deprecated in Mac OS X v10.4.)

Boolean OTCompareAndSwapPtr (
 void *oldValue,
 void *newValue,
 void **dest
);

Parameters
oldValue
newValue
dest

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTCompareDDPAddresses
Compares two DDP address structures. (Deprecated in Mac OS X v10.4.)

Functions 2325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Boolean OTCompareDDPAddresses (
 const DDPAddress *addr1,
 const DDPAddress *addr2
);

Parameters
addr1
addr2

Discussion
The OTCompareDDPAddresses function compares two DDP addresses for equality and returns true if the
two addresses match. It cannot compare NBP or combined DDP-NBP addresses; using these address types
always returns false. This function uses the zero-matches-anything AppleTalk rule when doing the matching,
which means that a value of 0 in any field results in an acceptable match.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTConnect
Requests a connection to a remote peer. (Deprecated in Mac OS X v10.4.)

OSStatus OTConnect (
 EndpointRef ref,
 TCall *sndCall,
 TCall *rcvCall
);

Parameters
ref
sndCall
rcvCall

This parameter is only meaningful for synchronous calls to the OTConnect function. See TCall data
type.

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
If the endpoint is in synchronous mode, the OTConnect function returns after the connection is established
and fills in the fields of the TCall structure (referenced by the rcvCall parameter) with the actual values
associated with this connection. These might be different from the values you specified using the sndCall
parameter.

If the OTConnect function returns with the kOTLookErr result, this might be either because of a pending
T_LISTEN or T_DISCONNECT event. That is, either a connection request from another endpoint has interrupted
execution of the function, or the remote endpoint has rejected the connection. If you don’t have a notifier
installed, you can call the OTLook function to identify the event that caused the kOTLookErr result. If the

2326 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

event is T_LISTEN, you must accept or reject the incoming request and then continue processing the
OTConnect function by calling OTRcvConnect. If the event is T_DISCONNECT, you must call the
OTRcvDisconnect function to clear the error condition—that is, to deallocate memory and place the endpoint
in the correct state.

If the endpoint is in asynchronous mode, the OTConnect function returns before the connection is established
with a kOTNoDataErr result to indicate that the connection is in progress. When the connection is established,
the endpoint provider calls your notifier, passing T_CONNECT for the code parameter. In response, you must
call the OTRcvConnect function to read the connection parameters that would have been returned using
the rcvCall parameter if the endpoint were in synchronous mode.

It is possible that the remote address returned in the addr field of the rcvCall parameter is not the same as
the address you requested using the sndCall->addr field. This happens when the connection is accepted for
a different endpoint than the one receiving the connection request.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTCountDataBytes
Returns the amount of data currently available to be read. (Deprecated in Mac OS X v10.4.)

OTResult OTCountDataBytes (
 EndpointRef ref,
 OTByteCount *countPtr
);

Parameters
ref
countPtr

Return Value
See the description of the OTResult data type.

Discussion
If the function returns sucessfully, the countPtr parameter points to a buffer containing the amount of data
currently available to be read. This does not mean that the buffer contains all the data that was sent. That
is, there might be additional data to read after you do the first read.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

Functions 2327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTCreateConfiguration
Creates a structure defining a provider’s configuration. (Deprecated in Mac OS X v10.4.)

Modified

OTConfigurationRef OTCreateConfiguration (
 const char *path
);

Parameters
path

A pointer to a character string describing the provider.

Return Value
See the description of the OTConfigurationRef data type.

Discussion
The OTCreateConfiguration function creates a configuration structure that defines the software modules,
hardware ports, and options that Open Transport is to use when you call a function to open a provider. This
is a private structure, defined by the OTConfiguration data type . To create one, you use the path parameter
to pass the OTCreateConfiguration function a string describing the provider service desired.

The simplest possible value of the path parameter is a single protocol module name of the highest-level
protocol you want to use; for example, “tcp.” If you do not specify a complete communications path, the
Open Transport software uses default settings to construct the rest of the path. For example, if you specify
“adsp” for the path parameter, Open Transport defaults to using the AppleTalk DataStream Protocol (ADSP)
protocol module layered above the Datagram Delivery Protocol (DDP) protocol module and with LocalTalk
on the default port, which is the printer port.

If you want to identify a particular port in the configuration string, you use the port name to do so (described
in the section “About Port Information,” beginning on page 6-5). More typically, however, you leave this
value blank— for example, using a string with only “adsp” or “adsp, ddp,” which configures the provider with
whatever port is specified in the control panel.

To specify more than one protocol module, separate the module names with commas. You can also specify
values for options by putting them in parentheses after the protocol name; for example, “adsp, ddp
(Checksum=1)” specifies that ADSP is to run on top of DDP and that the checksum option is enabled.

If Open Transport cannot parse the list that you pass in the path parameter, the OTCreateConfiguration
function returns ((OTConfiguration*)-1L). If there is insufficient memory to create an OTConfiguration
structure, the OTCreateConfiguration function returns NULL.

The OTCreateConfiguration function returns a pointer to the configuration structure it creates. You pass this
pointer as a parameter to the open-provider functions such as the OTOpenEndpoint or OTOpenMapper
functions.

Availability
Modified in Carbon. Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2328 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Carbon Porting Notes

Passing inline options to OTCreateConfiguration-for example,
OTCreateConfiguration("tcp(NoDelay=1)")-is not supported on Mac OS X. Instead, you should
explicitly set any options using the function OTOptionManagement.

Declared In
OpenTransport.h

OTCreateDeferredTaskInContext
Creates a reference to a task that can be scheduled to run at deferred task time. (Deprecated in Mac OS X
v10.4.)

long OTCreateDeferredTaskInContext (
 OTProcessUPP upp,
 void *arg,
 OTClientContextPtr clientContext
);

Parameters
upp
arg
clientContext

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTCreatePortRef
Creates a port reference that describes a port’s hardware characteristics. (Deprecated in Mac OS X v10.4.)

OTPortRef OTCreatePortRef (
 OTBusType busType,
 OTDeviceType devType,
 OTSlotNumber slot,
 UInt16 other
);

Parameters
busType

The type of bus to which the hardware port is connected; for example, a NuBus or PCI bus. See “The
Port Reference” for possible values for this parameter.

devType
The type of hardware device connected to the port, such as LocalTalk or Ethernet. See “The Port
Reference”for possible values for this parameter.

Functions 2329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

slot
other

The port’s multiport identifier—that is, a numeric value that distinguishes between ports when more
than one hardware port is connected to a given slot.

Return Value
See the description of the OTPortRef data type.

Discussion
The OTCreatePortRef function creates a port reference structure, which is a 32-bit value that describes a
port’s hardware characteristics: its device and bus type, its physical slot number, and, where applicable, its
multiport identifier.

Once you have created a port reference, you can use the OTFindPortByRef function to find a specific port
with that particular set of characteristics.

To create a port reference, you use the OTCreatePortRef function. You must know all the port’s hardware
characteristics: its device and bus type, its slot number, and its multiport identifier (if it has one). You cannot
use wildcards to fill in any element you don’t know, although you can use a device type of 0 to allow matches
on every kind of device type (following the zero-matches-everything rule). Possible device and bus types are
described in the section “The Port Reference.”

To create a port reference for a pseudodevice, use 0 as the value for the bus type, slot number, and multiport
identifier, and use the constant kOTPseudoDevice for the device type.

Open Transport has predefined variants of the OTCreatePortRef function for the most commonly used
hardware devices, such as the NuBus, PCI, and PCMCIA devices. These three variants are listed here:

#define OTCreateNuBusPortRef(devType, slot, other)\
OTCreatePortRef(kOTNuBus, devType, slot, other)
#define OTCreatePCIPortRef(devType, slot, other)\
OTCreatePortRef(kOTPCIBus, devType, slot, other)
#define OTCreatePCMCIAPortRef(devType, slot, other)\
OTCreatePortRef(kOTPCMCIABus, devType, slot, other)

Once you have identified the port structure you want, you can access the information in its port reference,
by using theOTGetDeviceTypeFromPortRef,OTGetBusTypeFromPortRef, andOTGetSlotFromPortRef
functions.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTCreateTimerTaskInContext
Creates a task to be scheduled. (Deprecated in Mac OS X v10.4.)

2330 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

long OTCreateTimerTaskInContext (
 OTProcessUPP upp,
 void *arg,
 OTClientContextPtr clientContext
);

Parameters
upp
arg
clientContext

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProtocol.h

OTDelay
Delays processing for a specified number of seconds. This function is only provided for compatibility with
the UNIX sleep function. (Deprecated in Mac OS X v10.4.)

void OTDelay (
 UInt32 seconds
);

Parameters
seconds

The number of seconds to delay.

Discussion
The OTDelay function delays processing for the number of seconds specified in the seconds parameter.
While the delay is occurring, OTDelay continuously calls the OTIdle function.

You can only call the OTDelay function from within an application at system task time. This function is only
provided for compatibility with the UNIX sleep function to assist with portability of UNIX code.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTDeleteName
Removes a previously registered entity name. (Deprecated in Mac OS X v10.4.)

Functions 2331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTDeleteName (
 MapperRef ref,
 TNetbuf *name
);

Parameters
ref
name

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
If the name-registration protocol defined using the config parameter to the OTOpenMapper or
OTAsyncOpenMapper function supports dynamic name and address registration, you can use the
OTDeleteName function to delete a registered name.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTDeleteNameByID
Removes a previously registered name as specified by its name ID. (Deprecated in Mac OS X v10.4.)

OSStatus OTDeleteNameByID (
 MapperRef ref,
 OTNameID nameID
);

Parameters
ref
nameID

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
If the name-registration protocol defined using the config parameter to the OTOpenMapper or
OTAsyncOpenMapper function supports dynamic name and address registration, you can use the
OTDeleteNameByID function to delete a registered name.

If the mapper is in asynchronous mode, the OTDeleteNameByID function returns immediately. When the
function completes execution, the mapper provider calls the notifier function, passing T_DELNAMECOMPLETE
for the code parameter, and a pointer to the id parameter in the cookie parameter.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

2332 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Not available to 64-bit applications.

Declared In
OpenTransport.h

OTDequeue
Removes an element from a list. (Deprecated in Mac OS X v10.4.)

void * OTDequeue (
 void **listHead,
 OTByteCount linkOffset
);

Parameters
listHead
linkOffset

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTDestroyConfiguration
Deletes an OTConfiguration structure. (Deprecated in Mac OS X v10.4.)

void OTDestroyConfiguration (
 OTConfigurationRef cfig
);

Parameters
cfig

Discussion
The OTDestroyConfiguration function deletes the OTConfiguration structure that you specify in the
cfig parameter and releases all associated memory.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

Functions 2333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTDestroyDeferredTask
Destroys a deferred task created with the OTCreateDeferredTask function. (Deprecated in Mac OS X v10.4.)

OSStatus OTDestroyDeferredTask (
 OTDeferredTaskRef dtCookie
);

Parameters
dtCookie

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTDestroyDeferredTask function makes the dtCookie reference invalid and frees any resources
allocated to the task when it was created. You can call this function at any time when you no longer need
to schedule the deferred task object. If dtCookie is invalid (a value of 0), the function returns kOTNoError
and does nothing.

If you try to destroy a deferred task that is still scheduled, the kEAgainErr error can occur. This is a rare
situation that can only happen when you try to destroy the task from within an interrupt service routine or
within another deferred task.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTDestroyTimerTask
Disposes of a timer task. (Deprecated in Mac OS X v10.4.)

void OTDestroyTimerTask (
 OTTimerTask timerTask
);

Parameters
timerTask

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProtocol.h

2334 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTDontAckSends
Specifies that a provider copy data before sending it. (Deprecated in Mac OS X v10.4.)

OSStatus OTDontAckSends (
 ProviderRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
By default, providers do not acknowledge sends. You need to call the OTDontAckSends function only if you
have used the OTAckSends function to turn on send-acknowledgment for a provider.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTElapsedMicroseconds
Calculates the time elapsed in microseconds since a specified time. (Deprecated in Mac OS X v10.4.)

UInt32 OTElapsedMicroseconds (
 OTTimeStamp *startTime
);

Parameters
startTime

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTElapsedMilliseconds
Calculates the time elapsed in milliseconds since a specified time. (Deprecated in Mac OS X v10.4.)

Functions 2335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

UInt32 OTElapsedMilliseconds (
 OTTimeStamp *startTime
);

Parameters
startTime

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTEnqueue
Adds an element to a list. (Deprecated in Mac OS X v10.4.)

void OTEnqueue (
 void **listHead,
 void *object,
 OTByteCount linkOffset
);

Parameters
listHead
object
linkOffset

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTEnterNotifier
Limits the notifications that can be sent to your notifier. (Deprecated in Mac OS X v10.4.)

Boolean OTEnterNotifier (
 ProviderRef ref
);

Parameters
ref

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.

2336 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTExtractNBPName
Extracts the name part of an NBP name from an NBP entity structure. (Deprecated in Mac OS X v10.4.)

void OTExtractNBPName (
 const NBPEntity *entity,
 char *name
);

Parameters
entity
name

A pointer to the string buffer in which to store the name portion of an NBP name string that you wish
to extract from the NBP entity.

Discussion
The OTExtractNBPName function extracts the name part of an NBP name from the specified NBP entity
structure and stores it into the string buffer specified by the name parameter. This function inserts a backslash
(\) in front of any backslash, colon (:), or at-sign (@) it finds in an NBP name so that mapper functions can use
a correctly formatted NBP name.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTExtractNBPType
Extracts the type part of an NBP name from an NBP entity structure. (Deprecated in Mac OS X v10.4.)

void OTExtractNBPType (
 const NBPEntity *entity,
 char *typeVal
);

Parameters
entity
typeVal

A pointer to the string buffer in which to store the type portion of an NBP name string that you wish
to extract from the NBP entity.

Functions 2337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Discussion
The OTExtractNBPType function extracts the type part of an NBP name from the specified NBP entity
structure and stores it into the string buffer specified by the type parameter. This function inserts a backslash
(\) in front of any backslash, colon (:), or at-sign (@) it finds in an NBP name so that mapper functions can use
a correctly formatted NBP name.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTExtractNBPZone
Extracts the zone part of an NBP name from an NBP entity structure. (Deprecated in Mac OS X v10.4.)

void OTExtractNBPZone (
 const NBPEntity *entity,
 char *zone
);

Parameters
entity
zone

A pointer to the string buffer in which to store the type portion of an NBP name string that you wish
to extract from the NBP entity.

Discussion
The OTExtractNBPZone function extracts the zone part of an NBP name from the specified NBP entity
structure and stores it into the string buffer specified by the zone parameter. This function inserts a backslash
(\) in front of any backslash, colon (:), or at-sign (@) it finds in an NBP name so that mapper functions can use
a correctly formatted NBP name.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTFindAndRemoveLink
Finds a link in a FIFO list and removes it. (Deprecated in Mac OS X v10.4.)

2338 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTLink * OTFindAndRemoveLink (
 OTList *list,
 OTListSearchUPP proc,
 const void *ref
);

Parameters
list
proc
ref

Return Value
See the description of the OTLink data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTFindLink
Finds a link in a FIFO list and returns a pointer to it. (Deprecated in Mac OS X v10.4.)

OTLink * OTFindLink (
 OTList *list,
 OTListSearchUPP proc,
 const void *ref
);

Parameters
list
proc
ref

Return Value
See the description of the OTLink data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTFindOption
Finds a specific option in an options buffer. (Deprecated in Mac OS X v10.4.)

Functions 2339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TOption * OTFindOption (
 UInt8 *buffer,
 UInt32 buflen,
 OTXTILevel level,
 OTXTIName name
);

Parameters
buffer

A pointer to the buffer containing the option to be found.

buflen
The size of the buffer containing the option to be found.

level
name

Return Value
See the description of the TOption data type.

Discussion
Given a buffer such as might be returned by the OTOptionManagement function or by any endpoint function
that returns a buffer containing option information, you can use the OTFindOption function to find a specific
option in the buffer.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTFindPort
Obtains information about a port that corresponds to a given port name. (Deprecated in Mac OS X v10.4.)

Boolean OTFindPort (
 OTPortRecord *portRecord,
 const char *portName
);

Parameters
portName

A pointer to a port structure that contains information about the port you specified with the portName
parameter.

portName
The name of the port about which you want information.

Discussion
The OTFindPort function returns information about a port that corresponds to a given port name. Each
port in a system has a unique port name, which you can obtain through a previous call or set of calls to the
OTGetIndexedPort function.

2340 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

You must allocate the port structure; the function fills this structure with information about the port indicated
by the portName parameter. If the function returns false, the contents of the structure are not significant.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTFindPortByRef
Obtains information about a port that corresponds to its given port reference. (Deprecated in Mac OS X
v10.4.)

Boolean OTFindPortByRef (
 OTPortRecord *portRecord,
 OTPortRef ref
);

Parameters
portRecord
ref

Discussion
The OTFindPortByRef function returns information about a port identified by its port reference. A port
reference is a 32-bit value that describes a port’s hardware characteristics: its bus and device type, its physical
slot number, and, where applicable, its multiport identifier. This identifier differentiates between multiple
hardware ports on a given slot.

You must allocate the port structure; the function fills this structure with information about the port indicated
by the ref parameter. If the function returns false, the contents of the structure are not significant.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTFree
Frees memory allocated using the OTAlloc function. (Deprecated in Mac OS X v10.4.)

Functions 2341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTResult OTFree (
 void *ptr,
 OTStructType structType
);

Parameters
ptr

A pointer to the structure to be deallocated. This is the pointer returned by the OTAlloc function.

structType

Return Value
See the description of the OTResult data type.

Discussion
In order to use the OTFree function, you must not have changed the memory allocated by the OTAlloc
function for the structure specified by the structType parameter or for any of the buffers to which it points.

You are responsible for passing a structType parameter that exactly matches the type of structure being
freed.

The OTFree function, along with the OTAlloc function, is provided mainly forcompatibility with XTI.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTFreeMem
Frees memory allocated with the OTAllocMem function. (Deprecated in Mac OS X v10.4.)

void OTFreeMem (
 void *mem
);

Parameters
mem

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

2342 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTGetBusTypeFromPortRef
Extracts the value of the bus type from a port reference. (Deprecated in Mac OS X v10.4.)

UInt16 OTGetBusTypeFromPortRef (
 OTPortRef ref
);

Parameters
ref

Discussion
The OTGetBusTypeFromPortRef function extracts the bus type value from a port reference with unknown
hardware values. You can obtain such a port reference when another application passes one to you or when
you use the OTGetIndexedPort function to access a port structure into which another application has put
its own port reference.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetClockTimeInSecs
Returns the number of seconds that have elapsed since system boot time. (Deprecated in Mac OS X v10.4.)

UInt32 OTGetClockTimeInSecs (
 void
);

Parameters
Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetDeviceTypeFromPortRef
Extracts the value of the hardware device type from a port reference. (Deprecated in Mac OS X v10.4.)

Functions 2343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTDeviceType OTGetDeviceTypeFromPortRef (
 OTPortRef ref
);

Parameters
ref

Return Value
See the description of the OTDeviceType data type.

Discussion
The OTGetDeviceTypeFromPortRef function extracts the device type value from a port reference with
unknown hardware values. You can obtain such a port reference when another application passes one to
you or when you use the OTGetIndexedPort function to access a port structure into which another
application has put its own port reference.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetEndpointInfo
Obtains information about an endpoint that has been opened. (Deprecated in Mac OS X v10.4.)

OSStatus OTGetEndpointInfo (
 EndpointRef ref,
 TEndpointInfo *info
);

Parameters
ref
info

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTGetEndpointInfo function returns information about

 ■ the maximum size of buffers used to specify an endpoint’s address and option values

 ■ the maximum size of normal and expedited data you can transfer using this endpoint or, for
transaction-based endpoints, the maximum size of requests and replies

 ■ the size of data you can transfer when initiating or tearing down a connection

 ■ the services supported by the endpoint

 ■ any additional characteristics of this endpoint

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.

2344 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetEndpointState
Obtains the current state of an endpoint. (Deprecated in Mac OS X v10.4.)

OTResult OTGetEndpointState (
 EndpointRef ref
);

Parameters
ref

Return Value
See the description of the OTResult data type.

Discussion
The OTGetEndpointState function returns an integer greater than or equal to 0 indicating the state of the
specified endpoint. The endpoint state enumeration describes possible endpoint states and lists their decimal
value.

If the function fails, it returns a negative integer specifying the error code. You must open an endpoint before
you can determine its state.

You might need to know an endpoint’s state in order to determine whether a function has completed or
whether the endpoint is in an appropriate state for the function that you want to call next.

This function returns endpoint state information immediately, whether the endpoint is in synchronous or
asynchronous mode.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetFirst
Returns a pointer to the first element in a FIFO list. (Deprecated in Mac OS X v10.4.)

Functions 2345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTLink * OTGetFirst (
 OTList *list
);

Parameters
list

Return Value
See the description of the OTLink data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetIndexedLink
Returns a pointer to the link at a specified position in a FIFO list. (Deprecated in Mac OS X v10.4.)

OTLink * OTGetIndexedLink (
 OTList *list,
 OTItemCount index
);

Parameters
list
index

Return Value
See the description of the OTLink data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetIndexedPort
Iterates through the ports available on your computer. (Deprecated in Mac OS X v10.4.)

2346 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Boolean OTGetIndexedPort (
 OTPortRecord *portRecord,
 OTItemCount index
);

Parameters
portRecord
index

Discussion
The OTGetIndexedPort function returns information about the ports available on your local system. To
iterate through all the ports on your computer, call the function repeatedly, incrementing the index parameter
each time (starting with 0) until the function returns false. Each time the function returns true, it fills in the
port structure that you provide with information about a specific port. You can use this information, for
example, when specifying a provider configuration string for the OTCreateConfiguration function.

You must allocate the port structure; the function fills this structure with information about the port indicated
by the index parameter. If the function returns false, the contents of the structure are not significant.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetLast
Returns the last element in a FIFO list. (Deprecated in Mac OS X v10.4.)

OTLink * OTGetLast (
 OTList *list
);

Parameters
list

Return Value
See the description of the OTLink data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

Functions 2347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTGetNBPEntityLengthAsAddress
Obtains the size of an NBP entity structure. (Deprecated in Mac OS X v10.4.)

OTByteCount OTGetNBPEntityLengthAsAddress (
 const NBPEntity *entity
);

Parameters
entity

Return Value
See the description of the OTByteCount data type.

Discussion
The OTGetNBPEntityLengthAsAddress function obtains the number of bytes needed to store an NBP
entity structure into an NBP or combined DDP-NBP address structure.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTGetProtAddress
Obtains the address to which an endpoint is bound and, if the endpoint is currently connected, obtains the
address of its peer. (Deprecated in Mac OS X v10.4.)

OSStatus OTGetProtAddress (
 EndpointRef ref,
 TBind *boundAddr,
 TBind *peerAddr
);

Parameters
ref
boundAddr

If you are calling this function only to determine the address of the peer endpoint, you can set the
boundAddr parameter to NIL.

The boundAddr->qlen field is ignored. See EndpointRef data type.

peerAddr

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTGetProtAddress function returns the address to which an endpoint is bound in the boundAddr
parameter and, if the endpoint is currently connected, the address of its peer in the peerAddr parameter.
Not all endpoints support this function. A value of T_XPG4_1 in the flags field of the TEndpointInfo (page
2542) structure indicates that the endpoint does support this function.

2348 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

You are responsible for initializing the buffers required to hold the local and peer addresses. The addr field
of the TEndpointInfo structure specifies the maximum amount of memory needed to store the address
of an endpoint. Use this value to set the size of the buffers.

The information returned by the OTGetProtAddress function is affected by the state of the endpoint specified
by the ref parameter. If the endpoint is in the T_UNBND state, the boundAddr->addr.len field is set to 0. If
the endpoint is not in the T_DATAXFER state, the peerAddr->addr.len field is set to 0.

If the endpoint is in asynchronous mode and a notifier is not installed, it is not possible to determine when
the function completes.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetSlotFromPortRef
Extracts slot information from a port reference. (Deprecated in Mac OS X v10.4.)

OTSlotNumber OTGetSlotFromPortRef (
 OTPortRef ref,
 UInt16 *other
);

Parameters
ref
other

A pointer to a 16-bit buffer you provide into which the function places a value that distinguishes
between ports when more than one hardware port is connected to a given slot. Specify NULL for this
parameter if you do not want the function to return this information.

Return Value
See the description of the OTSlotNumber data type.

Discussion
TheOTGetSlotFromPortRef function extracts slot information from a port reference with unknown hardware
values. You can obtain such a port reference when another application passes one to you or when you use
the OTGetIndexedPort function to access a port structure into which another application has put its own
port reference.

Note that the slot numbers are physical; that is, they are the slot numbers returned by the Slot Manager and
not the slots seen in various network configuration applications. Physical slot numbers depend on the type
of card installed. For example, NuBus cards number their slots 9–13, which appear in the AppleTalk or TCP
control panels as slots 1–5.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 2349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Not available to 64-bit applications.

Declared In
OpenTransport.h

OTGetTimeStamp
Obtains the current timestamp. (Deprecated in Mac OS X v10.4.)

void OTGetTimeStamp (
 OTTimeStamp *currentTime
);

Parameters
currentTime

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTIdle
Idles your computer. (Deprecated in Mac OS X v10.4.)

void OTIdle (
 void
);

Discussion
You can call the OTIdle function while you are waiting for asynchronous provider operations to complete.
It is not necessary for the correct operation of Open Transport to call this function, but it provides compatibility
for existing programs that use an idling function.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTInetAddressToName
Determines the canonical domain name of the host associated with an internet address. (Deprecated in Mac
OS X v10.4.)

2350 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTInetAddressToName (
 InetSvcRef ref,
 InetHost addr,
 InetDomainName name
);

Parameters
ref
addr
name

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
If you call this function asynchronously, the TCP/IP service provider calls your notifier function with the
T_DNRADDRTONAMECOMPLETE completion event code when the function completes. The cookie parameter
to the notifier function contains a pointer to the InetHost structure you specified in the addr parameter.
If you had more than one simultaneous outstanding call to the OTInetAddressToName function, you can
use this information to determine which call has completed execution.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInetGetInterfaceInfo
Returns internet address information about the local host. (Deprecated in Mac OS X v10.4.)

OSStatus OTInetGetInterfaceInfo (
 InetInterfaceInfo *info,
 SInt32 val
);

Parameters
info
val

An index into the local host’s array of configured IP interfaces. Specify 0 for information about the
first interface. Specify kDefaultInetInterface to get information about the primary interface.

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
Because the architecture of Open Transport TCP/IP provides for multihoming, in principle a given host can
receive packets simultaneously through more than one network interface. For each IP interface configured
for the local host, the OTInetGetInterfaceInfo function provides the internet address and subnet mask,
a default gateway (that is, a gateway, if any exists, that can be used to route any packet to all destinations
outside the locally connected subnet), and a domain name server, if any is known. The function also returns

Functions 2351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

the version number of the OTInetGetInterfaceInfo function and, if available, the broadcast address for
each interface. If the broadcast address is not available, you can determine it from the internet address and
subnet mask.

Because multihoming has not been implemented in the initial release of Open Transport, the
OTInetGetInterfaceInfo function never returns information for more than one interface.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInetGetSecondaryAddresses
Returns the active secondary IP addresses. (Deprecated in Mac OS X v10.4.)

OSStatus OTInetGetSecondaryAddresses (
 InetHost *addr,
 UInt32 *count,
 SInt32 val
);

Parameters
addr
count
val

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInetHostToString
Converts an an address in InetHost format into a character string in dotted-decimal notation. (Deprecated
in Mac OS X v10.4.)

2352 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

void OTInetHostToString (
 InetHost host,
 char *str
);

Parameters
host
str

A pointer to a C string containing an IP address in dotteddecimal notation (for example, “12.13.14.15”).
You must allocate storage for this string and provide the pointer to the function.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInetMailExchange
Returns mail-exchange-host names and preference information for a domain name you specify. (Deprecated
in Mac OS X v10.4.)

OSStatus OTInetMailExchange (
 InetSvcRef ref,
 char *name,
 UInt16 *num,
 InetMailExchange *mx
);

Parameters
ref
name

A pointer to a host name, partially qualified domain name, or fully qualified domain name for which
you want mail exchange information.

num
A pointer to the number of elements in the array pointed to by the mx parameter. When the function
completes, it sets the number pointed to by the num parameter to the actual number of elements
filled in.

mx

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
In order to deliver mail, a mail application must determine the fully qualified domain name of the host to
which the mail should be sent. That host might be the final destination of the mail, a mail server, or a router.
The domain name system servers maintain mail-exchange resource records that pair domain names with
the hosts that can accept mail for that domain. Each domain name can be paired with any number of host

Functions 2353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

names; each record containing such a pair also contains a preference number. The mailer sends the mail to
the host with the lowest preference number first and tries the others in turn until the mail is delivered or
until the mailer decides that the mail is undeliverable.

The OTInetMailExchange function returns mail-exchange-host and preference information for the domain
name you specify. You must then determine the address of the host and how best to deliver the mail. You
can specify as many elements to the array of InetMailExchange structures as you wish.

If you call this function asynchronously, the TCP/IP service provider calls your notifier function with the
T_DNRMAILEXCHANGECOMPLETE completion event code when the function completes. Thecookieparameter
to the notifier function contains the array pointer you specified in the mx parameter. If you had more than
one simultaneous outstanding call to the OTInetMailExchange function, you can use this information to
determine which call has completed execution.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInetQuery
Executes a generic DNS query. (Deprecated in Mac OS X v10.4.)

OSStatus OTInetQuery (
 InetSvcRef ref,
 char *name,
 UInt16 qClass,
 UInt16 qType,
 char *buf,
 OTByteCount buflen,
 void **argv,
 OTByteCount argvlen,
 OTFlags flags
);

Parameters
ref
name
qClass
qType
buf
buflen
argv
argvlen
flags

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

2354 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInetStringToAddress
Resolves a domain name to its equivalent internet addresses. (Deprecated in Mac OS X v10.4.)

OSStatus OTInetStringToAddress (
 InetSvcRef ref,
 char *name,
 InetHostInfo *hinfo
);

Parameters
ref
name

A pointer to the domain name you want to resolve. This can be a host name, a partially qualified
domain name, a fully qualified domain name, or an internet address in dotted-decimal format.

hinfo

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
Because the architecture of Open Transport TCP/IP provides for multihoming, a single host can be associated
with multiple internet addresses. You can use the OTInetStringToAddress function to return multiple
addresses for multihomed hosts.

Because multihoming has not been implemented in the initial release of Open Transport, the
OTInetStringToAddress function never returns more than one address.

If you specify an internet address in dotted-decimal format for the hinfo parameter, the
OTInetStringToAddress function places that address in the InetHostInfo.name field instead of a
canonical domain name.

If you call the OTInetStringToAddress function asynchronously, the TCP/IP service provider calls your
notifier function with the T_DNRSTRINGTOADDRCOMPLETE completion event code when the function
completes. The cookie parameter to the notifier function contains the pointer you specified in the hinfo
parameter. If you had more than one simultaneous outstanding call to the OTInetStringToAddress
function, you can use this information to determine which call has completed execution.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProviders.h

OTInetStringToHost
Converts an IP address string from dotted-decimal notation or hexadecimal notation to an InetHost data
type. (Deprecated in Mac OS X v10.4.)

OSStatus OTInetStringToHost (
 const char *str,
 InetHost *host
);

Parameters
str

A pointer to a character string containing an IP address in either dotted-decimal notation (for example,
“12.13.14.15”) or hexadecimal notation (for example, “0x0c0d0e0f”).

host

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInetSysInfo
Returns details about a host’s processor and operating system. (Deprecated in Mac OS X v10.4.)

OSStatus OTInetSysInfo (
 InetSvcRef ref,
 char *name,
 InetSysInfo *sysinfo
);

Parameters
ref
name

The name of the host about which you want information. This can be a host name (including the local
host), a partially qualified domain name, or a fully qualified domain name.

sysinfo

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

2356 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Discussion
The information returned by this function is maintained by the domain name server. If you call this function
asynchronously, the TCP/IP service provider calls your notifier function with the T_DNRSYSINFOCOMPLETE
completion event code when the function completes. The cookie parameter to the notifier function contains
a pointer to the InetSysInfo structure you specified in the sysinfo parameter. If you had more than one
simultaneous outstanding call to the OTInetSysInfo function, you can use this information to determine
which call has completed execution.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInitDDPAddress
Initializes a DDP address structure. (Deprecated in Mac OS X v10.4.)

void OTInitDDPAddress (
 DDPAddress *addr,
 UInt16 net,
 UInt8 node,
 UInt8 socket,
 UInt8 ddpType
);

Parameters
addr
net

The network number you wish to specify. Set to 0 to default to the local network.

node
The node ID you wish to specify. Set to 0 to default to the local node.

socket
The socket number you wish to specify. Set to 0 to allow Open Transport to assign a socket dynamically
when you use this address to bind an endpoint.

ddpType
The DDP type you wish to specify. Set to 0 unless you are using DDP.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

Functions 2357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTInitDDPNBPAddress
Initializes a combined DDP-NBP address structure. (Deprecated in Mac OS X v10.4.)

OTByteCount OTInitDDPNBPAddress (
 DDPNBPAddress *addr,
 const char *name,
 UInt16 net,
 UInt8 node,
 UInt8 socket,
 UInt8 ddpType
);

Parameters
addr
name

A pointer to the NBP string you wish to use for the NBP name.

net
The network number you wish to specify. Set to 0 to default to the local network.

node
The node ID you wish to specify. Set to 0 to default to the local node.

socket
The socket number you wish to specify. Set to 0 to allow Open Transport to assign a socket dynamically
when you use this address to bind an endpoint.

ddpType
The DDP type you wish to specify. Set to 0 unless you are using DDP.

Return Value
See the description of the OTByteCount data type.

Discussion
The OTInitDDPNBPAddress function initializes a combined DDP-NBP address structure with the data
provided in the parameters: NBP name, network number, node ID, socket number, and DDP type. The function
returns the total size of the address structure, which is the length of the name parameter plus the size of a
DDPAddress structure.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInitDNSAddress
Fills in a DNSAddress structure with the data you provide. (Deprecated in Mac OS X v10.4.)

2358 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTByteCount OTInitDNSAddress (
 DNSAddress *addr,
 char *str
);

Parameters
addr
str

A pointer to a domain name string. This string can be just a host name (otteam), a partially qualified
domain name (for example, “otteam.ssw”), a fully qualified domain name (for example,
“otteam.ssw.apple.com.”), or an internet address in dotteddecimal format (for example, “17.202.99.99”),
and can optionally include the port number (for example, “otteam.ssw.apple.com:25” or
“17.202.99.99:25”).

Return Value
See the description of the OTByteCount data type.

Discussion
This function fills in the fAddressType field of the DNSAddress structure with the value AF_DNS, fills in the
fName field with the address string you specify, and returns the size of the resulting DNSAddress structure
as an unsigned integer. You can use the DNSAddress structure to provide an address when you use a UDP
or TCP endpoint. If you do so, the domain name resolver resolves the address for you automatically.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInitInetAddress
Fills in an InetAddress structure with the data you provide. (Deprecated in Mac OS X v10.4.)

void OTInitInetAddress (
 InetAddress *addr,
 InetPort port,
 InetHost host
);

Parameters
addr
port
host

Discussion
This function fills in the fAddressType field of the InetAddress structure with the value AF_INET. You
use the InetAddress structure when providing a TCP or UDP address to the Open Transport functions
OTConnect, OTSndURequest, and OTBind. You are not required to use the OTInitInetAddress function
when creating an InetAddress structure; this function is provided for your convenience only.

Availability
Available in CarbonLib 1.0 and later.

Functions 2359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInitNBPAddress
Initializes an NBP address structure. (Deprecated in Mac OS X v10.4.)

OTByteCount OTInitNBPAddress (
 NBPAddress *addr,
 const char *name
);

Parameters
addr
name

A pointer to the NBP string you wish to use for the NBP name.

Return Value
See the description of the OTByteCount data type.

Discussion
The OTInitNBPAddress function can be used to initialize an NBP address structure with the NBP name
specified in the name parameter, which is assumed to already be in the correct string format. The function
returns the size of the NBP address structure, which is the size of the fAddressType field plus the length of
the string in the name parameter.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInitNBPEntity
Initializes an NBP entity structure. (Deprecated in Mac OS X v10.4.)

void OTInitNBPEntity (
 NBPEntity *entity
);

Parameters
entity

Discussion
The OTInitNBPEntity function initializes an NBP entity structure, setting the name, type and zone parts
of an NBP name to empty strings.

2360 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTInstallNotifier
Installs a notifier function. (Deprecated in Mac OS X v10.4.)

OSStatus OTInstallNotifier (
 ProviderRef ref,
 OTNotifyUPP proc,
 void *contextPtr
);

Parameters
ref
proc

For C++ applications, the proc parameter must point to either a C function or a static member
function. See OTNotifyUPP data type.

contextPtr
A context pointer for your use. The provider passes this value unchanged to your notifier function
when it calls the function.

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTInstallNotifier function installs a notifier function for the provider that you specify. Changing a
provider’s mode of execution does not affect the notifier function. The notifier function remains installed
until you remove it using the OTRemoveNotifier function or until you close the provider.

Before calling the OTInstallNotifier function, you must open the provider for which you want to install
the notifier. If you open a provider asynchronously (for example, with the OTAsyncOpenEndpoint function),
you must pass a pointer to a notifier function as a parameter to the function used to open the provider. In
this case, you don’t need to call the OTInstallNotifier function unless you want to install a different
notifier function. If you do, you must call the OTRemoveNotifier function before calling the
OTInstallNotifier function.

Opening a provider synchronously (for example, with the OTOpenEndpoint function) opens the provider
but does not install a notifier function for it. If you need a notifier function for a provider opened synchronously,
you must call the OTInstallNotifier function. This notifier would not return completion events, but
would return asynchronous events advising you of the arrival of data, of changes in flow-control restrictions,
and so on.

Call the OTInstallNotifier function only when no provider functions are executing for the provider that
you specify. Otherwise, the OTInstallNotifier function returns the result code kOTStateChangeErr.

Functions 2361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTIoctl
Sends a module-specific command to an Open Transport protocol module. (Deprecated in Mac OS X v10.4.)

SInt32 OTIoctl (
 ProviderRef ref,
 UInt32 cmd,
 void *data
);

Parameters
ref
cmd

A routine selector for the module-specific command.

data
Data to be used by the module-specific command, or a pointer to such data. The interpretation of
the data parameter is command specific.

Discussion
The OTIoctl function sends a module-specific command to an Open Transport protocol module. The
OTIoctl function runs synchronously or asynchronously, matching the provider’s mode of execution.

If the OTIoctl function completes synchronously without error, it returns 0 or a positive integer. The positive
integer’s meaning is command specific. If the OTIoctl function fails while executing synchronously, its
return value is a negative integer corresponding to an Open Transport result code.

If the OTIoctl function runs asynchronously, it returns immediately with a return value kOTNoError or
another Open Transport result code. When the function completes execution, Open Transport calls the notifier
function you specify, passing the event code kStreamIoctlEvent and a result parameter indicating the
result of the completed OTIoctl function. If the value of the result parameter is greater than 0, the
corresponding result code is defined by the command; otherwise, the value of the result parameter
corresponds to an Open Transport result code.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

2362 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTIsAckingSends
Determines whether a provider is acknowledging sends. (Deprecated in Mac OS X v10.4.)

Boolean OTIsAckingSends (
 ProviderRef ref
);

Parameters
ref

Discussion
The OTIsAckingSends function returns true if the provider acknowledges sends and false if it does not.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTIsBlocking
Returns a boolean indicating whether a provider is blocking. (Deprecated in Mac OS X v10.4.)

Boolean OTIsBlocking (
 ProviderRef ref
);

Parameters
ref

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTIsInList
Determines whether the specified link is in the specified list. (Deprecated in Mac OS X v10.4.)

Functions 2363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Boolean OTIsInList (
 OTList *list,
 OTLink *link
);

Parameters
list
link

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTIsSynchronous
Returns a provider’s current mode of execution. (Deprecated in Mac OS X v10.4.)

Boolean OTIsSynchronous (
 ProviderRef ref
);

Parameters
ref

Discussion
The OTIsSynchronous function returns true if a provider is in synchronous mode or returns false if the
provider is in asynchronous mode.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTLeaveNotifier
Allows Open Transport to resume sending primary and completion events. (Deprecated in Mac OS X v10.4.)

2364 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

void OTLeaveNotifier (
 ProviderRef ref
);

Parameters
ref

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTLIFODequeue
Removes the first link in a LIFO list and returns a pointer to it. (Deprecated in Mac OS X v10.4.)

OTLink * OTLIFODequeue (
 OTLIFO *list
);

Parameters
list

Return Value
See the description of the OTLink data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTLIFOEnqueue
Places a link at the front of a LIFO list. (Deprecated in Mac OS X v10.4.)

void OTLIFOEnqueue (
 OTLIFO *list,
 OTLink *link
);

Parameters
list
link

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.

Functions 2365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTLIFOStealList
Removes all links in a LIFO list and returns a pointer to the first link in the list. (Deprecated in Mac OS X v10.4.)

OTLink * OTLIFOStealList (
 OTLIFO *list
);

Parameters
list

Return Value
See the description of the OTLink data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTListen
Listens for an incoming connection request. (Deprecated in Mac OS X v10.4.)

OSStatus OTListen (
 EndpointRef ref,
 TCall *call
);

Parameters
ref
call

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
You use the OTListen function to listen for incoming connection requests. On return, the function fills in the
TCall structure referenced by the call parameter with information about the connection request. After retrieving
the connection request using the OTListen function, you can reject the request using the OTSndDisconnect
function, or you can accept the request using the OTAccept function.

2366 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

If the endpoint is in synchronous mode and is blocking, the OTListen function returns when a connection
request has arrived. If the endpoint is in asynchronous mode or is not blocking, the OTListen function returns
any pending connection requests or returns the kOTNoDataErr result if there are no pending connection
requests. You can also call the OTListen function from within a notifier function in response to the T_LISTEN
event. In this case, the function returns a result immediately.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTLook
Determines the current asynchronous event pending for an endpoint. (Deprecated in Mac OS X v10.4.)

OTResult OTLook (
 EndpointRef ref
);

Parameters
ref

Return Value
See the description of the OTResult data type.

Discussion
You use the OTLook function in one of two cases. First, if the endpoint is in synchronous mode, you can call
the OTLook function to poll for incoming data or connection requests. Second, certain asynchronous events
might cause a synchronous function to fail with the result kOTLookErr. For example, if you call OTAccept and
the endpoint gets a T_DISCONNECT event, the OTAccept function returns with kOTLookErr. In this case, you
need to call the OTLook function to determine what event caused the original function to fail. Table 3-7 on
page 3-26 lists the functions that might return the kOTLookErr result and the events that can cause these
functions to fail.

The OTLook function returns an integer value that specifies the asynchronous event pending for the endpoint
specified by the ref parameter. On error, OTLook returns a negative integer corresponding to a result code.

If there are multiple events pending, the OTLook function first looks for one ofthe following events: T_LISTEN,
T_CONNECT, T_DISCONNECT, T_UDERR, or T_ORDREL. If it finds more than one of these, it returns them to
you in first-in, first-out order. After processing these events, the OTLook function looks for the T_DATA,
T_REQUEST, and T_REPLY events. If it finds more than one of these, it returns them to you in first-in, first-out
order. You cannot use the OTLook function to poll for completion events.

Unless you are operating exclusively in synchronous mode, it is recommended that you use notifier functions
to get information about pending events for an endpoint.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 2367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Not available to 64-bit applications.

Declared In
OpenTransport.h

OTLookupName
Finds and returns all addresses that correspond to a particular name or name pattern, or confirms that a
name is registered. (Deprecated in Mac OS X v10.4.)

OSStatus OTLookupName (
 MapperRef ref,
 TLookupRequest *req,
 TLookupReply *reply
);

Parameters
ref
req
reply

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
You can use the OTLookupName function to find out whether a name is registered and what address is
associated with that name. You use the req parameter to supply the information needed for the search: what
name should be looked up and, optionally, what node contains that information, how many matches you
expect to find, and how long the search should continue before the function returns. On return, the reply
parameter contains the names field that points to the buffer where the matching entries are stored and the
rspcount field that specifies the number of matching entries.

For each registered name found, the OTLookupName function stores the following information in the buffer
referenced by the names field of the reply parameter:

unsigned short addrLen; /* length of address that follows*/
unsigned short nameLen; /* length of name that follows */
unsigned char addr[]; /* address */
unsigned char name[]; /* name, padded to quad-word boundary*/

If you are searching for names using a name pattern and you expect that more than one name will be returned
to you, you need to parse the reply buffer to extract the matching names.

If you call the OTLookupName function asynchronously, the mapper provider calls your notifier function
passing one of two completion codes for the code parameter (T_LKUPNAMERESULT or
T_LKUPNAMECOMPLETE) and passing the reply parameter in the cookie parameter. The mapper provider
passes the T_LKUPNAMERESULT code each time it stores a name in the reply buffer, and it passes the
T_LKUPNAMECOMPLETE code when it is done. When you receive this event, examine the rspcount field to
determine whether there is a last name to retrieve from the reply buffer. The use of both codes is a feature
that gives you a choice about how to process multiple names when searching for names matching a pattern.

 ■ If you decide to allocate a buffer that is large enough to contain all the names returned, you can ignore
the T_LKUPNAMERESULT code and call a function that parses the buffer once the OTLookupName
function has completed—that is, once the provider calls your notifier function using the
T_LKUPNAMECOMPLETE event.

2368 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

 ■ If you want to save memory or if you don’t know how large a buffer to allocate, you can use the following
method to process the names returned. Each time that the T_LKUPNAMERESULT event is passed, you
must do something with the reply from the reply buffer. You can copy it somewhere, or you can delete
it if it isn’t a name you’re interested in. Then, from inside your notifier you must set the reply->names.len
field or the reply->rspcount field back to 0 (thus allowing the mapper provider to overwrite the original
name). This tells the mapper provider that you are ready to receive another name. Accordingly, when
the mapper provider has inserted another name into your reply buffer, it calls your notifier passing the
T_LKUPNAMERESULT code, and you can process the new entry as you have processed the first entry.
This method also saves you the trouble of having to parse through the buffer to extract name and address
information.

The cookie parameter to the notifier contains the reply parameter.

The format of the names and protocol addresses are specific to the underlying protocol. Consult the
documentation supplied for your protocol for more information.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTMemcmp
Compares the contents of two memory locations. (Deprecated in Mac OS X v10.4.)

Boolean OTMemcmp (
 const void *mem1,
 const void *mem2,
 OTByteCount nBytes
);

Parameters
mem1
mem2
nBytes

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

Functions 2369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTMemcpy
Copies data from one memory location to another; the source and destination locations must not overlap.
(Deprecated in Mac OS X v10.4.)

void OTMemcpy (
 void *dest,
 const void *src,
 OTByteCount nBytes
);

Parameters
dest
src
nBytes

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTMemmove
Copies data from one memory location to another; the source and destination locations may overlap.
(Deprecated in Mac OS X v10.4.)

void OTMemmove (
 void *dest,
 const void *src,
 OTByteCount nBytes
);

Parameters
dest
src
nBytes

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTMemset
Sets the specified memory range to a specific value. (Deprecated in Mac OS X v10.4.)

2370 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

void OTMemset (
 void *dest,
 OTUInt8Param toSet,
 OTByteCount nBytes
);

Parameters
dest
toSet
nBytes

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTMemzero
Initializes the specified memory range to 0. (Deprecated in Mac OS X v10.4.)

void OTMemzero (
 void *dest,
 OTByteCount nBytes
);

Parameters
dest
nBytes

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTNextOption
Locates the next TOption structure in a buffer. (Deprecated in Mac OS X v10.4.)

Functions 2371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTNextOption (
 UInt8 *buffer,
 UInt32 buflen,
 TOption **prevOptPtr
);

Parameters
buffer

A pointer to the buffer containing the option to be found.

buflen
A long specifying the size of the buffer containing the option to be found.

prevOptPtr

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTNextOption function allows you to parse through a buffer containing TOption structures describing
an endpoint’s option values. Within the buffer, TOption structures are aligned to long-word boundaries.
This function takes into account this padding when it calculates the beginning address of the next TOption
structure and it returns that address in the prevOptPtr parameter.

The first time you call the option, set the prevOptPtr parameter to the beginning address of the buffer.
When the function returns, the prevOptPtr parameter points to the next (second) option in the buffer. You
can continue this process, specifying the value returned for the prevOptPtr parameter by the previous
invocation of the function, each time you call the function to obtain the beginning address of each option
in the buffer.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTOpenAppleTalkServicesInContext
Opens a synchronous AppleTalk service provider. (Deprecated in Mac OS X v10.4.)

2372 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

ATSvcRef OTOpenAppleTalkServicesInContext (
 OTConfigurationRef cfig,
 OTOpenFlags flags,
 OSStatus *err,
 OTClientContextPtr clientContext
);

Parameters
cfig
flags
err
clientContext

Return Value
See the description of the ATSvcRef data type.

Discussion
Applications may pass a NULL context pointer but nonapplications must always pass a valid client context
pointer.

You receive a client context pointer when you call the function InitOpenTransportInContext (page 2303).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTOpenEndpointInContext
Opens an endpoint that operates synchronously. (Deprecated in Mac OS X v10.4.)

EndpointRef OTOpenEndpointInContext (
 OTConfigurationRef config,
 OTOpenFlags oflag,
 TEndpointInfo *info,
 OSStatus *err,
 OTClientContextPtr clientContext
);

Parameters
config
oflag
info
err
clientContext

Return Value
See the description of the EndpointRef data type.

Availability
Available in CarbonLib 1.0 and later.

Functions 2373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTOpenInternetServicesInContext
Opens the TCP/IP service provider and returns an internet services reference. (Deprecated in Mac OS X v10.4.)

InetSvcRef OTOpenInternetServicesInContext (
 OTConfigurationRef cfig,
 OTOpenFlags oflag,
 OSStatus *err,
 OTClientContextPtr clientContext
);

Parameters
cfig
oflag
err
clientContext

Return Value
See the description of the InetSvcRef data type.

Discussion
Applications may pass a NULL context pointer but nonapplications must always pass a valid client context
pointer.

You receive a client context pointer when you call the function InitOpenTransportInContext (page 2303).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTOpenMapperInContext
Creates a synchronous mapper provider and returns a mapper reference. (Deprecated in Mac OS X v10.4.)

2374 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

MapperRef OTOpenMapperInContext (
 OTConfigurationRef config,
 OTOpenFlags oflag,
 OSStatus *err,
 OTClientContextPtr clientContext
);

Parameters
config
oflag
err
clientContext

Return Value
See the description of the MapperRef data type.

Discussion
Applications may pass a NULL pointer but non-applications must always pass a valid client context pointer.

You receive a client context pointer when you call the function InitOpenTransportInContext (page 2303).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTOptionManagement
Determines an endpoint’s current or default option values or changes these values. (Deprecated in Mac OS
X v10.4.)

OSStatus OTOptionManagement (
 EndpointRef ref,
 TOptMgmt *req,
 TOptMgmt *ret
);

Parameters
ref
req
ret

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
To use the OTOptionManagement function, you must have opened an endpoint using the OTOpenEndpoint
or OTAsyncOpenEndpoint functions.

Functions 2375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

You use the OTOptionManagement function to negotiate, retrieve, or verify an endpoint’s protocol options.
If the endpoint is in asynchronous mode and you have not installed a notifier function, it is not possible to
determine when the function completes.

The action taken by the OTOptionManagement function is determined by the setting of the req->flags
field. The following bulleted items describe the different operations that you can perform and the flag settings
that you use to specify these operations.

 ■ To negotiate values for the endpoint, you must call the OTOptionManagement function, specifying
T_NEGOTIATE for the req->flags field. The endpoint provider evaluates the requested options,
negotiates the values, and returns the resulting values in the option management structure pointed to
by the ret->opt.buf field. The status field of each returned option is set to a constant that indicates
the result of the negotiation. These constants are described by the “Open Transport Flags and Status
Codes” (page 2702) enumeration.

For any protocol specified, you can negotiate for the default values of all options supported by the
endpoint by specifying the value T_ALLOPT for the name field of the TOption structure. This might be
useful if you want to change current settings or if negotiations for other values have failed. The success
of the negotiations depends partly on the state of the endpoint—that is, simply because these are default
values does not guarantee a completely successful negotiation. When the function returns, the resulting
values are returned, option by option, in the buffer pointed to by the ret->opt.buf field.

 ■ To retrieve an endpoint’s default option values, call the OTOptionManagement function, specifying
T_DEFAULT for the req->flags field. You must also specify the name of the option (but not its value)
in the TOption structure that you create for each of the options you are interested in.

When the function returns, it passes the default values for the options back to you in the buffer pointed
to by the ret->opt.buf field. For each option, the status field contains T_NOTSUPPORT if the protocol
does not support the option, T_READONLY if the option is read-only, and T_SUCCESS in all other cases.
The overall result of the request is returned in the ret->flags field. The meaning of this result is
described by the Open Transport Flags and Status Codes enumeration.

When getting an endpoint’s default option values, you can specify T_ALLOPT for the option name. This
returns all supported options for the specified level with their default values. In this case, you must set
the opt.maxlen field to the maximum size required to hold an endpoint’s option information. The
info.opt field of the TEndpointInfo (page 2542) structure specifies the maximum size of a buffer used
to hold option information for an endpoint.

 ■ To retrieve an endpoint’s current option values, call the OTOptionManagement function, specifying
T_CURRENT for the req->flags field. For each option in the buffer referenced by the req->opt.buf
field, specify the name of the option you are interested in. The function ignores any option valuesyou
specify.

When the function returns, it passes the current values for the options back to you in the buffer referenced
by the ret->opt.buf field. For each option, the status field contains T_NOTSUPPORT if the protocol
does not support the option, T_READONLY if the option is read-only, and T_SUCCESS in all other cases.
The overall result of the request is returned in the ret->flags field. The meaning of this result is
described by the “Open Transport Flags and Status Codes” (page 2702) enumeration.

When retrieving an endpoint’s current option values, you can specify T_ALLOPT for the option name.
The function returns all supported options for the specified protocol, with their current values. In this
case, you must set the opt.maxlen field to the maximum size required to hold an endpoint’s option
information. The info.opt field of the TEndpointInfo structure specifies the maximum size of a buffer
used to hold option information for an endpoint.

2376 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

 ■ To check whether an endpoint provider supports certain options or option values, you must call the
OTOptionManagement function, specifying T_CHECK for the req->flags field. Checking options or their
values does not change the current settings of an endpoint’s options.

 ❏ To check whether an option is supported, set the name field of the TOption structure to the option
name, but do not specify an option value. When the function returns, the status field for the
corresponding TOption structure in the buffer pointed to by the ret->opt.buf field is set to
T_SUCCESS if the option is supported, T_NOTSUPPORT if it is not supported or needs additional
client privileges, and T_READONLY if it is read-only.

 ❏ To check whether an option value is supported, set the name field of the TOption structure to the
option name, and set the value field to the value you want to check. When the function returns,
the status field for the corresponding TOption structure in the buffer pointed to by the
ret->opt.buf field is set as it would be if you had specified the T_NEGOTIATE flag. The overall
result of the option checks is returned in the ret->flags field, which contains the single worst
result of the option checks. The meaning of this result is described by the Open Transport Flags
and Status Codes enumeration.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTRcv
Reads data sent using a connection-oriented transactionless protocol. (Deprecated in Mac OS X v10.4.)

OTResult OTRcv (
 EndpointRef ref,
 void *buf,
 OTByteCount nbytes,
 OTFlags *flags
);

Parameters
ref
buf

A pointer to a memory location where the incoming data is to be copied. You must allocate this buffer
before you call the function.

nbytes
flags

Return Value
See the description of the OTResult data type.

Functions 2377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Discussion
You call the OTRcv function to read data sent by the peer to which you are connected. If the OTRcv function
succeeds, it returns an integer (OTStatus) specifying the number of bytes received. The function places the
data read into the buffer referenced by the buf parameter. If the function fails, it returns a negative integer
corresponding to a result code that indicates the reason for the failure. You can call this function to receive
either normal or expedited data. If the data is expedited, the T_EXPEDITED flag is set in the flags parameter.

If T_MORE is set in the flags parameter when the function returns, this means that the buffer you allocated
is too small to contain the data to be read and that you must call the OTRcv function again. If you have read
x bytes with the first call, the next call to the OTRcv function begins to read at the (x + 1) byte. Of course, if
you need it, you must copy the data in the buffer to another location before calling the function again. Each
call to this function that returns with the T_MORE flag set means that you must call the function again to get
more data. When you have read all the data, the OTRcv function returns with the T_MORE flag not set. If the
endpoint does not support the concept of a TSDU (Transport Service Data Unit), the T_MORE flag is not
meaningful and should be ignored. To determine whether the endpoint supports TSDUs, examine the tsdu
field of the TEndpointInfo (page 2542) structure. A value of T_INVALIDmeans that the endpoint does not
support it.

Some protocols allow you to send zero-length data to signal the end of a logical unit. In this case, if you
request more than 0 bytes when calling the OTRcv function, the function returns 0 bytes only to signal the
end of a TSDU.

If the OTRcv function returns and the T_EXPEDITED bit is set in the flags parameter, this means that you are
about to read expedited data. If the number of bytes of expedited data exceeds the number of bytes you
specified in the reqCount parameter, both the T_EXPEDITED and the T_MORE bits are set. You must call the
OTRcv function until the T_MORE flag is not set to retrieve the rest of the expedited data.

If you are calling the OTRcv function repeatedly to read normal data and a call to the function returns
T_EXPEDITED in the flags parameter, the next call to the OTRcv function that returns without the T_EXPEDITED
flag set returns normal data at the place it was interrupted. It is your responsibility to remember where that
was and to continue processing normal data. You can determine how much normal data you read by
maintaining a running total of the number of bytes returned in the OTStatus result.

If the endpoint is in asynchronous mode or is not blocking, the function returns with the kOTNoDataErr result
if no data is available. If you have installed a notifier, the endpoint provider calls your notifier and passes
T_DATA or T_EXDATA for the code parameter when there is data available. If you have not installed a notifier,
you may poll for these events using the OTLook function. Once you receive a T_DATA or T_EXDATA event,
you should continue in a loop, calling the OTRcv function until it returns with the kOTNoDataErr result.

If the endpoint is in synchronous mode and is blocking, the endpoint waits for data if none is currently
available. You should avoid calling the OTRcv function this way because it might cause processing to hang
if no data is available. If you are doing other operations in synchronous mode, you should put the endpoint
in nonblocking mode before calling the OTRcv function.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

2378 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTRcvConnect
Reads the status of an outstanding or completed asynchronous call to theOTConnect function. (Deprecated
in Mac OS X v10.4.)

OSStatus OTRcvConnect (
 EndpointRef ref,
 TCall *call
);

Parameters
ref
call

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
You call the OTRcvConnect function to determine the status of a previously issued OTConnect call. If you
want to retrieve information about the connection, you must allocate buffers for the addr field and, if required,
the opt and udata fields before you make the call.

If the endpoint is synchronous and blocking, the OTRcvConnect function waits for the connection to be
accepted or rejected. If the connection is accepted, the function returns with a kOTNoError result. If the
connection is rejected, the function returns with a kOTLookErr result. In this case, you should call the OTLook
function to verify that a T_DISCONNECT event is the reason for the kOTLookErr, and then you should call the
OTRcvDisconnect function to clear the event.

If the endpoint is asynchronous or nonblocking, the OTRcvConnect function returns with the kOTNoDataErr
result if the connection has not yet been established.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTRcvDisconnect
Identifies the cause of a connection break or of a connection rejection, acknowledges and clears the
corresponding disconnection event. (Deprecated in Mac OS X v10.4.)

Functions 2379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTRcvDisconnect (
 EndpointRef ref,
 TDiscon *discon
);

Parameters
ref
discon

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
Calling the OTRcvDisconnect function clears the corresponding disconnection event and retrieves any user
data sent with the disconnection.

If you do not care about data returned with the disconnection and do not needto know the reason for the
disconnection nor the sequence ID, you may specify a nil pointer for the discon parameter. In this case, the
provider discards any user data associated with the disconnection.

The OTRcvDisconnect function behaves in the same way for all modes of operation. If there is no disconnection
request pending, the function returns with the kOTNoDisconnectErr result. If there is a disconnection request
pending, the function returns either the kOTNoError or kOTBufferOverflowErr result. In the latter instance,
you need to check the discon field of the TEndpointInfo (page 2542) structure for your endpoint and make
sure that the buffer referenced by the udata.buf field is at least as big as the value specified for the discon
field.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTRcvOrderlyDisconnect
Acknowledges a request for an orderly disconnect. (Deprecated in Mac OS X v10.4.)

OSStatus OTRcvOrderlyDisconnect (
 EndpointRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTRcvOrderlyDisconnect function is a service that is not supported by all protocols. If it is, the servtype
field of theTEndpointInfo (page 2542) structure has the valueT_COTS_ORDorT_TRANS_ORD for the endpoint.

2380 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

After using the OTRcvOrderlyDisconnect function to acknowledge receipt of a disconnection request, there
will not be any more data to receive. Calls to the OTRcv function (for a transactionless connection) or to the
OTRcvRequest function (for a transaction-based connection) after acknowledging a disconnection request
fail with the kOTOutStateErr result. If the endpoint supports a remote orderly disconnect, you can still send
data over the connection if you have not yet called the OTSndOrderlyDisconnect function.

The OTRcvOrderlyDisconnect function behaves in the same way in all modes of operation. If there is no
disconnection request pending, the function returns with the kOTNoReleaseErr result. It there is a disconnection
request pending, the function returns either the kOTNoError or kOTBufferOverflowErr result. In the latter
instance, you need to check the discon field of theTEndpointInfo (page 2542) structure for your endpoint
and make sure that the buffer referenced by the udata.buf field is at least as big as the value specified for
the discon field.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTRcvUData
Reads data sent by a client using a connectionless transactionless protocol. (Deprecated in Mac OS X v10.4.)

OSStatus OTRcvUData (
 EndpointRef ref,
 TUnitData *udata,
 OTFlags *flags
);

Parameters
ref
udata
flags

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
When the OTRcvUData function returns, it passes a pointer to a TUnitData structure containing information
about the data read and a pointer to a flags variable that is set to indicate whether there is more data to be
retrieved. If the buffer pointed to by the udata->udata.buf field is not large enough to hold the current data
unit, the endpoint provider fills the buffer and sets the flags parameter to T_MORE to indicate that you must
call the OTRcvUData function again to receive additional data. Subsequent calls to the OTRcvUData function
return 0 for the length of the address and option buffers until you receive the full data unit. The last unit to
be received does not have the T_MORE flag set.

If the endpoint is in asynchronous mode or is not blocking and data is not available, the OTRcvUData function
fails with the kOTNoDataErr result. The endpoint provider uses the T_DATA event to notify the endpoint
when data becomes available. You can use a notifier function or the OTLook function to retrieve the event.
Once you get the T_DATA event, you should continue calling the OTRcvUData function until it returns the
kOTNoDataErr result.

Functions 2381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

It is possible that the provider generates an erroneous T_DATA event. This is the case when the provider calls
your notifier, passing T_DATA for the code parameter; but when you execute the OTRcvUData function, it
returns with a kOTNoDataErr result. If this happens, you should continue normal processing and assume that
the next T_DATA event is genuine.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTRcvUDErr
Clears an error condition indicated by a T_UDERR event and returns the reason for the error. (Deprecated in
Mac OS X v10.4.)

OSStatus OTRcvUDErr (
 EndpointRef ref,
 TUDErr *uderr
);

Parameters
ref
uderr

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
You use the OTRcvUDErr function if you have called the OTSndUData function and the endpoint provider
has issued the T_UDERR event to indicate that the send operation did not succeed. This usually happens
when the endpoint provider cannot determine immediately that you have specified a bad address or option
value. For example, assume that you are using AppleTalk and you specify an NBP address. If Open Transport
cannot resolve the address, it sends a T_UDERR event to your notifier function. To clear the error condition
and determine the cause of the failure, you must call the OTRcvUDErr function.

If the size of the option or error data returned exceeds the size of the allocated buffers, the OTRcvUDErr
function returns with the result kOTBufferOverflowErr, but the error indication is cleared anyway.

If you do not need to identify the cause of the failure, you can set the uderr pointer to nil. In this case, the
OTRcvUDErr function clears the error indication without reporting any information to you. It is important,
nevertheless, that you actually call the OTRcvUDErr function to clear the error condition. If you don’t call this
function, the endpoint remains in an invalid state for doing other send operations, and the endpoint provider
is unable to deallocate memory reserved for internal buffers associated with the send operation.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2382 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTReadBuffer
Copies data out of a no-copy receive buffer. (Deprecated in Mac OS X v10.4.)

Boolean OTReadBuffer (
 OTBufferInfo *buffer,
 void *dest,
 OTByteCount *len
);

Parameters
buffer
dest
len

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProtocol.h

OTRegisterAsClientInContext
Registers your application as a client of Open Transport and gives Open Transport a notifier function it can
use to send you events. (Deprecated in Mac OS X v10.4.)

OSStatus OTRegisterAsClientInContext (
 OTClientName name,
 OTNotifyUPP proc,
 OTClientContextPtr clientContext
);

Parameters
name
proc
clientContext

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTRegisterName
Registers an entity name on the network. (Deprecated in Mac OS X v10.4.)

OSStatus OTRegisterName (
 MapperRef ref,
 TRegisterRequest *req,
 TRegisterReply *reply
);

Parameters
ref
req
reply

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
If the name-registration protocol defined using the config parameter to the OTOpenMapper or
OTAsyncOpenMapper function supports dynamic name and address registration, you can use the
OTRegisterName function to make a name visible on the network to other network devices.

Some protocol implementations under Open Transport allow a client to specify a name rather than an address
when binding the endpoint using the OTBind function. Binding an endpoint by name causes the protocol
to automatically register the name on the network if the protocol supports dynamic name registration. This
is the simpler technique for registering a name and is preferred over creating a mapper provider and then
using the OTRegisterName function to register the name.

The format for the requested name and address is specific to the protocol used. Please consult the
documentation for the protocol you are using for format information.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTReleaseBuffer
Returns the no-copy receive buffer to the system. (Deprecated in Mac OS X v10.4.)

2384 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

void OTReleaseBuffer (
 OTBuffer *buffer
);

Parameters
buffer

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProtocol.h

OTRemoveFirst
Removes the first link in a FIFO list. (Deprecated in Mac OS X v10.4.)

OTLink * OTRemoveFirst (
 OTList *list
);

Parameters
list

Return Value
See the description of the OTLink data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTRemoveLast
Removes the last link in a FIFO list. (Deprecated in Mac OS X v10.4.)

OTLink * OTRemoveLast (
 OTList *list
);

Parameters
list

Return Value
See the description of the OTLink data type.

Functions 2385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTRemoveLink
Removes the last link in a FIFO list. (Deprecated in Mac OS X v10.4.)

Boolean OTRemoveLink (
 OTList *list,
 OTLink *link
);

Parameters
list
link

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTRemoveNotifier
Removes a provider’s notifier function. (Deprecated in Mac OS X v10.4.)

void OTRemoveNotifier (
 ProviderRef ref
);

Parameters
ref

Discussion
The OTRemoveNotifier function removes the notifier (if any) currently installed for the provider specified
by the ref parameter.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2386 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTResolveAddress
Returns the protocol address that corresponds to the name of an endpoint. (Deprecated in Mac OS X v10.4.)

OSStatus OTResolveAddress (
 EndpointRef ref,
 TBind *reqAddr,
 TBind *retAddr,
 OTTimeout timeOut
);

Parameters
ref
reqAddr
retAddr
timeOut

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTResolveAddress function returns the lowest-level address for your endpoint. Not all endpoints support
this function. A value of CAN_RESOLVE_ADDR in the flags field of the TEndpointInfo (page 2542) structure
indicates that the endpoint does support this function. Using this function saves you the trouble of opening
and closing a mapper provider if the only reason you have for opening the mapper is to look up the address
corresponding to a specific endpoint name. You would still have to open the mapper if you needed to look
up a name pattern—that is, if the name included any wildcard characters.

You are responsible for initializing the buffers described by the req and ret parameters required to hold the
addresses. To determine how large these buffers should be, examine the addr field of the TEndpointInfo
structure, which specifies the maximum amount of memory needed to store an address for the endpoint
specified by the ref parameter.

If a notifier is not installed, it is not possible to determine when the OTResolveAddress function completes.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTReverseList
Reverses the order in which entries are linked in a list. (Deprecated in Mac OS X v10.4.)

Functions 2387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTLink * OTReverseList (
 OTLink *list
);

Parameters
list

Return Value
See the description of the OTLink data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTScheduleDeferredTask
Schedules a task for execution at deferred task time. (Deprecated in Mac OS X v10.4.)

Boolean OTScheduleDeferredTask (
 OTDeferredTaskRef dtCookie
);

Parameters
dtCookie

Discussion
The OTScheduleDeferredTask function schedules for execution at the next deferred task time the task
associated with the dtCookie parameter, which is the reference returned by the OTCreateDeferredTask
function.

You can call this function at any time. If you have not yet destroyed a task, you can use this function to
reschedule the same task more than once.

If you makes multiple calls to the OTScheduleDeferredTask function before the task is executed, additional
tasks are not scheduled; only one instance of each unique task can only be scheduled at a time.

This function returns true if it scheduled the deferred task successfully, false if not. If it returns false and
the dtCookie parameter has a valid value (other than 0), then the task is already scheduled to run. If dtCookie
is invalid (a value of 0), the function returns false and does nothing.

If you want to call Open Transport from an interrupt, you can use this function (and the
OTCreateDeferredTask function) instead of the standard Deferred Task Manager function DTInstall to
create a deferred task that permits you to call Open Transport function calls. This allows Open Transport to
adapt to changes in the underlying operating system without affecting the client’s code.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2388 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTScheduleTimerTask
Schedules a timer task to be executed at the specified time. (Deprecated in Mac OS X v10.4.)

Boolean OTScheduleTimerTask (
 OTTimerTask timerTask,
 OTTimeout milliSeconds
);

Parameters
timerTask
milliSeconds

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProtocol.h

OTSetAddressFromNBPEntity
Stores an NBP entity structure as an NBP address string. (Deprecated in Mac OS X v10.4.)

OTByteCount OTSetAddressFromNBPEntity (
 UInt8 *nameBuf,
 const NBPEntity *entity
);

Parameters
nameBuf

A pointer to the NBP address buffer in which you wish to store the NBP entity.

entity

Return Value
See the description of the OTByteCount data type.

Discussion
The OTSetAddressFromNBPEntity function stores the information in the NBP entity into the buffer specified
by the nameBuf parameter in the format required for mapper calls—that is, if you have a backslash (\), a
colon (:), or an at-sign (@) in your NBP name, this function inserts a backslash before each so that the mapper
functions can handle them correctly. This function returns the number of bytes that were actually used in
the buffer.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 2389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTSetAddressFromNBPString
Copies an NBP name string into an NBP address buffer. (Deprecated in Mac OS X v10.4.)

OTByteCount OTSetAddressFromNBPString (
 UInt8 *addrBuf,
 const char *name,
 SInt32 len
);

Parameters
addrBuf

A pointer to the NBP address buffer in which to store the NBP name string.

name
A pointer to the NBP name string you wish to copy into the buffer.

len
The number of characters to copy.

Return Value
See the description of the OTByteCount data type.

Discussion
The OTSetAddressFromNBPString function copies the string indicated by the nbpName parameter into
the buffer indicated by the addrBuf parameter. The len parameter indicates the number of characters to
copy. A value of -1 copies the entire nbpName string. The function returns the number of bytes actually
copied.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTSetAsynchronous
Sets a provider’s mode of execution to asynchronous. (Deprecated in Mac OS X v10.4.)

2390 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTSetAsynchronous (
 ProviderRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTSetAsynchronous function causes all functions for the provider specified in the ref parameter to
run asynchronously. You must install a notifier function for the provider if it needs to receive completion
events. You can install a notifier function either before or after calling the OTSetAsynchronous function.

Changing a provider’s mode of execution does not affect its notifier function, if any; the notifier function
remains installed.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTSetBit
Sets a bit atomically. (Deprecated in Mac OS X v10.4.)

Boolean OTSetBit (
 UInt8 *bitMap,
 OTByteCount bitNo
);

Parameters
bitMap
bitNo

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProtocol.h

OTSetBlocking
Allows a provider to wait or block until it is able to send or receive data. (Deprecated in Mac OS X v10.4.)

Functions 2391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTSetBlocking (
 ProviderRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTSetBlocking function causes provider functions that send or receive data to wait if current conditions
prevent them from completing an operation. By default, a provider is in nonblocking mode, in which case,
if a provider function were unable to complete sending or receiving data, it would return immediately with
a result that would tell you why the operation was unable to complete.

If a provider is in blocking mode and you call the OTCloseProvider function to close the provider, Open
Transport gives each Streams module up to 15 seconds to process outgoing commands. It is recommended
that you call the OTSetNonBlocking function before you call the OTCloseProvider function.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTSetBusTypeInPortRef
Sets bus type for a port reference. (Deprecated in Mac OS X v10.4.)

OTPortRef OTSetBusTypeInPortRef (
 OTPortRef ref,
 OTBusType busType
);

Parameters
ref
busType

Return Value
See the description of the OTPortRef data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Carbon Porting Notes

OT ports are read only in Carbon. In Mac OS X, code that communicates directly with network interfaces must
use the IOKit API.

2392 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTSetDeviceTypeInPortRef
Sets device type for a port reference. (Deprecated in Mac OS X v10.4.)

OTPortRef OTSetDeviceTypeInPortRef (
 OTPortRef ref,
 OTDeviceType devType
);

Parameters
ref
devType

Return Value
See the description of the OTPortRef data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Carbon Porting Notes

OT ports are read only in Carbon. In Mac OS X, code that communicates directly with network interfaces must
use the IOKit API.

Declared In
OpenTransport.h

OTSetFirstClearBit
Atomcially sets the first clear bit in a specified bit map. (Deprecated in Mac OS X v10.4.)

OTResult OTSetFirstClearBit (
 UInt8 *bitMap,
 OTByteCount startBit,
 OTByteCount numBits
);

Parameters
bitMap
startBit
numBits

Return Value
See the description of the OTResult data type.

Discussion
Sets the first clear bit in bitMap , starting with startBit and giving up after numBits. Returns the bit
number that was set, or a kOTNotFoundErr error if there was no clear bit available

Functions 2393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProtocol.h

OTSetNBPEntityFromAddress
Parses and stores an NBP address into an NBP entity. (Deprecated in Mac OS X v10.4.)

Boolean OTSetNBPEntityFromAddress (
 NBPEntity *entity,
 const UInt8 *addrBuf,
 OTByteCount len
);

Parameters
entity
addrBuf

A pointer to the address buffer in which to store the NBP name string.

len

Discussion
The OTSetNBPEntityFromAddress function parses an NBP address or a combined DDP-NBP address into
the NBP name’s constituent parts (name, type, and zone) and stores the result in an NBP entity. The function
ignores the DDP address part of a combined DDP-NBP address. From the NBP entity, each of the constituent
parts of the name can be later retrieved or changed.

This function returns true if it worked successfully; it returns false if it had to truncate any data—that is,
if the address had data that was too long in one of the fields, each of which only holds 32 characters of data.
When this occurs, Open Transport still stores the data, but in a truncated form.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTSetNBPName
Stores the name part of an NBP name into an NBP entity structure. (Deprecated in Mac OS X v10.4.)

2394 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Boolean OTSetNBPName (
 NBPEntity *entity,
 const char *name
);

Parameters
entity
name

A pointer to the name portion of an NBP name string that you wish to store.

Discussion
The OTSetNBPName function stores the NBP name specified by the name parameter into the NBP entity
structure indicated by the nbpEntity parameter, deleting any previous name stored there. This function
returns false if the name parameter is longer than the maximum allowed for a name part of an NBP name
(32 characters).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTSetNBPType
Stores the type part of an NBP name in an NBP entity structure. (Deprecated in Mac OS X v10.4.)

Boolean OTSetNBPType (
 NBPEntity *entity,
 const char *typeVal
);

Parameters
entity
typeVal

A pointer to the type portion of an NBP name string that you wish to store.

Discussion
The OTSetNBPType function stores the NBP type specified by the type parameter into the NBP entity
structure indicated by the nbpEntity parameter, deleting any previous type stored there. The type supplied
must not have any escape characters stored in it, although you do not receive any error message if you do
use such characters. This function returns false if the type parameter is longer than the maximum allowed
for type part of an NBP name (32 characters).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

Functions 2395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTSetNBPZone
Stores the zone part of an NBP name in an NBP entity structure. (Deprecated in Mac OS X v10.4.)

Boolean OTSetNBPZone (
 NBPEntity *entity,
 const char *zone
);

Parameters
entity
zone

A pointer to the zone portion of an NBP name string that you wish to store.

Discussion
The OTSetNBPZone function stores the NBP zone specified by the zone parameter into the NBP entity
structure indicated by the nbpEntity parameter, deleting any previous zone stored there. The zone supplied
must not have any of the NBP escape characters stored in it, although you do not receive any error message
if you do use such characters. This function returns false if the zone parameter is longer than the maximum
allowed for zone part of an NBP name (32 characters).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProviders.h

OTSetNonBlocking
Disallows a provider from waiting if it cannot currently complete a function that sends or receives data.
(Deprecated in Mac OS X v10.4.)

OSStatus OTSetNonBlocking (
 ProviderRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTSetNonBlocking function causes provider functions to return a result code immediately, instead of
waiting for a function that sends or receives data to complete. When you open a provider, its mode of
operation is set to nonblocking by default.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2396 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTSetSynchronous
Sets a provider’s mode of execution to synchronous. (Deprecated in Mac OS X v10.4.)

OSStatus OTSetSynchronous (
 ProviderRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
The OTSetSynchronous function causes all provider functions to run synchronously when using the provider
that you specify.

Changing a provider’s mode of execution does not affect its notifier function, if any is installed for this provider;
the notifier function remains installed.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTSnd
Sends data to a remote peer. (Deprecated in Mac OS X v10.4.)

OTResult OTSnd (
 EndpointRef ref,
 void *buf,
 OTByteCount nbytes,
 OTFlags flags
);

Parameters
ref
buf

A pointer to the data being sent. If you are sending data that is not stored contiguously, this is a
pointer to an OTData structure that describes the first data fragment.

Functions 2397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

nbytes
flags

Return Value
See the description of the OTResult data type.

Discussion
You use the OTSnd function to send data to a remote peer. Before you use this function, you must establish
a connection with the peer.

If the OTSnd function succeeds, it returns an integer (OSStatus) specifying the number of bytes that were
actually sent. If it fails, it returns a negative integer corresponding to a result code that indicates the reason
for the failure.

You specify the data to be sent by passing a pointer to the data (buf) and byspecifying the size of the data
(nbytes). The maximum size of the data you can send is specified by the tsdu field of the
TEndpointInfo (page 2542) structure for the endpoint.

Some protocols use expedited data for control or attention messages. To determine whether the endpoint
supports this service, examine the etsdu field of the TEndpointInfo structure. A positive integer for the
etsdu field indicates the maximum size in bytes of expedited data that you can send. To send expedited
data, you must set the T_EXPEDITED bit of the flags parameter.

If you want to break up the data sent into smaller logical units, you can set the T_MORE bit of the flags
parameter to indicate that you are using additional calls to the OTSnd function to send more data that belongs
to the same logical unit. To indicate that the last data unit is being sent, you must specify 0 for nbytes and
turn off the T_MORE flag. This is the only circumstance under which it is permitted to send a zero-length
data unit. If the endpoint does not support the sending of zero-length data, the OTSnd function fails with
the kOTBadDataErr result.

If the endpoint is in blocking mode, the OTSnd function returns after it actually sends the data. If flow-control
restrictions prevent its sending the data, it retries the operation until it is able to send it. If the endpoint is
in nonblocking mode, the OTSnd function returns with the kOTFlowErr result if flow-control restrictions
prevent the data from being sent. When the endpoint provider is able to send the data, it returns a T_GODATA
event to let you know that it is possible to send data.

The following table shows how the endpoint’s mode of execution and blocking status affects the behavior
of the OTSnd function.

Table 44-1

NonblockingBlocking

The function returns immediately. The
kOTFlowErr result might be returned.

The function returns when the provider lifts
flow-control restrictions The kOTFlowErr result
is never returned.

Synchronous

The function returns immediately. The
kOTFlowErr result might be returned.

The function returns immediately. The
kOTFlowErr result is never returned.

Asynchronous

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

2398 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Not available to 64-bit applications.

Declared In
OpenTransport.h

OTSndDisconnect
Tears down an open connection (abortive disconnect) or rejects an incoming connection request. (Deprecated
in Mac OS X v10.4.)

OSStatus OTSndDisconnect (
 EndpointRef ref,
 TCall *call
);

Parameters
ref
call

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
There are two functions that you can use to tear down a connection: OTSndDisconnect for an abortive
disconnect, or OTSndOrderlyDisconnect for an orderly disconnect. It is recommended that you use the
OTSndOrderlyDisconnect function for tearing down a connection whenever possible and that you use the
OTSndDisconnect function only for rejecting incoming connection requests.

If the endpoint is in asynchronous mode, the OTSndDisconnect function returns immediately with a result
of kOTNoError to indicate that the disconnection process has begun and that your notifier function will be
called when the process completes.

When the connection has been broken, the provider issues a T_DISCONNECTCOMPLETE event. If you have
installed a notifier function, Open Transport calls your notifier and passes this event in the code parameter.
The cookie parameter contains the call parameter. If you have not installed a notifier function, you cannot
determine when this function completes.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTSndOrderlyDisconnect
Initiates or completes an orderly disconnection. (Deprecated in Mac OS X v10.4.)

Functions 2399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OSStatus OTSndOrderlyDisconnect (
 EndpointRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
You call the OTSndOrderlyDisconnect function to initiate an orderly release of a connection and to indicate
to the peer endpoint that you have no more data to send. After calling this function, you must not send any
more data over the connection. However, you can still continue to receive data if the peer endpoint has not
yet called the OTSndOrderlyDisconnect function.

This function is a service that is not supported by all protocols. If it is supported, the servtype field of the
TEndpointInfo (page 2542) structure has the value T_COTS_ORD or T_TRANS_ORD.

The OTSndOrderlyDisconnect function behaves exactly the same in all modes of operation.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTSndUData
Sends data using a connectionless transactionless endpoint. (Deprecated in Mac OS X v10.4.)

OSStatus OTSndUData (
 EndpointRef ref,
 TUnitData *udata
);

Parameters
ref
udata

A pointer to a TUnitData structure that specifies thedata to be sent and its destination.

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
If the endpoint is in synchronous, blocking mode, the OTSndUData function returns immediately. If flow-control
restrictions prevent its sending the data, it retries the operation until it is able to send it. If the endpoint is
in nonblocking mode, the OTSndUData function returns a kOTFlowErr result if flow-control restrictions prevent
the data from being sent. When the endpoint provider is able to send the data, it calls your notifier function,
passing T_GODATA for the code parameter. You can then call the OTSndUData function from your notifier
to send the data. You can also retrieve this event by polling the endpoint using the OTLook function.

2400 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Some endpoint providers are not able to detect immediately whether you specified incorrect address or
option information. In such cases, the provider calls your notifier function when it detects the error, passing
the T_UDERR for the code parameter to advise you that an error has occurred. You can determine the cause
of this event by calling the OTRcvUDErr function and examining the value of the uderr->error parameter. It
is important that you call the OTRcvUDErr function even if you are not interested in examining the cause of
the error. Failing to do this leaves the endpoint in an invalid state for doing other sends and makes the
endpoint provider unable to deallocate memory reserved for internal buffers associated with the send.

The next table shows how the endpoint’s mode of execution and blocking status affects the behavior of the
OTSndUData function.

Table 44-2

NonblockingBlocking

The function returns immediately. the
kOTFlowErr result might be returned

The function returns when the provider lifts
flow-control restrictions The kOTFlowErr result
is never returned.

Synchronous

the function returns immediately. the
kOTFlowErr result might be returned.

The function returns immediately. The
kOTFlowErr result is never returned.

Asynchronous

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTStrCat
Concatenates two C strings. (Deprecated in Mac OS X v10.4.)

void OTStrCat (
 char *dest,
 const char *src
);

Parameters
dest
src

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

Functions 2401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTStrCopy
Copies a C string. (Deprecated in Mac OS X v10.4.)

void OTStrCopy (
 char *dest,
 const char *src
);

Parameters
dest
src

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTStrEqual
Determines whether two C strings are the same. (Deprecated in Mac OS X v10.4.)

Boolean OTStrEqual (
 const char *src1,
 const char *src2
);

Parameters
src1
src2

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTStrLength
Returns the length of a C string. (Deprecated in Mac OS X v10.4.)

2402 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTByteCount OTStrLength (
 const char *str
);

Parameters
str

Return Value
See the description of the OTByteCount data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTSubtractTimeStamps
Subtracts one timestamp value from another. (Deprecated in Mac OS X v10.4.)

OTTimeStamp * OTSubtractTimeStamps (
 OTTimeStamp *result,
 OTTimeStamp *startTime,
 OTTimeStamp *endEnd
);

Parameters
result
startTime
endEnd

Return Value
See the description of the OTTimeStamp data type.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTTestBit
Atomically tests a bit in a specified bit map. (Deprecated in Mac OS X v10.4.)

Functions 2403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Boolean OTTestBit (
 UInt8 *bitMap,
 OTByteCount bitNo
);

Parameters
bitMap
bitNo

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransportProtocol.h

OTTimeStampInMicroseconds
Calculates the time elapsed in microseconds since since a specified time. (Deprecated in Mac OS X v10.4.)

UInt32 OTTimeStampInMicroseconds (
 OTTimeStamp *delta
);

Parameters
delta

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTTimeStampInMilliseconds
Calculates the time elapsed in milliseconds since since a specified time. (Deprecated in Mac OS X v10.4.)

UInt32 OTTimeStampInMilliseconds (
 OTTimeStamp *delta
);

Parameters
delta

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

2404 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Not available to 64-bit applications.

Declared In
OpenTransport.h

OTUnbind
Dissociates an endpoint from its address or cancels an asynchronous call to the OTBind function. (Deprecated
in Mac OS X v10.4.)

OSStatus OTUnbind (
 EndpointRef ref
);

Parameters
ref

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Discussion
If you call the OTUnbind function asynchronously and you have not installed a notifier function, the only
way to determine that the endpoint has been unbound is to use the OTGetEndpointState function to poll
the state of the endpoint. The function returns the kOTStateChangeErr result when the OTUnbind function
returns. If the function succeeds, the state of the endpoint is T_UNBND. If it fails, its state is T_IDLE.

After you unbind an endpoint, you can no longer use it to send or receive information. You can use the
OTCloseProvider function to deallocate memory reserved for the endpoint, or you can use the OTBind function
to associate it with another address and then resume transferring data or establishing a connection.

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTUnregisterAsClientInContext
Removes your application as a client of Open Transport. (Deprecated in Mac OS X v10.4.)

OSStatus OTUnregisterAsClientInContext (
 OTClientContextPtr clientContext
);

Parameters
clientContext

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Functions 2405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

OTUseSyncIdleEvents
Allows synchronous idle events to be sent to your notifier. (Deprecated in Mac OS X v10.4.)

OSStatus OTUseSyncIdleEvents (
 ProviderRef ref,
 Boolean useEvents
);

Parameters
ref
useEvents

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Availability
Available in CarbonLib 1.0 and later when OpenTransport 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
OpenTransport.h

Callbacks by Task

Notifier Callbacks

OTNotifyProcPtr (page 2419)

System, Timer, and Deferred Task Callbacks

OTProcessProcPtr (page 2420)

2406 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Linked List Callbacks

OTListSearchProcPtr (page 2419)

Miscellaneous Callbacks

admin_t (page 2408)

bufcall_t (page 2409)

bufcallp_t (page 2408)

closeOld_t (page 2409)

closep_t (page 2410)

esbbcallProc (page 2410)

FreeFuncType (page 2411)

old_closep_t (page 2411)

old_openp_t (page 2411)

openOld_t (page 2412)

openp_t (page 2413)

OTAllocMemProcPtr (page 2413)

OTCanConfigureProcPtr (page 2414)

OTCFConfigureProcPtr (page 2414)

OTCFCreateStreamProcPtr (page 2415)

OTCFHandleSystemEventProcPtr (page 2415)

OTCreateConfiguratorProcPtr (page 2416)

OTGateProcPtr (page 2416)

Callbacks by Task 2407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTGetPortIconProcPtr (page 2417)

OTGetPortNameProcPtr (page 2417)

OTHashProcPtr (page 2418)

OTHashSearchProcPtr (page 2418)

OTSetupConfiguratorProcPtr (page 2421)

OTSMCompleteProcPtr (page 2421)

OTStateProcPtr (page 2422)

putp_t (page 2422)

srvp_t (page 2422)

Callbacks

admin_t

typedef OTInt32 (*admin_t) ();

If you name your function MyAdmin_tCallback, you would declare it like this:

OTInt32 MyAdmin_tCallback ();

Parameters
Return Value
See the description of the OTInt32 data type.

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

bufcallp_t

typedef void (*bufcallp_t) (
 SInt32 size
);

If you name your function MyBufcallp_tCallback, you would declare it like this:

2408 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

void MyBufcallp_tCallback (
 SInt32 size
);

Parameters
size

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

bufcall_t

typedef void (*bufcall_t) (
 SInt32 size
);

If you name your function MyBufcall_tCallback, you would declare it like this:

void MyBufcall_tCallback (
 SInt32 size
);

Parameters
size

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

closeOld_t

typedef OTInt32 (*closeOld_t) (
 queue *q
);

If you name your function MyCloseOld_tCallback, you would declare it like this:

OTInt32 MyCloseOld_tCallback (
 queue *q
);

Parameters
q

Return Value
See the description of the OTInt32 data type.

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

Callbacks 2409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

closep_t

typedef OTInt32 (*closep_t) (
 queue *q,
 OTInt32 foo,
 cred_t *cred
);

If you name your function MyClosep_tCallback, you would declare it like this:

OTInt32 MyClosep_tCallback (
 queue *q,
 OTInt32 foo,
 cred_t *cred
);

Parameters
q
foo
cred

Return Value
See the description of the OTInt32 data type.

Carbon Porting Notes

Carbon does not support Open Transport configuration APIs because the Mac OS X networking stack is not
based on STREAMS.

esbbcallProc

typedef void (*esbbcallProc) (
 SInt32 arg
);

If you name your function MyEsbbcallCallback, you would declare it like this:

void MyEsbbcallCallback (
 SInt32 arg
);

Parameters
arg

Carbon Porting Notes

This function is not needed in Carbon because the STREAMS subsystem is not available on Mac OS X.

2410 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

FreeFuncType

typedef void (*FreeFuncType) (
 char *arg
);

If you name your function MyFreeFuncTypeCallback, you would declare it like this:

void MyFreeFuncTypeCallback (
 char *arg
);

Parameters
arg

Carbon Porting Notes

This function is not needed in Carbon because the STREAMS subsystem is not available on Mac OS X.

old_closep_t

typedef OTInt32 (*old_closep_t) (
 queue *q
);

If you name your function MyOld_closep_tCallback, you would declare it like this:

OTInt32 MyOld_closep_tCallback (
 queue *q
);

Parameters
q

Return Value
See the description of the OTInt32 data type.

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

old_openp_t

typedef OTInt32 (*old_openp_t) (
 queue *q,
 dev_t dev,
 OTInt32 foo,
 OTInt32 bar
);

If you name your function MyOld_openp_tCallback, you would declare it like this:

OTInt32 MyOld_openp_tCallback (

Callbacks 2411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

 queue *q,
 dev_t dev,
 OTInt32 foo,
 OTInt32 bar
);

Parameters
q
dev
foo
bar

Return Value
See the description of the OTInt32 data type.

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

openOld_t

typedef OTInt32 (*openOld_t) (
 queue *q,
 dev_t dev,
 OTInt32 foo,
 OTInt32 bar
);

If you name your function MyOpenOld_tCallback, you would declare it like this:

OTInt32 MyOpenOld_tCallback (
 queue *q,
 dev_t dev,
 OTInt32 foo,
 OTInt32 bar
);

Parameters
q
dev
foo
bar

Return Value
See the description of the OTInt32 data type.

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

2412 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

openp_t

typedef OTInt32 (*openp_t) (
 queue *q,
 dev_t *dev,
 OTInt32 foo,
 OTInt32 bar,
 cred_t *cred
);

If you name your function MyOpenp_tCallback, you would declare it like this:

OTInt32 MyOpenp_tCallback (
 queue *q,
 dev_t *dev,
 OTInt32 foo,
 OTInt32 bar,
 cred_t *cred
);

Parameters
q
dev
foo
bar
cred

Return Value
See the description of the OTInt32 data type.

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

OTAllocMemProcPtr

typedef void (*OTAllocMemProcPtr) (
 OTByteCount size
);

If you name your function MyOTAllocMemProc, you would declare it like this:

void MyOTAllocMemProc (
 OTByteCount size
);

Parameters
size

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

Callbacks 2413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTCanConfigureProcPtr

typedef Boolean (*OTCanConfigureProcPtr)
(
 OTConfigurationRef cfig,
 UInt32 pass
);

If you name your function MyOTCanConfigureProc, you would declare it like this:

Boolean MyOTCanConfigureProc (
 OTConfigurationRef cfig,
 UInt32 pass
);

Parameters
cfig
pass

Carbon Porting Notes

Carbon does not support access to Open Transport configuration APIs because the Mac OS X networking
stack is not based on STREAMS.

OTCFConfigureProcPtr

typedef OSStatus (*OTCFConfigureProcPtr)
(
 TOTConfiguratorRef cfigor,
 OTConfigurationRef cfig
);

If you name your function MyOTCFConfigureProc, you would declare it like this:

OSStatus MyOTCFConfigureProc (
 TOTConfiguratorRef cfigor,
 OTConfigurationRef cfig
);

Parameters
cfigor
cfig

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Carbon Porting Notes

Carbon does not support access to Open Transport configuration APIs because the Mac OS X networking
stack is not based on STREAMS.

2414 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTCFCreateStreamProcPtr

typedef OSStatus (*OTCFCreateStreamProcPtr)
(
 TOTConfiguratorRef cfigor,
 OTConfigurationRef cfig,
 OTOpenFlags oFlags,
 OTNotifyUPP proc,
 void *contextPtr
);

If you name your function MyOTCFCreateStreamProc, you would declare it like this:

OSStatus MyOTCFCreateStreamProc (
 TOTConfiguratorRef cfigor,
 OTConfigurationRef cfig,
 OTOpenFlags oFlags,
 OTNotifyUPP proc,
 void *contextPtr
);

Parameters
cfigor
cfig
oFlags
proc
contextPtr

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Carbon Porting Notes

Carbon does not support access to Open Transport configuration APIs because the Mac OS X networking
stack is not based on STREAMS.

OTCFHandleSystemEventProcPtr

typedef void (*OTCFHandleSystemEventProcPtr)
(
 TOTConfiguratorRef cfigor,
 OTEventCode code,
 OTResult result,
 void *cookie
);

If you name your function MyOTCFHandleSystemEventProc, you would declare it like this:

void MyOTCFHandleSystemEventProc (
 TOTConfiguratorRef cfigor,
 OTEventCode code,
 OTResult result,
 void *cookie
);

Callbacks 2415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Parameters
cfigor
code
result
cookie

Carbon Porting Notes

Carbon does not support access to Open Transport configuration APIs because the Mac OS X networking
stack is not based on STREAMS.

OTCreateConfiguratorProcPtr

typedef OSStatus (*OTCreateConfiguratorProcPtr)
(
 TOTConfiguratorRef *cfigor
);

If you name your function MyOTCreateConfiguratorProc, you would declare it like this:

OSStatus MyOTCreateConfiguratorProc (
 TOTConfiguratorRef *cfigor
);

Parameters
cfigor

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Carbon Porting Notes

Carbon does not support access to Open Transport configuration APIs because the Mac OS X networking
stack is not based on STREAMS.

OTGateProcPtr

typedef Boolean (*OTGateProcPtr) (
 OTLink *thisLink
);

If you name your function MyOTGateProc, you would declare it like this:

Boolean MyOTGateProc (
 OTLink *thisLink
);

Parameters
thisLink

Carbon Porting Notes

Carbon does not support Open Transport configuration APIs because the Mac OS X networking stack is not
based on STREAMS.

2416 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

OTGetPortIconProcPtr

typedef Boolean (*OTGetPortIconProcPtr)
(
 OTPortRecord *port,
 OTResourceLocator *iconLocation
);

If you name your function MyOTGetPortIconProc, you would declare it like this:

Boolean MyOTGetPortIconProc (
 OTPortRecord *port,
 OTResourceLocator *iconLocation
);

Parameters
port
iconLocation

Carbon Porting Notes

Carbon does not support access to the Open Transport port name or icon because this information is not
available on Mac OS X.

OTGetPortNameProcPtr

typedef void (*OTGetPortNameProcPtr)
(
 OTPortRecord *port,
 OTBooleanParam includeSlot,
 OTBooleanParam includePort,
 Str255 userVisibleName
);

If you name your function MyOTGetPortNameProc, you would declare it like this:

void MyOTGetPortNameProc (
 OTPortRecord *port,
 OTBooleanParam includeSlot,
 OTBooleanParam includePort,
 Str255 userVisibleName
);

Callbacks 2417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Parameters
port
includeSlot
includePort
userVisibleName

Carbon Porting Notes

Carbon does not support access to the Open Transport port name or icon because this information is not
available on Mac OS X.

OTHashProcPtr

typedef UInt32 (*OTHashProcPtr) (
 OTLink *linkToHash
);

If you name your function MyOTHashProc, you would declare it like this:

UInt32 MyOTHashProc (
 OTLink *linkToHash
);

Parameters
linkToHash

Carbon Porting Notes

Carbon does not support Open Transport hash lists because Apple has not identified a developer need for
them.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

OTHashSearchProcPtr

typedef Boolean (*OTHashSearchProcPtr)
(
 const void *ref,
 OTLink *linkToCheck
);

If you name your function MyOTHashSearchProc, you would declare it like this:

Boolean MyOTHashSearchProc (
 const void *ref,
 OTLink *linkToCheck
);

2418 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Parameters
ref
linkToCheck

Carbon Porting Notes

Carbon does not support Open Transport hash lists because Apple has not identified a developer need for
them.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

OTListSearchProcPtr

typedef Boolean (*OTListSearchProcPtr)
(
 const void *ref,
 OTLink *linkToCheck
);

If you name your function MyOTListSearchProc, you would declare it like this:

Boolean MyOTListSearchProc (
 const void *ref,
 OTLink *linkToCheck
);

Parameters
ref
linkToCheck

Carbon Porting Notes

This is a function type for a user callback. Use the type OTListSearchUPP instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTNotifyProcPtr

typedef void (*OTNotifyProcPtr) (
 void *contextPtr,
 OTEventCode code,
 OTResult result,
 void *cookie
);

If you name your function MyOTNotifyProc, you would declare it like this:

Callbacks 2419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

void MyOTNotifyProc (
 void *contextPtr,
 OTEventCode code,
 OTResult result,
 void *cookie
);

Parameters
contextPtr
code
result
cookie

Carbon Porting Notes

This is a function type for a callback. Use the type OTNotifyUPP instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTProcessProcPtr

typedef void (*OTProcessProcPtr) (
 void *arg
);

If you name your function MyOTProcessProc, you would declare it like this:

void MyOTProcessProc (
 void *arg
);

Parameters
arg

Carbon Porting Notes

Use the OTProcessUPP type instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

2420 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTSetupConfiguratorProcPtr

typedef OSStatus (*OTSetupConfiguratorProcPtr)
(
 OTCanConfigureProcPtr *canConfigure,
 OTCreateConfiguratorProcPtr *createConfigurator,
 UInt8 *configuratorType
);

If you name your function MyOTSetupConfiguratorProc, you would declare it like this:

OSStatus MyOTSetupConfiguratorProc (
 OTCanConfigureProcPtr *canConfigure,
 OTCreateConfiguratorProcPtr *createConfigurator,
 UInt8 *configuratorType
);

Parameters
canConfigure
createConfigurator
configuratorType

Return Value
A result code. See “Open Transport Result Codes” (page 2722).

Carbon Porting Notes

Carbon does not support Open Transport configuration APIs because the Mac OS X networking stack is not
based on STREAMS.

OTSMCompleteProcPtr

typedef void (*OTSMCompleteProcPtr) (
 void *contextPtr
);

If you name your function MyOTSMCompleteProc, you would declare it like this:

void MyOTSMCompleteProc (
 void *contextPtr
);

Parameters
contextPtr

Carbon Porting Notes

Carbon does not support Open Transport configuration APIs because the Mac OS X networking stack is not
based on STREAMS.

Callbacks 2421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTStateProcPtr

typedef void (*OTStateProcPtr) (
 OTStateMachine *sm
);

If you name your function MyOTStateProc, you would declare it like this:

void MyOTStateProc (
 OTStateMachine *sm
);

Parameters
sm

Carbon Porting Notes

Carbon does not support Open Transport configuration APIs because the Mac OS X networking stack is not
based on STREAMS.

putp_t

typedef OTInt32 (*putp_t) (
 queue *q,
 msgb *mp
);

If you name your function MyPutp_tCallback, you would declare it like this:

OTInt32 MyPutp_tCallback (
 queue *q,
 msgb *mp
);

Parameters
q
mp

Return Value
See the description of the OTInt32 data type.

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

srvp_t

typedef OTInt32 (*srvp_t) (
 queue *q
);

If you name your function MySrvp_tCallback, you would declare it like this:

2422 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTInt32 MySrvp_tCallback (
 queue *q
);

Parameters
q

Return Value
See the description of the OTInt32 data type.

Carbon Porting Notes

Carbon does not support any STREAMS functionality because the STREAMS subsystem is not available on
Mac OS X.

Data Types

AppleTalkInfo
Obtain informations about the current AppleTalk environment.

struct AppleTalkInfo {
 DDPAddress fOurAddress;
 DDPAddress fRouterAddress;
 UInt16 fCableRange[2];
 UInt16 fFlags;
};
typedef struct AppleTalkInfo AppleTalkInfo;

Fields
fOurAddress

The network number and node ID of your node.

fRouterAddress
The network number and node ID of the closest router on your network.

fCableRange
A two-element array indicating the first and last network numbers for the current extended network
to which the machine is connected. For nonextended networks, this returns the name of the zone.

fFlags
A set of flag bits that describe the network. See kATalkInfoIsExtended (page 2612).

Discussion
Use the AppleTalk information structure to obtain information about the current AppleTalk environment for
the node on which your application is running.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

Data Types 2423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

ATSvcRef

typedef struct OpaqueATSvcRef * ATSvcRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

bandinfo

struct bandinfo {
 unsigned char bi_pri;
 char pad1;
 SInt32 bi_flag;
};
typedef struct bandinfo bandinfo;

Fields
bi_pri
pad1
bi_flag

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

boolean_p

typedef Boolean boolean_p;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

caddr_t

typedef char * caddr_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
types.h

2424 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

CCMiscInfo

struct CCMiscInfo {
 UInt32 connectionStatus;
 UInt32 connectionTimeElapsed;
 UInt32 connectionTimeRemaining;
 UInt32 bytesTransmitted;
 UInt32 bytesReceived;
 UInt32 reserved;
};
typedef struct CCMiscInfo CCMiscInfo;

Fields
connectionStatus
connectionTimeElapsed
connectionTimeRemaining
bytesTransmitted
bytesReceived
reserved

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

CFMLibraryInfo

struct CFMLibraryInfo {
 OTLink link;
 char * libName;
 StringPtr intlName;
 FSSpec * fileSpec;
 StringPtr pstring2;
 StringPtr pstring3;
};
typedef struct CFMLibraryInfo CFMLibraryInfo;

Fields
link
libName
intlName
fileSpec
pstring2
pstring3

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

char_p

typedef SInt8 char_p;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

copyreq

struct copyreq {
 SInt32 cq_cmd;
 cred * cq_cr;
 UInt32 cq_id;
 caddr_t cq_addr;
 UInt32 cq_size;
 SInt32 cq_flag;
 mblk_t * cq_private;
 long cq_filler[4];
};
typedef struct copyreq copyreq;

Fields
cq_cmd
cq_cr
cq_id
cq_addr
cq_size
cq_flag
cq_private
cq_filler

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2426 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

copyresp

struct copyresp {
 SInt32 cp_cmd;
 cred * cp_cr;
 UInt32 cp_id;
 caddr_t cp_rval;
 UInt32 cp_pad1;
 SInt32 cp_pad2;
 mblk_t * cp_private;
 long cp_filler[4];
};
typedef struct copyresp copyresp;

Fields
cp_cmd
cp_cr
cp_id
cp_rval
cp_pad1
cp_pad2
cp_private
cp_filler

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

cred

struct cred {
 UInt16 cr_ref;
 UInt16 cr_ngroups;
 uid_t cr_uid;
 gid_t cr_gid;
 uid_t cr_ruid;
 gid_t cr_rgid;
 uid_t cr_suid;
 gid_t cr_sgid;
 gid_t cr_groups[1];
};
typedef struct cred cred;
typedef cred cred_t;

Fields
cr_ref
cr_ngroups
cr_uid
cr_gid
cr_ruid
cr_rgid
cr_suid
cr_sgid
cr_groups

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

cred_t

typedef cred cred_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2428 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

datab

struct datab {
 datab_db_f db_f;
 unsigned char * db_base;
 unsigned char * db_lim;
 unsigned char db_ref;
 unsigned char db_type;
 unsigned char db_iswhat;
 unsigned char db_filler2;
 UInt32 db_size;
 unsigned char * db_msgaddr;
 long db_filler;
};
typedef struct datab datab;
typedef datab dblk_t;

Fields
db_f
db_base
db_lim
db_ref
db_type
db_iswhat
db_filler2
db_size
db_msgaddr
db_filler

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

datab_db_f

union datab_db_f {
 datab * freep;
 free_rtn * frtnp;
};
typedef union datab_db_f datab_db_f;

Fields
freep
frtnp

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dblk_t

typedef datab dblk_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

DDPAddress

struct DDPAddress {
 OTAddressType fAddressType;
 UInt16 fNetwork;
 UInt8 fNodeID;
 UInt8 fSocket;
 UInt8 fDDPType;
 UInt8 fPad;
};
typedef struct DDPAddress DDPAddress;

Fields
fAddressType
fNetwork
fNodeID
fSocket
fDDPType
fPad

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

2430 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DDPNBPAddress

struct DDPNBPAddress {
 OTAddressType fAddressType;
 UInt16 fNetwork;
 UInt8 fNodeID;
 UInt8 fSocket;
 UInt8 fDDPType;
 UInt8 fPad;
 UInt8 fNBPNameBuffer[105];
};
typedef struct DDPNBPAddress DDPNBPAddress;

Fields
fAddressType
fNetwork
fNodeID
fSocket
fDDPType
fPad
fNBPNameBuffer

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

dev_t

typedef UInt32 dev_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
types.h

dl_attach_req_t

struct dl_attach_req_t {
 UInt32 dl_primitive;
 UInt32 dl_ppa;
};
typedef struct dl_attach_req_t dl_attach_req_t;

Fields
dl_primitive
dl_ppa

Availability
Available in Mac OS X v10.0 and later.

Data Types 2431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_bind_ack_t

struct dl_bind_ack_t {
 UInt32 dl_primitive;
 UInt32 dl_sap;
 UInt32 dl_addr_length;
 UInt32 dl_addr_offset;
 UInt32 dl_max_conind;
 UInt32 dl_xidtest_flg;
};
typedef struct dl_bind_ack_t dl_bind_ack_t;

Fields
dl_primitive
dl_sap
dl_addr_length
dl_addr_offset
dl_max_conind
dl_xidtest_flg

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_bind_req_t

struct dl_bind_req_t {
 UInt32 dl_primitive;
 UInt32 dl_sap;
 UInt32 dl_max_conind;
 UInt16 dl_service_mode;
 UInt16 dl_conn_mgmt;
 UInt32 dl_xidtest_flg;
};
typedef struct dl_bind_req_t dl_bind_req_t;

Fields
dl_primitive
dl_sap
dl_max_conind
dl_service_mode
dl_conn_mgmt
dl_xidtest_flg

Availability
Available in Mac OS X v10.0 and later.

2432 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_connect_con_t

struct dl_connect_con_t {
 UInt32 dl_primitive;
 UInt32 dl_resp_addr_length;
 UInt32 dl_resp_addr_offset;
 UInt32 dl_qos_length;
 UInt32 dl_qos_offset;
 UInt32 dl_growth;
};
typedef struct dl_connect_con_t dl_connect_con_t;

Fields
dl_primitive
dl_resp_addr_length
dl_resp_addr_offset
dl_qos_length
dl_qos_offset
dl_growth

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_connect_ind_t

struct dl_connect_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_correlation;
 UInt32 dl_called_addr_length;
 UInt32 dl_called_addr_offset;
 UInt32 dl_calling_addr_length;
 UInt32 dl_calling_addr_offset;
 UInt32 dl_qos_length;
 UInt32 dl_qos_offset;
 UInt32 dl_growth;
};
typedef struct dl_connect_ind_t dl_connect_ind_t;

Fields
dl_primitive
dl_correlation
dl_called_addr_length
dl_called_addr_offset
dl_calling_addr_length
dl_calling_addr_offset
dl_qos_length
dl_qos_offset
dl_growth

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_connect_req_t

struct dl_connect_req_t {
 UInt32 dl_primitive;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_qos_length;
 UInt32 dl_qos_offset;
 UInt32 dl_growth;
};
typedef struct dl_connect_req_t dl_connect_req_t;

Fields
dl_primitive
dl_dest_addr_length
dl_dest_addr_offset
dl_qos_length
dl_qos_offset
dl_growth

Availability
Available in Mac OS X v10.0 and later.

2434 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_connect_res_t

struct dl_connect_res_t {
 UInt32 dl_primitive;
 UInt32 dl_correlation;
 UInt32 dl_resp_token;
 UInt32 dl_qos_length;
 UInt32 dl_qos_offset;
 UInt32 dl_growth;
};
typedef struct dl_connect_res_t dl_connect_res_t;

Fields
dl_primitive
dl_correlation
dl_resp_token
dl_qos_length
dl_qos_offset
dl_growth

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_data_ack_ind_t

struct dl_data_ack_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
 UInt32 dl_priority;
 UInt32 dl_service_class;
};
typedef struct dl_data_ack_ind_t dl_data_ack_ind_t;

Fields
dl_primitive
dl_dest_addr_length
dl_dest_addr_offset
dl_src_addr_length
dl_src_addr_offset
dl_priority
dl_service_class

Availability
Available in Mac OS X v10.0 and later.

Data Types 2435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_data_ack_req_t

struct dl_data_ack_req_t {
 UInt32 dl_primitive;
 UInt32 dl_correlation;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
 UInt32 dl_priority;
 UInt32 dl_service_class;
};
typedef struct dl_data_ack_req_t dl_data_ack_req_t;

Fields
dl_primitive
dl_correlation
dl_dest_addr_length
dl_dest_addr_offset
dl_src_addr_length
dl_src_addr_offset
dl_priority
dl_service_class

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_data_ack_status_ind_t

struct dl_data_ack_status_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_correlation;
 UInt32 dl_status;
};
typedef struct dl_data_ack_status_ind_t dl_data_ack_status_ind_t;

Fields
dl_primitive
dl_correlation
dl_status

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2436 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_detach_req_t

struct dl_detach_req_t {
 UInt32 dl_primitive;
};
typedef struct dl_detach_req_t dl_detach_req_t;

Fields
dl_primitive

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_disabmulti_req_t

struct dl_disabmulti_req_t {
 UInt32 dl_primitive;
 UInt32 dl_addr_length;
 UInt32 dl_addr_offset;
};
typedef struct dl_disabmulti_req_t dl_disabmulti_req_t;

Fields
dl_primitive
dl_addr_length
dl_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_disconnect_ind_t

struct dl_disconnect_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_originator;
 UInt32 dl_reason;
 UInt32 dl_correlation;
};
typedef struct dl_disconnect_ind_t dl_disconnect_ind_t;

Fields
dl_primitive
dl_originator
dl_reason
dl_correlation

Availability
Available in Mac OS X v10.0 and later.

Data Types 2437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_disconnect_req_t

struct dl_disconnect_req_t {
 UInt32 dl_primitive;
 UInt32 dl_reason;
 UInt32 dl_correlation;
};
typedef struct dl_disconnect_req_t dl_disconnect_req_t;

Fields
dl_primitive
dl_reason
dl_correlation

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_enabmulti_req_t

struct dl_enabmulti_req_t {
 UInt32 dl_primitive;
 UInt32 dl_addr_length;
 UInt32 dl_addr_offset;
};
typedef struct dl_enabmulti_req_t dl_enabmulti_req_t;

Fields
dl_primitive
dl_addr_length
dl_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2438 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_error_ack_t

struct dl_error_ack_t {
 UInt32 dl_primitive;
 UInt32 dl_error_primitive;
 UInt32 dl_errno;
 UInt32 dl_unix_errno;
};
typedef struct dl_error_ack_t dl_error_ack_t;

Fields
dl_primitive
dl_error_primitive
dl_errno
dl_unix_errno

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_get_statistics_ack_t

struct dl_get_statistics_ack_t {
 UInt32 dl_primitive;
 UInt32 dl_stat_length;
 UInt32 dl_stat_offset;
};
typedef struct dl_get_statistics_ack_t dl_get_statistics_ack_t;

Fields
dl_primitive
dl_stat_length
dl_stat_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_get_statistics_req_t

struct dl_get_statistics_req_t {
 UInt32 dl_primitive;
};
typedef struct dl_get_statistics_req_t dl_get_statistics_req_t;

Fields
dl_primitive

Availability
Available in Mac OS X v10.0 and later.

Data Types 2439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_info_ack_t

struct dl_info_ack_t {
 UInt32 dl_primitive;
 UInt32 dl_max_sdu;
 UInt32 dl_min_sdu;
 UInt32 dl_addr_length;
 UInt32 dl_mac_type;
 UInt32 dl_reserved;
 UInt32 dl_current_state;
 SInt32 dl_sap_length;
 UInt32 dl_service_mode;
 UInt32 dl_qos_length;
 UInt32 dl_qos_offset;
 UInt32 dl_qos_range_length;
 UInt32 dl_qos_range_offset;
 UInt32 dl_provider_style;
 UInt32 dl_addr_offset;
 UInt32 dl_version;
 UInt32 dl_brdcst_addr_length;
 UInt32 dl_brdcst_addr_offset;
 UInt32 dl_growth;
};
typedef struct dl_info_ack_t dl_info_ack_t;

Fields
dl_primitive
dl_max_sdu
dl_min_sdu
dl_addr_length
dl_mac_type
dl_reserved
dl_current_state
dl_sap_length
dl_service_mode
dl_qos_length
dl_qos_offset
dl_qos_range_length
dl_qos_range_offset
dl_provider_style
dl_addr_offset
dl_version
dl_brdcst_addr_length
dl_brdcst_addr_offset
dl_growth

Availability
Available in Mac OS X v10.0 and later.

2440 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_info_req_t

struct dl_info_req_t {
 UInt32 dl_primitive;
};
typedef struct dl_info_req_t dl_info_req_t;

Fields
dl_primitive

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_ok_ack_t

struct dl_ok_ack_t {
 UInt32 dl_primitive;
 UInt32 dl_correct_primitive;
};
typedef struct dl_ok_ack_t dl_ok_ack_t;

Fields
dl_primitive
dl_correct_primitive

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_phys_addr_ack_t

struct dl_phys_addr_ack_t {
 UInt32 dl_primitive;
 UInt32 dl_addr_length;
 UInt32 dl_addr_offset;
};
typedef struct dl_phys_addr_ack_t dl_phys_addr_ack_t;

Fields
dl_primitive
dl_addr_length
dl_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Data Types 2441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_phys_addr_req_t

struct dl_phys_addr_req_t {
 UInt32 dl_primitive;
 UInt32 dl_addr_type;
};
typedef struct dl_phys_addr_req_t dl_phys_addr_req_t;

Fields
dl_primitive
dl_addr_type

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2442 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_primitives

union DL_primitives {
 UInt32 dl_primitive;
 dl_info_req_t info_req;
 dl_info_ack_t info_ack;
 dl_attach_req_t attach_req;
 dl_detach_req_t detach_req;
 dl_bind_req_t bind_req;
 dl_bind_ack_t bind_ack;
 dl_unbind_req_t unbind_req;
 dl_subs_bind_req_t subs_bind_req;
 dl_subs_bind_ack_t subs_bind_ack;
 dl_subs_unbind_req_t subs_unbind_req;
 dl_ok_ack_t ok_ack;
 dl_error_ack_t error_ack;
 dl_connect_req_t connect_req;
 dl_connect_ind_t connect_ind;
 dl_connect_res_t connect_res;
 dl_connect_con_t connect_con;
 dl_token_req_t token_req;
 dl_token_ack_t token_ack;
 dl_disconnect_req_t disconnect_req;
 dl_disconnect_ind_t disconnect_ind;
 dl_reset_req_t reset_req;
 dl_reset_ind_t reset_ind;
 dl_reset_res_t reset_res;
 dl_reset_con_t reset_con;
 dl_unitdata_req_t unitdata_req;
 dl_unitdata_ind_t unitdata_ind;
 dl_uderror_ind_t uderror_ind;
 dl_udqos_req_t udqos_req;
 dl_enabmulti_req_t enabmulti_req;
 dl_disabmulti_req_t disabmulti_req;
 dl_promiscon_req_t promiscon_req;
 dl_promiscoff_req_t promiscoff_req;
 dl_phys_addr_req_t physaddr_req;
 dl_phys_addr_ack_t physaddr_ack;
 dl_set_phys_addr_req_t set_physaddr_req;
 dl_get_statistics_req_t get_statistics_req;
 dl_get_statistics_ack_t get_statistics_ack;
 dl_test_req_t test_req;
 dl_test_ind_t test_ind;
 dl_test_res_t test_res;
 dl_test_con_t test_con;
 dl_xid_req_t xid_req;
 dl_xid_ind_t xid_ind;
 dl_xid_res_t xid_res;
 dl_xid_con_t xid_con;
 dl_data_ack_req_t data_ack_req;
 dl_data_ack_ind_t data_ack_ind;
 dl_data_ack_status_ind_t data_ack_status_ind;
 dl_reply_req_t reply_req;
 dl_reply_ind_t reply_ind;
 dl_reply_status_ind_t reply_status_ind;
 dl_reply_update_req_t reply_update_req;
 dl_reply_update_status_ind_t reply_update_status_ind;
};

Data Types 2443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

typedef union DL_primitives DL_primitives;

Fields
dl_primitive
info_req
info_ack
attach_req
detach_req
bind_req
bind_ack
unbind_req
subs_bind_req
subs_bind_ack
subs_unbind_req
ok_ack
error_ack
connect_req
connect_ind
connect_res
connect_con
token_req
token_ack
disconnect_req
disconnect_ind
reset_req
reset_ind
reset_res
reset_con
unitdata_req
unitdata_ind
uderror_ind
udqos_req
enabmulti_req
disabmulti_req
promiscon_req
promiscoff_req
physaddr_req
physaddr_ack
set_physaddr_req
get_statistics_req
get_statistics_ack
test_req
test_ind
test_res
test_con
xid_req
xid_ind
xid_res
xid_con

2444 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_priority_t

struct dl_priority_t {
 SInt32 dl_min;
 SInt32 dl_max;
};
typedef struct dl_priority_t dl_priority_t;

Fields
dl_min
dl_max

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_promiscoff_req_t

struct dl_promiscoff_req_t {
 UInt32 dl_primitive;
 UInt32 dl_level;
};
typedef struct dl_promiscoff_req_t dl_promiscoff_req_t;

Fields
dl_primitive
dl_level

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_promiscon_req_t

struct dl_promiscon_req_t {
 UInt32 dl_primitive;
 UInt32 dl_level;
};
typedef struct dl_promiscon_req_t dl_promiscon_req_t;

Fields
dl_primitive
dl_level

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_protect_t

struct dl_protect_t {
 SInt32 dl_min;
 SInt32 dl_max;
};
typedef struct dl_protect_t dl_protect_t;

Fields
dl_min
dl_max

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2446 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_qos_cl_range1_t

struct dl_qos_cl_range1_t {
 UInt32 dl_qos_type;
 dl_transdelay_t dl_trans_delay;
 dl_priority_t dl_priority;
 dl_protect_t dl_protection;
 SInt32 dl_residual_error;
};
typedef struct dl_qos_cl_range1_t dl_qos_cl_range1_t;

Fields
dl_qos_type
dl_trans_delay
dl_priority
dl_protection
dl_residual_error

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_qos_cl_sel1_t

struct dl_qos_cl_sel1_t {
 UInt32 dl_qos_type;
 SInt32 dl_trans_delay;
 SInt32 dl_priority;
 SInt32 dl_protection;
 SInt32 dl_residual_error;
};
typedef struct dl_qos_cl_sel1_t dl_qos_cl_sel1_t;

Fields
dl_qos_type
dl_trans_delay
dl_priority
dl_protection
dl_residual_error

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_qos_co_range1_t

struct dl_qos_co_range1_t {
 UInt32 dl_qos_type;
 dl_through_t dl_rcv_throughput;
 dl_transdelay_t dl_rcv_trans_delay;
 dl_through_t dl_xmt_throughput;
 dl_transdelay_t dl_xmt_trans_delay;
 dl_priority_t dl_priority;
 dl_protect_t dl_protection;
 SInt32 dl_residual_error;
 dl_resilience_t dl_resilience;
};
typedef struct dl_qos_co_range1_t dl_qos_co_range1_t;

Fields
dl_qos_type
dl_rcv_throughput
dl_rcv_trans_delay
dl_xmt_throughput
dl_xmt_trans_delay
dl_priority
dl_protection
dl_residual_error
dl_resilience

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2448 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_qos_co_sel1_t

struct dl_qos_co_sel1_t {
 UInt32 dl_qos_type;
 SInt32 dl_rcv_throughput;
 SInt32 dl_rcv_trans_delay;
 SInt32 dl_xmt_throughput;
 SInt32 dl_xmt_trans_delay;
 SInt32 dl_priority;
 SInt32 dl_protection;
 SInt32 dl_residual_error;
 dl_resilience_t dl_resilience;
};
typedef struct dl_qos_co_sel1_t dl_qos_co_sel1_t;

Fields
dl_qos_type
dl_rcv_throughput
dl_rcv_trans_delay
dl_xmt_throughput
dl_xmt_trans_delay
dl_priority
dl_protection
dl_residual_error
dl_resilience

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_reply_ind_t

struct dl_reply_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
 UInt32 dl_priority;
 UInt32 dl_service_class;
};
typedef struct dl_reply_ind_t dl_reply_ind_t;

Fields
dl_primitive
dl_dest_addr_length
dl_dest_addr_offset
dl_src_addr_length
dl_src_addr_offset
dl_priority
dl_service_class

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_reply_req_t

struct dl_reply_req_t {
 UInt32 dl_primitive;
 UInt32 dl_correlation;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
 UInt32 dl_priority;
 UInt32 dl_service_class;
};
typedef struct dl_reply_req_t dl_reply_req_t;

Fields
dl_primitive
dl_correlation
dl_dest_addr_length
dl_dest_addr_offset
dl_src_addr_length
dl_src_addr_offset
dl_priority
dl_service_class

Availability
Available in Mac OS X v10.0 and later.

2450 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_reply_status_ind_t

struct dl_reply_status_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_correlation;
 UInt32 dl_status;
};
typedef struct dl_reply_status_ind_t dl_reply_status_ind_t;

Fields
dl_primitive
dl_correlation
dl_status

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_reply_update_req_t

struct dl_reply_update_req_t {
 UInt32 dl_primitive;
 UInt32 dl_correlation;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
};
typedef struct dl_reply_update_req_t dl_reply_update_req_t;

Fields
dl_primitive
dl_correlation
dl_src_addr_length
dl_src_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_reply_update_status_ind_t

struct dl_reply_update_status_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_correlation;
 UInt32 dl_status;
};
typedef struct dl_reply_update_status_ind_t dl_reply_update_status_ind_t;

Fields
dl_primitive
dl_correlation
dl_status

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_reset_con_t

struct dl_reset_con_t {
 UInt32 dl_primitive;
};
typedef struct dl_reset_con_t dl_reset_con_t;

Fields
dl_primitive

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_reset_ind_t

struct dl_reset_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_originator;
 UInt32 dl_reason;
};
typedef struct dl_reset_ind_t dl_reset_ind_t;

Fields
dl_primitive
dl_originator
dl_reason

Availability
Available in Mac OS X v10.0 and later.

2452 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

dl_reset_req_t

struct dl_reset_req_t {
 UInt32 dl_primitive;
};
typedef struct dl_reset_req_t dl_reset_req_t;

Fields
dl_primitive

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_reset_res_t

struct dl_reset_res_t {
 UInt32 dl_primitive;
};
typedef struct dl_reset_res_t dl_reset_res_t;

Fields
dl_primitive

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_resilience_t

struct dl_resilience_t {
 SInt32 dl_disc_prob;
 SInt32 dl_reset_prob;
};
typedef struct dl_resilience_t dl_resilience_t;

Fields
dl_disc_prob
dl_reset_prob

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_set_phys_addr_req_t

struct dl_set_phys_addr_req_t {
 UInt32 dl_primitive;
 UInt32 dl_addr_length;
 UInt32 dl_addr_offset;
};
typedef struct dl_set_phys_addr_req_t dl_set_phys_addr_req_t;

Fields
dl_primitive
dl_addr_length
dl_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_subs_bind_ack_t

struct dl_subs_bind_ack_t {
 UInt32 dl_primitive;
 UInt32 dl_subs_sap_offset;
 UInt32 dl_subs_sap_length;
};
typedef struct dl_subs_bind_ack_t dl_subs_bind_ack_t;

Fields
dl_primitive
dl_subs_sap_offset
dl_subs_sap_length

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2454 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_subs_bind_req_t

struct dl_subs_bind_req_t {
 UInt32 dl_primitive;
 UInt32 dl_subs_sap_offset;
 UInt32 dl_subs_sap_length;
 UInt32 dl_subs_bind_class;
};
typedef struct dl_subs_bind_req_t dl_subs_bind_req_t;

Fields
dl_primitive
dl_subs_sap_offset
dl_subs_sap_length
dl_subs_bind_class

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_subs_unbind_req_t

struct dl_subs_unbind_req_t {
 UInt32 dl_primitive;
 UInt32 dl_subs_sap_offset;
 UInt32 dl_subs_sap_length;
};
typedef struct dl_subs_unbind_req_t dl_subs_unbind_req_t;

Fields
dl_primitive
dl_subs_sap_offset
dl_subs_sap_length

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_test_con_t

struct dl_test_con_t {
 UInt32 dl_primitive;
 UInt32 dl_flag;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
};
typedef struct dl_test_con_t dl_test_con_t;

Fields
dl_primitive
dl_flag
dl_dest_addr_length
dl_dest_addr_offset
dl_src_addr_length
dl_src_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_test_ind_t

struct dl_test_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_flag;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
};
typedef struct dl_test_ind_t dl_test_ind_t;

Fields
dl_primitive
dl_flag
dl_dest_addr_length
dl_dest_addr_offset
dl_src_addr_length
dl_src_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2456 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_test_req_t

struct dl_test_req_t {
 UInt32 dl_primitive;
 UInt32 dl_flag;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
};
typedef struct dl_test_req_t dl_test_req_t;

Fields
dl_primitive
dl_flag
dl_dest_addr_length
dl_dest_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_test_res_t

struct dl_test_res_t {
 UInt32 dl_primitive;
 UInt32 dl_flag;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
};
typedef struct dl_test_res_t dl_test_res_t;

Fields
dl_primitive
dl_flag
dl_dest_addr_length
dl_dest_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_through_t

struct dl_through_t {
 SInt32 dl_target_value;
 SInt32 dl_accept_value;
};
typedef struct dl_through_t dl_through_t;

Fields
dl_target_value
dl_accept_value

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_token_ack_t

struct dl_token_ack_t {
 UInt32 dl_primitive;
 UInt32 dl_token;
};
typedef struct dl_token_ack_t dl_token_ack_t;

Fields
dl_primitive
dl_token

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_token_req_t

struct dl_token_req_t {
 UInt32 dl_primitive;
};
typedef struct dl_token_req_t dl_token_req_t;

Fields
dl_primitive

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2458 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_transdelay_t

struct dl_transdelay_t {
 SInt32 dl_target_value;
 SInt32 dl_accept_value;
};
typedef struct dl_transdelay_t dl_transdelay_t;

Fields
dl_target_value
dl_accept_value

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_uderror_ind_t

struct dl_uderror_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_unix_errno;
 UInt32 dl_errno;
};
typedef struct dl_uderror_ind_t dl_uderror_ind_t;

Fields
dl_primitive
dl_dest_addr_length
dl_dest_addr_offset
dl_unix_errno
dl_errno

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_udqos_req_t

struct dl_udqos_req_t {
 UInt32 dl_primitive;
 UInt32 dl_qos_length;
 UInt32 dl_qos_offset;
};
typedef struct dl_udqos_req_t dl_udqos_req_t;

Fields
dl_primitive
dl_qos_length
dl_qos_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_unbind_req_t

struct dl_unbind_req_t {
 UInt32 dl_primitive;
};
typedef struct dl_unbind_req_t dl_unbind_req_t;

Fields
dl_primitive

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2460 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_unitdata_ind_t

struct dl_unitdata_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
 UInt32 dl_group_address;
};
typedef struct dl_unitdata_ind_t dl_unitdata_ind_t;

Fields
dl_primitive
dl_dest_addr_length
dl_dest_addr_offset
dl_src_addr_length
dl_src_addr_offset
dl_group_address

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_unitdata_req_t

struct dl_unitdata_req_t {
 UInt32 dl_primitive;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 dl_priority_t dl_priority;
};
typedef struct dl_unitdata_req_t dl_unitdata_req_t;

Fields
dl_primitive
dl_dest_addr_length
dl_dest_addr_offset
dl_priority

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_xid_con_t

struct dl_xid_con_t {
 UInt32 dl_primitive;
 UInt32 dl_flag;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
};
typedef struct dl_xid_con_t dl_xid_con_t;

Fields
dl_primitive
dl_flag
dl_dest_addr_length
dl_dest_addr_offset
dl_src_addr_length
dl_src_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_xid_ind_t

struct dl_xid_ind_t {
 UInt32 dl_primitive;
 UInt32 dl_flag;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
 UInt32 dl_src_addr_length;
 UInt32 dl_src_addr_offset;
};
typedef struct dl_xid_ind_t dl_xid_ind_t;

Fields
dl_primitive
dl_flag
dl_dest_addr_length
dl_dest_addr_offset
dl_src_addr_length
dl_src_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2462 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

dl_xid_req_t

struct dl_xid_req_t {
 UInt32 dl_primitive;
 UInt32 dl_flag;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
};
typedef struct dl_xid_req_t dl_xid_req_t;

Fields
dl_primitive
dl_flag
dl_dest_addr_length
dl_dest_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

dl_xid_res_t

struct dl_xid_res_t {
 UInt32 dl_primitive;
 UInt32 dl_flag;
 UInt32 dl_dest_addr_length;
 UInt32 dl_dest_addr_offset;
};
typedef struct dl_xid_res_t dl_xid_res_t;

Fields
dl_primitive
dl_flag
dl_dest_addr_length
dl_dest_addr_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

DNS Address Structure
Holds host names, partially or fully-qualified domain names, or dotted-decimal format Internet addresses for
use with a variety of Open Transport functions.

Data Types 2463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct DNSAddress {
 OTAddressType fAddressType;
 InetDomainName fName;
};
typedef struct DNSAddress DNSAddress;

Fields
fAddressType

The address type. For a DNSAddress structure, this should be AF_DNS.

fName
The name to be resolved by the DNR.

Discussion
You can use the DNS (domain name system) address structure with the OTConnect function (TCP), with the
OTSndUData function (UDP), or with the OTResolveAddress function (either TCP or UDP). If you do so, TCP/IP
will resolve the name for you automatically. You can use the OTInitDNSAddress function to fill in a DNS
address structure. The DNS address structure is defined by the DNSAddress data type.

The address you specify can be just the host name (“otteam”), a partially qualified domain name (“otteam.ssw”),
a fully qualified domain name (“otteam.ssw.apple.com.”), or an internet address in dotted-decimal format
(“17.202.99.99”), and can optionally include a port number (“otteam.ssw.apple.com:25” or “17.202.99.99:25”).

Because the port number is not actually part of the domain name, it is possible to have a domain name–port
number combination that exceeds 255 bytes. If you wish to specify such a string, you must provide a structure
based on the DNS address structure that has sufficient space to contain the full string. In any case, the domain
name itself cannot exceed 255 bytes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

DNS Query Information Structure
Returns answers to DNS queries.

struct DNSQueryInfo {
 UInt16 qType;
 UInt16 qClass;
 UInt32 ttl;
 InetDomainName name;
 UInt16 responseType;
 UInt16 resourceLen;
 char resourceData[4];
};
typedef struct DNSQueryInfo DNSQueryInfo;

Fields
qType

The numerical value of the DNS resource record type, such as MX and PTR, for which you wish to
query.

qClass
The numerical value of the DNS record class, such as Inet and Hesio, for which you wish to query.

2464 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

ttl
An integer indicating the DNS resource record’s time to live (in seconds).

name
The fully qualified domain name or address for which you made the query.

responseType
The type of response.

resourceLen
The actual length of the resource data returned.

resourceData
The resource data that is returned. This is at least 4 bytes long, and is usually longer.

Discussion
The DNS query information structure is used by the TCP/IP service provider to return answers to DNS queries
made using the OTInetQuery function. The DNS query information structure is defined by the DNSQueryInfo
data type. For additional information about the constant values for the DNSQueryInfo fields, see the DNS
Requests for Comments (RFCs), available over the World Wide Web.

See the Internet Standard for a definitive list of values for the qType, qClass, and respnoseType fields, and
for a definition of the format of the resource data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

EndpointRef

typedef struct OpaqueEndpointRef * EndpointRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

Data Types 2465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

EnetPacketHeader

struct EnetPacketHeader {
 UInt8 fDestAddr[6];
 UInt8 fSourceAddr[6];
 UInt16 fProto;
};
typedef struct EnetPacketHeader EnetPacketHeader;

Fields
fDestAddr
fSourceAddr
fProto

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

free_rtn

struct free_rtn {
 FreeFuncType free_func;
 char * free_arg;
};
typedef struct free_rtn free_rtn;
typedef free_rtn frtn_t;

Fields
free_func
free_arg

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

frtn_t

typedef free_rtn frtn_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2466 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

gid_t

typedef UInt32 gid_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
types.h

Internet Address Structure
Used for providing a TCP or UDP address to the OTConnect, OTSndURequest, or OTBind functions.

struct InetAddress {
 OTAddressType fAddressType;
 InetPort fPort;
 InetHost fHost;
 UInt8 fUnused[8];
};
typedef struct InetAddress InetAddress;

Fields
fAddressType

The address type. The field should be AF_INET, which identifies the structure as an InetAddress.

fPort
The port number.

fHost
The 32-bit IP address of the host.

fUnused
Reserved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

Data Types 2467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

InetDHCPOption

struct InetDHCPOption {
 UInt8 fOptionTag;
 UInt8 fOptionLen;
 UInt8 fOptionValue;
};
typedef struct InetDHCPOption InetDHCPOption;

Fields
fOptionTag
fOptionLen
fOptionValue

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

InetDomainName

typedef InetDomainName[256];

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

InetHost

typedef UInt32 InetHost;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

Internet Host Information Sructure
Holds a set of IP addresses associated with an Internet host for use by the OTInetStringToAddress function.

2468 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct InetHostInfo {
 InetDomainName name;
 InetHost addrs[10];
};
typedef struct InetHostInfo InetHostInfo;

Fields
name

The canonical name of the host. The canonical name is a fully qualified domain nam, never an alias.

addrs
Up to ten IP addresses associated with this host name. Only multihomed hosts have more than one
IP address.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

Internet Interface Information Structure
Holds information about an Internet interface for use by the OTInetGetInterfaceInfo function.

struct InetInterfaceInfo {
 InetHost fAddress;
 InetHost fNetmask;
 InetHost fBroadcastAddr;
 InetHost fDefaultGatewayAddr;
 InetHost fDNSAddr;
 UInt16 fVersion;
 UInt16 fHWAddrLen;
 UInt8 * fHWAddr;
 UInt32 fIfMTU;
 UInt8 * fReservedPtrs[2];
 InetDomainName fDomainName;
 UInt32 fIPSecondaryCount;
 UInt8 fReserved[252];
};
typedef struct InetInterfaceInfo InetInterfaceInfo;

Fields
fAddress

The IP address of the interface.

fNetmask
The subnet mask of the local IP network.

fBroadcastAddr
The broadcast address for the interface.

fDefaultGatewayAddr
The IP address of the default router. The default is a router that can forward any packet destined
outside the locally connected subnet.

fDNSAddr
The address of a domain name server. This value can be returned by a server or typed in by the user
during configuration of the TCP/IP interface.

Data Types 2469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

fVersion
The version of the OTInetGetInterfaceInfo function; currently equal to kInetInterfaceInfoVersion.

fHWAddrLen
The length (in bytes) of the hardware address. This points into the fReserved field of this structure. It
can be nil if the interface has no hardware address or if it won’t fit.

fHWAddr
A pointer to the hardware address.

fIfMTU
The maximum transmission unit size in bytes permitted for this interface’s hardware.

fReservedPtrs
Reserved.

fDomainName
The default domain name of the host as configured in the TCP/IP control panel. This name doesn’t
include the host name.

fIPSecondaryCount
The number of IP secondary address available.

fReserved
Reserved.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

Internet Mail Exchange Structure
Holds host names and mail preference values for use with the OTInetMailExchange function.

struct InetMailExchange {
 UInt16 preference;
 InetDomainName exchange;
};
typedef struct InetMailExchange InetMailExchange;

Fields
preference

The mail exchange preference value. The mail exchanger with the lowest preference number is the
first one to which mail should be sent.

exchange
The fully qualified domain name of a host that can accept mail for your target host.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

2470 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

InetPort

typedef UInt16 InetPort;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

InetSvcRef

typedef struct OpaqueInetSvcRef * InetSvcRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

InetSysInfo
Holds information about an Internet host for use by the OTInetSysInfo function.

struct InetSysInfo {
 char cpuType[32];
 char osType[32];
};
typedef struct InetSysInfo InetSysInfo;

Fields
cpuType

The CPU type of the specified host. This is an ASCII string maintained by the domain name server.

osType
The operating system running on the specified host. This is an ASCII string maintained by the domain
name server.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

install_info

Data Types 2471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Fields

int_t

typedef int_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

iocblk

struct iocblk {
 SInt32 ioc_cmd;
 cred * ioc_cr;
 UInt32 ioc_id;
 UInt32 ioc_count;
 SInt32 ioc_error;
 SInt32 ioc_rval;
 long ioc_filler[4];
};
typedef struct iocblk iocblk;

Fields
ioc_cmd
ioc_cr
ioc_id
ioc_count
ioc_error
ioc_rval
ioc_filler

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2472 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

LCPEcho

struct LCPEcho {
 UInt32 retryCount;
 UInt32 retryPeriod;
};
typedef struct LCPEcho LCPEcho;

Fields
retryCount
retryPeriod

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

linkblk

struct linkblk {
 queue_t * l_qtop;
 queue_t * l_qbot;
 SInt32 l_index;
 long l_pad[5];
};
typedef struct linkblk linkblk;

Fields
l_qtop
l_qbot
l_index
l_pad

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

log_ctl

struct log_ctl {
 short mid;
 short sid;
 char level;
 char pad1;
 short flags;
 long ltime;
 long ttime;
 SInt32 seq_no;
};
typedef struct log_ctl log_ctl;

Fields
mid
sid
level
pad1
flags
ltime
ttime
seq_no

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

major_t

typedef UInt16 major_t;

MapperRef

typedef struct OpaqueMapperRef * MapperRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

mblk_t

typedef msgb mblk_t;

Availability
Available in Mac OS X v10.0 and later.

2474 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

minor_t

typedef UInt16 minor_t;

module_info

struct module_info {
 unsigned short mi_idnum;
 char * mi_idname;
 long mi_minpsz;
 long mi_maxpsz;
 unsigned long mi_hiwat;
 unsigned long mi_lowat;
};
typedef struct module_info module_info;
typedef module_info * module_infoPtr;

Fields
mi_idnum
mi_idname
mi_minpsz
mi_maxpsz
mi_hiwat
mi_lowat

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

module_stat

struct module_stat {
 long ms_pcnt;
 long ms_scnt;
 long ms_ocnt;
 long ms_ccnt;
 long ms_acnt;
 char * ms_xptr;
 short ms_xsize;
};
typedef struct module_stat module_stat;

Fields
ms_pcnt
ms_scnt
ms_ocnt
ms_ccnt
ms_acnt
ms_xptr
ms_xsize

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2476 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

MPS_INTR_STATE

typedef UInt8 MPS_INTR_STATE;

msgb

struct msgb {
 struct msgb * b_next;
 struct msgb * b_prev;
 struct msgb * b_cont;
 unsigned char * b_rptr;
 unsigned char * b_wptr;
 datab * b_datap;
 unsigned char b_band;
 unsigned char b_pad1;
 unsigned short b_flag;
};
typedef struct msgb msgb;
typedef msgb mblk_t;

Fields
b_next
b_prev
b_cont
b_rptr
b_wptr
b_datap
b_band
b_pad1
b_flag

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

NBPAddress

struct NBPAddress {
 OTAddressType fAddressType;
 UInt8 fNBPNameBuffer[105];
};
typedef struct NBPAddress NBPAddress;

Fields
fAddressType
fNBPNameBuffer

Availability
Available in Mac OS X v10.0 and later.

Data Types 2477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProviders.h

NBPEntity

struct NBPEntity {
 UInt8 fEntity[99];
};
typedef struct NBPEntity NBPEntity;

Fields
fEntity

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

netbuf

struct netbuf {
 maxlen;
 len;
 char *buf;
};

Fields

ot_bind

Fields

ot_optmgmt

Fields

OTAddress
Defines the common structure for all Open Transport addresses.

2478 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct OTAddress {
 OTAddressType fAddressType;
 UInt8 fAddress[1];
};
typedef struct OTAddress OTAddress;

Fields
fAddressType
fAddress

Discussion
The OTAddress type itself is abstract. You would not declare a structure of this type because it does not
contain any address information. However, address formats defined by Open Transport protocols all use the
fAddressType field to describe the format of the fields to follow, which do contain address information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTAddressType

typedef UInt16 OTAddressType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTAutopushInfo

struct OTAutopushInfo {
 UInt32 sap_cmd;
 char sap_device_name[32];
 SInt32 sap_minor;
 SInt32 sap_lastminor;
 SInt32 sap_npush;
 char sap_list[8][32];
};
typedef struct OTAutopushInfo OTAutopushInfo;

Fields
sap_cmd
sap_device_name
sap_minor
sap_lastminor
sap_npush
sap_list

Availability
Available in Mac OS X v10.0 and later.

Data Types 2479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

OTBand

typedef UInt32 OTBand;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTBooleanParam

typedef Boolean OTBooleanParam;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

No-Copy Receive Buffer Structure
Receives data without copying it.

struct OTBuffer {
 void * fLink;
 void * fLink2;
 OTBuffer * fNext;
 UInt8 * fData;
 ByteCount fLen;
 void * fSave;
 UInt8 fBand;
 UInt8 fType;
 UInt8 fPad1;
 UInt8 fFlags;
};
typedef struct OTBuffer OTBuffer;

Fields
fLink

Reserved.

fLink2
Reserved.

fNext
A pointer to the next OTBuffer structure in the linked chain. By tracing the chain of fNext pointers,
you can access all of the data associated with the message.

2480 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

fData
A pointer to the data portion of this OTBuffer structure.

fLen
The length of data pointed to by the fData field.

fSave
Reserved.

fBand
The band used for the data transmission. It must be a value between 0 and 255.

fType
The type of the data (normally M_DATA, M_PROTO, or M_PCPROTO).

fPad1
Reserved.

fFlags
The flags associated with the data (MSGMARK, MSGDELIM).

Discussion
You use the no-copy receive buffer structure when you wish to receive data without copying it with the
OTRcvUData function, the OTRcvURequest function, the OTRcvUReply function, the OTRcv function, the
OTRcvRequest function, and the OTRcvReply function.

If you are familiar with STREAMS mblk_t data structures, you can see that the no-copy receive buffer structure
is just a slight modification of the mblk_t structure.

You can only use this buffer for data; you cannot use it for the address or options that may be associated
with the incoming data. For example, in the case of an incoming TUnitData structure, you can only no-copy
receive the udata portion, not the addr or opt fields.

Special Considerations

Under no circumstance write to this data structure. It is read-only. If you write to it, you can crash the system.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

Buffer Information Structure
A convenience structure for keeping track of where your application left off in an OTBuffer structure.

struct OTBufferInfo {
 OTBuffer * fBuffer;
 ByteCount fOffset;
 UInt8 fPad;
};
typedef struct OTBufferInfo OTBufferInfo;

Fields
fBuffer

A pointer to the no-copy receive buffer.

Data Types 2481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

fOffset
An offset indicating how far into the buffer you have read.

fPad
Reserved.

Discussion
The buffer information structure is provided for your convenience in keeping track of where you last left off
in an OTBuffer structure. Because the no-copy receive buffer structure (OTBuffer) is read-only, you may need
to copy the data in sections as you progress through the no-copy receive buffer. The utility function
OTReadBuffer is used with this structure to easily copy the data out of an OTBuffer structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTByteCount

typedef ByteCount OTByteCount;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTClient

typedef struct OpaqueOTClient * OTClient;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTClientContextPtr

typedef struct OpaqueOTClientContextPtr * OTClientContextPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTClientList
Identifies the clients that denied a request to yield a port.

2482 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct OTClientList {
 ItemCount fNumClients;
 UInt8 fBuffer[4];
};
typedef struct OTClientList OTClientList;

Fields
fNumClients

The number of clients in the fBuffer array, normally 1.

fBuffer
An array of packed Pascal strings enumerating the name of each client that rejected the request—that
is, the names under which the clients registered themselves as an Open Transport clients.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

OTClientName

typedef UInt8 * OTClientName;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTCommand

typedef SInt32 OTCommand;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTConfigurationRef

typedef struct OTConfiguration * OTConfigurationRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

Data Types 2483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTData Structure
Specifies the location and size of noncontiguous data.

struct OTData {
 void * fNext;
 void * fData;
 ByteCount fLen;
};
typedef struct OTData OTData;

Fields
fNext

A pointer to the OTData structure that describes the next data fragment. Specify a NULL pointer for
the last data fragment.

fData
A pointer to the data fragment.

fLen
Specifies the size of the fragment in bytes.

Discussion
The OTData structure is an Apple extension used to specify the location and size of noncontiguous data. You
use a pointer to this structure in place of a pointer to continguous data normally referenced in TNetbuf.buf
field. You can send discontiguous data using the OTSndUData function, the OTSndURequest function, the
OTSndUReply function, the OTSnd function, the OTSndRequest function, and the OTSndReply function.

Each OTData structure specifies the location of a data fragment, the size of the fragment, and the location
of the OTData structure that specifies the location and size of the next data fragment. The data information
structure is defined by the OTData type. For more information, see “Sending Noncontiguous Data.”

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTDataSize

typedef SInt32 OTDataSize;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTDeferredTaskRef

typedef long OTDeferredTaskRef;

Availability
Available in Mac OS X v10.0 and later.

2484 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTEventCode

typedef UInt32 OTEventCode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTError

typedef SInt32 OTError;

OTGate

struct OTGate {
 OTLIFO fLIFO;
 OTList fList;
 OTGateProcPtr fProc;
 SInt32 fNumQueued;
 SInt32 fInside;
};
typedef struct OTGate OTGate;

Fields
fLIFO
fList
fProc
fNumQueued
fInside

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTHashList

struct OTHashList {
 OTHashProcPtr fHashProc;
 ByteCount fHashTableSize;
 OTLink ** fHashBuckets;
};
typedef struct OTHashList OTHashList;

Fields
fHashProc
fHashTableSize
fHashBuckets

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

OTInt32

typedef SInt32 OTInt32;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTISDNAddress

struct OTISDNAddress {
 OTAddressType fAddressType;
 UInt16 fPhoneLength;
 char fPhoneNumber[37];
};
typedef struct OTISDNAddress OTISDNAddress;

Fields
fAddressType
fPhoneLength
fPhoneNumber

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

2486 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTItemCount

typedef ItemCount OTItemCount;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

LIFO List Structure
Supports last-in, first-out lists in Open Transport.

struct OTLIFO {
 OTLink * fHead;
};
typedef struct OTLIFO OTLIFO;

Fields
fHead

A pointer to the first entry in the linked list. Set this to nil to initialize the structure before using it.

Discussion
Open Transport LIFO (last-in, first-out) lists use the LIFO list structure. You must initialize this structure by
setting the structure’s fHead field to NULL before using the LIFO list. Most Open Transport LIFO list operations
are atomic.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTLink
Allows any data structure to be used in an Open Transport list.

struct OTLink {
 OTLink * fNext;
};
typedef struct OTLink OTLink;

Fields
fNext

A pointer to the next entry in the linked list.

Discussion
All of Open Transport’s list utilities use the linked list structure, which may be embedded in any data structure
that you want to use in an Open Transport list. A linked list structure is defined by the OTLink data type.

Availability
Available in Mac OS X v10.0 and later.

Data Types 2487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

FIFO List Structure
Supports first-in, last-out lists in Open Transport

struct OTList {
 OTLink * fHead;
};
typedef struct OTList OTList;

Fields
fHead

A pointer to the first entry in the linked list. Set this to NULL to initialize the structure before using it.

Discussion
Open Transport FIFO (first-in, first-out) lists use the FIFO list structure. You must initialize this structure by
setting the structure’s fHead field to NULL before using the LIFO list. The FIFO list structure is defined by the
OTList data type.

None of the functions that handle a FIFO list structure are atomic.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTListSearchUPP

typedef OTListSearchProcPtr OTListSearchUPP;

Discussion
For more information, see the description of the OTListSearchUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

Lock Data Type
Defines a value used to ensure that Open Transport does not recursively reenter locked areas of code.

typedef UInt8 OTLock;

Discussion
The lock data type defines a value that is used by the OTClearLock function and the OTAcquireLock function
to ensure that Open Transport does not recursively reenter locked areas of code. The lock data type is defined
by the OTLock data type

2488 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTNameID

typedef SInt32 OTNameID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTNotifyUPP

typedef OTNotifyProcPtr OTNotifyUPP;

Discussion
For more information, see the description of the OTNotifyUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTPCIInfo

struct OTPCIInfo {
 RegEntryID fTheID;
 void *fConfigurationInfo;
 ByteCount fConfigurationLength;
};

Fields

OTPortCloseStruct
Denies or accepts requests to yield a port.

Data Types 2489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct OTPortCloseStruct {
 OTPortRef fPortRef;
 ProviderRef fTheProvider;
 OSStatus fDenyReason;
};
typedef struct OTPortCloseStruct OTPortCloseStruct;

Fields
fPortRef

The port requested to be closed.

fTheProvider
The provider that is currently using the port.

fDenyReason
A value that you can leave untouched to accept the yield request. To deny the request, change this
value to a negative error code corresponding to the reason for your denial (normally you use the
kOTUserRequestedErr error).

Discussion
When you are using a port that another client wishes to use, the other client can use the OTYieldPortRequest
function (not available in Mac OS X) to ask you to yield the port. If you are registered as a client of Open
Transport, you receive a kOTYieldPortRequest event, whose cookie parameter is a pointer to a port close
structure. You can use this structure to deny or accept the yield request.

Currently, this callback is only used for serial ports, but it is applicable to any hardware device that cannot
share a port with multiple clients. You should check the kOTCanYieldPort bit in the port structure’s fInfoFlags
field to see whether the port supports yielding.

If the provider is passively listening (that is, bound with a queue length (qlen) greater than 0) and you are
willing to yield, you need do nothing. If, however, you are actively connected and you are willing to yield
the port, you must issue a synchronous OTSndDisconnect callin order to let the port go.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

The Port Structure
Describes a port’s characteristics.

2490 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct OTPortRecord {
 OTPortRef fRef;
 UInt32 fPortFlags;
 UInt32 fInfoFlags;
 UInt32 fCapabilities;
 ItemCount fNumChildPorts;
 OTPortRef * fChildPorts;
 char fPortName[36];
 char fModuleName[32];
 char fSlotID[8];
 char fResourceInfo[32];
 char fReserved[164];
};
typedef struct OTPortRecord OTPortRecord;

Fields
fRef

The port reference; a 32-bit value encoding the port’s device type, bus type, slot number, and multiport
identifier

fPortFlags
Flags describing the port’s status. If no bits are set, the port is currently inactive—that is, it is not in
use at this time.

fInfoFlags
fCapabilities
fNumChildPorts
fChildPorts

An array of the port references for the child ports associated with this port. When you get a Port
Record, this pointer typically points into the SReserved field at the end of the record.

fPortName
A unique name for this port. The port name is a zero-terminated string that can have a maximum
length as indicated by the constant kMaxProviderNameSize.

fModuleName
The name of the actual STREAMS module that implements the driver for this port. Open Transport
uses this name internally; applications rarely need to use this name.

fSlotID
An 8-byte identifier for a port’s slot that contains a 7-byte character string plus a zero for termination.
This identifier is typically available only for PCI cards.

fResourceInfo
A zero-terminated string that describes a shared library that can handle configuration information
for the device. This field contains an identifier that allows Open Transport to access auxiliary information
about the driver (Open Transport creates shared library IDs from this string to be able to find these
extra shared libraries). This string should either be unique to the driver or should be set to a NULL
string.

fReserved
Reserved.

Discussion
Open Transport uses a port structure to describe a port’s characteristics, such as its port name, its child ports,
whether it is active or disabled, whether it is private or shareable, and the kind of framing it can use.

Availability
Available in Mac OS X v10.0 and later.

Data Types 2491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

OTPortRef

typedef UInt32 OTPortRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTProcessUPP

typedef OTProcessProcPtr OTProcessUPP;

Discussion
For more information, see the description of the OTProcessUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTQLen

typedef UInt32 OTQLen;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

2492 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTReadInfo

struct OTReadInfo {
 UInt32 fType;
 OTCommand fCommand;
 UInt32 fFiller;
 ByteCount fBytes;
 OSStatus fError;
};
typedef struct OTReadInfo OTReadInfo;

Fields
fType
fCommand
fFiller
fBytes
fError

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

OTReason

typedef SInt32 OTReason;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTResourceLocator

struct OTResourceLocator {
 FSSpec fFile;
 UInt16 fResID;
};
typedef struct OTResourceLocator OTResourceLocator;

Fields
fFile
fResID

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTResult

typedef SInt32 OTResult;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTScriptInfo

struct OTScriptInfo {
 UInt32 fScriptType;
 void * fTheScript;
 UInt32 fScriptLength;
};
typedef struct OTScriptInfo OTScriptInfo;

Fields
fScriptType
fTheScript
fScriptLength

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTSequence

typedef SInt32 OTSequence;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTSInt16Param

typedef SInt16 OTSInt16Param;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

2494 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTSInt8Param

typedef SInt8 OTSInt8Param;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTSlotNumber

typedef UInt16 OTSlotNumber;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTStateMachine

struct OTStateMachine {
 OTStateMachineDataPad fData;
 void * fCookie;
 OTEventCode fCode;
 OTResult fResult;
};
typedef struct OTStateMachine OTStateMachine;

Fields
fData
fCookie
fCode
fResult

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

OTStateMachineDataPad

typedef UInt8 OTStateMachineDataPad[12];

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTSystemTaskRef

typedef OTSystemTaskRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTTimeout

typedef UInt32 OTTimeout;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTTimerTask

typedef OTTimerTask;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Timestamp Data Type
Contains an Open Transport timestamp.

typedef UnsignedWide OTTimeStamp;

Discussion
The timestamp data type is a 64-bit value that contains an Open Transport timestamp. The timestamp has
unspecified units; you must use one of the timestamp manipulation functions described in “Timestamp Utility
Functions” to convert the timestamp to known quantities. The timestamp data type is defined by the
OTTimeStamp data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

2496 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTUInt16Param

typedef UInt16 OTUInt16Param;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTUInt32

typedef UInt32 OTUInt32;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTUInt8Param

typedef UInt8 OTUInt8Param;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTUnixErr

typedef UInt16 OTUnixErr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

OTXTILevel

typedef UInt32 OTXTILevel;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

Data Types 2497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTXTIName

typedef UInt32 OTXTIName;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

pollfd

struct pollfd {
 SInt32 fd;
 SInt16 events;
 SInt16 revents;
 SInt32 _ifd;
};

Fields

PollRef

struct PollRef {
 SInt32 filler;
 SInt16 events;
 SInt16 revents;
 StreamRef ref;
};
typedef struct PollRef PollRef;

Fields
filler
events
revents
ref

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2498 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

PPPMRULimits

struct PPPMRULimits {
 UInt32 mruSize;
 UInt32 upperMRULimit;
 UInt32 lowerMRULimit;
};
typedef struct PPPMRULimits PPPMRULimits;

Fields
mruSize
upperMRULimit
lowerMRULimit

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

ProviderRef

typedef struct OpaqueProviderRef * ProviderRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

q_xtra

struct q_xtra {
 UInt32 dummy;
};
typedef struct q_xtra q_xtra;

Fields
dummy

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

qband

struct qband {
 qband * qb_next;
 unsigned long qb_count;
 msgb * qb_first;
 msgb * qb_last;
 unsigned long qb_hiwat;
 unsigned long qb_lowat;
 unsigned short qb_flag;
 short qb_pad1;
};
typedef struct qband qband;
typedef qband qband_t;

Fields
qb_next
qb_count
qb_first
qb_last
qb_hiwat
qb_lowat
qb_flag
qb_pad1

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

qband_t

typedef qband qband_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

qfields_t

typedef qfields qfields_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2500 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

qinit

struct qinit {
 putp_t qi_putp;
 srvp_t qi_srvp;
 openp_t qi_qopen;
 closep_t qi_qclose;
 admin_t qi_qadmin;
 module_info * qi_minfo;
 module_stat * qi_mstat;
};
typedef struct qinit qinit;

Fields
qi_putp
qi_srvp
qi_qopen
qi_qclose
qi_qadmin
qi_minfo
qi_mstat

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

queue

struct queue {
 qinit * q_qinfo;
 msgb * q_first;
 msgb * q_last;
 queue * q_next;
 queue_q_u q_u;
 char * q_ptr;
 unsigned long q_count;
 long q_minpsz;
 long q_maxpsz;
 unsigned long q_hiwat;
 unsigned long q_lowat;
 qband * q_bandp;
 unsigned short q_flag;
 unsigned char q_nband;
 unsigned char q_pad1[1];
 q_xtra * q_osx;
 queue * q_ffcp;
 queue * q_bfcp;
};
typedef struct queue queue;
typedef queue * queuePtr;

Fields
q_qinfo
q_first
q_last
q_next
q_u
q_ptr
q_count
q_minpsz
q_maxpsz
q_hiwat
q_lowat
q_bandp
q_flag
q_nband
q_pad1
q_osx
q_ffcp
q_bfcp

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2502 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

queue_q_u

union queue_q_u {
 queue * q_u_link;
 sqh_s * q_u_sqh_parent;
};
typedef union queue_q_u queue_q_u;

Fields
q_u_link
q_u_sqh_parent

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

queue_t

typedef SInt32 queue_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
queue.h

short_p

typedef SInt16 short_p;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

sqh_s

struct sqh_s {
 UInt32 dummy;
};
typedef struct sqh_s sqh_s;

Fields
dummy

Availability
Available in Mac OS X v10.0 and later.

Data Types 2503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

sth_s

struct sth_s {
 UInt32 dummy;
};
typedef struct sth_s sth_s;

Fields
dummy

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

str_list

struct str_list {
 SInt32 sl_nmods;
 str_mlist * sl_modlist;
};
typedef struct str_list str_list;

Fields
sl_nmods
sl_modlist

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

str_mlist

struct str_mlist {
 char l_name[32];
};
typedef struct str_mlist str_mlist;

Fields
l_name

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2504 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

strbuf

struct strbuf {
 SInt32 maxlen;
 SInt32 len;
 char * buf;
};
typedef struct strbuf strbuf;

Fields
maxlen
len
buf

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

StreamRef

typedef struct OpaqueStreamRef * StreamRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

streamtab

struct streamtab {
 qinit * st_rdinit;
 qinit * st_wrinit;
 qinit * st_muxrinit;
 qinit * st_muxwinit;
};
typedef struct streamtab streamtab;

Fields
st_rdinit
st_wrinit
st_muxrinit
st_muxwinit

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

strfdinsert

struct strfdinsert {
 strbuf ctlbuf;
 strbuf databuf;
 long flags;
 long fildes;
 SInt32 offset;
};
typedef struct strfdinsert strfdinsert;

Fields
ctlbuf
databuf
flags
fildes
offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

strioctl

struct strioctl {
 SInt32 ic_cmd;
 SInt32 ic_timout;
 SInt32 ic_len;
 char * ic_dp;
};
typedef struct strioctl strioctl;

Fields
ic_cmd
ic_timout
ic_len
ic_dp

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2506 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

stroptions

struct stroptions {
 unsigned long so_flags;
 short so_readopt;
 unsigned short so_wroff;
 long so_minpsz;
 long so_maxpsz;
 unsigned long so_hiwat;
 unsigned long so_lowat;
 unsigned char so_band;
 unsigned char so_filler[3];
 unsigned long so_poll_set;
 unsigned long so_poll_clr;
};
typedef struct stroptions stroptions;

Fields
so_flags
so_readopt
so_wroff
so_minpsz
so_maxpsz
so_hiwat
so_lowat
so_band
so_filler
so_poll_set
so_poll_clr

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

strpeek

struct strpeek {
 strbuf ctlbuf;
 strbuf databuf;
 long flags;
};
typedef struct strpeek strpeek;

Fields
ctlbuf
databuf
flags

Availability
Available in Mac OS X v10.0 and later.

Data Types 2507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

strpfp

struct strpfp {
 unsigned long pass_file_cookie;
 unsigned short pass_uid;
 unsigned short pass_gid;
 sth_s * pass_sth;
};
typedef struct strpfp strpfp;

Fields
pass_file_cookie
pass_uid
pass_gid
pass_sth

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

strpmsg

struct strpmsg {
 strbuf ctlbuf;
 strbuf databuf;
 SInt32 band;
 long flags;
};
typedef struct strpmsg strpmsg;

Fields
ctlbuf
databuf
band
flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2508 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

strrecvfd

struct strrecvfd {
 long fd;
 unsigned short uid;
 unsigned short gid;
 char fill[8];
};
typedef struct strrecvfd strrecvfd;

Fields
fd
uid
gid
fill

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_addr_ack

struct T_addr_ack {
 long PRIM_type;
 long LOCADDR_length;
 long LOCADDR_offset;
 long REMADDR_length;
 long REMADDR_offset;
};
typedef struct T_addr_ack T_addr_ack;

Fields
PRIM_type
LOCADDR_length
LOCADDR_offset
REMADDR_length
REMADDR_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_addr_req

struct T_addr_req {
 long PRIM_type;
};
typedef struct T_addr_req T_addr_req;

Fields
PRIM_type

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_bind_ack

struct T_bind_ack {
 long PRIM_type;
 long ADDR_length;
 long ADDR_offset;
 unsigned long CONIND_number;
};
typedef struct T_bind_ack T_bind_ack;

Fields
PRIM_type
ADDR_length
ADDR_offset
CONIND_number

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2510 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_bind_req

struct T_bind_req {
 long PRIM_type;
 long ADDR_length;
 long ADDR_offset;
 unsigned long CONIND_number;
};
typedef struct T_bind_req T_bind_req;

Fields
PRIM_type
ADDR_length
ADDR_offset
CONIND_number

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

t_call

Fields

T_cancelreply_req

struct T_cancelreply_req {
 long PRIM_type;
 long SEQ_number;
};
typedef struct T_cancelreply_req T_cancelreply_req;

Fields
PRIM_type
SEQ_number

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_cancelrequest_req

struct T_cancelrequest_req {
 long PRIM_type;
 long SEQ_number;
};
typedef struct T_cancelrequest_req T_cancelrequest_req;

Fields
PRIM_type
SEQ_number

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_conn_con

struct T_conn_con {
 long PRIM_type;
 long RES_length;
 long RES_offset;
 long OPT_length;
 long OPT_offset;
};
typedef struct T_conn_con T_conn_con;

Fields
PRIM_type
RES_length
RES_offset
OPT_length
OPT_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2512 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_conn_ind

struct T_conn_ind {
 long PRIM_type;
 long SRC_length;
 long SRC_offset;
 long OPT_length;
 long OPT_offset;
 long SEQ_number;
};
typedef struct T_conn_ind T_conn_ind;

Fields
PRIM_type
SRC_length
SRC_offset
OPT_length
OPT_offset
SEQ_number

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_conn_req

struct T_conn_req {
 long PRIM_type;
 long DEST_length;
 long DEST_offset;
 long OPT_length;
 long OPT_offset;
};
typedef struct T_conn_req T_conn_req;

Fields
PRIM_type
DEST_length
DEST_offset
OPT_length
OPT_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_conn_res

struct T_conn_res {
 long PRIM_type;
 queue_t * QUEUE_ptr;
 long OPT_length;
 long OPT_offset;
 long SEQ_number;
};
typedef struct T_conn_res T_conn_res;

Fields
PRIM_type
QUEUE_ptr
OPT_length
OPT_offset
SEQ_number

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_data_ind

struct T_data_ind {
 long PRIM_type;
 long MORE_flag;
};
typedef struct T_data_ind T_data_ind;

Fields
PRIM_type
MORE_flag

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2514 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_data_req

struct T_data_req {
 long PRIM_type;
 long MORE_flag;
};
typedef struct T_data_req T_data_req;

Fields
PRIM_type
MORE_flag

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_delname_req

struct T_delname_req {
 long PRIM_type;
 long SEQ_number;
 long NAME_length;
 long NAME_offset;
};
typedef struct T_delname_req T_delname_req;

Fields
PRIM_type
SEQ_number
NAME_length
NAME_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

t_discon

Data Types 2515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Fields

T_discon_ind

struct T_discon_ind {
 long PRIM_type;
 long DISCON_reason;
 long SEQ_number;
};
typedef struct T_discon_ind T_discon_ind;

Fields
PRIM_type
DISCON_reason
SEQ_number

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_discon_req

struct T_discon_req {
 long PRIM_type;
 long SEQ_number;
};
typedef struct T_discon_req T_discon_req;

Fields
PRIM_type
SEQ_number

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2516 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_error_ack

struct T_error_ack {
 long PRIM_type;
 long ERROR_prim;
 long TLI_error;
 long UNIX_error;
};
typedef struct T_error_ack T_error_ack;

Fields
PRIM_type
ERROR_prim
TLI_error
UNIX_error

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_event_ind

struct T_event_ind {
 long PRIM_type;
 long EVENT_code;
 long EVENT_cookie;
};
typedef struct T_event_ind T_event_ind;

Fields
PRIM_type
EVENT_code
EVENT_cookie

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_exdata_ind

struct T_exdata_ind {
 long PRIM_type;
 long MORE_flag;
};
typedef struct T_exdata_ind T_exdata_ind;

Fields
PRIM_type
MORE_flag

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_exdata_req

struct T_exdata_req {
 long PRIM_type;
 long MORE_flag;
};
typedef struct T_exdata_req T_exdata_req;

Fields
PRIM_type
MORE_flag

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

t_info

2518 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Fields

T_info_ack

struct T_info_ack {
 long PRIM_type;
 long TSDU_size;
 long ETSDU_size;
 long CDATA_size;
 long DDATA_size;
 long ADDR_size;
 long OPT_size;
 long TIDU_size;
 long SERV_type;
 long CURRENT_state;
 long PROVIDER_flag;
};
typedef struct T_info_ack T_info_ack;

Fields
PRIM_type
TSDU_size
ETSDU_size
CDATA_size
DDATA_size
ADDR_size
OPT_size
TIDU_size
SERV_type
CURRENT_state
PROVIDER_flag

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_info_req

struct T_info_req {
 long PRIM_type;
};
typedef struct T_info_req T_info_req;

Fields
PRIM_type

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

The Keepalive Structure
Specifies the value of the OPT_KEEPALIVE option.

struct t_kpalive {
 SInt32 kp_onoff;
 SInt32 kp_timeout;
};
typedef struct t_kpalive t_kpalive;

Fields
kp_onoff

A constant specifying whether the option is turned on (T_ON) or off (T_OFF).

kp_timeout
A positive integer specifying how many minutes Open Transport should maintain a connection in
the absence of traffic.

Discussion
The keepalive structure specifies the value of the OPT_KEEPALIVE option, described in “XTI-Level Options
and Generic Options” (page 2718)

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

The Linger Structure
Specifies the value of the XTI_LINGER option.

struct t_linger {
 SInt32 l_onoff;
 SInt32 l_linger;
};
typedef struct t_linger t_linger;

Fields
l_onoff

A constant specifying whether the option is turned on (T_ON) or off (T_OFF).

l_linger
An integer specifying the linger time, the amount of time in seconds that Open Transport should wait
to allow data in an endpoint’s internal buffer to be sent before the OTCloseProvider function closes
the endpoint.

To request the default value for this option, set the l_linger field to T_UNSPEC.

Discussion
The linger structure specifies the value of the XTI_LINGER option, described in “XTI-Level Options and
Generic Options” (page 2718).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

2520 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_lkupname_con

struct T_lkupname_con {
 long PRIM_type;
 long SEQ_number;
 long NAME_length;
 long NAME_offset;
 long RSP_count;
 long RSP_cumcount;
};
typedef struct T_lkupname_con T_lkupname_con;

Fields
PRIM_type
SEQ_number
NAME_length
NAME_offset
RSP_count
RSP_cumcount

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_lkupname_req

struct T_lkupname_req {
 long PRIM_type;
 long SEQ_number;
 long NAME_length;
 long NAME_offset;
 long ADDR_length;
 long ADDR_offset;
 long MAX_number;
 long MAX_milliseconds;
 long REQ_flags;
};
typedef struct T_lkupname_req T_lkupname_req;

Fields
PRIM_type
SEQ_number
NAME_length
NAME_offset
ADDR_length
ADDR_offset
MAX_number
MAX_milliseconds
REQ_flags

Availability
Available in Mac OS X v10.0 and later.

Data Types 2521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

T_MIB_ack

Fields

T_MIB_req

Fields

T_ok_ack

struct T_ok_ack {
 long PRIM_type;
 long CORRECT_prim;
};
typedef struct T_ok_ack T_ok_ack;

Fields
PRIM_type
CORRECT_prim

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

t_opthdr

2522 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Fields

T_optmgmt_ack

struct T_optmgmt_ack {
 long PRIM_type;
 long OPT_length;
 long OPT_offset;
 long MGMT_flags;
};
typedef struct T_optmgmt_ack T_optmgmt_ack;

Fields
PRIM_type
OPT_length
OPT_offset
MGMT_flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_optmgmt_req

struct T_optmgmt_req {
 long PRIM_type;
 long OPT_length;
 long OPT_offset;
 long MGMT_flags;
};
typedef struct T_optmgmt_req T_optmgmt_req;

Fields
PRIM_type
OPT_length
OPT_offset
MGMT_flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_ordrel_ind

struct T_ordrel_ind {
 long PRIM_type;
};
typedef struct T_ordrel_ind T_ordrel_ind;

Fields
PRIM_type

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_ordrel_req

struct T_ordrel_req {
 long PRIM_type;
};
typedef struct T_ordrel_req T_ordrel_req;

Fields
PRIM_type

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2524 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_primitives

union T_primitives {
 long primType;
 T_addr_ack taddrack;
 T_bind_ack tbindack;
 T_bind_req tbindreq;
 T_conn_con tconncon;
 T_conn_ind tconnind;
 T_conn_req tconnreq;
 T_conn_res tconnres;
 T_data_ind tdataind;
 T_data_req tdatareq;
 T_discon_ind tdisconind;
 T_discon_req tdisconreq;
 T_exdata_ind texdataind;
 T_exdata_req texdatareq;
 T_error_ack terrorack;
 T_info_ack tinfoack;
 T_info_req tinforeq;
 T_ok_ack tokack;
 T_optmgmt_ack toptmgmtack;
 T_optmgmt_req toptmgmtreq;
 T_ordrel_ind tordrelind;
 T_ordrel_req tordrelreq;
 T_unbind_req tunbindreq;
 T_uderror_ind tuderrorind;
 T_unitdata_ind tunitdataind;
 T_unitdata_req tunitdatareq;
 T_unitreply_ind tunitreplyind;
 T_unitrequest_ind tunitrequestind;
 T_unitrequest_req tunitrequestreq;
 T_unitreply_req tunitreplyreq;
 T_unitreply_ack tunitreplyack;
 T_reply_ind treplyind;
 T_request_ind trequestind;
 T_request_req trequestreq;
 T_reply_req treplyreq;
 T_reply_ack treplyack;
 T_cancelrequest_req tcancelreqreq;
 T_resolveaddr_req tresolvereq;
 T_resolveaddr_ack tresolveack;
 T_regname_req tregnamereq;
 T_regname_ack tregnameack;
 T_delname_req tdelnamereq;
 T_lkupname_req tlkupnamereq;
 T_lkupname_con tlkupnamecon;
 T_sequence_ack tsequenceack;
 T_event_ind teventind;
};
typedef union T_primitives T_primitives;

Fields
primType
taddrack
tbindack
tbindreq

Data Types 2525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

tconncon
tconnind
tconnreq
tconnres
tdataind
tdatareq
tdisconind
tdisconreq
texdataind
texdatareq
terrorack
tinfoack
tinforeq
tokack
toptmgmtack
toptmgmtreq
tordrelind
tordrelreq
tunbindreq
tuderrorind
tunitdataind
tunitdatareq
tunitreplyind
tunitrequestind
tunitrequestreq
tunitreplyreq
tunitreplyack
treplyind
trequestind
trequestreq
treplyreq
treplyack
tcancelreqreq
tresolvereq
tresolveack
tregnamereq
tregnameack
tdelnamereq
tlkupnamereq
tlkupnamecon
tsequenceack
teventind

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2526 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_regname_ack

struct T_regname_ack {
 long PRIM_type;
 long SEQ_number;
 long REG_id;
 long ADDR_length;
 long ADDR_offset;
};
typedef struct T_regname_ack T_regname_ack;

Fields
PRIM_type
SEQ_number
REG_id
ADDR_length
ADDR_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_regname_req

struct T_regname_req {
 long PRIM_type;
 long SEQ_number;
 long NAME_length;
 long NAME_offset;
 long ADDR_length;
 long ADDR_offset;
 long REQ_flags;
};
typedef struct T_regname_req T_regname_req;

Fields
PRIM_type
SEQ_number
NAME_length
NAME_offset
ADDR_length
ADDR_offset
REQ_flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

t_reply

Fields

T_reply_ack

struct T_reply_ack {
 long PRIM_type;
 long SEQ_number;
 long TLI_error;
 long UNIX_error;
};
typedef struct T_reply_ack T_reply_ack;

Fields
PRIM_type
SEQ_number
TLI_error
UNIX_error

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_reply_ind

struct T_reply_ind {
 long PRIM_type;
 long SEQ_number;
 long OPT_length;
 long OPT_offset;
 long REP_flags;
 long TLI_error;
 long UNIX_error;
};
typedef struct T_reply_ind T_reply_ind;

Fields
PRIM_type
SEQ_number
OPT_length
OPT_offset
REP_flags
TLI_error
UNIX_error

Availability
Available in Mac OS X v10.0 and later.

2528 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

T_reply_req

struct T_reply_req {
 long PRIM_type;
 long SEQ_number;
 long OPT_length;
 long OPT_offset;
 long REP_flags;
};
typedef struct T_reply_req T_reply_req;

Fields
PRIM_type
SEQ_number
OPT_length
OPT_offset
REP_flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

t_request

Data Types 2529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Fields

T_request_ind

struct T_request_ind {
 long PRIM_type;
 long SEQ_number;
 long OPT_length;
 long OPT_offset;
 long REQ_flags;
};
typedef struct T_request_ind T_request_ind;

Fields
PRIM_type
SEQ_number
OPT_length
OPT_offset
REQ_flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_request_req

struct T_request_req {
 long PRIM_type;
 long SEQ_number;
 long OPT_length;
 long OPT_offset;
 long REQ_flags;
};
typedef struct T_request_req T_request_req;

Fields
PRIM_type
SEQ_number
OPT_length
OPT_offset
REQ_flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2530 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_resolveaddr_ack

struct T_resolveaddr_ack {
 long PRIM_type;
 long SEQ_number;
 long ADDR_length;
 long ADDR_offset;
 long ORIG_client;
 long ORIG_data;
 long TLI_error;
 long UNIX_error;
};
typedef struct T_resolveaddr_ack T_resolveaddr_ack;

Fields
PRIM_type
SEQ_number
ADDR_length
ADDR_offset
ORIG_client
ORIG_data
TLI_error
UNIX_error

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_resolveaddr_req

struct T_resolveaddr_req {
 long PRIM_type;
 long SEQ_number;
 long ADDR_length;
 long ADDR_offset;
 long ORIG_client;
 long ORIG_data;
 long MAX_milliseconds;
};
typedef struct T_resolveaddr_req T_resolveaddr_req;

Fields
PRIM_type
SEQ_number
ADDR_length
ADDR_offset
ORIG_client
ORIG_data
MAX_milliseconds

Availability
Available in Mac OS X v10.0 and later.

Data Types 2531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

T_sequence_ack

struct T_sequence_ack {
 long PRIM_type;
 long ORIG_prim;
 long SEQ_number;
 long TLI_error;
 long UNIX_error;
};
typedef struct T_sequence_ack T_sequence_ack;

Fields
PRIM_type
ORIG_prim
SEQ_number
TLI_error
UNIX_error

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_stream_timer

Fields

T_stream_timer_1

Fields

t_uderr

2532 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Fields

T_uderror_ind

struct T_uderror_ind {
 long PRIM_type;
 long DEST_length;
 long DEST_offset;
 long OPT_length;
 long OPT_offset;
 long ERROR_type;
};
typedef struct T_uderror_ind T_uderror_ind;

Fields
PRIM_type
DEST_length
DEST_offset
OPT_length
OPT_offset
ERROR_type

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_unbind_req

struct T_unbind_req {
 long PRIM_type;
};
typedef struct T_unbind_req T_unbind_req;

Fields
PRIM_type

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

t_unitdata

Data Types 2533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Fields

T_unitdata_ind

struct T_unitdata_ind {
 long PRIM_type;
 long SRC_length;
 long SRC_offset;
 long OPT_length;
 long OPT_offset;
};
typedef struct T_unitdata_ind T_unitdata_ind;

Fields
PRIM_type
SRC_length
SRC_offset
OPT_length
OPT_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_unitdata_req

struct T_unitdata_req {
 long PRIM_type;
 long DEST_length;
 long DEST_offset;
 long OPT_length;
 long OPT_offset;
};
typedef struct T_unitdata_req T_unitdata_req;

Fields
PRIM_type
DEST_length
DEST_offset
OPT_length
OPT_offset

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

2534 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

t_unitreply

Fields

T_unitreply_ack

struct T_unitreply_ack {
 long PRIM_type;
 long SEQ_number;
 long TLI_error;
 long UNIX_error;
};
typedef struct T_unitreply_ack T_unitreply_ack;

Fields
PRIM_type
SEQ_number
TLI_error
UNIX_error

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T_unitreply_ind

struct T_unitreply_ind {
 long PRIM_type;
 long SEQ_number;
 long OPT_length;
 long OPT_offset;
 long REP_flags;
 long TLI_error;
 long UNIX_error;
};
typedef struct T_unitreply_ind T_unitreply_ind;

Fields
PRIM_type
SEQ_number
OPT_length
OPT_offset
REP_flags
TLI_error
UNIX_error

Availability
Available in Mac OS X v10.0 and later.

Data Types 2535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransportProtocol.h

T_unitreply_req

struct T_unitreply_req {
 long PRIM_type;
 long SEQ_number;
 long OPT_length;
 long OPT_offset;
 long REP_flags;
};
typedef struct T_unitreply_req T_unitreply_req;

Fields
PRIM_type
SEQ_number
OPT_length
OPT_offset
REP_flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

t_unitrequest

2536 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Fields

T_unitrequest_ind

struct T_unitrequest_ind {
 long PRIM_type;
 long SEQ_number;
 long SRC_length;
 long SRC_offset;
 long OPT_length;
 long OPT_offset;
 long REQ_flags;
};
typedef struct T_unitrequest_ind T_unitrequest_ind;

Fields
PRIM_type
SEQ_number
SRC_length
SRC_offset
OPT_length
OPT_offset
REQ_flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_unitrequest_req

struct T_unitrequest_req {
 long PRIM_type;
 long SEQ_number;
 long DEST_length;
 long DEST_offset;
 long OPT_length;
 long OPT_offset;
 long REQ_flags;
};
typedef struct T_unitrequest_req T_unitrequest_req;

Fields
PRIM_type
SEQ_number
DEST_length
DEST_offset
OPT_length
OPT_offset
REQ_flags

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

T8022Address

struct T8022Address {
 OTAddressType fAddrFamily;
 UInt8 fHWAddr[6];
 UInt16 fSAP;
 UInt8 fSNAP[5];
};
typedef struct T8022Address T8022Address;

Fields
fAddrFamily
fHWAddr
fSAP
fSNAP

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

2538 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T8022FullPacketHeader

struct T8022FullPacketHeader {
 EnetPacketHeader fEnetPart;
 T8022SNAPHeader f8022Part;
};
typedef struct T8022FullPacketHeader T8022FullPacketHeader;

Fields
fEnetPart
f8022Part

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

T8022Header

struct T8022Header {
 UInt8 fDSAP;
 UInt8 fSSAP;
 UInt8 fCtrl;
};
typedef struct T8022Header T8022Header;

Fields
fDSAP
fSSAP
fCtrl

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

Data Types 2539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T8022SNAPHeader

struct T8022SNAPHeader {
 UInt8 fDSAP;
 UInt8 fSSAP;
 UInt8 fCtrl;
 UInt8 fSNAP[5];
};
typedef struct T8022SNAPHeader T8022SNAPHeader;

Fields
fDSAP
fSSAP
fCtrl
fSNAP

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

TBind
Describes the protocol address to which an endpoint is currently bound or connected, or specifies the protocol
address to which you wish to bind or connect the endpoint.

struct TBind {
 TNetbuf addr;
 OTQLen qlen;
};
typedef struct TBind TBind;

Fields
addr

A TNetbuf structure that contains information about an address. The addr.maxlen field specifies
the maximum size of the address, the addr.len field specifies the actual length of the address, and
the addr.buf field points to the buffer containing the address.

When specifying an address, you must allocate a buffer for the address and initialize it; you must set
the addr.buf field to point to this buffer; and you must set the addr.len field to the size of the
address.

When requesting an address, you must allocate a buffer in which the address is to be placed; you
must set the addr.buf field to point to this buffer; and you must set the addr.maxlen field to the
maximum size of the address that is being returned. You determine this value by examining the addr
field of the TEndpointInfo (page 2542) structure for the endpoint.

qlen
For a connection-oriented endpoint, the maximum number of connection requests that can be
concurrently outstanding for this endpoint. For more information, see the description of the
OTBind (page 2319) function. For connectionless endpoints, this field has no meaning.

2540 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Discussion
The TBind structure describes the protocol address to which an endpoint is currently bound or connected,
or specifies the protocol address to which you wish to bind or connect the endpoint. For a connection-oriented
endpoint, the TBind structure also specifies the actual or desired number of connection requests that can
be concurrently outstanding for the endpoint.

You pass theTBind structure as a parameter to theOTBind (page 2319) function, theOTGetProtAddress (page
2348) function, and the OTResolveAddress (page 2387) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TCall
Specifies the options and data associated with establishing a connection.

struct TCall {
 TNetbuf addr;
 TNetbuf opt;
 TNetbuf udata;
 OTSequence sequence;
};
typedef struct TCall TCall;

Fields
addr

A TNetbuf structure that specifies the location and size of an address buffer

opt
A TNetbuf structure that specifies the location and size of an options buffer.

udata
A TNetbuf structure that specifies the location and size of a buffer for data associated with a connection
or disconnection request.

sequence
A 32-bit value used by the OTListen and OTAccept functions to specify the connection ID.

Discussion
You use the TCall structure to specify the options and data associated with establishing a connection. You
pass a pointer to this structure as a parameter to the OTConnect function, the OTRcvConnect function, the
OTListen function, and the OTAccept function.

If you are using the TCall structure to send information, you must allocate a buffer and initialize it to contain
the information. Set the .buf field of each TNetbuf to point to the buffer, and then specify the size of the
buffer using the .len field. Set this field to 0 if you are not sending data.

If you are using the TCall structure to receive information, you must allocate a buffer into which the function
can place the information when it returns. Then set the .buf field of all the TNetbufs to point to this buffer,
and set the .maxlen field to the maximum size of the information. Set this field to 0 if you are not interested
in receiving information.

Availability
Available in Mac OS X v10.0 and later.

Data Types 2541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

TDiscon
Specifies data sent with the OTSndDisconnect function and retrieved by the OTRcvDisconnect function.

struct TDiscon {
 TNetbuf udata;
 OTReason reason;
 OTSequence sequence;
};
typedef struct TDiscon TDiscon;

Fields
udata

A TNetbuf structure that references data sent with the OTSndDisconnect function or received by the
OTRcvDisconnect function.

reason
A 32-bit value specifying an error code that identifies the reason for the disconnection. These codes
are supplied by the protocol. For additional information, consult the documentation provided for the
protocol you are using.

sequence
A 32-bit value specifying an outstanding connection request that has been rejected. This field is
meaningful only when you have issued several connection requests to the same endpoint and are
awaiting the results.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TEndpointInfo
Describes the initial characteristics of an endpoint that you opened by calling the OTOpenEndpointInContext
function; returned by calling OTGetEndpointInfo.

2542 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct TEndpointInfo {
 OTDataSize addr;
 OTDataSize options;
 OTDataSize tsdu;
 OTDataSize etsdu;
 OTDataSize connect;
 OTDataSize discon;
 OTServiceType servtype;
 UInt32 flags;
};
typedef struct TEndpointInfo TEndpointInfo;

Fields
addr
options

A value greater than or equal to 0 indicates the maximum number of bytes needed to store the
protocol-specific options that this endpoint supports, if any. A value of T_INVALID (-2) indicates that
this endpoint has no protocol-specific options that you can set; they are read-only. A value of -3
specifies that the provider does not support any options.

tsdu
For a transactionless endpoint, a positive value indicates the maximum number of bytes in a transport
service data unit (TSDU) for this endpoint. A value of T_INFINITE (-1) indicates that there is no limit
to the size of a TSDU. A value of 0 indicates that the provider does not support the concept of a TSDU.
This means that you cannot send data with logical boundaries preserved across a connection. A value
of T_INVALID indicates that this endpoint cannot transfer normal data (as opposed to expedited
data).

For a transaction-based endpoint, this field indicates the maximum number of bytes in a response.

etsdu
For a transactionless endpoint, a positive value indicates the maximum number of bytes in an expedited
transport service data unit (ETSDU) for this endpoint. A value of T_INFINITE indicates that there is
no limit to the size of a ETSDU. A value of 0 indicates that this endpoint does not support the concept
of an ETSDU. This means that you must not send expedited data with logical boundaries preserved
across a connection. A value of T_INVALID indicates that this endpoint cannot transfer expedited
data.

For a transaction-based endpoint, this field indicates the maximum number of bytes in a request.

connect
For a connection-oriented endpoint, a value greater than or equal to 0 indicates the maximum amount
of data (in bytes) that you can send with the OTConnect (page 2326) function or the OTAccept (page
2306) function. A value of T_INVALID indicates that this endpoint does not let you send data with
these functions. This field is meaningless for other types of endpoints.

discon
For a connection-oriented endpoint, a value greater than or equal to 0 indicates the maximum amount
of data (in bytes) that you can send using the OTSndDisconnect (page 2399) function. A value of
T_INVALID indicates that this endpoint does not let you send data with disconnection requests. This
field is meaningless for other types of endpoints.

servtype
A constant that indicates what kind of service the endpoint provides. Possible values are given by
the “Endpoint Service Types” (page 2670) enumeration.

flags
A bit FIeld that provides additional information about the endpoint. Possible values are given by the
“Endpoint Flags” (page 2706) enumeration.

Data Types 2543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

IP Multicast Address Structure
Supports adding and dropping membership in an IP multicast address.

struct TIPAddMulticast {
 InetHost multicastGroupAddress;
 InetHost interfaceAddress;
};
typedef struct TIPAddMulticast TIPAddMulticast;

Fields
multicastGroupAddress

The IP address of the multicast group for which you want to add or drop membership.

interfaceAddress
The IP address of the network interface that you are using for the multicast group.

Discussion
You use the IP multicast address structure with the IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP options
when you are adding or dropping membership in an IP multicast address.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProviders.h

TLookupBuffer
Defines the format of entries in the buffer passed back in the reply parameter of the OTLookupName function.

struct TLookupBuffer {
 UInt16 fAddressLength;
 UInt16 fNameLength;
 UInt8 fAddressBuffer[1];
};
typedef struct TLookupBuffer TLookupBuffer;

Fields
fAddressLength

Specifies the size of the address specified by the fAddressBuffer field.

fNameLength
Specifies the size of the name that is stored in the buffer following the fAddressBuffer field.

fAddressBuffer
The first byte of the address to which the entity whose name follows (in the buffer) is bound.

2544 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Discussion
The TLookupBuffer structure defines the format of entries in the buffer passed back in the reply parameter
of the OTLookupName function. When you parse the buffer in which the OTLookupName function places
the names it has found, you can cast it as a TLookupBuffer structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TLookupReply
Stores information passed back to your application by the OTLookupName function.

struct TLookupReply {
 TNetbuf names;
 UInt32 rspcount;
};
typedef struct TLookupReply TLookupReply;

Fields
names

A TNetbuf structure that specifies the size and location of a buffer into which the OTLookupName
function, on return, places the names it has found. You must allocate the buffer into which the replies
are stored when the function returns; you must set the names.buf field to point to it; and you must
set the names.maxlen field to the size of the buffer.

rspcount
A long specifying, on return, the number of names found.

Discussion
You use the TLookupReply structure to store information passed back to you by the OTLookupName function.
The information includes both a pointer to a buffer (containing registered entity names matching the criterion
specified with the TLookupRequest structure) and the number of names found.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TLookupRequest
Specifies the entity name to be looked up by the OTLookupName function.

Data Types 2545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct TLookupRequest {
 TNetbuf name;
 TNetbuf addr;
 UInt32 maxcnt;
 OTTimeout timeout;
 OTFlags flags;
};
typedef struct TLookupRequest TLookupRequest;

Fields
name

A TNetbuf structure specifying the location and size of a buffer that contains the name to be looked
up. You must allocate a buffer that contains the name, set the name.buf field to point to it, and set
the name.len field to the length of the name.

addr
A TNetbuf structure describing the address of the node where you expect the names to be stored.
You should normally supply 0 for addr.len. This causes the provider to use internal defaults for the
starting point of the search. For a protocol family such as AppleTalk, in which every node has access
to name and address information, this parameter is meaningless.

Specifying an address has meaning for those protocols that use a dedicated server or other device
to store name information. In such a case, the name specified would override the protocol’s default
address. To specify an address, you would need to allocate a buffer containing the address, set the
addr.buf field to point to it, and set the addr.len field to the length of the address. Consult the
documentation supplied with your protocol to determine whether you can or should specify an
address.

maxcnt
A long specifying the number of names you expect to be returned. Some protocols allow the use of
wildcard characters in specifying a name. As a result, the OTLookupName function might find multiple
names matching the specified name pattern. If you expect a specific number of replies for a particular
name or do not expect to exceed a specific number, you should specify this number to obtain faster
execution. Otherwise, set this field to 0xffff ffff; in this case, the timeout value will control the lookup.

timeout
A long specifying the amount of time, in milliseconds, that should elapse before Open Transport gives
up searching for a name. Specify 0 to leave the timeout value up to the underlying naming system.

flags

Discussion
You use the TLookupRequest structure to specify the entity name to be looked up by the OTLookupName
function and to set additional values that the mapper provider uses to circumscribe the search.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TNetbuf
Specifies the location and size of a buffer that contains an address, option information, or user data.

2546 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct TNetbuf {
 ByteCount maxlen;
 ByteCount len;
 UInt8 * buf;
};
typedef struct TNetbuf TNetbuf;

Fields
maxlen

The size (in bytes) of the buffer to which the buf field points. You must set the maxlen field before
passing a TNetbuf structure to a provider function as an output parameter. Open Transport ignores
this field if you pass the TNetbuf structure as an input parameter.

len
The actual length (in bytes) of the information in the buffer to which the buf field points. If you are
using the TNetbuf structure as an input parameter, you must set this field.

If you pass the TNetbuf structure as an output parameter, on return the provider function sets this
field to the number of bytes the function has actually placed in the buffer referenced by the buf field.

buf
A pointer to a buffer. You must make sure that the buf field points to a valid buffer and that the
buffer is large enough to store the information for which it is intended.

Discussion
You use a TNetbuf structure to specify the location and size of a buffer that contains an address, option
information, or user data. Provider functions use TNetbuf structures both as input parameters and output
parameters. If you use a TNetbuf structure as an input parameter, you specify the location and size of a buffer
containing information you want to send. If you use a TNetbuf structure as an output parameter, you specify
the location and the maximum size of the buffer used to hold information when the function returns.

You use a TNetbuf structure to describe the location and size of contiguous data. Open Transport allows you
to describe noncontiguous data with the OTData structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

The TOption Structure
Stores information about a single option in a buffer.

struct TOption {
 ByteCount len;
 OTXTILevel level;
 OTXTIName name;
 UInt32 status;
 UInt32 value[1];
};
typedef struct TOption TOption;

Fields
len

The size (in bytes) of the option information, including the header.

Data Types 2547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

level
The protocol for which the option is defined.

name
The name of the option.

status
A status code specifying whether the negotiation has succeeded or failed. Possible values are given
by the “Open Transport Flags and Status Codes” (page 2702) enumeration

value
The option value. To have the endpoint select an appropriate value, you can specify the constant
T_UNSPEC.

Discussion
The TOption structure stores information about a single option in a buffer. All functions that you use to
change or verify option values use a buffer containing TOption structures to store option information. For
each option in the buffer, the TOption structure specifies the total length occupied by the option, the protocol
level of the option, the option name, the status of a negotiated value, and the value of the option.

You use the TOption structure with the OPT_NEXTHDR macro, the OTCreateOptionString function, the
OTNextOption function, and the OTFindOption function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

The TOptionHeader Structure
Stores information about options in a buffer.

struct TOptionHeader {
 ByteCount len;
 OTXTILevel level;
 OTXTIName name;
 UInt32 status;
};
typedef struct TOptionHeader TOptionHeader;

Fields
len

The size (in bytes) of the option information, including the header.

level
The protocol affected.

name
The option name.

status
The status value. Possible values are given by the “Open Transport Flags and Status Codes” (page
2702).

Availability
Available in Mac OS X v10.0 and later.

2548 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

The Option Management Structure
Manages the req and ret parameters of the OTOptionManagement function

struct TOptMgmt {
 TNetbuf opt;
 OTFlags flags;
};
typedef struct TOptMgmt TOptMgmt;

Fields
opt

A TNetbuf structure describing the buffer containing option information. The opt.maxlen field specifies
the maximum size of the buffer. The opt.len field specifies the actual size of the buffer, and the opt.buf
field contains the address of the buffer.

On input, as part of the req parameter, the buffer contains TOption structures describing the options
to be negotiated or verified, or contains the names of options whose default or current values you
are interested in. You must allocate this buffer, place in it the structures describing the options of
interest, and set the opt.len field to the size of the buffer.

On output, as part of the ret parameter, the buffer contains the actual values of the options you
described in the req parameter. You must allocate a buffer to hold the option information when the
function returns and set the opt.maxlen field to the maximum length of this buffer. When the function
returns, the opt.len field is set to the actual length of the buffer.

flags
For the req parameter, the flags field indicates the action to be taken as defined by the action flags
enumeration (page 570). For the ret parameter, the flags field indicates the overall success or failure
of the operation performed by the OTOptionManagement function, as defined by the “Open Transport
Flags and Status Codes” (page 2702) enumeration.

Discussion
The option management structure is used for the req and ret parameters of the OTOptionManagement
function. The req parameter is used to verify or negotiate option values. The ret parameter returns information
about an endpoint’s default, current, or negotiated values.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TOTConfiguratorRef

typedef struct OpaqueTOTConfiguratorRef * TOTConfiguratorRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

Data Types 2549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TPortRecord

struct TPortRecord {
 OTLink fLink;
 char *fPortName;
 char *fModuleName;
 char *fResourceInfo;
 char *fSlotID;
 TPortRecord *fAlias;
 ItemCount fNumChildren;
 OTPortRef *fChildPorts;
 UInt32 fPortFlags;
 UInt32 fInfoFlags;
 UInt32 fCapabilities;
 OTPortRef fRef;
 streamtab *fStreamtab;
 void *fContext;
 void *fExtra;
};

Fields

trace_ids

struct trace_ids {
 short ti_mid;
 short ti_sid;
 char ti_level;
};
typedef struct trace_ids trace_ids;

Fields
ti_mid
ti_sid
ti_level

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransportProtocol.h

TRegisterReply
Stores information returned by the OTRegisterName function.

2550 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct TRegisterReply {
 TNetbuf addr;
 OTNameID nameid;
};
typedef struct TRegisterReply TRegisterReply;

Fields
addr

A TNetbuf structure that specifies the location and size of a buffer containing the actual address of
the entity whose name you have just registered. This information is passed back to you when the
OTRegisterName function returns. You must allocate a buffer, set the addr.buf field to point to it, and
set the addr.maxlen field to the size of the buffer.

nameid
A unique identifier passed to you when the OTRegisterName function returns. You can use this
identifier when you call the OTDeleteNameByID function to delete the name.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TRegisterRequest
Specifies the entity name you want to register using the OTRegisterName function and, optionally, to specify
its address.

struct TRegisterRequest {
 TNetbuf name;
 TNetbuf addr;
 OTFlags flags;
};
typedef struct TRegisterRequest TRegisterRequest;

Fields
name

A TNetbuf structure that specifies the location and size of a buffer containing the entity name you
want to register. You must allocate a buffer that contains the name, set the name.buf field to point
to that buffer, and set the name.len field to the length of the buffer.

addr
A TNetbuf structure that specifies the location and size of a buffer containing the address associated
with the entity whose name you want to register. You must allocate a buffer that contains the address,
set the addr.buf field to point to that buffer, and set the addr.len field to the length of the buffer. The
actual address with which the entity is associated is returned in the addr field of the TRegisterReply
structure.

You can set the addr.len field to 0, in which case the underlying protocol finds an appropriate address
to associate with the newly registered entity name.

flags
A field used to control registration. Normally, this field is set to 0 for default registration behavior. See
the documentation for the naming service you are using for more information.

Availability
Available in Mac OS X v10.0 and later.

Data Types 2551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

TReply

struct TReply {
 TNetbuf data;
 TNetbuf opt;
 OTSequence sequence;
};
typedef struct TReply TReply;

Fields
data
opt
sequence

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TRequest

struct TRequest {
 TNetbuf data;
 TNetbuf opt;
 OTSequence sequence;
};
typedef struct TRequest TRequest;

Fields
data
opt
sequence

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TUDErr
In the event of failure of the OTSndUData function, points to information that explains why it failed.function
(page 462) has failed.

2552 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

struct TUDErr {
 TNetbuf addr;
 TNetbuf opt;
 SInt32 error;
};
typedef struct TUDErr TUDErr;

Fields
addr

A TNetbuf (page 2546) structure that contains information about the destination address of the data
sent using theOTSndUData (page 2400) function. TheOTRcvUData (page 2381) function fills in the buffer
referenced by this structure when the function returns. You must allocate a buffer to contain the
address, initialize the addr.buf field to point to it, and set the addr.maxlen field to specify its
maximum size. If you are not interested in address information, set addr.maxlen to 0.

opt
A TNetbuf (page 2546) structure that contains information about the options associated with the data
sent using theOTSndUData (page 2400)function. TheOTRcvUDErr (page 2382) function fills in the buffer
referenced by this structure when the function returns. If you want to know this information, you
must allocate a buffer to contain the option data, initialize the opt.buf field to point to it, and initialize
the opt.maxlen field to specify the maximum size of the buffer. If you are not interested in option
information, set the opt.maxlen field to 0.

error
On return, this specifies a protocol-dependent error code for the OTSndUData (page 2400) function
that failed.

Discussion
In the event of failure of the OTSndUData (page 2400)function, points to information that explains why it
failed.You pass this structure as a parameter to the OTRcvUData (page 2381) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TUnitData
Describes the data being sent with the OTSndUData function and the data being read with the OTRcvUData
function.function (page 467)

struct TUnitData {
 TNetbuf addr;
 TNetbuf opt;
 TNetbuf udata;
};
typedef struct TUnitData TUnitData;

Fields
addr

A TNetbuf structure for address information.

opt
A TNetbuf structure for option information.

Data Types 2553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

udata
A TNetbuf structure for data.

Discussion
You use the TUnitData structure to describe the data being sent with the OTSndUData (page 2400) function
and the data being read with the OTRcvUData (page 2381) function; you pass this structure as a parameter to
each of these functions. When sending data you must initialize the buf and len fields of all the TNetbuf
structures. When receiving data, you must initialize the buf and maxlen fields of all the TNetbuf structures.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

TUnitReply

struct TUnitReply {
 TNetbuf opt;
 TNetbuf udata;
 OTSequence sequence;
};
typedef struct TUnitReply TUnitReply;

Fields
opt
udata
sequence

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

2554 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TUnitRequest

struct TUnitRequest {
 TNetbuf addr;
 TNetbuf opt;
 TNetbuf udata;
 OTSequence sequence;
};
typedef struct TUnitRequest TUnitRequest;

Fields
addr
opt
udata
sequence

Discussion

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

uchar_p

typedef UInt8 uchar_p;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

uid_t

typedef UInt32 uid_t;

Availability
Available in Mac OS X v10.0 and later.

Declared In
types.h

uint_t

typedef uint_t;

Availability
Available in Mac OS X v10.0 and later.

Data Types 2555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Declared In
OpenTransport.h

ushort_p

typedef UInt16 ushort_p;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OpenTransport.h

Constants

AF_8022

enum {
 AF_8022 = 8200
};

Constants
AF_8022

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

AF_ATALK_FAMILY

enum {
 AF_ATALK_FAMILY = 0x0100,
 AF_ATALK_DDP = 0x0100,
 AF_ATALK_DDPNBP = AF_ATALK_FAMILY + 1,
 AF_ATALK_NBP = AF_ATALK_FAMILY + 2,
 AF_ATALK_MNODE = AF_ATALK_FAMILY + 3
};

Constants
AF_ATALK_FAMILY

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

AF_ATALK_DDP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

AF_ATALK_DDPNBP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2556 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

AF_ATALK_NBP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

AF_ATALK_MNODE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

AF_DNS

enum {
 AF_DNS = 42
};

Constants
AF_DNS

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

AF_INET

enum {
 AF_INET = 2
};

Constants
AF_INET

AF_ISDN

enum {
 AF_ISDN = 8192
};

Constants
AF_ISDN

ANYMARK

enum {
 ANYMARK = 0x01,
 LASTMARK = 0x02
};

Constants
ANYMARK

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

LASTMARK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

ATALK_IOC_FULLSELFSEND

enum {
 ATALK_IOC_FULLSELFSEND = ((MIOC_ATALK << 8) | 47),
 ADSP_IOC_FORWARDRESET = ((MIOC_ATALK << 8) | 60)
};

Constants
ATALK_IOC_FULLSELFSEND

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ADSP_IOC_FORWARDRESET
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATK_DDP

enum {
 ATK_DDP = 'DDP ',
 ATK_AARP = 'AARP',
 ATK_ATP = 'ATP ',
 ATK_ADSP = 'ADSP',
 ATK_ASP = 'ASP ',
 ATK_PAP = 'PAP ',
 ATK_NBP = 'NBP ',
 ATK_ZIP = 'ZIP '
};

Constants
ATK_DDP

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATK_AARP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATK_ATP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATK_ADSP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2558 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

ATK_ASP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATK_PAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATK_NBP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATK_ZIP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

BPRI_LO

enum {
 BPRI_LO = 1,
 BPRI_MED = 2,
 BPRI_HI = 3
};

Constants
BPRI_LO

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

BPRI_MED
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

BPRI_HI
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

CE_CONT

enum {
 CE_CONT = 0,
 CE_NOTE = 0,
 CE_WARN = 1,
 CE_PANIC = 2
};

Constants
CE_CONT
CE_NOTE
CE_WARN
CE_PANIC

CLONEOPEN

enum {
 CLONEOPEN = 0x02,
 MODOPEN = 0x01,
 OPENFAIL = -1
};

Constants
CLONEOPEN

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MODOPEN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

OPENFAIL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

COM_ISDN

enum {
 COM_ISDN = 'ISDN'
};

Constants
COM_ISDN

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2560 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

COM_PPP

enum {
 COM_PPP = 'PPPC'
};

Constants
COM_PPP

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

COM_SERIAL

enum {
 COM_SERIAL = 'SERL'
};

Constants
COM_SERIAL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DDP_OPT_CHECKSUM

enum {
 DDP_OPT_CHECKSUM = 0x0600,
 DDP_OPT_SRCADDR = 0x2101,
 ATP_OPT_REPLYCNT = 0x2110,
 ATP_OPT_DATALEN = 0x2111,
 ATP_OPT_RELTIMER = 0x2112,
 ATP_OPT_TRANID = 0x2113,
 PAP_OPT_OPENRETRY = 0x2120
};

Constants
DDP_OPT_CHECKSUM

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DDP_OPT_SRCADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATP_OPT_REPLYCNT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATP_OPT_DATALEN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

ATP_OPT_RELTIMER
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ATP_OPT_TRANID
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

PAP_OPT_OPENRETRY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DDP_OPT_HOPCOUNT

enum {
 DDP_OPT_HOPCOUNT = 0x2100
};

Constants
DDP_OPT_HOPCOUNT

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2562 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_ACCESS

enum {
 DL_ACCESS = 0x02,
 DL_BADADDR = 0x01,
 DL_BADCORR = 0x05,
 DL_BADDATA = 0x06,
 DL_BADPPA = 0x08,
 DL_BADPRIM = 0x09,
 DL_BADQOSPARAM = 0x0A,
 DL_BADQOSTYPE = 0x0B,
 DL_BADSAP = 0x00,
 DL_BADTOKEN = 0x0C,
 DL_BOUND = 0x0D,
 DL_INITFAILED = 0x0E,
 DL_NOADDR = 0x0F,
 DL_NOTINIT = 0x10,
 DL_OUTSTATE = 0x03,
 DL_SYSERR = 0x04,
 DL_UNSUPPORTED = 0x07,
 DL_UNDELIVERABLE = 0x11,
 DL_NOTSUPPORTED = 0x12,
 DL_TOOMANY = 0x13,
 DL_NOTENAB = 0x14,
 DL_BUSY = 0x15,
 DL_NOAUTO = 0x16,
 DL_NOXIDAUTO = 0x17,
 DL_NOTESTAUTO = 0x18,
 DL_XIDAUTO = 0x19,
 DL_TESTAUTO = 0x1A,
 DL_PENDING = 0x1B
};

Constants
DL_ACCESS

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BADADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BADCORR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BADDATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BADPPA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BADPRIM
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_BADQOSPARAM
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BADQOSTYPE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BADSAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BADTOKEN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BOUND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_INITFAILED
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_NOADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_NOTINIT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_OUTSTATE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SYSERR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNSUPPORTED
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNDELIVERABLE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_NOTSUPPORTED
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TOOMANY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2564 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_NOTENAB
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BUSY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_NOAUTO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_NOXIDAUTO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_NOTESTAUTO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_XIDAUTO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TESTAUTO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_AUTO_XID

enum {
 DL_AUTO_XID = 0x01,
 DL_AUTO_TEST = 0x02
};

Constants
DL_AUTO_XID

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_AUTO_TEST
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_CMD_MASK

enum {
 DL_CMD_MASK = 0x0F,
 DL_CMD_OK = 0x00,
 DL_CMD_RS = 0x01,
 DL_CMD_UE = 0x05,
 DL_CMD_PE = 0x06,
 DL_CMD_IP = 0x07,
 DL_CMD_UN = 0x09,
 DL_CMD_IT = 0x0F,
 DL_RSP_MASK = 0xF0,
 DL_RSP_OK = 0x00,
 DL_RSP_RS = 0x10,
 DL_RSP_NE = 0x30,
 DL_RSP_NR = 0x40,
 DL_RSP_UE = 0x50,
 DL_RSP_IP = 0x70,
 DL_RSP_UN = 0x90,
 DL_RSP_IT = 0xF0
};

Constants
DL_CMD_MASK

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CMD_OK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CMD_RS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CMD_UE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CMD_PE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CMD_IP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CMD_UN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CMD_IT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2566 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_RSP_MASK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RSP_OK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RSP_RS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RSP_NE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RSP_NR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RSP_UE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RSP_IP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RSP_UN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RSP_IT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CODLS

enum {
 DL_CODLS = 0x01,
 DL_CLDLS = 0x02,
 DL_ACLDLS = 0x04
};

Constants
DL_CODLS

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CLDLS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_ACLDLS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONREJ_DEST_UNKNOWN

enum {
 DL_CONREJ_DEST_UNKNOWN = 0x0800,
 DL_CONREJ_DEST_UNREACH_PERMANENT = 0x0801,
 DL_CONREJ_DEST_UNREACH_TRANSIENT = 0x0802,
 DL_CONREJ_QOS_UNAVAIL_PERMANENT = 0x0803,
 DL_CONREJ_QOS_UNAVAIL_TRANSIENT = 0x0804,
 DL_CONREJ_PERMANENT_COND = 0x0805,
 DL_CONREJ_TRANSIENT_COND = 0x0806,
 DL_DISC_ABNORMAL_CONDITION = 0x0807,
 DL_DISC_NORMAL_CONDITION = 0x0808,
 DL_DISC_PERMANENT_CONDITION = 0x0809,
 DL_DISC_TRANSIENT_CONDITION = 0x080A,
 DL_DISC_UNSPECIFIED = 0x080B
};

Constants
DL_CONREJ_DEST_UNKNOWN

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONREJ_DEST_UNREACH_PERMANENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONREJ_DEST_UNREACH_TRANSIENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONREJ_QOS_UNAVAIL_PERMANENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONREJ_QOS_UNAVAIL_TRANSIENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONREJ_PERMANENT_COND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONREJ_TRANSIENT_COND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISC_ABNORMAL_CONDITION
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2568 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_DISC_NORMAL_CONDITION
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISC_PERMANENT_CONDITION
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISC_TRANSIENT_CONDITION
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISC_UNSPECIFIED
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CSMACD

enum {
 DL_CSMACD = 0x00,
 DL_TPB = 0x01,
 DL_TPR = 0x02,
 DL_METRO = 0x03,
 DL_ETHER = 0x04,
 DL_HDLC = 0x05,
 DL_CHAR = 0x06,
 DL_CTCA = 0x07,
 DL_FDDI = 0x08,
 DL_OTHER = 0x09
};

Constants
DL_CSMACD

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TPB
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TPR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_METRO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_ETHER
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_HDLC
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_CHAR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CTCA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_FDDI
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_OTHER
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CURRENT_VERSION

enum {
 DL_CURRENT_VERSION = 0x02,
 DL_VERSION_2 = 0x02
};

Constants
DL_CURRENT_VERSION

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_VERSION_2
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_FACT_PHYS_ADDR

enum {
 DL_FACT_PHYS_ADDR = 0x01,
 DL_CURR_PHYS_ADDR = 0x02
};

Constants
DL_FACT_PHYS_ADDR

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CURR_PHYS_ADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2570 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_INFO_REQ

enum {
 DL_INFO_REQ = 0x00,
 DL_INFO_ACK = 0x03,
 DL_ATTACH_REQ = 0x0B,
 DL_DETACH_REQ = 0x0C,
 DL_BIND_REQ = 0x01,
 DL_BIND_ACK = 0x04,
 DL_UNBIND_REQ = 0x02,
 DL_OK_ACK = 0x06,
 DL_ERROR_ACK = 0x05,
 DL_SUBS_BIND_REQ = 0x1B,
 DL_SUBS_BIND_ACK = 0x1C,
 DL_SUBS_UNBIND_REQ = 0x15,
 DL_ENABMULTI_REQ = 0x1D,
 DL_DISABMULTI_REQ = 0x1E,
 DL_PROMISCON_REQ = 0x1F,
 DL_PROMISCOFF_REQ = 0x20,
 DL_UNITDATA_REQ = 0x07,
 DL_UNITDATA_IND = 0x08,
 DL_UDERROR_IND = 0x09,
 DL_UDQOS_REQ = 0x0A,
 DL_CONNECT_REQ = 0x0D,
 DL_CONNECT_IND = 0x0E,
 DL_CONNECT_RES = 0x0F,
 DL_CONNECT_CON = 0x10,
 DL_TOKEN_REQ = 0x11,
 DL_TOKEN_ACK = 0x12,
 DL_DISCONNECT_REQ = 0x13,
 DL_DISCONNECT_IND = 0x14,
 DL_RESET_REQ = 0x17,
 DL_RESET_IND = 0x18,
 DL_RESET_RES = 0x19,
 DL_RESET_CON = 0x1A,
 DL_DATA_ACK_REQ = 0x21,
 DL_DATA_ACK_IND = 0x22,
 DL_DATA_ACK_STATUS_IND = 0x23,
 DL_REPLY_REQ = 0x24,
 DL_REPLY_IND = 0x25,
 DL_REPLY_STATUS_IND = 0x26,
 DL_REPLY_UPDATE_REQ = 0x27,
 DL_REPLY_UPDATE_STATUS_IND = 0x28,
 DL_XID_REQ = 0x29,
 DL_XID_IND = 0x2A,
 DL_XID_RES = 0x2B,
 DL_XID_CON = 0x2C,
 DL_TEST_REQ = 0x2D,
 DL_TEST_IND = 0x2E,
 DL_TEST_RES = 0x2F,
 DL_TEST_CON = 0x30,
 DL_PHYS_ADDR_REQ = 0x31,
 DL_PHYS_ADDR_ACK = 0x32,
 DL_SET_PHYS_ADDR_REQ = 0x33,
 DL_GET_STATISTICS_REQ = 0x34,
 DL_GET_STATISTICS_ACK = 0x35
};

Constants 2571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Constants
DL_INFO_REQ

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_INFO_ACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_ATTACH_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DETACH_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BIND_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BIND_ACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNBIND_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_OK_ACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_ERROR_ACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SUBS_BIND_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SUBS_BIND_ACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SUBS_UNBIND_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_ENABMULTI_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISABMULTI_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2572 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_PROMISCON_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PROMISCOFF_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNITDATA_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNITDATA_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UDERROR_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UDQOS_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONNECT_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONNECT_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONNECT_RES
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONNECT_CON
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TOKEN_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TOKEN_ACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISCONNECT_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISCONNECT_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_RESET_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_RES
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_CON
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DATA_ACK_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DATA_ACK_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DATA_ACK_STATUS_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_STATUS_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_UPDATE_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_UPDATE_STATUS_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_XID_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_XID_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2574 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_XID_RES
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_XID_CON
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TEST_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TEST_IND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TEST_RES
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TEST_CON
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PHYS_ADDR_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PHYS_ADDR_ACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SET_PHYS_ADDR_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_GET_STATISTICS_REQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_GET_STATISTICS_ACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_INFO_REQ_SIZE

enum {
 DL_INFO_REQ_SIZE = sizeof(dl_info_req_t),
 DL_INFO_ACK_SIZE = sizeof(dl_info_ack_t),
 DL_ATTACH_REQ_SIZE = sizeof(dl_attach_req_t),
 DL_DETACH_REQ_SIZE = sizeof(dl_detach_req_t),
 DL_BIND_REQ_SIZE = sizeof(dl_bind_req_t),
 DL_BIND_ACK_SIZE = sizeof(dl_bind_ack_t),
 DL_UNBIND_REQ_SIZE = sizeof(dl_unbind_req_t),
 DL_SUBS_BIND_REQ_SIZE = sizeof(dl_subs_bind_req_t),
 DL_SUBS_BIND_ACK_SIZE = sizeof(dl_subs_bind_ack_t),
 DL_SUBS_UNBIND_REQ_SIZE = sizeof(dl_subs_unbind_req_t),
 DL_OK_ACK_SIZE = sizeof(dl_ok_ack_t),
 DL_ERROR_ACK_SIZE = sizeof(dl_error_ack_t),
 DL_CONNECT_REQ_SIZE = sizeof(dl_connect_req_t),
 DL_CONNECT_IND_SIZE = sizeof(dl_connect_ind_t),
 DL_CONNECT_RES_SIZE = sizeof(dl_connect_res_t),
 DL_CONNECT_CON_SIZE = sizeof(dl_connect_con_t),
 DL_TOKEN_REQ_SIZE = sizeof(dl_token_req_t),
 DL_TOKEN_ACK_SIZE = sizeof(dl_token_ack_t),
 DL_DISCONNECT_REQ_SIZE = sizeof(dl_disconnect_req_t),
 DL_DISCONNECT_IND_SIZE = sizeof(dl_disconnect_ind_t),
 DL_RESET_REQ_SIZE = sizeof(dl_reset_req_t),
 DL_RESET_IND_SIZE = sizeof(dl_reset_ind_t),
 DL_RESET_RES_SIZE = sizeof(dl_reset_res_t),
 DL_RESET_CON_SIZE = sizeof(dl_reset_con_t),
 DL_UNITDATA_REQ_SIZE = sizeof(dl_unitdata_req_t),
 DL_UNITDATA_IND_SIZE = sizeof(dl_unitdata_ind_t),
 DL_UDERROR_IND_SIZE = sizeof(dl_uderror_ind_t),
 DL_UDQOS_REQ_SIZE = sizeof(dl_udqos_req_t),
 DL_ENABMULTI_REQ_SIZE = sizeof(dl_enabmulti_req_t),
 DL_DISABMULTI_REQ_SIZE = sizeof(dl_disabmulti_req_t),
 DL_PROMISCON_REQ_SIZE = sizeof(dl_promiscon_req_t),
 DL_PROMISCOFF_REQ_SIZE = sizeof(dl_promiscoff_req_t),
 DL_PHYS_ADDR_REQ_SIZE = sizeof(dl_phys_addr_req_t),
 DL_PHYS_ADDR_ACK_SIZE = sizeof(dl_phys_addr_ack_t),
 DL_SET_PHYS_ADDR_REQ_SIZE = sizeof(dl_set_phys_addr_req_t),
 DL_GET_STATISTICS_REQ_SIZE = sizeof(dl_get_statistics_req_t),
 DL_GET_STATISTICS_ACK_SIZE = sizeof(dl_get_statistics_ack_t),
 DL_XID_REQ_SIZE = sizeof(dl_xid_req_t),
 DL_XID_IND_SIZE = sizeof(dl_xid_ind_t),
 DL_XID_RES_SIZE = sizeof(dl_xid_res_t),
 DL_XID_CON_SIZE = sizeof(dl_xid_con_t),
 DL_TEST_REQ_SIZE = sizeof(dl_test_req_t),
 DL_TEST_IND_SIZE = sizeof(dl_test_ind_t),
 DL_TEST_RES_SIZE = sizeof(dl_test_res_t),
 DL_TEST_CON_SIZE = sizeof(dl_test_con_t),
 DL_DATA_ACK_REQ_SIZE = sizeof(dl_data_ack_req_t),
 DL_DATA_ACK_IND_SIZE = sizeof(dl_data_ack_ind_t),
 DL_DATA_ACK_STATUS_IND_SIZE = sizeof(dl_data_ack_status_ind_t),
 DL_REPLY_REQ_SIZE = sizeof(dl_reply_req_t),
 DL_REPLY_IND_SIZE = sizeof(dl_reply_ind_t),
 DL_REPLY_STATUS_IND_SIZE = sizeof(dl_reply_status_ind_t),
 DL_REPLY_UPDATE_REQ_SIZE = sizeof(dl_reply_update_req_t),
 DL_REPLY_UPDATE_STATUS_IND_SIZE = sizeof(dl_reply_update_status_ind_t)
};

2576 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Constants
DL_INFO_REQ_SIZE

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_INFO_ACK_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_ATTACH_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DETACH_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BIND_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BIND_ACK_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNBIND_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SUBS_BIND_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SUBS_BIND_ACK_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SUBS_UNBIND_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_OK_ACK_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_ERROR_ACK_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONNECT_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONNECT_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_CONNECT_RES_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONNECT_CON_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TOKEN_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TOKEN_ACK_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISCONNECT_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISCONNECT_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_RES_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_CON_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNITDATA_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNITDATA_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UDERROR_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UDQOS_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2578 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_ENABMULTI_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISABMULTI_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PROMISCON_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PROMISCOFF_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PHYS_ADDR_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PHYS_ADDR_ACK_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SET_PHYS_ADDR_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_GET_STATISTICS_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_GET_STATISTICS_ACK_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_XID_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_XID_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_XID_RES_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_XID_CON_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TEST_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_TEST_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TEST_RES_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_TEST_CON_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DATA_ACK_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DATA_ACK_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DATA_ACK_STATUS_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_STATUS_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_UPDATE_REQ_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_REPLY_UPDATE_STATUS_IND_SIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_IOC_HDR_INFO

enum {
 DL_IOC_HDR_INFO = ((MIOC_DLPI << 8) | 10)
};

Constants
DL_IOC_HDR_INFO

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2580 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_NONE

enum {
 DL_NONE = 0x0B01,
 DL_MONITOR = 0x0B02,
 DL_MAXIMUM = 0x0B03
};

Constants
DL_NONE

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_MONITOR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_MAXIMUM
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PEER_BIND

enum {
 DL_PEER_BIND = 0x01,
 DL_HIERARCHICAL_BIND = 0x02
};

Constants
DL_PEER_BIND

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_HIERARCHICAL_BIND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_POLL_FINAL

enum {
 DL_POLL_FINAL = 0x01
};

Constants
DL_POLL_FINAL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_PROMISC_OFF

enum {
 DL_PROMISC_OFF = 0
};

Constants
DL_PROMISC_OFF

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DL_PROMISC_PHYS

enum {
 DL_PROMISC_PHYS = 0x01,
 DL_PROMISC_SAP = 0x02,
 DL_PROMISC_MULTI = 0x03
};

Constants
DL_PROMISC_PHYS

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PROMISC_SAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PROMISC_MULTI
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PROVIDER

enum {
 DL_PROVIDER = 0x0700,
 DL_USER = 0x0701
};

Constants
DL_PROVIDER

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_USER
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2582 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_QOS_CO_RANGE1

enum {
 DL_QOS_CO_RANGE1 = 0x0101,
 DL_QOS_CO_SEL1 = 0x0102,
 DL_QOS_CL_RANGE1 = 0x0103,
 DL_QOS_CL_SEL1 = 0x0104
};

Constants
DL_QOS_CO_RANGE1

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_QOS_CO_SEL1
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_QOS_CL_RANGE1
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_QOS_CL_SEL1
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_FLOW_CONTROL

enum {
 DL_RESET_FLOW_CONTROL = 0x0900,
 DL_RESET_LINK_ERROR = 0x0901,
 DL_RESET_RESYNCH = 0x0902
};

Constants
DL_RESET_FLOW_CONTROL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_LINK_ERROR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_RESYNCH
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_RQST_RSP

enum {
 DL_RQST_RSP = 0x01,
 DL_RQST_NORSP = 0x02
};

Constants
DL_RQST_RSP

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RQST_NORSP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_STYLE1

enum {
 DL_STYLE1 = 0x0500,
 DL_STYLE2 = 0x0501
};

Constants
DL_STYLE1

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_STYLE2
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2584 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_UNATTACHED

enum {
 DL_UNATTACHED = 0x04,
 DL_ATTACH_PENDING = 0x05,
 DL_DETACH_PENDING = 0x06,
 DL_UNBOUND = 0x00,
 DL_BIND_PENDING = 0x01,
 DL_UNBIND_PENDING = 0x02,
 DL_IDLE = 0x03,
 DL_UDQOS_PENDING = 0x07,
 DL_OUTCON_PENDING = 0x08,
 DL_INCON_PENDING = 0x09,
 DL_CONN_RES_PENDING = 0x0A,
 DL_DATAXFER = 0x0B,
 DL_USER_RESET_PENDING = 0x0C,
 DL_PROV_RESET_PENDING = 0x0D,
 DL_RESET_RES_PENDING = 0x0E,
 DL_DISCON8_PENDING = 0x0F,
 DL_DISCON9_PENDING = 0x10,
 DL_DISCON11_PENDING = 0x11,
 DL_DISCON12_PENDING = 0x12,
 DL_DISCON13_PENDING = 0x13,
 DL_SUBS_BIND_PND = 0x14,
 DL_SUBS_UNBIND_PND = 0x15
};

Constants
DL_UNATTACHED

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_ATTACH_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DETACH_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNBOUND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_BIND_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNBIND_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_IDLE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_UDQOS_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_OUTCON_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_INCON_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_CONN_RES_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DATAXFER
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_USER_RESET_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_PROV_RESET_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_RESET_RES_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISCON8_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISCON9_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISCON11_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISCON12_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_DISCON13_PENDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_SUBS_BIND_PND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2586 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DL_SUBS_UNBIND_PND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_UNKNOWN

enum {
 DL_UNKNOWN = -1,
 DL_QOS_DONT_CARE = -2
};

Constants
DL_UNKNOWN

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DL_QOS_DONT_CARE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

DVMRP_INIT

enum {
 DVMRP_INIT = 100,
 DVMRP_DONE = 101,
 DVMRP_ADD_VIF = 102,
 DVMRP_DEL_VIF = 103,
 DVMRP_ADD_LGRP = 104,
 DVMRP_DEL_LGRP = 105,
 DVMRP_ADD_MRT = 106,
 DVMRP_DEL_MRT = 107
};

Constants
DVMRP_INIT

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DVMRP_DONE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DVMRP_ADD_VIF
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DVMRP_DEL_VIF
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DVMRP_ADD_LGRP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DVMRP_DEL_LGRP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DVMRP_ADD_MRT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

DVMRP_DEL_MRT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

EAddrType

typedef UInt32 EAddrType;
enum {
 keaStandardAddress = 0,
 keaMulticast = 1,
 keaBroadcast = 2,
 keaBadAddress = 3,
 keaRawPacketBit = 0x80000000,
 keaTimeStampBit = 0x40000000
};

Constants
keaStandardAddress

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

keaMulticast
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

keaBroadcast
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

keaBadAddress
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

keaRawPacketBit
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

keaTimeStampBit
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2588 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

EPERM

enum {
 EPERM = 1,
 ENOENT = 2,
 ENORSRC = 3,
 EINTR = 4,
 EIO = 5,
 ENXIO = 6,
 EBADF = 9,
 EAGAIN = 11,
 ENOMEM = 12,
 EACCES = 13,
 EFAULT = 14,
 EBUSY = 16,
 EEXIST = 17,
 ENODEV = 19,
 EINVAL = 22,
 ENOTTY = 25,
 EPIPE = 32,
 ERANGE = 34,
 EDEADLK = 35,
 EWOULDBLOCK = 35,
 EALREADY = 37,
 ENOTSOCK = 38,
 EDESTADDRREQ = 39,
 EMSGSIZE = 40,
 EPROTOTYPE = 41,
 ENOPROTOOPT = 42,
 EPROTONOSUPPORT = 43,
 ESOCKTNOSUPPORT = 44,
 EOPNOTSUPP = 45,
 EADDRINUSE = 48,
 EADDRNOTAVAIL = 49,
 ENETDOWN = 50,
 ENETUNREACH = 51,
 ENETRESET = 52,
 ECONNABORTED = 53,
 ECONNRESET = 54,
 ENOBUFS = 55,
 EISCONN = 56,
 ENOTCONN = 57,
 ESHUTDOWN = 58,
 ETOOMANYREFS = 59,
 ETIMEDOUT = 60,
 ECONNREFUSED = 61,
 EHOSTDOWN = 64,
 EHOSTUNREACH = 65,
 EPROTO = 70,
 ETIME = 71,
 ENOSR = 72,
 EBADMSG = 73,
 ECANCEL = 74,
 ENOSTR = 75,
 ENODATA = 76,
 EINPROGRESS = 77,
 ESRCH = 78,
 ENOMSG = 79,

Constants 2589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

 ELASTERRNO = 79
};

Constants
EPERM

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENORSRC
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EINTR
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EIO
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENXIO
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EBADF
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EAGAIN
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOMEM
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EACCES
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EFAULT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EBUSY
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EEXIST
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2590 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

ENODEV
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EINVAL
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOTTY
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EPIPE
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ERANGE
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EDEADLK
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EWOULDBLOCK
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EALREADY
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOTSOCK
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EDESTADDRREQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EMSGSIZE
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EPROTOTYPE
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOPROTOOPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EPROTONOSUPPORT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

ESOCKTNOSUPPORT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EOPNOTSUPP
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EADDRINUSE
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EADDRNOTAVAIL
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENETDOWN
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENETUNREACH
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENETRESET
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ECONNABORTED
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ECONNRESET
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOBUFS
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EISCONN
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOTCONN
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ESHUTDOWN
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ETOOMANYREFS
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2592 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

ETIMEDOUT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ECONNREFUSED
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EHOSTDOWN
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EHOSTUNREACH
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EPROTO
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ETIME
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOSR
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EBADMSG
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ECANCEL
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOSTR
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENODATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

EINPROGRESS
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ESRCH
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ENOMSG
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

ELASTERRNO
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

FLUSHALL

enum {
 FLUSHALL = 1,
 FLUSHDATA = 0
};

Constants
FLUSHALL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

FLUSHDATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

FLUSHR

enum {
 FLUSHR = 0x01,
 FLUSHW = 0x02,
 FLUSHRW = (FLUSHW | FLUSHR)
};

Constants
FLUSHR

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

FLUSHW
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

FLUSHRW
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2594 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

FMNAMESZ

enum {
 FMNAMESZ = 31
};

Constants
FMNAMESZ

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

I_NREAD

enum {
 I_NREAD = ((MIOC_STREAMIO << 8) | 1),
 I_PUSH = ((MIOC_STREAMIO << 8) | 2),
 I_POP = ((MIOC_STREAMIO << 8) | 3),
 I_LOOK = ((MIOC_STREAMIO << 8) | 4),
 I_FLUSH = ((MIOC_STREAMIO << 8) | 5),
 I_SRDOPT = ((MIOC_STREAMIO << 8) | 6),
 I_GRDOPT = ((MIOC_STREAMIO << 8) | 7),
 I_STR = ((MIOC_STREAMIO << 8) | 8),
 I_SETSIG = ((MIOC_STREAMIO << 8) | 9),
 I_GETSIG = ((MIOC_STREAMIO << 8) | 10),
 I_FIND = ((MIOC_STREAMIO << 8) | 11),
 I_LINK = ((MIOC_STREAMIO << 8) | 12),
 I_UNLINK = ((MIOC_STREAMIO << 8) | 13),
 I_PEEK = ((MIOC_STREAMIO << 8) | 15),
 I_FDINSERT = ((MIOC_STREAMIO << 8) | 16),
 I_SENDFD = ((MIOC_STREAMIO << 8) | 17),
 I_RECVFD = ((MIOC_STREAMIO << 8) | 18),
 I_FLUSHBAND = ((MIOC_STREAMIO << 8) | 19),
 I_SWROPT = ((MIOC_STREAMIO << 8) | 20),
 I_GWROPT = ((MIOC_STREAMIO << 8) | 21),
 I_LIST = ((MIOC_STREAMIO << 8) | 22),
 I_ATMARK = ((MIOC_STREAMIO << 8) | 23),
 I_CKBAND = ((MIOC_STREAMIO << 8) | 24),
 I_GETBAND = ((MIOC_STREAMIO << 8) | 25),
 I_CANPUT = ((MIOC_STREAMIO << 8) | 26),
 I_SETCLTIME = ((MIOC_STREAMIO << 8) | 27),
 I_GETCLTIME = ((MIOC_STREAMIO << 8) | 28),
 I_PLINK = ((MIOC_STREAMIO << 8) | 29),
 I_PUNLINK = ((MIOC_STREAMIO << 8) | 30),
 I_GETMSG = ((MIOC_STREAMIO << 8) | 40),
 I_PUTMSG = ((MIOC_STREAMIO << 8) | 41),
 I_POLL = ((MIOC_STREAMIO << 8) | 42),
 I_SETDELAY = ((MIOC_STREAMIO << 8) | 43),
 I_GETDELAY = ((MIOC_STREAMIO << 8) | 44),
 I_RUN_QUEUES = ((MIOC_STREAMIO << 8) | 45),
 I_GETPMSG = ((MIOC_STREAMIO << 8) | 46),
 I_PUTPMSG = ((MIOC_STREAMIO << 8) | 47),
 I_AUTOPUSH = ((MIOC_STREAMIO << 8) | 48),
 I_PIPE = ((MIOC_STREAMIO << 8) | 49),
 I_HEAP_REPORT = ((MIOC_STREAMIO << 8) | 50),
 I_FIFO = ((MIOC_STREAMIO << 8) | 51)
};

Constants
I_NREAD

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_PUSH
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2596 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

I_POP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_LOOK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_FLUSH
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_SRDOPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_GRDOPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_STR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_SETSIG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_GETSIG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_FIND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_LINK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_UNLINK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_PEEK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_FDINSERT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_SENDFD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

I_RECVFD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_FLUSHBAND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_SWROPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_GWROPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_LIST
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_ATMARK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_CKBAND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_GETBAND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_CANPUT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_SETCLTIME
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_GETCLTIME
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_PLINK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_PUNLINK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_GETMSG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2598 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

I_PUTMSG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_POLL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_SETDELAY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_GETDELAY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_RUN_QUEUES
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_GETPMSG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_PUTPMSG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_AUTOPUSH
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_PIPE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_HEAP_REPORT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_FIFO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

I_OTGetMiscellaneousEvents

enum {
 I_OTGetMiscellaneousEvents = ((MIOC_OT << 8) | 1),
 I_OTSetFramingType = ((MIOC_OT << 8) | 2),
 kOTGetFramingValue = 0xFFFFFFFF,
 I_OTSetRawMode = ((MIOC_OT << 8) | 3),
 kOTSetRecvMode = 0x01,
 kOTSendErrorPacket = 0x02,
 I_OTConnect = ((MIOC_OT << 8) | 4),
 I_OTDisconnect = ((MIOC_OT << 8) | 5),
 I_OTScript = ((MIOC_OT << 8) | 6)
};

Constants
I_OTGetMiscellaneousEvents

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

I_OTSetFramingType
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTGetFramingValue
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

I_OTSetRawMode
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSetRecvMode
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSendErrorPacket
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

I_OTConnect
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

I_OTDisconnect
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

I_OTScript
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2600 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

I_OTISDNAlerting

enum {
 I_OTISDNAlerting = ((MIOC_ISDN << 8) | 100),
 I_OTISDNSuspend = ((MIOC_ISDN << 8) | 101),
 I_OTISDNSuspendAcknowledge = ((MIOC_ISDN << 8) | 102),
 I_OTISDNSuspendReject = ((MIOC_ISDN << 8) | 103),
 I_OTISDNResume = ((MIOC_ISDN << 8) | 104),
 I_OTISDNResumeAcknowledge = ((MIOC_ISDN << 8) | 105),
 I_OTISDNResumeReject = ((MIOC_ISDN << 8) | 106),
 I_OTISDNFaciltity = ((MIOC_ISDN << 8) | 107)
};

Constants
I_OTISDNAlerting

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_OTISDNSuspend
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_OTISDNSuspendAcknowledge
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_OTISDNSuspendReject
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_OTISDNResume
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_OTISDNResumeAcknowledge
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_OTISDNResumeReject
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_OTISDNFaciltity
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

I_SAD_SAP

enum {
 I_SAD_SAP = ((MIOC_SAD << 8) | 1),
 I_SAD_GAP = ((MIOC_SAD << 8) | 2),
 I_SAD_VML = ((MIOC_SAD << 8) | 3)
};

Constants
I_SAD_SAP

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_SAD_GAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_SAD_VML
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_SetSerialDTR

enum {
 I_SetSerialDTR = ((MIOC_SRL << 8) | 0),
 kOTSerialSetDTROff = 0,
 kOTSerialSetDTROn = 1,
 I_SetSerialBreak = ((MIOC_SRL << 8) | 1),
 kOTSerialSetBreakOn = 0xFFFFFFFF,
 kOTSerialSetBreakOff = 0,
 I_SetSerialXOffState = ((MIOC_SRL << 8) | 2),
 kOTSerialForceXOffTrue = 1,
 kOTSerialForceXOffFalse = 0,
 I_SetSerialXOn = ((MIOC_SRL << 8) | 3),
 kOTSerialSendXOnAlways = 1,
 kOTSerialSendXOnIfXOffTrue = 0,
 I_SetSerialXOff = ((MIOC_SRL << 8) | 4),
 kOTSerialSendXOffAlways = 1,
 kOTSerialSendXOffIfXOnTrue = 0
};

Constants
I_SetSerialDTR

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialSetDTROff
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialSetDTROn
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2602 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

I_SetSerialBreak
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialSetBreakOn
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialSetBreakOff
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_SetSerialXOffState
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialForceXOffTrue
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialForceXOffFalse
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_SetSerialXOn
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialSendXOnAlways
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialSendXOnIfXOffTrue
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

I_SetSerialXOff
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialSendXOffAlways
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialSendXOffIfXOnTrue
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

I_TRCLOG

enum {
 I_TRCLOG = ((MIOC_STRLOG << 8) | 1),
 I_ERRLOG = ((MIOC_STRLOG << 8) | 2)
};

Constants
I_TRCLOG

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

I_ERRLOG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

INET_IP

enum {
 INET_IP = 0x00,
 INET_TCP = 0x06,
 INET_UDP = 0x11
};

Constants
INET_IP

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

INET_TCP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

INET_UDP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

INFPSZ

enum {
 INFPSZ = -1
};

Constants
INFPSZ

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2604 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

INFTIM

enum {
 INFTIM = 0xFFFFFFFF
};

Constants
INFTIM

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

IP_OPTIONS

enum {
 IP_OPTIONS = 1,
 IP_TOS = 2,
 IP_TTL = 3,
 IP_REUSEADDR = 4,
 IP_DONTROUTE = 16,
 IP_BROADCAST = 32,
 IP_REUSEPORT = 512,
 IP_HDRINCL = 4098,
 IP_RCVOPTS = 4101,
 IP_RCVDSTADDR = 4103,
 IP_MULTICAST_IF = 4112,
 IP_MULTICAST_TTL = 4113,
 IP_MULTICAST_LOOP = 4114,
 IP_ADD_MEMBERSHIP = 4115,
 IP_DROP_MEMBERSHIP = 4116,
 IP_BROADCAST_IFNAME = 4117,
 IP_RCVIFADDR = 4118
};

Constants
IP_OPTIONS
IP_TOS
IP_TTL
IP_REUSEADDR
IP_DONTROUTE
IP_BROADCAST
IP_REUSEPORT
IP_HDRINCL
IP_RCVOPTS
IP_RCVDSTADDR
IP_MULTICAST_IF
IP_MULTICAST_TTL
IP_MULTICAST_LOOP
IP_ADD_MEMBERSHIP
IP_DROP_MEMBERSHIP
IP_BROADCAST_IFNAME
IP_RCVIFADDR

IPCP_OPT_GETREMOTEPROTOADDR

enum {
 IPCP_OPT_GETREMOTEPROTOADDR = 0x00007000,
 IPCP_OPT_GETLOCALPROTOADDR = 0x00007001,
 IPCP_OPT_TCPHDRCOMPRESSION = 0x00007002,
 LCP_OPT_PPPCOMPRESSION = 0x00007003,
 LCP_OPT_MRU = 0x00007004,
 LCP_OPT_RCACCMAP = 0x00007005,
 LCP_OPT_TXACCMAP = 0x00007006,
 SEC_OPT_OUTAUTHENTICATION = 0x00007007,
 SEC_OPT_ID = 0x00007008,
 SEC_OPT_PASSWORD = 0x00007009,

2606 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

 CC_OPT_REMINDERTIMER = 0x00007010,
 CC_OPT_IPIDLETIMER = 0x00007011,
 CC_OPT_DTEADDRESSTYPE = 0x00007012,
 CC_OPT_DTEADDRESS = 0x00007013,
 CC_OPT_CALLINFO = 0x00007014,
 CC_OPT_GETMISCINFO = 0x00007015,
 PPP_OPT_GETCURRENTSTATE = 0x00007016,
 LCP_OPT_ECHO = 0x00007017,
 CC_OPT_SERIALPORTNAME = 0x00007200
};

Constants
IPCP_OPT_GETREMOTEPROTOADDR

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

IPCP_OPT_GETLOCALPROTOADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

IPCP_OPT_TCPHDRCOMPRESSION
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

LCP_OPT_PPPCOMPRESSION
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

LCP_OPT_MRU
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

LCP_OPT_RCACCMAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

LCP_OPT_TXACCMAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SEC_OPT_OUTAUTHENTICATION
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SEC_OPT_ID
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SEC_OPT_PASSWORD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

CC_OPT_REMINDERTIMER
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

CC_OPT_IPIDLETIMER
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

CC_OPT_DTEADDRESSTYPE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

CC_OPT_DTEADDRESS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

CC_OPT_CALLINFO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

CC_OPT_GETMISCINFO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

PPP_OPT_GETCURRENTSTATE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

LCP_OPT_ECHO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

CC_OPT_SERIALPORTNAME
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ISDN_OPT_COMMTYPE

enum {
 ISDN_OPT_COMMTYPE = 0x0200,
 ISDN_OPT_FRAMINGTYPE = 0x0201,
 ISDN_OPT_56KADAPTATION = 0x0202
};

Constants
ISDN_OPT_COMMTYPE

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ISDN_OPT_FRAMINGTYPE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

ISDN_OPT_56KADAPTATION
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2608 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

k8022BasicAddressLength

enum {
 k8022BasicAddressLength = sizeof(OTAddressType) + k48BitAddrLength
+ sizeof(UInt16),
 k8022SNAPAddressLength = sizeof(OTAddressType) + k48BitAddrLength
+ sizeof(UInt16) + k8022SNAPLength
};

Constants
k8022BasicAddressLength

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

k8022SNAPAddressLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kAF_ISDN

enum {
 kAF_ISDN = 0x2000
};

Constants
kAF_ISDN

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kAllATalkRoutersDown

enum {
 kAllATalkRoutersDown = 0,
 kLocalATalkRoutersDown = -1L,
 kARARouterDisconnected = -2L
};

Constants
kAllATalkRoutersDown

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kLocalATalkRoutersDown
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kARARouterDisconnected
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kAllDHCPOptions

enum {
 kAllDHCPOptions = -1,
 kDHCPLongOption = 126,
 kDHCPLongOptionReq = 127
};

Constants
kAllDHCPOptions

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kDHCPLongOption
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kDHCPLongOptionReq
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kAppleTalkEvent

enum {
 kAppleTalkEvent = kPROTOCOLEVENT | 0x00010000,
 T_GETMYZONECOMPLETE = kAppleTalkEvent + 1,
 T_GETLOCALZONESCOMPLETE = kAppleTalkEvent + 2,
 T_GETZONELISTCOMPLETE = kAppleTalkEvent + 3,
 T_GETATALKINFOCOMPLETE = kAppleTalkEvent + 4,
 T_ATALKROUTERDOWNEVENT = kAppleTalkEvent + 51,
 T_ATALKROUTERUPEVENT = kAppleTalkEvent + 52,
 T_ATALKZONENAMECHANGEDEVENT = kAppleTalkEvent + 53,
 T_ATALKCONNECTIVITYCHANGEDEVENT = kAppleTalkEvent + 54,
 T_ATALKINTERNETAVAILABLEEVENT = kAppleTalkEvent + 55,
 T_ATALKCABLERANGECHANGEDEVENT = kAppleTalkEvent + 56
};

Constants
kAppleTalkEvent

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_GETMYZONECOMPLETE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_GETLOCALZONESCOMPLETE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_GETZONELISTCOMPLETE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2610 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_GETATALKINFOCOMPLETE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_ATALKROUTERDOWNEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_ATALKROUTERUPEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_ATALKZONENAMECHANGEDEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_ATALKCONNECTIVITYCHANGEDEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_ATALKINTERNETAVAILABLEEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_ATALKCABLERANGECHANGEDEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kARARouterOnline

enum {
 kARARouterOnline = -1L,
 kATalkRouterOnline = 0,
 kLocalATalkRouterOnline = -2L
};

Constants
kARARouterOnline

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kATalkRouterOnline
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kLocalATalkRouterOnline
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kATalkInfoIsExtended

enum {
 kATalkInfoIsExtended = 0x0001,
 kATalkInfoHasRouter = 0x0002,
 kATalkInfoOneZone = 0x0004
};

Constants
kATalkInfoIsExtended

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kATalkInfoHasRouter
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kATalkInfoOneZone
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kCCReminderTimerDisabled

enum {
 kCCReminderTimerDisabled = 0,
 kCCIPIdleTimerDisabled = 0
};

Constants
kCCReminderTimerDisabled

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kCCIPIdleTimerDisabled
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kDDPAddressLength

enum {
 kDDPAddressLength = 8,
 kNBPAddressLength = kNBPEntityBufferSize,
 kAppleTalkAddressLength = kDDPAddressLength + kNBPEntityBufferSize
};

Constants
kDDPAddressLength

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2612 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kNBPAddressLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kAppleTalkAddressLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kDefaultAppleTalkServicesPath

enum {
 kDefaultAppleTalkServicesPath = -3
};

Constants
kDefaultAppleTalkServicesPath

kDefaultInetInterface

enum {
 kDefaultInetInterface = -1
};

Constants
kDefaultInetInterface

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kDefaultInternetServicesPath

enum {
 kDefaultInternetServicesPath = -3
};

Constants
kDefaultInternetServicesPath

kE164Address

enum {
 kE164Address = 1,
 kPhoneAddress = 1,
 kCompoundPhoneAddress = 2,
 kX121Address = 3
};

Constants
kE164Address

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPhoneAddress
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kCompoundPhoneAddress
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kX121Address
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kECHO_TSDU

enum {
 kECHO_TSDU = 585
};

Constants
kECHO_TSDU

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2614 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kEnetPacketHeaderLength

enum {
 kEnetPacketHeaderLength = (2 * k48BitAddrLength) + k8022DLSAPLength,
 kEnetTSDU = 1514,
 kTokenRingTSDU = 4458,
 kFDDITSDU = 4458,
 k8022SAPLength = 1,
 k8022BasicHeaderLength = 3,
 k8022SNAPHeaderLength = k8022SNAPLength + k8022BasicHeaderLength
};

Constants
kEnetPacketHeaderLength

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kEnetTSDU
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kTokenRingTSDU
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kFDDITSDU
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

k8022SAPLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

k8022BasicHeaderLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

k8022SNAPHeaderLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kFirstMinorNumber

enum {
 kFirstMinorNumber = 10
};

Constants
kFirstMinorNumber

kInetInterfaceInfoVersion

enum {
 kInetInterfaceInfoVersion = 3
};

Constants
kInetInterfaceInfoVersion

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_OPTIONS

enum {
 kIP_OPTIONS = 0x01,
 kIP_TOS = 0x02,
 kIP_TTL = 0x03,
 kIP_REUSEADDR = 0x04,
 kIP_DONTROUTE = 0x10,
 kIP_BROADCAST = 0x20,
 kIP_REUSEPORT = 0x0200,
 kIP_HDRINCL = 0x1002,
 kIP_RCVOPTS = 0x1005,
 kIP_RCVDSTADDR = 0x1007,
 kIP_MULTICAST_IF = 0x1010,
 kIP_MULTICAST_TTL = 0x1011,
 kIP_MULTICAST_LOOP = 0x1012,
 kIP_ADD_MEMBERSHIP = 0x1013,
 kIP_DROP_MEMBERSHIP = 0x1014,
 kIP_BROADCAST_IFNAME = 0x1015,
 kIP_RCVIFADDR = 0x1016
};

Constants
kIP_OPTIONS

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_TOS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2616 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kIP_TTL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_REUSEADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_DONTROUTE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_BROADCAST
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_REUSEPORT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_HDRINCL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_RCVOPTS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_RCVDSTADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_MULTICAST_IF
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_MULTICAST_TTL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_MULTICAST_LOOP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_ADD_MEMBERSHIP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_DROP_MEMBERSHIP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIP_BROADCAST_IFNAME
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kIP_RCVIFADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIPCPTCPHdrCompressionDisabled

enum {
 kIPCPTCPHdrCompressionDisabled = 0,
 kIPCPTCPHdrCompressionEnabled = 1
};

Constants
kIPCPTCPHdrCompressionDisabled

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIPCPTCPHdrCompressionEnabled
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kISDNModuleID

enum {
 kISDNModuleID = 7300
};

Constants
kISDNModuleID

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kMaxHostAddrs

enum {
 kMaxHostAddrs = 10,
 kMaxSysStringLen = 32,
 kMaxHostNameLen = 255
};

Constants
kMaxHostAddrs

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kMaxSysStringLen
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2618 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kMaxHostNameLen
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Port-Related Constants
Provide length and size values for modules, provider names, and slot IDs.

enum {
 kMaxModuleNameLength = 31,
 kMaxModuleNameSize = kMaxModuleNameLength + 1,
 kMaxProviderNameLength = kMaxModuleNameLength + 4,
 kMaxProviderNameSize = kMaxProviderNameLength + 1,
 kMaxSlotIDLength = 7,
 kMaxSlotIDSize = kMaxSlotIDLength + 1,
 kMaxResourceInfoLength = 31,
 kMaxResourceInfoSize = 32,
 kMaxPortNameLength = kMaxModuleNameLength + 4,
 kMaxPortNameSize = kMaxPortNameLength + 1
};

Constants
kMaxModuleNameLength

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kMaxModuleNameSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kMaxProviderNameLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kMaxProviderNameSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kMaxSlotIDLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kMaxSlotIDSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kMaxResourceInfoLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kMaxResourceInfoSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kMaxPortNameLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kMaxPortNameSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Discussion
These constants provide length and size values for modules, provider names, and slot IDs. These fields all
end with a byte for the terminating zero. The constant kMaxProviderNameSize permits a length of 36 bytes:
31 bytes for the name, up to 4 bytes of extra characters (called minor numbers in STREAMS specifications,
and currently not used), and a byte for the zero that terminates the string.

kMaxServices

enum {
 kMaxServices = 20
};

Constants
kMaxServices

kMulticastLength

enum {
 kMulticastLength = 6,
 k48BitAddrLength = 6,
 k8022DLSAPLength = 2,
 k8022SNAPLength = 5,
 kEnetAddressLength = k48BitAddrLength + k8022DLSAPLength,
 kSNAPSAP = 0x00AA,
 kIPXSAP = 0x00FF,
 kMax8022SAP = 0x00FE,
 k8022GlobalSAP = 0x00FF,
 kMinDIXSAP = 1501,
 kMaxDIXSAP = 0xFFFF
};

Constants
kMulticastLength

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

k48BitAddrLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

k8022DLSAPLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2620 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

k8022SNAPLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kEnetAddressLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kSNAPSAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kIPXSAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kMax8022SAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

k8022GlobalSAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kMinDIXSAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kMaxDIXSAP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kNBPMaxNameLength

enum {
 kNBPMaxNameLength = 32,
 kNBPMaxTypeLength = 32,
 kNBPMaxZoneLength = 32,
 kNBPSlushLength = 9,
 kNBPMaxEntityLength = (kNBPMaxNameLength + kNBPMaxTypeLength
+ kNBPMaxZoneLength + 3),
 kNBPEntityBufferSize = (kNBPMaxNameLength + kNBPMaxTypeLength
+ kNBPMaxZoneLength + kNBPSlushLength),
 kNBPWildCard = 0x3D,
 kNBPImbeddedWildCard = 0xC5,
 kNBPDefaultZone = 0x2A
};

Constants
kNBPMaxNameLength

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kNBPMaxTypeLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kNBPMaxZoneLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kNBPSlushLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kNBPMaxEntityLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kNBPEntityBufferSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kNBPWildCard
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kNBPImbeddedWildCard
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kNBPDefaultZone
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kNetbufDataIsOTData

enum {
 kNetbufDataIsOTData = 0xFFFFFFFE
};

Constants
kNetbufDataIsOTData

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kO_ASYNC

2622 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Constants

kOTAnyInetAddress

enum {
 kOTAnyInetAddress = 0
};

Constants
kOTAnyInetAddress

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTAutopushMax

enum {
 kOTAutopushMax = 8
};

Constants
kOTAutopushMax

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTCFMClass

enum {
 kOTCFMClass = 'otan'
};

Constants
kOTCFMClass

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTDefaultConfigurator

enum {
 kOTDefaultConfigurator = 0,
 kOTProtocolFamilyConfigurator = 1,
 kOTLinkDriverConfigurator = 2
};

Constants
kOTDefaultConfigurator

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTProtocolFamilyConfigurator
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTLinkDriverConfigurator
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTFLUSHBAND

enum {
 kOTFLUSHBAND = 0x40
};

Constants
kOTFLUSHBAND

Port Framing Capabilities
Describe a port’s framing capabilities.

enum {
 kOTFramingEthernet = 0x01,
 kOTFramingEthernetIPX = 0x02,
 kOTFraming8023 = 0x04,
 kOTFraming8022 = 0x08
};

Constants
kOTFramingEthernet

The port can use standard Ethernet framing.

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTFramingEthernetIPX
The port can use IPX Ethernet framing.

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTFraming8023
The port can use 802.3 Ethernet framing.

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTFraming8022
The port can use 802.2 Ethernet framing.

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Discussion
This enumeration contains flags indicating the type of framing capability that a port has. If the port can
handle only one type of framing, this field is 0. This field is dependent on the ports device type.

2624 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTGenericName

enum {
 kOTGenericName = 0
};

Constants
kOTGenericName

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTGetDataSymbol

enum {
 kOTGetDataSymbol = 0,
 kOTGetCodeSymbol = 1,
 kOTLoadNewCopy = 2,
 kOTLoadACopy = 4,
 kOTFindACopy = 8,
 kOTLibMask = kOTLoadNewCopy | kOTLoadACopy | kOTFindACopy,
 kOTLoadLibResident = 0x20
};

Constants
kOTGetDataSymbol

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTGetCodeSymbol
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTLoadNewCopy
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTLoadACopy
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTFindACopy
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTLibMask
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTLoadLibResident
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTInitialScan

enum {
 kOTInitialScan = 0,
 kOTScanAfterSleep = 1
};

Constants
kOTInitialScan
kOTScanAfterSleep

kOTInvalidPortRef

enum {
 kOTInvalidPortRef = 0
};

Constants
kOTInvalidPortRef

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2626 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTInvalidRef

enum {
 kOTInvalidRef = 0,
 kOTInvalidProviderRef = 0,
 kOTInvalidEndpointRef = 0,
 kOTInvalidMapperRef = 0
};

Constants
kOTInvalidRef
kOTInvalidProviderRef
kOTInvalidEndpointRef
kOTInvalidMapperRef

kOTInvalidStreamRef

enum {
 kOTInvalidStreamRef = 0
};

Constants
kOTInvalidStreamRef

kOTISDNDefaultCommType

enum {
 kOTISDNDefaultCommType = kOTISDNDigital64k,
 kOTISDNDefaultFramingType = kOTISDNFramingHDLC,
 kOTISDNDefault56KAdaptation = kOTISDNNot56KAdaptation
};

Constants
kOTISDNDefaultCommType

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNDefaultFramingType
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNDefault56KAdaptation
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTISDNFramingTransparent

enum {
 kOTISDNFramingTransparent = 0x0010,
 kOTISDNFramingHDLC = 0x0020,
 kOTISDNFramingV110 = 0x0040,
 kOTISDNFramingV14E = 0x0080
};

Constants
kOTISDNFramingTransparent

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNFramingHDLC
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNFramingV110
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNFramingV14E
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNFramingTransparentSupported

enum {
 kOTISDNFramingTransparentSupported = 0x0010,
 kOTISDNFramingHDLCSupported = 0x0020,
 kOTISDNFramingV110Supported = 0x0040,
 kOTISDNFramingV14ESupported = 0x0080
};

Constants
kOTISDNFramingTransparentSupported

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNFramingHDLCSupported
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNFramingV110Supported
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNFramingV14ESupported
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2628 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTISDNMaxPhoneSize

enum {
 kOTISDNMaxPhoneSize = 32,
 kOTISDNMaxSubSize = 4
};

Constants
kOTISDNMaxPhoneSize

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNMaxSubSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNMaxUserDataSize

enum {
 kOTISDNMaxUserDataSize = 32
};

Constants
kOTISDNMaxUserDataSize

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNot56KAdaptation

enum {
 kOTISDNNot56KAdaptation = false,
 kOTISDN56KAdaptation = true
};

Constants
kOTISDNNot56KAdaptation

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDN56KAdaptation
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTISDNTelephoneALaw

enum {
 kOTISDNTelephoneALaw = 1,
 kOTISDNTelephoneMuLaw = 26,
 kOTISDNDigital64k = 13,
 kOTISDNDigital56k = 37,
 kOTISDNVideo64k = 41,
 kOTISDNVideo56k = 42
};

Constants
kOTISDNTelephoneALaw

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNTelephoneMuLaw
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNDigital64k
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNDigital56k
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNVideo64k
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNVideo56k
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2630 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTISDNUnallocatedNumber

enum {
 kOTISDNUnallocatedNumber = 1,
 kOTISDNNoRouteToSpecifiedTransitNetwork = 2,
 kOTISDNNoRouteToDestination = 3,
 kOTISDNChannelUnacceptable = 6,
 kOTISDNNormal = 16,
 kOTISDNUserBusy = 17,
 kOTISDNNoUserResponding = 18,
 kOTISDNNoAnswerFromUser = 19,
 kOTISDNCallRejected = 21,
 kOTISDNNumberChanged = 22,
 kOTISDNNonSelectedUserClearing = 26,
 kOTISDNDestinationOutOfOrder = 27,
 kOTISDNInvalidNumberFormat = 28,
 kOTISDNFacilityRejected = 29,
 kOTISDNNormalUnspecified = 31,
 kOTISDNNoCircuitChannelAvailable = 34,
 kOTISDNNetworkOutOfOrder = 41,
 kOTISDNSwitchingEquipmentCongestion = 42,
 kOTISDNAccessInformationDiscarded = 43,
 kOTISDNRequestedCircuitChannelNotAvailable = 44,
 kOTISDNResourceUnavailableUnspecified = 45,
 kOTISDNQualityOfServiceUnvailable = 49,
 kOTISDNRequestedFacilityNotSubscribed = 50,
 kOTISDNBearerCapabilityNotAuthorized = 57,
 kOTISDNBearerCapabilityNotPresentlyAvailable = 58,
 kOTISDNCallRestricted = 59,
 kOTISDNServiceOrOptionNotAvilableUnspecified = 63,
 kOTISDNBearerCapabilityNotImplemented = 65,
 kOTISDNRequestedFacilityNotImplemented = 69,
 kOTISDNOnlyRestrictedDigitalBearer = 70,
 kOTISDNServiceOrOptionNotImplementedUnspecified = 79,
 kOTISDNCallIdentityNotUsed = 83,
 kOTISDNCallIdentityInUse = 84,
 kOTISDNNoCallSuspended = 85,
 kOTISDNCallIdentityCleared = 86,
 kOTISDNIncompatibleDestination = 88,
 kOTISDNInvalidTransitNetworkSelection = 91,
 kOTISDNInvalidMessageUnspecified = 95,
 kOTISDNMandatoryInformationElementIsMissing = 96,
 kOTISDNMessageTypeNonExistentOrNotImplemented = 97,
 kOTISDNInterworkingUnspecified = 127
};

Constants
kOTISDNUnallocatedNumber

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNoRouteToSpecifiedTransitNetwork
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTISDNNoRouteToDestination
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNChannelUnacceptable
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNormal
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNUserBusy
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNoUserResponding
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNoAnswerFromUser
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNCallRejected
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNumberChanged
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNonSelectedUserClearing
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNDestinationOutOfOrder
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNInvalidNumberFormat
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNFacilityRejected
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNormalUnspecified
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNoCircuitChannelAvailable
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2632 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTISDNNetworkOutOfOrder
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNSwitchingEquipmentCongestion
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNAccessInformationDiscarded
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNRequestedCircuitChannelNotAvailable
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNResourceUnavailableUnspecified
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNQualityOfServiceUnvailable
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNRequestedFacilityNotSubscribed
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNBearerCapabilityNotAuthorized
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNBearerCapabilityNotPresentlyAvailable
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNCallRestricted
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNServiceOrOptionNotAvilableUnspecified
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNBearerCapabilityNotImplemented
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNRequestedFacilityNotImplemented
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNOnlyRestrictedDigitalBearer
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTISDNServiceOrOptionNotImplementedUnspecified
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNCallIdentityNotUsed
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNCallIdentityInUse
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNNoCallSuspended
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNCallIdentityCleared
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNIncompatibleDestination
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNInvalidTransitNetworkSelection
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNInvalidMessageUnspecified
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNMandatoryInformationElementIsMissing
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNMessageTypeNonExistentOrNotImplemented
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTISDNInterworkingUnspecified
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTLastSlotNumber

enum {
 kOTLastSlotNumber = 255,
 kOTLastOtherNumber = 255
};

Constants
kOTLastSlotNumber

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2634 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTLastOtherNumber
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTLvlFatal

enum {
 kOTLvlFatal = 0,
 kOTLvlNonfatal = 1,
 kOTLvlExtFatal = 2,
 kOTLvlExtNonfatal = 3,
 kOTLvlUserErr = 4,
 kOTLvlInfoErr = 5,
 kOTLvlInfoOnly = 6
};

Constants
kOTLvlFatal
kOTLvlNonfatal
kOTLvlExtFatal
kOTLvlExtNonfatal
kOTLvlUserErr
kOTLvlInfoErr
kOTLvlInfoOnly

kOTMinimumTimerValue

enum {
 kOTMinimumTimerValue = 8
};

Constants
kOTMinimumTimerValue

kOTModIsDriver

enum {
 kOTModIsDriver = 1,
 kOTModIsModule = 2,
 kOTModNoWriter = 16,
 kOTModUpperIsTPI = 4096,
 kOTModUpperIsDLPI = 8192,
 kOTModLowerIsTPI = 16384,
 kOTModLowerIsDLPI = 32768,
 kOTModGlobalContext = 8388608,
 kOTModUsesInterrupts = 134217728,
 kOTModIsComplexDriver = 536870912,
 kOTModIsFilter = 1073741824
};

Constants
kOTModIsDriver
kOTModIsModule
kOTModNoWriter
kOTModUpperIsTPI
kOTModUpperIsDLPI
kOTModLowerIsTPI

2636 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTModLowerIsDLPI
kOTModGlobalContext
kOTModUsesInterrupts
kOTModIsComplexDriver
kOTModIsFilter

kOTNetbufDataIsOTBufferStar

enum {
 kOTNetbufDataIsOTBufferStar = 0xFFFFFFFD
};

Constants
kOTNetbufDataIsOTBufferStar

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTNetbufIsRawMode

enum {
 kOTNetbufIsRawMode = 0xFFFFFFFF
};

Constants
kOTNetbufIsRawMode

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTNoMemoryConfigurationPtr

enum {
 kOTNoMemoryConfigurationPtr = 0,
 kOTInvalidConfigurationPtr = -1
};

Constants
kOTNoMemoryConfigurationPtr
kOTInvalidConfigurationPtr

kOTNoMessagesAvailable

enum {
 kOTNoMessagesAvailable = 0xFFFFFFFF,
 kOTAnyMsgType = 0xFFFFFFFE,
 kOTDataMsgTypes = 0xFFFFFFFC,
 kOTMProtoMsgTypes = 0xFFFFFFFB,
 kOTOnlyMProtoMsgTypes = 0xFFFFFFFA
};

Constants
kOTNoMessagesAvailable

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTAnyMsgType
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTDataMsgTypes
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTMProtoMsgTypes
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTOnlyMProtoMsgTypes
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2638 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTOptionHeaderSize

enum {
 kOTOptionHeaderSize = sizeof(TOptionHeader),
 kOTBooleanOptionDataSize = sizeof(UInt32),
 kOTBooleanOptionSize = kOTOptionHeaderSize + kOTBooleanOptionDataSize,
 kOTOneByteOptionSize = kOTOptionHeaderSize + 1,
 kOTTwoByteOptionSize = kOTOptionHeaderSize + 2,
 kOTFourByteOptionSize = kOTOptionHeaderSize + sizeof(UInt32)
};

Constants
kOTOptionHeaderSize

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTBooleanOptionDataSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTBooleanOptionSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTOneByteOptionSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTTwoByteOptionSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTFourByteOptionSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPCINoErrorStayLoaded

enum {
 kOTPCINoErrorStayLoaded = 1
};

Constants
kOTPCINoErrorStayLoaded

Port Flags
Specify a port’s status.

Constants 2639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

enum {
 kOTPortIsActive = 0x00000001,
 kOTPortIsDisabled = 0x00000002,
 kOTPortIsUnavailable = 0x00000004,
 kOTPortIsOffline = 0x00000008
};

Constants
kOTPortIsActive

The port is in use.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortIsDisabled
The port may or may not be in use, but no other client can use it.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortIsUnavailable
The port is not available for use.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortIsOffline
The port is off-line. This bit is typically only set when the port is active, the port autoconnects, and it
is currently not connected.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Port Additional Flags
Specify additional information about a port.

enum {
 kOTPortIsDLPI = 0x00000001,
 kOTPortIsTPI = 0x00000002,
 kOTPortCanYield = 0x00000004,
 kOTPortCanArbitrate = 0x00000008,
 kOTPortIsTransitory = 0x00000010,
 kOTPortAutoConnects = 0x00000020,
 kOTPortIsSystemRegistered = 0x00004000,
 kOTPortIsPrivate = 0x00008000,
 kOTPortIsAlias = 0x80000000
};

Constants
kOTPortIsDLPI

The port driver is a DLPI STREAMS module.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2640 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTPortIsTPI
The port driver is a TPI STREAMS module.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortCanYield
The port can yield when requested.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortCanArbitrate
Reserved.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortIsTransitory
The port has off-line/on-line status.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortAutoConnects
The port auto connects. The port goes on-line and off-line on demand. ISDN is a typical example.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortIsSystemRegistered
The port was registered by the system from the Name Registry

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortIsPrivate
The port is private.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortIsAlias
The port is an alias for another port.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTPrintOnly

enum {
 kOTPrintOnly = 0,
 kOTPrintThenStop = 1
};

Constants
kOTPrintOnly
kOTPrintThenStop

kOTRawRcvOn

enum {
 kOTRawRcvOn = 0,
 kOTRawRcvOff = 1,
 kOTRawRcvOnWithTimeStamp = 2
};

Constants
kOTRawRcvOn

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTRawRcvOff
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTRawRcvOnWithTimeStamp
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2642 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTSerialDefaultBaudRate

enum {
 kOTSerialDefaultBaudRate = 19200,
 kOTSerialDefaultDataBits = 8,
 kOTSerialDefaultStopBits = 10,
 kOTSerialDefaultParity = kOTSerialNoParity,
 kOTSerialDefaultHandshake = 0,
 kOTSerialDefaultOnChar = ('Q' & 0xFFFFFFBF),
 kOTSerialDefaultOffChar = ('S' & 0xFFFFFFBF),
 kOTSerialDefaultSndBufSize = 1024,
 kOTSerialDefaultRcvBufSize = 1024,
 kOTSerialDefaultSndLoWat = 96,
 kOTSerialDefaultRcvLoWat = 1,
 kOTSerialDefaultRcvTimeout = 10
};

Constants
kOTSerialDefaultBaudRate

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultDataBits
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultStopBits
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultParity
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultHandshake
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultOnChar
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultOffChar
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultSndBufSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultRcvBufSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultSndLoWat
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTSerialDefaultRcvLoWat
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDefaultRcvTimeout
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialFramingAsync

enum {
 kOTSerialFramingAsync = 0x01,
 kOTSerialFramingHDLC = 0x02,
 kOTSerialFramingSDLC = 0x04,
 kOTSerialFramingAsyncPackets = 0x08,
 kOTSerialFramingPPP = 0x10
};

Constants
kOTSerialFramingAsync

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialFramingHDLC
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialFramingSDLC
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialFramingAsyncPackets
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialFramingPPP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2644 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTSerialSwOverRunErr

enum {
 kOTSerialSwOverRunErr = 0x01,
 kOTSerialBreakOn = 0x08,
 kOTSerialParityErr = 0x10,
 kOTSerialOverrunErr = 0x20,
 kOTSerialFramingErr = 0x40,
 kOTSerialXOffSent = 0x00010000,
 kOTSerialDTRNegated = 0x00020000,
 kOTSerialCTLHold = 0x00040000,
 kOTSerialXOffHold = 0x00080000,
 kOTSerialOutputBreakOn = 0x01000000
};

Constants
kOTSerialSwOverRunErr

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialBreakOn
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialParityErr
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialOverrunErr
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialFramingErr
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialXOffSent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDTRNegated
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialCTLHold
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialXOffHold
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialOutputBreakOn
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTSerialXOnOffInputHandshake

enum {
 kOTSerialXOnOffInputHandshake = 1,
 kOTSerialXOnOffOutputHandshake = 2,
 kOTSerialCTSInputHandshake = 4,
 kOTSerialDTROutputHandshake = 8
};

Constants
kOTSerialXOnOffInputHandshake

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialXOnOffOutputHandshake
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialCTSInputHandshake
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialDTROutputHandshake
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSpecificConfigPass

enum {
 kOTSpecificConfigPass = 0,
 kOTGenericConfigPass = 1
};

Constants
kOTSpecificConfigPass

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kOTGenericConfigPass
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2646 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTT_BIND_REQ

enum {
 kOTT_BIND_REQ = 101,
 kOTT_CONN_REQ = 102,
 kOTT_CONN_RES = 103,
 kOTT_DATA_REQ = 104,
 kOTT_DISCON_REQ = 105,
 kOTT_EXDATA_REQ = 106,
 kOTT_INFO_REQ = 107,
 kOTT_OPTMGMT_REQ = 108,
 kOTT_ORDREL_REQ = 109,
 kOTT_UNBIND_REQ = 110,
 kOTT_UNITDATA_REQ = 111,
 kOTT_ADDR_REQ = 112,
 kOTT_UREQUEST_REQ = 113,
 kOTT_REQUEST_REQ = 114,
 kOTT_UREPLY_REQ = 115,
 kOTT_REPLY_REQ = 116,
 kOTT_CANCELREQUEST_REQ = 117,
 kOTT_CANCELREPLY_REQ = 118,
 kOTT_REGNAME_REQ = 119,
 kOTT_DELNAME_REQ = 120,
 kOTT_LKUPNAME_REQ = 121,
 kOTT_BIND_ACK = 122,
 kOTT_CONN_CON = 123,
 kOTT_CONN_IND = 124,
 kOTT_DATA_IND = 125,
 kOTT_DISCON_IND = 126,
 kOTT_ERROR_ACK = 127,
 kOTT_EXDATA_IND = 128,
 kOTT_INFO_ACK = 129,
 kOTT_OK_ACK = 130,
 kOTT_OPTMGMT_ACK = 131,
 kOTT_ORDREL_IND = 132,
 kOTT_UNITDATA_IND = 133,
 kOTT_UDERROR_IND = 134,
 kOTT_ADDR_ACK = 135,
 kOTT_UREQUEST_IND = 136,
 kOTT_REQUEST_IND = 137,
 kOTT_UREPLY_IND = 138,
 kOTT_REPLY_IND = 139,
 kOTT_UREPLY_ACK = 140,
 kOTT_REPLY_ACK = 141,
 kOTT_RESOLVEADDR_REQ = 142,
 kOTT_RESOLVEADDR_ACK = 143,
 kOTT_LKUPNAME_CON = 146,
 kOTT_LKUPNAME_RES = 147,
 kOTT_REGNAME_ACK = 148,
 kOTT_SEQUENCED_ACK = 149,
 kOTT_EVENT_IND = 160
};

Constants
kOTT_BIND_REQ
kOTT_CONN_REQ
kOTT_CONN_RES
kOTT_DATA_REQ

Constants 2647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTT_DISCON_REQ
kOTT_EXDATA_REQ
kOTT_INFO_REQ
kOTT_OPTMGMT_REQ
kOTT_ORDREL_REQ
kOTT_UNBIND_REQ
kOTT_UNITDATA_REQ
kOTT_ADDR_REQ
kOTT_UREQUEST_REQ
kOTT_REQUEST_REQ
kOTT_UREPLY_REQ
kOTT_REPLY_REQ
kOTT_CANCELREQUEST_REQ
kOTT_CANCELREPLY_REQ
kOTT_REGNAME_REQ
kOTT_DELNAME_REQ
kOTT_LKUPNAME_REQ
kOTT_BIND_ACK
kOTT_CONN_CON
kOTT_CONN_IND
kOTT_DATA_IND
kOTT_DISCON_IND
kOTT_ERROR_ACK
kOTT_EXDATA_IND
kOTT_INFO_ACK
kOTT_OK_ACK
kOTT_OPTMGMT_ACK
kOTT_ORDREL_IND
kOTT_UNITDATA_IND
kOTT_UDERROR_IND
kOTT_ADDR_ACK
kOTT_UREQUEST_IND
kOTT_REQUEST_IND
kOTT_UREPLY_IND
kOTT_REPLY_IND
kOTT_UREPLY_ACK
kOTT_REPLY_ACK
kOTT_RESOLVEADDR_REQ
kOTT_RESOLVEADDR_ACK
kOTT_LKUPNAME_CON
kOTT_LKUPNAME_RES
kOTT_REGNAME_ACK
kOTT_SEQUENCED_ACK
kOTT_EVENT_IND

kOTT_TIMER_REQ

enum {
 kOTT_TIMER_REQ = 80,
 kOTT_MIB_REQ = 81,
 kOTT_MIB_ACK = 82,
 kOTT_PRIVATE_REQ = 90

2648 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

};

Constants
kOTT_TIMER_REQ
kOTT_MIB_REQ
kOTT_MIB_ACK
kOTT_PRIVATE_REQ

kOTTRANSPARENT

enum {
 kOTTRANSPARENT = 0xFFFFFFFF
};

Constants
kOTTRANSPARENT

kPPPAsyncMapCharsNone

enum {
 kPPPAsyncMapCharsNone = 0x00000000,
 kPPPAsyncMapCharsXOnXOff = 0x000A0000,
 kPPPAsyncMapCharsAll = 0xFFFFFFFF
};

Constants
kPPPAsyncMapCharsNone

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPAsyncMapCharsXOnXOff
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPAsyncMapCharsAll
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPCompressionDisabled

enum {
 kPPPCompressionDisabled = 0x00000000,
 kPPPProtoCompression = 0x00000001,
 kPPPAddrCompression = 0x00000002
};

Constants
kPPPCompressionDisabled

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kPPPProtoCompression
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPAddrCompression
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPConnectionStatusDialogsFlag

enum {
 kPPPConnectionStatusDialogsFlag = 0x00000001,
 kPPPConnectionRemindersFlag = 0x00000002,
 kPPPConnectionFlashingIconFlag = 0x00000004,
 kPPPOutPasswordDialogsFlag = 0x00000008,
 kPPPAllAlertsDisabledFlag = 0x00000000,
 kPPPAllAlertsEnabledFlag = 0x0000000F
};

Constants
kPPPConnectionStatusDialogsFlag

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPConnectionRemindersFlag
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPConnectionFlashingIconFlag
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPOutPasswordDialogsFlag
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPAllAlertsDisabledFlag
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPAllAlertsEnabledFlag
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2650 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kPPPConnectionStatusIdle

enum {
 kPPPConnectionStatusIdle = 1,
 kPPPConnectionStatusConnecting = 2,
 kPPPConnectionStatusConnected = 3,
 kPPPConnectionStatusDisconnecting = 4
};

Constants
kPPPConnectionStatusIdle

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPConnectionStatusConnecting
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPConnectionStatusConnected
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPConnectionStatusDisconnecting
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPEvent

enum {
 kPPPEvent = kPROTOCOLEVENT | 0x000F0000,
 kPPPConnectCompleteEvent = kPPPEvent + 1,
 kPPPSetScriptCompleteEvent = kPPPEvent + 2,
 kPPPDisconnectCompleteEvent = kPPPEvent + 3,
 kPPPDisconnectEvent = kPPPEvent + 4,
 kPPPIPCPUpEvent = kPPPEvent + 5,
 kPPPIPCPDownEvent = kPPPEvent + 6,
 kPPPLCPUpEvent = kPPPEvent + 7,
 kPPPLCPDownEvent = kPPPEvent + 8,
 kPPPLowerLayerUpEvent = kPPPEvent + 9,
 kPPPLowerLayerDownEvent = kPPPEvent + 10,
 kPPPAuthenticationStartedEvent = kPPPEvent + 11,
 kPPPAuthenticationFinishedEvent = kPPPEvent + 12,
 kPPPDCEInitStartedEvent = kPPPEvent + 13,
 kPPPDCEInitFinishedEvent = kPPPEvent + 14,
 kPPPDCECallStartedEvent = kPPPEvent + 15,
 kPPPDCECallFinishedEvent = kPPPEvent + 16
};

Constants
kPPPEvent

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kPPPConnectCompleteEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPSetScriptCompleteEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPDisconnectCompleteEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPDisconnectEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPIPCPUpEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPIPCPDownEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPLCPUpEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPLCPDownEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPLowerLayerUpEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPLowerLayerDownEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPAuthenticationStartedEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPAuthenticationFinishedEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPDCEInitStartedEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPDCEInitFinishedEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2652 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kPPPDCECallStartedEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPDCECallFinishedEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPMaxIDLength

enum {
 kPPPMaxIDLength = 255,
 kPPPMaxPasswordLength = 255,
 kPPPMaxDTEAddressLength = 127,
 kPPPMaxCallInfoLength = 255
};

Constants
kPPPMaxIDLength

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPMaxPasswordLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPMaxDTEAddressLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPMaxCallInfoLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPMinMRU

enum {
 kPPPMinMRU = 0,
 kPPPMaxMRU = 4500
};

Constants
kPPPMinMRU

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPMaxMRU
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kPPPNoOutAuthentication

enum {
 kPPPNoOutAuthentication = 0,
 kPPPCHAPOrPAPOutAuthentication = 1
};

Constants
kPPPNoOutAuthentication

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPCHAPOrPAPOutAuthentication
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPScriptTypeModem

enum {
 kPPPScriptTypeModem = 1,
 kPPPScriptTypeConnect = 2,
 kPPPMaxScriptSize = 32000
};

Constants
kPPPScriptTypeModem

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPScriptTypeConnect
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPMaxScriptSize
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPStateInitial

enum {
 kPPPStateInitial = 1,
 kPPPStateClosed = 2,
 kPPPStateClosing = 3,
 kPPPStateOpening = 4,
 kPPPStateOpened = 5
};

Constants
kPPPStateInitial

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2654 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kPPPStateClosed
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPStateClosing
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPStateOpening
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kPPPStateOpened
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kRAProductClientOnly

enum {
 kRAProductClientOnly = 2,
 kRAProductOnePortServer = 3,
 kRAProductManyPortServer = 4
};

Constants
kRAProductClientOnly

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kRAProductOnePortServer
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kRAProductManyPortServer
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kSAP_ONE

enum {
 kSAP_ONE = 1,
 kSAP_RANGE = 2,
 kSAP_ALL = 3,
 kSAP_CLEAR = 4
};

Constants
kSAP_ONE

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kSAP_RANGE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kSAP_ALL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kSAP_CLEAR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

kSerialABModuleID

enum {
 kSerialABModuleID = 7200
};

Constants
kSerialABModuleID

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kSIGHUP

enum {
 kSIGHUP = 1,
 kSIGURG = 16,
 kSIGPOLL = 30
};

Constants
kSIGHUP

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kSIGURG
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kSIGPOLL
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2656 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kT_UNSPEC

enum {
 kT_UNSPEC = 0xFFFFFFFD,
 T_ALLOPT = 0
};

Constants
kT_UNSPEC

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_ALLOPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kT8022HeaderLength

enum {
 kT8022HeaderLength = 3,
 kT8022SNAPHeaderLength = 3 + k8022SNAPLength,
 kT8022FullPacketHeaderLength = kEnetPacketHeaderLength + kT8022SNAPHeaderLength
};

Constants
kT8022HeaderLength

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kT8022SNAPHeaderLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kT8022FullPacketHeaderLength
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kT8022ModuleID

enum {
 kT8022ModuleID = 7100,
 kEnetModuleID = 7101,
 kTokenRingModuleID = 7102,
 kFDDIModuleID = 7103
};

Constants
kT8022ModuleID

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kEnetModuleID
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kTokenRingModuleID
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kFDDIModuleID
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kZIPMaxZoneLength

enum {
 kZIPMaxZoneLength = kNBPMaxZoneLength
};

Constants
kZIPMaxZoneLength

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

LNK_ENET

enum {
 LNK_ENET = 'ENET',
 LNK_TOKN = 'TOKN',
 LNK_FDDI = 'FDDI',
 LNK_TPI = 'LTPI'
};

Constants
LNK_ENET

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

LNK_TOKN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

LNK_FDDI
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

LNK_TPI
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2658 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

LOGMSGSZ

enum {
 LOGMSGSZ = 128
};

Constants
LOGMSGSZ

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_MI

enum {
 M_MI = 0x40,
 M_MI_READ_RESET = 1,
 M_MI_READ_SEEK = 2,
 M_MI_READ_END = 4
};

Constants
M_MI

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_MI_READ_RESET
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_MI_READ_SEEK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_MI_READ_END
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MIOC_ISDN

enum {
 MIOC_ISDN = 85
};

Constants
MIOC_ISDN

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

MIOC_STREAMIO

enum {
 MIOC_STREAMIO = 65,
 MIOC_TMOD = 'a',
 MIOC_STRLOG = 'b',
 MIOC_ND = 'c',
 MIOC_ECHO = 'd',
 MIOC_TLI = 'e',
 MIOC_RESERVEDf = 'f',
 MIOC_SAD = 'g',
 MIOC_ARP = 'h',
 MIOC_HAVOC = 72,
 MIOC_RESERVEDi = 'i',
 MIOC_SIOC = 'j',
 MIOC_TCP = 'k',
 MIOC_DLPI = 'l',
 MIOC_SOCKETS = 'm',
 MIOC_IPX = 'o',
 MIOC_OT = 79,
 MIOC_ATALK = 84,
 MIOC_SRL = 85,
 MIOC_RESERVEDp = 'p',
 MIOC_RESERVEDr = 'r',
 MIOC_RESERVEDs = 's',
 MIOC_CFIG = 'z'
};

Constants
MIOC_STREAMIO

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_TMOD
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_STRLOG
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_ND
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_ECHO
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_TLI
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_RESERVEDf
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2660 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

MIOC_SAD
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_ARP
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_HAVOC
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_RESERVEDi
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_SIOC
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_TCP
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_DLPI
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_SOCKETS
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_IPX
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_OT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_ATALK
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_SRL
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_RESERVEDp
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_RESERVEDr
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

MIOC_RESERVEDs
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MIOC_CFIG
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

MORECTL

enum {
 MORECTL = 0x01,
 MOREDATA = 0x02
};

Constants
MORECTL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MOREDATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MSG_HIPRI

enum {
 MSG_HIPRI = 0x01,
 MSG_BAND = 0x02,
 MSG_ANY = 0x04
};

Constants
MSG_HIPRI

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MSG_BAND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MSG_ANY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2662 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

MSGMARK

enum {
 MSGMARK = 0x01,
 MSGNOLOOP = 0x02,
 MSGDELIM = 0x04,
 MSGNOGET = 0x08
};

Constants
MSGMARK

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MSGNOLOOP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MSGDELIM
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MSGNOGET
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

MUXID_ALL

enum {
 MUXID_ALL = -1
};

Constants
MUXID_ALL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

NOERROR

enum {
 NOERROR = -1
};

Constants
NOERROR

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

O_ASYNC

enum {
 O_ASYNC = kO_ASYNC,
 O_NDELAY = kO_NDELAY,
 O_NONBLOCK = kO_NONBLOCK
};

Constants
O_ASYNC

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

O_NDELAY
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

O_NONBLOCK
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

OPT_ADDMCAST

enum {
 OPT_ADDMCAST = 0x1000,
 OPT_DELMCAST = 0x1001,
 OPT_RCVPACKETTYPE = 0x1002,
 OPT_RCVDESTADDR = 0x1003,
 OPT_SETRAWMODE = 0x1004,
 OPT_SETPROMISCUOUS = 0x1005
};

Constants
OPT_ADDMCAST

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

OPT_DELMCAST
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

OPT_RCVPACKETTYPE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

OPT_RCVDESTADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

OPT_SETRAWMODE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2664 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OPT_SETPROMISCUOUS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Bus Type Constants
Specify the bus type of a port.

typedef UInt8 OTBusType;
enum {
 kOTUnknownBusPort = 0,
 kOTMotherboardBus = 1,
 kOTNuBus = 2,
 kOTPCIBus = 3,
 kOTGeoPort = 4,
 kOTPCCardBus = 5,
 kOTFireWireBus = 6,
 kOTLastBusIndex = 15
};

Constants
kOTUnknownBusPort

The port’s bus type is not a known type.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTMotherboardBus
The port is on the motherboard.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTNuBus
The port is on a NuBus.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPCIBus
The port is on a PCI bus.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTGeoPort
The port is a GeoPort device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPCCardBus
The port is on a PCCard bus.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTFireWireBus
The port is on a Firewire bus.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTLastBusIndex
The maximum bus type that the port can support.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Hardware Device Types
Lists hardware device types for Open Transport ports.

typedef UInt16 OTDeviceType;
enum {
 kOTNoDeviceType = 0,
 kOTADEVDevice = 1,
 kOTMDEVDevice = 2,
 kOTLocalTalkDevice = 3,
 kOTIRTalkDevice = 4,
 kOTTokenRingDevice = 5,
 kOTISDNDevice = 6,
 kOTATMDevice = 7,
 kOTSMDSDevice = 8,
 kOTSerialDevice = 9,
 kOTEthernetDevice = 10,
 kOTSLIPDevice = 11,
 kOTPPPDevice = 12,
 kOTModemDevice = 13,
 kOTFastEthernetDevice = 14,
 kOTFDDIDevice = 15,
 kOTIrDADevice = 16,
 kOTATMSNAPDevice = 17,
 kOTFibreChannelDevice = 18,
 kOTFireWireDevice = 19,
 kOTPseudoDevice = 1023,
 kOTLastDeviceIndex = 1022
};

Constants
kOTNoDeviceType

The port’s device type is not specified. This value is illegal.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTADEVDevice
The port is specified as an ‘adev’ device, which is a pseudodevice used by AppleTalk.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2666 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTMDEVDevice
The port is specified as an ‘mdev’ device, which is a pseudodevice used by TCP.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTLocalTalkDevice
The port is specified as a LocalTalk device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTIRTalkDevice
The port is specified as an IRTalk device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTTokenRingDevice
The port is specified as a token ring device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTISDNDevice
The port is specified as an ISDN device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTATMDevice
The port is specified as an ATM device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSMDSDevice
The port is specified as a SMDS device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSerialDevice
The port is specified as a serial device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTEthernetDevice
The port is specified as an Ethernet device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSLIPDevice
The port is specified as a SLIP pseudodevice.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTPPPDevice
The port is specified as a SLIP pseudodevice.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTModemDevice
The port is specified as a modem pseudodevice.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTFastEthernetDevice
The port is specified as an 100 MB Ethernet device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTFDDIDevice
The port is specified as a FDDI device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTIrDADevice
The port is specified as an IrDA Infrared device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTATMSNAPDevice
The port is specified as an ATM pseudodevice simulating a SNAP device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTFibreChannelDevice
The port is specified as a Fibre Channel device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTFireWireDevice
The port is specified as a Firewire device.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPseudoDevice
The port is designated as a pseudodevice.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTLastDeviceIndex
The maximum device types that a port can use.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Special Considerations

Do not arbitrarily add new device types. Please contact Developer Support at Apple Computer, Inc. to obtain
a new, unique device type.

2668 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTInitializationFlags

typedef UInt32 OTInitializationFlags;
enum {
 kInitOTForApplicationMask = 1,
 kInitOTForExtensionMask = 2
};

Constants
kInitOTForApplicationMask

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kInitOTForExtensionMask
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

OTOpenFlags

typedef UInt32 OTOpenFlags;
enum {
 kO_ASYNC = 0x01,
 kO_NDELAY = 0x04,
 kO_NONBLOCK = 0x04
};

Constants
kO_ASYNC

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kO_NDELAY
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kO_NONBLOCK
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OTPacketType

typedef UInt32 OTPacketType;
enum {
 kETypeStandard = 0,
 kETypeMulticast = 1,
 kETypeBroadcast = 2,
 kETRawPacketBit = 0x80000000,
 kETTimeStampBit = 0x40000000
};

Constants
kETypeStandard

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kETypeMulticast
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kETypeBroadcast
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kETRawPacketBit
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kETTimeStampBit
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Endpoint Service Types
Contains values that Open Transport can return in the servtype field of the TEndpointInfo structure.

typedef UInt32 OTServiceType;
enum {
 T_COTS = 1,
 T_COTS_ORD = 2,
 T_CLTS = 3,
 T_TRANS = 5,
 T_TRANS_ORD = 6,
 T_TRANS_CLTS = 7
};

Constants
T_COTS

Connection-oriented transactionless service without orderly release.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2670 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_COTS_ORD
Connection-oriented transactionless service with optional orderly release.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_CLTS
Connectionless transactionless service.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_TRANS
Connection-oriented transaction-based service without orderly release.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_TRANS_ORD
Connection-oriented transaction-based service with optional orderly release.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_TRANS_CLTS
Connectionless transaction-based service.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Endpoint States
Define enpoint states for the OTGetEndpointState function.

typedef UInt32 OTXTIStates;
enum {
 T_UNINIT = 0,
 T_UNBND = 1,
 T_IDLE = 2,
 T_OUTCON = 3,
 T_INCON = 4,
 T_DATAXFER = 5,
 T_OUTREL = 6,
 T_INREL = 7
};

Constants
T_UNINIT

This endpoint has been closed and destroyed.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_UNBND
This endpoint is initialized but has not yet been bound to an address.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_IDLE
This endpoint has been bound to an address and is ready for use: connectionless endpoints can send
or receive data; connection-oriented endpoints can initiate or listen for a connection.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_OUTCON
This endpoint has initiated a connection and is waiting for the peer endpoint to accept the connection.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_INCON
This endpoint has received a connection request but has not yet accepted or rejected the request.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_DATAXFER
This connection-oriented endpoint can now transfer data because the connection has been established.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_OUTREL
This endpoint has issued an orderly disconnect that the peer has not acknowledged. The endpoint
can continue to read data, but must not send any more data.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_INREL
This endpoint has received a request for an orderly disconnect, which it has not yet acknowledged.
The endpoint can continue to send data until it acknowledges the disconnection request, but it must
not read data.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

ParityOptionValues

typedef UInt32 ParityOptionValues;
enum {
 kOTSerialNoParity = 0,
 kOTSerialOddParity = 1,
 kOTSerialEvenParity = 2
};

Constants
kOTSerialNoParity

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

kOTSerialOddParity
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2672 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTSerialEvenParity
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

QB_FULL

enum {
 QB_FULL = 0x01,
 QB_WANTW = 0x02,
 QB_BACK = 0x04
};

Constants
QB_FULL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QB_WANTW
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QB_BACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

qfields

typedef SInt32 qfields;
enum {
 QHIWAT = 0,
 QLOWAT = 1,
 QMAXPSZ = 2,
 QMINPSZ = 3,
 QCOUNT = 4,
 QFIRST = 5,
 QLAST = 6,
 QFLAG = 7,
 QBAD = 8
};

Constants
QHIWAT

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QLOWAT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QMAXPSZ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

QMINPSZ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QCOUNT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QFIRST
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QLAST
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QFLAG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QBAD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QNORM

enum {
 QNORM = 0,
 M_DATA = 0,
 M_PROTO = 1,
 M_BREAK = 0x08,
 M_PASSFP = 0x09,
 M_SIG = 0x0B,
 M_DELAY = 0x0C,
 M_CTL = 0x0D,
 M_IOCTL = 0x0E,
 M_SETOPTS = 0x10,
 M_RSE = 0x11
};

Constants
QNORM

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_DATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_PROTO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2674 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

M_BREAK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_PASSFP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_SIG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_DELAY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_CTL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_IOCTL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_SETOPTS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_RSE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

QPCTL

enum {
 QPCTL = 0x80,
 M_IOCACK = 0x81,
 M_IOCNAK = 0x82,
 M_PCPROTO = 0x83,
 M_PCSIG = 0x84,
 M_FLUSH = 0x86,
 M_STOP = 0x87,
 M_START = 0x88,
 M_HANGUP = 0x89,
 M_ERROR = 0x8A,
 M_READ = 0x8B,
 M_COPYIN = 0x8C,
 M_COPYOUT = 0x8D,
 M_IOCDATA = 0x8E,
 M_PCRSE = 0x90,
 M_STOPI = 0x91,
 M_STARTI = 0x92,
 M_HPDATA = 0x93
};

Constants
QPCTL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_IOCACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_IOCNAK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_PCPROTO
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_PCSIG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_FLUSH
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_STOP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_START
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2676 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

M_HANGUP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_ERROR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_READ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_COPYIN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_COPYOUT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_IOCDATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_PCRSE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_STOPI
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_STARTI
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

M_HPDATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

QREADR

enum {
 QREADR = 0x01,
 QNOENB = 0x02,
 QFULL = 0x04,
 QWANTR = 0x08,
 QWANTW = 0x10,
 QUSE = 0x20,
 QENAB = 0x40,
 QBACK = 0x80,
 QOLD = 0x0100,
 QHLIST = 0x0200,
 QWELDED = 0x0400,
 QUNWELDING = 0x0800,
 QPROTECTED = 0x1000,
 QEXCOPENCLOSE = 0x2000
};

Constants
QREADR

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QNOENB
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QFULL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QWANTR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QWANTW
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QUSE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QENAB
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QBACK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QOLD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2678 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

QHLIST
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QWELDED
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QUNWELDING
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QPROTECTED
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

QEXCOPENCLOSE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RNORM

enum {
 RNORM = 0x01,
 RMSGD = 0x02,
 RMSGN = 0x04,
 RFILL = 0x08
};

Constants
RNORM

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RMSGD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RMSGN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RFILL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

RPROTNORM

enum {
 RPROTNORM = 0x10,
 RPROTDIS = 0x20,
 RPROTDAT = 0x40
};

Constants
RPROTNORM

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RPROTDIS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RPROTDAT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RS_EXDATA

enum {
 RS_EXDATA = 0x20,
 RS_ALLOWAGAIN = 0x40,
 RS_DELIMITMSG = 0x80
};

Constants
RS_EXDATA

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RS_ALLOWAGAIN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RS_DELIMITMSG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RS_HIPRI

enum {
 RS_HIPRI = 0x01
};

Constants
RS_HIPRI

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2680 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

S_INPUT

enum {
 S_INPUT = 0x01,
 S_HIPRI = 0x02,
 S_OUTPUT = 0x04,
 S_MSG = 0x08,
 S_RDNORM = 0x10,
 S_RDBAND = 0x20,
 S_WRNORM = 0x40,
 S_WRBAND = 0x80,
 S_ERROR = 0x0100,
 S_HANGUP = 0x0200,
 S_BANDURG = 0x0400
};

Constants
S_INPUT

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

S_HIPRI
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

S_OUTPUT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

S_MSG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

S_RDNORM
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

S_RDBAND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

S_WRNORM
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

S_WRBAND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

S_ERROR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

S_HANGUP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

S_BANDURG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SENDZERO

enum {
 SENDZERO = 0x0001,
 XPG4_1 = 0x0002
};

Constants
SENDZERO

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

XPG4_1
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SERIAL_OPT_BAUDRATE

enum {
 SERIAL_OPT_BAUDRATE = 0x0100,
 SERIAL_OPT_DATABITS = 0x0101,
 SERIAL_OPT_STOPBITS = 0x0102,
 SERIAL_OPT_PARITY = 0x0103,
 SERIAL_OPT_STATUS = 0x0104,
 SERIAL_OPT_HANDSHAKE = 0x0105,
 SERIAL_OPT_RCVTIMEOUT = 0x0106,
 SERIAL_OPT_ERRORCHARACTER = 0x0107,
 SERIAL_OPT_EXTCLOCK = 0x0108,
 SERIAL_OPT_BURSTMODE = 0x0109,
 SERIAL_OPT_DUMMY = 0x010A
};

Constants
SERIAL_OPT_BAUDRATE

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SERIAL_OPT_DATABITS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SERIAL_OPT_STOPBITS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SERIAL_OPT_PARITY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2682 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

SERIAL_OPT_STATUS
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SERIAL_OPT_HANDSHAKE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SERIAL_OPT_RCVTIMEOUT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SERIAL_OPT_ERRORCHARACTER
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SERIAL_OPT_EXTCLOCK
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SERIAL_OPT_BURSTMODE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

SERIAL_OPT_DUMMY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

SIGHUP

enum {
 SIGHUP = 1,
 SIGURG = 16,
 SIGPOLL = 30
};

Constants
SIGHUP
SIGURG
SIGPOLL

SL_FATAL

enum {
 SL_FATAL = 0x01,
 SL_NOTIFY = 0x02,
 SL_ERROR = 0x04,
 SL_TRACE = 0x08,
 SL_CONSOLE = 0x00,
 SL_WARN = 0x20,
 SL_NOTE = 0x40
};

Constants
SL_FATAL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SL_NOTIFY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SL_ERROR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SL_TRACE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SL_CONSOLE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SL_WARN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SL_NOTE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2684 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

SNDZERO

enum {
 SNDZERO = 0x01
};

Constants
SNDZERO

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_ALL

enum {
 SO_ALL = 0x7FFF,
 SO_READOPT = 0x0001,
 SO_WROFF = 0x0002,
 SO_MINPSZ = 0x0004,
 SO_MAXPSZ = 0x0008,
 SO_HIWAT = 0x0010,
 SO_LOWAT = 0x0020,
 SO_MREADON = 0x0040,
 SO_MREADOFF = 0x0080,
 SO_NDELON = 0x0100,
 SO_NDELOFF = 0x0200,
 SO_ISTTY = 0x0400,
 SO_ISNTTY = 0x0800,
 SO_TOSTOP = 0x1000,
 SO_TONSTOP = 0x2000,
 SO_BAND = 0x4000,
 SO_POLL_SET = 0x8000,
 SO_POLL_CLR = 0x00010000
};

Constants
SO_ALL

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_READOPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_WROFF
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_MINPSZ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_MAXPSZ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

SO_HIWAT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_LOWAT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_MREADON
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_MREADOFF
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_NDELON
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_NDELOFF
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_ISTTY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_ISNTTY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_TOSTOP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_TONSTOP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_BAND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_POLL_SET
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

SO_POLL_CLR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2686 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

SQLVL_QUEUE

enum {
 SQLVL_QUEUE = 1,
 SQLVL_QUEUEPAIR = 2,
 SQLVL_MODULE = 3,
 SQLVL_GLOBAL = 4,
 SQLVL_DEFAULT = 3
};

Constants
SQLVL_QUEUE
SQLVL_QUEUEPAIR
SQLVL_MODULE
SQLVL_GLOBAL
SQLVL_DEFAULT

STRCANON

enum {
 STRCANON = 0x01,
 RECOPY = 0x02
};

Constants
STRCANON

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

RECOPY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

STRCTLSZ

enum {
 STRCTLSZ = 256,
 STRMSGSZ = 8192
};

Constants
STRCTLSZ

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

STRMSGSZ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_ADDR

enum {
 T_ADDR = 0x01,
 T_OPT = 0x02,
 T_UDATA = 0x04,
 T_ALL = 0xFFFF
};
typedef UInt32 OTFieldsType;

Constants
T_ADDR

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_OPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_UDATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_ALL
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_ATALKBADROUTEREVENT

enum {
 T_ATALKBADROUTEREVENT = kAppleTalkEvent + 70,
 T_ALLNODESTAKENEVENT = kAppleTalkEvent + 71,
 T_FIXEDNODETAKENEVENT = kAppleTalkEvent + 72,
 T_MPPCOMPATCFIGEVENT = kAppleTalkEvent + 73,
 T_FIXEDNODEBADEVENT = kAppleTalkEvent + 74
};

Constants
T_ATALKBADROUTEREVENT

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_ALLNODESTAKENEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_FIXEDNODETAKENEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_MPPCOMPATCFIGEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2688 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_FIXEDNODEBADEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Structure Types
Specify the various Open Transport structure types that can be allocated by the OTAllocInContext function.

enum {
 T_BIND = 1,
 T_OPTMGMT = 2,
 T_CALL = 3,
 T_DIS = 4,
 T_UNITDATA = 5,
 T_UDERROR = 6,
 T_INFO = 7,
 T_REPLYDATA = 8,
 T_REQUESTDATA = 9,
 T_UNITREQUEST = 10,
 T_UNITREPLY = 11
};
typedef UInt32 OTStructType;

Constants
T_BIND

Specifies the TBind (page 2540) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_OPTMGMT
Specifies the The Option Management Structure (page 2549) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_CALL
Specifies the TCall (page 2541) structure

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_DIS
Specifies the TDiscon (page 2542) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_UNITDATA
Specifies the TUnitData (page 2553) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_UDERROR
Specifies the TUDErr (page 2552) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_INFO
Speciifies the TEndpointInfo (page 2542) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_REPLYDATA
Specifies the TReply (page 2552) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_REQUESTDATA
Specifies the TRequest (page 2552) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_UNITREQUEST
Specifies the TUnitRequest (page 2555) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_UNITREPLY
Specifies the TUnitReply (page 2554) structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_DNRSTRINGTOADDRCOMPLETE

enum {
 T_DNRSTRINGTOADDRCOMPLETE = kPRIVATEEVENT + 1,
 T_DNRADDRTONAMECOMPLETE = kPRIVATEEVENT + 2,
 T_DNRSYSINFOCOMPLETE = kPRIVATEEVENT + 3,
 T_DNRMAILEXCHANGECOMPLETE = kPRIVATEEVENT + 4,
 T_DNRQUERYCOMPLETE = kPRIVATEEVENT + 5
};

Constants
T_DNRSTRINGTOADDRCOMPLETE

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_DNRADDRTONAMECOMPLETE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_DNRSYSINFOCOMPLETE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2690 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_DNRMAILEXCHANGECOMPLETE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_DNRQUERYCOMPLETE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_GARBAGE

enum {
 T_GARBAGE = 2
};

Constants
T_GARBAGE

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_INFINITE

enum {
 T_INFINITE = -1,
 T_INVALID = -2
};

Constants
T_INFINITE

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_INVALID
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Event Codes
Define the constant names that provider functions can use for event codes, or define port-related events
Open Transport can send to an client application.

Constants 2691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

typedef UInt32 OTEventCode;
enum {
 T_LISTEN = 0x0001,
 T_CONNECT = 0x0002,
 T_DATA = 0x0004,
 T_EXDATA = 0x0008,
 T_DISCONNECT = 0x0010,
 T_ERROR = 0x0020,
 T_UDERR = 0x0040,
 T_ORDREL = 0x0080,
 T_GODATA = 0x0100,
 T_GOEXDATA = 0x0200,
 T_REQUEST = 0x0400,
 T_REPLY = 0x0800,
 T_PASSCON = 0x1000,
 T_RESET = 0x2000,
 kPRIVATEEVENT = 0x10000000,
 kCOMPLETEEVENT = 0x20000000,
 T_BINDCOMPLETE = 0x20000001,
 T_UNBINDCOMPLETE = 0x20000002,
 T_ACCEPTCOMPLETE = 0x20000003,
 T_REPLYCOMPLETE = 0x20000004,
 T_DISCONNECTCOMPLETE = 0x20000005,
 T_OPTMGMTCOMPLETE = 0x20000006,
 T_OPENCOMPLETE = 0x20000007,
 T_GETPROTADDRCOMPLETE = 0x20000008,
 T_RESOLVEADDRCOMPLETE = 0x20000009,
 T_GETINFOCOMPLETE = 0x2000000A,
 T_SYNCCOMPLETE = 0x2000000B,
 T_MEMORYRELEASED = 0x2000000C,
 T_REGNAMECOMPLETE = 0x2000000D,
 T_DELNAMECOMPLETE = 0x2000000E,
 T_LKUPNAMECOMPLETE = 0x2000000F,
 T_LKUPNAMERESULT = 0x20000010,
 kOTSyncIdleEvent = 0x20000011,
 kSTREAMEVENT = 0x21000000,
 kOTReservedEvent1 = 0x21000001,
 kGetmsgEvent = 0x21000002,
 kStreamReadEvent = 0x21000003,
 kStreamWriteEvent = 0x21000004,
 kStreamIoctlEvent = 0x21000005,
 kOTReservedEvent2 = 0x21000006,
 kStreamOpenEvent = 0x21000007,
 kPollEvent = 0x21000008,
 kOTReservedEvent3 = 0x21000009,
 kOTReservedEvent4 = 0x2100000A,
 kOTReservedEvent5 = 0x2100000B,
 kOTReservedEvent6 = 0x2100000C,
 kOTReservedEvent7 = 0x2100000D,
 kOTReservedEvent8 = 0x2100000E,
 kSIGNALEVENT = 0x22000000,
 kPROTOCOLEVENT = 0x23000000,
 kOTProviderIsDisconnected = 0x23000001,
 kOTProviderIsReconnected = 0x23000002,
 kOTProviderWillClose = 0x24000001,
 kOTProviderIsClosed = 0x24000002,
 kOTPortDisabled = 0x25000001,
 kOTPortEnabled = 0x25000002,

2692 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

 kOTPortOffline = 0x25000003,
 kOTPortOnline = 0x25000004,
 kOTClosePortRequest = 0x25000005,
 kOTYieldPortRequest = 0x25000005,
 kOTNewPortRegistered = 0x25000006,
 kOTPortNetworkChange = 0x25000007,
 kOTConfigurationChanged = 0x26000001,
 kOTSystemSleep = 0x26000002,
 kOTSystemShutdown = 0x26000003,
 kOTSystemAwaken = 0x26000004,
 kOTSystemIdle = 0x26000005,
 kOTSystemSleepPrep = 0x26000006,
 kOTSystemShutdownPrep = 0x26000007,
 kOTSystemAwakenPrep = 0x26000008,
 kOTStackIsLoading = 0x27000001,
 kOTStackWasLoaded = 0x27000002,
 kOTStackIsUnloading = 0x27000003
};

/* The following event codes are used internally by Open Transport.*/
enum {
 kOTDisablePortEvent = 0x21000001,
 kStreamCloseEvent = 0x21000006,
 kBackgroundStreamEvent = 0x21000009,
 kIoctlRecvFdEvent = 0x2100000A,
 kOTTryShutdownEvent = 0x2100000B,
 kOTScheduleTerminationEvent = 0x2100000C,
 kOTEnablePortEvent = 0x2100000D,
 kOTNewPortRegisteredEvent = 0x2100000E,
 kOTPortOfflineEvent = 0x2100000F,
 kOTPortOnlineEvent = 0x21000010,
 kOTPortNetworkChangeEvent = 0x21000011
};

Constants
T_LISTEN

A connection request has arrived. Call the OTListen function to read the request.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_CONNECT
The passive peer has accepted a connection that you requested using the OTConnect function. Call
the OTRcvConnect function to retrieve any data or option information that the passive peer has
specified when accepting the connection or to retrieve the address to which you are actually connected.
The cookie parameter to the notifier function is the sndCall parameter that you specified when
calling the OTConnect function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_DATA
Normal data has arrived. Depending on the type of service of the endpoint you are using, you can
call the OTRcvUData function or the OTRcv function to read it. Continue reading data until the function
returns with the kOTNoDataErr result; you will not get another indication that data has arrived until
you have read all the data and got this error.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_EXDATA
Expedited data has arrived. Use the OTRcv function to read it. Continue reading data by calling the
OTRcv function until the function returns with the kOTNoDataErr result; you will not get another
indication that data has arrived until you have read all the data and got this error.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_DISCONNECT
A connection has been torn down or rejected. Use the OTRcvDisconnect function to clear the event.

If the event is used to signify that a connection has been terminated, the cookie parameter to the
notifier is NULL.

If the event indicates a rejected connection request, the cookie parameter to the notification routine
is the same as the sndCall parameter that you passed to the OTConnect function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_ERROR
Obsolete.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_UDERR
The provider was not able to send the data you specified using the OTSndUData function even though
the function returned successfully. You must call the OTRcvUDErr function to clear this event and
determine why the function failed.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_ORDREL
The remote client has called the OTSndOrderlyDisconnect function to initiate an orderly disconnect.
You must call the OTRcvOrderlyDisconnect function to acknowledge receiving the event.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_GODATA
Flow-control restrictions have been lifted. You can now send normal data.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_GOEXDATA
Flow-control restrictions have been lifted. You can now send expedited data.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2694 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_REQUEST
A request has arrived. Depending on the type of service for the endpoint you are using, you can call
the OTRcvRequest function or the OTRcvURequest function to receive it. You must continue to call
the function until it returns with the kOTNoDataErr result.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_REPLY
A response to a request has arrived. Depending on the type of service of the endpoint you are using,
you can call the OTRcvReply function or OTRcvUReply function to receive it. You must continue to
call the function until it returns with the kOTNoDataErr result.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_PASSCON
When the OTAccept function completes, the endpoint provider passes this event to the endpoint
receiving the connection (whether that endpoint is the same as or different from the endpoint that
calls the OTAccept function). The cookie parameter contains the resRef parameter to the OTAccept
function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_RESET
A connection-oriented endpoint has received a reset from the remote end and has flushed all unread
and unsent data. This only occurs for some types of endpoints, and it generally leaves the endpoint
in an unknown state.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kPRIVATEEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kCOMPLETEEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_BINDCOMPLETE
The OTBind function has completed. The cookie parameter contains the retAddr parameter of the
bind call.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_UNBINDCOMPLETE
The OTUnbind function has completed. The cookie parameter is meaningless.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_ACCEPTCOMPLETE
The OTAccept function has completed. The cookie parameter contains the resRef parameter to
the OTAccept function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_REPLYCOMPLETE
The OTSndUReply or OTSndReply functions have completed. The cookie parameter contains the
sequence number used in the OTSndUReply or OTSndReply call.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_DISCONNECTCOMPLETE
The OTSndDisconnect function has completed. The cookie parameter contains the call parameter
of the OTSndDisconnect function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_OPTMGMTCOMPLETE
The OTOptionManagement function has completed. The cookie parameter contains the ret
parameter that you passed to the function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_OPENCOMPLETE
An asynchronous call to open a provider has completed. The cookie parameter contains the provider
reference.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_GETPROTADDRCOMPLETE
The OTGetProtAddress function has completed. The cookie parameter contains the peerAddr
parameter that you passed to the OTGetProtocolAddress function. If you passed NULL for that
parameter, the cookie parameter contains the address passed in the boundAddr parameter.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_RESOLVEADDRCOMPLETE
The OTResolveAddress function has completed. The cookie parameter contains the retAddr
parameter of the OTResolveAddress function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_GETINFOCOMPLETE
The OTGetEndpointInfo function has completed. The cookie parameter contains the info
parameter of the OTGetEndpointInfo function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_SYNCCOMPLETE
The OTSync function has completed. The cookie parameter is meaningless.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2696 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_MEMORYRELEASED
You are using an asynchronous endpoint that acknowledges sends and Open Transport is done using
the buffers containing the data you are sending. If you called the OTSnd function, the cookie
parameter contains the buf parameter. If you called the OTSndUData function, the cookie parameter
contains the udata parameter. The result parameter contains the number of bytes that were sent.
This might be less than the number you meant to send due to flow-control or memory restrictions.

You should not wait for the T_MEMORYRELEASED event from a previous send operation to trigger
more sends. The exact time this event occurs depends on how the underlying provider is implemented.
It might hold on to memory until the next send occurs, or behave in some other way which causes
it to delay releasing memory.

Note that T_MEMORYRELEASED events can reenter your notifier. See OTAckSends (page 2307)for more
information.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_REGNAMECOMPLETE
The OTRegisterName function has completed. The cookie parameter is the reply parameter, unless
it was NULL. In this case, it is the req parameter.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_DELNAMECOMPLETE
The OTDeleteName function or the OTDeleteNameByID function has completed. The cookie
parameter contains the name parameter or the nameId parameter of the function, respectively.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_LKUPNAMECOMPLETE
The OTLookupName function has completed. The cookie parameter contains the reply parameter
of the OTLookUpName function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_LKUPNAMERESULT
An OTLookupName function has found a name and is returning it, but the lookup is not yet complete.
The cookie parameter contains the reply parameter passed to the OTLookupName function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSyncIdleEvent
A synchronous call is waiting to complete.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kSTREAMEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTReservedEvent1
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kGetmsgEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kStreamReadEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kStreamWriteEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kStreamIoctlEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTReservedEvent2
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kStreamOpenEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kPollEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTReservedEvent3
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTReservedEvent4
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTReservedEvent5
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTReservedEvent6
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTReservedEvent7
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTReservedEvent8
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kSIGNALEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2698 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kPROTOCOLEVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTProviderIsDisconnected
Your provider was bound with a qlen parameter value greater than 0 and it has been disconnected
(is no longer listening). You receive this event after a port has accepted a request to temporarily yield
ownership of a port to another provider, which causes this provider to be disconnected from the port
in question. This currently only happens with serial ports, but could also happen with other
connection-oriented drivers that have characteristics similar to serial ports. You get a
kOTProviderIsReconnected message when the port reverts back to this provider’s ownership.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTProviderIsReconnected
Your provider has been reconnected, that is, the cause for its disconnection has been relieved.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTProviderWillClose
When you return from the notifier function, Open Transport will close the provider whose reference
is contained in the cookie parameter. The result parameter contains a result code specifying the
reason why the provider had to close. For example, the user may have decided to switch links using
the TCP/IP or AppleTalk control panel. The result codes that can be returned are in the range –3280
through –3285; these are documented in “Open Transport Result Codes” (page 2722).

You can only get this event at system task time. Consequently, you are allowed to set the endpoint
to synchronous mode (from within the notifier function) and call functions synchronously before you
return from the notifier, at which point the provider is closed. After this, any calls other than
OTCloseProvider will fail with a kOTOutStateErr error.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTProviderIsClosed
The provider has closed. The reason for being closed can be found in the OTResult value passed to
your notifier. The reasons typically are kOTPortHasDiedErr, kOTPortWasEjectedErr, or
kOTPortLostConnectionErr. At this point, any calls other than OTCloseProvider will fail with
a kOTOutStateErr error.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortDisabled
A port has gone off line, as when the user removes a PCMCIA card while the computer is running.
The OTResult parameter specifies the reason, if known, and the cookie parameter provides the port
reference of the port that went off line. A port going off line often results in providers getting
kOTProviderIsClosed events. There is no guarantee in Open Transport as to which of these events will
be received first.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTPortEnabled
A port that had previously been disabled is now reenabled, as when the user reinserts a previously
removed PCMCIA card while the computer is running. The cookie parameter is the port reference of
the port that is now enabled.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortOffline
The port is now offline.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortOnline
A request has been made to close or yield this port.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTClosePortRequest
You currently are using a provider that is using a port that some other application wants to use. The
OTResult parameter is the reason for the request (normally kOTNoError or kOTUserRequestedErr), and
the cookie parameter is a pointer to an OTPortCloseStruct structure.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTYieldPortRequest
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTNewPortRegistered
A new port has been registered with Open Transport, as when the user inserts a new PCMCIA card.
The cookie parameter is the port reference of the new port. Your provider receives this event the first
time a new port is enabled. Subsequently, if a port is reenabled after being disabled, you receive the
kOTPortEnabled event instead.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortNetworkChange
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTConfigurationChanged
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSystemSleep
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSystemShutdown
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2700 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTSystemAwaken
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSystemIdle
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSystemSleepPrep
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSystemShutdownPrep
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTSystemAwakenPrep
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTStackIsLoading
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTStackWasLoaded
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTStackIsUnloading
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTDisablePortEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kStreamCloseEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kBackgroundStreamEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kIoctlRecvFdEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTTryShutdownEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTScheduleTerminationEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

kOTEnablePortEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTNewPortRegisteredEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortOfflineEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortOnlineEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kOTPortNetworkChangeEvent
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Open Transport Flags and Status Codes
Specify information about data transmitted with the OTSnd or OTRcv functions, or specify options for the
OTOptionManagement function, or indicate the result status of an option negotiation.

typedef UInt32 OTFlags;
/* These flags are used when sending and receiving data.The constants
defined are masks.*/
enum {
 T_MORE = 0x0001,
 T_EXPEDITED = 0x0002,
 T_ACKNOWLEDGED = 0x0004,
 T_PARTIALDATA = 0x0008,
 T_NORECEIPT = 0x0010,
 T_TIMEDOUT = 0x0020
};

/* These flags are used in the TOptMgmt structure to request services.*/
enum {
 T_NEGOTIATE = 0x0004,
 T_CHECK = 0x0008,
 T_DEFAULT = 0x0010,
 T_CURRENT = 0x0080
};

2702 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

/* These flags are used in the TOptMgmt and TOption structures
to return results.*/
enum {
 T_SUCCESS = 0x0020,
 T_FAILURE = 0x0040,
 T_PARTSUCCESS = 0x0100,
 T_READONLY = 0x0200,
 T_NOTSUPPORT = 0x0400
};

Constants
T_MORE

There is more data for the current TSDU or ETSDU. The next send or receive operation will handle
additional data for this TSDU or ETSDU.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_EXPEDITED
On sends, the data is sent as expedited data if the endpoint supports expedited data. On receives,
the flag indicates that expedited data was sent.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_ACKNOWLEDGED
The transaction must be acknowledged before the send or receive function can complete.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_PARTIALDATA
There is more data for the current TSDU or ETSDU. Unlike T_MORE, T_PARTIALDATA does not guarantee
that the next send or receive operation will handle additional data for this TSDU or ETSDU.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_NORECEIPT
There is no need to send a T_REPLY_COMPLETE event to complete the transaction. If you don’t need
to know when the transaction is actually done, you can set this flag to improve performance.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_TIMEDOUT
The reply timed out. If a protocol such as ATP loses the acknowledgment for a transaction that needs
to be acknowledged, the transaction will eventually time out. Since the reply didn’t really fail (it just
timed out), Open Transport can send a T_REPLY_COMPLETE event to complete the transaction and
set this flag to explain what happened.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_NEGOTIATE
Negotiate the option values specified in the opt.buf field of the req parameter.

The overall result of the negotiation is specified by the flags field of the ret parameter. The opt.buf
field of the ret parameter points to a buffer where negotiated values for each option are placed.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_CHECK
Verify whether the endpoint supports the options referenced by the opt.buf field of the req parameter.
The overall result of the verification is specified by the flags field of the ret parameter. Specific
verification results are returned in the opt.buf field of the ret parameter.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_DEFAULT
Retrieve the default value for those options in the buffer referenced by the req->opt.buf field. To
retrieve default values for all the options supported by an endpoint, include just the option T_ALLOPT
in the options buffer.Option values are returned in the opt.buf field of the ret parameter.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_CURRENT
Retrieve the current value for those options that the endpoint supports and that are specified in the
buffer referenced by the req->opt.buf field. To retrieve current values for all the options that an
endpoint supports, include just the option T_ALLOPT in the options buffer.Option values are returned
in the opt.buf field of the ret parameter.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_SUCCESS
The requested value was negotiated.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_FAILURE
The negotiation failed.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_PARTSUCCESS
A lower requested value was negotiated.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_READONLY
The option was read-only.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2704 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_NOTSUPPORT
The endpoint does not support the requested value.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_NOTOS

enum {
 T_NOTOS = 0x00,
 T_LDELAY = (1 << 4),
 T_HITHRPT = (1 << 3),
 T_HIREL = (1 << 2)
};

Constants
T_NOTOS

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_LDELAY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_HITHRPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_HIREL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_NULL

enum {
 T_NULL = NULL,
 T_UNSPEC = -3
};

Constants
T_NULL
T_UNSPEC

The option does not have a fully specified value at this time. An endpoint provider might return this
status code if it cannot currently access the option value. This might happen if the endpoint is in the
state T_UNBND in systems where the protocol stack resides on a separate host.

Constants 2705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

T_ROUTINE

enum {
 T_ROUTINE = 0,
 T_PRIORITY = 1,
 T_IMMEDIATE = 2,
 T_FLASH = 3,
 T_OVERRIDEFLASH = 4,
 T_CRITIC_ECP = 5,
 T_INETCONTROL = 6,
 T_NETCONTROL = 7
};

Constants
T_ROUTINE

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_PRIORITY
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_IMMEDIATE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_FLASH
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_OVERRIDEFLASH
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_CRITIC_ECP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_INETCONTROL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

T_NETCONTROL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Endpoint Flags
Specifies information about an endpoint.

2706 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

enum {
 T_SENDZERO = 0x0001,
 T_XPG4_1 = 0x0002,
 T_CAN_SUPPORT_MDATA = 0x10000000,
 T_CAN_RESOLVE_ADDR = 0x40000000,
 T_CAN_SUPPLY_MIB = 0x20000000
};

Constants
T_SENDZERO

This endpoint lets you send and receive zero-length TSDUs.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_XPG4_1
This endpoint supports the OTGetProtAddress function (conforms to XTI in XPG4).

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_CAN_SUPPORT_MDATA
This endpoint supports M_DATA, that is, it permits receiving and returning raw packets.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_CAN_RESOLVE_ADDR
This endpoint supports the OTResolveAddress function.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_CAN_SUPPLY_MIB
This endpoint can supply the Management Information Base (MIB) data used by the Simple Network
Management Protocol (SNMP). At this time you cannot access this data.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_UNSPEC

Constants 2707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Constants

T_YES

enum {
 T_YES = 1,
 T_NO = 0,
 T_UNUSED = -1,
 kT_NULL = 0,
 T_ABSREQ = 0x8000
};

Constants
T_YES

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_NO
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_UNUSED
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

kT_NULL
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

T_ABSREQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TCP_NODELAY

enum {
 TCP_NODELAY = 0x01,
 TCP_MAXSEG = 0x02,
 TCP_NOTIFY_THRESHOLD = 0x10,
 TCP_ABORT_THRESHOLD = 0x11,
 TCP_CONN_NOTIFY_THRESHOLD = 0x12,
 TCP_CONN_ABORT_THRESHOLD = 0x13,
 TCP_OOBINLINE = 0x14,
 TCP_URGENT_PTR_TYPE = 0x15,
 TCP_KEEPALIVE = 0x0008
};

Constants
TCP_NODELAY

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

2708 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TCP_MAXSEG
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

TCP_NOTIFY_THRESHOLD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

TCP_ABORT_THRESHOLD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

TCP_CONN_NOTIFY_THRESHOLD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

TCP_CONN_ABORT_THRESHOLD
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

TCP_OOBINLINE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

TCP_URGENT_PTR_TYPE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

TCP_KEEPALIVE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

Constants 2709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TE_OPENED

enum {
 TE_OPENED = 1,
 TE_BIND = 2,
 TE_OPTMGMT = 3,
 TE_UNBIND = 4,
 TE_CLOSED = 5,
 TE_CONNECT1 = 6,
 TE_CONNECT2 = 7,
 TE_ACCEPT1 = 8,
 TE_ACCEPT2 = 9,
 TE_ACCEPT3 = 10,
 TE_SND = 11,
 TE_SNDDIS1 = 12,
 TE_SNDDIS2 = 13,
 TE_SNDREL = 14,
 TE_SNDUDATA = 15,
 TE_LISTEN = 16,
 TE_RCVCONNECT = 17,
 TE_RCV = 18,
 TE_RCVDIS1 = 19,
 TE_RCVDIS2 = 20,
 TE_RCVDIS3 = 21,
 TE_RCVREL = 22,
 TE_RCVUDATA = 23,
 TE_RCVUDERR = 24,
 TE_PASS_CONN = 25,
 TE_BAD_EVENT = 26
};

Constants
TE_OPENED

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_BIND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_OPTMGMT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_UNBIND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_CLOSED
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_CONNECT1
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2710 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TE_CONNECT2
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_ACCEPT1
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_ACCEPT2
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_ACCEPT3
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_SND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_SNDDIS1
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_SNDDIS2
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_SNDREL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_SNDUDATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_LISTEN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_RCVCONNECT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_RCV
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_RCVDIS1
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_RCVDIS2
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TE_RCVDIS3
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_RCVREL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_RCVUDATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_RCVUDERR
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_PASS_CONN
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TE_BAD_EVENT
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_UNBND

enum {
 TS_UNBND = 1,
 TS_WACK_BREQ = 2,
 TS_WACK_UREQ = 3,
 TS_IDLE = 4,
 TS_WACK_OPTREQ = 5,
 TS_WACK_CREQ = 6,
 TS_WCON_CREQ = 7,
 TS_WRES_CIND = 8,
 TS_WACK_CRES = 9,
 TS_DATA_XFER = 10,
 TS_WIND_ORDREL = 11,
 TS_WREQ_ORDREL = 12,
 TS_WACK_DREQ6 = 13,
 TS_WACK_DREQ7 = 14,
 TS_WACK_DREQ9 = 15,
 TS_WACK_DREQ10 = 16,
 TS_WACK_DREQ11 = 17,
 TS_WACK_ORDREL = 18,
 TS_NOSTATES = 19,
 TS_BAD_STATE = 19
};

Constants
TS_UNBND

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2712 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TS_WACK_BREQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WACK_UREQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_IDLE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WACK_OPTREQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WACK_CREQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WCON_CREQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WRES_CIND
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WACK_CRES
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_DATA_XFER
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WIND_ORDREL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WREQ_ORDREL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WACK_DREQ6
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WACK_DREQ7
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WACK_DREQ9
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

Constants 2713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TS_WACK_DREQ10
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WACK_DREQ11
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_WACK_ORDREL
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_NOSTATES
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

TS_BAD_STATE
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProtocol.h.

2714 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TSUCCESS

typedef UInt16 OTXTIErr;
enum {
 TSUCCESS = 0,
 TBADADDR = 1,
 TBADOPT = 2,
 TACCES = 3,
 TBADF = 4,
 TNOADDR = 5,
 TOUTSTATE = 6,
 TBADSEQ = 7,
 TSYSERR = 8,
 TLOOK = 9,
 TBADDATA = 10,
 TBUFOVFLW = 11,
 TFLOW = 12,
 TNODATA = 13,
 TNODIS = 14,
 TNOUDERR = 15,
 TBADFLAG = 16,
 TNOREL = 17,
 TNOTSUPPORT = 18,
 TSTATECHNG = 19,
 TNOSTRUCTYPE = 20,
 TBADNAME = 21,
 TBADQLEN = 22,
 TADDRBUSY = 23,
 TINDOUT = 24,
 TPROVMISMATCH = 25,
 TRESQLEN = 26,
 TRESADDR = 27,
 TQFULL = 28,
 TPROTO = 29,
 TBADSYNC = 30,
 TCANCELED = 31,
 TLASTXTIERROR = 31
};

Constants
TSUCCESS

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TBADADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TBADOPT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TACCES
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TBADF
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TNOADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TOUTSTATE
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TBADSEQ
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TSYSERR
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TLOOK
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TBADDATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TBUFOVFLW
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TFLOW
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TNODATA
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TNODIS
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TNOUDERR
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TBADFLAG
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TNOREL
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2716 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TNOTSUPPORT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TSTATECHNG
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TNOSTRUCTYPE
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TBADNAME
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TBADQLEN
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TADDRBUSY
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TINDOUT
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TPROVMISMATCH
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TRESQLEN
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TRESADDR
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TQFULL
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TPROTO
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TBADSYNC
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

TCANCELED
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

TLASTXTIERROR
Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

UDP_CHECKSUM

enum {
 UDP_CHECKSUM = 0x0600,
 UDP_RX_ICMP = 0x02
};

Constants
UDP_CHECKSUM

Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

UDP_RX_ICMP
Available in Mac OS X v10.0 and later.

Declared in OpenTransportProviders.h.

XTI-Level Options and Generic Options
Specifies constant names for XTI-level options.

enum {
 XTI_DEBUG = 0x0001,
 XTI_LINGER = 0x0080,
 XTI_RCVBUF = 0x1002,
 XTI_RCVLOWAT = 0x1004,
 XTI_SNDBUF = 0x1001,
 XTI_SNDLOWAT = 0x1003,
 XTI_PROTOTYPE = 0x1005,
 OPT_CHECKSUM = 0x0600,
 OPT_RETRYCNT = 0x0601,
 OPT_INTERVAL = 0x0602,
 OPT_ENABLEEOM = 0x0603,
 OPT_SELFSEND = 0x0604,
 OPT_SERVERSTATUS = 0x0605,
 OPT_ALERTENABLE = 0x0606,
 OPT_KEEPALIVE = 0x0008
};

Constants
XTI_DEBUG

A 32 bit constant specifying whether debugging is enabled. Debugging is disabled if the option is
specified with no value. This option is an absolute requirement.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2718 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

XTI_LINGER
A value defined by a linger structure (page 571) that specifies whether the option is turned on (T_YES)
or off (T_NO) and specifies a linger period in seconds. This option is an absolute requirement; however,
you do not have to specify a value for the l_linger field of the linger structure.

You use this option to extend the execution of the OTCloseProvider function for some specified
amount of time. The delay allows data still queued in the endpoint’s internal send buffer to be sent
before the endpoint provider is closed. If you call the OTCloseProvider function and the send buffer
is not empty, the endpoint provider attempts to send the remaining data during the linger period,
before closing. Open Transport discards any data remaining in the send buffer after the linger period
has elapsed.

Consult the documentation for your protocol to determine the valid range of values for the linger
period.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

XTI_RCVBUF
A 32-bit integer specifying the size of the endpoint’s internal buffer allocated for receiving data. You
can increase the size of this buffer for high-volume connections or decrease the buffer to limit the
possible backlog of incoming data.

This option is not an absolute requirement. Consult the documentation for your protocol to determine
the valid range of values for the buffer size.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

XTI_RCVLOWAT
A 32-bit integer specifying the low-water mark for the receive buffer—that is, the number of bytes
that must accumulate in the endpoint’s internal receive buffer before you are advised that data has
arrived via a T_DATA event. Choosing a value that is too low might result in your application’s getting
an excessive number of T_DATA events and doing unnecessary reads. Choosing a value that is too
high might result in Open Transport running out of memory and disabling incoming data packets.

This option is not an absolute requirement. Consult the documentation for your protocol to determine
the valid range of values for the low-water mark.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

XTI_SNDBUF
A 32-bit integer specifying the size of the endpoint’s internal buffer allocated for sending data.
Specifying a value that is too low might result in Open Transport doing more sends than necessary
and wasting processor time; specifying a value that is too high might cause flow control problems.

This option is not an absolute requirement. Consult the documentation for your protocol to determine
the valid range of values for the buffer size.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

XTI_SNDLOWAT
A 32-bit integer specifying the low-water mark for the send buffer—that is, the number of bytes that
must accumulate in the endpoint’s internal send buffer before Open Transport actually sends the
data. Choosing a value that is too low might result in Open Transport’s doing too many sends and
wasting processor time. Choosing a value that is too high might result in flow control problems. A
value that is slightly lower than the largest packet size defined for the endpoint is a good choice.

This option is not an absolute requirement. Consult the documentation for your protocol to determine
the valid range of values for the low-water mark.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

XTI_PROTOTYPE
The protocol type used by the endpoint. The option is supported by the RawIP endpoint.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

OPT_CHECKSUM
A 32-bit constant specifying whether checksums are performed. Specify 1 to turn the option on and
0 to turn it off. If you turn it on, a checksum is calculated when a packet is sent and recalculated when
the packet is received. If the checksum values match, the client receiving the packet can be fairly
certain that data has not been corrupted or lost during transmission. If the checksum values don’t
match, the receiver discards the packet.

This option is usually implemented by the lowest-level protocol, although you might be allowed to
set it at a higher level. For example, if you use an ATP endpoint, you can set checksumming at the
ATP level, even though it is implemented by the underlying DDP protocol.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

OPT_RETRYCNT
A 32-bit integer specifying the number of times a function can attempt packet delivery before returning
with an error. A value of 0 means that the function should attempt packet delivery an infinite number
of times.

This option is usually implemented by connection-oriented endpoints or connectionless
transaction-based endpoints to enable reliable delivery of data. Such protocols normally set a default
value for this option.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

OPT_INTERVAL
A 32-bit integer specifying the interval of time in milliseconds that should elapse between attempts
to deliver a packet. The number of attempts is defined by the OPT_RETRYCNT option.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

OPT_ENABLEEOM
An 32-bit integer specifying end-of-message capability. If you set this option, you enable the use of
the T_MORE flag with the OTSnd function to mark the end of a logical unit. This option has meaning
only for connection-oriented protocols. A value of 0 clears the option; a value of 1 sets it.

This option is not association-related.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

2720 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

OPT_SELFSEND
A 32-bit integer allowing you to send broadcast packets to yourself. A value of 0 clears the option; a
value of 1 sets it.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

OPT_SERVERSTATUS
A string that sets the server’s status. The maximum length is protocol dependent. For more information,
consult the documentation for the protocol you are using.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

OPT_ALERTENABLE
A keepalive structure that specifies whether “keep alive” is turned on (T_YES) or off (T_NO) and specifies
the timeout period in minutes.

Connection-oriented protocols can use this option to check that the connection is maintained. If a
connection is established but there is no data being transferred, you can specify a time limit within
which Open Transport checks to see that the remote end of the connection is still alive. If it is not,
Open Transport tears down the connection.

This option is association-related.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

OPT_KEEPALIVE
Enables or disables protocol alerts.

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Discussion
Open Transport defines XTI-level options. These options are not association-related. If the protocol you are
using supports these options, you can negotiate them while the endpoint is in any state. The protocol level
for all of these options is XTI_GENERIC.

Open Transport also defines some generic options that you can use with any protocol that supports them,
listed in this enumeration starting with OPT_CHECKSUM. The protocol level for each of these options is the
same as the name of the protocol that supports them.

XTI_GENERIC

enum {
 XTI_GENERIC = 0xFFFF
};

Constants
XTI_GENERIC

Available in Mac OS X v10.0 and later.

Declared in OpenTransport.h.

Constants 2721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Result Codes

The most common result codes returned by Open Transport are listed below.

DescriptionValueResult Code

No Error occurred0kOTNoError

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBADADDR) A Bad address was specified-3150kOTBadAddressErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBADOPT) A Bad option was specified-3151kOTBadOptionErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TACCES) Missing access permission-3152kOTAccessErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBADF) Bad provider reference-3153kOTBadReferenceErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TNOADDR) No address was specified-3154kOTNoAddressErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TOUTSTATE) Call issued in wrong state-3155kOTOutStateErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBADSEQ) Sequence specified does not exist-3156kOTBadSequenceErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TSYSERR) A system error occurred-3157kOTSysErrorErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TLOOK) An event occurred - call Look()-3158kOTLookErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBADDATA) An illegal amount of data was
specified

-3159kOTBadDataErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBUFOVFLW) Passed buffer not big enough-3160kOTBufferOverflowErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TFLOW) Provider is flow-controlled-3161kOTFlowErr

Available in Mac OS X v10.0 and later.

2722 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DescriptionValueResult Code

XTI2OSStatus(TNODATA) No data available for reading-3162kOTNoDataErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TNODIS) No disconnect indication available-3163kOTNoDisconnectErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TNOUDERR) No Unit Data Error indication
available

-3164kOTNoUDErrErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBADFLAG) A Bad flag value was supplied-3165kOTBadFlagErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TNOREL) No orderly release indication available-3166kOTNoReleaseErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TNOTSUPPORT) Command is not supported-3167kOTNotSupportedErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TSTATECHNG) State is changing - try again later-3168kOTStateChangeErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TNOSTRUCTYPE) Bad structure type requested
for OTAlloc

-3169kOTNoStructureTypeErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBADNAME) A bad endpoint name was supplied-3170kOTBadNameErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBADQLEN) A Bind to an in-use addr with qlen
> 0

-3171kOTBadQLenErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TADDRBUSY) Address requested is already in
use

-3172kOTAddressBusyErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TINDOUT) Accept failed because of pending
listen

-3173kOTIndOutErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TPROVMISMATCH) Tried to accept on
incompatible endpoint

-3174kOTProviderMismatchErr

Available in Mac OS X v10.0 and later.

Result Codes 2723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DescriptionValueResult Code

XTI2OSStatus(TRESQLEN)-3175kOTResQLenErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TRESADDR)-3176kOTResAddressErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TQFULL)-3177kOTQFullErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TPROTO) An unspecified provider error occurred-3178kOTProtocolErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TBADSYNC) A synchronous call at interrupt time-3179kOTBadSyncErr

Available in Mac OS X v10.0 and later.

XTI2OSStatus(TCANCELED) The command was cancelled-3180kOTCanceledErr

Available in Mac OS X v10.0 and later.

Permission denied-3200kEPERMErr

Available in Mac OS X v10.0 and later.

No such file or directory-3201kENOENTErr

Available in Mac OS X v10.0 and later.

OT generic not found error-3201kOTNotFoundErr

Available in Mac OS X v10.0 and later.

No such resource-3202kENORSRCErr

Available in Mac OS X v10.0 and later.

Interrupted system service-3203kEINTRErr

Available in Mac OS X v10.0 and later.

I/O error-3204kEIOErr

Available in Mac OS X v10.0 and later.

No such device or address-3205kENXIOErr

Available in Mac OS X v10.0 and later.

Bad file number-3208kEBADFErr

Available in Mac OS X v10.0 and later.

Try operation again later-3210kEAGAINErr

Available in Mac OS X v10.0 and later.

2724 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DescriptionValueResult Code

Not enough space-3211kENOMEMErr

Available in Mac OS X v10.0 and later.

OT ran out of memory, may be a temporary-3211kOTOutOfMemoryErr

Available in Mac OS X v10.0 and later.

Permission denied-3212kEACCESErr

Available in Mac OS X v10.0 and later.

Bad address-3213kEFAULTErr

Available in Mac OS X v10.0 and later.

Device or resource busy-3215kEBUSYErr

Available in Mac OS X v10.0 and later.

File exists-3216kEEXISTErr

Available in Mac OS X v10.0 and later.

OT generic duplicate found error-3216kOTDuplicateFoundErr

Available in Mac OS X v10.0 and later.

No such device-3218kENODEVErr

Available in Mac OS X v10.0 and later.

Invalid argument-3221kEINVALErr

Available in Mac OS X v10.0 and later.

Not a character device-3224kENOTTYErr

Available in Mac OS X v10.0 and later.

Broken pipe-3231kEPIPEErr

Available in Mac OS X v10.0 and later.

Message size too large for STREAM-3233kERANGEErr

Available in Mac OS X v10.0 and later.

or a deadlock would occur-3234kEDEADLKErr

Available in Mac OS X v10.0 and later.

Call would block, so was aborted-3234kEWOULDBLOCKErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-3236kEALREADYErr

Socket operation on non-socket-3237kENOTSOCKErr

Available in Mac OS X v10.0 and later.

Result Codes 2725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DescriptionValueResult Code

Destination address required-3238kEDESTADDRREQErr

Available in Mac OS X v10.0 and later.

Message too long-3239kEMSGSIZEErr

Available in Mac OS X v10.0 and later.

Protocol wrong type for socket-3240kEPROTOTYPEErr

Available in Mac OS X v10.0 and later.

Protocol not available-3241kENOPROTOOPTErr

Available in Mac OS X v10.0 and later.

Protocol not supported-3242kEPROTONOSUPPORTErr

Available in Mac OS X v10.0 and later.

Socket type not supported-3243kESOCKTNOSUPPORTErr

Available in Mac OS X v10.0 and later.

Operation not supported on socket-3244kEOPNOTSUPPErr

Available in Mac OS X v10.0 and later.

Address already in use-3247kEADDRINUSEErr

Available in Mac OS X v10.0 and later.

Can't assign requested address-3248kEADDRNOTAVAILErr

Available in Mac OS X v10.0 and later.

Network is down-3249kENETDOWNErr

Available in Mac OS X v10.0 and later.

Network is unreachable-3250kENETUNREACHErr

Available in Mac OS X v10.0 and later.

Network dropped connection on reset-3251kENETRESETErr

Available in Mac OS X v10.0 and later.

Software caused connection abort-3252kECONNABORTEDErr

Available in Mac OS X v10.0 and later.

Connection reset by peer-3253kECONNRESETErr

Available in Mac OS X v10.0 and later.

No buffer space available-3254kENOBUFSErr

Available in Mac OS X v10.0 and later.

2726 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DescriptionValueResult Code

Socket is already connected-3255kEISCONNErr

Available in Mac OS X v10.0 and later.

Socket is not connected-3256kENOTCONNErr

Available in Mac OS X v10.0 and later.

Can't send after socket shutdown-3257kESHUTDOWNErr

Available in Mac OS X v10.0 and later.

Too many references: can't splice-3258kETOOMANYREFSErr

Available in Mac OS X v10.0 and later.

Connection timed out-3259kETIMEDOUTErr

Available in Mac OS X v10.0 and later.

Connection refused-3260kECONNREFUSEDErr

Available in Mac OS X v10.0 and later.

Host is down-3263kEHOSTDOWNErr

Available in Mac OS X v10.0 and later.

No route to host-3264kEHOSTUNREACHErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-3269kEPROTOErr

Available in Mac OS X v10.0 and later.-3270kETIMEErr

Available in Mac OS X v10.0 and later.-3271kENOSRErr

Available in Mac OS X v10.0 and later.-3272kEBADMSGErr

Available in Mac OS X v10.0 and later.-3273kECANCELErr

Available in Mac OS X v10.0 and later.-3274kENOSTRErr

Available in Mac OS X v10.0 and later.-3275kENODATAErr

Available in Mac OS X v10.0 and later.-3276kEINPROGRESSErr

Available in Mac OS X v10.0 and later.-3277kESRCHErr

Available in Mac OS X v10.0 and later.-3278kENOMSGErr

Available in Mac OS X v10.0 and later.-3279kOTClientNotInittedErr

Available in Mac OS X v10.0 and later.-3280kOTPortHasDiedErr

Available in Mac OS X v10.0 and later.-3281kOTPortWasEjectedErr

Result Codes 2727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-3282kOTBadConfigurationErr

Available in Mac OS X v10.0 and later.-3283kOTConfigurationChangedErr

Available in Mac OS X v10.0 and later.-3284kOTUserRequestedErr

Available in Mac OS X v10.0 and later.-3285kOTPortLostConnection

Available in Mac OS X v10.0 and later.-14000kModemOutOfMemory

Available in Mac OS X v10.0 and later.-14001kModemPreferencesMissing

Available in Mac OS X v10.0 and later.-14002kModemScriptMissing

2728 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 44

Open Transport Reference

Framework: CoreServices/CoreServices.h

Declared in SearchKit.h
SKAnalysis.h
SKDocument.h
SKIndex.h
SKSearch.h
SKSummary.h

Overview

Search Kit is a powerful and streamlined C language framework for indexing and searching text in most
human languages. It provides fast information retrieval in System Preferences, Address Book, Help Viewer,
and Xcode. Apple’s Spotlight technology is built on top of Search Kit to provide content searching in Finder,
Mail, and the Spotlight menu.

You can use Search Kit or Spotlight to provide similar functionality and powerful information-access capabilities
within your Mac OS X application. The Search Kit API is appropriate when you want your application to have
full control over indexing and searching, and when your focus is file content. Search Kit is thread-safe and
works with Cocoa, Carbon, and command-line tools.

Beginning with Mac OS X version 10.4, Search Kit supports phrase searches, prefix/suffix/substring searches,
improved Boolean searches, and improved relevance ranking. Search Kit now uses Spotlight’s metadata
importers when indexing documents, and takes advantage of any additional importers available on a system.
Searching and indexing are much faster with Search Kit’s new asynchronous search APIs. And, starting in
Mac OS X v10.4, Search Kit provides a summarization API that supplants Find By Content.

Functions by Task

Functions are grouped according to the tasks you perform using them. For an alphabetical list of functions,
go to the API index at the end of the document.

Creating, Opening, and Closing Indexes
Search Kit performs its searches not on documents but on its indexes of documents. The functions in this
group let your application create memory-based and persistent indexes. Indexes are initially empty. Functions
in “Managing Indexes” (page 2730) let you add document content to these indexes.

Overview 2729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKIndexCreateWithURL (page 2747)
Creates a named index in a file whose location is specified with a CFURL object.

SKIndexCreateWithMutableData (page 2746)
Creates a named index stored in a CFMutableData object.

SKIndexOpenWithData (page 2758)
Opens an existing, named index for searching only.

SKIndexOpenWithMutableData (page 2759)
Opens an existing, named index for searching and updating.

SKIndexOpenWithURL (page 2760)
Opens an existing, named index stored in a file whose location is specified with a CFURL object.

SKIndexClose (page 2740)
Closes an index.

SKIndexGetIndexType (page 2754)
Gets the category of an index.

SKIndexGetTypeID (page 2757)
Gets the type identifier for Search Kit indexes.

Managing Indexes
The functions in this section let your application add document content to (and remove document content
from) indexes, work with memory- and disk-based indexes, and retrieve metadata from indexes.

SKIndexAddDocumentWithText (page 2739)
Adds a document URL object, and the associated document’s textual content, to an index.

SKIndexAddDocument (page 2738)
Adds location information for a file-based document, and the document’s textual content, to an index.

SKIndexFlush (page 2750)
Invokes all pending updates associated with an index and commits them to backing store.

SKIndexCompact (page 2741)
Invokes all pending updates associated with an index, compacts the index if compaction is needed,
and commits all changes to backing store.

SKIndexGetDocumentCount (page 2751)
Gets the total number of documents represented in an index.

SKIndexGetMaximumDocumentID (page 2755)
Gets the highest-numbered document ID in an index.

SKIndexGetMaximumTermID (page 2756)
Gets the highest-numbered term ID in an index.

SKIndexDocumentIteratorCreate (page 2749)
Creates an index-based iterator for document URL objects owned by a parent document URL object.

SKIndexDocumentIteratorCopyNext (page 2748)
Obtains the next document URL object from an index using a document iterator.

SKIndexGetAnalysisProperties (page 2751)
Gets the text analysis properties of an index.

SKIndexMoveDocument (page 2758)
Changes the parent of a document URL object in an index.

2730 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKIndexRemoveDocument (page 2761)
Removes a document URL object and its children, if any, from an index.

SKIndexRenameDocument (page 2761)
Changes the name of a document URL object in an index.

SKIndexSetMaximumBytesBeforeFlush (page 2763)
Not recommended. Sets the memory size limit for updates to an index, measured in bytes.

SKIndexGetMaximumBytesBeforeFlush (page 2755)
Not recommended. Gets the memory size limit for updates to an index, measured in bytes.

SKIndexDocumentIteratorGetTypeID (page 2750) Deprecated in Mac OS X v10.5
Gets the type identifier for Search Kit document iterators.

Working With Text Importers
Search Kit can import the textual content of file-based documents into indexes using the Spotlight metadata
importers.

SKLoadDefaultExtractorPlugIns (page 2763)
Tells Search Kit to use the Spotlight metadata importers.

Working with Documents and Terms
From Search Kit’s perspective, a document is anything that contains text—an RTF document, a PDF file, a
Mail message, an Address Book entry, an Internet URL, the result of a database query, and so on.

The functions in this section let your application create new document URL objects (SKDocumentRefs),
retrieve metadata from documents, get information on document hierarchies, and work with documents
and their terms in the context of Search Kit indexes.

SKDocumentCreateWithURL (page 2735)
Creates a document URL object from a CFURL object.

SKDocumentCreate (page 2734)
Creates a document URL object based on a scheme, parent, and name.

SKDocumentCopyURL (page 2734)
Builds a CFURL object from a document URL object.

SKDocumentGetName (page 2736)
Gets the name of a document URL object.

SKDocumentGetParent (page 2736)
Gets a document URL object’s parent.

SKDocumentGetSchemeName (page 2737)
Gets the scheme name for a document URL object.

SKDocumentGetTypeID (page 2737)
Gets the type identifier for Search Kit document URL objects.

SKIndexCopyDocumentForDocumentID (page 2741)
Obtains a document URL object from an index.

SKIndexCopyInfoForDocumentIDs (page 2744)
Gets document names and parent IDs based on document IDs.

Functions by Task 2731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKIndexCopyDocumentRefsForDocumentIDs (page 2743)
Gets document URL objects based on document IDs.

SKIndexCopyDocumentURLsForDocumentIDs (page 2744)
Gets document URLs based on document IDs.

SKIndexCopyDocumentIDArrayForTermID (page 2742)
Obtains document IDs for documents that contain a given term.

SKIndexCopyTermIDArrayForDocumentID (page 2745)
Obtains the IDs for the terms of an indexed document.

SKIndexCopyTermStringForTermID (page 2746)
Obtains a term, specified by ID, from an index.

SKIndexGetTermIDForTermString (page 2757)
Gets the ID for a term in an index.

SKIndexSetDocumentProperties (page 2762)
Sets the application-defined properties of a document URL object.

SKIndexCopyDocumentProperties (page 2742)
Obtains the application-defined properties of an indexed document.

SKIndexGetDocumentState (page 2753)
Gets the current indexing state of a document URL object in an index.

SKIndexGetDocumentTermCount (page 2753)
Gets the number of terms for a document in an index.

SKIndexGetDocumentTermFrequency (page 2754)
Gets the number of occurrences of a term in a document.

SKIndexGetTermDocumentCount (page 2756)
Gets the number of documents containing a given term represented in an index.

SKIndexGetDocumentID (page 2752)
Gets the ID of a document URL object in an index.

Fast Asynchronous Searching
In Mac OS X v10.4 and later, Search Kit’s fast asynchronous searching replaces synchronous searching.
Synchronous searching, which relied on search groups, is deprecated.

SKSearchCreate (page 2764)
Creates an asynchronous search object for querying an index, and initiates search.

SKSearchFindMatches (page 2766)
Extracts search result information from a search object.

SKSearchCancel (page 2764)
Cancels an asynchronous search request.

SKSearchGetTypeID (page 2768)
Gets the type identifier for Search Kit search objects.

Working With Summarization
Search Kit’s Summarization functions supplant those in Apple’s Find by Content API.

2732 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKSummaryCreateWithString (page 2777)
Creates a summary object based on a text string.

SKSummaryGetSentenceSummaryInfo (page 2779)
Gets detailed information about a body of text for constructing a custom sentence-based summary
string.

SKSummaryGetParagraphSummaryInfo (page 2777)
Gets detailed information about a body of text for constructing a custom paragraph-based summary
string.

SKSummaryGetSentenceCount (page 2778)
Gets the number of sentences in a summarization object.

SKSummaryGetParagraphCount (page 2777)
Gets the number of paragraphs in a summarization object.

SKSummaryCopySentenceAtIndex (page 2776)
Gets a specified sentence from the text in a summarization object.

SKSummaryCopyParagraphAtIndex (page 2775)
Gets a specified paragraph from the text in a summarization object.

SKSummaryCopySentenceSummaryString (page 2776)
Gets a text string consisting of a summary with, at most, the requested number of sentences.

SKSummaryCopyParagraphSummaryString (page 2775)
Gets a text string consisting of a summary with, at most, the requested number of paragraphs.

SKSummaryGetTypeID (page 2779)
Gets the type identifier for Search Kit summarization objects.

Legacy Support for Synchronous Searching
Developers should avoid using the functions listed in this section; instead, use the replacement functions
that are recommended. Search Kit retains the functions in this section for backward compatibility.

SKSearchGroupGetTypeID (page 2769)
Deprecated. Use asynchronous searching with SKSearchCreate instead, which does not employ search
groups.

SKSearchResultsGetTypeID (page 2774)
Gets the type identifier for Search Kit search results. (Deprecated. Use SKSearchCreate (page 2764)
instead.)

SKSearchGroupCopyIndexes (page 2768) Deprecated in Mac OS X v10.4
Obtains the indexes for a search group. (Deprecated. Use asynchronous searching with SKSearchCreate
instead, which does not employ search groups.)

SKSearchGroupCreate (page 2769) Deprecated in Mac OS X v10.4
Creates a search group as an array of references to indexes. (Deprecated. Use asynchronous searching
with SKSearchCreate instead, which does not employ search groups.)

SKSearchResultsCopyMatchingTerms (page 2770) Deprecated in Mac OS X v10.4
Obtains the terms in a document that match a query. (Deprecated. Use SKSearchCreate (page 2764)
instead.)

SKSearchResultsCreateWithDocuments (page 2770) Deprecated in Mac OS X v10.4
Finds documents similar to given example documents. (Deprecated. Use SKSearchCreate (page
2764) instead.)

Functions by Task 2733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKSearchResultsCreateWithQuery (page 2772) Deprecated in Mac OS X v10.4
Queries the indexes in a search group. (Deprecated. Use SKSearchCreate (page 2764) instead.)

SKSearchResultsGetCount (page 2773) Deprecated in Mac OS X v10.4
Gets the total number of found items in a search. (Deprecated. Use SKSearchCreate (page 2764)
instead.)

SKSearchResultsGetInfoInRange (page 2773) Deprecated in Mac OS X v10.4
Extracts information from a Search Kit query result. (Deprecated. Use SKSearchCreate (page 2764)
instead.)

Functions

SKDocumentCopyURL
Builds a CFURL object from a document URL object.

CFURLRef SKDocumentCopyURL (
 SKDocumentRef inDocument
);

Parameters
inDocument

The document URL object (SKDocumentRef) that you want a CFURLRef object for.

Return Value
A CFURLRef object representing a document location, or NULL on failure.

Discussion
You can use this function to create a CFURL Reference object to represent a document’s location. Do this to
gain access to the Core Foundation functionality provided by CFURL. This functionality includes accessing
parts of the URL string, getting properties of the URL, and converting the URL to other representations.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentCreate
Creates a document URL object based on a scheme, parent, and name.

2734 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKDocumentRef SKDocumentCreate (
CFStringRef inScheme,
SKDocumentRef inParent,
CFStringRef inName
);

Parameters
inScheme

The scheme to use—analogous to the scheme of a URL. Only documents referenced with the “file”
scheme can be read by the SKIndexAddDocument (page 2738) function. The scheme can be anything
you like if you use the SKIndexAddDocumentWithText (page 2739) function. The scheme can be
NULL, in which case it will be set to be the same scheme as the document URL object’s
(SKDocumentRef’s) parent. For more information on schemes, see http://www.iana.org/assignments/uri-
schemes.html.

inParent
The document URL object one step up in the document hierarchy. Can be NULL.

inName
The name of the document that you’re creating a document URL object for. For the “file” scheme,
it is the name of the file or the container, not its path. The path can be constructed by following parent
links. The maximum length for a document name is 256 bytes.

Return Value
The new document URL object, or NULL on failure.

Discussion
The new document URL object’s (SKDocumentRef’s) parent can be NULL, but you must specify either a scheme
or a parent. When your application no longer needs the document URL object, dispose of it by calling
CFRelease.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentCreateWithURL
Creates a document URL object from a CFURL object.

SKDocumentRef SKDocumentCreateWithURL (
 CFURLRef inURL
);

Parameters
inURL

The URL for the document URL object (SKDocumentRef) you are creating. The scheme of the document
URL object gets set to the scheme of the URL used. Only URLs with a scheme of “file” can be used
with the SKIndexAddDocument (page 2738) function, but the URL scheme may be anything you like
if you use theSKIndexAddDocumentWithText (page 2739) function. For more information on schemes,
see http://www.iana.org/assignments/uri-schemes.html.

Return Value
The new document URL object (SKDocumentRef), or NULL if the document URL object could not be created.

Functions 2735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

http://www.iana.org/assignments/uri-schemes.html
http://www.iana.org/assignments/uri-schemes.html
http://www.iana.org/assignments/uri-schemes.html

Discussion
Use SKDocumentCreateWithURL to create a unique reference to a file or to another, arbitrary URL that your
application will use as a document URL object (SKDocumentRef). When your application no longer needs
the document URL object, dispose of it by calling CFRelease.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentGetName
Gets the name of a document URL object.

CFStringRef SKDocumentGetName (
 SKDocumentRef inDocument
);

Parameters
inDocument

The document URL object (SKDocumentRef) whose name you want to get.

Return Value
A CFStringRef object containing the document URL object’s name, or NULL on failure.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentGetParent
Gets a document URL object’s parent.

SKDocumentRef SKDocumentGetParent (
 SKDocumentRef inDocument
);

Parameters
inDocument

The document URL object (SKDocumentRef) whose parent you want to get.

Return Value
The parent document URL object, or NULL on failure.

Discussion
As described in SKDocumentRef (page 2781), Search Kit manages document locations in terms of URLs as
Document URL objects (SKDocumentRefs). The parent document URL object typically contains the document’s
URL up to but not including the document name.

2736 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Typically, document URL objects contain the complete URL to a file-based document. But you can use this
function iteratively to build up the complete file-system path for a document that you are managing as part
of a document hierarchy. See SKDocumentRef (page 2781) for more on this.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentGetSchemeName
Gets the scheme name for a document URL object.

CFStringRef SKDocumentGetSchemeName (
 SKDocumentRef inDocument
);

Parameters
inDocument

The document URL object (SKDocumentRef) whose scheme you want to get.

Return Value
A CFStringRef object containing the document URL object’s scheme name, or NULL on failure.

Discussion
The scheme of a document URL object (SKDocumentRef), which represents how it can be accessed, can be
any character string but is typically “file” or “http”. The scheme is one of a Search Kit document URL object’s
three properties—see SKDocumentRef (page 2781) for details.

For more information on schemes, see http://www.iana.org/assignments/uri-schemes.html

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKDocumentGetTypeID
Gets the type identifier for Search Kit document URL objects.

CFTypeID SKDocumentGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the document URL object (SKDocumentRef).

Discussion
Search Kit represents document URL objects with the SKDocumentRef (page 2781) opaque type. If your code
needs to determine whether a particular data type is a document URL object, you can use this function along
with the CFGetTypeID function and perform a comparison.

Never hard-code the document URL object type ID because it can change from one release of Mac OS X to
another.

Functions 2737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

http://www.iana.org/assignments/uri-schemes.html

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKIndexAddDocument
Adds location information for a file-based document, and the document’s textual content, to an index.

Boolean SKIndexAddDocument (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 CFStringRef inMIMETypeHint,
 Boolean inCanReplace
);

Parameters
inIndex

The index you are adding the document URL object to.

inDocument
The document URL object (SKDocumentRef), containing a file-based document’s location information,
to add to the index. You can release the document URL object immediately after adding it to the
index.

inMIMETypeHint
The MIME type hint for the specified file-based document. Can be NULL. In Search Kit, common MIME
type hints include text/plain, text/rtf, text/html, text/pdf, and application/msword.

Specify a MIME type hint to help Spotlight determine which of its metadata importers to use when
Search Kit is indexing a file-based document. Search Kit uses filename extensions and type/creator
codes in attempting to determine file types when indexing files. See
SKLoadDefaultExtractorPlugIns (page 2763). You can circumvent Search Kit’s file type
determination process, or override it, by using a MIME type hint.

inCanReplace
A Boolean value specifying whether Search Kit will overwrite a document’s index entry (true, indicated
by 1 or kCFBooleanTrue), or retain the entry if it exists (false, indicated by 0 or kCFBoolenFalse).

Return Value
A Boolean value of true on success, or false on failure. Also returns false if the document has an entry
in the index and inCanReplace is set to false.

Discussion
The document scheme must be of type “file” to use this function. If it’s not, call
SKIndexAddDocumentWithText (page 2739) instead. For more information on schemes, see
http://www.iana.org/assignments/uri-schemes.html.

This function uses the referenced document and the optional MIME type hint to get the document’s textual
content using the Spotlight metadata importers. If you do not supply a MIME type hint, Spotlight’s importers
will use filename extensions and type/creator codes to guess file types.

Search Kit indexes any nonexecutable file associated with a document URL object (SKDocumentRef) that you
hand to this function, even nontext files such as images. Your application takes responsibility for ensuring
that the document URL objects you pass to SKIndexAddDocument are in fact the locations of files you want
to index.

2738 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

http://www.iana.org/assignments/uri-schemes.html

If your application did not call SKLoadDefaultExtractorPlugIns (page 2763), Search Kit indexes the first
10 MB of a document. Otherwise, Search Kit indexes the entire document up to the index file size limit of 4
GB.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

A single Search Kit index can hold up to 4 billion document URL objects and their associated textual content.

Special Considerations

In the current implementation of Search Kit, some functions do not provide expected results unless you
follow SKIndexAddDocument with a call to SKIndexFlush (page 2750). The affected functions include
SKIndexGetDocumentCount (page 2751), SKIndexGetDocumentTermCount (page 2753),
SKIndexGetDocumentTermFrequency (page 2754), and SKIndexGetTermDocumentCount (page 2756).
However, in typical use this won’t be an issue, because applications call these functions after a search, and
you must call SKIndexFlush before a search.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, Search Kit used its own text extractor plug-ins rather than
using the Spotlight metadata importers. See SKLoadDefaultExtractorPlugIns (page 2763) and
http://developer.apple.com/macosx/tiger/spotlight.html.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexAddDocumentWithText
Adds a document URL object, and the associated document’s textual content, to an index.

Boolean SKIndexAddDocumentWithText (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 CFStringRef inDocumentText,
 Boolean inCanReplace
);

Parameters
inIndex

The index to which you are adding the document URL object (SKDocumentRef).

inDocument
The document URL object to add.

inDocumentText
The document text. Can be NULL.

inCanReplace
A Boolean value specifying whether Search Kit will overwrite a document’s index entry (true, indicated
by 1 or kCFBooleanTrue), or retain the entry if it exists (false, indicated by 0 or kCFBoolenFalse).

Return Value
A Boolean value of true on success, or false on failure. Also returns false if the document has an entry
in the index and inCanReplace is set to false.

Functions 2739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

http://developer.apple.com/macosx/tiger/spotlight.html

Discussion
Use this function to add the textual contents of arbitrary document types to an index. With this function,
your application takes responsibility for getting textual content and handing it to the index as a CFString
object. Because of this, your application can define what it considers to be a document—a database record,
a tagged field in an XML document, an object in memory, a text file, and so on.

Search Kit will index any size text string that you give it, up to its 4 GB index file size limit.

To add the textual content of file-based documents to a Search Kit index, you can use this function or take
advantage of Search Kit’s ability to locate and read certain on-disk, file-based document types—see
SKIndexAddDocument (page 2738).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

A single Search Kit index file can be up to 4 GB in size.

Special Considerations

In Mac OS X v10.3, some functions do not provide expected results unless you follow a call to
SKIndexAddDocumentWithText with a call to SKIndexFlush (page 2750). The affected functions include
SKIndexGetDocumentCount (page 2751), SKIndexGetDocumentTermCount (page 2753),
SKIndexGetDocumentTermFrequency (page 2754), and SKIndexGetTermDocumentCount (page 2756).
However, in typical use this won’t be an issue, because applications call these functions after a search, and
you must call SKIndexFlush before a search.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexClose
Closes an index.

void SKIndexClose (
 SKIndexRef inIndex
);

Parameters
inIndex

The index to close.

Discussion
When your application no longer needs an index that it has opened or created, call SKIndexClose. Calling
this function is equivalent to calling CFRelease on an index.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKIndex.h

2740 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKIndexCompact
Invokes all pending updates associated with an index, compacts the index if compaction is needed, and
commits all changes to backing store.

Boolean SKIndexCompact (
 SKIndexRef inIndex
);

Parameters
inIndex

The index you want to compact.

Return Value
A Boolean value of true on success, or false on failure.

Discussion
Over time, as document URL objects (SKDocumentRefs) and associated contents get added to and removed
from an index, the index’s disk or memory footprint may grow due to fragmentation.

Compacting can take a significant amount of time. Do not call SKIndexCompact on the main thread in an
application with a user interface. Call it only if the index is significantly fragmented and according to the
needs of your application.

Calling SKIndexCompact changes the block allocation for an index’s backing store. Close all clients of an
index before calling this function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyDocumentForDocumentID
Obtains a document URL object from an index.

SKDocumentRef SKIndexCopyDocumentForDocumentID (
 SKIndexRef inIndex,
 SKDocumentID inDocumentID
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef).

inDocumentID
The ID of the document URL object you want to copy.

Return Value
A Search Kit document URL object.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, the parameter type for inDocumentID was CFIndex. The
parameter type in Mac OS X v10.4 and later is SKDocumentID.

Functions 2741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyDocumentIDArrayForTermID
Obtains document IDs for documents that contain a given term.

CFArrayRef SKIndexCopyDocumentIDArrayForTermID (
 SKIndexRef inIndex,
 CFIndex inTermID
);

Parameters
inIndex

The index to search.

inTermID
The ID of the term to search for.

Return Value
An array of CFNumbers, each the ID for a document URL object that points to a document containing the
search term.

Discussion
SKIndexCopyDocumentIDArrayForTermID searches a single index for documents that contain a given
term. The search uses a term ID, not a term string. To get the ID of a term, use
SKIndexGetTermIDForTermString (page 2757).

Term IDs are index-specific; that is, a term has a different ID in each index in which it appears. If you want to
search for all the documents containing a term in a set of indexes, call this function in turn for each index,
using the index-specific term ID in each case.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyDocumentProperties
Obtains the application-defined properties of an indexed document.

CFDictionaryRef SKIndexCopyDocumentProperties (
 SKIndexRef inIndex,
 SKDocumentRef inDocument
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) whose properties you want to copy.

2742 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

inDocument
The document URL object whose properties you want to copy.

Return Value
A CFDictionary object containing the document URL object’s (SKDocumentRef’s) properties, or NULL on
failure.

Discussion
Search Kit document URL objects (SKDocumentRefs) can have an optional, application-defined properties
dictionary to hold any information you’d like to associate with the document represented by a document
URL object—such as timestamp, keywords, and so on. Use SKIndexSetDocumentProperties (page 2762)
to add a properties dictionary to a document URL object, and this function to obtain a copy of the dictionary.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyDocumentRefsForDocumentIDs
Gets document URL objects based on document IDs.

void SKIndexCopyDocumentRefsForDocumentIDs (
 SKIndexRef inIndex,
 CFIndex inCount,
 SKDocumentID *inDocumentIDsArray,
 SKDocumentRef *outDocumentRefsArray
);

Parameters
inIndex

The index containing the document information.

inCount
The number of document IDs in inDocumentIDsArray.

inDocumentIDsArray
Points to an array of document IDs corresponding to the document URL objects (SKDocumentRefs)
you want.

outDocumentRefsArray
On input, a pointer to an array for document URL objects. On output, points to the previously allocated
array, which now contains document URL objects corresponding to the document IDs in
inDocumentIDsArray.

When finished with the document URL objects array, dispose of it by calling CFRelease on each array
element.

Discussion
The SKIndexCopyDocumentRefsForDocumentIDs function lets you get a batch of document URL objects
(SKDocumentRef objects) in one step, based on a list of document IDs.

If you want to get lightweight URLs in the form of CFURL objects instead, use
SKIndexCopyDocumentURLsForDocumentIDs (page 2744).

Availability
Available in Mac OS X v10.4 and later.

Functions 2743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Declared In
SKSearch.h

SKIndexCopyDocumentURLsForDocumentIDs
Gets document URLs based on document IDs.

void SKIndexCopyDocumentURLsForDocumentIDs (
 SKIndexRef inIndex,
 CFIndex inCount,
 SKDocumentID *inDocumentIDsArray,
 CFURLRef *outDocumentURLsArray
);

Parameters
inIndex

The index containing the document information.

inCount
The number of document IDs in inDocumentIDsArray.

inDocumentIDsArray
Points to an array of document IDs corresponding to the document URLs (CFURL objects) you want.

outDocumentURLsArray
On input, a pointer to an array for document URLs (CFURL objects). On output, points to the previously
allocated array, which now contains document URLs corresponding to the document IDs in
inDocumentIDArray.

When finished with the document URL array, dispose of it by calling CFRelease on each array element.

Discussion
The SKIndexCopyDocumentURLsForDocumentIDs function lets you get a batch of document URLs (CFURL
objects) in one step, based on a list of document IDs.

If you want to get Search Kit Document URL objects (SKDocumentRefs) instead, use
SKIndexCopyDocumentRefsForDocumentIDs (page 2743).

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKIndexCopyInfoForDocumentIDs
Gets document names and parent IDs based on document IDs.

2744 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

void SKIndexCopyInfoForDocumentIDs (
 SKIndexRef inIndex,
 CFIndex inCount,
 SKDocumentID *inDocumentIDsArray,
 CFStringRef *outNamesArray,
 SKDocumentID *outParentIDsArray
);

Parameters
inIndex

The index containing the document information.

inCount
The number of document IDs in inDocumentIDsArray.

inDocumentIDsArray
Points to an array of document IDs representing the documents whose names and parent IDs you
want.

outNamesArray
On input, a pointer to an array for document names. On output, points to the previously allocated
array, which now contains the document names corresponding to the document IDs in
inDocumentIDsArray. May be NULL on input if you don’t want to get the document names.

When finished with the names array, dispose of it by calling CFRelease on each array element.

outParentIDsArray
On input, a pointer to an array for parent document IDs. On output, points to the previously allocated
array, which now contains document IDs representing the parents of the documents whose IDs are
in inDocumentIDsArray. May be NULL on input if you don’t want to get the parent document IDs.

Discussion
The SKIndexCopyInfoForDocumentIDs function lets you get a batch of document names and parent
document IDs in one step, based on a list of document IDs.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKIndexCopyTermIDArrayForDocumentID
Obtains the IDs for the terms of an indexed document.

CFArrayRef SKIndexCopyTermIDArrayForDocumentID (
 SKIndexRef inIndex,
 SKDocumentID inDocumentID
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) and associated textual content.

inDocumentID
The ID of the document whose term IDs you are copying.

Functions 2745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Return Value
A CFArray containing CFNumbers, each of which represents the ID for a term in a document.

Discussion
To derive the list of terms contained in a document, use this function to obtain an array of the term IDs, then
convert each ID into the corresponding term with the SKIndexCopyTermStringForTermID (page 2746)
function.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, the parameter type for inDocumentID was CFIndex. In
Mac OS X v10.4 and later, the parameter type is SKDocumentID.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCopyTermStringForTermID
Obtains a term, specified by ID, from an index.

CFStringRef SKIndexCopyTermStringForTermID (
 SKIndexRef inIndex,
 CFIndex inTermID
);

Parameters
inIndex

The index whose terms you are searching.

inTermID
The ID of the term whose string you want.

Return Value
A CFString containing the term specified by inTermID.

Discussion
When your application has the ID of a term, perhaps as a result of calling
SKIndexCopyTermIDArrayForDocumentID (page 2745), use this function to derive the term’s text string.

To perform the inverse operation of deriving a term ID from a term string in a given index, use
SKIndexGetTermIDForTermString (page 2757).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCreateWithMutableData
Creates a named index stored in a CFMutableData object.

2746 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKIndexRef SKIndexCreateWithMutableData (
 CFMutableDataRef inData,
 CFStringRef inIndexName,
 SKIndexType inIndexType,
 CFDictionaryRef inAnalysisProperties
);

Parameters
inData

An empty CFMutableData object to contain the index being created.

inIndexName
The name of the index. If you call this function with inIndexName set to NULL, Search Kit assigns the
index the default index name IADefaultIndex. If you then attempt to create a second index in the
same file without assigning a name, no second index is created and this function returns NULL. Search
Kit does not currently support retrieving index names from an index.

inIndexType
The index type. See “SKIndexType” (page 2788).

inAnalysisProperties
The text analysis properties dictionary, which optionally sets the minimum term length, stopwords,
term substitutions, maximum unique terms to index, and proximity support (for phrase-based searches)
when creating the index. See “Text Analysis Keys” (page 2784). The inAnalysisProperties
parameter can be NULL, in which case Search Kit applies the default dictionary, which is NULL.

Return Value
The newly created index.

Discussion
SKIndexCreateWithMutableData creates an index in memory as a CFMutableData object. Search Kit
indexes are initially empty. A memory-based index is useful for quick searching and when your application
doesn’t need persistent storage. To create a disk-based, persistent index, use SKIndexCreateWithURL (page
2747).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

When your application no longer needs the index, dispose of it by calling SKIndexClose (page 2740).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexCreateWithURL
Creates a named index in a file whose location is specified with a CFURL object.

Functions 2747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKIndexRef SKIndexCreateWithURL (
 CFURLRef inURL,
 CFStringRef inIndexName,
 SKIndexType inIndexType,
 CFDictionaryRef inAnalysisProperties
);

Parameters
inURL

The location of the index.

inIndexName
The name of the index. If you call this function with inIndexName set to NULL, Search Kit assigns the
index the default index name IADefaultIndex. If you then attempt to create a second index in the
same file without assigning a name, no second index is created and this function returns NULL. Search
Kit does not currently support retrieving index names from an index.

inIndexType
The index type. See “SKIndexType” (page 2788).

inAnalysisProperties
The text analysis properties dictionary, which optionally sets the minimum term length, stopwords,
term substitutions, maximum unique terms to index, and proximity support (for phrase-based searches)
when creating the index. See “Text Analysis Keys” (page 2784). To get the analysis properties of
an index, use the SKIndexGetAnalysisProperties (page 2751) function. The
inAnalysisProperties parameter can be NULL, in which case Search Kit applies the default
dictionary, which is NULL.

Return Value
A unique reference to the newly created index.

Discussion
SKIndexCreateWithURL creates an index in a file. Search Kit indexes are initially empty. Use this function
when your application needs persistent storage of an index. To create a memory-based, nonpersistent index,
use SKIndexCreateWithMutableData (page 2746).

A file can contain more than one index. To add a new index to an existing file, use the same value for inURL
and supply a new name for inIndexName.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

When your application no longer needs the index, dispose of it by calling SKIndexClose (page 2740).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexDocumentIteratorCopyNext
Obtains the next document URL object from an index using a document iterator.

2748 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKDocumentRef SKIndexDocumentIteratorCopyNext (
 SKIndexDocumentIteratorRef inIterator
);

Parameters
inIterator

The index-based document iterator. See SKIndexDocumentIteratorCreate (page 2749) for
information on creating an document iterator, and SKIndexDocumentIteratorRef (page 2781) for
more about iterators.

Return Value
The next document URL object (SKDocumentRef) in the index.

Discussion
This function returns NULL when there are no more document URL objects (SKDocumentRefs) in the index.
When finished iterating, your application must call CFRelease on all retrieved document URL objects that
are non-NULL.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexDocumentIteratorCreate
Creates an index-based iterator for document URL objects owned by a parent document URL object.

SKIndexDocumentIteratorRef SKIndexDocumentIteratorCreate (
 SKIndexRef inIndex,
 SKDocumentRef inParentDocument
);

Parameters
inIndex

The index you want to iterate across.

inParentDocument
The document URL object (SKDocumentRef) that is the parent of the document URL objects you want
to examine. Pass NULL to get the top item in an index. See SKDocumentRef (page 2781) for a discussion
of how to get the full URL for a document URL object.

Return Value
An index-based document iterator.

Discussion
When you want to iterate across all the documents represented in an index, use this function to create an
iterator and then call SKIndexDocumentIteratorCopyNext (page 2748) in turn for each document URL
object (SKDocumentRef) in the index.

Document iterators iterate over a single level of an index. Your code is responsible for descending through
a hierarchy of documents in an index.

Functions 2749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

When your application no longer needs the iterator, dispose of it by calling CFRelease.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexDocumentIteratorGetTypeID
Gets the type identifier for Search Kit document iterators.

CFTypeID SKIndexDocumentIteratorGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKIndexDocumentIterator opaque type.

Discussion
Search Kit represents document iterators with the SKIndexDocumentIteratorRef (page 2781) opaque type.
If your code needs to determine whether a particular data type is a document iterator, you can use this
function along with the CFGetTypeID function and perform a comparison.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Never hard-code the document iterator type ID because it can change from one release of Mac OS X to
another.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexFlush
Invokes all pending updates associated with an index and commits them to backing store.

Boolean SKIndexFlush (
 SKIndexRef inIndex
);

Parameters
inIndex

The index you want to update and commit to backing store.

Return Value
A Boolean value of true on success, or false on failure.

2750 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Discussion
An on-disk or memory-based index becomes stale when your application updates it by adding or removing
a document entry. A search on an index in such a state won’t have access to the nonflushed updates. The
solution is to call this function before searching. SKIndexFlush flushes index-update information and
commits memory-based index caches to disk, in the case of an on-disk index, or to a memory object, in the
case of a memory-based index. In both cases, calling this function makes the state of the index consistent.

Before searching an index, always call SKIndexFlush, even though the flush process may take up to several
seconds. If there are no updates to commit, a call to SKIndexFlush does nothing and takes minimal time.

A new Search Kit index does not have term IDs until it is flushed.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetAnalysisProperties
Gets the text analysis properties of an index.

CFDictionaryRef SKIndexGetAnalysisProperties (
 SKIndexRef inIndex
);

Parameters
inIndex

The index whose text-analysis properties you want to get.

Return Value
A CFDictionary object containing the index’s text-analysis properties. On failure, returns NULL.

Discussion
The text analysis properties of an index determine how searches behave when querying the index. You set
the analysis properties when creating an index with the SKIndexCreateWithURL (page 2747) or
SKIndexCreateWithMutableData (page 2746) functions. For more information on text-analysis properties,
see “Text Analysis Keys” (page 2784).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetDocumentCount
Gets the total number of documents represented in an index.

Functions 2751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

CFIndex SKIndexGetDocumentCount (
 SKIndexRef inIndex
);

Parameters
inIndex

The index whose document URL objects (SKDocumentRefs) you want to count.

Return Value
A CFIndex object containing the number of document URL objects in the index. On failure, returns 0.

Discussion
Document URL objects (SKDocumentRefs) added to an index have an indexing state of
kSKDocumentStateIndexed. See the “SKDocumentIndexState” (page 2786) enumeration.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Special Considerations

In the current implementation of Search Kit, SKIndexGetDocumentCount returns the number of documents
represented in the on-disk index. If your application has added document URL objects to the index but has
not yet called SKIndexFlush (page 2750), the document count may not be correct.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetDocumentID
Gets the ID of a document URL object in an index.

SKDocumentID SKIndexGetDocumentID (
 SKIndexRef inIndex,
 SKDocumentRef inDocument
);

Parameters
inIndex

The index containing the text of the document whose document URL object (SKDocumentRef) ID
you want.

inDocument
The document URL object whose ID you want.

Return Value
A document ID object.

Discussion
The document ID identifies a document URL object (SKDocumentRef) in an index. The ID is available as soon
as you add a document URL object to an index using SKIndexAddDocumentWithText (page 2739) or
SKIndexAddDocument (page 2738).

Availability
Available in Mac OS X v10.3 and later.

2752 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Declared In
SKIndex.h

SKIndexGetDocumentState
Gets the current indexing state of a document URL object in an index.

SKDocumentIndexState SKIndexGetDocumentState (
 SKIndexRef inIndex,
 SKDocumentRef inDocument
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) whose indexing state you want.

inDocument
The document URL object whose indexing state you want.

Return Value
A value indicating the document URL object’s indexing state.

Discussion
A document URL object (SKDocumentRef) can be in one of four states, as defined by the
“SKDocumentIndexState” (page 2786) enumeration: not indexed, indexed, not in the index but will be
added after the index is flushed or closed, and in the index but will be deleted after the index is flushed or
closed.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetDocumentTermCount
Gets the number of terms for a document in an index.

CFIndex SKIndexGetDocumentTermCount (
 SKIndexRef inIndex,
 SKDocumentID inDocumentID
);

Parameters
inIndex

The index containing the text of the document whose term count you want.

inDocumentID
The ID of the document URL object (SKDocumentRef) whose term count you want. Obtain a document
ID by calling SKIndexGetDocumentID (page 2752).

Return Value
A CFIndex object containing the number of terms in a document.

Functions 2753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Version Notes
versions of Mac OS X prior to Mac OS X v10.4, the parameter type for inDocumentID was CFIndex. In Mac
OS X v10.4 and later, the parameter type is SKDocumentID.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetDocumentTermFrequency
Gets the number of occurrences of a term in a document.

CFIndex SKIndexGetDocumentTermFrequency (
 SKIndexRef inIndex,
 SKDocumentID inDocumentID,
 CFIndex inTermID
);

Parameters
inIndex

The index containing the text of the document whose term count you are interested in.

inDocumentID
The ID of the document URL object whose associated term count you are interested in. Obtain a
document ID by calling SKIndexGetDocumentID (page 2752).

inTermID
The ID of the term whose number of occurrences you want.

Return Value
A CFIndex object containing the number of occurrences of a term in a document.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, the parameter type for inDocumentID was CFIndex. In
Mac OS X v10.4 and later, the parameter type is SKDocumentID.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetIndexType
Gets the category of an index.

SKIndexType SKIndexGetIndexType (
 SKIndexRef inIndex
);

Parameters
inIndex

The index whose category you want to know.

2754 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Return Value
The category of the index. See the “SKIndexType” (page 2788) enumeration for a list of the various index
categories. On failure, returns a value of kSKIndexUnknown.

Discussion
As described in “SKIndexType” (page 2788), Search Kit offers four categories of index, each optimized for
one or more types of searching.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetMaximumBytesBeforeFlush
Not recommended. Gets the memory size limit for updates to an index, measured in bytes.

CFIndex SKIndexGetMaximumBytesBeforeFlush (
 SKIndexRef inIndex
);

Special Considerations

This function is rarely needed and is likely to be deprecated. Apple recommends using the
SKIndexFlush (page 2750) function along with the default memory size limit for index updates. Refer to the
SKIndexSetMaximumBytesBeforeFlush function for more information.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetMaximumDocumentID
Gets the highest-numbered document ID in an index.

SKDocumentID SKIndexGetMaximumDocumentID (
 SKIndexRef inIndex
);

Parameters
inIndex

An index.

Return Value
A document ID object containing the highest-numbered document ID in the index.

Discussion
Use this function with SKIndexGetDocumentCount (page 2751) to determine whether an index is fragmented
and in need of compaction. See SKIndexCompact (page 2741).

Functions 2755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, the return type for SKIndexGetMaximumDocumentID was
CFIndex. The return type in Mac OS X v10.4 and later is SKDocumentID.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetMaximumTermID
Gets the highest-numbered term ID in an index.

CFIndex SKIndexGetMaximumTermID (
 SKIndexRef inIndex
);

Parameters
inIndex

An index.

Return Value
A CFIndex object containing the highest-numbered term ID in an index.

Discussion
A new Search Kit index does not have term IDs until it is flushed.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetTermDocumentCount
Gets the number of documents containing a given term represented in an index.

CFIndex SKIndexGetTermDocumentCount (
 SKIndexRef inIndex,
 CFIndex inTermID
);

Parameters
inIndex

The index containing the text of the documents you want to examine.

inTermID
The terms whose occurrences you want to know.

2756 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Return Value
A CFIndex object containing the number of documents represented in an index that contain a given term.

Discussion
If you want to know in which documents a term appears across multiple indexes, call this function separately
on each index. Before querying each index, get the index-specific term ID using
SKIndexGetTermIDForTermString (page 2757).

To ensure that this function takes into account document URL objects (SKDocumentRefs) recently added to
indexes, call SKIndexFlush (page 2750) on each index before calling this function.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetTermIDForTermString
Gets the ID for a term in an index.

CFIndex SKIndexGetTermIDForTermString (
 SKIndexRef inIndex,
 CFStringRef inTermString
);

Parameters
inIndex

The index you want to examine.

inTermString
The term string whose corresponding ID you want.

Return Value
A CFIndex object containing the term ID for a given term in an index. If the term isn’t found, this function
returns a value of kCFNotFound.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexGetTypeID
Gets the type identifier for Search Kit indexes.

CFTypeID SKIndexGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKIndex opaque type.

Functions 2757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Discussion
Search Kit represents indexes with the SKIndexRef (page 2782) opaque type. If your code needs to determine
whether a particular data type is an index, you can use this function along with the CFGetTypeID function
and perform a comparison.

Never hard-code the index type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexMoveDocument
Changes the parent of a document URL object in an index.

Boolean SKIndexMoveDocument (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 SKDocumentRef inNewParent
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) you want to move.

inDocument
The document URL object you want to move.

inNewParent
The new parent document URL object for the document URL object you want to move.

Return Value
A Boolean value of true for a successful move, or false on failure.

Discussion
When your application moves a document, use this function to update the index to reflect the change.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexOpenWithData
Opens an existing, named index for searching only.

2758 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKIndexRef SKIndexOpenWithData (
 CFDataRef inData,
 CFStringRef inIndexName
);

Parameters
inData

The index to open.

inIndexName
The name of the index. Can be NULL, in which case this function attempts to open the index with the
default name of IADefaultIndex.

Return Value
The named index, or NULL on failure.

Discussion
An index opened by SKIndexOpenWithData can be searched but not updated. To open an index for
updating, use SKIndexOpenWithMutableData (page 2759).

If inIndexName is NULL and inData does not contain an index with the default name, this function returns
NULL.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

A call to SKIndexOpenWithData retains the opened index. When your application no longer needs the
index, dispose of it by calling SKIndexClose (page 2740).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexOpenWithMutableData
Opens an existing, named index for searching and updating.

SKIndexRef SKIndexOpenWithMutableData (
 CFMutableDataRef inData,
 CFStringRef inIndexName
);

Parameters
inData

The index to open.

inIndexName
The name of the index. Can be NULL, in which case this function attempts to open the index with the
default name of IADefaultIndex.

Functions 2759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Return Value
The named index, or NULL on failure.

Discussion
An index opened by SKIndexOpenWithMutableData may be searched or updated. To open an index for
search only, use the SKIndexOpenWithData (page 2758) function.

If inIndexName is NULL and inData does not contain an index with the default name, this function returns
NULL.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

A call to SKIndexOpenWithMutableData retains the opened index. When your application no longer needs
the index, dispose of it by calling SKIndexClose (page 2740).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexOpenWithURL
Opens an existing, named index stored in a file whose location is specified with a CFURL object.

SKIndexRef SKIndexOpenWithURL (
 CFURLRef inURL,
 CFStringRef inIndexName,
 Boolean inWriteAccess
);

Parameters
inURL

The location of the index.

inIndexName
The name of the index. Can be NULL.

inWriteAccess
A Boolean value indicating whether the index is open for updating. To open an index for searching
only, pass false (0 or kCFBoolenFalse). To open it for searching and updating, pass true (1 or
kCFBooleanTrue).

Return Value
The named index.

Discussion
A call to SKIndexOpenWithURL retains the opened index. When your application no longer needs the index,
dispose of it by calling SKIndexClose (page 2740).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

2760 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexRemoveDocument
Removes a document URL object and its children, if any, from an index.

Boolean SKIndexRemoveDocument (
 SKIndexRef inIndex,
 SKDocumentRef inDocument
);

Parameters
inIndex

The index from which you want to remove the document URL object (SKDocumentRef).

inDocument
The document URL object to remove.

Return Value
A Boolean value of true on success, or false on failure.

Discussion
When your application deletes a document, use this function to update the index to reflect the change.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexRenameDocument
Changes the name of a document URL object in an index.

Boolean SKIndexRenameDocument (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 CFStringRef inNewName
);

Parameters
inIndex

The index containing the document URL object (SKDocumentRef) whose name you want to change.

Functions 2761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

inDocument
The document URL object whose name you want to change.

inNewName
The new name for the document URL object.

Return Value
A Boolean value of true if the document URL object name was successfully changed, or false on failure.

Discussion
When your application changes the name of a document, use this function to update the index to reflect
the change.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexSetDocumentProperties
Sets the application-defined properties of a document URL object.

void SKIndexSetDocumentProperties (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 CFDictionaryRef inProperties
);

Parameters
inIndex

An index containing the document URL object (SKDocumentRef) whose properties you want to set.

inDocument
The document URL object whose properties you want to set.

inProperties
A CFDictionary object containing the properties to apply to the document URL object.

Discussion
Search Kit document URL objects (SKDocumentRefs) can have an optional, application-defined properties
dictionary to hold any information you’d like to associate with the document represented by a document
URL object—such as timestamp, keywords, and so on.

Use SKIndexSetDocumentProperties to persistently set application-defined properties for a document
URL object in an index. This function replaces a document URL object’s existing properties dictionary with
the new one. To obtain a copy of a document URL object’s properties dictionary, use
SKIndexCopyDocumentProperties (page 2742).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

2762 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKIndexSetMaximumBytesBeforeFlush
Not recommended. Sets the memory size limit for updates to an index, measured in bytes.

void SKIndexSetMaximumBytesBeforeFlush (
 SKIndexRef inIndex
 CFIndex inBytesForUpdate
);

Discussion
This function is rarely needed and is likely to be deprecated. Search Kit keeps track of index updates that are
not yet committed to disk. Apple recommends using the default memory size limit for index updates, which
is currently 2 million bytes.

Special Considerations

Apple recommends use of the SKIndexFlush (page 2750) function instead of
SKIndexSetMaximumBytesBeforeFlush.

Version Notes
In Mac OS X v10.3, the default memory size limit for index updates was 1 million bytes.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKLoadDefaultExtractorPlugIns
Tells Search Kit to use the Spotlight metadata importers.

void SKLoadDefaultExtractorPlugIns (void);

Discussion
The Spotlight metadata importers determine the kMDItemTextContent property for each document passed
to theSKIndexAddDocument (page 2738) function. See http://developer.apple.com/macosx/tiger/spotlight.html.

Call the SKLoadDefaultExtractorPlugIns function once at application launch to tell Search Kit to use
the Spotlight metadata importers. The function SKIndexAddDocument (page 2738) will then use Spotlight’s
importers to extract the text from supported files and place that text into an index, leaving the markup
behind.

Version Notes
In versions of Mac OS X prior to Mac OS X v10.4, Search Kit used its own set of default text extractor plug-ins.
The file types supported by Search Kit’s default text extractor plug-ins were:

 ■ plaintext

 ■ PDF

 ■ HTML

 ■ RTF

 ■ Microsoft Word (.doc)

Functions 2763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

http://developer.apple.com/macosx/tiger/spotlight.html

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKSearchCancel
Cancels an asynchronous search request.

void SKSearchCancel (
 SKSearchRef inSearch
);

Parameters
inSearch

The search object whose associated asynchronous search you want to cancel.

Discussion
Call this function when you want to cancel an asynchronous search that you initiated with
SKSearchCreate (page 2764). This function stops the search process if it is still in progress at the time. It does
not dispose of the search object (SKSearchRef).

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKSearchCreate
Creates an asynchronous search object for querying an index, and initiates search.

SKSearchRef SKSearchCreate (
 SKIndexRef inIndex,
 CFStringRef inQuery,
 SKSearchOptions inSearchOptions
);

Parameters
inIndex

The index to query.

inQuery
The query string to search for.

inSearchOptions
The search options. May be NULL. See the “SKSearchOptions” (page 2787) enumeration for a
description of the available options.

Return Value
A search object.

2764 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Discussion
This function creates an asynchronous search object for querying the document contents in an index. It also
initiates the search on a separate thread.

After you create the search object, call SKSearchFindMatches (page 2766) to retrieve results. You can call
SKSearchFindMatches immediately. To cancel a search, call SKSearchCancel (page 2764).

For normal (non-similarity-based) queries, Search Kit discerns the type of query—Boolean, prefix, phrase,
and so on—from the syntax of the query itself. Moreover, Search Kit supports multiple query types within a
single search. For example, the following query includes Boolean, prefix, and suffix searching:

appl* OR *ing

This query will return documents containing words that begin with “appl” as well as documents that contain
words that end with “ing”.

For similarity searches, specified with the kSKSearchOptionFindSimilar flag in the inSearchOptions
parameter, SKSearchCreate ignores all query operators.

The query operators that SKSearchCreate recognizes for non-similarity searching are:

Table 45-1 Search Kit query operators for non-similarity searches

meaningOperator

Boolean ANDAND

Boolean AND&

Boolean AND by default when no other operator is present, or Boolean OR if specified by
kSKSearchOptionSpaceMeansOR.

<space>

Boolean inclusive OROR

Boolean inclusive OR|

Boolean NOT (see Special Considerations)NOT

Boolean NOT (see Special Considerations)!

Wildcard for prefix or suffix; surround term with wildcard characters for substring search. Ignored
in phrase searching.

*

Begin logical grouping(

End logical grouping)

delimiter for phrase searching"

The operators AND, OR, and NOT are case sensitive.

Search Kit performs Unicode normalization on query strings and on the text placed into indexes. It uses
Unicode Normalization Form KC (NFKC, compatibility decomposition followed by canonical composition) as
documented in Unicode Standard Annex #15. For example, the a-grave character, ‘à’, can be written as the

Functions 2765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

two Unicode characters (0x0061, 0x0300) or as the single Unicode character 0x00E0. Search Kit will normalize
(0x0061, 0x0300) to 0x00E0. For more information on Unicode normalization, see http://unicode.org/re-
ports/tr15 .

Search Kit further normalizes query strings and indexes by stripping diacritical marks and by forcing characters
to lowercase. For example, Search Kit normalizes each of the following characters to ‘a’: ‘a’, ‘à’, ‘A’, and ‘À’.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

When your application no longer needs the search object, dispose of it by calling CFRelease.

Special Considerations

Search Kit supports logical exclusion. The NOT and ! operators behave as though they were EXCLUDE operators.
For example, a search for ‘red NOT blue’ returns all documents that contain the word ‘red’ and do not contain
the word ‘blue’.

Unary Boolean operators, however, are not currently implemented in Search Kit. A search, for example, for
‘NOT blue’, returns zero documents no matter what their content.

You cannot use CFMakeCollectable with SKSearch objects. In a garbage-collected environment, you must
use CFRelease to dispose of an SKSearch object.

Version Notes
Mac OS X version 10.4 uses a completely revised, and far more powerful, query approach than did earlier
versions of Mac OS X. Refer to the Discussion in this function for details. Refer to
SKSearchResultsCreateWithQuery (page 2772) (deprecated) for a description of Search Kit’s behavior in
earlier versions of Mac OS X.

In versions of Mac OS X prior to version 10.4, Search Kit did not perform Unicode normalization, and did not
remove diacritical marks.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKSearchFindMatches
Extracts search result information from a search object.

Boolean SKSearchFindMatches (
 SKSearchRef inSearch,
 CFIndex inMaximumCount,
 SKDocumentID *outDocumentIDsArray,
 float *outScoresArray,
 CFTimeInterval maximumTime
 CFIndex *outFoundCount
);

Parameters
inSearch

A reference to a search object (SKSearchRef) previously created with SKSearchCreate.

2766 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/

inMaximumCount
The maximum number of items to find. For each item found, SKSearchFindMatches places the
associated document ID into the outDocumentIDsArray array. Specify an inMaximumCount of 0
to find as many items as possible within maximumTime.

outDocumentIDsArray
On input, a pointer to an array for document IDs. On output, points to points to the previously allocated
array, which now contains the found document IDs. The size of this array must be equal to
inMaximumCount.

outScoresArray
On input, a pointer to an array for scores. On output, points to the previously allocated array, which
now contains relevance scores for the found items. The size of this array, if not NULL, must be equal
to inMaximumCount. Can be NULL on input, provided that your application doesn’t need this
information. Search Kit does not normalize relevance scores, so they can be very large.

maximumTime
The maximum number of seconds before this function returns, whether or not inMaximumCount
items have been found. Setting maximumTime to 0 tells the search to return quickly

outFoundCount
On input, a pointer to a CFIndex object that will hold the number of items found. On output, points
to the CFIndex object that now contains the actual number of items found.

Return Value
A logical value indicating whether the search is still in progress. Returns false when the search is exhausted.

Discussion
The SKSearchFindMatches extracts results from a find operation initiated by a search object (SKSearchRef).

This function provides results to its output parameters simply in the order in which they are found. This
reduces latency to support search-as-you-type functionality. Larger scores mean greater relevance.

You can call this function on a search object repeatedly to get additional sets of search results. For example,
if you call this function twice with an inMaximumCount value of 10, the first call will put the first 10 items
found into the output arrays and the second call will put the second 10 items found into the output arrays.

Applications are free to display relevance scores in any appropriate manner. One simple way is to divide each
relevance score by the largest number returned to get relevance numbers scaled linearly from 0.0 to 1.0.
Search Kit does not scale the relevance scores for you, because you may want to combine the scores from
several calls on a search object or the scores from calls to more than one search object.

Search Kit is thread-safe. You can use separate indexing and searching threads. Your application is responsible
for ensuring that no more than one process is open at a time for writing to an index.

Before invoking a search, call SKIndexFlush (page 2750) on all indexes you will query to ensure that updates
to the indexes have been flushed to disk.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

Functions 2767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKSearchGetTypeID
Gets the type identifier for Search Kit search objects.

CFTypeID SKSearchGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKSearch opaque type.

Discussion
Search Kit represents searches with search objects (SKSearchRef (page 2782) opaque types). If your code
needs to determine whether a particular data type is a search object, you can use this function along with
the CFGetTypeID function and perform a comparison.

Never hard-code the search type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKSearchGroupCopyIndexes
Obtains the indexes for a search group. (Deprecated in Mac OS X v10.4. Use asynchronous searching with
SKSearchCreate instead, which does not employ search groups.)

CFArrayRef SKSearchGroupCopyIndexes (
 SKSearchGroupRef inSearchGroup
);

Parameters
inSearchGroup

The search group whose indexes you want to copy.

Return Value
A CFArray object containing the indexes in the search group.

Discussion
Although the search functions SKSearchResultsCreateWithQuery (page 2772) and
SKSearchResultsCreateWithDocuments (page 2770) operate directly on search groups, many Search Kit
functions, such as SKIndexCompact (page 2741), operate on one index at a time. When you want to examine
or manage all the indexes in a search group, use SKSearchGroupCopyIndexes to get the search group’s
list of indexes.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

2768 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKSearchGroupCreate
Creates a search group as an array of references to indexes. (Deprecated in Mac OS X v10.4. Use asynchronous
searching with SKSearchCreate instead, which does not employ search groups.)

SKSearchGroupRef SKSearchGroupCreate (
 CFArrayRef inArrayOfInIndexes
);

Parameters
inArrayOfInIndexes

A CFArray object containing the indexes to put into the search group.

Return Value
An SKSearchGroup opaque type.

Discussion
Creates a search group as an array of references to indexes.

You create a search group to search one or more indexes, and then typically use the resulting
SKSearchGroupRef opaque type with SKSearchResultsCreateWithQuery (page 2772) or
SKSearchResultsCreateWithDocuments (page 2770).

When your application no longer needs the search group, dispose of it by calling CFRelease.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchGroupGetTypeID
Deprecated. Use asynchronous searching with SKSearchCreate instead, which does not employ search groups.

CFTypeID SKSearchGroupGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKSearchGroup opaque type.

Discussion
Gets the type identifier for Search Kit search groups.

Search Kit represents search groups with the SKSearchGroupRef (page 2784) opaque type. If your code needs
to determine whether a particular data type is a search group, you can use this function along with the
CFGetTypeID function and perform a comparison.

Never hard-code the search group type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

Functions 2769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKSearchResultsCopyMatchingTerms
Obtains the terms in a document that match a query. (Deprecated in Mac OS X v10.4. Use
SKSearchCreate (page 2764) instead.)

CFArrayRef SKSearchResultsCopyMatchingTerms (
 SKSearchResultsRef inSearchResults,
 CFIndex inItem
);

Parameters
inSearchResults

The search results to examine.

inItem
An integer that corresponds to a document URL object (SKDocumentRef) in the search results. A value
of ‘1’ identifies the first document URL object in the search results, a value of ‘2’ identifies the second,
and so on.

If you’ve created the search results using SKSearchResultsCreateWithQuery (page 2772), the
document URL objects are sorted in ranking order with the top-ranked one first. See
SKSearchResultsGetInfoInRange (page 2773) for a description of how to get a particular document
URL object, or set of them, from a search result.

Return Value
A CFArray object containing term IDs.

Discussion
When using a prefix search, or a search for which the user entered more than one word, there may be multiple
terms that match the query. This function returns an array of the term IDs corresponding to these matches.

For example, a user could enter ‘App’ when performing a prefix search. If a document represented in the
search group contains the words ‘Apple,’ ‘application,’ and ‘appendectomy,’ the IDs for all of these terms
would then appear in the CFArray object that SKSearchResultsCopyMatchingTerms returns.

See SKSearchResultsCreateWithQuery (page 2772) for a description of how to perform a search and get
search results. See SKSearchResultsGetInfoInRange (page 2773) for how to extract information, including
document URL objects, from a search result. See “Deprecated Search Keys” (page 2789) for a description
of the various categories of search.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsCreateWithDocuments
Finds documents similar to given example documents. (Deprecated in Mac OS X v10.4. Use
SKSearchCreate (page 2764) instead.)

2770 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKSearchResultsRef SKSearchResultsCreateWithDocuments (
 SKSearchGroupRef inSearchGroup,
 CFArrayRef inExampleDocuments,
 CFIndex inMaxFoundDocuments,
 void *inContext,
 SKSearchResultsFilterCallBack inFilterCallBack
);

Parameters
inSearchGroup

A search group containing the indexes which, in turn, contain the document URL objects
(SKDocumentRefs) representing the documents you want to search by similarity. The search group
must also contains the indexes that contain the textual content of the example documents.

inExampleDocuments
An array of document URL objects (SKDocumentRefs), each representing an example document.

inMaxFoundDocuments
The maximum number of found items to return. Your application must pass in a positive value.

inContext
An application-specified context for use by the SKSearchResultsFilterCallBack (page 2780)
callback function. Can be NULL.

inFilterCallBack
A callback function for hit testing during searching—see SKSearchResultsFilterCallBack (page
2780). In a similarity search, your application would typically use this function to exclude the example
documents from the search results. This parameter can be NULL, in which case your application
receives the returned results directly and without any custom postprocessing.

Return Value
A search results object containing a list of document URL objects (SKDocumentRefs) representing documents
similar to the example documents.

Discussion
This function searches the on-disk indexes in a search group for document URL objects (SKDocumentRefs)
representing documents similar to those provided as examples. Build the search group in three steps:

1. Collect the index IDs from the search groups you want to search: for each search group, call the
SKSearchGroupCopyIndexes (page 2768) function.

2. Add the document URL objects representing the example documents to a memory-based index (if they’re
not already in an index) by calling SKIndexCreateWithMutableData (page 2746), and get that index’s
ID.

3. Create a new search group that contains the indexes to search, and also containing the
example-documents index, using SKSearchGroupCreate (page 2769).

Before invoking a search, call SKIndexFlush (page 2750) on all indexes in the search group to ensure that
changes to the indexes have been written to disk.

Once you’ve obtained the results of a search, get the specifics—including which documents match the user’s
similarity query, and the ranking scores for each document—by calling
SKSearchResultsGetInfoInRange (page 2773).

When your application no longer needs the search result, dispose of it by calling CFRelease.

Functions 2771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsCreateWithQuery
Queries the indexes in a search group. (Deprecated in Mac OS X v10.4. Use SKSearchCreate (page 2764)
instead.)

SKSearchResultsRef SKSearchResultsCreateWithQuery (
 SKSearchGroupRef inSearchGroup,
 CFStringRef inQuery,
 SKSearchType inSearchType,
 CFIndex inMaxFoundDocuments,
 void *inContext,
 SKSearchResultsFilterCallBackinFilterCallBack
);

Parameters
inSearchGroup

The search group to query.

inQuery
The query string to search for.

inSearchType
The category of search to perform. See the “Deprecated Search Keys” (page 2789) enumeration
for options.

inMaxFoundDocuments
The maximum number of found items to return. Your application must pass in a positive integer
value.

inContext
An application-specified context for use by the SKSearchResultsFilterCallBack (page 2780). Can
be NULL, but if you want to use the callback you must supply a context.

inFilterCallBack
A callback function for hit testing during searching. Can be NULL, in which case your application
receives the returned results directly and without any custom postprocessing. If non-NULL, you must
supply a context. See SKSearchResultsFilterCallBack (page 2780).

Return Value
A search results object.

Discussion
This function searches the on-disk indexes in a search group. Before invoking a search, call
SKIndexFlush (page 2750) on all indexes in the search group to ensure that changes to the indexes have
been flushed to disk.

Once you’ve obtained the results of a search, get the specifics—including which documents match the user’s
query, and the ranking scores for each document—by calling SKSearchResultsGetInfoInRange (page
2773). You can extract other information by calling SKSearchResultsCopyMatchingTerms (page 2770) and
SKSearchResultsGetCount (page 2773).

2772 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

When your application no longer needs the search result, dispose of it by calling CFRelease.

Special Considerations

This deprecated function performs searches synchronously. Apple recommends using the asynchronous
SKSearchCreate function instead.

In the current implementation of Search Kit, unary Boolean operators are not implemented. A search, for
example, for ‘not blue’, returns zero documents no matter what their content.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsGetCount
Gets the total number of found items in a search. (Deprecated in Mac OS X v10.4. Use SKSearchCreate (page
2764) instead.)

CFIndex SKSearchResultsGetCount (
 SKSearchResultsRef inSearchResults
);

Parameters
inSearchResults

A search results object containing the results of a query.

Return Value
A CFIndex object containing the total number of found items in a search.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsGetInfoInRange
Extracts information from a Search Kit query result. (Deprecated in Mac OS X v10.4. Use SKSearchCreate (page
2764) instead.)

Functions 2773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

CFIndex SKSearchResultsGetInfoInRange (
 SKSearchResultsRef inSearchResults,
 CFRange inRange,
 SKDocumentRef *outDocumentsArray,
 SKIndexRef *outIndexesArray,
 float *outScoresArray
);

Parameters
inSearchResults

The search results whose information you want to extract.

inRange
The starting ranking and total number of found items to obtain, specified as (Location, Length).
‘Location’ specifies the starting item by ranking, with the top-ranked item having a location of 0.
‘Length’ specifies the total number of items to include in the results. For example, (0,1) indicates the
first item, which is also the highest-ranking item. (1,1) indicates the second item, which is also the
second-highest-ranking item. (0,5) means to get the first 5 items.

outDocumentsArray
On output, points to an array of found document URL objects (SKDocumentRefs).

outIndexesArray
On output, points to an array of indexes in which the found document URL objects reside. Can be
NULL on input, provided that your application doesn’t need this information.

outScoresArray
On output, points to an array of correspondence scores for found items. Can be NULL on input,
provided that your application doesn’t need this information.

Return Value
The number of items returned—usually the same number as specified by the length item in the inRange
parameter.

Discussion
This function provides results to its output parameters in the order in which they are found, to reduce latency
and to support search-as-you-type functionality.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.

Declared In
SKSearch.h

SKSearchResultsGetTypeID
Gets the type identifier for Search Kit search results. (Deprecated. Use SKSearchCreate (page 2764) instead.)

CFTypeID SKSearchResultsGetTypeID (void);

Return Value
A CFTypeID object containing the type identifier for the SKSearchResults opaque type.

2774 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Discussion
Search Kit represents search results with search results objects (SKSearchResultsRef (page 2783) opaque
types). If your code needs to determine whether a particular data type is a search result, you can use this
function along with the CFGetTypeID function and perform a comparison.

Never hard-code the search result type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

SKSummaryCopyParagraphAtIndex
Gets a specified paragraph from the text in a summarization object.

CFStringRef SKSummaryCopyParagraphAtIndex (
 SKSummaryRef summary,
 CFIndex i,
);

Parameters
summary

The summarization object containing the text from which you want a paragraph.

i
The ordinal number of the paragraph in the original text, with the first paragraph designated by zero
(this function uses zero-based indexing).

Return Value
A CFString object containing the specified paragraph, or NULL on failure.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryCopyParagraphSummaryString
Gets a text string consisting of a summary with, at most, the requested number of paragraphs.

CFStringRef SKSummaryCopyParagraphSummaryString (
 SKSummaryRef summary,
 CFIndex numParagraphs
);

Parameters
summary

The summarization object containing the text from which you want a summarization.

numParagraphs
The maximum number of paragraphs you want in the summary.

Functions 2775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Return Value
A CFString object containing the requested summary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryCopySentenceAtIndex
Gets a specified sentence from the text in a summarization object.

CFStringRef SKSummaryCopySentenceAtIndex (
 SKSummaryRef summary,
 CFIndex i,
);

Parameters
summary

The summarization object containing the text from which you want a sentence.

i
The ordinal number of the sentence in the original text, with the first sentence designated by zero
(this function uses zero-based indexing).

Return Value
A CFString object containing the specified sentence, or NULL on failure.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryCopySentenceSummaryString
Gets a text string consisting of a summary with, at most, the requested number of sentences.

CFStringRef SKSummaryCopySentenceSummaryString (
 SKSummaryRef summary,
 CFIndex numSentences
);

Parameters
summary

The summarization object containing the text from which you want a summarization.

numSentences
The maximum number of sentences you want in the summary.

Return Value
A CFString object containing the requested summary.

Availability
Available in Mac OS X v10.4 and later.

2776 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Declared In
SKSummary.h

SKSummaryCreateWithString
Creates a summary object based on a text string.

SKSummaryRef SKSummaryCreateWithString (
 CFStringRef inString
);

Parameters
inString

The text string that you want to summarize.

Return Value
Returns a summarization object, or NULL on failure.

Discussion
The SKSummaryCreateWithString function creates a summarization object that pre-analyzes a text string
to support fast summarization. When your application no longer needs the summarization object, dispose
of it by calling CFRelease.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryGetParagraphCount
Gets the number of paragraphs in a summarization object.

CFIndex SKSummaryGetParagraphCount (
 SKSummaryRef summary
);

Parameters
summary

The summarization object whose paragraphs you want to count.

Return Value
A CFIndex object containing the number of paragraphs in the summarization object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryGetParagraphSummaryInfo
Gets detailed information about a body of text for constructing a custom paragraph-based summary string.

Functions 2777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

CFIndex SKSummaryGetParagraphSummaryInfo (
 SKSummaryRef summary,
 CFIndex numParagraphsInSummary,
 CFIndex *outRankOrderOfParagraphs,
 CFIndex *outParagraphIndexOfParagraphs
);

Parameters
summary

The summarization object containing the text from which you want to build a summary.

numParagraphsInSummary
The maximum number of paragraphs you want in the summary.

outRankOrderOfParagraphs
On input, a pointer to an array of CFIndex objects. On output, points to the previously allocated array,
which now lists the summarization relevance rank of each paragraph in the original text. The most
important paragraph gets a rank of 1. The array size must equal numParagraphsInSummary, or else
be NULL if you don’t want to get the relevance ranks.

outParagraphIndexOfParagraphs
On output, points to an array containing the ordinal number for each paragraph in the original text.
Use the SKSummaryCopyParagraphAtIndex (page 2775) function with one of these numbers to get
the corresponding paragraph. The array size must equal numParagraphsInSummary, or else be NULL
if you don’t want to get the ordinal numbers of the paragraphs.

Return Value
The number of paragraphs in the summary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryGetSentenceCount
Gets the number of sentences in a summarization object.

CFIndex SKSummaryGetSentenceCount (
 SKSummaryRef summary
);

Parameters
summary

The summarization object whose sentences you want to count.

Return Value
A CFIndex object containing the number of sentences in the summarization object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

2778 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

SKSummaryGetSentenceSummaryInfo
Gets detailed information about a body of text for constructing a custom sentence-based summary string.

CFIndex SKSummaryGetSentenceSummaryInfo (
 SKSummaryRef summary,
 CFIndex numSentencesInSummary,
 CFIndex *outRankOrderOfSentences,
 CFIndex *outSentenceIndexOfSentences,
 CFIndex *outParagraphIndexOfSentences
);

Parameters
summary

The summarization object containing the text from which you want to build a summary.

numSentencesInSummary
The maximum number of sentences you want in the summary.

outRankOrderOfSentences
On input, a pointer to an array of CFIndex objects. On output, points to the previously allocated array,
which now lists the summarization relevance rank of each sentence in the original text. The most
important sentence gets a rank of 1. The array size must equal numSentencesInSummary, or else
be NULL if you don’t want to get the rank orders.

outSentenceIndexOfSentences
On input, a pointer to an array of CFIndex objects. On output, points to the previously allocated array,
which now contains the ordinal number for each sentence in the original text. Use the
SKSummaryCopySentenceAtIndex (page 2776) function with one of these numbers to get the
corresponding sentence. The array size must equal numSentencesInSummary, or else be NULL if
you don’t want to get the ordinal numbers of the sentences.

outParagraphIndexOfSentences
On input, a pointer to an array of CFIndex objects. On output, points to the previously allocated array,
which now contains the ordinal number for the paragraph that each corresponding sentence,
referenced in outSentenceIndexOfSentences, appears in. The array size must equal
numSentencesInSummary, or else be NULL if you don’t want to get the ordinal numbers of the
sentences.

Return Value
The number of sentences in the summary.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKSummaryGetTypeID
Gets the type identifier for Search Kit summarization objects.

CFTypeID SKSummaryGetTypeID (void);

Return Value
A CFTypeID object, or NULL on failure.

Functions 2779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Discussion
Search Kit represents summarization results with summarization objects (SKSummaryRef (page 2783) opaque
types). If your code needs to determine whether a particular data type is a summary, you can use this function
along with the CFGetTypeID function and perform a comparison.

Never hard-code the summarization type ID because it can change from one release of Mac OS X to another.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

Callbacks

Developers should avoid using the callbacks listed in this section; instead, use SKSearchCreate (page 2764)
and SKSearchFindMatches (page 2766).

SKSearchResultsFilterCallBack
Deprecated. Use SKSearchCreate and SKSearchFindMatches instead, which do not use a callback.

typedef Boolean (SKSearchResultsFilterCallBack) (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 void *inContext

If you name your function MySearchResultsFilter, you would declare it like this:

Boolean MySearchResultsFilter (
 SKIndexRef inIndex,
 SKDocumentRef inDocument,
 void *inContext
);

Parameters
inIndex

The index you are searching.

inDocument
The document URL object within the index you are searching.

inContext
An application-specified context which you set when calling
SKSearchResultsCreateWithQuery (page 2772) orSKSearchResultsCreateWithDocuments (page
2770).

Return Value
A Boolean value of true for a successful search hit, or false otherwise.

2780 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Discussion
Deprecated. Defines a pointer to a search-results filtering callback function for hit testing and processing
during a search. Use this callback function to perform custom filtering on the search hits returned by the
SKSearchResultsCreateWithQuery (page 2772) andSKSearchResultsCreateWithDocuments (page
2770) functions. Return true to keep this document URL object (SKDocumentRef) in the results, false to filter
it out.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

Data Types

SKDocumentRef
Defines an opaque data type representing a document’s URL.

typedef struct __SKDocument *SKDocumentRef;

Discussion
A document URL object is a generic location specification for a document. It is built from a document scheme,
a parent document, and a document name. You can convert back and forth between document URL objects
andCFURLobjects using Search Kit’sSKDocumentCreateWithURL (page 2735) andSKDocumentCopyURL (page
2734) functions.

To create a Search Kit document URL object, use SKDocumentCreateWithURL (page 2735) when you can
provide a complete URL, or use SKDocumentCreate (page 2734) when you want to specify document location
indirectly using a parent document URL object. For other operations on documents, see “Working with
Documents and Terms” (page 2731).

If you create document URL objects with indirect locations using theSKDocumentCreate (page 2734) function,
you can resolve the locations by assembling them piece by piece, starting with a document URL object and
going up step by step, parent to parent.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKDocument.h

SKIndexDocumentIteratorRef
Defines an opaque data type representing an index-based document iterator.

Data Types 2781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

typedef struct __SKIndexDocumentIterator *SKIndexDocumentIteratorRef;

Discussion
A Search Kit document iterator lets your application loop through all the document URL objects owned by
a given parent document URL object. To create an iterator, use SKIndexDocumentIteratorCreate (page
2749). To get a copy of the next document in the set owned by the iterator, use
SKIndexDocumentIteratorCopyNext (page 2748).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKIndexRef
Defines an opaque data type representing an index.

typedef struct __SKIndex *SKIndexRef;

Discussion
A Search Kit index object contains the textual contents of one or more documents, as well as document URL
objects (SKDocumentRefs) representing those documents’ locations.

To create a new disk-based Search Kit index object, use SKIndexCreateWithURL (page 2747). To create a
memory-based index, use SKIndexCreateWithMutableData (page 2746). For other operations on indexes,
see “Creating, Opening, and Closing Indexes” (page 2729) and “Managing Indexes” (page 2730). Also see“Fast
Asynchronous Searching” (page 2732).

Special Considerations

You cannot use CFMakeCollectable with SKIndex objects. In a garbage-collected environment, you must
use SKIndexClose (page 2740) to dispose of an SKIndex object.

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKIndex.h

SKSearchRef
Defines an opaque data type representing a an asynchronous search.

typedef struct __SKSearch *SKSearchRef;

Discussion
A search object is created when you call the SKSearchCreate (page 2764) function.

Special Considerations

You cannot use CFMakeCollectable with SKSearch objects. In a garbage-collected environment, you must
use CFRelease to dispose of an SKSearch object.

2782 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSearch.h

SKSummaryRef
Defines an opaque data type representing summarization information.

typedef struct __SKSummary *SKSummaryRef;

Discussion
A summarization object contains summarization information, including summary text.

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKSummary.h

SKDocumentID
Defines an opaque data type representing a lightweight document identifier.

typedef CFIndex SKDocumentID;

Discussion
Use document IDs rather than document URL objects (SKDocumentRefs) whenever possible. Using document
IDs results in faster searching.

You can work with document IDs using a variety of Search Kit functions. See
SKIndexGetMaximumDocumentID (page 2755), SKIndexCopyDocumentForDocumentID (page 2741),
SKIndexCopyInfoForDocumentIDs (page 2744), SKIndexCopyDocumentRefsForDocumentIDs (page
2743), SKIndexCopyDocumentURLsForDocumentIDs (page 2744),
SKIndexCopyDocumentIDArrayForTermID (page 2742), and
SKIndexCopyTermIDArrayForDocumentID (page 2745).

Availability
Available in Mac OS X v10.4 and later.

Declared In
SKIndex.h

SKSearchResultsRef
Deprecated. Use asynchronous searching with SKSearchCreate instead, which does not employ search groups.

Data Types 2783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

typedef struct __SKSearchResults *SKSearchResultsRef;

Discussion
Defines an opaque data type representing the result of a search. To perform a query and generate search
results, use SKSearchResultsCreateWithQuery (page 2772) or
SKSearchResultsCreateWithDocuments (page 2770). To examine the result of a search, use
SKSearchResultsGetInfoInRange (page 2773). For other operations on search results, see “Legacy Support
for Synchronous Searching” (page 2733).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

SKSearchGroupRef
Deprecated. Use asynchronous searching with SKSearchCreate instead, which does not employ search groups.

typedef struct __SKSearchGroup *SKSearchGroupRef;

Discussion
Defines an opaque data type representing a search group.

A search group is a group of one or more indexes to be searched. To create a search group, use
SKSearchGroupCreate (page 2769). For other operations with search groups, see “Fast Asynchronous
Searching” (page 2732).

Availability
Available in Mac OS X v10.3 and later.

Declared In
SKSearch.h

Constants

Text Analysis Keys
Each of these constants is an optional key in a Search Kit index’s text analysis properties dictionary. The
constant descriptions describe the corresponding values for each of these keys. These keys are declared in
the Analysis.h header file.

2784 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

const CFStringRef kSKMinTermLength;
const CFStringRef kSKStopWords;
const CFStringRef kSKSubstitutions;
const CFStringRef kSKMaximumTerms;
const CFStringRef kSKProximityIndexing;
const CFStringRef kSKTermChars;
const CFStringRef kSKStartTermChars;
const CFStringRef kSKEndTermChars;

Constants
kSKMinTermLength

The minimum term length to index. Specified as a CFNumber object. If this optional key is not present,
Search Kit indexing defaults to a minimum term length of 1.

Available in Mac OS X v10.3 and later.

Declared in SKAnalysis.h.

kSKStopWords
A set of stopwords—words not to index. Specified as a CFSet object. There is no default stopword
list. You must supply your own.

Available in Mac OS X v10.3 and later.

Declared in SKAnalysis.h.

kSKSubstitutions
A dictionary of term substitutions—terms that differ in their character strings but that match during
a search. Specified as a CFDictionary object.

Available in Mac OS X v10.3 and later.

Declared in SKAnalysis.h.

kSKMaximumTerms
The maximum number of number unique terms to index in each document. Specified as a CFNumber
object.

Search Kit indexes from the beginning of a document. When it has indexed the first n unique terms,
it stops.

The default number of maximum terms, which applies if you do not provide a number, is 2000.

To tell Search Kit to index all the terms in each document without limit, specify a value of 0.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

kSKProximityIndexing
A Boolean flag indicating whether or not Search Kit should use proximity indexing. The flag can be
a 0 or kCFBoolenFalse value (for false) or a 1 or kCFBooleanTrue value for true.

Proximity indexing supports phrase searching. If this key is not present in an index’s text analysis
properties dictionary, Search Kit defaults to not adding proximity information to the index.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

Constants 2785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

kSKTermChars
Additional valid starting-position “word” characters for indexing and querying. The corresponding
value, a CFString object, specifies the additional valid “word” characters that you want to be considered
as valid starting characters of terms for indexing and querying. “Word” characters are contrasted with
nonword characters, such as spaces.

The value of kSKStartTermChars, if this key is present, overrides the value of kSKTermChars for
the first character of a term.

By default, Search Kit considers alphanumeric characters as valid starting characters for terms, and
considers all others (including the underscore character) to be nonword characters.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

kSKStartTermChars
Additional valid starting-position “word” characters for indexing and querying. The corresponding
value, a CFString object, specifies the additional valid “word” characters that you want to be considered
as valid starting characters of terms for indexing and querying. “Word” characters are contrasted with
nonword characters, such as spaces.

The value of kSKStartTermChars, if this key is present, overrides the value of kSKTermChars for
the first character of a term.

By default, Search Kit considers alphanumeric characters as valid starting characters for terms, and
considers all others (including the underscore character) to be nonword characters.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

kSKEndTermChars
Additional valid last-position “word” characters for indexing and querying. The corresponding value,
a CFString object, specifies the additional valid “word” characters that you want to be considered as
valid ending characters of terms for indexing and querying. “Word” characters are contrasted with
nonword characters, such as spaces.

The value of kSKEndTermChars, if this key is present, overrides the value of kSKTermChars for the
last character of a term.

By default, Search Kit considers alphanumeric characters as valid ending characters for terms, and
considers all others (including the underscore character) to be nonword characters.

Available in Mac OS X v10.4 and later.

Declared in SKAnalysis.h.

SKDocumentIndexState
The indexing state of a document.

2786 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

enum SKDocumentIndexState {
 kSKDocumentStateNotIndexed = 0,
 kSKDocumentStateIndexed = 1,
 kSKDocumentStateAddPending = 2,
 kSKDocumentStateDeletePending= 3
};

Constants
kSKDocumentStateNotIndexed

Specifies that the document is not indexed.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKDocumentStateIndexed
Specifies that the document is indexed.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKDocumentStateAddPending
Specifies that the document is not in the index but will be added after the index is flushed or closed.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKDocumentStateDeletePending
Specifies that the document is in the index but will be deleted after the index is flushed or closed.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

Declared In
SKIndex.h

SKSearchOptions
Specifies the search options available for the SKSearchCreate (page 2764) function.

typedef UInt32 SKSearchOptions;
enum SKSearchType {
 kSKSearchOptionDefault = 0,
 kSKSearchOptionNoRelevanceScores = 1L << 0,
 kSKSearchOptionSpaceMeansOR = 1L << 1
 kSKSearchOptionFindSimilar = 1L << 2
};

Constants
kSKSearchOptionDefault

Default search options include:

 ■ Relevance scores will be computed

 ■ Spaces in a query are interpreted as Boolean AND operators.

 ■ Do not use similarity searching.

Available in Mac OS X v10.4 and later.

Declared in SKSearch.h.

Constants 2787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

kSKSearchOptionNoRelevanceScores
This option saves time during a search by suppressing the computation of relevance scores.

Available in Mac OS X v10.4 and later.

Declared in SKSearch.h.

kSKSearchOptionSpaceMeansOR
This option alters query behavior so that spaces are interpreted as Boolean OR operators.

Available in Mac OS X v10.4 and later.

Declared in SKSearch.h.

kSKSearchOptionFindSimilar
This option alters query behavior so that Search Kit returns references to documents that are similar
to an example text string. When this option is specified, Search Kit ignores all query operators.

Available in Mac OS X v10.4 and later.

Declared in SKSearch.h.

Declared In
SKSearch.h

SKIndexType
Specifies the category of an index.

enum SKIndexType {
 kSKIndexUnknown = 0,
 kSKIndexInverted = 1,
 kSKIndexVector = 2,
 kSKIndexInvertedVector = 3
};

Constants
kSKIndexUnknown

Specifies an unknown index type.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKIndexInverted
Specifies an inverted index, mapping terms to documents.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKIndexVector
Specifies a vector index, mapping documents to terms.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

kSKIndexInvertedVector
Specifies an index type with all the capabilities of an inverted and a vector index.

Available in Mac OS X v10.3 and later.

Declared in SKIndex.h.

Declared In
SKIndex.h

2788 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Deprecated Text Analysis Keys
Search Kit ignores the kSKLanguageTypes constant. It determines language directly by document content.

const CFStringRef kSKLanguageTypes;

Constants
kSKLanguageTypes

Deprecated—Search Kit ignores this constant.

In releases of Mac OS X previous to version 10.4, each string in this key’s corresponding value specifies
a language to use for indexing. Each such string is a two character ISO 639-1 code. For example, 'en'
for English, 'ja' for Japanese, and so on. If this key is not present, Search Kit uses the Mac OS X
preferences system to determine the primary language from the user’s locale.

Available in Mac OS X v10.3 and later.

Declared in SKAnalysis.h.

Version Notes
In releases of Mac OS X prior to version 10.4, the kSKLanguageTypes constant was an optional key in an
index’s text analysis properties dictionary. Starting in Mac OS X v10.4, Search Kit ignores this constant and
determines language directly by the document content. A document may use multiple languages.

Deprecated Search Keys
Search Kit ignores the constants in this group. Use asynchronous searching with SKSearchCreate instead,
which uses query syntax to determine search type.

enum SKSearchType {
 kSKSearchRanked = 0,
 kSKSearchBooleanRanked = 1,
 kSKSearchRequiredRanked = 2,
 kSKSearchPrefixRanked = 3
};

Constants
kSKSearchRanked

Deprecated. Specifies a basic ranked search.

Available in Mac OS X v10.3 and later.

Declared in SKSearch.h.

kSKSearchBooleanRanked
Deprecated. Specifies a query that can include Boolean operators including '|', '&', '!', '(', and
')'.

Available in Mac OS X v10.3 and later.

Declared in SKSearch.h.

kSKSearchRequiredRanked
Deprecated. Specifies a query that can include required ('+') or excluded ('-') terms.

Available in Mac OS X v10.3 and later.

Declared in SKSearch.h.

Constants 2789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

kSKSearchPrefixRanked
Deprecated. Specifies a prefix-based search, which matches terms that begin with the query string.

Available in Mac OS X v10.3 and later.

Declared in SKSearch.h.

Version Notes
In releases of Mac OS X prior to version 10.4, these constants specify the category of search to perform.
Starting with Mac OS X v10.4, use asynchronous searching with SKSearchCreate instead, which uses query
syntax to determine search type.

In older versions of Mac OS X, these constants specify the various search types you can use with
SKSearchResultsCreateWithQuery. Each of these specifies a set of ranked search hits. The
kSKSearchRanked and kSKSearchPrefixRanked constants can be used for all index types. The
kSKSearchBooleanRanked and kSKSearchRequiredRanked constants cannot be used for vector indexes.

Declared In
SKSearch.h

2790 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 45

Search Kit Reference

Common Metadata Attribute Keys
Metadata attribute keys that are common to many file types.

kMDItemAttributeChangeDate

Date and time of the last change made to a metadata attribute.

Value Type: CFDate

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAudiences

The audience for which the file is intended. The audience may be determined by the creator or the publisher
or by a third party.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAuthors

The author, or authors, of the contents of the file. The order of the authors is preserved, but does not represent
the main author or relative importance of the authors.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemCity

Identifies city of origin according to guidelines established by the provider. For example, "New York",
"Cupertino", or "Toronto".

Value Type: CFString

Common Metadata Attribute Keys 2791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemComment

A comment related to the file. This comment is not displayed by the Finder.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemContactKeywords

A list of contacts that are associated with this document, not including the authors.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemContentCreationDate

The date and time that the content was created.

Value Type: CFDate

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemContentModificationDate

Date and time when the content of this item was modified.

Value Type: CFDate

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

2792 Common Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemContentType

Uniform Type Identifier of the file. For example, a jpeg image file will have a value of public.jpeg. The value
of this attribute is set by the Spotlight importer. Changes to this value are lost when the file attributes are
next imported.

This attribute is marked as nosearch. You must specify this attribute key explicitly in a query in order for its
contents to be searched.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemContentTypeTree

Uniform Type Identifier hierarchy of the file. For example, a jpeg image file will return an array containing
“public.jpeg”, “public.image”, and “public.data”. The value of this attribute is set by the Spotlight importer.
Changes to this value are lost when the file attributes are next imported.

This attribute is marked as nosearch. You must specify this attribute key explicitly in a query in order for its
contents to be searched.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemContributors

Entities responsible for making contributions to the content of the resource. Examples of a contributor include
a person, an organization or a service.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemCopyright

Copyright owner of the file contents.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

Common Metadata Attribute Keys 2793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemCountry

The full, publishable name of the country or primary location where the intellectual property of the item was
created, according to guidelines of the provider.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemCoverage

Extent or scope of the content of the resource. Coverage will typically include spatial location (a place name
or geographic co-ordinates), temporal period (a period label, date, or date range) or jurisdiction (such as a
named administrative entity). Recommended best practice is to select a value from a controlled vocabulary,
and that, where appropriate, named places or time periods be used in preference to numeric identifiers such
as sets of co-ordinates or date ranges.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemCreator

Name of the application used to create the document content. For example, "Pages" or "Keynote".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemDescription

Description of the kind of item this file represents.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemDisplayName

Localized version of the file name. This is the localized version of the LaunchServices call
LSCopyDisplayNameForURL() / LSCopyDisplayNameForRef() .

2794 Common Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemDueDate

Date this item is due.

Value Type: CFDate

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemDurationSeconds

The duration, in seconds, of the content of the item. A value of 10.5 represents media that is 10 and 1/2
seconds long.

Value Type: CFNumber

Units: seconds

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemEmailAddresses

Email addresses related to this item.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemEncodingApplications

Applications used to convert the original content into it's current form. For example, a PDF file might have
an encoding application set to "Distiller".

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

Common Metadata Attribute Keys 2795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemFinderComment

Finder comments for this item.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFonts

Fonts used by this item. You should store the font's full name, the postscript name, or the font family name,
based on the available information.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemHeadline

Publishable entry providing a synopsis of the contents of the item. For example, "Apple Introduces the iPod
Photo".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemIdentifier

Formal identifier used to reference the resource within a given context. For example, the Message-ID of a
mail message.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemInstantMessageAddresses

Instant message addresses related to this item.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

2796 Common Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemInstructions

Instructions concerning the use of the item, such as embargoes and warnings. For example, "Second of four
stories".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemKeywords

Keywords associated with this file. For example, "Birthday", "Important", etc.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemKind

Description of the kind of item this file represents.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemLanguages

Indicates the languages used by the item. The recommended best practice for the values of this attribute
are defined by RFC 3066.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

Common Metadata Attribute Keys 2797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemLastUsedDate

Date and time that the file was last used. This value is updated automatically by LaunchServices everytime
a file is opened by double clicking, or by asking LaunchServices to open a file.

Value Type: CFDate

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemNumberOfPages

Number of pages in the document.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemOrganizations

Companies or organizations that created the document.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemPageHeight

Height of the document page, in points (72 points per inch). For PDF files this indicates the height of the first
page only.

Value Type: CFNumber

Units: points

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemPageWidth

Width of the document page, in points (72 points per inch). For PDF files this indicates the width of the first
page only.

Value Type: CFNumber

2798 Common Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Units: points

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemPhoneNumbers

Phone numbers related to this item.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemProjects

List of projects related to this item. For example, if you were working on a movie, all of the files could be
marked as belonging to the project “My Movie”.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemPublishers

Publishers of the item. For example, a person, an organization, or a service.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemRecipients

Recipients of this item.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

Common Metadata Attribute Keys 2799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemRights

Provides a link to information about rights held on the document. Contains a rights management statement
for the document, or reference a service providing such information. Rights information often encompasses
Intellectual Property Rights (IPR), copyright, and various property rights. If this attribute is absent, no
assumptions can be made about the status of these and other rights with respect to the document.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemSecurityMethod

Encryption method used to make the item secure. PDF files return "None" or "Password Encrypted".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemStarRating

User rating of this item. For example, the user rating (number of stars) of an iTunes track.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemStateOrProvince

Province or state of origin according to guidelines established by the provider. For example, "CA", "Ontario",
or "Sussex".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemTextContent

Contains a text representation of the content of the document. Data in multiple fields should be combined
using a whitespace character as a separator. An application's Spotlight importer provides the content of this
attribute.

2800 Common Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Applications can create queries using this attribute, but are not able to read the value of this attribute directly.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemTitle

Title of the item. For example, this could be the title of a document, the name of an song, or the subject of
an email message.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemVersion

Version number of the item.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemWhereFroms

Describes where the item was obtained from. For example, a downloaded file may refer to the URL, files
received by email may indicate the sender’s email address, message subject, etc.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

Image Metadata Attribute Keys
Metadata attribute keys that are common to image files.

kMDItemAcquisitionMake

Manufacturer of the device used to acquire the document contents.

Image Metadata Attribute Keys 2801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAcquisitionModel

Model of the device used to acquire the document contents.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAlbum

Title for the collection containing this item. This is analogous to a record label or photo album.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAperture

Aperture setting used to aqure the document contents. This unit is the APEX value.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemBitsPerSample

Number of bits per sample. For example, the bit depth of an image (8-bit, 16-bit etc...) or the bit depth per
audio sample of uncompressed audio data (8, 16, 24, 32, 64, etc..).

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

2802 Image Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemColorSpace

Color space model used by the document contents. For example, “RGB”, “CMYK”, “YUV”, or “YCbCr”.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemEXIFVersion

Version of the EXIF header used to generate the metadata.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemExposureMode

Exposure mode used to acquire the document contents.

Value Type: CFNumber

Expected Values: 0 (auto exposure), 1 (manual exposure), 2 (auto bracket)

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemExposureProgram

Type of exposure program used by the camera to acquire the document contents. Possible values include:
Manual, Normal, Aperture priority, etc.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemExposureTimeSeconds

Exposure time used to capture the document contents.

Value Type: CFNumber

Units: seconds

Framework Path: CoreServices/CoreServices.h

Image Metadata Attribute Keys 2803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemExposureTimeString

Time when the document contents were captured. Typically this corresponds to when a photograph is
exposed.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFNumber

Diameter of the aperture relative to the effective focal length of the lens.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFlashOnOff

Whether a camera flash was used to capture the document contents.

Value Type: CFBoolean

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFocalLength

Actual focal length of the lens, in millimeters.

Value Type: CFNumber

Units: millimeters

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemHasAlphaChannel

Whether the image has an alpha channel.

2804 Image Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Value Type: CFBoolean

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemISOSpeed

ISO speed used to acquire the document contents. For example, 100, 200, 400, etc.

Value Type: CFNumber

Units: ISO Speed

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemLayerNames

Names of the layers in the file.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemMaxAperture

Smallest F number of the lens in APEX value units, usually in the range of 00.00 to 99.99.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemMeteringMode

Metering mode used to acquire the image.

Value Type: CFString

Expected Values: Unknown, Average, CenterWeightedAverage, Spot, MultiSpot, Pattern, Partial

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

Image Metadata Attribute Keys 2805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemOrientation

Orientation of the document contents.

Value Type: CFNumber

Expected Values: 0 (landscape), 1 (portrait)

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemPixelHeight

Height, in pixels, of the contents. For example, the image height or the video frame height.

Value Type: CFNumber

Units: pixels

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemPixelWidth

Width, in pixels, of the contents. For example, the image width or the video frame width.

Value Type: CFNumber

Units: pixels

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemProfileName

Name of the color profile used by the document contents.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemRedEyeOnOff

Whether red-eye reduction was used to take the picture.

Value Type: CFBoolean

2806 Image Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Expected Values: 0 (no red-eye reduction mode or unknown), 1 (red-eye reduction used)

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemResolutionHeightDPI

Resolution height, in DPI, of the item.

Value Type: CFNumber

Units: dots per inch (DPI)

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemResolutionWidthDPI

Resolution width, in DPI, of the item.

Value Type: CFNumber

Units: dots per inch (DPI)

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemWhiteBalance

White balance setting of the camera when the picture was taken.

Value Type: CFNumber

Expected Values: 0 (auto white balance), 1 (manual)

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

Video Metadata Attribute Keys
Metadata attribute keys that are common to video files.

kMDItemAudioBitRate

Bit rate of the audio in the media.

Video Metadata Attribute Keys 2807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemCodecs

Codecs used to encode/decode the media.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemDeliveryType

Method used to deliver streaming media.

Value Type: CFString

Expected Values: "Fast Start", "RTSP"

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemMediaTypes

Media types present in the content. For example, a QuickTime movie may return:
kMDItemMediaTypes = (Sound, Video, "Hinted Video Track", "Hinted Sound Track")
kMDItemMediaTypes = (Sound, Video)
kMDItemMediaTypes = ("MPEG1 Muxed")

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemStreamable

Whether the content is prepared for streaming.

Value Type: CFBoolean

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

2808 Video Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemTotalBitRate

Total bit rate, audio and video combined, of the media.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemVideoBitRate

Bit rate of the video in the media.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

Audio Metadata Attribute Keys
Metadata attribute keys that describe an audio file.

kMDItemAppleLoopDescriptors

Specifies multiple pieces of descriptive information about a loop. Besides genre and instrument, files can
contain descriptive information that help users in refining searches.

Value Type: Array of CFStrings

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAppleLoopsKeyFilterType

Specifies key filtering information about a loop. Loops are matched against projects that often differ in a
major or minor key. To assist users in identifying loops that will "fit" with their compositions, loops can be
tagged with one of the following key filters: "AnyKey", "Minor", "Major", "NeitherKey", or "BothKeys". "AnyKey"
means that it fits with anything (whether in a major key, minor key or neither). "Minor" fits with compositions
in a minor key. "NeitherKey" doesn't work well with compositions that are in major or minor key. "BothKeys"
means it fits with compositions that are in major or minor key.

Value Type: CFString

Expected Values: "AnyKey", "Minor", "Major" , "NeitherKey", "BothKeys"

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Audio Metadata Attribute Keys 2809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Availability: Available in Mac OS X v10.4 and later.

kMDItemAppleLoopsLoopMode

Specifies how a file should be played. Tagged files can either be loops or non-loops (e.g., a cymbal crash).
"Looping" indicates if the file should be treated as a loop. "Non-looping" indicates the file should not be
treated as a loop.

Value Type: CFString

Expected Values: "Looping", "Non-looping"

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAppleLoopsRootKey

Specifies the loop's original key. The key is the root note or tonic for the loop, and does not include the scale
type

Value Type: CFString

Expected Values: "C", "C#/Db", "D", "D#/Eb", "E", "F", "F#/Gb", "G", "G#/Ab", "A", "A#/Bb", "B", "NoKey"

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAudioChannelCount

Number of channels in the audio data contained in the file. This integer value only represents the number
of discrete channels of audio data found in the file. It does not indicate any configuration of the data in
regards to a user's speaker setup.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAudioEncodingApplication

Name of the application that encoded the audio of the document.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

2810 Audio Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemAudioSampleRate

Sample rate of the item's audio data. The sample rate is a float value representing hz (audio_frames/second).
For example: 44100.0, 22254.54.

Value Type: CFNumber

Units: hz (audio_frames/second)

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemAudioTrackNumber

Track number of a song or composition when it is part of an album.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemComposer

Composer of the song in the audio file.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemIsGeneralMIDISequence

Whether the MIDI sequence contained in the file is set up for use with a General MIDI device.

Value Type: CFBoolean

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemKeySignature

Musical key of the song in the audio file. For example: "C", "Dm", "F#m", "Bb".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Audio Metadata Attribute Keys 2811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Availability: Available in Mac OS X v10.4 and later.

kMDItemLyricist

Lyricist of the song in the audio file.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemMusicalGenre

Musical genre of the song or composition contained in the audio file. For example: "Jazz", "Pop", "Rock",
"Classical".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemMusicalInstrumentCategory

Specifies the category of an instrument. Files should have an instrument associated with them ("Other
Instrument" is provided as a catch-all). For some categories, such as "Keyboards", there are instrument names
which provide a more detailed instrument definition, for example "Piano" or "Organ".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemMusicalInstrumentName

Specifies the name of instrument relative to the instrument category. Files can have an instrument name
associated with them if they have certain instrument categories. For example, the "Percussion" category has
multiple instruments, including "Conga" and "Bongo".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

2812 Audio Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemRecordingDate

Recording date of the song or composition. This is in contrast to kMDItemContentCreationDate which,
could indicate the creation date of an edited or "mastered" version of the original art.

Value Type: CFDate

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemRecordingYear

Year the item was recorded. For example: 1964, 1995, 1997, or 2003.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemTempo

Tempo of the music in the audio file. A floating point value.

Value Type: CFNumber

Units: Beats per Minute (BPM)

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemTimeSignature

Time signature of the musical composition contained in the audio/MIDI file. For example: "4/4", "7/8".

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

File System Metadata Attribute Keys
Metadata attribute keys that describe the file system attributes for a file. These attributes are available for files on any
mounted volume.

File System Metadata Attribute Keys 2813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

kMDItemFSContentChangeDate

Date the file contents last changed.

Value Type: CFDate

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFSCreationDate

Date that the contents of the file were created.

Value Type: CFDate

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFSInvisible

Whether the file is invisible.

Value Type: CFBoolean

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFSIsExtensionHidden

Whether the file extension of the file is hidden.

Value Type: CFBoolean

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFSLabel

Index of the Finder label of the file. Possible values are 0 through 7.

Value Type: CFNumber

Expected Values: 0 through 7

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

2814 File System Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Availability: Available in Mac OS X v10.4 and later.

kMDItemFSName

File name of the item.

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFSNodeCount

Number of files in a directory.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFSOwnerGroupID

Group ID of the owner of the file.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFSOwnerUserID

User ID of the owner of the file.

Value Type: CFNumber

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemFSSize

Size, in bytes, of the file on disk.

Value Type: CFNumber

Units: bytes

File System Metadata Attribute Keys 2815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

kMDItemPath

Complete path to the file. This value of this attribute can be retrieved, but can't be used in a query or to sort
search results. This attribute can’t be used as a member of the valueListAttrs array parameter for
MDQueryCreate (page 155) or MDQueryCreateSubset (page 155).

Value Type: CFString

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Available in Mac OS X v10.4 and later.

Deprecated Metadata Attribute Keys
Metadata attribute keys that have been deprecated.

kMDItemFSExists

This attribute is deprecated and was never implemented.

Value Type: CFBoolean

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Deprecated in Mac OS X v10.4 and later.

kMDItemFSIsReadable

This attribute is deprecated and was never implemented.

Value Type: CFBoolean

Framework Path: CoreServices/CoreServices.h

Header: MDItem.h

Availability: Deprecated in Mac OS X v10.4 and later.

kMDItemFSIsWriteable

This attribute is deprecated and was never implemented.

Value Type: CFBoolean

Framework Path: CoreServices/CoreServices.h

2816 Deprecated Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

Header: MDItem.h

Availability: Deprecated in Mac OS X v10.4 and later.

Deprecated Metadata Attribute Keys 2817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

2818 Deprecated Metadata Attribute Keys
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Spotlight Metadata Attributes

This table describes the changes to Core Services Framework Reference.

NotesDate

Added three documents (Folder Manager, Launch Services, and CFStream Socket
Additions) and removed one (Device Manager).

2007-10-31

Added information about Identity Services and the Backup Core API.2006-07-31

First publication of this content as a collection of previously published
documents.

2006-05-23

2819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

2820
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

Symbols

_MixedModeMagic 1455
_MixedModeMagic constant 1455
_MPIsFullyInitialized function 1508
_scalb_n_type data type 1349
_trunc_return_type data type 1349

A

Acceptance Flags 1248
AccessParam structure 795
acos function 1284
acosh function 1285
Active Task Constant 2146
ActivityInfo structure 1622
AddCollectionItem function 267
AddCollectionItemHdl function 268
AddFolderDescriptor function 957
AddFolderRouting function (Deprecated in Mac OS X

v10.4) 958
addResFailed constant 1711
AddResource function 1660
Addressing Errors 1372
Addressing Mode Attribute Selectors 1012
Admin Attribute Selectors 1013
admin_t callback 2408
ADSP_IOC_FORWARDRESET constant 2558
AFP Client Selectors 1013
AFP Tag Length Constants 885
AFP Tag Type Constants 886
afpAccessDenied constant 950
afpAlreadyLoggedInErr constant 953
afpAlreadyMounted constant 954
AFPAlternateAddress structure 796
afpAuthContinue constant 950
afpBadDirIDType constant 954
afpBadIDErr constant 953
afpBadUAM constant 950
afpBadVersNum constant 950

afpBitmapErr constant 950
afpCallNotAllowed constant 953
afpCallNotSupported constant 952
afpCantMountMoreSrvre constant 954
afpCantMove constant 951
afpCantRename constant 952
afpCatalogChanged constant 953
afpContainsSharedErr constant 952
afpDenyConflict constant 951
afpDiffVolErr constant 953
afpDirNotEmpty constant 951
afpDirNotFound constant 952
afpDiskFull constant 951
afpEofError constant 951
afpFileBusy constant 951
afpFlatVol constant 951
afpIconTypeError constant 952
afpIDExists constant 953
afpIDNotFound constant 953
afpInsideSharedErr constant 953
afpInsideTrashErr constant 953
afpItemNotFound constant 951
afpLockErr constant 951
afpMiscErr constant 951
afpNoMoreLocks constant 951
afpNoServer constant 951
afpObjectExists constant 951
afpObjectLocked constant 952
afpObjectNotFound constant 951
afpObjectTypeErr constant 952
afpParmErr constant 951
afpPwdExpiredErr constant 953
afpPwdNeedsChangeErr constant 953
afpPwdPolicyErr constant 953
afpPwdSameErr constant 953
afpPwdTooShortErr constant 953
afpRangeNotLocked constant 952
afpRangeOverlap constant 952
afpSameNodeErr constant 954
afpSameObjectErr constant 953
afpServerGoingDown constant 952
AFPServerSignature data type 1172

2821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Index

afpSessClosed constant 952
AFPTagData structure 797
afpTooManyFilesOpen constant 952
afpUserNotAuth constant 952
afpVolLocked constant 952
AFPVolMountInfo structure 797
AFPXVolMountInfo structure 799
AF_8022 2556
AF_8022 constant 2556
AF_ATALK_DDP constant 2556
AF_ATALK_DDPNBP constant 2556
AF_ATALK_FAMILY 2556
AF_ATALK_FAMILY constant 2556
AF_ATALK_MNODE constant 2557
AF_ATALK_NBP constant 2557
AF_DNS 2557
AF_DNS constant 2557
AF_INET 2557
AF_INET constant 2557
AF_ISDN 2557
AF_ISDN constant 2557
Alias Information Masks 218
Alias Manager Attribute Selectors 1014
Alias Resource Type 221
AliasFilterProcPtr callback 214
AliasFilterUPP data type 216
AliasInfoType data type 216
AliasRecord structure 216
allCollectionAttributes constant 312
Allocate function (Deprecated in Mac OS X v10.4) 459
Allocation constants 1520
Allocation Flags 887
AllocContig function (Deprecated in Mac OS X v10.4)

461
annuity function 1285
ANYMARK 2557
ANYMARK constant 2557
AOff function (Deprecated in Mac OS X v10.0) 1590
AOn function (Deprecated in Mac OS X v10.0) 1590
AOnIgnoreModem function (Deprecated in Mac OS X

v10.0) 1590
Appearance Manager Attribute Selectors 1014
Appearance Manager Version Selector 1015
Apple Event Manager Attribute Selectors 1016
Apple Event Types and Errors 1631
AppleScript Attribute Selectors 1016
AppleScript Version Selector 1017
AppleShare Volume Signature 888
AppleTalk Driver Version Selector 1018
AppleTalk Version Selector 1018
AppleTalkInfo structure 2423
Architecture Constants 247
asiAliasName constant 222

asin function 1285
asinh function 1286
asiParentName constant 222
asiServerName constant 222
asiVolumeName constant 222
asiZoneName constant 222
Assorted Use Constants 1376
ATA Manager Attribute Selectors 1023
ATALK_IOC_FULLSELFSEND 2558
ATALK_IOC_FULLSELFSEND constant 2558
atan function 1286
atan2 function 1286
atanh function 1287
ATK_AARP constant 2558
ATK_ADSP constant 2558
ATK_ASP constant 2559
ATK_ATP constant 2558
ATK_DDP 2558
ATK_DDP constant 2558
ATK_NBP constant 2559
ATK_PAP constant 2559
ATK_ZIP constant 2559
ATP_OPT_DATALEN constant 2561
ATP_OPT_RELTIMER constant 2562
ATP_OPT_REPLYCNT constant 2561
ATP_OPT_TRANID constant 2562
ATSUI Attribute Selectors 1018
ATSUI Version Selectors 1022
ATSvcRef data type 2424
Attribute Bit Masks 307
Attribute Bit Masks (Old) 307
Attribute Bit Numbers 308
Attribute Bit Numbers (Old) 309
Attributes Masks 310
Attributes Masks (Old) 311
Audio Metadata Attribute Keys 144
Authentication Method Constants 888
Authentication Schemes 66
Authentication Type Constants 1176
AutoSleepControl function (Deprecated in Mac OS X

v10.0) 1591
AUX Version Selector 1024
Available Metadata Attribute Keys 2285
AVL Tree Attribute Selectors 1024

B

bAccessCntl constant 933
BackingFileID data type 1435
badComponentInstance constant 380
badComponentSelector constant 380
badDelim constant 1819

2822
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

badEnding constant 1819
badExtResource constant 1711
badFCBErr constant 947
badFidErr constant 947
badFolderDescErr constant 1001
badMDBErr constant 945
badMovErr constant 946
badRoutingSizeErr constant 1001
bAllowCDiDataHandler constant 905
bAncestorModDateChanges constant 905
bandinfo structure 2424
Base Text Encodings 1982
BatteryByte Bits 1631
BatteryByte data type 1622
BatteryByte Masks 1632
batteryCharging constant 1633
BatteryCount function 1591
batteryDeadBit constant 1632
batteryDeadMask constant 1633
BatteryInfo Bits 1633
BatteryInfo structure 1623
batteryInstalled constant 1633
batteryLowBit constant 1632
batteryLowMask constant 1633
BatteryStatus function (Deprecated in Mac OS X v10.0)

1592
BatteryTimeRec structure 1623
bChargerIsAttached constant 1648
bdNamErr constant 943
bDoNotDisplay constant 906
bHasBlankAccessPrivileges constant 935
bHasBTreeMgr constant 935
bHasCatSearch constant 935
bHasCopyFile constant 934
bHasDesktopMgr constant 934
bHasExtFSVol constant 934
bHasFileIDs constant 935
bHasFolderLock constant 934
bHasMoveRename constant 934
bHasOpenDeny constant 934
bHasPersonalAccessPrivileges constant 934
bHasShortName constant 934
bHasUserGroupList constant 934
Bidirectional Character Values 2015
BigEndianFixed structure 2246
BigEndianLong structure 2244
BigEndianOSType structure 2247
BigEndianShort structure 2245
BigEndianUnsignedFixed structure 2246
BigEndianUnsignedLong structure 2245
BigEndianUnsignedShort structure 2245
bIsAutoMounted constant 905
bIsCasePreserving constant 906

bIsCaseSensitive constant 906
bIsEjectable constant 904
BitAnd function 1287
BitClr function 1287
BitNot function 1288
BitOr function 1288
BitSet function 1289
BitShift function 1289
BitTst function 1290
BitXor function 1290
bL2PCanMapFileBlocks constant 905
bLimitFCBs constant 932
bLocalWList constant 932
BlockMove function 1385
BlockMoveData function 1386
BlockMoveDataUncached function 1387
BlockMoveUncached function 1387
BlockZero function 1388
BlockZeroUncached function 1388
bNoBootBlks constant 933
bNoDeskItems constant 933
bNoLclSync constant 933
bNoMiniFndr constant 932
bNoSwitchTo constant 933
bNoSysDir constant 934
bNoVNEdit constant 932
bNoVolumeSizes constant 906
BOff function (Deprecated in Mac OS X v10.0) 1592
BOn function (Deprecated in Mac OS X v10.0) 1593
boolean_p data type 2424
bParentModDateChanges constant 905
BPRI_HI constant 2559
BPRI_LO 2559
BPRI_LO constant 2559
BPRI_MED constant 2559
BreakTable structure 2072
bSourceCanBeCharged constant 1646
bSourceIsAC constant 1646
bSourceIsAvailable constant 1648
bSourceIsBattery constant 1646
bSourceIsCharging constant 1648
bSourceIsUPS constant 1646
bSourceProvidesWarnLevels constant 1647
bSupports2TBFiles constant 904
bSupportsAsyncRequests constant 935
bSupportsExclusiveLocks constant 905
bSupportsFSCatalogSearch constant 904
bSupportsFSExchangeObjects constant 904
bSupportsHFSPlusAPIs constant 904
bSupportsJournaling constant 906
bSupportsLongNames constant 904
bSupportsMultiScriptNames constant 905
bSupportsNamedForks constant 905

2823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

bSupportsSubtreeIterators constant 905
bSupportsSymbolicLinks constant 905
bSupportsTrashVolumeCache constant 935
bTrshOffLine constant 933
bufcallp_t callback 2408
bufcall_t callback 2409
Buffer Information Structure structure 2481
Bus Clock Version Selector 1024
Bus Type Constants 2665

C

C2PStr function (Deprecated in Mac OS X v10.4) 2034
c2pstr function (Deprecated in Mac OS X v10.4) 2034
c2pstrcpy function (Deprecated in Mac OS X v10.4) 2034
Cache Constants 889
caddr_t data type 2424
calArabicCivil constant 1740
calArabicLunar constant 1740
calCoptic constant 1740
Calendar Codes 1740
calGregorian constant 1740
cAliasFile 2265
calJapanese constant 1740
calJewish constant 1740
CallComponentCanDo function 320
CallComponentClose function 320
CallComponentDispatch function 321
CallComponentFunction function 321
CallComponentFunctionWithStorage function 322
CallComponentFunctionWithStorageProcInfo

function 323
CallComponentGetMPWorkFunction function 323
CallComponentGetPublicResource function 324
CallComponentOpen function 324
CallComponentRegister function 324
CallComponentTarget function 325
CallComponentUnregister function 325
CallComponentVersion function 326
Calling Convention Constants 1450
calPersian constant 1741
canGetBatteryTime constant 1644
canPowerOffPCIBus constant 1645
CantDecompress constant 1711
canWakeupOnRing constant 1644
CaptureComponent function 326
Carbon Version Selector 1024
Catalog Information Bitmap Constants 891
Catalog Information Node Flags 894
Catalog Information Sharing Flags 896
Catalog Search Bits 896
Catalog Search Constants 899

Catalog Search Masks 900
catChangedErr constant 947
CatMove function (Deprecated in Mac OS X v10.4) 462
CatPositionRec structure 801
CCMiscInfo structure 2425
CC_OPT_CALLINFO constant 2608
CC_OPT_DTEADDRESS constant 2608
CC_OPT_DTEADDRESSTYPE constant 2608
CC_OPT_GETMISCINFO constant 2608
CC_OPT_IPIDLETIMER constant 2608
CC_OPT_REMINDERTIMER constant 2607
CC_OPT_SERIALPORTNAME constant 2608
CDB structure 1826
ceil function 1291
Certificate Search Options 1177
Certificate Usage Options 1178
Certificate Verification Criteria 1179
CE_CONT 2560
CE_CONT constant 2560
CE_NOTE constant 2560
CE_PANIC constant 2560
CE_WARN constant 2560
CFFTPCreateParsedResourceListing function 19
CFHostCancelInfoResolution function 28
CFHostClientCallBack callback 36
CFHostClientContext structure 37
CFHostCreateCopy function 29
CFHostCreateWithAddress function 29
CFHostCreateWithName function 30
CFHostGetAddressing function 31
CFHostGetNames function 31
CFHostGetReachability function 32
CFHostGetTypeID function 33
CFHostInfoType Constants 38
CFHostRef structure 37
CFHostScheduleWithRunLoop function 33
CFHostSetClient function 34
CFHostStartInfoResolution function 34
CFHostUnscheduleFromRunLoop function 35
CFHTTP Authentication Scheme Constants 48
CFHTTP Version Constants 65
CFHTTPAuthenticationAppliesToRequest function

42
CFHTTPAuthenticationCopyDomains function 43
CFHTTPAuthenticationCopyMethod function 43
CFHTTPAuthenticationCopyRealm function 43
CFHTTPAuthenticationCreateFromResponse function

44
CFHTTPAuthenticationGetTypeID function 45
CFHTTPAuthenticationIsValid function 45
CFHTTPAuthenticationRef structure 47
CFHTTPAuthenticationRequiresAccountDomain

function 46

2824
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFHTTPAuthenticationRequiresOrderedRequests
function 46

CFHTTPAuthenticationRequiresUserNameAndPassword
function 47

CFHTTPMessageAddAuthentication function 19, 20,
21, 52, 53

CFHTTPMessageAppendBytes function 51, 54
CFHTTPMessageApplyCredentialDictionary function

54
CFHTTPMessageApplyCredentialDictionary Keys 49
CFHTTPMessageApplyCredentials function 55
CFHTTPMessageCopyAllHeaderFields function 52,

56
CFHTTPMessageCopyBody function 52, 57
CFHTTPMessageCopyHeaderFieldValue function 52,

57
CFHTTPMessageCopyRequestMethod function 58
CFHTTPMessageCopyRequestURL function 52, 58
CFHTTPMessageCopyResponseStatusLine function

59
CFHTTPMessageCopySerializedMessage function 52,

59
CFHTTPMessageCopyVersion function 52, 59
CFHTTPMessageCreateCopy function 51, 60
CFHTTPMessageCreateEmpty function 51, 60
CFHTTPMessageCreateRequest function 51, 61
CFHTTPMessageCreateResponse function 51, 62
CFHTTPMessageCreateResponse function 62
CFHTTPMessageGetResponseStatusCode function 52,

59, 63
CFHTTPMessageGetTypeID function 52, 63
CFHTTPMessageHeaderComplete function 52, 63
CFHTTPMessageIsHeaderComplete function 63
CFHTTPMessageIsRequest function 64
CFHTTPMessageRef structure 65
CFHTTPMessageSetBody function 51, 64
CFHTTPMessageSetHeaderFieldValue function 51,

64
CFMLibraryInfo structure 2425
CFNetDiagnosticCopyNetworkStatusPassively

function 68
CFNetDiagnosticCreateWithStreams function 68
CFNetDiagnosticCreateWithURL function 69
CFNetDiagnosticDiagnoseProblemInteractively

function 70
CFNetDiagnosticRef structure 71
CFNetDiagnosticSetName function 71
CFNetDiagnosticStatus structure 71
CFNetDiagnosticStatusValues Constants 72
CFNetService Error Constants 111
CFNetService Registration Options 109
CFNetServiceBrowserClientCallBack Bit Flags 109
CFNetServiceBrowserClientCallBack callback 104

CFNetServiceBrowserCreate function 78
CFNetServiceBrowserGetTypeID function 79
CFNetServiceBrowserInvalidate function 79
CFNetServiceBrowserRef structure 107
CFNetServiceBrowserScheduleWithRunLoop function

80
CFNetServiceBrowserSearchForDomains function

80
CFNetServiceBrowserSearchForServices function

81
CFNetServiceBrowserStopSearch function 82
CFNetServiceBrowserUnscheduleFromRunLoop

function 83
CFNetServiceCancel function 84
CFNetServiceClientCallBack callback 105
CFNetServiceClientContext structure 107
CFNetServiceCreate function 84
CFNetServiceCreateCopy function 86
CFNetServiceCreateDictionaryWithTXTData

function 86
CFNetServiceCreateTXTDataWithDictionary

function 87
CFNetServiceGetAddressing function 88
CFNetServiceGetDomain function 88
CFNetServiceGetName function 89
CFNetServiceGetPortNumber function (Deprecated in

Mac OS X version 10.4) 89
CFNetServiceGetProtocolSpecificInformation

function (Deprecated in Mac OS X version 10.4) 90
CFNetServiceGetTargetHost function 90
CFNetServiceGetTXTData function 91
CFNetServiceGetType function 91
CFNetServiceGetTypeID function 92
CFNetServiceMonitorClientCallBack callback 106
CFNetServiceMonitorCreate function 92
CFNetServiceMonitorGetTypeID function 94
CFNetServiceMonitorInvalidate function 94
CFNetServiceMonitorRef structure 108
CFNetServiceMonitorScheduleWithRunLoop function

94
CFNetServiceMonitorStart function 95
CFNetServiceMonitorStop function 96
CFNetServiceMonitorType Constants 110
CFNetServiceMonitorUnscheduleFromRunLoop

function 97
CFNetServiceRef structure 109
CFNetServiceRegister function (Deprecated in

Mac OS X version 10.4) 97
CFNetServiceRegisterWithOptions function 98
CFNetServiceResolve function (Deprecated in

Mac OS X version 10.4) 99
CFNetServiceResolveWithTimeout function 100
CFNetServiceScheduleWithRunLoop function 101

2825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CFNetServiceSetClient function 102
CFNetServiceSetProtocolSpecificInformation

function (Deprecated in Mac OS X version 10.4) 103
CFNetServiceSetTXTData function 103
CFNetServiceUnscheduleFromRunLoop function 104
cfragAbortClosureErr constant 261
cfragArchitectureErr constant 261
CFragCFBundleLocator structure 234
cfragCFMInternalErr constant 260
cfragCFMStartupErr constant 260
cfragCFragRsrcErr constant 261
CFragClosureID data type 234
cfragClosureIDErr constant 261
CFragConnectionID data type 234
cfragConnectionIDErr constant 259
CFragContainerID data type 235
cfragContainerIDErr constant 261
CFragContextID data type 235
cfragContextIDErr constant 259
cfragDupRegistrationErr constant 259
cfragExecFileRefErr constant 261
cfragFileSizeErr constant 261
cfragFirstErrCode constant 259
cfragFirstReservedCode constant 261
cfragFragmentCorruptErr constant 260
cfragFragmentFormatErr constant 260
cfragFragmentUsageErr constant 261
CFragHFSDiskFlatLocator data type 235
CFragHFSLocator data type 235
CFragHFSLocatorPtr data type 235
CFragHFSMemoryLocator data type 236
CFragHFSSegmentedLocator data type 236
cfragImportTooNewErr constant 260
cfragImportTooOldErr constant 260
cfragInitAtBootErr constant 260
CFragInitBlock data type 236
CFragInitBlockPtr data type 236
CFragInitFunction callback 232
cfragInitFunctionErr constant 260
cfragInitLoopErr constant 260
cfragInitOrderErr constant 260
cfragLastErrCode constant 262
cfragMapFileErr constant 261
cfragNoApplicationErr constant 260
cfragNoClientMemErr constant 260
cfragNoIDsErr constant 260
cfragNoLibraryErr constant 259
cfragNoPositionErr constant 260
cfragNoPrivateMemErr constant 260
cfragNoRegistrationErr constant 261
cfragNoSectionErr constant 259
cfragNoSymbolErr constant 259
cfragNotClosureErr constant 261

cfragOutputLengthErr constant 261
cfragReservedCode_1 constant 262
cfragReservedCode_2 constant 262
cfragReservedCode_3 constant 262
CFragResource structure 237
CFragResourceExtensionHeader structure 238
CFragResourceMember structure 238
CFragResourceSearchExtension structure 239
cfragRsrcForkErr constant 261
cfragStdFolderErr constant 261
CFragSystem7DiskFlatLocator structure 239
CFragSystem7InitBlock structure 240
CFragSystem7Locator structure 241
CFragSystem7MemoryLocator structure 242
CFragSystem7SegmentedLocator structure 243
CFragTermProcedure callback 233
cfragUnresolvedErr constant 260
CFragUsage1Union structure 243
CFragUsage2Union structure 244
CFragWhere1Union structure 244
CFragWhere2Union structure 244
CFReadStreamCreateWithFTPURL function 20
CFSocketStreamPairSetSecurityProtocol function

(Deprecated in Mac OS X v10.2) 114
CFSocketStreamSOCKSGetError function 114
CFSocketStreamSOCKSGetErrorSubdomain function

115
CFStream Errors 126
CFStream FTP Property Constants 21
CFStream FTP Resource Constants 24
CFStream HTTP Authentication Error Constants 48
CFStream Property Keys 117
CFStream Property SSL Settings Constants 119
CFStream Socket Security Level Constants 122
CFStream Socket Security Protocol Constants 121
CFStream SOCKS Proxy Key Constants 123
CFStreamCreatePairWithSocketToCFHost function

116
CFStreamCreatePairWithSocketToNetService

function 116
CFWriteStreamCreateWithFTPURL function 21
CFWriteStreamScheduleWithRunLoop function 113,

114
ChangedResource function 1661
ChangeTextToUnicodeInfo function 1875
ChangeUnicodeToTextInfo function 1875
Character Byte Types 1741
Character Set Extensions 1748
Character Type Classes 1744
Character Type Field Masks 1746
Character Types 1741
CharacterByteType function (Deprecated in Mac OS X

v10.4) 1716

2826
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CharacterType function (Deprecated in Mac OS X v10.4)
1717

CharByteTable data type 1735
chargeOverFlowBit constant 1631
chargeOverFlowMask constant 1632
chargerConnBit constant 1631
chargerConnected constant 1633
chargerConnMask constant 1632
char_p data type 2426
CheckAllHeaps function (Deprecated in Mac OS X v10.4)

1388
CInfoPBRec structure 802
cInternalFinderObject 2266
Classic Compatibility Attribute Selectors 1025
ClearIntlResourceCache function (Deprecated in Mac

OS X v10.4) 1719
Client Notification Bits 1635
Client Notification Masks 1635
Clipping File Creator and Types 2269
clkRdErr constant 422
clkWrErr constant 422
CloneCollection function 270
CLONEOPEN 2560
CLONEOPEN constant 2560
CloseComponent function 327
CloseComponentResFile function 327
CloseConnection function (Deprecated in Mac OS X

v10.5) 224
closeOld_t callback 2409
CloseOpenTransportInContext function (Deprecated

in Mac OS X v10.4) 2301
closep_t callback 2410
CloseResFile function 1662
CloseView Attribute Selectors 1025
CMovePBRec structure 802
cmpAliasNoFlags 371
cmpAliasNoFlags constant 371
cmpAliasOnlyThisFile constant 371
cmpIsMissing 371
cmpIsMissing constant 371
cmpThreadSafe constant 371
cmpWantsRegisterMessage constant 371
CntrlParam structure 804
Code Fragment Kind 248
Code Fragment Manager Attribute Selectors 1025
CollatorRef data type 2164
Collection data type 305
Collection Manager Version Selector 1025
CollectionExceptionProcPtr callback 303
CollectionExceptionUPP data type 306
CollectionFlattenProcPtr callback 304
CollectionFlattenUPP data type 306
collectionIndexRangeErr constant 314

collectionItemLockedErr constant 313
collectionItemNotFoundErr constant 313
CollectionTag data type 306
CollectionTagExists function 270
collectionVersionErr constant 314
Color Picker Version Selectors 1026
ColorSync Manager Attribute Selectors 1026
ColorSync Manager Version Selectors 1027
Commands for Debug Option Callbacks 435
CommentType data type 1736
Common and Special Unicode Values 2018
Common Metadata Attribute Keys 133
Communication Resource Manager Attribute Selectors

1029
Communications Toolbox Version Selector 1029
CompactMem function (Deprecated in Mac OS X v10.4)

1389
CompareString function (Deprecated in Mac OS X v10.4)

2035
CompareText function (Deprecated in Mac OS X v10.4)

2036
Compatibility TextEncodings 1988
Component Manager Version Selectors 1029
Component Resource Extension Flags 372
ComponentAliasResource structure 360
componentAutoVersionIncludeFlags constant 372
ComponentDependencyArray structure 361
ComponentDescription structure 361
componentDoAutoVersion constant 372
componentDontRegister constant 380
ComponentFunctionImplemented function (Deprecated

in Mac OS X v10.5) 328
ComponentFunctionUPP data type 363
componentHasMultiplePlatforms constant 372
ComponentInstanceRecord structure 363
componentLoadResident constant 372
ComponentMPWorkFunctionHeaderRecord structure

364
ComponentMPWorkFunctionProcPtr callback 357
ComponentMPWorkFunctionUPP data type 364
componentNotCaptured constant 380
ComponentParameters structure 365
ComponentPlatformInfo structure 365
ComponentPlatformInfoArray structure 366
ComponentRecord structure 366
ComponentResource structure 366
ComponentResourceExtension structure 367
ComponentResult data type 368
ComponentRoutineProcPtr callback 358
ComponentRoutineUPP data type 368
ComponentSetTarget function (Deprecated in Mac OS

X v10.5) 328
componentWantsUnregister constant 372

2827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

compound function 1292
Computer Model Selectors 1030
Computer Name Selector 1033
COM_ISDN 2560
COM_ISDN constant 2560
COM_PPP 2561
COM_PPP constant 2561
COM_SERIAL 2561
COM_SERIAL constant 2561
connChangedBit constant 1632
connChangedMask constant 1633
Connection Manager Attribute Selectors 1033
ConnectionID data type 244
Constants No Longer Used 1250
ConstFSSpecPtr data type 805
ConstHFSUniStr255Param data type 806
ConstScriptCodeRunPtr data type 1955
ConstTextEncodingRunPtr data type 1956
ConstTextPtr data type 1956
ConstTextToUnicodeInfo data type 1956
ConstUniCharArrayPtr data type 1956
ConstUnicodeMappingPtr data type 1957
ConstUnicodeToTextInfo data type 1957
Control Manager Attribute Selectors 1034
Control Manager Version Selector 1035
Control Strip Attribute Selectors 1035
Control Strip Version Selector 1035
Conversion Flags 1971
Conversion Masks 1972
ConvertBundlePreLocator function (Deprecated in

Mac OS X v10.5) 225
ConvertFromPStringToUnicode function 1876
ConvertFromTextToUnicode function 1877
ConvertFromUnicodeToPString function 1879
ConvertFromUnicodeToScriptCodeRun function 1880
ConvertFromUnicodeToText function 1883
ConvertFromUnicodeToTextRun function 1885
ConvertLocalTimeToUTC function (Deprecated in Mac

OS X v10.4) 386
ConvertLocalToUTCDateTime function (Deprecated in

Mac OS X v10.4) 387
ConvertUTCToLocalDateTime function (Deprecated in

Mac OS X v10.4) 388
ConvertUTCToLocalTime function (Deprecated in Mac

OS X v10.4) 388
CopyCollection function 271
CopyCStringToPascal function (Deprecated in Mac OS

X v10.4) 2037
CopyParam structure 806
CopyPascalStringToC function (Deprecated in Mac OS

X v10.4) 2037
copyreq structure 2426
copyresp structure 2427

copysign function 1292
CoreEndianFlipData function 2224
CoreEndianFlipProc callback 2243
CoreEndianGetFlipper function 2225
CoreEndianInstallFlipper function 2226
corErr constant 1377
cos function 1292
cosh function 1293
Count1Resources function 1663
Count1Types function 1663
CountCollectionItems function 272
CountCollectionOwners function 272
CountCollectionTags function 273
CountComponentInstances function 329
CountComponents function 330
CountResources function 1664
CountSymbols function (Deprecated in Mac OS X v10.5)

225
CountTaggedCollectionItems function 273
CountTypes function 1664
CountUnicodeMappings function 1889
CPU Selectors for Apollo 1035
CPU Selectors for Intel and Pentium 1035
crash constant 1819
Create Folder Flags 981
CreateTextEncoding function 1890
CreateTextToUnicodeInfo function 1890
CreateTextToUnicodeInfoByEncoding function 1891
CreateThreadPool function 2088
CreateUnicodeToTextInfo function 1892
CreateUnicodeToTextInfoByEncoding function 1893
CreateUnicodeToTextRunInfo function 1894
CreateUnicodeToTextRunInfoByEncoding function

1895
CreateUnicodeToTextRunInfoByScriptCode function

1896
cred structure 2428
cred_t data type 2428
CSBackupIsItemExcluded function 2189
CSBackupSetItemExcluded function 2190
CSComponentsThreadMode 373
CSCopyMachineName function 1355
CSCopyUserName function 1356
CSGetComponentsThreadMode function 330
CSParam structure 807
CSSetComponentsThreadMode function 331
Current Mixed Mode State 1453
Current Resource Version 249
currentCurLang constant 2083
currentDefLang constant 2083
CurrentProcessorSpeed function 1593
CurResFile function 1664
CustomBadgeResource structure 2254

2828
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

D

Data Access Manager Attribute Selectors 1036
Data Structure Version Constants 1520
datab structure 2429
datab_db_f structure 2429
Date Form Constants 417
DateCacheRecord structure 409
DateDelta data type 410
dateStdMask constant 420
DateString function (Deprecated in Mac OS X v10.3)

389
DateTimeRec structure 410
DateToSeconds function (Deprecated in Mac OS X v10.3)

390
dayMask constant 419
dayOfWeekMask constant 419
dayOfYearMask constant 419
dblk_t data type 2430
DDPAddress structure 2430
DDPNBPAddress structure 2431
DDP_OPT_CHECKSUM 2561
DDP_OPT_CHECKSUM constant 2561
DDP_OPT_HOPCOUNT 2562
DDP_OPT_HOPCOUNT constant 2562
DDP_OPT_SRCADDR constant 2561
Debug Option Types 435
DebugAssert function 424
DebugAssertOutputHandlerProcPtr callback 431
DebugAssertOutputHandlerUPP data type 433
DebugComponentCallbackProcPtr callback 432
DebugComponentCallbackUPP data type 433
DebuggerDisposeThreadProcPtr callback 2120
DebuggerDisposeThreadTPP data type 2126
DebuggerDisposeThreadUPP data type 2126
DebuggerNewThreadProcPtr callback 2121
DebuggerNewThreadTPP data type 2126
DebuggerNewThreadUPP data type 2127
DebuggerThreadSchedulerProcPtr callback 2122
DebuggerThreadSchedulerTPP data type 2127
DebuggerThreadSchedulerUPP data type 2127
debuggingDuplicateOptionErr constant 436
debuggingDuplicateSignatureErr constant 436
debuggingExecutionContextErr constant 436
debuggingInvalidNameErr constant 436
debuggingInvalidOptionErr constant 436
debuggingInvalidSignatureErr constant 436
debuggingNoCallbackErr constant 436
debuggingNoMatchErr constant 436
dec2f function 1293
dec2l function 1293
dec2num function 1294
dec2s function 1294

dec2str function 1294
decform structure 1345
decimal structure 1346
DECSTROUTLEN 1349
DECSTROUTLEN constant 1349
Default Internet Port Constant 1180
Default Internet Protocol And Authentication Type

Constants 1180
Default Name Length 249
Default Options 417
Default Physical Entry Count Constant 1441
Default Routine Flags 1451
defaultCollectionAttributes constant 312
defaultComponentAnyFlags constant 379
defaultComponentAnyFlagsAnyManufacturer

constant 380
defaultComponentAnyFlagsAnyManufacturerAnySubType

constant 380
defaultComponentAnyManufacturer constant 379
defaultComponentAnySubType constant 380
defaultComponentIdentical constant 379
DeferredTask structure 1367
DeferredTaskProcPtr callback 1367
DeferredTaskUPP data type 1368
Delay function 1356
DelaySystemIdle function (Deprecated in Mac OS X

v10.0) 1594
DelegateComponentCall function 331
DeleteGestaltValue function 1004
DelimType data type 1736
Deprecated Search Keys 2789
Deprecated Text Analysis Keys 2789
Dequeue function 1356
Desktop Pictures Attribute Selectors 1036
Desktop Printing Attribute Selector 1036
Desktop Printing Driver Attribute Selectors 1036
desktopDamagedErr constant 2280
DetachResource function 1665
DetachResourceFile function 1666
DetermineIfPathIsEnclosedByFolder function 959
DeviceIdent structure 1826
DeviceIdentATA structure 1827
DevicePowerInfo Flags 1635
DevicePowerInfo structure 1624
dev_t data type 2431
Dialog Manager Attribute Selectors 1036
Dialog Manager Selectors for Mac OS 8.5 1037
Dictionary Manager Attribute Selectors 1037
diffVolErr constant 947
Digital Signature Version Selector 1038
DimmingControl function (Deprecated in Mac OS X

v10.0) 1594
DInfo structure 2255

2829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DirCreate function (Deprecated in Mac OS X v10.4) 463
Direct IO Attribute Selector 1038
Directionality Flags 1976
Directionality Masks 1976
dirFulErr constant 943
DirInfo structure 810
dirNFErr constant 945
DisableIdle function (Deprecated in Mac OS X v10.0)

1595
DisableWUTime function (Deprecated in Mac OS X v10.0)

1595
Disk and Domain Constants 997
Disk Cache Size Selector 1038
DiskFragment data type 245
Display Manager Attribute Selectors 1039
Display Manager Version Selector 1040
DisposeAliasFilterUPP function 180
DisposeCollection function 274
DisposeCollectionExceptionUPP function 274
DisposeCollectionFlattenUPP function 275
DisposeComponentFunctionUPP function 332
DisposeComponentMPWorkFunctionUPP function 332
DisposeComponentRoutineUPP function 333
DisposeDebugAssertOutputHandlerUPP function 425
DisposeDebugComponent function 425
DisposeDebugComponentCallbackUPP function 426
DisposeDebuggerDisposeThreadUPP function 2090
DisposeDebuggerNewThreadUPP function 2090
DisposeDebuggerThreadSchedulerUPP function 2091
DisposeDeferredTaskUPP function 1358
DisposeFNSubscriptionUPP function 464
DisposeFolderManagerNotificationUPP function

960
DisposeFSVolumeEjectUPP function 464
DisposeFSVolumeMountUPP function 465
DisposeFSVolumeUnmountUPP function 465
DisposeGetMissingComponentResourceUPP function

333
DisposeGrowZoneUPP function (Deprecated in Mac OS

X v10.4) 1390
DisposeHandle function 1390
DisposeHDSpindownUPP function 1596
DisposeIndexToStringUPP function (Deprecated in

Mac OS X v10.4) 2038
DisposeIOCompletionUPP function 465
DisposeKCCallbackUPP function 1119
DisposeOTListSearchUPP function (Deprecated in Mac

OS X v10.4) 2302
DisposeOTNotifyUPP function (Deprecated in Mac OS

X v10.4) 2302
DisposeOTProcessUPP function (Deprecated in Mac OS

X v10.4) 2303
DisposePMgrStateChangeUPP function 1596

DisposePtr function 1391
DisposePurgeUPP function (Deprecated in Mac OS X

v10.4) 1391
DisposeResErrUPP function 1666
DisposeSCSICallbackUPP function (Deprecated in Mac

OS X v10.2) 1823
DisposeSelectorFunctionUPP function 1005
DisposeSleepQUPP function 1596
DisposeTextToUnicodeInfo function 1897
DisposeThread function 2091
DisposeThreadEntryUPP function 2092
DisposeThreadSchedulerUPP function 2093
DisposeThreadSwitchUPP function 2093
DisposeThreadTerminationUPP function 2094
DisposeTimerUPP function 2137
DisposeUnicodeToTextFallbackUPP function 1897
DisposeUnicodeToTextInfo function 1898
DisposeUnicodeToTextRunInfo function 1898
DisposeUserFnUPP function (Deprecated in Mac OS X

v10.4) 1392
DL_ACCESS 2563
DL_ACCESS constant 2563
DL_ACLDLS constant 2568
DL_ATTACH_PENDING constant 2585
DL_ATTACH_REQ constant 2572
DL_ATTACH_REQ_SIZE constant 2577
dl_attach_req_t structure 2431
DL_AUTO_TEST constant 2565
DL_AUTO_XID 2565
DL_AUTO_XID constant 2565
DL_BADADDR constant 2563
DL_BADCORR constant 2563
DL_BADDATA constant 2563
DL_BADPPA constant 2563
DL_BADPRIM constant 2563
DL_BADQOSPARAM constant 2564
DL_BADQOSTYPE constant 2564
DL_BADSAP constant 2564
DL_BADTOKEN constant 2564
DL_BIND_ACK constant 2572
DL_BIND_ACK_SIZE constant 2577
dl_bind_ack_t structure 2432
DL_BIND_PENDING constant 2585
DL_BIND_REQ constant 2572
DL_BIND_REQ_SIZE constant 2577
dl_bind_req_t structure 2432
DL_BOUND constant 2564
DL_BUSY constant 2565
DL_CHAR constant 2570
DL_CLDLS constant 2567
DL_CMD_IP constant 2566
DL_CMD_IT constant 2566
DL_CMD_MASK 2566

2830
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DL_CMD_MASK constant 2566
DL_CMD_OK constant 2566
DL_CMD_PE constant 2566
DL_CMD_RS constant 2566
DL_CMD_UE constant 2566
DL_CMD_UN constant 2566
DL_CODLS 2567
DL_CODLS constant 2567
DL_CONNECT_CON constant 2573
DL_CONNECT_CON_SIZE constant 2578
dl_connect_con_t structure 2433
DL_CONNECT_IND constant 2573
DL_CONNECT_IND_SIZE constant 2577
dl_connect_ind_t structure 2434
DL_CONNECT_REQ constant 2573
DL_CONNECT_REQ_SIZE constant 2577
dl_connect_req_t structure 2434
DL_CONNECT_RES constant 2573
DL_CONNECT_RES_SIZE constant 2578
dl_connect_res_t structure 2435
DL_CONN_RES_PENDING constant 2586
DL_CONREJ_DEST_UNKNOWN 2568
DL_CONREJ_DEST_UNKNOWN constant 2568
DL_CONREJ_DEST_UNREACH_PERMANENT constant 2568
DL_CONREJ_DEST_UNREACH_TRANSIENT constant 2568
DL_CONREJ_PERMANENT_COND constant 2568
DL_CONREJ_QOS_UNAVAIL_PERMANENT constant 2568
DL_CONREJ_QOS_UNAVAIL_TRANSIENT constant 2568
DL_CONREJ_TRANSIENT_COND constant 2568
DL_CSMACD 2569
DL_CSMACD constant 2569
DL_CTCA constant 2570
DL_CURRENT_VERSION 2570
DL_CURRENT_VERSION constant 2570
DL_CURR_PHYS_ADDR constant 2570
DL_DATAXFER constant 2586
DL_DATA_ACK_IND constant 2574
DL_DATA_ACK_IND_SIZE constant 2580
dl_data_ack_ind_t structure 2435
DL_DATA_ACK_REQ constant 2574
DL_DATA_ACK_REQ_SIZE constant 2580
dl_data_ack_req_t structure 2436
DL_DATA_ACK_STATUS_IND constant 2574
DL_DATA_ACK_STATUS_IND_SIZE constant 2580
dl_data_ack_status_ind_t structure 2436
DL_DETACH_PENDING constant 2585
DL_DETACH_REQ constant 2572
DL_DETACH_REQ_SIZE constant 2577
dl_detach_req_t structure 2437
DL_DISABMULTI_REQ constant 2572
DL_DISABMULTI_REQ_SIZE constant 2579
dl_disabmulti_req_t structure 2437
DL_DISCON11_PENDING constant 2586

DL_DISCON12_PENDING constant 2586
DL_DISCON13_PENDING constant 2586
DL_DISCON8_PENDING constant 2586
DL_DISCON9_PENDING constant 2586
DL_DISCONNECT_IND constant 2573
DL_DISCONNECT_IND_SIZE constant 2578
dl_disconnect_ind_t structure 2437
DL_DISCONNECT_REQ constant 2573
DL_DISCONNECT_REQ_SIZE constant 2578
dl_disconnect_req_t structure 2438
DL_DISC_ABNORMAL_CONDITION constant 2568
DL_DISC_NORMAL_CONDITION constant 2569
DL_DISC_PERMANENT_CONDITION constant 2569
DL_DISC_TRANSIENT_CONDITION constant 2569
DL_DISC_UNSPECIFIED constant 2569
DL_ENABMULTI_REQ constant 2572
DL_ENABMULTI_REQ_SIZE constant 2579
dl_enabmulti_req_t structure 2438
DL_ERROR_ACK constant 2572
DL_ERROR_ACK_SIZE constant 2577
dl_error_ack_t structure 2439
DL_ETHER constant 2569
DL_FACT_PHYS_ADDR 2570
DL_FACT_PHYS_ADDR constant 2570
DL_FDDI constant 2570
DL_GET_STATISTICS_ACK constant 2575
DL_GET_STATISTICS_ACK_SIZE constant 2579
dl_get_statistics_ack_t structure 2439
DL_GET_STATISTICS_REQ constant 2575
DL_GET_STATISTICS_REQ_SIZE constant 2579
dl_get_statistics_req_t structure 2439
DL_HDLC constant 2569
DL_HIERARCHICAL_BIND constant 2581
DL_IDLE constant 2585
DL_INCON_PENDING constant 2586
DL_INFO_ACK constant 2572
DL_INFO_ACK_SIZE constant 2577
dl_info_ack_t structure 2440
DL_INFO_REQ 2571
DL_INFO_REQ constant 2572
DL_INFO_REQ_SIZE 2576
DL_INFO_REQ_SIZE constant 2577
dl_info_req_t structure 2441
DL_INITFAILED constant 2564
DL_IOC_HDR_INFO 2580
DL_IOC_HDR_INFO constant 2580
DL_MAXIMUM constant 2581
DL_METRO constant 2569
DL_MONITOR constant 2581
DL_NOADDR constant 2564
DL_NOAUTO constant 2565
DL_NONE 2581
DL_NONE constant 2581

2831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DL_NOTENAB constant 2565
DL_NOTESTAUTO constant 2565
DL_NOTINIT constant 2564
DL_NOTSUPPORTED constant 2564
DL_NOXIDAUTO constant 2565
DL_OK_ACK constant 2572
DL_OK_ACK_SIZE constant 2577
dl_ok_ack_t structure 2441
DL_OTHER constant 2570
DL_OUTCON_PENDING constant 2586
DL_OUTSTATE constant 2564
DL_PEER_BIND 2581
DL_PEER_BIND constant 2581
DL_PENDING constant 2565
DL_PHYS_ADDR_ACK constant 2575
DL_PHYS_ADDR_ACK_SIZE constant 2579
dl_phys_addr_ack_t structure 2441
DL_PHYS_ADDR_REQ constant 2575
DL_PHYS_ADDR_REQ_SIZE constant 2579
dl_phys_addr_req_t structure 2442
DL_POLL_FINAL 2581
DL_POLL_FINAL constant 2581
DL_primitives structure 2443
dl_priority_t structure 2445
DL_PROMISCOFF_REQ constant 2573
DL_PROMISCOFF_REQ_SIZE constant 2579
dl_promiscoff_req_t structure 2445
DL_PROMISCON_REQ constant 2573
DL_PROMISCON_REQ_SIZE constant 2579
dl_promiscon_req_t structure 2446
DL_PROMISC_MULTI constant 2582
DL_PROMISC_OFF 2582
DL_PROMISC_OFF constant 2582
DL_PROMISC_PHYS 2582
DL_PROMISC_PHYS constant 2582
DL_PROMISC_SAP constant 2582
dl_protect_t structure 2446
DL_PROVIDER 2582
DL_PROVIDER constant 2582
DL_PROV_RESET_PENDING constant 2586
DL_QOS_CL_RANGE1 constant 2583
dl_qos_cl_range1_t structure 2447
DL_QOS_CL_SEL1 constant 2583
dl_qos_cl_sel1_t structure 2447
DL_QOS_CO_RANGE1 2583
DL_QOS_CO_RANGE1 constant 2583
dl_qos_co_range1_t structure 2448
DL_QOS_CO_SEL1 constant 2583
dl_qos_co_sel1_t structure 2449
DL_QOS_DONT_CARE constant 2587
DL_REPLY_IND constant 2574
DL_REPLY_IND_SIZE constant 2580
dl_reply_ind_t structure 2450

DL_REPLY_REQ constant 2574
DL_REPLY_REQ_SIZE constant 2580
dl_reply_req_t structure 2450
DL_REPLY_STATUS_IND constant 2574
DL_REPLY_STATUS_IND_SIZE constant 2580
dl_reply_status_ind_t structure 2451
DL_REPLY_UPDATE_REQ constant 2574
DL_REPLY_UPDATE_REQ_SIZE constant 2580
dl_reply_update_req_t structure 2451
DL_REPLY_UPDATE_STATUS_IND constant 2574
DL_REPLY_UPDATE_STATUS_IND_SIZE constant 2580
dl_reply_update_status_ind_t structure 2452
DL_RESET_CON constant 2574
DL_RESET_CON_SIZE constant 2578
dl_reset_con_t structure 2452
DL_RESET_FLOW_CONTROL 2583
DL_RESET_FLOW_CONTROL constant 2583
DL_RESET_IND constant 2574
DL_RESET_IND_SIZE constant 2578
dl_reset_ind_t structure 2452
DL_RESET_LINK_ERROR constant 2583
DL_RESET_REQ constant 2574
DL_RESET_REQ_SIZE constant 2578
dl_reset_req_t structure 2453
DL_RESET_RES constant 2574
DL_RESET_RESYNCH constant 2583
DL_RESET_RES_PENDING constant 2586
DL_RESET_RES_SIZE constant 2578
dl_reset_res_t structure 2453
dl_resilience_t structure 2453
DL_RQST_NORSP constant 2584
DL_RQST_RSP 2584
DL_RQST_RSP constant 2584
DL_RSP_IP constant 2567
DL_RSP_IT constant 2567
DL_RSP_MASK constant 2567
DL_RSP_NE constant 2567
DL_RSP_NR constant 2567
DL_RSP_OK constant 2567
DL_RSP_RS constant 2567
DL_RSP_UE constant 2567
DL_RSP_UN constant 2567
DL_SET_PHYS_ADDR_REQ constant 2575
DL_SET_PHYS_ADDR_REQ_SIZE constant 2579
dl_set_phys_addr_req_t structure 2454
DL_STYLE1 2584
DL_STYLE1 constant 2584
DL_STYLE2 constant 2584
DL_SUBS_BIND_ACK constant 2572
DL_SUBS_BIND_ACK_SIZE constant 2577
dl_subs_bind_ack_t structure 2454
DL_SUBS_BIND_PND constant 2586
DL_SUBS_BIND_REQ constant 2572

2832
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DL_SUBS_BIND_REQ_SIZE constant 2577
dl_subs_bind_req_t structure 2455
DL_SUBS_UNBIND_PND constant 2587
DL_SUBS_UNBIND_REQ constant 2572
DL_SUBS_UNBIND_REQ_SIZE constant 2577
dl_subs_unbind_req_t structure 2455
DL_SYSERR constant 2564
DL_TESTAUTO constant 2565
DL_TEST_CON constant 2575
DL_TEST_CON_SIZE constant 2580
dl_test_con_t structure 2456
DL_TEST_IND constant 2575
DL_TEST_IND_SIZE constant 2580
dl_test_ind_t structure 2456
DL_TEST_REQ constant 2575
DL_TEST_REQ_SIZE constant 2579
dl_test_req_t structure 2457
DL_TEST_RES constant 2575
DL_TEST_RES_SIZE constant 2580
dl_test_res_t structure 2457
dl_through_t structure 2458
DL_TOKEN_ACK constant 2573
DL_TOKEN_ACK_SIZE constant 2578
dl_token_ack_t structure 2458
DL_TOKEN_REQ constant 2573
DL_TOKEN_REQ_SIZE constant 2578
dl_token_req_t structure 2458
DL_TOOMANY constant 2564
DL_TPB constant 2569
DL_TPR constant 2569
dl_transdelay_t structure 2459
DL_UDERROR_IND constant 2573
DL_UDERROR_IND_SIZE constant 2578
dl_uderror_ind_t structure 2459
DL_UDQOS_PENDING constant 2586
DL_UDQOS_REQ constant 2573
DL_UDQOS_REQ_SIZE constant 2578
dl_udqos_req_t structure 2460
DL_UNATTACHED 2585
DL_UNATTACHED constant 2585
DL_UNBIND_PENDING constant 2585
DL_UNBIND_REQ constant 2572
DL_UNBIND_REQ_SIZE constant 2577
dl_unbind_req_t structure 2460
DL_UNBOUND constant 2585
DL_UNDELIVERABLE constant 2564
DL_UNITDATA_IND constant 2573
DL_UNITDATA_IND_SIZE constant 2578
dl_unitdata_ind_t structure 2461
DL_UNITDATA_REQ constant 2573
DL_UNITDATA_REQ_SIZE constant 2578
dl_unitdata_req_t structure 2461
DL_UNKNOWN 2587

DL_UNKNOWN constant 2587
DL_UNSUPPORTED constant 2564
DL_USER constant 2582
DL_USER_RESET_PENDING constant 2586
DL_VERSION_2 constant 2570
DL_XIDAUTO constant 2565
DL_XID_CON constant 2575
DL_XID_CON_SIZE constant 2579
dl_xid_con_t structure 2462
DL_XID_IND constant 2574
DL_XID_IND_SIZE constant 2579
dl_xid_ind_t structure 2462
DL_XID_REQ constant 2574
DL_XID_REQ_SIZE constant 2579
dl_xid_req_t structure 2463
DL_XID_RES constant 2575
DL_XID_RES_SIZE constant 2579
dl_xid_res_t structure 2463
DNS Address Structure structure 2463
DNS Query Information Structure structure 2464
Domain Types 2247
double_t data type 1346
Drag Manager Attribute Selectors 1040
Draw Sprocket Version Selectors 1041
driverHardwareGoneErr constant 946
DrvQEl structure 812
drvQType constant 1375
dskFulErr constant 943
DTInstall function (Deprecated in Mac OS X v10.4) 1358
dtox80 function 1295
DTPBRec structure 813
dtQType constant 1375
DTUninstall function (Deprecated in Mac OS X v10.4)

1358
dummyType constant 1374
dupFNErr constant 944
duplicateFolderDescErr constant 1001
duplicateRoutingErr constant 1001
DVMRP_ADD_LGRP constant 2588
DVMRP_ADD_MRT constant 2588
DVMRP_ADD_VIF constant 2587
DVMRP_DEL_LGRP constant 2588
DVMRP_DEL_MRT constant 2588
DVMRP_DEL_VIF constant 2587
DVMRP_DONE constant 2587
DVMRP_INIT 2587
DVMRP_INIT constant 2587
DXInfo structure 2256
dynamicSpeedChange constant 1644

2833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

E

EACCES constant 2590
EADDRINUSE constant 2592
EADDRNOTAVAIL constant 2592
EAddrType 2588
EAGAIN constant 2590
EALREADY constant 2591
Easy Access Selectors 1042
EBADF constant 2590
EBADMSG constant 2593
EBCDIC and IBM Host Text Encodings 1988
EBUSY constant 2590
ECANCEL constant 2593
ECONNABORTED constant 2592
ECONNREFUSED constant 2593
ECONNRESET constant 2592
EDEADLK constant 2591
EDESTADDRREQ constant 2591
Edition Manager Attribute Selectors 1042
EEXIST constant 2590
EFAULT constant 2590
EHOSTDOWN constant 2593
EHOSTUNREACH constant 2593
EINPROGRESS constant 2593
EINTR constant 2590
EINVAL constant 2591
EIO constant 2590
EISCONN constant 2592
ELASTERRNO constant 2594
EmptyCollection function 275
EmptyHandle function 1392
EMSGSIZE constant 2591
EnableIdle function (Deprecated in Mac OS X v10.0)

1596
EnableProcessorCycling function (Deprecated in Mac

OS X v10.0) 1597
Encoding Variants for Big-5 1988
Encoding Variants for Mac OS Encodings 1989
Encoding Variants for MacArabic 1989
Encoding Variants for MacCroatian 1990
Encoding Variants for MacCyrillic 1991
Encoding Variants for MacFarsi 1991
Encoding Variants for MacHebrew 1992
Encoding Variants for MacIcelandic 1992
Encoding Variants for MacJapanese 1993
Encoding Variants for MacRoman 1994
Encoding Variants for MacRoman Related to Currency

1996
Encoding Variants for MacRomanian 1997
Encoding Variants for MacRomanLatin1 1997
Encoding Variants for MacVT100 1998
Encoding Variants for Unicode 1999

Endian16_Swap macro 2227
Endian32_Swap macro 2227
Endian64_Swap macro 2227
EndianS16_BtoL macro 2228
EndianS16_BtoN macro 2228
EndianS16_LtoB macro 2229
EndianS16_LtoN macro 2229
EndianS16_NtoB macro 2229
EndianS16_NtoL macro 2230
EndianS32_BtoL macro 2230
EndianS32_BtoN macro 2231
EndianS32_LtoB macro 2231
EndianS32_LtoN macro 2232
EndianS32_NtoB macro 2232
EndianS32_NtoL macro 2232
EndianS64_BtoL macro 2233
EndianS64_BtoN macro 2233
EndianS64_LtoB macro 2234
EndianS64_LtoN macro 2234
EndianS64_NtoB macro 2234
EndianS64_NtoL macro 2235
EndianU16_BtoL macro 2235
EndianU16_BtoN macro 2236
EndianU16_LtoB macro 2236
EndianU16_LtoN macro 2236
EndianU16_NtoB macro 2237
EndianU16_NtoL macro 2237
EndianU32_BtoL macro 2238
EndianU32_BtoN macro 2238
EndianU32_LtoB macro 2238
EndianU32_LtoN macro 2239
EndianU32_NtoB macro 2239
EndianU32_NtoL macro 2240
EndianU64_BtoL macro 2240
EndianU64_BtoN macro 2240
EndianU64_LtoB macro 2241
EndianU64_LtoN macro 2241
EndianU64_NtoB macro 2242
EndianU64_NtoL macro 2242
Endpoint Flags 2706
Endpoint Service Types 2670
Endpoint States 2671
EndpointRef data type 2465
ENETDOWN constant 2592
EnetPacketHeader structure 2466
ENETRESET constant 2592
ENETUNREACH constant 2592
ENOBUFS constant 2592
ENODATA constant 2593
ENODEV constant 2591
ENOENT constant 2590
ENOMEM constant 2590
ENOMSG constant 2593

2834
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

ENOPROTOOPT constant 2591
ENORSRC constant 2590
ENOSR constant 2593
ENOSTR constant 2593
ENOTCONN constant 2592
ENOTSOCK constant 2591
ENOTTY constant 2591
Enqueue function 1359
enumAllDocuments 2266
enumArrangement 2266
enumDate 2266
enumIconSize 2266
enumInfoWindowPanel 2267
enumPrefsWindowPanel 2267
enumSortDirection 2267
enumViewBy 2267
enumWhere 2267
ENXIO constant 2590
eofErr constant 944
EOPNOTSUPP constant 2592
EPERM 2589
EPERM constant 2590
EPIPE constant 2591
EPROTO constant 2593
EPROTONOSUPPORT constant 2591
EPROTOTYPE constant 2591
EqualString function (Deprecated in Mac OS X v10.4)

2038
EQUALTO constant 1352
eraMask constant 419
ERANGE constant 2591
erf function 1295
erfc function 1295
errEndOfBody constant 2280
errEndOfDocument constant 2280
errFSBadAllocFlags constant 949
errFSBadBuffer constant 948
errFSBadForkName constant 948
errFSBadForkRef constant 948
errFSBadFSRef constant 947
errFSBadInfoBitmap constant 948
errFSBadItemCount constant 949
errFSBadIteratorFlags constant 950
errFSBadPosMode constant 949
errFSBadSearchParams constant 949
errFSForkExists constant 950
errFSForkNotFound constant 949
errFSIteratorNotFound constant 950
errFSIteratorNotSupported constant 950
errFSMissingCatInfo constant 948
errFSMissingName constant 949
errFSNameTooLong constant 949
errFSNoMoreItems constant 949

errFSNotAFolder constant 949
errFSQuotaExceeded constant 950
errFSRefsDifferent constant 950
errFSUnknownCall constant 947
errKCAuthFailed constant 1194
errKCBufferTooSmall constant 1195
errKCCreateChainFailed constant 1197
errKCDataNotAvailable constant 1197
errKCDataNotModifiable constant 1197
errKCDataTooLarge constant 1195
errKCDuplicateCallback constant 1194
errKCDuplicateItem constant 1195
errKCDuplicateKeychain constant 1194
errKCInteractionNotAllowed constant 1196
errKCInteractionRequired constant 1197
errKCInvalidCallback constant 1195
errKCInvalidItemRef constant 1195
errKCInvalidKeychain constant 1194
errKCInvalidSearchRef constant 1196
errKCItemNotFound constant 1195
errKCKeySizeNotAllowed constant 1196
errKCNoCertificateModule constant 1196
errKCNoDefaultKeychain constant 1196
errKCNoPolicyModule constant 1197
errKCNoStorageModule constant 1196
errKCNoSuchAttr constant 1195
errKCNoSuchClass constant 1196
errKCNoSuchKeychain constant 1194
errKCNotAvailable constant 1194
errKCReadOnly constant 1194
errKCReadOnlyAttr constant 1196
errKCWrongKCVersion constant 1196
errOffsetInvalid constant 2280
errOffsetIsOutsideOfView constant 2280
Error Codes 418
Error Domains 25, 38, 112, 124
Error Subdomains 125
errTopOfBody constant 2280
errTopOfDocument constant 2280
esbbcallProc callback 2410
ESHUTDOWN constant 2592
ESOCKTNOSUPPORT constant 2592
ESRCH constant 2593
ETIME constant 2593
ETIMEDOUT constant 2593
ETOOMANYREFS constant 2592
EUC Text Encodings 2000
Event Codes 2691
evType constant 1375
EWOULDBLOCK constant 2591
exp function 1296
exp2 function 1296
expm1 function 1296

2835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

ExtComponentResource structure 369
Extended AFP Volume Mounting Information Flag 903
Extended Finder Flags 2262
Extended Volume Attributes 903
ExtendedFileInfo structure 2257
ExtendedFolderInfo structure 2254
ExtendedToString function (Deprecated in Mac OS X

v10.4) 2039
Extension Table Version Selector 1042
extFSErr constant 945
extModemSelected constant 1639

F

fabs function 1297
Fallback Handler Selectors 1982
false32b constant 1373
fBadPartsTable constant 2081
fBestGuess constant 2080
fBsyErr constant 944
FCB Flags 906
FCBPBRec structure 816
fdim function 1297
fEmptyFormatString constant 2081
fenv_t data type 1346
fexcept_t data type 1347
fExtraDecimal constant 2080
fExtraExp constant 2081
fExtraPercent constant 2081
fExtraSeparator constant 2081
FE_ALL_EXCEPT constant 1350
FE_DBLPREC constant 1350
FE_DIVBYZERO constant 1349
FE_DOWNWARD constant 1350
FE_FLTPREC constant 1350
FE_INEXACT 1349
FE_INEXACT constant 1349
FE_INVALID constant 1350
FE_LDBLPREC 1350
FE_LDBLPREC constant 1350
FE_OVERFLOW constant 1349
FE_TONEAREST 1350
FE_TONEAREST constant 1350
FE_TOWARDZERO constant 1350
FE_UNDERFLOW constant 1349
FE_UPWARD constant 1350
fFormatOK constant 2080
fFormatOverflow constant 2081
fFormStrIsNAN constant 2081
fidExists constant 946
fidNotFound constant 946
FIDParam structure 818

FIFO List Structure structure 2488
File Access Permission Constants 908
File and Folder Access Privilege Constants 910
File Attribute Constants 914
File Location 249
File Mapping Attribute Selectors 1042
File Operation Options 917
File Operation Stages 918
File Operation Status Dictionary Keys 919
File System Attribute Selectors 1042
File System Attribute Selectors for Mac OS 9 1044
File System Manager Version Selector 1045
File System Metadata Attribute Keys 147
File System Transport Manager Attribute Selectors 1046
fileBoundsErr constant 947
FileInfo structure 2258
FileParam structure 819
FileViewAccess data type 1435
FileViewID data type 1436
FileViewInformation structure 1436
FileViewOptions data type 1436
FillParseTable function (Deprecated in Mac OS X

v10.4) 1720
Find By Content State Selectors 1046
Find By Content Version Selectors 1046
Find Folder Redirection Attribute Selector 1047
Finder Attribute Selectors 1047
Finder Error Codes 2264
Finder Events 2264
Finder Flags 2261
FindFolder function 960
FindFolderExtended function (Deprecated in Mac OS

X v10.3) 962
FindFolderRouting function (Deprecated in Mac OS X

v10.4) 962
FindFolderUserRedirectionGlobals Flags 999
FindFolderUserRedirectionGlobals structure 976
FindFolderUserRedirectionGlobals Structure Version 999
FindNextComponent function 333
FindScriptRun function (Deprecated in Mac OS X v10.4)

2040
FindSymbol function (Deprecated in Mac OS X v10.5)

226
FindWordBreaks function (Deprecated in Mac OS X

v10.4) 2041
FInfo structure 2258
firstDskErr constant 945
Fix2Frac function 1297
Fix2Long function 1298
Fix2X function 1298
FixATan2 function 1299
FixDiv function 1299
Fixed data type 1347

2836
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Fixed Ordering Masks 1 2177
Fixed Ordering Masks 2 2178
Fixed Ordering Scheme 2177
fixed1 1351
fixed1 constant 1351
FixedToFloat function 1300
FixMul function 1300
FixRatio function 1301
FixRound function 1302
Flags 420
FlattenCollection function 275
FlattenCollectionToHdl function 276
FlattenPartialCollection function 277
fLckdErr constant 944
FloatToFixed function 1302
FloatToFract function 1303
float_t data type 1348
floor function 1303
Floppy Driver Attribute Selectors 1047
FLUSHALL 2594
FLUSHALL constant 2594
FLUSHDATA constant 2594
FlushMemory function (Deprecated in Mac OS X v10.4)

1393
FLUSHR 2594
FLUSHR constant 2594
FLUSHRW constant 2594
FlushVol function (Deprecated in Mac OS X v10.5) 466
FLUSHW constant 2594
fmax function 1304
fmin function 1304
fMissingDelimiter constant 2080
fMissingLiteral constant 2080
FMNAMESZ 2595
FMNAMESZ constant 2595
fmod function 1304
fNegative constant 2082
fnfErr constant 944
FNGetDirectoryForSubscription function 466
FNMessage 921
FNNotify function 467
FNNotifyAll function 468
FNNotifyByPath function 468
fnOpnErr constant 944
FNSubscribe function 469
FNSubscribeByPath function 469
FNSubscriptionProcPtr callback 789
FNSubscriptionRef data type 822
FNSubscriptionUPP data type 822
FNUnsubscribe function 470
Folder Descriptor Classes 981
Folder Descriptor Flags 982
Folder Descriptor Locations 984

Folder Manager Attribute Selectors 1048
Folder Type Constants 985
FolderDesc structure 977
FolderInfo structure 2255
FolderManagerCallNotificationProcs Options 1000
FolderManagerNotificationProcPtr callback 975
FolderManagerNotificationUPP data type 978
FolderManagerRegisterCallNotificationProcs

function (Deprecated in Mac OS X v10.3) 963
FolderManagerRegisterNotificationProc function

(Deprecated in Mac OS X v10.3) 964
FolderManagerUnregisterNotificationProc

function (Deprecated in Mac OS X v10.3) 964
FolderRouting structure 978
FollowFinderAlias function (Deprecated in Mac OS X

v10.5) 181
fOnDesk 2268
Font Manager Attribute Selectors 1047
FontScript function (Deprecated in Mac OS X v10.4)

1721
FontToScript function (Deprecated in Mac OS X v10.4)

1722
forceReadBit constant 890
forceReadMask constant 890
Foreign Privilege Model Constant 921
ForeignPrivParam structure 822
formAlias 2268
Format Result Types 2079
FormatClass data type 2073
FormatRecToString function (Deprecated in Mac OS X

v10.4) 2043
FormatStatus data type 2073
fOutOfSynch constant 2080
fpclassify function 1305
fPositive constant 2082
FPU Type Selectors 1049
FP_INFINITE constant 1351
FP_NORMAL constant 1351
FP_QNAN constant 1351
FP_SNAN 1351
FP_SNAN constant 1351
FP_SUBNORMAL constant 1351
FP_ZERO constant 1351
Frac2Fix function 1305
Frac2X function 1305
FracCos function 1306
FracDiv function 1306
FracMul function 1307
FracSin function 1307
FracSqrt function 1308
Fract data type 1347
fract1 constant 1351
FractToFloat function 1308

2837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Fragment Flags 1452
FragmentLocator data type 245
FragmentLocatorPtr data type 245
FreeFuncType callback 2411
FreeMem function (Deprecated in Mac OS X v10.5) 1393
free_rtn structure 2466
frexp function 1309
frtn_t data type 2466
FSAliasFilterProcPtr callback 215
FSAliasInfo structure 217
FSAllocateFork function 470
fsAtMark constant 928
FSCancelVolumeOperation function 471
FSCatalogBulkParam structure 824
FSCatalogInfo structure 826
FSCatalogInfoBitmap data type 828
FSCatalogSearch function 472
FSClose function (Deprecated in Mac OS X v10.4) 474
FSCloseFork function 475
FSCloseIterator function 475
FSCompareFSRefs function 476
FSCopyAliasInfo function 181
FSCopyDiskIDForVolume function 476
FSCopyObjectAsync function 477
FSCopyObjectSync function 478
FSCopyURLForVolume function 479
FSCreateDirectoryUnicode function 479
FSCreateFileUnicode function 481
FSCreateFork function 482
FSCreateResFile function 1666
FSCreateResourceFile function 1667
FSCreateResourceFork function 1668
FSCreateVolumeOperation function 483
fsCurPerm constant 909
fsDataTooBigErr constant 947
FSDeleteFork function 483
FSDeleteObject function 484
FSDetermineIfRefIsEnclosedByFolder function 965
FSDisposeVolumeOperation function 484
fsDSIntErr constant 946
FSEjectStatus data type 829
FSEjectVolumeAsync function 485
FSEjectVolumeSync function 486
FSExchangeObjects function 486
FSFileOperationCancel function 487
FSFileOperationClientContext structure 829
FSFileOperationCopyStatus function 487
FSFileOperationCreate function 488
FSFileOperationGetTypeID function 489
FSFileOperationRef data type 830
FSFileOperationScheduleWithRunLoop function 489
FSFileOperationStatusProcPtr callback 790

FSFileOperationUnscheduleFromRunLoop function
490

FSFindFolder function 966
FSFindFolderExtended Flags 999
FSFindFolderExtended function (Deprecated in Mac

OS X v10.3) 966
FSFlushFork function 490
FSFlushVolume function 491
FSFollowFinderAlias function 182
FSForkCBInfoParam structure 830
FSForkInfo structure 832
FSForkIOParam structure 833
fsFromLEOF constant 928
fsFromMark constant 929
fsFromStart constant 928
FSGetAsyncEjectStatus function 491
FSGetAsyncMountStatus function 492
FSGetAsyncUnmountStatus function 493
FSGetCatalogInfo function 494
FSGetCatalogInfoBulk function 495
FSGetDataForkName function 497
FSGetForkCBInfo function 497
FSGetForkPosition function 499
FSGetForkSize function 499
FSGetResourceForkName function 500
FSGetVolumeInfo function 500
FSGetVolumeMountInfo function 502
FSGetVolumeMountInfoSize function 502
FSGetVolumeParms function 503
FSIsAliasFile function 183
FSIterateForks function 503
FSIterator data type 835
FSLockRange function 504
FSMakeFSRefUnicode function 504
FSMakeFSSpec function (Deprecated in Mac OS X v10.4)

505
FSMatchAlias function (Deprecated in Mac OS X v10.5)

184
FSMatchAliasBulk function 185
FSMatchAliasNoUI function (Deprecated in Mac OS X

v10.5) 187
fsmBadFFSNameErr constant 946
fsmBadFSDLenErr constant 946
fsmBadFSDVersionErr constant 946
fsmBusyFFSErr constant 946
fsmDuplicateFSIDErr constant 946
fsmFFSNotFoundErr constant 946
fsmNoAlternateStackErr constant 946
FSMountLocalVolumeAsync function 506
FSMountLocalVolumeSync function 507
FSMountServerVolumeAsync function 508
FSMountServerVolumeSync function 509
FSMountStatus data type 835

2838
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

FSMoveObject function 510
FSMoveObjectAsync function 511
FSMoveObjectSync function 512
FSMoveObjectToTrashAsync function 513
FSMoveObjectToTrashSync function 514
fsmUnknownFSMMessageErr constant 946
FSNewAlias function 188
FSNewAliasFromPath function 189
FSNewAliasMinimal function 190
FSNewAliasMinimalUnicode function 190
FSNewAliasUnicode function 191
FSOpenFork function 514
FSOpenIterator function 515
FSOpenOrphanResFile function 1669
FSOpenResFile function 1669
FSOpenResourceFile function 1670
FSPathCopyObjectAsync function 517
FSPathCopyObjectSync function 518
FSPathFileOperationCopyStatus function 518
FSPathFileOperationStatusProcPtr callback 791
FSPathMakeRef function 519
FSPathMakeRefWithOptions function 520
FSPathMoveObjectAsync function 521
FSPathMoveObjectSync function 522
FSPathMoveObjectToTrashAsync function 523
FSPathMoveObjectToTrashSync function 524
FSpCatMove function (Deprecated in Mac OS X v10.4)

524
FSpCreate function (Deprecated in Mac OS X v10.4) 525
FSpCreateResFile function (Deprecated in Mac OS X

v10.5) 1670
FSpDelete function (Deprecated in Mac OS X v10.4) 527
FSpDetermineIfSpecIsEnclosedByFolder function

(Deprecated in Mac OS X v10.5) 967
FSpDirCreate function (Deprecated in Mac OS X v10.4)

527
FSPermissionInfo structure 836
FSpExchangeFiles function (Deprecated in Mac OS X

v10.4) 528
FSpGetFInfo function (Deprecated in Mac OS X v10.4)

530
FSpMakeFSRef function (Deprecated in Mac OS X v10.5)

531
FSpOpenDF function (Deprecated in Mac OS X v10.4) 531
FSpOpenOrphanResFile function (Deprecated in Mac

OS X v10.5) 1671
FSpOpenResFile function (Deprecated in Mac OS X

v10.5) 1671
FSpOpenRF function (Deprecated in Mac OS X v10.4) 532
FSpRename function (Deprecated in Mac OS X v10.4) 533
FSpResourceFileAlreadyOpen function (Deprecated

in Mac OS X v10.5) 1673

FSpRstFLock function (Deprecated in Mac OS X v10.4)
534

FSpSetFInfo function (Deprecated in Mac OS X v10.4)
535

FSpSetFLock function (Deprecated in Mac OS X v10.4)
535

fSpuriousChars constant 2080
fsQType constant 1375
FSRangeLockParam structure 836
FSRangeLockParamPtr data type 836
fsRdDenyPerm constant 910
fsRdPerm constant 909
fsRdWrPerm constant 909
fsRdWrShPerm constant 909
FSRead function (Deprecated in Mac OS X v10.4) 536
FSReadFork function 537
FSRef structure 837
FSRefMakePath function 539
FSRefParam structure 837
FSRenameUnicode function 539
FSResolveAlias function 192
FSResolveAliasFile function 193
FSResolveAliasFileWithMountFlags function 194
FSResolveAliasWithMountFlags function 195
FSResourceFileAlreadyOpen function 1674
fsRnErr constant 945
fsRtDirID constant 929
fsRtParID constant 929
fsSBAccessDate constant 900
fsSBAccessDateBit constant 900
fsSBAttributeModDate constant 899
fsSBAttributeModDateBit constant 900
fsSBDrBkDat constant 903
fsSBDrBkDatBit constant 899
fsSBDrCrDat constant 903
fsSBDrCrDatBit constant 899
fsSBDrFndrInfo constant 903
fsSBDrFndrInfoBit constant 899
fsSBDrMdDat constant 903
fsSBDrMdDatBit constant 899
fsSBDrNmFls constant 902
fsSBDrNmFlsBit constant 898
fsSBDrParID constant 903
fsSBDrParIDBit constant 899
fsSBDrUsrWds constant 902
fsSBDrUsrWdsBit constant 898
fsSBFlAttrib constant 901
fsSBFlAttribBit constant 897
fsSBFlBkDat constant 902
fsSBFlBkDatBit constant 898
fsSBFlCrDat constant 902
fsSBFlCrDatBit constant 898
fsSBFlFndrInfo constant 901

2839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

fsSBFlFndrInfoBit constant 897
fsSBFlLgLen constant 901
fsSBFlLgLenBit constant 897
fsSBFlMdDat constant 902
fsSBFlMdDatBit constant 898
fsSBFlParID constant 902
fsSBFlParIDBit constant 898
fsSBFlPyLen constant 901
fsSBFlPyLenBit constant 897
fsSBFlRLgLen constant 902
fsSBFlRLgLenBit constant 898
fsSBFlRPyLen constant 902
fsSBFlRPyLenBit constant 898
fsSBFlXFndrInfo constant 902
fsSBFlXFndrInfoBit constant 898
fsSBFullName constant 901
fsSBFullNameBit constant 897
fsSBNegate constant 902
fsSBNegateBit constant 898
fsSBNodeID constant 899
fsSBNodeIDBit constant 900
fsSBPartialName constant 901
fsSBPartialNameBit constant 897
fsSBPermissions constant 900
fsSBPermissionsBit constant 900
FSSearchParams structure 839
FSSetCatalogInfo function 540
FSSetForkPosition function 541
FSSetForkSize function 542
FSSetVolumeInfo function 543
FSSpec structure 840
FSSpecArrayPtr data type 841
fsUnixPriv constant 921
FSUnlockRange function 543
FSUnmountStatus data type 842
FSUnmountVolumeAsync function 544
FSUnmountVolumeSync function 545
FSUpdateAlias function 196
FSVolumeEjectProcPtr callback 792
FSVolumeEjectUPP data type 842
FSVolumeInfo structure 842
FSVolumeInfoBitmap data type 845
FSVolumeInfoParam structure 845
FSVolumeMount function 545
FSVolumeMountProcPtr callback 792
FSVolumeMountUPP data type 846
FSVolumeOperation data type 847
FSVolumeRefNum data type 847
FSVolumeUnmountProcPtr callback 793
FSVolumeUnmountUPP data type 847
fsWrDenyPerm constant 910
FSWrite function (Deprecated in Mac OS X v10.4) 546
FSWriteFork function 546

fsWrPerm constant 909
fTrash 2268
FullProcessorSpeed function (Deprecated in Mac OS

X v10.5) 1597
functions
CFHTTPMessageAddAuthentication 19, 20, 21, 52,

53
CFHTTPMessageAppendBytes 51, 54
CFHTTPMessageCopyAllHeaderFields 52, 56
CFHTTPMessageCopyBody 52, 57
CFHTTPMessageCopyHeaderFieldValue 52, 57
CFHTTPMessageCopyRequestURL 52, 58
CFHTTPMessageCopySerializedMessage 52, 59
CFHTTPMessageCopyVersion 52, 59
CFHTTPMessageCreateCopy 51, 60
CFHTTPMessageCreateEmpty 51, 60
CFHTTPMessageCreateRequest 51, 61
CFHTTPMessageCreateResponse 51, 62
CFHTTPMessageGetResponseStatusCode 52, 59, 63
CFHTTPMessageGetTypeID 52, 63
CFHTTPMessageHeaderComplete 52, 63
CFHTTPMessageSetBody 51, 64
CFHTTPMessageSetHeaderFieldValues 51, 64
CFWriteStreamScheduleWithRunLoop 113, 114

FVector structure 2073
FXInfo structure 2259
fZero constant 2082

G

gamma function 1309
genCdevRangeBit constant 421
Gestalt function 1005
Gestalt Manager Version Selectors 1049
gestalt16BitAudioSupport constant 1095
gestalt16BitSoundIO constant 1094
gestalt32BitAddressing constant 1012
gestalt32BitCapable constant 1013
gestalt32BitQD constant 1080
gestalt32BitQD11 constant 1080
gestalt32BitQD12 constant 1080
gestalt32BitQD13 constant 1080
gestalt32BitSysZone constant 1012
gestalt68000 constant 1077
gestalt68010 constant 1077
gestalt68020 constant 1078
gestalt68030 constant 1078
gestalt68030MMU constant 1064
gestalt68040 constant 1078
gestalt68040FPU constant 1049
gestalt68040MMU constant 1064
gestalt68851 constant 1064

2840
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

gestalt68881 constant 1049
gestalt68882 constant 1049
gestalt68k constant 1098
gestalt8BitQD constant 1080
gestaltAddressingModeAttr constant 1012
gestaltAdminFeaturesFlagsAttr constant 1013
gestaltAliasMgrAttr constant 1014
gestaltAllegroQD constant 1080
gestaltAllegroQDText constant 1083
gestaltAltivecRegistersSwappedCorrectlyBit

constant 1059
gestaltAMU constant 1064
gestaltAntiAliasedTextAvailable constant 1082
gestaltAppearanceAttr constant 1015
gestaltAppearanceCompatMode constant 1015
gestaltAppearanceExists constant 1015
gestaltAppearanceVersion constant 1015
gestaltAppleEventsAttr constant 1016
gestaltAppleEventsPresent constant 1016
gestaltAppleGuideIsDebug constant 1052
gestaltAppleGuidePresent constant 1053
gestaltAppleScriptAttr constant 1017
gestaltAppleScriptPowerPCSupport constant 1017
gestaltAppleScriptPresent constant 1017
gestaltAppleScriptVersion constant 1017
gestaltAppleTalkVersion constant 1018
gestaltATalkVersion constant 1018
gestaltATSUAscentDescentControlsFeature

constant 1021
gestaltATSUBatchBreakLinesFeature constant 1021
gestaltATSUBiDiCursorPositionFeature constant

1021
gestaltATSUByCharacterClusterFeature constant

1020
gestaltATSUDecimalTabFeature constant 1021
gestaltATSUDirectAccess constant 1021
gestaltATSUDropShadowStyleFeature constant 1022
gestaltATSUFallbacksFeature constant 1019
gestaltATSUFallbacksObjFeatures constant 1020
gestaltATSUFeatures constant 1019
gestaltATSUGlyphBoundsFeature constant 1020
gestaltATSUHighlightColorControlFeature

constant 1021
gestaltATSUHighlightInactiveTextFeature

constant 1021
gestaltATSUIgnoreLeadingFeature constant 1020
gestaltATSULayoutCacheClearFeature constant

1020
gestaltATSULayoutCreateAndCopyFeature constant

1020
gestaltATSULineControlFeature constant 1020
gestaltATSULowLevelOrigFeatures constant 1020
gestaltATSUMemoryFeature constant 1019

gestaltATSUNearestCharLineBreakFeature
constant 1021

gestaltATSUPositionToCursorFeature constant
1021

gestaltATSUStrikeThroughStyleFeature constant
1022

gestaltATSUTabSupportFeature constant 1021
gestaltATSUTextLocatorUsageFeature constant

1020
gestaltATSUTrackingFeature constant 1019
gestaltATSUUnderlineOptionsStyleFeature

constant 1022
gestaltATSUUpdate1 constant 1023
gestaltATSUUpdate2 constant 1023
gestaltATSUUpdate3 constant 1023
gestaltATSUUpdate4 constant 1023
gestaltATSUUpdate5 constant 1023
gestaltATSUUpdate6 constant 1023
gestaltATSUUpdate7 constant 1023
gestaltATSUVersion constant 1022
gestaltAUXVersion constant 1024
gestaltBuiltInSoundInput constant 1094
gestaltCanStartDragInFloatWindow constant 1041
gestaltCanUseCGTextRendering constant 1083
gestaltCollectionMgrVersion constant 1025
gestaltColorMatchingAttr constant 1026
gestaltColorMatchingLibLoaded constant 1026
gestaltColorMatchingVersion constant 1027
gestaltColorSync10 constant 1027
gestaltColorSync104 constant 1027
gestaltColorSync105 constant 1028
gestaltColorSync11 constant 1027
gestaltColorSync20 constant 1028
gestaltColorSync21 constant 1028
gestaltColorSync211 constant 1028
gestaltColorSync212 constant 1028
gestaltColorSync213 constant 1028
gestaltColorSync25 constant 1028
gestaltColorSync26 constant 1028
gestaltColorSync261 constant 1028
gestaltColorSync30 constant 1028
gestaltComponentMgr constant 1029
gestaltCompressionMgr constant 1054
gestaltConnMgrAttr constant 1033
gestaltConnMgrCMSearchFix constant 1034
gestaltConnMgrErrorString constant 1034
gestaltConnMgrMultiAsyncIO constant 1034
gestaltConnMgrPresent constant 1033
gestaltControlMgrAttr constant 1034
gestaltControlMgrPresent constant 1034
gestaltControlMgrPresentBit constant 1034
gestaltControlMgrVersion constant 1035
gestaltControlMsgPresentMask constant 1034

2841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

gestaltControlStripVersion constant 1035
gestaltCPU601 constant 1066
gestaltCPU603 constant 1066
gestaltCPU603e constant 1067
gestaltCPU603ev constant 1067
gestaltCPU604 constant 1067
gestaltCPU604e constant 1067
gestaltCPU604ev constant 1067
gestaltCPU68000 constant 1066
gestaltCPU68010 constant 1066
gestaltCPU68020 constant 1066
gestaltCPU68030 constant 1066
gestaltCPU68040 constant 1066
gestaltCPU750 constant 1067
gestaltCPUG4 constant 1067
gestaltCPUG47450 constant 1067
gestaltCreatesAliasFontRsrc constant 1083
gestaltCTBVersion constant 1029
gestaltCurrentGraphicsVersion constant 1081
gestaltDesktopSpeechRecognition constant 1096
gestaltDialogMgrAttr constant 1037
gestaltDialogMgrHasAquaAlertBit constant 1038
gestaltDialogMgrHasAquaAlertMask constant 1038
gestaltDialogMgrPresent constant 1038
gestaltDialogMgrPresentBit constant 1038
gestaltDialogMgrPresentMask constant 1038
gestaltDialogMsgPresentMask constant 1038
gestaltDiskCacheSize constant 1039
gestaltDisplayMgrAttr constant 1039
gestaltDisplayMgrCanConfirm constant 1040
gestaltDisplayMgrCanSwitchMirrored constant

1039
gestaltDisplayMgrColorSyncAware constant 1040
gestaltDisplayMgrGeneratesProfiles constant

1040
gestaltDisplayMgrPresent constant 1039
gestaltDisplayMgrSetDepthNotifies constant 1039
gestaltDisplayMgrSleepNotifies constant 1040
gestaltDisplayMgrVers constant 1040
gestaltDITLExtAttr constant 1037
gestaltDITLExtPresent constant 1037
gestaltDITLExtSupportsIctb constant 1037
gestaltDragMgrAttr constant 1041
gestaltDragMgrFloatingWind constant 1041
gestaltDragMgrHasImageSupport constant 1041
gestaltDragMgrPresent constant 1041
gestaltDTMgrSupportsFSM constant 1044
gestaltDupSelectorErr constant 1113
gestaltEMMU1 constant 1064
gestaltExtendedTimeMgr constant 1104
gestaltExtendedWindowAttributes constant 1111
gestaltExtendedWindowAttributesBit constant

1111

gestaltExtendedWindowAttributesMask constant
1112

gestaltExtToolboxTable constant 1105
gestaltFinderUsesSpecialOpenFoldersFile

constant 1013
gestaltFindFolderAttr constant 1048
gestaltFindFolderPresent constant 1048
gestaltFirstSlotNumber constant 1093
gestaltFolderDescSupport constant 1048
gestaltFolderMgrFollowsAliasesWhenResolving

constant 1048
gestaltFolderMgrSupportsDomains constant 1049
gestaltFolderMgrSupportsExtendedCalls constant

1049
gestaltFolderMgrSupportsFSCalls constant 1049
gestaltFontMgrAttr constant 1048
gestaltFPUType constant 1049
gestaltFrontWindowMayBeHiddenBit constant 1112
gestaltFrontWindowMayBeHiddenMask constant 1113
gestaltFSAttr constant 1043
gestaltFSIncompatibleDFA82 constant 1044
gestaltFSMDoesDynamicLoad constant 1043
gestaltFSMVersion constant 1046
gestaltFSNoMFSVols constant 1044
gestaltFSSupports2TBVols constant 1044
gestaltFSSupports4GBVols constant 1043
gestaltFSSupportsExclusiveLocks constant 1045
gestaltFSSupportsHardLinkDetection constant

1045
gestaltFSSupportsHFSPlusVols constant 1044
gestaltFSUsesPOSIXPathsForConversion constant

1045
gestaltFullExtFSDispatching constant 1043
gestaltFXfrMgrAttr constant 1046
gestaltGraphicsVersion constant 1081
gestaltHardwareAttr constant 1050
gestaltHasASC constant 1051
gestaltHasColor constant 1079
gestaltHasDeepGWorlds constant 1079
gestaltHasDirectPixMaps constant 1079
gestaltHasEnhancedLtalk constant 1051
gestaltHasExtendedDiskInit constant 1044
gestaltHasFileSystemManager constant 1043
gestaltHasFloatingWindows constant 1111
gestaltHasFloatingWindowsBit constant 1112
gestaltHasFloatingWindowsMask constant 1112
gestaltHasFSSpecCalls constant 1043
gestaltHasGPIaToDCDa constant 1090
gestaltHasGPIaToRTxCa constant 1090
gestaltHasGPIbToDCDb constant 1090
gestaltHasGrayishTextOr constant 1079
gestaltHasHFSPlusAPIs constant 1045
gestaltHasParityCapability constant 1072

2842
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

gestaltHasResourceOverrides constant 1087
gestaltHasSCC constant 1051
gestaltHasSCSI constant 1051
gestaltHasSCSI961 constant 1051
gestaltHasSCSI962 constant 1051
gestaltHasSoftPowerOff constant 1051
gestaltHasSoundInputDevice constant 1094
gestaltHasUniversalROM constant 1051
gestaltHasVIA1 constant 1050
gestaltHasVIA2 constant 1050
gestaltHasWindowBuffering constant 1112
gestaltHasWindowBufferingBit constant 1112
gestaltHasWindowBufferingMask constant 1112
gestaltHasWindowShadowsBit constant 1112
gestaltHasWindowShadowsMask constant 1113
gestaltHelpMgrAttr constant 1052
gestaltHelpMgrExtensions constant 1052
gestaltHelpMgrPresent constant 1052
gestaltHidePortA constant 1090
gestaltHidePortB constant 1090
gestaltHighLevelMatching constant 1026
gestaltIconUtilitiesAttr constant 1053
gestaltIconUtilitiesHas32BitIcons constant 1053
gestaltIconUtilitiesHas48PixelIcons constant

1053
gestaltIconUtilitiesHas8BitDeepMasks constant

1053
gestaltIconUtilitiesHasIconServices constant

1053
gestaltIconUtilitiesPresent constant 1053
gestaltIntel constant 1098
gestaltIPCSupport constant 1059
gestaltKeyboardType constant 1055
gestaltLaunchCanReturn constant 1058
gestaltLaunchControl constant 1058
gestaltLaunchFullFileSpec constant 1058
gestaltLineLevelInput constant 1094
gestaltLocationErr constant 1113
gestaltLogicalPageSize constant 1056
gestaltLogicalRAMSize constant 1056
gestaltLowMemorySize constant 1057
gestaltMachineIcon constant 1052
gestaltMacOSXQD constant 1081
gestaltMacOSXQDText constant 1083
gestaltMenuMgrAquaLayoutBit constant 1060
gestaltMenuMgrAquaLayoutMask constant 1061
gestaltMenuMgrAttr constant 1060
gestaltMenuMgrMoreThanFiveMenusDeepBit

constant 1061
gestaltMenuMgrMoreThanFiveMenusDeepMask

constant 1061
gestaltMenuMgrMultipleItemsWithCommandIDBit

constant 1060

gestaltMenuMgrMultipleItemsWithCommandIDMask
constant 1061

gestaltMenuMgrPresent constant 1060
gestaltMenuMgrPresentBit constant 1060
gestaltMenuMgrPresentMask constant 1061
gestaltMenuMgrRetainsIconRefBit constant 1060
gestaltMenuMgrRetainsIconRefMask constant 1061
gestaltMenuMgrSendsMenuBoundsToDefProcBit

constant 1060
gestaltMenuMgrSendsMenuBoundsToDefProcMask

constant 1061
gestaltMiscAttr constant 1062
gestaltMixedModeAttr constant 1062
gestaltMixedModeCFM68K constant 1063
gestaltMixedModeCFM68KHasState constant 1063
gestaltMixedModeCFM68KHasTrap constant 1063
gestaltMixedModePowerPC constant 1062
gestaltMixedModeVersion constant 1063
gestaltMMUType constant 1064
gestaltMPCallableAPIsAttr constant 1076
gestaltMPDeviceManager constant 1076
gestaltMPFileManager constant 1076
gestaltMPTrapCalls constant 1077
gestaltMultiChannels constant 1095
gestaltMustUseFCBAccessors constant 1045
gestaltNameRegistryVersion constant 1065
gestaltNativeCPUfamily constant 1066
gestaltNativeCPUtype constant 1066
gestaltNativeProcessMgrBit constant 1059
gestaltNativeTimeMgr constant 1105
gestaltNativeType1FontSupport constant 1083
gestaltNoFPU constant 1049
gestaltNoMMU constant 1064
gestaltNotificationMgrAttr constant 1067
gestaltNotificationPresent constant 1068
gestaltNuBusConnectors constant 1068
gestaltNuBusPresent constant 1092
gestaltOFA2available constant 1083
gestaltOriginalATSUVersion constant 1022
gestaltOriginalQD constant 1080
gestaltOriginalQDText constant 1083
gestaltOSAttr constant 1058
gestaltOSLInSystem constant 1016
gestaltOSTable constant 1071
gestaltOutlineFonts constant 1048
gestaltParityAttr constant 1072
gestaltParityEnabled constant 1072
gestaltPartialRsrcs constant 1086
gestaltPCXAttr constant 1072
gestaltPCXHas8and16BitFAT constant 1073
gestaltPCXHasProDOS constant 1073
gestaltPCXNewUI constant 1073
gestaltPCXUseICMapping constant 1073

2843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

gestaltPhysicalRAMSize constant 1073
gestaltPlayAndRecord constant 1094
gestaltPMgrCPUIdle constant 1074
gestaltPMgrDispatchExists constant 1074
gestaltPMgrExists constant 1074
gestaltPMgrSCC constant 1074
gestaltPMgrSound constant 1074
gestaltPMgrSupportsAVPowerStateAtSleepWake

constant 1074
gestaltPopupAttr constant 1073
gestaltPopupPresent constant 1073
gestaltPortableSlotPresent constant 1092
gestaltPortADisabled constant 1090
gestaltPortBDisabled constant 1090
gestaltPowerMgrAttr constant 1074
gestaltPowerPC constant 1098
gestaltPowerPCAware constant 1062
gestaltPPCDragLibPresent constant 1041
gestaltPPCSupportsIncoming constant 1075
gestaltPPCSupportsIncomingAppleTalk constant

1076
gestaltPPCSupportsIncomingTCP_IP constant 1076
gestaltPPCSupportsOutGoing constant 1076
gestaltPPCSupportsOutgoingAppleTalk constant

1076
gestaltPPCSupportsOutgoingTCP_IP constant 1076
gestaltPPCSupportsRealTime constant 1075
gestaltPPCSupportsTCP_IP constant 1076
gestaltPPCToolboxAttr constant 1075
gestaltPPCToolboxPresent constant 1075
gestaltProcessorType constant 1077
gestaltQDHasLongRowBytes constant 1080
gestaltQDTextFeatures constant 1082
gestaltQDTextVersion constant 1083
gestaltQuickdrawFeatures constant 1079
gestaltQuickdrawVersion constant 1080
gestaltQuickTime constant 1084
gestaltQuickTimeConferencingInfo constant 1085
gestaltQuickTimeVersion constant 1084
gestaltRealTempMemory constant 1059
gestaltRealtimeMgrAttr constant 1086
gestaltRealtimeMgrPresent constant 1086
gestaltResourceMgrAttr constant 1086
gestaltRevisedTimeMgr constant 1104
gestaltROMSize constant 1087
gestaltROMVersion constant 1087
gestaltSbitFontSupport constant 1082
gestaltScrapMgrAttr constant 1088
gestaltScrapMgrTranslationAware constant 1088
gestaltScriptCount constant 1089
gestaltScriptingSupport constant 1016
gestaltScriptMgrVersion constant 1089
gestaltScrollingThrottle constant 1062

gestaltSE30SlotPresent constant 1092
gestaltSerialAttr constant 1090
gestaltSESlotPresent constant 1092
gestaltSetDragImageUpdates constant 1041
gestaltSheetsAreWindowModalBit constant 1112
gestaltSheetsAreWindowModalMask constant 1113
gestaltSlotAttr constant 1092
gestaltSlotMgrExists constant 1092
gestaltSndPlayDoubleBuffer constant 1095
gestaltSoundAttr constant 1093
gestaltSoundIOMgrPresent constant 1094
gestaltSpecificMatchSupport constant 1104
gestaltSpeechAttr constant 1095
gestaltSpeechHasPPCGlue constant 1095
gestaltSpeechMgrPresent constant 1095
gestaltSpeechRecognitionAttr constant 1096
gestaltSquareMenuBar constant 1062
gestaltStandardFile58 constant 1097
gestaltStandardFileAttr constant 1097
gestaltStandardFileHasColorIcons constant 1098
gestaltStandardFileHasDynamicVolumeAllocation

constant 1098
gestaltStandardFileTranslationAware constant

1098
gestaltStandardFileUseGenericIcons constant

1098
gestaltStandardTimeMgr constant 1104
gestaltStdNBPAttr constant 1065
gestaltStdNBPPresent constant 1065
gestaltStdNBPSupportsAutoPosition constant 1065
gestaltStereoCapability constant 1093
gestaltStereoInput constant 1094
gestaltStereoMixing constant 1094
gestaltSupportsApplicationURL constant 1016
gestaltSupportsMirroring constant 1079
gestaltSysArchitecture constant 1098
gestaltSysDebuggerSupport constant 1059
gestaltSystemVersion constant 1099
gestaltSystemVersionBugFix constant 1100
gestaltSystemVersionMajor constant 1100
gestaltSystemVersionMinor constant 1100
gestaltSysZoneGrowable constant 1058
gestaltTE1 constant 1102
gestaltTE2 constant 1102
gestaltTE3 constant 1102
gestaltTE4 constant 1102
gestaltTE5 constant 1102
gestaltTEAttr constant 1101
gestaltTEHasGetHiliteRgn constant 1101
gestaltTEHasWhiteBackground constant 1101
gestaltTelephoneSpeechRecognition constant 1096
gestaltTempMemSupport constant 1058
gestaltTempMemTracked constant 1059

2844
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

gestaltTermMgrAttr constant 1100
gestaltTermMgrErrorString constant 1101
gestaltTermMgrPresent constant 1100
gestaltTESupportsInlineInput constant 1101
gestaltTESupportsTextObjects constant 1101
gestaltTextEditVersion constant 1102
gestaltThreadMgrAttr constant 1103
gestaltThreadMgrPresent constant 1103
gestaltThreadsLibraryPresent constant 1104
gestaltTimeMgrVersion constant 1104
gestaltToolboxTable constant 1105
gestaltTranslationAttr constant 1106
gestaltTranslationGetPathAPIAvail constant 1106
gestaltTranslationMgrExists constant 1106
gestaltTranslationMgrHintOrder constant 1106
gestaltTranslationPPCAvail constant 1106
gestaltTSMgr15 constant 1103
gestaltTSMgr20 constant 1103
gestaltTSMgrVersion constant 1103
gestaltUndefSelectorErr constant 1113
gestaltUnknownErr constant 1113
gestaltValueImplementedVers constant 1050
gestaltVersion constant 1050
gestaltVMAttr constant 1109
gestaltVMFilemappingOn constant 1109
gestaltVMHasLockMemoryForOutput constant 1109
gestaltVMHasPagingControl constant 1109
gestaltVMPresent constant 1109
gestaltWindowLiveResizeBit constant 1112
gestaltWindowLiveResizeMask constant 1112
gestaltWindowMgrAttr constant 1111
gestaltWindowMgrPresent constant 1111
gestaltWindowMgrPresentBit constant 1111
gestaltWindowMgrPresentMask constant 1112
gestaltWindowMinimizeToDockBit constant 1112
gestaltWindowMinimizeToDockMask constant 1112
gestaltWSIISupport constant 1082
Get1IndResource function 1675
Get1IndType function 1675
Get1NamedResource function 1676
Get1Resource function 1677
GetAliasInfo function (Deprecated in Mac OS X v10.3)

197
GetAliasSize function 198
GetAliasSizeFromPtr function 198
GetAliasUserType function 198
GetAliasUserTypeFromPtr function 199
GetBatteryTimes function (Deprecated in Mac OS X

v10.0) 1598
GetBatteryVoltage function (Deprecated in Mac OS X

v10.0) 1598
GetCollectionDefaultAttributes function 278
GetCollectionExceptionProc function 279

GetCollectionItem function 280
GetCollectionItemHdl function 281
GetCollectionItemInfo function 281
GetCollectionRetainCount function 283
GetComponentIconSuite function 334
GetComponentIndString function 335
GetComponentInfo function 335
GetComponentInstanceError function 336
GetComponentInstanceStorage function 337
GetComponentListModSeed function 338
GetComponentPublicIndString function 338
GetComponentPublicResource function 339
GetComponentPublicResourceList function 339
GetComponentRefcon function 339
GetComponentResource function 340
GetComponentTypeModSeed function 341
GetComponentVersion function (Deprecated in Mac OS

X v10.5) 341
GetCPUSpeed function 1598
GetCurrentThread function 2094
GetDateTime function (Deprecated in Mac OS X v10.3)

390
GetDebugComponentInfo function 426
GetDebugOptionInfo function 426
GetDefaultThreadStackSize function 2095
GetDimmingTimeout function (Deprecated in Mac OS X

v10.0) 1599
GetDimSuspendState function (Deprecated in Mac OS

X v10.0) 1599
GetDiskFragment function (Deprecated in Mac OS X

v10.5) 227
GetEOF function (Deprecated in Mac OS X v10.4) 548
GetFolderDescriptor function (Deprecated in Mac OS

X v10.3) 968
GetFolderName function (Deprecated in Mac OS X v10.5)

969
GetFolderRoutings function (Deprecated in Mac OS X

v10.4) 970
GetFolderTypes function 970
GetFPos function (Deprecated in Mac OS X v10.4) 548
GetFreeThreadCount function (Deprecated in Mac OS

X v10.3) 2095
GetGrowZone function (Deprecated in Mac OS X v10.4)

1394
GetHandleSize function 1394
GetHardDiskTimeout function (Deprecated in Mac OS

X v10.0) 1600
GetIndexedCollectionItem function 283
GetIndexedCollectionItemHdl function 284
GetIndexedCollectionItemInfo function 285
GetIndexedCollectionTag function 286
GetIndResource function 1678

2845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

GetIndString function (Deprecated in Mac OS X v10.4)
2044

GetIndSymbol function (Deprecated in Mac OS X v10.5)
229

GetIndType function 1678
GetIntlResource function (Deprecated in Mac OS X

v10.5) 1722
GetIntlResourceTable function (Deprecated in Mac

OS X v10.4) 1723
GetIntModemInfo function (Deprecated in Mac OS X

v10.0) 1600
GetLastActivity function (Deprecated in Mac OS X

v10.0) 1601
GetLocalDateTime function (Deprecated in Mac OS X

v10.4) 391
GetMaxResourceSize function 1679
GetMemFragment function (Deprecated in Mac OS X

v10.5) 229
GetMissingComponentResourceProcPtr callback 359
GetMissingComponentResourceUPP data type 369
GetNamedResource function 1680
GetNewCollection function 287
GetNextFOND function 1680
GetNextResourceFile function 1681
GetPtrSize function 1395
GetResAttrs function 1681
GetResFileAttrs function 1682
GetResInfo function 1682
GetResource function 1683
GetResourceSizeOnDisk function 1684
GetScaledBatteryInfo function (Deprecated in Mac

OS X v10.0) 1601
GetScriptManagerVariable function (Deprecated in

Mac OS X v10.5) 1724
GetScriptVariable function (Deprecated in Mac OS X

v10.5) 1726
GetSCSIDiskModeAddress function (Deprecated in Mac

OS X v10.0) 1602
GetSharedLibrary function (Deprecated in Mac OS X

v10.5) 231
GetSleepTimeout function (Deprecated in Mac OS X

v10.0) 1602
GetSoundMixerState function (Deprecated in Mac OS

X v10.0) 1603
GetSpecificFreeThreadCount function (Deprecated

in Mac OS X v10.3) 2096
GetStartupTimer function (Deprecated in Mac OS X

v10.0) 1603
GetString function (Deprecated in Mac OS X v10.4) 2045
GetSysDirection function (Deprecated in Mac OS X

v10.4) 1727
GetSysPPtr function (Deprecated in Mac OS X v10.4)

1360

GetTaggedCollectionItem function 287
GetTaggedCollectionItemInfo function 288
GetTextEncodingBase function 1899
GetTextEncodingFormat function 1899
GetTextEncodingName function 1899
GetTextEncodingVariant function 1901
GetThreadCurrentTaskRef function 2097
GetThreadState function 2098
GetThreadStateGivenTaskRef function 2099
GetTime function 392
GetTopResourceFile function 1684
GetUTCDateTime function (Deprecated in Mac OS X

v10.4) 392
GetVolParmsInfoBuffer structure 847
GetVRefNum function (Deprecated in Mac OS X v10.4)

549
GetWakeupTimer function (Deprecated in Mac OS X

v10.0) 1604
GetWUTime function (Deprecated in Mac OS X v10.0) 1604
gfpErr constant 945
gid_t data type 2467
Glyph Orientations 1749
GREATERTHAN constant 1352
Group ID Constant 921
GrowZoneProcPtr callback 1432
GrowZoneUPP data type 1436
GZSaveHnd function (Deprecated in Mac OS X v10.4) 1395

H

HandAndHand function 1396
Handler Option Constants 1249
HandToHand function 1396
HardDiskPowered function (Deprecated in Mac OS X

v10.0) 1605
HardDiskQInstall function (Deprecated in Mac OS X

v10.0) 1605
HardDiskQRemove function (Deprecated in Mac OS X

v10.0) 1606
Hardware Attribute Attribute Selectors 1050
Hardware Device Types 2666
Hardware Icon Selector 1051
Hardware Vendor Selectors 1052
hasAggressiveIdling constant 1646
hasChargeNotification constant 1644
hasDeepSleep constant 1645
hasDimmingSupport constant 1644
hasDimSuspendSupport constant 1645
hasInternalModem constant 1638
hasProcessorCycling constant 1643
hasReducedSpeed constant 1644
hasSCSIDiskMode constant 1644

2846
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

hasSharedModemPort constant 1643
hasSleep constant 1645
hasStartupTimer constant 1644
hasWakeOnLid constant 1645
hasWakeOnNetActivity constant 1645
hasWakeupTimer constant 1643
HClrRBit function 1397
HCreate function (Deprecated in Mac OS X v10.4) 550
HCreateResFile function (Deprecated in Mac OS X

v10.5) 1685
HDActivity constant 1653
HDelete function (Deprecated in Mac OS X v10.4) 551
HDPwrQType constant 1636
HDPwrQType Constants 1636
HDQueueElement Flags 1637
HDQueueElement structure 1624
HDSpindownProcPtr callback 1620
HDSpindownUPP data type 1625
Help Manager Attribute Selectors 1052
HFileInfo structure 849
HFileParam structure 852
HFS Text Encoding 2001
HFSUniStr255 structure 855
HGetFInfo function (Deprecated in Mac OS X v10.4) 551
HGetState function 1398
HGetVol function (Deprecated in Mac OS X v10.4) 552
hiChargeBit constant 1631
hiChargeMask constant 1632
HIOParam structure 855
HiWord function 1310
HLock function 1398
HLockHi function 1399
HNoPurge function (Deprecated in Mac OS X v10.4) 1400
HoldMemory function (Deprecated in Mac OS X v10.4)

1400
HomeResFile function 1685
HOpen function (Deprecated in Mac OS X v10.4) 553
HOpenDF function (Deprecated in Mac OS X v10.4) 554
HOpenResFile function (Deprecated in Mac OS X v10.5)

1686
HOpenRF function (Deprecated in Mac OS X v10.4) 554
hourMask constant 419
HParamBlockRec structure 857
HPurge function (Deprecated in Mac OS X v10.4) 1401
HRename function (Deprecated in Mac OS X v10.4) 555
HRstFLock function (Deprecated in Mac OS X v10.4) 556
HSetFInfo function (Deprecated in Mac OS X v10.4) 557
HSetFLock function (Deprecated in Mac OS X v10.4) 558
HSetRBit function 1402
HSetState function 1402
HSetVol function (Deprecated in Mac OS X v10.4) 559
HUGE_VAL constant 1352
HUnlock function 1403

HVolumeParam structure 859
hwParamErr constant 1377
hypot function 1310

I

Icon Services Attribute Selectors 1053
Icon Size Constants 921
Icon Type Constants 922
IdenticalString function (Deprecated in Mac OS X

v10.4) 2046
IdenticalText function (Deprecated in Mac OS X v10.4)

2046
IdentifyFolder function 971
IdleActivity constant 1654
IdleUpdate function (Deprecated in Mac OS X v10.0)

1606
Image Compression Manager Version Selector 1054
Image Metadata Attribute Keys 140
Implicit Language Codes 2082
ImporterImportData callback 2281
IndexToStringProcPtr callback 2071
IndexToStringUPP data type 2074
InetDHCPOption structure 2468
InetDomainName data type 2468
InetHost data type 2468
InetPort data type 2471
InetSvcRef data type 2471
InetSysInfo structure 2471
INET_IP 2604
INET_IP constant 2604
INET_TCP constant 2604
INET_UDP constant 2604
INFINITY constant 1352
Information Type Constants 222
INFPSZ 2604
INFPSZ constant 2604
INFTIM 2605
INFTIM constant 2605
InitBlock data type 245
InitBlockPtr data type 246
InitDateCache function (Deprecated in Mac OS X v10.3)

393
InitOpenTransportInContext function (Deprecated

in Mac OS X v10.4) 2303
InitUtil function (Deprecated in Mac OS X v10.3) 1360
inputOutOfBounds constant 1711
InsertResourceFile function 1687
InstallDebugAssertOutputHandler function 427
InstallTimeTask function (Deprecated in Mac OS X

v10.4) 2137

2847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

InstallXTimeTask function (Deprecated in Mac OS X
v10.4) 2138

install_info structure 2471
InsTime function (Deprecated in Mac OS X v10.4) 2139
Instruction Set Architectures 1452
InsXTime function (Deprecated in Mac OS X v10.4) 2139
intArabic constant 1756
Intel Architecture Selector 1054
Internal Display Location Selector 1054
Internet Address Structure structure 2467
Internet Host Information Sructure structure

2468
Internet Interface Information Structure

structure 2469
Internet Mail Exchange Structure structure 2470
Interrupt Level Masks 434
intEuropean constant 1756
intJapanese constant 1756
IntlScript function (Deprecated in Mac OS X v10.4)

1728
IntlTokenize function (Deprecated in Mac OS X v10.4)

1729
intModemOffHook constant 1638
intModemRingDetect constant 1638
intModemRingWakeEnb constant 1638
intOutputMask constant 1756
intRoman constant 1756
intWestern constant 1756
int_t data type 2472
Invalid Extension Index 1249
Invalid Volume Reference Constant 924
InvalidateFolderDescriptorCache function 972
invalidComponentID constant 380
invalidFolderTypeErr constant 1001
InvokeAliasFilterUPP function 199
InvokeCollectionExceptionUPP function 290
InvokeCollectionFlattenUPP function 290
InvokeComponentMPWorkFunctionUPP function 342
InvokeComponentRoutineUPP function 342
InvokeDebugAssertOutputHandlerUPP function 428
InvokeDebugComponentCallbackUPP function 428
InvokeDebuggerDisposeThreadUPP function 2100
InvokeDebuggerNewThreadUPP function 2100
InvokeDebuggerThreadSchedulerUPP function 2101
InvokeDeferredTaskUPP function 1361
InvokeFNSubscriptionUPP function 559
InvokeFolderManagerNotificationUPP function 973
InvokeFSVolumeEjectUPP function 560
InvokeFSVolumeMountUPP function 560
InvokeFSVolumeUnmountUPP function 561
InvokeGetMissingComponentResourceUPP function

343

InvokeGrowZoneUPP function (Deprecated in Mac OS X
v10.4) 1403

InvokeHDSpindownUPP function 1607
InvokeIndexToStringUPP function (Deprecated in Mac

OS X v10.4) 2047
InvokeIOCompletionUPP function 561
InvokeKCCallbackUPP function 1119
InvokeOTListSearchUPP function (Deprecated in Mac

OS X v10.4) 2304
InvokeOTNotifyUPP function (Deprecated in Mac OS X

v10.4) 2304
InvokeOTProcessUPP function (Deprecated in Mac OS

X v10.4) 2305
InvokePMgrStateChangeUPP function 1607
InvokePurgeUPP function (Deprecated in Mac OS X

v10.4) 1404
InvokeResErrUPP function 1688
InvokeSCSICallbackUPP function (Deprecated in Mac

OS X v10.2) 1824
InvokeSelectorFunctionUPP function 1006
InvokeSleepQUPP function 1608
InvokeThreadEntryUPP function 2101
InvokeThreadSchedulerUPP function 2102
InvokeThreadSwitchUPP function 2102
InvokeThreadTerminationUPP function 2103
InvokeTimerUPP function 2140
InvokeUnicodeToTextFallbackUPP function 1901
InvokeUserFnUPP function (Deprecated in Mac OS X

v10.4) 1404
iocblk structure 2472
IOCompletionProcPtr callback 794
IOCompletionUPP data type 861
ioDirFlg constant 916
ioDirMask constant 916
ioErr constant 943
IOParam structure 862
ioQType constant 1375
IP Multicast Address Structure structure 2544
IPCP_OPT_GETLOCALPROTOADDR constant 2607
IPCP_OPT_GETREMOTEPROTOADDR 2606
IPCP_OPT_GETREMOTEPROTOADDR constant 2607
IPCP_OPT_TCPHDRCOMPRESSION constant 2607
IP_ADD_MEMBERSHIP constant 2606
IP_BROADCAST constant 2606
IP_BROADCAST_IFNAME constant 2606
IP_DONTROUTE constant 2606
IP_DROP_MEMBERSHIP constant 2606
IP_HDRINCL constant 2606
IP_MULTICAST_IF constant 2606
IP_MULTICAST_LOOP constant 2606
IP_MULTICAST_TTL constant 2606
IP_OPTIONS 2606
IP_OPTIONS constant 2606

2848
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

IP_RCVDSTADDR constant 2606
IP_RCVIFADDR constant 2606
IP_RCVOPTS constant 2606
IP_REUSEADDR constant 2606
IP_REUSEPORT constant 2606
IP_TOS constant 2606
IP_TTL constant 2606
ISA Flags 1453
IsAliasFile function (Deprecated in Mac OS X v10.4)

200
IsAutoSlpControlDisabled function (Deprecated in

Mac OS X v10.0) 1608
IsDimmingControlDisabled function (Deprecated in

Mac OS X v10.0) 1608
ISDN_OPT_56KADAPTATION constant 2608
ISDN_OPT_COMMTYPE 2608
ISDN_OPT_COMMTYPE constant 2608
ISDN_OPT_FRAMINGTYPE constant 2608
isfinite function 1311
IsHandleValid function 1405
IsHeapValid function 1405
IsMetric function 1361
isnan function 1311
isnormal function 1311
ISO 2022 Text Encodings 2001
ISO 8-bit and 7-bit Text Encodings 2002
IsPointerValid function 1406
IsProcessorCyclingEnabled function (Deprecated in

Mac OS X v10.0) 1609
IsSpindownDisabled function (Deprecated in Mac OS

X v10.0) 1609
Item Attribute Constants 1245
Item-Information Flags 1246
Iterator Flags 924
iuNumberPartsTable constant 1779
iuUnTokenTable constant 1780
iuWhiteSpaceList constant 1780
iuWordSelectTable constant 1779
iuWordWrapTable constant 1779
I_ATMARK constant 2598
I_AUTOPUSH constant 2599
I_CANPUT constant 2598
I_CKBAND constant 2598
I_ERRLOG constant 2604
I_FDINSERT constant 2597
I_FIFO constant 2599
I_FIND constant 2597
I_FLUSH constant 2597
I_FLUSHBAND constant 2598
I_GETBAND constant 2598
I_GETCLTIME constant 2598
I_GETDELAY constant 2599
I_GETMSG constant 2598

I_GETPMSG constant 2599
I_GETSIG constant 2597
I_GRDOPT constant 2597
I_GWROPT constant 2598
I_HEAP_REPORT constant 2599
I_LINK constant 2597
I_LIST constant 2598
I_LOOK constant 2597
I_NREAD 2596
I_NREAD constant 2596
I_OTConnect constant 2600
I_OTDisconnect constant 2600
I_OTGetMiscellaneousEvents 2600
I_OTGetMiscellaneousEvents constant 2600
I_OTISDNAlerting 2601
I_OTISDNAlerting constant 2601
I_OTISDNFaciltity constant 2601
I_OTISDNResume constant 2601
I_OTISDNResumeAcknowledge constant 2601
I_OTISDNResumeReject constant 2601
I_OTISDNSuspend constant 2601
I_OTISDNSuspendAcknowledge constant 2601
I_OTISDNSuspendReject constant 2601
I_OTScript constant 2600
I_OTSetFramingType constant 2600
I_OTSetRawMode constant 2600
I_PEEK constant 2597
I_PIPE constant 2599
I_PLINK constant 2598
I_POLL constant 2599
I_POP constant 2597
I_PUNLINK constant 2598
I_PUSH constant 2596
I_PUTMSG constant 2599
I_PUTPMSG constant 2599
I_RECVFD constant 2598
I_RUN_QUEUES constant 2599
I_SAD_GAP constant 2602
I_SAD_SAP 2602
I_SAD_SAP constant 2602
I_SAD_VML constant 2602
I_SENDFD constant 2597
I_SETCLTIME constant 2598
I_SETDELAY constant 2599
I_SetSerialBreak constant 2603
I_SetSerialDTR 2602
I_SetSerialDTR constant 2602
I_SetSerialXOff constant 2603
I_SetSerialXOffState constant 2603
I_SetSerialXOn constant 2603
I_SETSIG constant 2597
I_SRDOPT constant 2597
I_STR constant 2597

2849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

I_SWROPT constant 2598
I_TRCLOG 2604
I_TRCLOG constant 2604
I_UNLINK constant 2597

K

k32BitHeap 1441
k48BitAddrLength constant 2620
k68kInterruptLevelMask constant 434
k8022BasicAddressLength 2609
k8022BasicAddressLength constant 2609
k8022BasicHeaderLength constant 2615
k8022DLSAPLength constant 2620
k8022GlobalSAP constant 2621
k8022SAPLength constant 2615
k8022SNAPAddressLength constant 2609
k8022SNAPHeaderLength constant 2615
k8022SNAPLength constant 2621
kAccountKCItemAttr constant 1187
kAddKCEvent constant 1181
kAddKCEventMask constant 1183
kAddressKCItemAttr constant 1188
kadministratorUser constant 930
kAEDatabaseSuite 2264
kAEFinderSuite 2265
kAFPExtendedFlagsAlternateAddressMask constant

903
kAFPTagLengthDDP constant 886
kAFPTagLengthIP constant 886
kAFPTagLengthIPPort constant 886
kAFPTagTypeDDP constant 886
kAFPTagTypeDNS constant 887
kAFPTagTypeIP constant 886
kAFPTagTypeIPPort constant 886
kAF_ISDN 2609
kAF_ISDN constant 2609
kAllATalkRoutersDown 2609
kAllATalkRoutersDown constant 2609
kAllDHCPOptions 2610
kAllDHCPOptions constant 2610
kALMLocationsFolderType constant 993
kALMModulesFolderType constant 992
kALMPreferencesFolderType constant 992
kAnyArchType constant 252
kAnyAuthType constant 1180
kAnyCFragArch constant 247
kAnyComponentFlagsMask constant 373
kAnyComponentManufacturer constant 373
kAnyComponentSubType constant 373
kAnyComponentType 373
kAnyComponentType constant 373

kAnyPort constant 1180
kAnyProtocol constant 1180
kAppearanceFolderType constant 993
kAppleExtrasFolderType constant 992
kAppleManufacturer 374
kAppleManufacturer constant 374
kAppleMenuFolderType constant 988
kAppleshareAutomountServerAliasesFolderType 996
kAppleSharePasswordKCItemClass constant 1191
kAppleTalkAddressLength constant 2613
kAppleTalkEvent 2610
kAppleTalkEvent constant 2610
kApplicationCFrag constant 258
kApplicationsFolderType constant 989
kApplicationSupportFolderType constant 990
kApplicationThreadID constant 2131
kARARouterDisconnected constant 2609
kARARouterOnline 2611
kARARouterOnline constant 2611
kARMMountVol constant 220
kARMMultVols constant 221
kARMNoUI constant 220
kARMSearch constant 221
kARMSearchMore constant 221
kARMSearchRelFirst constant 221
kARMTryFileIDFirst constant 221
kAssistantsFolderType constant 992
kAsyncEjectComplete constant 925
kAsyncEjectInProgress constant 925
kAsyncMountComplete constant 925
kAsyncMountInProgress 925
kAsyncMountInProgress constant 925
kAsyncUnmountComplete constant 925
kAsyncUnmountInProgress constant 925
kATalkInfoHasRouter constant 2612
kATalkInfoIsExtended 2612
kATalkInfoIsExtended constant 2612
kATalkInfoOneZone constant 2612
kATalkRouterOnline constant 2611
kAuthTypeKCItemAttr constant 1188
kBackgroundStreamEvent constant 2701
kBig5_BasicVariant constant 1988
kBig5_ETenVariant constant 1989
kBig5_StandardVariant constant 1989
kBlessedBusErrorBait constant 435
kBlessedFolder constant 984
kBLibTag2 constant 1583
kBusTypeATA constant 1851
kBusTypeMediaBay constant 1851
kBusTypePCMCIA constant 1851
kBusTypeSCSI 1850
kBusTypeSCSI constant 1851
KCAddAppleSharePassword function 1120

2850
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kcaddapplesharepassword function 1122
KCAddCallback function 1123
KCAddGenericPassword function 1124
kcaddgenericpassword function 1125
KCAddInternetPassword function 1126
kcaddinternetpassword function 1127
KCAddInternetPasswordWithPath function 1128
kcaddinternetpasswordwithpath function 1129
KCAddItem function 1130
kCallingConventionMask constant 1457
kCallingConventionPhase constant 1457
kCallingConventionWidth constant 1457
kCapacityIsActual constant 1642
kCapacityIsPercentOfMax constant 1642
KCAttribute data type 1172
KCAttributeList data type 1172
KCAttrType data type 1173
KCCallbackInfo structure 1173
KCCallbackProcPtr callback 1171
KCCallbackUPP data type 1174
KCChangeSettings function 1131
KCChooseCertificate function 1132
kCCIPIdleTimerDisabled constant 2612
KCCopyItem function 1132
KCCountKeychains function 1133
KCCreateKeychain function 1134
kccreatekeychain function 1135
kCCRegisterCBit constant 1461
kCCRegisterNBit constant 1462
kCCRegisterVBit constant 1462
kCCRegisterXBit constant 1462
kCCRegisterZBit constant 1462
kCCReminderTimerDisabled 2612
kCCReminderTimerDisabled constant 2612
KCDeleteItem function 1136
kCertificateKCItemClass constant 1191
kCFBundleCFragLocator constant 256
kCFBundlePreCFragLocator constant 256
kCFFTPResourceGroup constant 24
kCFFTPResourceLink constant 24
kCFFTPResourceModDate constant 25
kCFFTPResourceMode constant 24
kCFFTPResourceName constant 24
kCFFTPResourceOwner constant 24
kCFFTPResourceSize constant 24
kCFFTPResourceType constant 25
kCFHostAddresses constant 38
kCFHostNames constant 38
kCFHostReachability constant 38
kCFHTTPAuthenticationAccountDomain constant 49
kCFHTTPAuthenticationPassword constant 49
kCFHTTPAuthenticationSchemeBasic constant 48,

66

kCFHTTPAuthenticationSchemeDigest constant 48,
66

kCFHTTPAuthenticationSchemeNegotiate constant
48, 66

kCFHTTPAuthenticationSchemeNTLM constant 48, 66
kCFHTTPAuthenticationUserName constant 49
kCFHTTPVersion1_0 constant 65
kCFHTTPVersion1_1 constant 66
KCFindAppleSharePassword function 1136
kcfindapplesharepassword function 1138
KCFindFirstItem function 1139
KCFindGenericPassword function 1140
kcfindgenericpassword function 1142
KCFindInternetPassword function 1142
kcfindinternetpassword function 1144
KCFindInternetPasswordWithPath function 1145
kcfindinternetpasswordwithpath function 1147
KCFindNextItem function 1148
KCFindX509Certificates function 1149
kCFM68kRTA constant 1454
kCFMRsrcID constant 254
kCFMRsrcType constant 254
kCFNetDiagnosticConnectionDown constant 72
kCFNetDiagnosticConnectionIndeterminate

constant 72
kCFNetDiagnosticConnectionUp constant 72
kCFNetDiagnosticErr constant 72
kCFNetDiagnosticNoErr constant 72
kCFNetServiceFlagIsDefault constant 110
kCFNetServiceFlagIsDomain constant 110
kCFNetServiceFlagMoreComing constant 110
kCFNetServiceFlagNoAutoRename constant 109
kCFNetServiceFlagRemove constant 110
kCFNetServiceMonitorTXT constant 111
kCFNetServicesErrorBadArgument constant 112
kCFNetServicesErrorCancel constant 112
kCFNetServicesErrorCollision constant 111
kCFNetServicesErrorInProgress constant 111
kCFNetServicesErrorInvalid constant 112
kCFNetServicesErrorNotFound constant 111
kCFNetServicesErrorTimeout constant 112
kCFNetServicesErrorUnknown constant 111
kCFragAllFileTypes constant 250
kCFragGoesToEOF 249
kCFragLibraryFileType constant 250
kCFragLibUsageMapPrivatelyMask 249
kCFragLibUsageMapPrivatelyMask constant 249
kCFragResourceID constant 250
kCFragResourceSearchExtensionKind 250
kCFragResourceType 250
kCFragResourceType constant 250
kCFStreamErrorDomainFTP constant 25
kCFStreamErrorDomainMach constant 112

2851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kCFStreamErrorDomainNetDB constant 38
kCFStreamErrorDomainNetServices constant 112
kCFStreamErrorDomainSOCKS constant 124
kCFStreamErrorDomainSSL constant 124
kCFStreamErrorDomainSystemConfiguration

constant 39
kCFStreamErrorDomainWinSock constant 124
kCFStreamErrorHTTPAuthenticationBadPassword

constant 49
kCFStreamErrorHTTPAuthenticationBadUserName

constant 49
kCFStreamErrorHTTPAuthenticationTypeUnsupported

constant 49
kCFStreamErrorSOCKS4IdConflict constant 127
kCFStreamErrorSOCKS4IdentdFailed constant 127
kCFStreamErrorSOCKS4RequestFailed constant 127
kCFStreamErrorSOCKS4SubDomainResponse constant

125
kCFStreamErrorSOCKS5BadResponseAddr constant

126
kCFStreamErrorSOCKS5BadState constant 126
kCFStreamErrorSOCKS5SubDomainMethod constant

125
kCFStreamErrorSOCKS5SubDomainResponse constant

125
kCFStreamErrorSOCKS5SubDomainUserPass constant

125
kCFStreamErrorSOCKSSubDomainNone constant 125
kCFStreamErrorSOCKSSubDomainVersionCode

constant 125
kCFStreamErrorSOCKSUnknownClientVersion

constant 126
kCFStreamPropertyFTPAttemptPersistentConnection

constant 23
kCFStreamPropertyFTPFetchResourceInfo constant

22
kCFStreamPropertyFTPFileTransferOffset

constant 22
kCFStreamPropertyFTPPassword constant 22
kCFStreamPropertyFTPProxy constant 23
kCFStreamPropertyFTPProxyHost constant 23
kCFStreamPropertyFTPProxyPassword constant 23
kCFStreamPropertyFTPProxyPort constant 23
kCFStreamPropertyFTPProxyUser constant 23
kCFStreamPropertyFTPResourceSize constant 22
kCFStreamPropertyFTPUsePassiveMode constant 22
kCFStreamPropertyFTPUserName constant 22
kCFStreamPropertyProxyLocalBypass constant 119
kCFStreamPropertyShouldCloseNativeSocket

constant 118
kCFStreamPropertySocketNativeHandle constant

118
kCFStreamPropertySocketRemoteHost constant 119

kCFStreamPropertySocketRemoteNetService
constant 119

kCFStreamPropertySocketSecurityLevel constant
118

kCFStreamPropertySOCKSPassword constant 124
kCFStreamPropertySOCKSProxy constant 118
kCFStreamPropertySOCKSProxyHost constant 123
kCFStreamPropertySOCKSProxyPort constant 123
kCFStreamPropertySOCKSUser constant 124
kCFStreamPropertySOCKSVersion constant 123
kCFStreamPropertySSLPeerCertificates constant

118
kCFStreamPropertySSLSettings constant 119
kCFStreamSocketSecurityLevelNegotiatedSSL

constant 123
kCFStreamSocketSecurityLevelNone constant 122
kCFStreamSocketSecurityLevelSSLv2 constant 122
kCFStreamSocketSecurityLevelSSLv3 constant 122
kCFStreamSocketSecurityLevelTLSv1 constant 122
kCFStreamSocketSecurityNone constant (Deprecated

in Mac OS X v10.2) 121
kCFStreamSocketSecuritySSLv2 constant (Deprecated

in Mac OS X v10.2) 121
kCFStreamSocketSecuritySSLv23 constant

(Deprecated in Mac OS X v10.2) 121
kCFStreamSocketSecuritySSLv3 constant (Deprecated

in Mac OS X v10.2) 121
kCFStreamSocketSecurityTLSv1 constant (Deprecated

in Mac OS X v10.2) 122
kCFStreamSocketSOCKSVersion4 constant 123
kCFStreamSocketSOCKSVersion5 constant 124
kCFStreamSSLAllowsAnyRoot constant 120
kCFStreamSSLAllowsExpiredCertificates constant

120
kCFStreamSSLAllowsExpiredRoots constant 120
kCFStreamSSLCertificates constant 120
kCFStreamSSLIsServer constant 120
kCFStreamSSLLevel constant 119
kCFStreamSSLPeerName constant 120
kCFStreamSSLValidatesCertificateChain constant

120
KCGetAttribute function 1149
KCGetData function 1151
KCGetDefaultKeychain function 1152
KCGetIndKeychain function 1152
KCGetKeychain function 1153
KCGetKeychainManagerVersion function 1154
KCGetKeychainName function 1155
kcgetkeychainname function 1155
KCGetStatus function 1156
kChargerIsAttachedMask constant 1648
kChewableItemsFolderType constant 990
KCIsInteractionAllowed function 1157

2852
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

KCItemRef data type 1174
kClassicDomain constant 998
kClassKCItemAttr constant 1185
KCLock function 1157
KCMakeAliasFromKCRef function 1158
KCMakeKCRefFromAlias function 1159
KCMakeKCRefFromFSSpec function (Deprecated in Mac

OS X v10.5) 1159
KCNewItem function 1160
kCodeCFragSymbol constant 257
kCodeSym constant 253
kCollectionAllAttributes constant 311
kCollectionDefaultAttributes constant 311
kCollectionNoAttributes constant 311
kCollectionUserAttributes constant 311
kColor constant 2261
kColorSyncProfilesFolderType constant 993
kCommentKCItemAttr constant 1186
kCommonNameKCItemAttr constant 1189
kCompiledCFragArch 250
kCompiledCFragArch constant 250
kCOMPLETEEVENT constant 2695
kComponentAliasResourceType constant 374
kComponentCanDoSelect constant 378
kComponentCloseSelect constant 378
kComponentDebugOption constant 435
kComponentExecuteWiredActionSelect constant

379
kComponentGetMPWorkFunctionSelect constant 379
kComponentGetPublicResourceSelect constant 379
kComponentOpenSelect constant 378
kComponentRegisterSelect constant 378
kComponentResourceType constant 374
kComponentTargetSelect constant 378
kComponentUnregisterSelect constant 379
kComponentVersionSelect constant 378
kCompoundPhoneAddress constant 2614
kContainerFolderAliasType 2269
kContextualMenuItemsFolderType constant 992
kControlPanelDisabledFolderType constant 989
kControlPanelFolderType constant 988
kControlStripModulesFolderType constant 992
kCooperativeThread constant 2133
kCoreEndianAppleEventManagerDomain constant

2248
kCoreEndianResourceManagerDomain constant 2248
KCPublicKeyHash data type 1175
kCreateFolder constant 981
kCreateFolderAtBoot constant 983
kCreateFolderAtBootBit constant 983
kCreateIfNeeded constant 2132
kCreationDateKCItemAttr constant 1185
kCreatorKCItemAttr constant 1186

KCRef data type 1175
KCReleaseItem function 1161
KCReleaseKeychain function 1162
KCReleaseSearch function 1162
KCRemoveCallback function 1163
kCSAcceptAllComponentsMode constant 373
kCSAcceptThreadSafeComponentsOnlyMode constant

373
KCSearchRef data type 1175
KCSetAttribute function 1164
KCSetData function 1165
KCSetDefaultKeychain function 1166
KCSetInteractionAllowed function 1167
kCStackBased constant 1450
KCStatus data type 1176
KCUnlock function 1167
kcunlock function 1169
KCUpdateItem function 1169
kCurrentCapacityIsActualValue constant 1647
kCurrentCapacityIsPercentOfMax constant 1647
kCurrentThreadID constant 2131
kCurrentUserFolderLocation 984
kCurrentUserFolderLocation constant 984
kCustomBadgeResourceType 2269
kCustomIconKCItemAttr constant 1187
kCustomIconResource 2269
kD0DispatchedCStackBased constant 1451
kD0DispatchedPascalStackBased constant 1450
kD1DispatchedPascalStackBased constant 1450
kDataAccessKCEvent constant 1182
kDataAccessKCEventMask constant 1184
kDataCFragSymbol constant 257
kDataForkCFragLocator constant 256
kDataOutPhase 1861
kDataSym constant 253
kDDPAddressLength 2612
kDDPAddressLength constant 2612
kDecryptKCItemAttr constant 1189
kDefaultAppleTalkServicesPath 2613
kDefaultAppleTalkServicesPath constant 2613
kDefaultChangedKCEvent constant 1182
kDefaultChangedKCEventMask constant 1183
kDefaultInetInterface 2613
kDefaultInetInterface constant 2613
kDefaultInternetServicesPath 2614
kDefaultInternetServicesPath constant 2614
kDeleteKCEvent constant 1181
kDeleteKCEventMask constant 1183
kDescriptionKCItemAttr constant 1186
kDesktopFolderType constant 987
kDesktopPicturesFolderType constant 993
kDeviceCanAssertPMEDuringSleep constant 1636
kDeviceDidNotWakeMachine constant 1642

2853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kDeviceDriverPresent constant 1636
kDeviceDriverSupportsPowerMgt constant 1636
kDevicePCIPowerOffAllowed constant 1636
kDevicePowerInfoVersion constant 1638
kDeviceRequestsFullWake constant 1642
kDeviceRequestsWakeToDoze constant 1642
kDeviceSupportsPMIS constant 1636
kDeviceUsesCommonLogicPower constant 1636
kDHCPLongOption constant 2610
kDHCPLongOptionReq constant 2610
kDispatchedParameterPhase constant 1459
kDispatchedSelectorSizePhase constant 1459
kDispatchedSelectorSizeWidth constant 1459
kDocumentsFolderType constant 989
kDomainTopLevelFolderType 996
kDoNotRemoveWheCurrentApplicationQuitsBit

constant 999
kDoNotRemoveWhenCurrentApplicationQuitsBit

constant 998
kDontCreateFolder constant 981
kDontPassSelector constant 1463
kDozeRequest constant 1651
kDropInAdditionCFrag constant 258
kDurationForever constant 1532
kDurationImmediate constant 1532
kDurationMicrosecond constant 1532
kDurationMillisecond constant 1532
kE164Address 2614
kE164Address constant 2614
keaBadAddress constant 2588
keaBroadcast constant 2588
kEACCESErr constant 2725
kEADDRINUSEErr constant 2726
kEADDRNOTAVAILErr constant 2726
kEAGAINErr constant 2724
kEALREADYErr constant 2725
keaMulticast constant 2588
keaRawPacketBit constant 2588
keaStandardAddress constant 2588
keaTimeStampBit constant 2588
kEBADFErr constant 2724
kEBADMSGErr constant 2727
kEBUSYErr constant 2725
kECANCELErr constant 2727
kECHO_TSDU 2614
kECHO_TSDU constant 2614
kECONNABORTEDErr constant 2726
kECONNREFUSEDErr constant 2727
kECONNRESETErr constant 2726
kEDEADLKErr constant 2725
kEDESTADDRREQErr constant 2726
kEditorsFolderType constant 990
kEEXISTErr constant 2725

kEFAULTErr constant 2725
kEHOSTDOWNErr constant 2727
kEHOSTUNREACHErr constant 2727
kEINPROGRESSErr constant 2727
kEINTRErr constant 2724
kEINVALErr constant 2725
kEIOErr constant 2724
kEISCONNErr constant 2727
kEMailKCItemAttr constant 1189
kEMSGSIZEErr constant 2726
kEncryptKCItemAttr constant 1189
kEncryptPassword constant 888
kEndDateKCItemAttr constant 1190
kEnetAddressLength constant 2621
kENETDOWNErr constant 2726
kEnetModuleID constant 2658
kEnetPacketHeaderLength 2615
kEnetPacketHeaderLength constant 2615
kENETRESETErr constant 2726
kEnetTSDU constant 2615
kENETUNREACHErr constant 2726
kENOBUFSErr constant 2726
kENODATAErr constant 2727
kENODEVErr constant 2725
kENOENTErr constant 2724
kENOMEMErr constant 2725
kENOMSGErr constant 2727
kENOPROTOOPTErr constant 2726
kENORSRCErr constant 2724
kENOSRErr constant 2727
kENOSTRErr constant 2727
kENOTCONNErr constant 2727
kENOTSOCKErr constant 2725
kENOTTYErr constant 2725
kEnterIdle constant 1652
kEnterRun constant 1651
kEnterStandby constant 1651
kENXIOErr constant 2724
kEOPNOTSUPPErr constant 2726
kEPERMErr constant 2724
kEPIPEErr constant 2725
kEPROTOErr constant 2727
kEPROTONOSUPPORTErr constant 2726
kEPROTOTYPEErr constant 2726
kERANGEErr constant 2725
kESHUTDOWNErr constant 2727
kESOCKTNOSUPPORTErr constant 2726
kESRCHErr constant 2727
kETIMEDOUTErr constant 2727
kETIMEErr constant 2727
kETOOMANYREFSErr constant 2727
kETRawPacketBit constant 2670
kETTimeStampBit constant 2670

2854
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kETypeBroadcast constant 2670
kETypeMulticast constant 2670
kETypeStandard constant 2670
kEveryKCEventMask constant 1184
kEWOULDBLOCKErr constant 2725
kExactMatchThread constant 2132
kExitIdle constant 1652
kExportedFolderAliasType 2269
kExtendedFlagHasCustomBadge constant 2262
kExtendedFlagHasRoutingInfo constant 2263
kExtendedFlagsAreInvalid constant 2262
kExtensionDisabledFolderType constant 989
kExtensionFolderType constant 988
Key Actions 2178
Key Format Codes 2179
Key Output Index Masks 2180
Key State Entry Formats 2181
Key Translation Options Flag 2181
Key Translation Options Mask 2182
key32BitIcon constant 2271
key4BitIcon constant 2271
key8BitIcon constant 2271
key8BitMask constant 2271
keyAENoAutoRouting constant 2272
keyAEReplacing constant 2272
keyAEUsing constant 2272
keyAll constant 2270
keyASPrepositionHas 2270
keyASPrepositionHas constant 2270
Keyboard Constants 1373
Keyboard Script Switching Selectors 1751
Keyboard Script Synchronization 1749
Keyboard Script Values 1751
Keyboard Selectors 1054
Keyboard Selectors for Laptops 1056
Keyboard Synchronization Mask 1753
Keychain Events Constants 1180
Keychain Events Mask 1182
Keychain Item Attribute Tag Constants 1184
Keychain Item Type Constants 1190
Keychain Protocol Type Constants 1191
Keychain Status Constants 1193
keyGlobalPositionList constant 2272
keyIconAndMask 2271
keyIconAndMask constant 2271
keyLocalPositionList constant 2272
keyMini1BitMask constant 2272
keyMini4BitIcon constant 2272
keyMini8BitIcon constant 2272
keyOldFinderItems constant 2270
keyRedirectedDocumentList constant 2272
keySmall32BitIcon constant 2272
keySmall4BitIcon constant 2271

keySmall8BitIcon constant 2271
keySmall8BitMask constant 2272
keySmallIconAndMask constant 2271
kFavoritesFolderType constant 993
kFDDIModuleID constant 2658
kFDDITSDU constant 2615
kFileViewInformationVersion1 1441
kFindByContentFolderType constant 994
kFindCFrag constant 255
kFindLib constant 253
kFindSupportFolderType constant 994
kFirstCFragUpdate constant 248
kFirstFailKCStopOn constant 1179
kFirstMagicBusyFiletype 2273
kFirstMinorNumber 2616
kFirstMinorNumber constant 2616
kFirstPassKCStopOn constant 1179
kFNDirectoryModifiedMessage constant 921
kFNNoImplicitAllSubscription constant 925
kFNNotifyInBackground constant 926
kFolderActionsFolderType constant 994
kFolderCreatedAdminPrivs constant 984
kFolderCreatedAdminPrivsBit constant 984
kFolderCreatedInvisible constant 983
kFolderCreatedInvisibleBit constant 983
kFolderCreatedNameLocked constant 983
kFolderCreatedNameLockedBit constant 983
kFolderManagerNotificationDiscardCachedData

constant 1000
kFolderManagerNotificationMessageLoginStartup

constant 1000
kFolderManagerNotificationMessagePostUserLogOut

constant 1000
kFolderManagerNotificationMessagePreUserLogIn

constant 1000
kFolderManagerNotificationMessageUserLogIn

constant 1000
kFolderManagerNotificationMessageUserLogOut

constant 1000
kFontsFolderType constant 988
kFourByteCode constant 1456
kFPUNotNeeded constant 2132
kFragmentIsPrepared constant 1452
kFragmentNeedsPreparing constant 1452
kFSAliasInfoFinderInfo constant 219
kFSAliasInfoFSInfo constant 219
kFSAliasInfoIDs constant 219
kFSAliasInfoIsDirectory constant 219
kFSAliasInfoNone constant 219
kFSAliasInfoTargetCreateDate constant 219
kFSAliasInfoVolumeCreateDate constant 219
kFSAliasInfoVolumeFlags constant 219
kFSAllocAllOrNothingMask constant 887

2855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kFSAllocContiguousMask constant 887
kFSAllocDefaultFlags constant 887
kFSAllocNoRoundUpMask constant 887
kFSAllocReservedMask constant 888
kFSCatInfoAccessDate constant 892
kFSCatInfoAllDates constant 893
kFSCatInfoAttrMod constant 892
kFSCatInfoBackupDate constant 892
kFSCatInfoContentMod constant 892
kFSCatInfoCreateDate constant 892
kFSCatInfoDataSizes constant 893
kFSCatInfoFinderInfo constant 892
kFSCatInfoFinderXInfo constant 893
kFSCatInfoGettableInfo constant 893
kFSCatInfoNodeFlags constant 891
kFSCatInfoNodeID constant 892
kFSCatInfoNone constant 891
kFSCatInfoParentDirID constant 892
kFSCatInfoPermissions constant 892
kFSCatInfoReserved constant 894
kFSCatInfoRsrcSizes constant 893
kFSCatInfoSetOwnership constant 893
kFSCatInfoSettableInfo constant 894
kFSCatInfoSharingFlags constant 893
kFSCatInfoTextEncoding constant 891
kFSCatInfoUserAccess constant 893
kFSCatInfoUserPrivs constant 893
kFSCatInfoValence constant 893
kFSCatInfoVolume constant 892
kFSFileOperationDefaultOptions constant 917
kFSFileOperationDoNotMoveAcrossVolumes

constant 918
kFSFileOperationOverwrite constant 918
kFSFileOperationSkipPreflight constant 918
kFSFileOperationSkipSourcePermissionErrors

constant 918
kFSInvalidVolumeRefNum constant 924
kFSIterateDelete constant 924
kFSIterateFlat constant 924
kFSIterateReserved constant 924
kFSIterateSubtree constant 924
kFSNodeCopyProtectBit constant 895
kFSNodeCopyProtectMask constant 895
kFSNodeDataOpenBit constant 895
kFSNodeDataOpenMask constant 895
kFSNodeForkOpenBit constant 895
kFSNodeForkOpenMask constant 895
kFSNodeHardLinkBit constant 895
kFSNodeHardLinkMask constant 895
kFSNodeInSharedBit constant 896
kFSNodeInSharedMask constant 896
kFSNodeIsDirectoryBit constant 895
kFSNodeIsDirectoryMask constant 895

kFSNodeIsMountedBit constant 896
kFSNodeIsMountedMask constant 896
kFSNodeIsSharePointBit constant 896
kFSNodeIsSharePointMask constant 896
kFSNodeLockedBit constant 894
kFSNodeLockedMask constant 894
kFSNodeResOpenBit constant 894
kFSNodeResOpenMask constant 895
kFSOperationBytesCompleteKey constant 919
kFSOperationBytesRemainingKey constant 919
kFSOperationObjectsCompleteKey constant 920
kFSOperationObjectsRemainingKey constant 920
kFSOperationStageComplete constant 919
kFSOperationStagePreflighting constant 918
kFSOperationStageRunning constant 919
kFSOperationStageUndefined constant 918
kFSOperationThroughputKey constant 920
kFSOperationTotalBytesKey constant 919
kFSOperationTotalObjectsKey constant 920
kFSOperationTotalUserVisibleObjectsKey

constant 920
kFSOperationUserVisibleObjectsCompleteKey

constant 920
kFSOperationUserVisibleObjectsRemainingKey

constant 920
kFSPathMakeRefDefaultOptions constant 928
kFSPathMakeRefDoNotFollowLeafSymlink constant

928
kFSVolFlagDefaultVolumeBit constant 941
kFSVolFlagDefaultVolumeMask constant 941
kFSVolFlagFilesOpenBit constant 941
kFSVolFlagFilesOpenMask constant 941
kFSVolFlagHardwareLockedBit constant 941
kFSVolFlagHardwareLockedMask constant 941
kFSVolFlagSoftwareLockedBit constant 941
kFSVolFlagSoftwareLockedMask constant 941
kFSVolInfoBackupDate constant 939
kFSVolInfoBlocks constant 939
kFSVolInfoCheckedDate constant 939
kFSVolInfoCreateDate constant 938
kFSVolInfoDataClump constant 939
kFSVolInfoDirCount constant 939
kFSVolInfoDriveInfo constant 940
kFSVolInfoFileCount constant 939
kFSVolInfoFinderInfo constant 940
kFSVolInfoFlags constant 940
kFSVolInfoFSInfo constant 940
kFSVolInfoGettableInfo constant 940
kFSVolInfoModDate constant 938
kFSVolInfoNextAlloc constant 939
kFSVolInfoNextID constant 939
kFSVolInfoNone constant 938
kFSVolInfoRsrcClump constant 939

2856
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kFSVolInfoSettableInfo constant 940
kFSVolInfoSizes constant 939
kFullLib constant 254
kfullPrivileges constant 914
kGenEditorsFolderType constant 991
kGenericKCItemAttr constant 1187
kGenericPasswordKCItemClass constant 1191
kGetDebugOption constant 435
kGetmsgEvent constant 2698
kGlueCFragSymbol constant 257
kGlueSym constant 253
kGroupID2Name constant 927
kGroupName2ID constant 927
kHandleIsResourceBit 1441
kHandleIsResourceMask 1441
kHasBeenInited constant 2261
kHasBundle constant 2262
kHasCustomIcon constant 2261
kHasNoINITs constant 2261
kHDQueuePostBit constant 1637
kHDQueuePostMask constant 1637
kHebrewFigureSpaceVariant constant 1996
kHebrewStandardVariant constant 1996
kHelpFolderType constant 991
kHFSCatalogNodeIDsReusedBit 926
kHFSCatalogNodeIDsReusedBit constant 926
kHFSCatalogNodeIDsReusedMask constant 926
kicnsIconFamily constant 923
kIdleKCEvent constant 1181
kIdleKCEventMask constant 1182
kIllegalClockValueErr constant 422
kImportLibraryCFrag constant 258
kInDeferredTaskMask constant 434
kInetInterfaceInfoVersion 2616
kInetInterfaceInfoVersion constant 2616
kInitOTForApplicationMask constant 2669
kInitOTForExtensionMask constant 2669
kInMem constant 254
kInNestedInterruptMask constant 434
kInSecondaryIntHandlerMask constant 434
kInstallerLogsFolderType constant 994
kInternetFolderType constant 993
kInternetLocationCreator 2273
kInternetPasswordKCItemClass constant 1191
kInternetPlugInFolderType constant 991
kInternetSearchSitesFolderType constant 994
kInVBLTaskMask constant 434
kInvisibleKCItemAttr constant 1186
kioACAccessBlankAccessBit constant 911
kioACAccessBlankAccessMask constant 911
kioACAccessEveryoneReadBit constant 912
kioACAccessEveryoneReadMask constant 912
kioACAccessEveryoneSearchBit constant 913

kioACAccessEveryoneSearchMask constant 913
kioACAccessEveryoneWriteBit constant 912
kioACAccessEveryoneWriteMask constant 912
kioACAccessGroupReadBit constant 913
kioACAccessGroupReadMask constant 913
kioACAccessGroupSearchBit constant 913
kioACAccessGroupSearchMask constant 913
kioACAccessGroupWriteBit constant 913
kioACAccessGroupWriteMask constant 913
kioACAccessOwnerBit constant 911
kioACAccessOwnerMask constant 911
kioACAccessOwnerReadBit constant 914
kioACAccessOwnerReadMask constant 914
kioACAccessOwnerSearchBit constant 914
kioACAccessOwnerSearchMask constant 914
kioACAccessOwnerWriteBit constant 913
kioACAccessOwnerWriteMask constant 913
kioACAccessUserReadBit constant 912
kioACAccessUserReadMask constant 912
kioACAccessUserSearchBit constant 912
kioACAccessUserSearchMask constant 912
kioACAccessUserWriteBit constant 912
kioACAccessUserWriteMask constant 912
kioACUserNoMakeChangesBit constant 930
kioACUserNoMakeChangesMask constant 930
kioACUserNoSeeFilesBit constant 930
kioACUserNoSeeFilesMask constant 930
kioACUserNoSeeFolderBit constant 930
kioACUserNoSeeFolderMask constant 930
kioACUserNotOwnerBit constant 931
kioACUserNotOwnerMask constant 931
kIoctlRecvFdEvent constant 2701
kioFCBFileLockedBit constant 908
kioFCBFileLockedMask constant 908
kioFCBLargeFileBit constant 907
kioFCBLargeFileMask constant 908
kioFCBModifiedBit constant 908
kioFCBModifiedMask constant 908
kioFCBOwnClumpBit constant 908
kioFCBOwnClumpMask constant 908
kioFCBResourceBit constant 907
kioFCBResourceMask constant 907
kioFCBSharedWriteBit constant 908
kioFCBSharedWriteMask constant 908
kioFCBWriteBit constant 907
kioFCBWriteLockedBit constant 907
kioFCBWriteLockedMask constant 907
kioFCBWriteMask constant 907
kioFlAttribCopyProtBit constant 916
kioFlAttribCopyProtMask constant 916
kioFlAttribDataOpenBit constant 915
kioFlAttribDataOpenMask constant 916
kioFlAttribDirBit constant 916

2857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kioFlAttribDirMask constant 916
kioFlAttribFileOpenBit constant 916
kioFlAttribFileOpenMask constant 916
kioFlAttribInSharedBit constant 916
kioFlAttribInSharedMask constant 917
kioFlAttribLockedBit constant 915
kioFlAttribLockedMask constant 915
kioFlAttribMountedBit constant 917
kioFlAttribMountedMask constant 917
kioFlAttribResOpenBit constant 915
kioFlAttribResOpenMask constant 915
kioFlAttribSharePointBit constant 917
kioFlAttribSharePointMask constant 917
kioVAtrbDefaultVolumeBit constant 937
kioVAtrbDefaultVolumeMask constant 937
kioVAtrbFilesOpenBit constant 937
kioVAtrbFilesOpenMask constant 937
kioVAtrbHardwareLockedBit constant 937
kioVAtrbHardwareLockedMask constant 937
kioVAtrbSoftwareLockedBit constant 937
kioVAtrbSoftwareLockedMask constant 938
kIPCPTCPHdrCompressionDisabled 2618
kIPCPTCPHdrCompressionDisabled constant 2618
kIPCPTCPHdrCompressionEnabled constant 2618
kIPXSAP constant 2621
kIP_ADD_MEMBERSHIP constant 2617
kIP_BROADCAST constant 2617
kIP_BROADCAST_IFNAME constant 2617
kIP_DONTROUTE constant 2617
kIP_DROP_MEMBERSHIP constant 2617
kIP_HDRINCL constant 2617
kIP_MULTICAST_IF constant 2617
kIP_MULTICAST_LOOP constant 2617
kIP_MULTICAST_TTL constant 2617
kIP_OPTIONS 2616
kIP_OPTIONS constant 2616
kIP_RCVDSTADDR constant 2617
kIP_RCVIFADDR constant 2618
kIP_RCVOPTS constant 2617
kIP_REUSEADDR constant 2617
kIP_REUSEPORT constant 2617
kIP_TOS constant 2616
kIP_TTL constant 2617
kIsAlias constant 2262
kIsApp constant 254
kIsCompleteCFrag constant 248
kISDNModuleID 2618
kISDNModuleID constant 2618
kIsDropIn constant 254
kIsInvisible constant 2262
kIsLib constant 254
kIsOnDesk constant 2261
kIsShared constant 2261

kIsStationary 2273
kIsStationery constant 2262
kIssuerKCItemAttr constant 1189
kIssuerURLKCItemAttr constant 1189
kJapaneseBasicVariant constant 1995
kJapaneseNoOneByteKanaOption constant 1996
kJapanesePostScriptPrintVariant constant 1996
kJapanesePostScriptScrnVariant constant 1995
kJapaneseStandardVariant constant 1995
kJapaneseStdNoVerticalsVariant constant 1995
kJapaneseUseAsciiBackslashOption constant 1996
kJapaneseVertAtKuPlusTenVariant constant 1996
kKCAuthTypeDefault constant 1177
kKCAuthTypeDPA constant 1176
kKCAuthTypeHTTPDigest constant 1177
kKCAuthTypeMSN constant 1176
kKCAuthTypeNTLM constant 1176
kKCAuthTypeRPA constant 1177
kKCProtocolTypeAFP constant 1193
kKCProtocolTypeAppleTalk constant 1193
kKCProtocolTypeFTP constant 1192
kKCProtocolTypeFTPAccount constant 1192
kKCProtocolTypeHTTP constant 1192
kKCProtocolTypeIMAP constant 1193
kKCProtocolTypeIRC constant 1192
kKCProtocolTypeLDAP constant 1193
kKCProtocolTypeNNTP constant 1192
kKCProtocolTypePOP3 constant 1192
kKCProtocolTypeSMTP constant 1192
kKCProtocolTypeSOCKS constant 1193
kKCProtocolTypeTelnet constant 1193
kKeychainListChangedKCEvent constant 1182
kLabelKCItemAttr constant 1186
kLarge4BitIcon constant 923
kLarge4BitIconSize constant 922
kLarge8BitIcon constant 923
kLarge8BitIconSize constant 922
kLargeIcon constant 923
kLargeIconSize constant 922
kLastDomainConstant constant 998
kLauncherItemsFolderType constant 994
kLoadCFrag 251
kLoadCFrag constant 251
kLoadLib constant 253
kLoadNewCopy constant 253
kLocalATalkRouterOnline constant 2611
kLocalATalkRoutersDown constant 2609
kLocalDomain constant 998
kLocaleAllPartsMask constant 1274
kLocaleAndVariantNameMask constant 1273
kLocaleLanguageMask constant 1273
kLocaleLanguageVariantMask constant 1273
kLocaleNameMask constant 1272

2858
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kLocaleOperationVariantNameMask constant 1273
kLocaleRegionMask constant 1274
kLocaleRegionVariantMask constant 1274
kLocaleScriptMask constant 1273
kLocaleScriptVariantMask constant 1273
kLocalesFolderType 997
kLockKCEvent constant 1181
kLockKCEventMask constant 1183
kLSAcceptAllowLoginUI constant 1249
kLSAcceptDefault constant 1249
kLSAppDoesNotClaimTypeErr constant 1252
kLSAppDoesNotSupportSchemeWarning constant 1252
kLSAppInTrashErr constant 1251
kLSApplicationNotFoundErr constant 1251
kLSCannotSetInfoErr constant 1252
kLSDataErr constant 1252
kLSDataTooOldErr constant 1251
kLSDataUnavailableErr constant 1251
kLSHandlerOptionsDefault constant 1249
kLSHandlerOptionsIgnoreCreator constant 1249
kLSIncompatibleSystemVersionErr constant 1252
kLSInitializeDefaults constant 1250
kLSInvalidExtensionIndex constant 1250
kLSItemContentType constant 1245
kLSItemDisplayKind constant 1246
kLSItemDisplayName constant 1246
kLSItemExtension constant 1246
kLSItemExtensionIsHidden constant 1246
kLSItemFileCreator constant 1246
kLSItemFileType constant 1246
kLSItemInfoAppIsScriptable constant 1248
kLSItemInfoAppPrefersClassic constant 1248
kLSItemInfoAppPrefersNative constant 1248
kLSItemInfoExtensionIsHidden constant 1248
kLSItemInfoIsAliasFile constant 1247
kLSItemInfoIsApplication constant 1247
kLSItemInfoIsClassicApp constant 1248
kLSItemInfoIsContainer constant 1247
kLSItemInfoIsInvisible constant 1247
kLSItemInfoIsNativeApp constant 1248
kLSItemInfoIsPackage constant 1247
kLSItemInfoIsPlainFile constant 1247
kLSItemInfoIsSymlink constant 1247
kLSItemInfoIsVolume constant 1248
kLSItemIsInvisible constant 1246
kLSItemRoleHandlerDisplayName constant 1246
kLSLaunchAndDisplayErrors constant 1243
kLSLaunchAndHide constant 1244
kLSLaunchAndHideOthers constant 1244
kLSLaunchAndPrint constant 1242
kLSLaunchAsync constant 1243
kLSLaunchDefaults constant 1242
kLSLaunchDontAddToRecents constant 1243

kLSLaunchDontSwitch constant 1243
kLSLaunchHasUntrustedContents constant 1244
kLSLaunchInClassic constant 1243
kLSLaunchInhibitBGOnly constant 1243
kLSLaunchInProgressErr constant 1252
kLSLaunchNewInstance constant 1243
kLSLaunchNoParams constant 1243
kLSLaunchReserved2 constant 1242
kLSLaunchReserved3 constant 1242
kLSLaunchReserved4 constant 1242
kLSLaunchReserved5 constant 1243
kLSLaunchStartClassic constant 1243
kLSMinCatInfoBitmap constant 1251
kLSMultipleSessionsNotSupportedErr constant

1253
kLSNoClassicEnvironmentErr constant 1252
kLSNoExecutableErr constant 1252
kLSNoLaunchPermissionErr constant 1252
kLSNoRegistrationInfoErr constant 1252
kLSNotAnApplicationErr constant 1251
kLSNotInitializedErr constant 1251
kLSNotRegisteredErr constant 1252
kLSRequestAllFlags constant 1245
kLSRequestAllInfo constant 1245
kLSRequestAppTypeFlags constant 1245
kLSRequestBasicFlagsOnly constant 1244
kLSRequestExtension constant 1244
kLSRequestExtensionFlagsOnly constant 1245
kLSRequestIconAndKind constant 1245
kLSRequestTypeCreator constant 1244
kLSRolesAll constant 1241
kLSRolesEditor constant 1241
kLSRolesNone constant 1241
kLSRolesShell constant 1241
kLSRolesViewer constant 1241
kLSServerCommunicationErr constant 1252
kLSUnknownCreator constant 1250
kLSUnknownErr constant 1251
kLSUnknownKindID constant 1251
kLSUnknownType constant 1250
kLSUnknownTypeErr constant 1251
kM68kISA constant 1452
kMacArabicAlBayanVariant constant 1990
kMacArabicStandardVariant constant 1990
kMacArabicThuluthVariant constant 1990
kMacArabicTrueTypeVariant constant 1990
kMacCroatianCurrencySignVariant constant 1990
kMacCroatianDefaultVariant constant 1990
kMacCroatianEuroSignVariant constant 1991
kMacCyrillicCurrSignStdVariant constant 1991
kMacCyrillicCurrSignUkrVariant constant 1991
kMacCyrillicDefaultVariant constant 1991
kMacCyrillicEuroSignVariant constant 1991

2859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kMacFarsiStandardVariant constant 1992
kMacFarsiTrueTypeVariant constant 1992
kMacHebrewFigureSpaceVariant constant 1992
kMacHebrewStandardVariant constant 1992
kMacIcelandicStandardVariant constant 1995
kMacIcelandicStdCurrSignVariant constant 1993
kMacIcelandicStdDefaultVariant constant 1993
kMacIcelandicStdEuroSignVariant constant 1993
kMacIcelandicTrueTypeVariant constant 1995
kMacIcelandicTTCurrSignVariant constant 1993
kMacIcelandicTTDefaultVariant constant 1993
kMacIcelandicTTEuroSignVariant constant 1993
kMacJapaneseBasicVariant constant 1994
kMacJapanesePostScriptPrintVariant constant

1994
kMacJapanesePostScriptScrnVariant constant 1994
kMacJapaneseStandardVariant constant 1994
kMacJapaneseStdNoVerticalsVariant constant 1994
kMacJapaneseVertAtKuPlusTenVariant constant

1994
kMacOSReadMesFolderType constant 992
kMacRomanCurrencySignVariant constant 1997
kMacRomanDefaultVariant constant 1996
kMacRomanEuroSignVariant constant 1997
kMacRomanianCurrencySignVariant constant 1997
kMacRomanianDefaultVariant constant 1997
kMacRomanianEuroSignVariant constant 1997
kMacRomanLatin1CroatianVariant constant 1998
kMacRomanLatin1DefaultVariant constant 1998
kMacRomanLatin1IcelandicVariant constant 1998
kMacRomanLatin1RomanianVariant constant 1998
kMacRomanLatin1StandardVariant constant 1998
kMacRomanLatin1TurkishVariant constant 1998
kMacRomanStandardVariant constant 1995
kMacVT100CurrencySignVariant constant 1999
kMacVT100DefaultVariant constant 1999
kMacVT100EuroSignVariant constant 1999
kMagicBusyCreationDate 2273
kMapEntireFork 1442
kMapEntireFork constant 1442
kMappedFileInformationVersion1 1442
kMax8022SAP constant 2621
kMaxDIXSAP constant 2621
kMaxHostAddrs 2618
kMaxHostAddrs constant 2618
kMaxHostNameLen constant 2619
kMaximumBlocksIn4GB constant 926
kMaxModuleNameLength constant 2619
kMaxModuleNameSize constant 2619
kMaxPortNameLength constant 2620
kMaxPortNameSize constant 2620
kMaxProviderNameLength constant 2619
kMaxProviderNameSize constant 2619

kMaxResourceInfoLength constant 2619
kMaxResourceInfoSize constant 2619
kMaxServices 2620
kMaxServices constant 2620
kMaxSlotIDLength constant 2619
kMaxSlotIDSize constant 2619
kMaxSysStringLen constant 2618
kMDAttributeAllValues constant 2285
kMDAttributeDisplayValues constant 2285
kMDAttributeMultiValued constant 2286
kMDAttributeName constant 2286
kMDAttributeType constant 2286
kMDImporterInterfaceID 2282
kMDImporterInterfaceID constant 2282
kMDImporterTypeID 2282
kMDImporterTypeID constant 2282
kMDItemAcquisitionMake 2801
kMDItemAcquisitionMake constant 141
kMDItemAcquisitionModel 2802
kMDItemAcquisitionModel constant 141
kMDItemAlbum 2802
kMDItemAlbum constant 142
kMDItemAperture 2802
kMDItemAperture constant 142
kMDItemAppleLoopDescriptors 2809
kMDItemAppleLoopDescriptors constant 145
kMDItemAppleLoopsKeyFilterType 2809
kMDItemAppleLoopsKeyFilterType constant 145
kMDItemAppleLoopsLoopMode 2810
kMDItemAppleLoopsLoopMode constant 145
kMDItemAppleLoopsRootKey 2810
kMDItemAppleLoopsRootKey constant 145
kMDItemAttributeChangeDate 2791
kMDItemAttributeChangeDate constant 134
kMDItemAudiences 2791
kMDItemAudiences constant 134
kMDItemAudioBitRate 2807
kMDItemAudioBitRate constant 143
kMDItemAudioChannelCount 2810
kMDItemAudioChannelCount constant 146
kMDItemAudioEncodingApplication 2810
kMDItemAudioEncodingApplication constant 146
kMDItemAudioSampleRate 2811
kMDItemAudioSampleRate constant 146
kMDItemAudioTrackNumber 2811
kMDItemAudioTrackNumber constant 146
kMDItemAuthors 2791
kMDItemAuthors constant 135
kMDItemBitsPerSample 2802
kMDItemBitsPerSample constant 141
kMDItemCity 2791
kMDItemCity constant 135
kMDItemCodecs 2808

2860
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kMDItemCodecs constant 144
kMDItemColorSpace 2803
kMDItemColorSpace constant 140
kMDItemComment 2792
kMDItemComment constant 135
kMDItemComposer 2811
kMDItemComposer constant 146
kMDItemContactKeywords 2792
kMDItemContactKeywords constant 135
kMDItemContentCreationDate 2792
kMDItemContentCreationDate constant 135
kMDItemContentModificationDate 2792
kMDItemContentModificationDate constant 135
kMDItemContentType 2793
kMDItemContentType constant 135
kMDItemContentTypeTree 2793
kMDItemContributors 2793
kMDItemContributors constant 135
kMDItemCopyright 2793
kMDItemCopyright constant 136
kMDItemCountry 2794
kMDItemCountry constant 136
kMDItemCoverage 2794
kMDItemCoverage constant 136
kMDItemCreator 2794
kMDItemCreator constant 136
kMDItemDeliveryType 2808
kMDItemDeliveryType constant 144
kMDItemDescription 2794
kMDItemDescription constant 136
kMDItemDisplayName 2794
kMDItemDisplayName constant 148
kMDItemDueDate 2795
kMDItemDueDate constant 136
kMDItemDurationSeconds 2795
kMDItemDurationSeconds constant 136
kMDItemEmailAddresses 2795
kMDItemEmailAddresses constant 136
kMDItemEncodingApplications 2795
kMDItemEncodingApplications constant 136
kMDItemEXIFVersion 2803
kMDItemEXIFVersion constant 142
kMDItemExposureMode 2803
kMDItemExposureMode constant 142
kMDItemExposureProgram 2803
kMDItemExposureProgram constant 143
kMDItemExposureTimeSeconds 2803
kMDItemExposureTimeSeconds constant 142
kMDItemExposureTimeString 2804
kMDItemExposureTimeString constant 143
kMDItemFinderComment 2796
kMDItemFinderComment constant 137
kMDItemFlashOnOff 2804

kMDItemFlashOnOff constant 141
kMDItemFNumber 2804
kMDItemFNumber constant 143
kMDItemFocalLength 2804
kMDItemFocalLength constant 141
kMDItemFonts 2796
kMDItemFonts constant 137
kMDItemFSContentChangeDate 2814
kMDItemFSContentChangeDate constant 148
kMDItemFSCreationDate 2814
kMDItemFSCreationDate constant 148
kMDItemFSExists 2816
kMDItemFSExists constant (Deprecated in Mac OS X

v10.4) 148
kMDItemFSInvisible 2814
kMDItemFSInvisible constant 148
kMDItemFSIsExtensionHidden 2814
kMDItemFSIsExtensionHidden constant 148
kMDItemFSIsReadable 2816
kMDItemFSIsReadable constant (Deprecated in Mac OS

X v10.4) 148
kMDItemFSIsWriteable 2816
kMDItemFSIsWriteable constant (Deprecated in Mac

OS X v10.4) 149
kMDItemFSLabel 2814
kMDItemFSLabel constant 149
kMDItemFSName 2815
kMDItemFSName constant 149
kMDItemFSNodeCount 2815
kMDItemFSNodeCount constant 149
kMDItemFSOwnerGroupID 2815
kMDItemFSOwnerGroupID constant 149
kMDItemFSOwnerUserID 2815
kMDItemFSOwnerUserID constant 149
kMDItemFSSize 2815
kMDItemFSSize constant 149
kMDItemHasAlphaChannel 2804
kMDItemHasAlphaChannel constant 142
kMDItemHeadline 2796
kMDItemHeadline constant 137
kMDItemIdentifier 2796
kMDItemIdentifier constant 137
kMDItemInstantMessageAddresses 2796
kMDItemInstantMessageAddresses constant 137
kMDItemInstructions 2797
kMDItemInstructions constant 137
kMDItemIsGeneralMIDISequence 2811
kMDItemIsGeneralMIDISequence constant 146
kMDItemISOSpeed 2805
kMDItemISOSpeed constant 141
kMDItemKeySignature 2811
kMDItemKeySignature constant 146
kMDItemKeywords 2797

2861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kMDItemKeywords constant 137
kMDItemKind 2797
kMDItemKind constant 137
kMDItemLanguages 2797
kMDItemLanguages constant 137
kMDItemLastUsedDate 2798
kMDItemLastUsedDate constant 138
kMDItemLayerNames 2805
kMDItemLayerNames constant 141
kMDItemLyricist 2812
kMDItemLyricist constant 146
kMDItemMaxAperture 2805
kMDItemMaxAperture constant 143
kMDItemMediaTypes 2808
kMDItemMediaTypes constant 144
kMDItemMeteringMode 2805
kMDItemMeteringMode constant 143
kMDItemMusicalGenre 2812
kMDItemMusicalGenre constant 146
kMDItemMusicalInstrumentCategory 2812
kMDItemMusicalInstrumentCategory constant 147
kMDItemMusicalInstrumentName 2812
kMDItemMusicalInstrumentName constant 147
kMDItemNumberOfPages 2798
kMDItemNumberOfPages constant 138
kMDItemOrganizations 2798
kMDItemOrganizations constant 138
kMDItemOrientation 2806
kMDItemOrientation constant 141
kMDItemPageHeight 2798
kMDItemPageHeight constant 138
kMDItemPageWidth 2798
kMDItemPageWidth constant 138
kMDItemPath 2816
kMDItemPath constant 149
kMDItemPhoneNumbers 2799
kMDItemPhoneNumbers constant 138
kMDItemPixelHeight 2806
kMDItemPixelHeight constant 140
kMDItemPixelWidth 2806
kMDItemPixelWidth constant 140
kMDItemProfileName 2806
kMDItemProfileName constant 142
kMDItemProjects 2799
kMDItemProjects constant 138
kMDItemPublishers 2799
kMDItemPublishers constant 138
kMDItemRecipients 2799
kMDItemRecipients constant 138
kMDItemRecordingDate 2813
kMDItemRecordingDate constant 147
kMDItemRecordingYear 2813
kMDItemRecordingYear constant 147

kMDItemRedEyeOnOff 2806
kMDItemRedEyeOnOff constant 142
kMDItemResolutionHeightDPI 2807
kMDItemResolutionHeightDPI constant 142
kMDItemResolutionWidthDPI 2807
kMDItemResolutionWidthDPI constant 142
kMDItemRights 2800
kMDItemRights constant 139
kMDItemSecurityMethod 2800
kMDItemSecurityMethod constant 139
kMDItemStarRating 2800
kMDItemStarRating constant 139
kMDItemStateOrProvince 2800
kMDItemStateOrProvince constant 139
kMDItemStreamable 2808
kMDItemStreamable constant 144
kMDItemTempo 2813
kMDItemTempo constant 147
kMDItemTextContent 2800
kMDItemTextContent constant 139
kMDItemTimeSignature 2813
kMDItemTimeSignature constant 147
kMDItemTitle 2801
kMDItemTitle constant 139
kMDItemTotalBitRate 2809
kMDItemTotalBitRate constant 144
kMDItemVersion 2801
kMDItemVersion constant 139
kMDItemVideoBitRate 2809
kMDItemVideoBitRate constant 144
kMDItemWhereFroms 2801
kMDItemWhereFroms constant 139
kMDItemWhiteBalance 2807
kMDItemWhiteBalance constant 141
kMDQueryDidFinishNotification 170
kMDQueryDidFinishNotification constant 171
kMDQueryDidUpdateNotification 171
kMDQueryDidUpdateNotification constant 171
kMDQueryProgressNotification 171
kMDQueryProgressNotification constant 171
kMDQueryResultContentRelevance constant 173
kMDQueryScopeComputer constant 173
kMDQueryScopeHome constant 172
kMDQueryScopeNetwork constant 173
kMDQuerySynchronous constant 170
kMDQueryUpdateAddedItems constant 172
kMDQueryUpdateChangedItems constant 172
kMDQueryUpdateRemovedItems constant 172
kMDQueryWantsUpdates constant 170
kMediaModeOff constant 1653
kMediaModeOn constant 1652
kMediaModeStandBy constant 1653
kMediaModeSuspend constant 1653

2862
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kMediaPowerCSCode Constants 1637
kMemoryCFragLocator constant 256
kMinDIXSAP constant 2621
kModDateKCItemAttr constant 1186
kModemOutOfMemory constant 2728
kModemPreferencesMissing constant 2728
kModemScriptMissing constant 2728
kModemScriptsFolderType constant 991
kMotorola68K constant 251
kMotorola68KArch constant 252
kMotorola68KCFragArch constant 247
kMPAddressSpaceInfoVersion constant 1521
kMPAllocate1024ByteAligned constant 1524
kMPAllocate16ByteAligned constant 1524
kMPAllocate32ByteAligned constant 1524
kMPAllocate4096ByteAligned constant 1524
kMPAllocate8ByteAligned constant 1524
kMPAllocateAltiVecAligned constant 1524
kMPAllocateClearMask constant 1525
kMPAllocateDefaultAligned constant 1524
kMPAllocateGloballyMask constant 1525
kMPAllocateInterlockAligned constant 1525
kMPAllocateMaxAlignment constant 1524
kMPAllocateNoCreateMask constant 1526
kMPAllocateNoGrowthMask constant 1525
kMPAllocateResidentMask constant 1525
kMPAllocateVMPageAligned constant 1525
kMPAllocateVMXAligned constant 1525
kMPAnyRemoteContext constant 1527
kMPAsyncInterruptRemoteContext constant 1527
kMPCreateTaskNotDebuggableMask constant 1528
kMPCreateTaskSuspendedMask constant 1528
kMPCreateTaskTakesAllExceptionsMask constant

1528
kMPCreateTaskValidOptionsMask constant 1528
kMPCriticalRegionInfoVersion constant 1521
kMPDeletedErr constant 1533
kMPEventInfoVersion constant 1521
kMPHighLevelDebugger constant 1526
kMPInsufficientResourcesErr constant 1533
kMPInterruptRemoteContext constant 1527
kMPInvalidIDErr constant 1534
kMPIterationEndErr constant 1533
kMPLowLevelDebugger constant 1526
kMPMaxAllocSize constant 1520
kMPMidLevelDebugger constant 1526
kMPNoID constant 1520
kMPNotificationInfoVersion constant 1521
kMPOwningProcessRemoteContext constant 1527
kMPPreserveTimerIDMask constant 1532
kMPPrivilegedErr constant 1533
kMPProcessCreatedErr constant 1533
kMPProcessTerminatedErr constant 1533

kMPQueueInfoVersion constant 1521
kMPSemaphoreInfoVersion constant 1521
kMPTaskBlocked constant 1530
kMPTaskBlockedErr constant 1533
kMPTaskCreatedErr constant 1533
kMPTaskInfoVersion constant 1530
kMPTaskPropagate constant 1529
kMPTaskPropagateMask constant 1529
kMPTaskReady constant 1530
kMPTaskResumeBranch constant 1529
kMPTaskResumeBranchMask constant 1529
kMPTaskResumeMask constant 1529
kMPTaskResumeStep constant 1529
kMPTaskResumeStepMask constant 1529
kMPTaskRunning constant 1530
kMPTaskState32BitMemoryException constant 1531
kMPTaskStateFPU constant 1531
kMPTaskStateMachine constant 1531
kMPTaskStateRegisters constant 1531
kMPTaskStateTaskInfo constant 1531
kMPTaskStateVectors constant 1531
kMPTaskStoppedErr constant 1533
kMPTimeIsDeltaMask constant 1533
kMPTimeIsDurationMask constant 1533
kMPTimeoutErr constant 1533
kMulticastLength 2620
kMulticastLength constant 2620
kNamedFragmentCFragLocator constant 256
kNameLocked constant 2262
kNBPAddressLength constant 2613
kNBPDefaultZone constant 2622
kNBPEntityBufferSize constant 2622
kNBPImbeddedWildCard constant 2622
kNBPMaxEntityLength constant 2622
kNBPMaxNameLength 2621
kNBPMaxNameLength constant 2621
kNBPMaxTypeLength constant 2622
kNBPMaxZoneLength constant 2622
kNBPSlushLength constant 2622
kNBPWildCard constant 2622
kNegativeKCItemAttr constant 1187
kNetbufDataIsOTData 2622
kNetbufDataIsOTData constant 2622
kNetworkDomain constant 998
kNewCFragCopy constant 253
kNewSuspend constant 2132
kNoByteCode constant 1455
kNoConnectionID constant 252
knoGroup constant 921
kNoLibName constant 252
kNoneKCStopOn constant 1179
kNoThreadID constant 2131
knoUser constant 929

2863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kNoUserAuthentication constant 888
kNullCFragVersion constant 259
kOld68kRTA constant 1453
kOnAppropriateDisk constant 998
kOnDiskFlat constant 254
kOnDiskSegmented constant 254
kOneByteCode constant 1456
kOnSystemDisk constant 997
kOpaqueAddressSpaceID constant 1523
kOpaqueAnyID constant 1522
kOpaqueAreaID constant 1523
kOpaqueCoherenceID constant 1523
kOpaqueConsoleID constant 1523
kOpaqueCpuID constant 1523
kOpaqueCriticalRegionID constant 1522
kOpaqueEventID constant 1523
kOpaqueNotificationID constant 1523
kOpaqueProcessID constant 1522
kOpaqueQueueID constant 1522
kOpaqueSemaphoreID constant 1522
kOpaqueTaskID constant 1522
kOpaqueTimerID constant 1522
kOpenDocEditorsFolderType constant 991
kOpenDocFolderType constant 990
kOpenDocLibrariesFolderType constant 991
kOpenDocShellPlugInsFolderType constant 990
kOTAccessErr constant 2722
kOTAddressBusyErr constant 2723
kOTADEVDevice constant 2666
kOTAnyInetAddress 2623
kOTAnyInetAddress constant 2623
kOTAnyMsgType constant 2638
kOTATMDevice constant 2667
kOTATMSNAPDevice constant 2668
kOTAutopushMax 2623
kOTAutopushMax constant 2623
kOTBadAddressErr constant 2722
kOTBadConfigurationErr constant 2728
kOTBadDataErr constant 2722
kOTBadFlagErr constant 2723
kOTBadNameErr constant 2723
kOTBadOptionErr constant 2722
kOTBadQLenErr constant 2723
kOTBadReferenceErr constant 2722
kOTBadSequenceErr constant 2722
kOTBadSyncErr constant 2724
kOTBooleanOptionDataSize constant 2639
kOTBooleanOptionSize constant 2639
kOTBufferOverflowErr constant 2722
kOTCanceledErr constant 2724
kOTCFMClass 2623
kOTCFMClass constant 2623
kOTClientNotInittedErr constant 2727

kOTClosePortRequest constant 2700
kOTConfigurationChanged constant 2700
kOTConfigurationChangedErr constant 2728
kOTDataMsgTypes constant 2638
kOTDefaultConfigurator 2623
kOTDefaultConfigurator constant 2623
kOTDisablePortEvent constant 2701
kOTDuplicateFoundErr constant 2725
kOTEnablePortEvent constant 2702
kOTEthernetDevice constant 2667
kOTFastEthernetDevice constant 2668
kOTFDDIDevice constant 2668
kOTFibreChannelDevice constant 2668
kOTFindACopy constant 2625
kOTFireWireBus constant 2666
kOTFireWireDevice constant 2668
kOTFlowErr constant 2722
kOTFLUSHBAND 2624
kOTFLUSHBAND constant 2624
kOTFourByteOptionSize constant 2639
kOTFraming8022 constant 2624
kOTFraming8023 constant 2624
kOTFramingEthernet constant 2624
kOTFramingEthernetIPX constant 2624
kOTGenericConfigPass constant 2646
kOTGenericName 2625
kOTGenericName constant 2625
kOTGeoPort constant 2665
kOTGetCodeSymbol constant 2625
kOTGetDataSymbol 2625
kOTGetDataSymbol constant 2625
kOTGetFramingValue constant 2600
kOTIndOutErr constant 2723
kOTInitialScan 2626
kOTInitialScan constant 2626
kOTInvalidConfigurationPtr constant 2638
kOTInvalidEndpointRef constant 2627
kOTInvalidMapperRef constant 2627
kOTInvalidPortRef 2626
kOTInvalidPortRef constant 2626
kOTInvalidProviderRef constant 2627
kOTInvalidRef 2627
kOTInvalidRef constant 2627
kOTInvalidStreamRef 2627
kOTInvalidStreamRef constant 2627
kOTIrDADevice constant 2668
kOTIRTalkDevice constant 2667
kOTISDN56KAdaptation constant 2629
kOTISDNAccessInformationDiscarded constant 2633
kOTISDNBearerCapabilityNotAuthorized constant

2633
kOTISDNBearerCapabilityNotImplemented constant

2633

2864
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kOTISDNBearerCapabilityNotPresentlyAvailable
constant 2633

kOTISDNCallIdentityCleared constant 2634
kOTISDNCallIdentityInUse constant 2634
kOTISDNCallIdentityNotUsed constant 2634
kOTISDNCallRejected constant 2632
kOTISDNCallRestricted constant 2633
kOTISDNChannelUnacceptable constant 2632
kOTISDNDefault56KAdaptation constant 2627
kOTISDNDefaultCommType 2627
kOTISDNDefaultCommType constant 2627
kOTISDNDefaultFramingType constant 2627
kOTISDNDestinationOutOfOrder constant 2632
kOTISDNDevice constant 2667
kOTISDNDigital56k constant 2630
kOTISDNDigital64k constant 2630
kOTISDNFacilityRejected constant 2632
kOTISDNFramingHDLC constant 2628
kOTISDNFramingHDLCSupported constant 2628
kOTISDNFramingTransparent 2628
kOTISDNFramingTransparent constant 2628
kOTISDNFramingTransparentSupported 2628
kOTISDNFramingTransparentSupported constant

2628
kOTISDNFramingV110 constant 2628
kOTISDNFramingV110Supported constant 2628
kOTISDNFramingV14E constant 2628
kOTISDNFramingV14ESupported constant 2628
kOTISDNIncompatibleDestination constant 2634
kOTISDNInterworkingUnspecified constant 2634
kOTISDNInvalidMessageUnspecified constant 2634
kOTISDNInvalidNumberFormat constant 2632
kOTISDNInvalidTransitNetworkSelection constant

2634
kOTISDNMandatoryInformationElementIsMissing

constant 2634
kOTISDNMaxPhoneSize 2629
kOTISDNMaxPhoneSize constant 2629
kOTISDNMaxSubSize constant 2629
kOTISDNMaxUserDataSize 2629
kOTISDNMaxUserDataSize constant 2629
kOTISDNMessageTypeNonExistentOrNotImplemented

constant 2634
kOTISDNNetworkOutOfOrder constant 2633
kOTISDNNoAnswerFromUser constant 2632
kOTISDNNoCallSuspended constant 2634
kOTISDNNoCircuitChannelAvailable constant 2632
kOTISDNNonSelectedUserClearing constant 2632
kOTISDNNormal constant 2632
kOTISDNNormalUnspecified constant 2632
kOTISDNNoRouteToDestination constant 2632
kOTISDNNoRouteToSpecifiedTransitNetwork

constant 2631

kOTISDNNot56KAdaptation 2629
kOTISDNNot56KAdaptation constant 2629
kOTISDNNoUserResponding constant 2632
kOTISDNNumberChanged constant 2632
kOTISDNOnlyRestrictedDigitalBearer constant

2633
kOTISDNQualityOfServiceUnvailable constant 2633
kOTISDNRequestedCircuitChannelNotAvailable

constant 2633
kOTISDNRequestedFacilityNotImplemented

constant 2633
kOTISDNRequestedFacilityNotSubscribed constant

2633
kOTISDNResourceUnavailableUnspecified constant

2633
kOTISDNServiceOrOptionNotAvilableUnspecified

constant 2633
kOTISDNServiceOrOptionNotImplementedUnspecified

constant 2634
kOTISDNSwitchingEquipmentCongestion constant

2633
kOTISDNTelephoneALaw 2630
kOTISDNTelephoneALaw constant 2630
kOTISDNTelephoneMuLaw constant 2630
kOTISDNUnallocatedNumber 2631
kOTISDNUnallocatedNumber constant 2631
kOTISDNUserBusy constant 2632
kOTISDNVideo56k constant 2630
kOTISDNVideo64k constant 2630
kOTLastBusIndex constant 2666
kOTLastDeviceIndex constant 2668
kOTLastOtherNumber constant 2635
kOTLastSlotNumber 2634
kOTLastSlotNumber constant 2634
kOTLibMask constant 2625
kOTLinkDriverConfigurator constant 2624
kOTLoadACopy constant 2625
kOTLoadLibResident constant 2625
kOTLoadNewCopy constant 2625
kOTLocalTalkDevice constant 2667
kOTLookErr constant 2722
kOTLvlExtFatal constant 2636
kOTLvlExtNonfatal constant 2636
kOTLvlFatal 2636
kOTLvlFatal constant 2636
kOTLvlInfoErr constant 2636
kOTLvlInfoOnly constant 2636
kOTLvlNonfatal constant 2636
kOTLvlUserErr constant 2636
kOTMDEVDevice constant 2667
kOTMinimumTimerValue 2636
kOTMinimumTimerValue constant 2636
kOTModemDevice constant 2668

2865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kOTModGlobalContext constant 2637
kOTModIsComplexDriver constant 2637
kOTModIsDriver 2636
kOTModIsDriver constant 2636
kOTModIsFilter constant 2637
kOTModIsModule constant 2636
kOTModLowerIsDLPI constant 2637
kOTModLowerIsTPI constant 2636
kOTModNoWriter constant 2636
kOTModUpperIsDLPI constant 2636
kOTModUpperIsTPI constant 2636
kOTModUsesInterrupts constant 2637
kOTMotherboardBus constant 2665
kOTMProtoMsgTypes constant 2638
kOTNetbufDataIsOTBufferStar 2637
kOTNetbufDataIsOTBufferStar constant 2637
kOTNetbufIsRawMode 2637
kOTNetbufIsRawMode constant 2637
kOTNewPortRegistered constant 2700
kOTNewPortRegisteredEvent constant 2702
kOTNoAddressErr constant 2722
kOTNoDataErr constant 2723
kOTNoDeviceType constant 2666
kOTNoDisconnectErr constant 2723
kOTNoError constant 2722
kOTNoMemoryConfigurationPtr 2638
kOTNoMemoryConfigurationPtr constant 2638
kOTNoMessagesAvailable 2638
kOTNoMessagesAvailable constant 2638
kOTNoReleaseErr constant 2723
kOTNoStructureTypeErr constant 2723
kOTNotFoundErr constant 2724
kOTNotSupportedErr constant 2723
kOTNoUDErrErr constant 2723
kOTNuBus constant 2665
kOTOneByteOptionSize constant 2639
kOTOnlyMProtoMsgTypes constant 2638
kOTOptionHeaderSize 2639
kOTOptionHeaderSize constant 2639
kOTOutOfMemoryErr constant 2725
kOTOutStateErr constant 2722
kOTPCCardBus constant 2665
kOTPCIBus constant 2665
kOTPCINoErrorStayLoaded 2639
kOTPCINoErrorStayLoaded constant 2639
kOTPortAutoConnects constant 2641
kOTPortCanArbitrate constant 2641
kOTPortCanYield constant 2641
kOTPortDisabled constant 2699
kOTPortEnabled constant 2700
kOTPortHasDiedErr constant 2727
kOTPortIsActive constant 2640
kOTPortIsAlias constant 2641

kOTPortIsDisabled constant 2640
kOTPortIsDLPI constant 2640
kOTPortIsOffline constant 2640
kOTPortIsPrivate constant 2641
kOTPortIsSystemRegistered constant 2641
kOTPortIsTPI constant 2641
kOTPortIsTransitory constant 2641
kOTPortIsUnavailable constant 2640
kOTPortLostConnection constant 2728
kOTPortNetworkChange constant 2700
kOTPortNetworkChangeEvent constant 2702
kOTPortOffline constant 2700
kOTPortOfflineEvent constant 2702
kOTPortOnline constant 2700
kOTPortOnlineEvent constant 2702
kOTPortWasEjectedErr constant 2727
kOTPPPDevice constant 2668
kOTPrintOnly 2642
kOTPrintOnly constant 2642
kOTPrintThenStop constant 2642
kOTProtocolErr constant 2724
kOTProtocolFamilyConfigurator constant 2624
kOTProviderIsClosed constant 2699
kOTProviderIsDisconnected constant 2699
kOTProviderIsReconnected constant 2699
kOTProviderMismatchErr constant 2723
kOTProviderWillClose constant 2699
kOTPseudoDevice constant 2668
kOTQFullErr constant 2724
kOTRawRcvOff constant 2642
kOTRawRcvOn 2642
kOTRawRcvOn constant 2642
kOTRawRcvOnWithTimeStamp constant 2642
kOTResAddressErr constant 2724
kOTReservedEvent1 constant 2697
kOTReservedEvent2 constant 2698
kOTReservedEvent3 constant 2698
kOTReservedEvent4 constant 2698
kOTReservedEvent5 constant 2698
kOTReservedEvent6 constant 2698
kOTReservedEvent7 constant 2698
kOTReservedEvent8 constant 2698
kOTResQLenErr constant 2724
kOTScanAfterSleep constant 2626
kOTScheduleTerminationEvent constant 2701
kOTSendErrorPacket constant 2600
kOTSerialBreakOn constant 2645
kOTSerialCTLHold constant 2645
kOTSerialCTSInputHandshake constant 2646
kOTSerialDefaultBaudRate 2643
kOTSerialDefaultBaudRate constant 2643
kOTSerialDefaultDataBits constant 2643
kOTSerialDefaultHandshake constant 2643

2866
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kOTSerialDefaultOffChar constant 2643
kOTSerialDefaultOnChar constant 2643
kOTSerialDefaultParity constant 2643
kOTSerialDefaultRcvBufSize constant 2643
kOTSerialDefaultRcvLoWat constant 2644
kOTSerialDefaultRcvTimeout constant 2644
kOTSerialDefaultSndBufSize constant 2643
kOTSerialDefaultSndLoWat constant 2643
kOTSerialDefaultStopBits constant 2643
kOTSerialDevice constant 2667
kOTSerialDTRNegated constant 2645
kOTSerialDTROutputHandshake constant 2646
kOTSerialEvenParity constant 2673
kOTSerialForceXOffFalse constant 2603
kOTSerialForceXOffTrue constant 2603
kOTSerialFramingAsync 2644
kOTSerialFramingAsync constant 2644
kOTSerialFramingAsyncPackets constant 2644
kOTSerialFramingErr constant 2645
kOTSerialFramingHDLC constant 2644
kOTSerialFramingPPP constant 2644
kOTSerialFramingSDLC constant 2644
kOTSerialNoParity constant 2672
kOTSerialOddParity constant 2672
kOTSerialOutputBreakOn constant 2645
kOTSerialOverrunErr constant 2645
kOTSerialParityErr constant 2645
kOTSerialSendXOffAlways constant 2603
kOTSerialSendXOffIfXOnTrue constant 2603
kOTSerialSendXOnAlways constant 2603
kOTSerialSendXOnIfXOffTrue constant 2603
kOTSerialSetBreakOff constant 2603
kOTSerialSetBreakOn constant 2603
kOTSerialSetDTROff constant 2602
kOTSerialSetDTROn constant 2602
kOTSerialSwOverRunErr 2645
kOTSerialSwOverRunErr constant 2645
kOTSerialXOffHold constant 2645
kOTSerialXOffSent constant 2645
kOTSerialXOnOffInputHandshake 2646
kOTSerialXOnOffInputHandshake constant 2646
kOTSerialXOnOffOutputHandshake constant 2646
kOTSetRecvMode constant 2600
kOTSLIPDevice constant 2667
kOTSMDSDevice constant 2667
kOTSpecificConfigPass 2646
kOTSpecificConfigPass constant 2646
kOTStackIsLoading constant 2701
kOTStackIsUnloading constant 2701
kOTStackWasLoaded constant 2701
kOTStateChangeErr constant 2723
kOTSyncIdleEvent constant 2697
kOTSysErrorErr constant 2722

kOTSystemAwaken constant 2701
kOTSystemAwakenPrep constant 2701
kOTSystemIdle constant 2701
kOTSystemShutdown constant 2700
kOTSystemShutdownPrep constant 2701
kOTSystemSleep constant 2700
kOTSystemSleepPrep constant 2701
kOTTokenRingDevice constant 2667
kOTTRANSPARENT 2649
kOTTRANSPARENT constant 2649
kOTTryShutdownEvent constant 2701
kOTTwoByteOptionSize constant 2639
kOTT_ADDR_ACK constant 2648
kOTT_ADDR_REQ constant 2648
kOTT_BIND_ACK constant 2648
kOTT_BIND_REQ 2647
kOTT_BIND_REQ constant 2647
kOTT_CANCELREPLY_REQ constant 2648
kOTT_CANCELREQUEST_REQ constant 2648
kOTT_CONN_CON constant 2648
kOTT_CONN_IND constant 2648
kOTT_CONN_REQ constant 2647
kOTT_CONN_RES constant 2647
kOTT_DATA_IND constant 2648
kOTT_DATA_REQ constant 2647
kOTT_DELNAME_REQ constant 2648
kOTT_DISCON_IND constant 2648
kOTT_DISCON_REQ constant 2648
kOTT_ERROR_ACK constant 2648
kOTT_EVENT_IND constant 2648
kOTT_EXDATA_IND constant 2648
kOTT_EXDATA_REQ constant 2648
kOTT_INFO_ACK constant 2648
kOTT_INFO_REQ constant 2648
kOTT_LKUPNAME_CON constant 2648
kOTT_LKUPNAME_REQ constant 2648
kOTT_LKUPNAME_RES constant 2648
kOTT_MIB_ACK constant 2649
kOTT_MIB_REQ constant 2649
kOTT_OK_ACK constant 2648
kOTT_OPTMGMT_ACK constant 2648
kOTT_OPTMGMT_REQ constant 2648
kOTT_ORDREL_IND constant 2648
kOTT_ORDREL_REQ constant 2648
kOTT_PRIVATE_REQ constant 2649
kOTT_REGNAME_ACK constant 2648
kOTT_REGNAME_REQ constant 2648
kOTT_REPLY_ACK constant 2648
kOTT_REPLY_IND constant 2648
kOTT_REPLY_REQ constant 2648
kOTT_REQUEST_IND constant 2648
kOTT_REQUEST_REQ constant 2648
kOTT_RESOLVEADDR_ACK constant 2648

2867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kOTT_RESOLVEADDR_REQ constant 2648
kOTT_SEQUENCED_ACK constant 2648
kOTT_TIMER_REQ 2648
kOTT_TIMER_REQ constant 2649
kOTT_UDERROR_IND constant 2648
kOTT_UNBIND_REQ constant 2648
kOTT_UNITDATA_IND constant 2648
kOTT_UNITDATA_REQ constant 2648
kOTT_UREPLY_ACK constant 2648
kOTT_UREPLY_IND constant 2648
kOTT_UREPLY_REQ constant 2648
kOTT_UREQUEST_IND constant 2648
kOTT_UREQUEST_REQ constant 2648
kOTUnknownBusPort constant 2665
kOTUserRequestedErr constant 2728
kOTYieldPortRequest constant 2700
kOwnerID2Name constant 927
kOwnerName2ID constant 927
kownerPrivileges constant 914
kO_ASYNC 2622
kO_ASYNC constant 2669
kO_NDELAY constant 2669
kO_NONBLOCK constant 2669
kPageInMemory 1442
kPascalStackBased constant 1450
kPassSelector constant 1463
kPassword constant 888
kPasswordChangedKCEvent constant 1181
kPasswordChangedKCEventMask constant 1183
kPathKCItemAttr constant 1188
kPCIPowerOffAllowed constant 1649
kPEF2CurrentFormat constant 1567
kPEF2GlobalShare constant 1564
kPEF2InitLibBeforeMask constant 1567
kPEF2IsGlueLibraryMask constant 1563
kPEF2IsReexportLibraryMask 1563
kPEF2IsReexportLibraryMask constant 1563
kPEF2LdrInfoLargeExpHashMask constant 1563
kPEF2LdrInfoLargeExpSymMask constant 1563
kPEF2LdrInfoLargeImpSymMask 1563
kPEF2LdrInfoLargeImpSymMask constant 1563
kPEF2OldestHandler constant 1567
kPEF2PrivateShare 1564
kPEF2PrivateShare constant 1564
kPEF2ProcessShare constant 1564
kPEF2ProtectedShare constant 1564
kPEF2SectionContentsArePackedMask constant 1565
kPEF2SectionFollowsPriorMask constant 1565
kPEF2SectionHasCodeMask 1565
kPEF2SectionHasCodeMask constant 1565
kPEF2SectionHasDebugTablesMask constant 1566
kPEF2SectionHasExceptionTablesMask constant

1566

kPEF2SectionHasLoaderTablesMask constant 1566
kPEF2SectionHasRelocationsMask constant 1565
kPEF2SectionHasTracebackTablesMask constant

1566
kPEF2SectionIsWriteableMask constant 1565
kPEF2SectionNoZeroFillMask constant 1565
kPEF2SectionPrecedesNextMask constant 1565
kPEF2SectionResidentMask constant 1565
kPEF2StringsAreASCII 1566
kPEF2StringsAreASCII constant 1566
kPEF2StringsAreUnicode constant 1566
kPEF2Tag1 1567
kPEF2Tag1 constant 1567
kPEF2Tag2 constant 1567
kPEF2WeakImportLibMask 1567
kPEF2WeakImportLibMask constant 1567
kPEFAbsoluteExport 1568
kPEFAbsoluteExport constant 1568
kPEFCodeSection 1568
kPEFCodeSection constant 1568
kPEFCodeSymbol 1569
kPEFCodeSymbol constant 1569
kPEFConstantSection constant 1569
kPEFDataSymbol constant 1569
kPEFDebugSection constant 1569
kPEFExceptionSection constant 1569
kPEFExecDataSection constant 1569
kPEFExpSymClassShift 1570
kPEFExpSymClassShift constant 1570
kPEFExpSymMaxNameOffset constant 1570
kPEFExpSymNameOffsetMask constant 1570
kPEFFirstSectionHeaderOffset 1571
kPEFFirstSectionHeaderOffset constant 1571
kPEFGlobalShare constant 1575
kPEFGlueSymbol constant 1570
kPEFHashLengthShift 1571
kPEFHashLengthShift constant 1571
kPEFHashMaxLength constant 1571
kPEFHashSlotFirstKeyMask constant 1572
kPEFHashSlotMaxKeyIndex constant 1572
kPEFHashSlotMaxSymbolCount constant 1572
kPEFHashSlotSymCountShift 1572
kPEFHashSlotSymCountShift constant 1572
kPEFHashValueMask constant 1571
kPEFImpSymClassShift 1572
kPEFImpSymClassShift constant 1572
kPEFImpSymMaxNameOffset constant 1573
kPEFImpSymNameOffsetMask constant 1572
kPEFInitLibBeforeMask constant 1582
kPEFLoaderSection constant 1569
kPEFPackedDataSection constant 1568
kPEFPkDataBlock constant 1574
kPEFPkDataCount5Mask constant 1573

2868
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kPEFPkDataMaxCount5 constant 1573
kPEFPkDataOpcodeShift 1573
kPEFPkDataOpcodeShift constant 1573
kPEFPkDataRepeat constant 1574
kPEFPkDataRepeatBlock constant 1574
kPEFPkDataRepeatZero constant 1574
kPEFPkDataVCountEndMask constant 1573
kPEFPkDataVCountMask constant 1573
kPEFPkDataVCountShift constant 1573
kPEFPkDataZero 1574
kPEFPkDataZero constant 1574
kPEFProcessShare 1574
kPEFProcessShare constant 1574
kPEFProtectedShare constant 1575
kPEFReexportedImport constant 1568
kPEFRelocBasicOpcodeRange 1575
kPEFRelocBasicOpcodeRange constant 1575
kPEFRelocBySectC constant 1576
kPEFRelocBySectD constant 1576
kPEFRelocBySectDWithSkip 1576
kPEFRelocBySectDWithSkip constant 1576
kPEFRelocImportRun constant 1576
kPEFRelocIncrPosition constant 1577
kPEFRelocIncrPositionMaxOffset 1578
kPEFRelocIncrPositionMaxOffset constant 1578
kPEFRelocLgByImport constant 1577
kPEFRelocLgByImportMaxIndex 1578
kPEFRelocLgByImportMaxIndex constant 1578
kPEFRelocLgBySectionSubopcode 1578
kPEFRelocLgBySectionSubopcode constant 1578
kPEFRelocLgRepeat constant 1577
kPEFRelocLgRepeatMaxChunkCount 1579
kPEFRelocLgRepeatMaxChunkCount constant 1579
kPEFRelocLgRepeatMaxRepeatCount constant 1579
kPEFRelocLgSetOrBySection constant 1577
kPEFRelocLgSetOrBySectionMaxIndex 1579
kPEFRelocLgSetOrBySectionMaxIndex constant 1579
kPEFRelocLgSetSectCSubopcode constant 1579
kPEFRelocLgSetSectDSubopcode constant 1579
kPEFRelocRunMaxRunLength 1580
kPEFRelocRunMaxRunLength constant 1580
kPEFRelocSetPosition constant 1577
kPEFRelocSetPosMaxOffset 1580
kPEFRelocSetPosMaxOffset constant 1580
kPEFRelocSmByImport constant 1577
kPEFRelocSmBySection constant 1577
kPEFRelocSmIndexMaxIndex 1580
kPEFRelocSmIndexMaxIndex constant 1580
kPEFRelocSmRepeat constant 1577
kPEFRelocSmRepeatMaxChunkCount 1581
kPEFRelocSmRepeatMaxChunkCount constant 1581
kPEFRelocSmRepeatMaxRepeatCount constant 1581
kPEFRelocSmSetSectC constant 1577

kPEFRelocSmSetSectD constant 1577
kPEFRelocTVector12 constant 1576
kPEFRelocTVector8 constant 1576
kPEFRelocUndefinedOpcode constant 1577
kPEFRelocVTable8 constant 1576
kPEFRelocWithSkipMaxRelocCount constant 1581
kPEFRelocWithSkipMaxSkipCount 1581
kPEFRelocWithSkipMaxSkipCount constant 1581
kPEFTag1 1582
kPEFTag1 constant 1582
kPEFTag2 constant 1582
kPEFTOCSymbol constant 1570
kPEFTracebackSection constant 1569
kPEFTVectorSymbol constant 1569
kPEFUndefinedSymbol constant 1570
kPEFUnpackedDataSection constant 1568
kPEFVersion constant 1582
kPEFWeakImportLibMask 1582
kPEFWeakImportLibMask constant 1582
kPEFWeakImportSymMask constant 1570
kPhoneAddress constant 2614
kPMDevicePowerLevel_D1 constant 1641
kPMDevicePowerLevel_D2 constant 1641
kPMDevicePowerLevel_Off constant 1641
kPMDevicePowerLevel_On constant 1641
kPolicyKCStopOn constant 1179
kPollEvent constant 2698
kPortKCItemAttr constant 1188
kPowerPC 251
kPowerPC constant 251
kPowerPCArch constant 252
kPowerPCCFragArch constant 247
kPowerPCISA constant 1452
kPowerPCRTA constant 1454
kPowerSummaryVersion constant 1638
kPPPAddrCompression constant 2650
kPPPAllAlertsDisabledFlag constant 2650
kPPPAllAlertsEnabledFlag constant 2650
kPPPAsyncMapCharsAll constant 2649
kPPPAsyncMapCharsNone 2649
kPPPAsyncMapCharsNone constant 2649
kPPPAsyncMapCharsXOnXOff constant 2649
kPPPAuthenticationFinishedEvent constant 2652
kPPPAuthenticationStartedEvent constant 2652
kPPPCHAPOrPAPOutAuthentication constant 2654
kPPPCompressionDisabled 2649
kPPPCompressionDisabled constant 2649
kPPPConnectCompleteEvent constant 2652
kPPPConnectionFlashingIconFlag constant 2650
kPPPConnectionRemindersFlag constant 2650
kPPPConnectionStatusConnected constant 2651
kPPPConnectionStatusConnecting constant 2651
kPPPConnectionStatusDialogsFlag 2650

2869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kPPPConnectionStatusDialogsFlag constant 2650
kPPPConnectionStatusDisconnecting constant 2651
kPPPConnectionStatusIdle 2651
kPPPConnectionStatusIdle constant 2651
kPPPDCECallFinishedEvent constant 2653
kPPPDCECallStartedEvent constant 2653
kPPPDCEInitFinishedEvent constant 2652
kPPPDCEInitStartedEvent constant 2652
kPPPDisconnectCompleteEvent constant 2652
kPPPDisconnectEvent constant 2652
kPPPEvent 2651
kPPPEvent constant 2651
kPPPIPCPDownEvent constant 2652
kPPPIPCPUpEvent constant 2652
kPPPLCPDownEvent constant 2652
kPPPLCPUpEvent constant 2652
kPPPLowerLayerDownEvent constant 2652
kPPPLowerLayerUpEvent constant 2652
kPPPMaxCallInfoLength constant 2653
kPPPMaxDTEAddressLength constant 2653
kPPPMaxIDLength 2653
kPPPMaxIDLength constant 2653
kPPPMaxMRU constant 2653
kPPPMaxPasswordLength constant 2653
kPPPMaxScriptSize constant 2654
kPPPMinMRU 2653
kPPPMinMRU constant 2653
kPPPNoOutAuthentication 2654
kPPPNoOutAuthentication constant 2654
kPPPOutPasswordDialogsFlag constant 2650
kPPPProtoCompression constant 2650
kPPPScriptTypeConnect constant 2654
kPPPScriptTypeModem 2654
kPPPScriptTypeModem constant 2654
kPPPSetScriptCompleteEvent constant 2652
kPPPStateClosed constant 2655
kPPPStateClosing constant 2655
kPPPStateInitial 2654
kPPPStateInitial constant 2654
kPPPStateOpened constant 2655
kPPPStateOpening constant 2655
kPreemptiveThread constant 2133
kPreferencesFolderType constant 988
kPrinterDescriptionFolderType constant 991
kPrinterDriverFolderType constant 991
kPrintMonitorDocsFolderType constant 988
kPrivateCFragCopy constant 255
kPRIVATEEVENT constant 2695
kProcDescriptorIsAbsolute constant 1463
kProcDescriptorIsIndex constant 1454
kProcDescriptorIsProcPtr constant 1454
kProcDescriptorIsRelative constant 1463
kPROTOCOLEVENT constant 2699

kProtocolKCItemAttr constant 1188
kPublicKeyHashKCItemAttr constant 1189
kRAProductClientOnly 2655
kRAProductClientOnly constant 2655
kRAProductManyPortServer constant 2655
kRAProductOnePortServer constant 2655
kRdPermKCStatus constant 1194
kReadyThreadState constant 2133
kRecentApplicationsFolderType constant 994
kRecentDocumentsFolderType constant 995
kRecentServersFolderType constant 995
kReferenceCFrag constant 255
kRegisterA0 constant 1461
kRegisterA1 constant 1461
kRegisterA2 constant 1461
kRegisterA3 constant 1461
kRegisterA4 constant 1461
kRegisterA5 constant 1461
kRegisterA6 constant 1461
kRegisterBased constant 1450
kRegisterD0 constant 1460
kRegisterD1 constant 1460
kRegisterD2 constant 1460
kRegisterD3 constant 1460
kRegisterD4 constant 1460
kRegisterD5 constant 1460
kRegisterD6 constant 1461
kRegisterD7 constant 1461
kRegisterParameterMask constant 1458
kRegisterParameterPhase constant 1458
kRegisterParameterSizePhase constant 1458
kRegisterParameterSizeWidth constant 1459
kRegisterParameterWhichPhase constant 1459
kRegisterParameterWhichWidth constant 1459
kRegisterParameterWidth constant 1458
kRegisterResultLocationPhase constant 1458
kRegisterResultLocationWidth constant 1458
kRelativeFolder constant 982
kResFileNotOpened constant 1706
kResolveAliasFileNoUI constant 220
kResolveAliasTryFileIDFirst constant 220
kResourceCFragLocator constant 256
kResultSizeMask constant 1458
kResultSizePhase constant 1457
kResultSizeWidth constant 1457
kReturnNextGroup constant 927
kReturnNextUG constant 927
kReturnNextUser constant 927
kRootFolder constant 984
kRoutineIsDispatchedDefaultRoutine constant

1451
kRoutineIsNotDispatchedDefaultRoutine constant

1451

2870
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kRoutingResourceType 2273
kRsrcChainAboveAllMaps constant 1709
kRsrcChainAboveApplicationMap constant 1709
kRsrcChainBelowApplicationMap constant 1709
kRsrcChainBelowSystemMap constant 1709
kRunningThreadState constant 2133
kSAP_ALL constant 2656
kSAP_CLEAR constant 2656
kSAP_ONE 2655
kSAP_ONE constant 2655
kSAP_RANGE constant 2656
kScriptCodeKCItemAttr constant 1186
kScriptingAdditionsFolderType constant 991
kScriptsFolderType constant 994
kSecurityDomainKCItemAttr constant 1187
kSelectorsAreIndexable constant 1462
kSelectorsAreNotIndexable constant 1462
kSerialABModuleID 2656
kSerialABModuleID constant 2656
kSerialNumberKCItemAttr constant 1189
kServerKCItemAttr constant 1187
kServiceKCItemAttr constant 1187
kSetDebugOption constant 436
kSharedLibrariesFolderType constant 991
kSHLBFileType constant 255
kShutdownFolderType constant 988
kShutdownItemsDisabledFolderType constant 989
kSIGHUP 2656
kSIGHUP constant 2656
kSIGNALEVENT constant 2698
kSignatureKCItemAttr constant 1188
kSignKCItemAttr constant 1190
kSIGPOLL constant 2656
kSIGURG constant 2656
kSKDocumentStateAddPending constant 2787
kSKDocumentStateDeletePending constant 2787
kSKDocumentStateIndexed constant 2787
kSKDocumentStateNotIndexed constant 2787
kSKEndTermChars constant 2786
kSKIndexInverted constant 2788
kSKIndexInvertedVector constant 2788
kSKIndexUnknown constant 2788
kSKIndexVector constant 2788
kSKLanguageTypes constant 2789
kSKMaximumTerms constant 2785
kSKMinTermLength constant 2785
kSKProximityIndexing constant 2785
kSKSearchBooleanRanked constant 2789
kSKSearchOptionDefault constant 2787
kSKSearchOptionFindSimilar constant 2788
kSKSearchOptionNoRelevanceScores constant 2788
kSKSearchOptionSpaceMeansOR constant 2788
kSKSearchPrefixRanked constant 2790

kSKSearchRanked constant 2789
kSKSearchRequiredRanked constant 2789
kSKStartTermChars constant 2786
kSKStopWords constant 2785
kSKSubstitutions constant 2785
kSKTermChars constant 2786
kSleepDeny constant 1651
kSmall4BitIcon constant 923
kSmall4BitIconSize constant 922
kSmall8BitIcon constant 923
kSmall8BitIconSize constant 922
kSmallIcon constant 923
kSmallIconSize constant 922
kSNAPSAP constant 2621
kSOCKS5NoAcceptableMethod constant 127
kSoundSetsFolderType constant 993
kSourceCanBeChargedMask constant 1647
kSourceIsACMask constant 1647
kSourceIsAvailableMask constant 1648
kSourceIsBatteryMask constant 1647
kSourceIsChargingMask constant 1648
kSourceIsUPSMask constant 1647
kSourceProvidesWarnLevelsMask constant 1647
kSpeakableItemsFolderType constant 995
kSpecialCase constant 1454
kSpecialCaseCaretHook constant 1464
kSpecialCaseDrawHook constant 1465
kSpecialCaseEOLHook constant 1464
kSpecialCaseGNEFilterProc constant 1466
kSpecialCaseHighHook constant 1464
kSpecialCaseHitTestHook constant 1465
kSpecialCaseMBarHook constant 1466
kSpecialCaseNWidthHook constant 1465
kSpecialCaseProtocolHandler constant 1465
kSpecialCaseSelectorMask constant 1459
kSpecialCaseSelectorPhase constant 1459
kSpecialCaseSelectorWidth constant 1459
kSpecialCaseSocketListener constant 1465
kSpecialCaseTEDoText constant 1466
kSpecialCaseTEFindWord constant 1465
kSpecialCaseTERecalc constant 1465
kSpecialCaseTextWidthHook constant 1465
kSpecialCaseWidthHook constant 1464
kSpecialFolder constant 982
kStackDispatchedPascalStackBased constant 1451
kStackParameterMask constant 1458
kStackParameterPhase constant 1458
kStackParameterWidth constant 1458
kStartDateKCItemAttr constant 1190
kStartupFolderType constant 988
kStartupItemsDisabledFolderType constant 989
kStationeryFolderType constant 990
kStillIdle constant 1652

2871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kStoppedThreadState constant 2133
kStreamCloseEvent constant 2701
kSTREAMEVENT constant 2697
kStreamIoctlEvent constant 2698
kStreamOpenEvent constant 2698
kStreamReadEvent constant 2698
kStreamWriteEvent constant 2698
kStubLibraryCFrag constant 258
kSubjectKCItemAttr constant 1188
kSystemControlPanelFolderType constant 988
kSystemDesktopFolderType constant 987
kSystemDomain constant 998
kSystemEventKCEventMask constant 1183
kSystemExtensionDisabledFolderType constant

989
kSystemFolderAliasType 2273
kSystemFolderType constant 987
kSystemKCEvent constant 1182
kSystemPreferencesFolderType constant 988
kSystemResFile constant 1706
kSystemTrashFolderType constant 987
kT8022FullPacketHeaderLength constant 2657
kT8022HeaderLength 2657
kT8022HeaderLength constant 2657
kT8022ModuleID 2657
kT8022ModuleID constant 2657
kT8022SNAPHeaderLength constant 2657
kTECAddFallbackInterruptBit constant 1978
kTECAddForceASCIIChangesBit constant 1978
kTECAddTextRunHeuristicsBit constant 1978
kTECArrayFullErr constant 2027
kTECBufferBelowMinimumSizeErr constant 2027
kTECCorruptConverterErr constant 2026
kTECDirectionErr constant 2027
kTECFallbackTextLengthFixBit constant 1977
kTECGlobalsUnavailableErr constant 2027
kTECIncompleteElementErr constant 2027
kTECItemUnavailableErr constant 2027
kTECKeepInfoFixBit constant 1977
kTECMissingTableErr constant 2026
kTECNeedFlushStatus constant 2028
kTECNoConversionPathErr constant 2026
kTECOutputBufferFullStatus constant 2028
kTECPartialCharErr constant 2027
kTECPluginDispatchTableCurrentVersion constant

2019
kTECPluginDispatchTableVersion1 constant 2019
kTECPluginDispatchTableVersion1_1 constant 2019
kTECPluginDispatchTableVersion1_2 constant 2019
kTECPreferredEncodingFixBit constant 1978
kTECTableChecksumErr constant 2026
kTECTableFormatErr constant 2026
kTECTextRunBitClearFixBit constant 1977

kTECTextToUnicodeScanFixBit constant 1978
kTECUnmappableElementErr constant 2027
kTECUsedFallbacksStatus constant 2027
kTemporaryFolderType constant 988
kTextEncodingBaseName constant 2012
kTextEncodingBig5 constant 2004
kTextEncodingBig5_HKSCS_1999 constant 2005
kTextEncodingCNS_11643_92_P1 constant 2010
kTextEncodingCNS_11643_92_P2 constant 2010
kTextEncodingCNS_11643_92_P3 constant 2010
kTextEncodingDefaultFormat constant 2011
kTextEncodingDefaultVariant constant 2013
kTextEncodingDOSArabic constant 2007
kTextEncodingDOSBalticRim constant 2006
kTextEncodingDOSCanadianFrench constant 2007
kTextEncodingDOSChineseSimplif constant 2007
kTextEncodingDOSChineseTrad constant 2007
kTextEncodingDOSCyrillic constant 2006
kTextEncodingDOSGreek constant 2006
kTextEncodingDOSGreek1 constant 2006
kTextEncodingDOSGreek2 constant 2007
kTextEncodingDOSHebrew constant 2006
kTextEncodingDOSIcelandic constant 2006
kTextEncodingDOSJapanese constant 2007
kTextEncodingDOSKorean constant 2007
kTextEncodingDOSLatin1 constant 2006
kTextEncodingDOSLatin2 constant 2006
kTextEncodingDOSLatinUS constant 2005
kTextEncodingDOSNordic constant 2007
kTextEncodingDOSPortuguese constant 2006
kTextEncodingDOSRussian constant 2007
kTextEncodingDOSThai constant 2007
kTextEncodingDOSTurkish constant 2006
kTextEncodingEBCDIC_CP037 constant 1988
kTextEncodingEBCDIC_US constant 1988
kTextEncodingEUC_CN constant 2000
kTextEncodingEUC_JP constant 2000
kTextEncodingEUC_KR constant 2001
kTextEncodingEUC_TW constant 2000
kTextEncodingFormatName constant 2013
kTextEncodingFullName constant 2012
kTextEncodingGBK_95 constant 2010
kTextEncodingGB_18030_2000 constant 2010
kTextEncodingGB_2312_80 constant 2010
kTextEncodingHZ_GB_2312 constant 2005
kTextEncodingISO10646_1993 constant 2014
kTextEncodingISOLatin1 constant 2002
kTextEncodingISOLatin2 constant 2002
kTextEncodingISOLatin3 constant 2002
kTextEncodingISOLatin4 constant 2003
kTextEncodingISOLatin5 constant 2003
kTextEncodingISOLatin6 constant 2003
kTextEncodingISOLatin7 constant 2003

2872
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kTextEncodingISOLatin8 constant 2003
kTextEncodingISOLatin9 constant 2003
kTextEncodingISOLatinArabic constant 2003
kTextEncodingISOLatinCyrillic constant 2003
kTextEncodingISOLatinGreek constant 2003
kTextEncodingISOLatinHebrew constant 2003
kTextEncodingISO_2022_CN constant 2002
kTextEncodingISO_2022_CN_EXT constant 2002
kTextEncodingISO_2022_JP constant 2001
kTextEncodingISO_2022_JP_1 constant 2001
kTextEncodingISO_2022_JP_2 constant 2001
kTextEncodingISO_2022_JP_3 constant 2002
kTextEncodingISO_2022_KR constant 2002
kTextEncodingJIS_C6226_78 constant 2009
kTextEncodingJIS_X0201_76 constant 2009
kTextEncodingJIS_X0208_83 constant 2009
kTextEncodingJIS_X0208_90 constant 2009
kTextEncodingJIS_X0212_90 constant 2009
kTextEncodingKOI8_R constant 2004
kTextEncodingKSC_5601_87 constant 2010
kTextEncodingKSC_5601_92_Johab constant 2010
kTextEncodingMacArabic constant 1984
kTextEncodingMacArmenian constant 1986
kTextEncodingMacBengali constant 1985
kTextEncodingMacBurmese constant 1985
kTextEncodingMacCeltic constant 1987
kTextEncodingMacCentralEurRoman constant 1986
kTextEncodingMacChineseSimp constant 1986
kTextEncodingMacChineseTrad constant 1984
kTextEncodingMacCroatian constant 1987
kTextEncodingMacCyrillic constant 1984
kTextEncodingMacDevanagari constant 1984
kTextEncodingMacDingbats constant 1987
kTextEncodingMacEthiopic constant 1986
kTextEncodingMacExtArabic constant 1986
kTextEncodingMacFarsi constant 1989
kTextEncodingMacGaelic constant 1987
kTextEncodingMacGeorgian constant 1986
kTextEncodingMacGreek constant 1984
kTextEncodingMacGujarati constant 1984
kTextEncodingMacGurmukhi constant 1984
kTextEncodingMacHebrew constant 1984
kTextEncodingMacHFS constant 2001
kTextEncodingMacIcelandic constant 1987
kTextEncodingMacInuit constant 1989
kTextEncodingMacJapanese constant 1983
kTextEncodingMacKannada constant 1985
kTextEncodingMacKeyboardGlyphs constant 1987
kTextEncodingMacKhmer constant 1985
kTextEncodingMacKorean constant 1984
kTextEncodingMacLaotian constant 1985
kTextEncodingMacMalayalam constant 1985
kTextEncodingMacMongolian constant 1986

kTextEncodingMacOriya constant 1984
kTextEncodingMacRoman constant 1983
kTextEncodingMacRomanian constant 1987
kTextEncodingMacRomanLatin1 constant 2004
kTextEncodingMacSinhalese constant 1985
kTextEncodingMacSymbol constant 1986
kTextEncodingMacTamil constant 1985
kTextEncodingMacTelugu constant 1985
kTextEncodingMacThai constant 1985
kTextEncodingMacTibetan constant 1986
kTextEncodingMacTurkish constant 1987
kTextEncodingMacUkrainian constant 1989
kTextEncodingMacUnicode constant 2004
kTextEncodingMacVietnamese constant 1986
kTextEncodingMacVT100 constant 1989
kTextEncodingMultiRun constant 2011
kTextEncodingsFolderType constant 990
kTextEncodingShiftJIS constant 2004
kTextEncodingShiftJIS_X0213_00 constant 2010
kTextEncodingUnicodeDefault constant 2014
kTextEncodingUnicodeV1_1 constant 2014
kTextEncodingUnicodeV2_0 constant 2014
kTextEncodingUnicodeV2_1 constant 2014
kTextEncodingUnicodeV3_0 constant 2015
kTextEncodingUnicodeV3_1 constant 2015
kTextEncodingUnicodeV3_2 constant 2015
kTextEncodingUnknown constant 2011
kTextEncodingUS_ASCII constant 2009
kTextEncodingVariantName constant 2013
kTextEncodingWindowsANSI constant 2008
kTextEncodingWindowsArabic constant 2008
kTextEncodingWindowsBalticRim constant 2008
kTextEncodingWindowsCyrillic constant 2008
kTextEncodingWindowsGreek constant 2008
kTextEncodingWindowsHebrew constant 2008
kTextEncodingWindowsKoreanJohab constant 2009
kTextEncodingWindowsLatin1 constant 2008
kTextEncodingWindowsLatin2 constant 2008
kTextEncodingWindowsLatin5 constant 2008
kTextEncodingWindowsVietnamese constant 2008
kTextLanguageDontCare constant 2025
kTextMalformedInputErr constant 2026
kTextRegionDontCare constant 2025
kTextScriptDontCare constant 2025
kTextUndefinedElementErr constant 2026
kTextUnsupportedEncodingErr constant 2026
kThemesFolderType constant 993
kThinkCStackBased constant 1451
kTMTaskActive constant 2147
kTOCCFragSymbol constant 257
kTOCSym constant 253
kTokenRingModuleID constant 2658
kTokenRingTSDU constant 2615

2873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kTrashFolderType constant 987
kTVectorCFragSymbol constant 257
kTVectSym constant 253
kTwoByteCode constant 1456
kTwoWayEncryptPassword constant 888
kTypeKCItemAttr constant 1186
kT_NULL constant 2708
kT_UNSPEC 2657
kT_UNSPEC constant 2657
kUCBidiCatArabicNumber constant 2017
kUCBidiCatBlockSeparator constant 2017
kUCBidiCatBoundaryNeutral constant 2018
kUCBidiCatCommonNumberSeparator constant 2017
kUCBidiCatEuroNumber constant 2016
kUCBidiCatEuroNumberSeparator constant 2016
kUCBidiCatEuroNumberTerminator constant 2016
kUCBidiCatLeftRight constant 2016
kUCBidiCatLeftRightEmbedding constant 2017
kUCBidiCatLeftRightOverride constant 2017
kUCBidiCatNonSpacingMark constant 2018
kUCBidiCatNotApplicable constant 2016
kUCBidiCatOtherNeutral constant 2017
kUCBidiCatPopDirectionalFormat constant 2018
kUCBidiCatRightLeft constant 2016
kUCBidiCatRightLeftArabic constant 2017
kUCBidiCatRightLeftEmbedding constant 2017
kUCBidiCatRightLeftOverride constant 2018
kUCBidiCatSegmentSeparator constant 2017
kUCBidiCatWhitespace constant 2017
kUCCharPropTypeBidiCategory constant 2020
kUCCharPropTypeCombiningClass constant 2020
kUCCharPropTypeGenlCategory constant 2020
kUCCollateCaseInsensitiveMask constant 2184
kUCCollateComposeInsensitiveMask constant 2183
kUCCollateDiacritInsensitiveMask constant 2184
kUCCollateDigitsAsNumberMask constant 2184
kUCCollateDigitsOverrideMask constant 2184
kUCCollatePunctuationSignificantMask constant

2184
kUCCollateStandardOptions constant 2183
kUCCollateTypeHFSExtended constant 2177
kUCCollateTypeMask constant 2178
kUCCollateTypeShiftBits constant 2178
kUCCollateTypeSourceMask constant 2177
kUCCollateWidthInsensitiveMask constant 2183
kUCGenlCatLetterLowercase constant 2023
kUCGenlCatLetterModifier constant 2023
kUCGenlCatLetterOther constant 2023
kUCGenlCatLetterTitlecase constant 2023
kUCGenlCatLetterUppercase constant 2023
kUCGenlCatMarkEnclosing constant 2022
kUCGenlCatMarkNonSpacing constant 2022
kUCGenlCatMarkSpacingCombining constant 2022

kUCGenlCatNumberDecimalDigit constant 2022
kUCGenlCatNumberLetter constant 2022
kUCGenlCatNumberOther constant 2022
kUCGenlCatOtherControl constant 2021
kUCGenlCatOtherFormat constant 2021
kUCGenlCatOtherNotAssigned constant 2021
kUCGenlCatOtherPrivateUse constant 2022
kUCGenlCatOtherSurrogate constant 2021
kUCGenlCatPunctClose constant 2023
kUCGenlCatPunctConnector constant 2023
kUCGenlCatPunctDash constant 2023
kUCGenlCatPunctFinalQuote constant 2024
kUCGenlCatPunctInitialQuote constant 2023
kUCGenlCatPunctOpen constant 2023
kUCGenlCatPunctOther constant 2024
kUCGenlCatSeparatorLine constant 2022
kUCGenlCatSeparatorParagraph constant 2022
kUCGenlCatSeparatorSpace constant 2022
kUCGenlCatSymbolCurrency constant 2024
kUCGenlCatSymbolMath constant 2024
kUCGenlCatSymbolModifier constant 2024
kUCGenlCatSymbolOther constant 2024
kUCKeyActionAutoKey constant 2179
kUCKeyActionDisplay constant 2179
kUCKeyActionDown constant 2179
kUCKeyActionUp constant 2179
kUCKeyLayoutFeatureInfoFormat constant 2180
kUCKeyLayoutHeaderFormat constant 2179
kUCKeyModifiersToTableNumFormat constant 2180
kUCKeyOutputGetIndexMask constant 2181
kUCKeyOutputSequenceIndexMask constant 2181
kUCKeyOutputStateIndexMask constant 2180
kUCKeyOutputTestForIndexMask constant 2181
kUCKeySequenceDataIndexFormat constant 2180
kUCKeyStateEntryRangeFormat constant 2181
kUCKeyStateEntryTerminalFormat constant 2181
kUCKeyStateRecordsIndexFormat constant 2180
kUCKeyStateTerminatorsFormat constant 2180
kUCKeyToCharTableIndexFormat constant 2180
kUCKeyTranslateNoDeadKeysBit constant 2182
kUCKeyTranslateNoDeadKeysMask constant 2182
kUCTextBreakCharMask constant 2185
kUCTextBreakClusterMask constant 2186
kUCTextBreakGoBackwardsMask constant 2185
kUCTextBreakIterateMask constant 2185
kUCTextBreakLeadingEdgeMask constant 2185
kUCTextBreakLineMask constant 2186
kUCTextBreakWordMask constant 2186
kUnicode16BitFormat constant 2011
kUnicode32BitFormat constant 2012
kUnicodeByteOrderMark constant 2018
kUnicodeCanonicalCompVariant constant 2000
kUnicodeCanonicalDecompVariant constant 1999

2874
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kUnicodeCollationClass constant 2182
kUnicodeDefaultDirection constant 1976
kUnicodeDefaultDirectionMask constant 1976
kUnicodeDirectionalityBits constant 1971
kUnicodeDirectionalityMask constant 1973
kUnicodeFallbackCustomFirst constant 1982
kUnicodeFallbackCustomOnly constant 1982
kUnicodeFallbackDefaultFirst constant 1982
kUnicodeFallbackDefaultOnly constant 1982
kUnicodeFallbackInterruptSafeMask constant 1979
kUnicodeFallbackSequencingMask constant 1979
kUnicodeForceASCIIRangeBit constant 1972
kUnicodeForceASCIIRangeMask constant 1975
kUnicodeHFSPlusCompVariant constant 2000
kUnicodeHFSPlusDecompVariant constant 2000
kUnicodeKeepInfoBit constant 1971
kUnicodeKeepInfoMask constant 1973
kUnicodeKeepSameEncodingBit constant 1972
kUnicodeKeepSameEncodingMask constant 1975
kUnicodeLeftToRight constant 1976
kUnicodeLeftToRightMask constant 1977
kUnicodeLooseMappingsBit constant 1971
kUnicodeLooseMappingsMask constant 1974
kUnicodeMapLineFeedToReturnBit constant 1972
kUnicodeMapLineFeedToReturnMask constant 1975
kUnicodeMatchOtherBaseBit constant 1980
kUnicodeMatchOtherBaseMask constant 1981
kUnicodeMatchOtherFormatBit constant 1980
kUnicodeMatchOtherFormatMask constant 1981
kUnicodeMatchOtherVariantBit constant 1980
kUnicodeMatchOtherVariantMask constant 1981
kUnicodeMatchUnicodeBaseBit constant 1980
kUnicodeMatchUnicodeBaseMask constant 1981
kUnicodeMatchUnicodeFormatBit constant 1980
kUnicodeMatchUnicodeFormatMask constant 1981
kUnicodeMatchUnicodeVariantBit constant 1980
kUnicodeMatchUnicodeVariantMask constant 1981
kUnicodeMaxDecomposedVariant constant 1996
kUnicodeNoComposedVariant constant 1996
kUnicodeNoHalfwidthCharsBit constant 1972
kUnicodeNoHalfwidthCharsMask constant 1975
kUnicodeNoSubset constant 1999
kUnicodeNotAChar constant 2019
kUnicodeObjectReplacement constant 2018
kUnicodeReplacementChar constant 2018
kUnicodeRightToLeft constant 1976
kUnicodeRightToLeftMask constant 1977
kUnicodeStringUnterminatedBit constant 1972
kUnicodeStringUnterminatedMask constant 1974
kUnicodeSwappedByteOrderMark constant 2019
kUnicodeTextBreakClass constant 2186
kUnicodeTextRunBit constant 1972
kUnicodeTextRunHeuristicsBit constant 1972

kUnicodeTextRunHeuristicsMask constant 1975
kUnicodeTextRunMask constant 1974
kUnicodeUseFallbacksBit constant 1971
kUnicodeUseFallbacksMask constant 1973
kUnicodeUseHFSPlusMapping constant 2025
kUnicodeUseLatestMapping constant 2024
kUnicodeUTF7Format constant 2012
kUnicodeUTF8Format constant 2012
kUnicodeVerticalFormBit constant 1971
kUnicodeVerticalFormMask constant 1973
kUnlockKCEvent constant 1181
kUnlockKCEventMask constant 1183
kUnlockStateKCStatus constant 1193
kUnresolvedCFragSymbolAddress constant 257
kUnresolvedSymbolAddress constant 255
kUnwrapKCItemAttr constant 1190
kUpdateKCEvent constant 1181
kUpdateKCEventMask constant 1183
kUpdateLib constant 254
kUseCurrentISA constant 1453
kUseDefaultMinimumWakeTime constant 1637
kUseDefaultMinimumWakeTime Constants 1637
kUseInPlace constant 253
kUseNativeISA constant 1453
kUsePremadeThread constant 2132
kUserDomain constant 998
kUsersFolderType 997
kUseWidePositioning constant 926
kUTCOverflowErr constant 422
kUTCUnderflowErr constant 422
kUtilitiesFolderType constant 992
kVCBFlagsHardwareGoneBit constant 936
kVCBFlagsHardwareGoneMask constant 936
kVCBFlagsHFSPlusAPIsBit constant 936
kVCBFlagsHFSPlusAPIsMask constant 936
kVCBFlagsIdleFlushBit constant 936
kVCBFlagsIdleFlushMask constant 936
kVCBFlagsVolumeDirtyBit constant 936
kVCBFlagsVolumeDirtyMask constant 936
kVerifyKCItemAttr constant 1190
kVLibTag2 constant 1583
kVoicesFolderType constant 992
kVolumeKCItemAttr constant 1188
kVolumeRootFolderType constant 989
kVolumeVirtualMemoryInfoVersion1 1442
kWeakStubLibraryCFrag constant 258
kWhereToEmptyTrashFolderType constant 987
kWholeFork constant 254
kWidePosOffsetBit constant 926
kWildcardCFragVersion constant 259
kWrapKCItemAttr constant 1190
kWrPermKCStatus constant 1194
kX121Address constant 2614

2875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kX86ISA 1455
kX86ISA constant 1455
kX86RTA 1455
kX86RTA constant 1455
kXLibTag1 1583
kXLibTag1 constant 1583
kXLibVersion constant 1583
kZIPMaxZoneLength 2658
kZIPMaxZoneLength constant 2658

L

langAfrikaans constant 1796
langAlbanian constant 1787
langAmharic constant 1794
langArabic constant 1784
langArmenian constant 1790
langAssamese constant 1791
langAymara constant 1796
langAzerbaijanAr constant 1789
langAzerbaijani constant 1789
langAzerbaijanRoman constant 1798
langBasque constant 1795
langBelorussian constant 1788
langBengali constant 1791
langBreton constant 1797
langBulgarian constant 1788
langBurmese constant 1793
langByelorussian constant 1788
langCatalan constant 1795
langChewa constant 1794
langCroatian constant 1785
langCzech constant 1788
langDanish constant 1784
langDutch constant 1783
langDzongkha constant 1796
langEnglish constant 1783
langEsperanto constant 1795
langEstonian constant 1786
langFaroese constant 1787
langFarsi constant 1787
langFinnish constant 1784
langFlemish constant 1787
langFrench constant 1783
langGalician constant 1796
langGeorgian constant 1790
langGerman constant 1783
langGreek constant 1784
langGreekPoly constant 1797
langGreenlandic constant 1797
langGuarani constant 1796
langGujarati constant 1791

langHebrew constant 1784
langHindi constant 1785
langHungarian constant 1786
langIcelandic constant 1785
langIndonesian constant 1793
langInuktitut constant 1797
langIrishGaelic constant 1787
langIrishGaelicScript constant 1797
langItalian constant 1783
langJapanese constant 1784
langJavaneseRom constant 1796
langKannada constant 1792
langKashmiri constant 1791
langKazakh constant 1789
langKhmer constant 1793
langKinyarwanda constant 1794
langKirghiz constant 1790
langKorean constant 1785
langKurdish constant 1790
langLao constant 1793
langLatin constant 1795
langLatvian constant 1786
langLithuanian constant 1786
langMacedonian constant 1788
langMalagasy constant 1795
langMalayalam constant 1792
langMalayArabic constant 1793
langMalayRoman constant 1793
langMaltese constant 1785
langManxGaelic constant 1797
langMarathi constant 1791
langMoldavian constant 1790
langMongolian constant 1790
langMongolianCyr constant 1790
langNepali constant 1791
langNorwegian constant 1784
langNyanja constant 1794
langOriya constant 1792
langOromo constant 1794
langPashto constant 1790
langPersian constant 1787
langPolish constant 1786
langPortuguese constant 1784
langPunjabi constant 1791
langQuechua constant 1796
langRomanian constant 1787
langRuanda constant 1794
langRundi constant 1794
langRussian constant 1787
langSami constant 1787
langSanskrit constant 1791
langScottishGaelic constant 1797
langSerbian constant 1788

2876
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

langSimpChinese constant 1787
langSindhi constant 1791
langSinhalese constant 1793
langSlovak constant 1788
langSlovenian constant 1788
langSomali constant 1794
langSpanish constant 1784
langSundaneseRom constant 1796
langSwahili constant 1794
langSwedish constant 1784
langTagalog constant 1793
langTajiki constant 1790
langTamil constant 1792
langTatar constant 1796
langTelugu constant 1793
langThai constant 1785
langTibetan constant 1791
langTigrinya constant 1794
langTongan constant 1797
langTradChinese constant 1785
langTurkish constant 1785
langTurkmen constant 1790
Language Code - Unspecified 1798
Language Codes A 1782
Language Codes B 1785
Language Codes C 1789
Language Codes D 1792
Language Codes E 1795
Language Codes F 1796
LanguageOrder function (Deprecated in Mac OS X v10.4)

2048
langUighur constant 1796
langUkrainian constant 1788
langUrdu constant 1785
langUzbek constant 1789
langVietnamese constant 1793
langWelsh constant 1795
langYiddish constant 1788
Large Volume Constants 926
lastDskErr constant 945
LASTMARK constant 2558
Launch Flags 1242
LCPEcho structure 2473
LCP_OPT_ECHO constant 2608
LCP_OPT_MRU constant 2607
LCP_OPT_PPPCOMPRESSION constant 2607
LCP_OPT_RCACCMAP constant 2607
LCP_OPT_TXACCMAP constant 2607
ldexp function 1312
LESSTHAN constant 1352
lgamma function 1312
Library Version Constants 1526
LIFO List Structure structure 2487

linkblk structure 2473
LMGetApFontID function (Deprecated in Mac OS X v10.4)

2191
LMGetApplZone function (Deprecated in Mac OS X v10.4)

1406
LMGetBootDrive function 2192
LMGetBufPtr function (Deprecated in Mac OS X v10.4)

2192
LMGetBufTgDate function (Deprecated in Mac OS X

v10.5) 2192
LMGetBufTgFBkNum function (Deprecated in Mac OS X

v10.5) 2192
LMGetBufTgFFlg function (Deprecated in Mac OS X

v10.5) 2193
LMGetBufTgFNum function (Deprecated in Mac OS X

v10.5) 2193
LMGetCPUFlag function (Deprecated in Mac OS X v10.4)

2193
LMGetCurApName function (Deprecated in Mac OS X

v10.5) 2194
LMGetCurApRefNum function (Deprecated in Mac OS X

v10.5) 2194
LMGetCurPageOption function (Deprecated in Mac OS

X v10.4) 2194
LMGetCurPitch function (Deprecated in Mac OS X v10.5)

2195
LMGetCurStackBase function (Deprecated in Mac OS X

v10.4) 2195
LMGetDefltStack function (Deprecated in Mac OS X

v10.5) 2195
LMGetDiskFormatingHFSDefaults function

(Deprecated in Mac OS X v10.4) 2196
LMGetFinderName function (Deprecated in Mac OS X

v10.4) 2196
LMGetGZMoveHnd function (Deprecated in Mac OS X

v10.5) 2196
LMGetGZRootHnd function (Deprecated in Mac OS X

v10.4) 2197
LMGetHeapEnd function (Deprecated in Mac OS X v10.4)

2197
LMGetHighHeapMark function (Deprecated in Mac OS X

v10.4) 2197
LMGetIntlSpec function 2198
LMGetJStash function (Deprecated in Mac OS X v10.5)

2198
LMGetLvl2DT function (Deprecated in Mac OS X v10.4)

2198
LMGetMemErr function 1406
LMGetMemTop function (Deprecated in Mac OS X v10.4)

2199
LMGetMinStack function (Deprecated in Mac OS X v10.5)

2199

2877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

LMGetMinusOne function (Deprecated in Mac OS X v10.4)
2199

LMGetOneOne function (Deprecated in Mac OS X v10.5)
2200

LMGetPrintErr function (Deprecated in Mac OS X v10.4)
2200

LMGetResErr function 2201
LMGetResLoad function 2201
LMGetRndSeed function (Deprecated in Mac OS X v10.5)

2201
LMGetScrDmpEnb function (Deprecated in Mac OS X

v10.4) 2201
LMGetSdVolume function (Deprecated in Mac OS X v10.4)

2202
LMGetSEvtEnb function (Deprecated in Mac OS X v10.4)

2202
LMGetSoundBase function (Deprecated in Mac OS X

v10.5) 2202
LMGetSoundLevel function (Deprecated in Mac OS X

v10.5) 2203
LMGetSoundPtr function (Deprecated in Mac OS X v10.4)

2203
LMGetStackLowPoint function (Deprecated in Mac OS

X v10.4) 2203
LMGetSysFontFam function (Deprecated in Mac OS X

v10.4) 2204
LMGetSysFontSize function (Deprecated in Mac OS X

v10.4) 2204
LMGetSysMap function 2204
LMGetSysResName function (Deprecated in Mac OS X

v10.4) 2205
LMGetSysZone function (Deprecated in Mac OS X v10.4)

1407
LMGetTmpResLoad function 2205
LMGetToExtFS function (Deprecated in Mac OS X v10.5)

2205
LMGetToolScratch function (Deprecated in Mac OS X

v10.4) 2206
LMSetApFontID function (Deprecated in Mac OS X v10.4)

2206
LMSetApplZone function (Deprecated in Mac OS X v10.4)

1407
LMSetBootDrive function 2206
LMSetBufPtr function (Deprecated in Mac OS X v10.4)

2206
LMSetBufTgDate function (Deprecated in Mac OS X

v10.5) 2207
LMSetBufTgFBkNum function (Deprecated in Mac OS X

v10.5) 2207
LMSetBufTgFFlg function (Deprecated in Mac OS X

v10.5) 2207
LMSetBufTgFNum function (Deprecated in Mac OS X

v10.5) 2208

LMSetCPUFlag function (Deprecated in Mac OS X v10.4)
2208

LMSetCurApName function (Deprecated in Mac OS X
v10.5) 2208

LMSetCurApRefNum function (Deprecated in Mac OS X
v10.5) 2209

LMSetCurPageOption function (Deprecated in Mac OS
X v10.4) 2209

LMSetCurPitch function (Deprecated in Mac OS X v10.5)
2209

LMSetCurStackBase function (Deprecated in Mac OS X
v10.4) 2210

LMSetDefltStack function (Deprecated in Mac OS X
v10.5) 2210

LMSetDiskFormatingHFSDefaults function
(Deprecated in Mac OS X v10.4) 2210

LMSetFinderName function (Deprecated in Mac OS X
v10.4) 2211

LMSetGZMoveHnd function (Deprecated in Mac OS X
v10.5) 2211

LMSetGZRootHnd function (Deprecated in Mac OS X
v10.4) 2211

LMSetHeapEnd function (Deprecated in Mac OS X v10.4)
2212

LMSetHighHeapMark function (Deprecated in Mac OS X
v10.4) 2212

LMSetIntlSpec function 2213
LMSetJStash function (Deprecated in Mac OS X v10.5)

2213
LMSetLvl2DT function (Deprecated in Mac OS X v10.4)

2213
LMSetMemErr function 1407
LMSetMemTop function (Deprecated in Mac OS X v10.4)

2213
LMSetMinStack function (Deprecated in Mac OS X v10.5)

2214
LMSetMinusOne function (Deprecated in Mac OS X v10.4)

2214
LMSetOneOne function (Deprecated in Mac OS X v10.5)

2214
LMSetPrintErr function (Deprecated in Mac OS X v10.4)

2215
LMSetResErr function 2215
LMSetResLoad function 2215
LMSetRndSeed function (Deprecated in Mac OS X v10.5)

2216
LMSetScrDmpEnb function (Deprecated in Mac OS X

v10.4) 2216
LMSetSdVolume function (Deprecated in Mac OS X v10.4)

2216
LMSetSEvtEnb function (Deprecated in Mac OS X v10.4)

2217

2878
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

LMSetSoundBase function (Deprecated in Mac OS X
v10.5) 2217

LMSetSoundLevel function (Deprecated in Mac OS X
v10.5) 2217

LMSetSoundPtr function (Deprecated in Mac OS X v10.4)
2218

LMSetStackLowPoint function (Deprecated in Mac OS
X v10.4) 2218

LMSetSysFontFam function (Deprecated in Mac OS X
v10.4) 2218

LMSetSysFontSize function 2219
LMSetSysMap function 2219
LMSetSysResName function (Deprecated in Mac OS X

v10.4) 2219
LMSetSysZone function (Deprecated in Mac OS X v10.4)

1408
LMSetTmpResLoad function 2220
LMSetToExtFS function (Deprecated in Mac OS X v10.5)

2220
LMSetToolScratch function (Deprecated in Mac OS X

v10.4) 2220
LNK_ENET 2658
LNK_ENET constant 2658
LNK_FDDI constant 2658
LNK_TOKN constant 2658
LNK_TPI constant 2658
Load Flag, Symbol Class, and Fragment Locator Constants

252
Load Options 255
LoadFlags data type 246
LoadResource function 1688
LocalDateTime structure 412
Locale Name Masks 1272
Locale Part Masks 1273
LocaleAndVariant structure 1269
LocaleCountNames function 1256
LocaleGetIndName function 1257
LocaleGetName function 1258
LocaleGetRegionLanguageName function (Deprecated

in Mac OS X v10.5) 1260
LocaleNameMask data type 1270
LocaleOperationClass data type 1270
LocaleOperationCountLocales function 1261
LocaleOperationCountNames function 1261
LocaleOperationGetIndName function 1262
LocaleOperationGetLocales function 1263
LocaleOperationGetName function 1264
LocaleOperationVariant data type 1271
LocalePartMask data type 1271
LocaleRef data type 1272
LocaleRefFromLangOrRegionCode function 1265
LocaleRefFromLocaleString function 1266
LocaleRefGetPartString function 1267

LocaleStringToLangAndRegionCodes function 1268
Locator Kind 256
Lock Data Type data type 2488
log function 1313
log10 function 1313
log1p function 1314
log2 function 1314
logb function 1314
Logical Page Size Selector 1056
Logical RAM Size Selector 1056
LogicalToPhysicalTable structure 1437
LOGMSGSZ 2659
LOGMSGSZ constant 2659
log_ctl structure 2474
Long Date Field Constants 418
Long Date Mask Constants 418
Long2Fix function 1314
LongDateCvt structure 412
LongDateRec structure 413
LongDateString function (Deprecated in Mac OS X

v10.3) 394
LongDateTime data type 414
LongDateToSeconds function (Deprecated in Mac OS X

v10.3) 395
LongSecondsToDate function (Deprecated in Mac OS X

v10.3) 395
LongTimeString function (Deprecated in Mac OS X

v10.3) 396
Low Memory Size Selector 1056
LowercaseText function (Deprecated in Mac OS X v10.4)

2049
LoWord function 1315
LSApplicationParameters structure 1237
LSCanRefAcceptItem function 1203
LSCanURLAcceptURL function 1204
LSCopyAllHandlersForURLScheme function 1205
LSCopyAllRoleHandlersForContentType function

1205
LSCopyApplicationForMIMEType function 1206
LSCopyApplicationURLsForURL function 1207
LSCopyDefaultHandlerForURLScheme function 1207
LSCopyDefaultRoleHandlerForContentType function

1208
LSCopyDisplayNameForRef function 1209
LSCopyDisplayNameForURL function 1210
LSCopyItemAttribute function 1210
LSCopyItemAttributes function 1211
LSCopyItemInfoForRef function 1212
LSCopyItemInfoForURL function 1213
LSCopyKindStringForMIMEType function 1213
LSCopyKindStringForRef function 1214
LSCopyKindStringForTypeInfo function 1215
LSCopyKindStringForURL function 1216

2879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

LSFindApplicationForInfo function 1217
LSGetApplicationForInfo function 1218
LSGetApplicationForItem function 1219
LSGetApplicationForURL function 1220
LSGetExtensionInfo function 1221
LSGetHandlerOptionsForContentType function 1222
LSInit function (Deprecated in Mac OS X v10.3) 1222
LSItemInfoRecord structure 1240
LSKindID structure 1240
LSLaunchFSRefSpec structure 1237
LSLaunchURLSpec structure 1238
LSOpenApplication function 1223
LSOpenCFURLRef function 1224
LSOpenFromRefSpec function 1225
LSOpenFromURLSpec function 1226
LSOpenFSRef function 1228
LSOpenItemsWithRole function 1229
LSOpenURLsWithRole function 1230
LSRegisterFSRef function 1231
LSRegisterURL function 1232
LSSetDefaultHandlerForURLScheme function 1232
LSSetDefaultRoleHandlerForContentType function

1233
LSSetExtensionHiddenForRef function 1234
LSSetExtensionHiddenForURL function 1235
LSSetHandlerOptionsForContentType function 1235
LSTerm function (Deprecated in Mac OS X v10.3) 1236

M

Mac Unicode Text Encoding 2004
Machine Name String ID 1057
MachineLocation structure 1368
Macintosh Model Codes 1373
Mailer Send LetterVersion Selector 1057
Mailer Version Selector 1057
major_t data type 2474
MakeDataExecutable function 1362
MakeMemoryNonResident function (Deprecated in Mac

OS X v10.4) 1408
MakeMemoryResident function (Deprecated in Mac OS

X v10.4) 1408
mapChanged constant 1711
mapChangedBit constant 1710
mapCompact constant 1711
mapCompactBit constant 1710
MappedFileAttributes data type 1437
MappedFileInformation structure 1437
MapperRef data type 2474
Mapping Code Constants 926
MappingPrivileges data type 1438
mapReadErr constant 1712

mapReadOnly constant 1710
mapReadOnlyBit constant 1710
MatchAlias function (Deprecated in Mac OS X v10.4)

201
MatchAliasNoUI function (Deprecated in Mac OS X

v10.5) 202
Matching Constants 220
MaxBlock function (Deprecated in Mac OS X v10.5) 1409
maxCountry constant 1798
maxDateField constant 421
MaximumProcessorSpeed function 1610
MaxMem function (Deprecated in Mac OS X v10.5) 1409
maxSize 1443
mblk_t data type 2474
MDItemCopyAttribute function 130
MDItemCopyAttributeList function 130
MDItemCopyAttributeNames function 131
MDItemCopyAttributes function 131
MDItemCreate function 132
MDItemGetTypeID function 132
MDItemRef data type 132
MDQueryBatchingParams structure 168
MDQueryCopyQueryString function 153
MDQueryCopySortingAttributes function 153
MDQueryCopyValueListAttributes function 154
MDQueryCopyValuesOfAttribute function 154
MDQueryCreate function 155
MDQueryCreateResultFunction callback 166
MDQueryCreateSubset function 155
MDQueryCreateValueFunction callback 167
MDQueryDisableUpdates function 156
MDQueryEnableUpdates function 156
MDQueryExecute function 157
MDQueryGetAttributeValueOfResultAtIndex

function 158
MDQueryGetBatchingParameters function 158
MDQueryGetCountOfResultsWithAttributeValue

function 158
MDQueryGetIndexOfResult function 159
MDQueryGetResultAtIndex function 160
MDQueryGetResultCount function 160
MDQueryGetTypeID function 161
MDQueryIsGatheringComplete function 161
MDQueryOptionsFlags 170
MDQueryRef data type 169
MDQuerySetBatchingParameters function 161
MDQuerySetCreateResultFunction function 162
MDQuerySetCreateValueFunction function 163
MDQuerySetSearchScope function 164
MDQuerySetSortComparator function 165
MDQuerySortComparatorFunction callback 167
MDQueryStop function 165
MDSchemaCopyAllAttributes function 2283

2880
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

MDSchemaCopyAttributesForContentType function
2283

MDSchemaCopyDisplayDescriptionForAttribute
function 2284

MDSchemaCopyDisplayNameForAttribute function
2284

MDSchemaCopyMetaAttributesForAttribute function
2285

Media Bay Selectors 1057
memAdrErr constant 1443
memAZErr constant 1443
memBCErr constant 1444
MemError function 1410
MemFragment data type 246
memFullErr constant 1443
memLockedErr constant 1444
Memory Allocation Alignment Constants 1523
Memory Allocation Option Constants 1525
Memory Attribute Selectors 1057
Memory Mapping Attribute Selectors 1059
MemoryBlock structure 1438
memPCErr constant 1444
memPurErr constant 1443
memROZErr constant 1443
memSCErr constant 1444
memWZErr constant 1443
Menu Manager Selectors in Mac OS 8.5 1059
menuPrgErr constant 1443
Message Manager Version Selector 1061
Meta Script Codes 1753
Metadata Attribute Schema Description Keys 2285
mFulErr constant 944
Microprocessor Codes 1374
Microseconds function 2141
minCountry constant 1798
MinimumProcessorSpeed function 1610
minor_t data type 2475
minuteMask constant 419
MIOC_ARP constant 2661
MIOC_ATALK constant 2661
MIOC_CFIG constant 2662
MIOC_DLPI constant 2661
MIOC_ECHO constant 2660
MIOC_HAVOC constant 2661
MIOC_IPX constant 2661
MIOC_ISDN 2659
MIOC_ISDN constant 2659
MIOC_ND constant 2660
MIOC_OT constant 2661
MIOC_RESERVEDf constant 2660
MIOC_RESERVEDi constant 2661
MIOC_RESERVEDp constant 2661
MIOC_RESERVEDr constant 2661

MIOC_RESERVEDs constant 2662
MIOC_SAD constant 2661
MIOC_SIOC constant 2661
MIOC_SOCKETS constant 2661
MIOC_SRL constant 2661
MIOC_STREAMIO 2660
MIOC_STREAMIO constant 2660
MIOC_STRLOG constant 2660
MIOC_TCP constant 2661
MIOC_TLI constant 2660
MIOC_TMOD constant 2660
Miscellaneous Attribute Selectors 1061
Miscellaneous Text Encoding Standards 2004
Mixed Mode Manager Selectors 1062
Mixed Mode Manager Version Selector 1063
MixedModeStateRecord structure 1446
mmInternalError constant 1466
MMU Type Selectors 1063
Modem State Bits 1638
ModemByte Bits 1639
ModemByte data type 1625
ModemByte Masks 1640
modemInstalledBit constant 1639
modemInstalledMask constant 1640
modemOnBit constant 1639
modemOnHookBit constant 1640
modemOnHookMask constant 1640
modemOnMask constant 1640
modemSetBit constant 1639
ModemStatus function (Deprecated in Mac OS X v10.0)

1610
modf function 1316
modff function 1316
MODOPEN constant 2560
module_info structure 2475
module_stat structure 2476
monthMask constant 419
MORECTL 2662
MORECTL constant 2662
MOREDATA constant 2662
MoreMasterPointers function (Deprecated in Mac OS

X v10.4) 1411
MoreMasters function (Deprecated in Mac OS X v10.4)

1411
MoveHHi function (Deprecated in Mac OS X v10.4) 1412
MPAddressSpaceID data type 1509
MPAddressSpaceInfo structure 1510
MPAllocate function 1471
MPAllocateAligned function 1472
MPAllocateTaskStorageIndex function 1472
MPAreaID data type 1510
MPArmTimer function 1473
MPBlockClear function 1474

2881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

MPBlockCopy function 1474
MPCancelTimer function 1475
MPCauseNotification function 1476
MPCoherenceID data type 1510
MPConsoleID data type 1510
MPCpuID data type 1511
MPCreateCriticalRegion function 1476
MPCreateEvent function 1477
MPCreateNotification function 1477
MPCreateQueue function 1478
MPCreateSemaphore function 1478
MPCreateTask function 1479
MPCreateTimer function 1480
MPCriticalRegionID data type 1511
MPCriticalRegionInfo structure 1511
MPCurrentTaskID function 1481
MPDataToCode function 1481
MPDeallocateTaskStorageIndex function 1482
MPDebuggerLevel 1526
MPDelayUntil function 1482
MPDeleteCriticalRegion function 1483
MPDeleteEvent function 1483
MPDeleteNotification function 1484
MPDeleteQueue function 1484
MPDeleteSemaphore function 1485
MPDeleteTimer function 1485
MPDisposeTaskException function 1486
MPEnterCriticalRegion function 1486
MPEventFlags data type 1512
MPEventID data type 1512
MPEventInfo structure 1512
MPExceptionKind data type 1512
MPExit function 1487
MPExitCriticalRegion function 1487
MPExtractTaskState function 1488
MPFree function 1488
MPGetAllocatedBlockSize function 1489
MPGetNextCpuID function 1489
MPGetNextTaskID function 1490
MPGetTaskStorageValue function 1490
MPLibrary_DevelopmentRevision constant 1527
MPLibrary_MajorVersion constant 1526
MPLibrary_MinorVersion constant 1527
MPLibrary_Release constant 1527
MPModifyNotification function 1491
MPModifyNotificationParameters function 1492
MPNotificationID data type 1513
MPNotificationInfo structure 1513
MPNotifyQueue function 1492
MPOpaqueID data type 1513
MPOpaqueIDClass data type 1514
MPPageSizeClass data type 1514
MPProcessID data type 1514

MPProcessors function 1493
MPProcessorsScheduled function 1493
MPQueueID data type 1514
MPQueueInfo structure 1515
MPRegisterDebugger function 1494
MPRemoteCall function 1494
MPRemoteCallCFM function 1495
MPRemoteProcedure callback 1508
MPSemaphoreCount data type 1515
MPSemaphoreID data type 1515
MPSemaphoreInfo structure 1516
MPSetEvent function 1496
MPSetExceptionHandler function 1496
MPSetQueueReserve function 1497
MPSetTaskState function 1498
MPSetTaskStorageValue function 1499
MPSetTaskType function 1499
MPSetTaskWeight function 1500
MPSetTimerNotify function 1500
MPSignalSemaphore function 1502
MPS_INTR_STATE data type 2477
MPTaskID data type 1516
MPTaskInfo structure 1516
MPTaskInfoVersion2 structure 1518
MPTaskIsPreemptive function 1502
MPTaskStateKind data type 1519
MPTaskWeight data type 1519
MPTerminateTask function 1503
MPThrowException function 1504
MPTimerID data type 1519
MPUnregisterDebugger function 1504
MPWaitForEvent function 1505
MPWaitOnQueue function 1506
MPWaitOnSemaphore function 1507
mpWorkFlagCopyWorkBlock constant 374
mpWorkFlagDoCompletion constant 374
mpWorkFlagDontBlock constant 374
mpWorkFlagDoWork 374
mpWorkFlagDoWork constant 374
mpWorkFlagGetIsRunning constant 375
mpWorkFlagGetProcessorCount constant 374
MPYield function 1507
MS-DOS and Windows Text Encodings 2005
msgb structure 2477
MSGDELIM constant 2663
MSGMARK 2663
MSGMARK constant 2663
MSGNOGET constant 2663
MSGNOLOOP constant 2663
MSG_ANY constant 2662
MSG_BAND constant 2662
MSG_HIPRI 2662
MSG_HIPRI constant 2662

2882
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

MultiDevParam structure 863
Multiple Users State Selector 1064
MultiUserGestalt structure 979
Munger function 2049
mustProcessorCycle constant 1643
MUXID_ALL 2663
MUXID_ALL constant 2663
M_BREAK constant 2675
M_COPYIN constant 2677
M_COPYOUT constant 2677
M_CTL constant 2675
M_DATA constant 2674
M_DELAY constant 2675
M_ERROR constant 2677
M_FLUSH constant 2676
M_HANGUP constant 2677
M_HPDATA constant 2677
M_IOCACK constant 2676
M_IOCDATA constant 2677
M_IOCNAK constant 2676
M_IOCTL constant 2675
M_MI 2659
M_MI constant 2659
M_MI_READ_END constant 2659
M_MI_READ_RESET constant 2659
M_MI_READ_SEEK constant 2659
M_PASSFP constant 2675
M_PCPROTO constant 2676
M_PCRSE constant 2677
M_PCSIG constant 2676
M_PROTO constant 2674
M_READ constant 2677
M_RSE constant 2675
M_SETOPTS constant 2675
M_SIG constant 2675
M_START constant 2676
M_STARTI constant 2677
M_STOP constant 2676
M_STOPI constant 2677

N

Name Registry Version Selector 1065
Name-Binding Protocol Attribute Selectors 1064
nan function 1316
nanf function 1317
National Standard Text Encodings 2009
Native CPU Selectors 1065
NBPAddress structure 2477
NBPEntity structure 2478
NBreakTable structure 2074
nearbyint function 1317

NearestMacTextEncodings function 1902
Negative Verbs 1754
negativeInfinity constant 1351
negZcbFreeErr constant 1443
Net Activity Wake Options 1641
NetActivity constant 1653
netbuf structure 2478
NewAlias function (Deprecated in Mac OS X v10.4) 203
NewAliasFilterUPP function 204
NewAliasMinimal function (Deprecated in Mac OS X

v10.4) 205
NewAliasMinimalFromFullPath function (Deprecated

in Mac OS X v10.4) 205
NewCollection function 291
NewCollectionExceptionUPP function 291
NewCollectionFlattenUPP function 292
NewComponentFunctionUPP function 343
NewComponentMPWorkFunctionUPP function 344
NewComponentRoutineUPP function 344
NewDebugAssertOutputHandlerUPP function 428
NewDebugComponent function 429
NewDebugComponentCallbackUPP function 429
NewDebuggerDisposeThreadUPP function 2103
NewDebuggerNewThreadUPP function 2104
NewDebuggerThreadSchedulerUPP function 2104
NewDebugOption function 429
NewDeferredTaskUPP function 1362
NewEmptyHandle function 1413
NewFNSubscriptionUPP function 562
NewFolderManagerNotificationUPP function 973
NewFSVolumeEjectUPP function 562
NewFSVolumeMountUPP function 563
NewFSVolumeUnmountUPP function 563
NewGestalt function (Deprecated in Mac OS X v10.3)

1007
NewGestaltValue function 1008
NewGetMissingComponentResourceUPP function 344
NewGrowZoneUPP function (Deprecated in Mac OS X

v10.4) 1414
NewHandle function 1414
NewHandleClear function 1415
NewHDSpindownUPP function 1611
NewIndexToStringUPP function (Deprecated in Mac OS

X v10.4) 2051
NewIOCompletionUPP function 563
NewKCCallbackUPP function 1170
newLineBit constant 890
newLineCharMask constant 890
newLineMask constant 890
NewOTListSearchUPP function (Deprecated in Mac OS

X v10.4) 2305
NewOTNotifyUPP function (Deprecated in Mac OS X

v10.4) 2305

2883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

NewOTProcessUPP function (Deprecated in Mac OS X
v10.4) 2306

NewPMgrStateChangeUPP function 1611
NewPtr function 1416
NewPtrClear function 1417
NewPurgeUPP function (Deprecated in Mac OS X v10.4)

1417
NewResErrUPP function 1688
NewSCSICallbackUPP function (Deprecated in Mac OS

X v10.2) 1824
NewSelectorFunctionUPP function 1008
NewSleepQUPP function 1612
NewString function (Deprecated in Mac OS X v10.4) 2051
NewThread function 2104
NewThreadEntryUPP function 2106
NewThreadSchedulerUPP function 2107
NewThreadSwitchUPP function 2107
NewThreadTerminationUPP function 2108
NewTimerUPP function 2141
NewUnicodeToTextFallbackUPP function 1903
NewUserFnUPP function (Deprecated in Mac OS X v10.4)

1418
nextafterd function 1317
nextafterf function 1318
NextStep Platform Encodings 2010
nilHandleErr constant 1443
nmType constant 1375
No-Copy Receive Buffer Structure structure 2480
noCacheBit constant 889
noCacheMask constant 889
noCalls constant 1650
noCollectionAttributes constant 312
noDriveErr constant 945
noErr constant 1654
NOERROR 2663
NOERROR constant 2663
noMacDskErr constant 945
noMoreFolderDescErr constant 1001
noRequest constant 1650
notAFileErr constant 947
notARemountErr constant 947
Notification Manager Attribute Selectors 1067
Notification Messages 999
Notification Options 998
Notification Subscription Options 925
nsDrvErr constant 945
nsvErr constant 943
NuBus Location Selector 1068
NuBus Slot Count Selector 1068
num2dec function 1318
Numeral Codes 1755
NumFormatString structure 2076
NumFormatString Version 2082

NumFormatStringRec data type 2077
NumToString function (Deprecated in Mac OS X v10.4)

2052

O

ObjParam structure 865
Obsolete Language Code Values 2084
Obsolete Language Codes 1819
Obsolete Regions Codes 1819
Obsolete Roman Script Constants 1820
Obsolete Script Codes 1820
Obsolete System Script Codes 1821
Obsolete Token Codes 1821
OCE Toolbox Attribute Selectors 1068
OCE Toolbox Version Selectors 1068
old_closep_t callback 2411
old_openp_t callback 2411
Open Firmware Safe Selectors 1069
Open Firmware Selector 1069
Open Transport Flags and Status Codes 2702
Open Transport Network Setup Selectors 1070
Open Transport Network Version Selector 1070
Open Transport Remote Access Selectors 1070
Open Transport Selectors 1069
Open Transport Version Selector 1071
OpenAComponent function 345
OpenAComponentResFile function 345
OpenADefaultComponent function 346
OpenComponent function 346
OpenComponentResFile function 347
OpenDefaultComponent function 348
OPENFAIL constant 2560
openOld_t callback 2412
openp_t callback 2413
OpenRFPerm function (Deprecated in Mac OS X v10.5)

1689
Opent Transport Remote Access Version Selector 1071
Operation Class 2182
Optional Return Value Constants 312
Optional Return Value Constants (Old) 313
OPT_ADDMCAST 2664
OPT_ADDMCAST constant 2664
OPT_ALERTENABLE constant 2721
OPT_CHECKSUM constant 2720
OPT_DELMCAST constant 2664
OPT_ENABLEEOM constant 2720
OPT_INTERVAL constant 2720
OPT_KEEPALIVE constant 2721
OPT_RCVDESTADDR constant 2664
OPT_RCVPACKETTYPE constant 2664
OPT_RETRYCNT constant 2720

2884
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

OPT_SELFSEND constant 2721
OPT_SERVERSTATUS constant 2721
OPT_SETPROMISCUOUS constant 2665
OPT_SETRAWMODE constant 2664
opWrErr constant 944
OS Trap Table Selector 1071
OSErr data type 2250
OSStatus data type 2250
OTAccept function (Deprecated in Mac OS X v10.4) 2306
OTAckSends function (Deprecated in Mac OS X v10.4)

2307
OTAddFirst function (Deprecated in Mac OS X v10.4)

2308
OTAddLast function (Deprecated in Mac OS X v10.4) 2308
OTAddress structure 2478
OTAddressType data type 2479
OTAllocInContext function (Deprecated in Mac OS X

v10.4) 2308
OTAllocMemInContext function (Deprecated in Mac OS

X v10.4) 2309
OTAllocMemProcPtr callback 2413
OTAsyncOpenAppleTalkServicesInContext function

(Deprecated in Mac OS X v10.4) 2310
OTAsyncOpenEndpointInContext function (Deprecated

in Mac OS X v10.4) 2310
OTAsyncOpenInternetServicesInContext function

(Deprecated in Mac OS X v10.4) 2311
OTAsyncOpenMapperInContext function (Deprecated

in Mac OS X v10.4) 2312
OTATalkGetInfo function (Deprecated in Mac OS X

v10.4) 2313
OTATalkGetLocalZones function (Deprecated in Mac

OS X v10.4) 2314
OTATalkGetMyZone function (Deprecated in Mac OS X

v10.4) 2314
OTATalkGetZoneList function (Deprecated in Mac OS

X v10.4) 2315
OTAtomicAdd16 function (Deprecated in Mac OS X v10.4)

2316
OTAtomicAdd32 function (Deprecated in Mac OS X v10.4)

2316
OTAtomicAdd8 function (Deprecated in Mac OS X v10.4)

2317
OTAtomicClearBit function (Deprecated in Mac OS X

v10.4) 2317
OTAtomicSetBit function (Deprecated in Mac OS X

v10.4) 2318
OTAtomicTestBit function (Deprecated in Mac OS X

v10.4) 2318
OTAutopushInfo structure 2479
OTBand data type 2480
OTBind function (Deprecated in Mac OS X v10.4) 2319
OTBooleanParam data type 2480

OTBufferDataSize function (Deprecated in Mac OS X
v10.4) 2320

OTByteCount data type 2482
OTCancelSynchronousCalls function (Deprecated in

Mac OS X v10.4) 2321
OTCancelTimerTask function (Deprecated in Mac OS X

v10.4) 2321
OTCanConfigureProcPtr callback 2414
OTCanMakeSyncCall function (Deprecated in Mac OS X

v10.4) 2322
OTCFConfigureProcPtr callback 2414
OTCFCreateStreamProcPtr callback 2415
OTCFHandleSystemEventProcPtr callback 2415
OTClearBit function (Deprecated in Mac OS X v10.4)

2322
OTClient data type 2482
OTClientContextPtr data type 2482
OTClientList structure 2482
OTClientName data type 2483
OTCloneConfiguration function (Deprecated in Mac

OS X v10.4) 2322
OTCloseProvider function (Deprecated in Mac OS X

v10.4) 2323
OTCommand data type 2483
OTCompareAndSwap16 function (Deprecated in Mac OS

X v10.4) 2324
OTCompareAndSwap32 function (Deprecated in Mac OS

X v10.4) 2324
OTCompareAndSwap8 function (Deprecated in Mac OS X

v10.4) 2325
OTCompareAndSwapPtr function (Deprecated in Mac OS

X v10.4) 2325
OTCompareDDPAddresses function (Deprecated in Mac

OS X v10.4) 2325
OTConfigurationRef data type 2483
OTConnect function (Deprecated in Mac OS X v10.4) 2326
OTCountDataBytes function (Deprecated in Mac OS X

v10.4) 2327
OTCreateConfiguration function (Deprecated in Mac

OS X v10.4) 2328
OTCreateConfiguratorProcPtr callback 2416
OTCreateDeferredTaskInContext function

(Deprecated in Mac OS X v10.4) 2329
OTCreatePortRef function (Deprecated in Mac OS X

v10.4) 2329
OTCreateTimerTaskInContext function (Deprecated

in Mac OS X v10.4) 2330
OTData Structure structure 2484
OTDataSize data type 2484
OTDeferredTaskRef data type 2484
OTDelay function (Deprecated in Mac OS X v10.4) 2331
OTDeleteName function (Deprecated in Mac OS X v10.4)

2331

2885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

OTDeleteNameByID function (Deprecated in Mac OS X
v10.4) 2332

OTDequeue function (Deprecated in Mac OS X v10.4) 2333
OTDestroyConfiguration function (Deprecated in Mac

OS X v10.4) 2333
OTDestroyDeferredTask function (Deprecated in Mac

OS X v10.4) 2334
OTDestroyTimerTask function (Deprecated in Mac OS

X v10.4) 2334
OTDontAckSends function (Deprecated in Mac OS X

v10.4) 2335
OTElapsedMicroseconds function (Deprecated in Mac

OS X v10.4) 2335
OTElapsedMilliseconds function (Deprecated in Mac

OS X v10.4) 2335
OTEnqueue function (Deprecated in Mac OS X v10.4) 2336
OTEnterNotifier function (Deprecated in Mac OS X

v10.4) 2336
OTError data type 2485
OTEventCode data type 2485
OTExtractNBPName function (Deprecated in Mac OS X

v10.4) 2337
OTExtractNBPType function (Deprecated in Mac OS X

v10.4) 2337
OTExtractNBPZone function (Deprecated in Mac OS X

v10.4) 2338
OTFindAndRemoveLink function (Deprecated in Mac OS

X v10.4) 2338
OTFindLink function (Deprecated in Mac OS X v10.4)

2339
OTFindOption function (Deprecated in Mac OS X v10.4)

2339
OTFindPort function (Deprecated in Mac OS X v10.4)

2340
OTFindPortByRef function (Deprecated in Mac OS X

v10.4) 2341
OTFree function (Deprecated in Mac OS X v10.4) 2341
OTFreeMem function (Deprecated in Mac OS X v10.4) 2342
OTGate structure 2485
OTGateProcPtr callback 2416
OTGetBusTypeFromPortRef function (Deprecated in

Mac OS X v10.4) 2343
OTGetClockTimeInSecs function (Deprecated in Mac

OS X v10.4) 2343
OTGetDeviceTypeFromPortRef function (Deprecated

in Mac OS X v10.4) 2343
OTGetEndpointInfo function (Deprecated in Mac OS X

v10.4) 2344
OTGetEndpointState function (Deprecated in Mac OS

X v10.4) 2345
OTGetFirst function (Deprecated in Mac OS X v10.4)

2345

OTGetIndexedLink function (Deprecated in Mac OS X
v10.4) 2346

OTGetIndexedPort function (Deprecated in Mac OS X
v10.4) 2346

OTGetLast function (Deprecated in Mac OS X v10.4) 2347
OTGetNBPEntityLengthAsAddress function

(Deprecated in Mac OS X v10.4) 2348
OTGetPortIconProcPtr callback 2417
OTGetPortNameProcPtr callback 2417
OTGetProtAddress function (Deprecated in Mac OS X

v10.4) 2348
OTGetSlotFromPortRef function (Deprecated in Mac

OS X v10.4) 2349
OTGetTimeStamp function (Deprecated in Mac OS X

v10.4) 2350
OTHashList structure 2486
OTHashProcPtr callback 2418
OTHashSearchProcPtr callback 2418
OTIdle function (Deprecated in Mac OS X v10.4) 2350
OTInetAddressToName function (Deprecated in Mac OS

X v10.4) 2350
OTInetGetInterfaceInfo function (Deprecated in Mac

OS X v10.4) 2351
OTInetGetSecondaryAddresses function (Deprecated

in Mac OS X v10.4) 2352
OTInetHostToString function (Deprecated in Mac OS

X v10.4) 2352
OTInetMailExchange function (Deprecated in Mac OS

X v10.4) 2353
OTInetQuery function (Deprecated in Mac OS X v10.4)

2354
OTInetStringToAddress function (Deprecated in Mac

OS X v10.4) 2355
OTInetStringToHost function (Deprecated in Mac OS

X v10.4) 2356
OTInetSysInfo function (Deprecated in Mac OS X v10.4)

2356
OTInitDDPAddress function (Deprecated in Mac OS X

v10.4) 2357
OTInitDDPNBPAddress function (Deprecated in Mac OS

X v10.4) 2358
OTInitDNSAddress function (Deprecated in Mac OS X

v10.4) 2358
OTInitializationFlags 2669
OTInitInetAddress function (Deprecated in Mac OS X

v10.4) 2359
OTInitNBPAddress function (Deprecated in Mac OS X

v10.4) 2360
OTInitNBPEntity function (Deprecated in Mac OS X

v10.4) 2360
OTInstallNotifier function (Deprecated in Mac OS X

v10.4) 2361
OTInt32 data type 2486

2886
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

OTIoctl function (Deprecated in Mac OS X v10.4) 2362
OTIsAckingSends function (Deprecated in Mac OS X

v10.4) 2363
OTIsBlocking function (Deprecated in Mac OS X v10.4)

2363
OTISDNAddress structure 2486
OTIsInList function (Deprecated in Mac OS X v10.4)

2363
OTIsSynchronous function (Deprecated in Mac OS X

v10.4) 2364
OTItemCount data type 2487
OTLeaveNotifier function (Deprecated in Mac OS X

v10.4) 2364
OTLIFODequeue function (Deprecated in Mac OS X v10.4)

2365
OTLIFOEnqueue function (Deprecated in Mac OS X v10.4)

2365
OTLIFOStealList function (Deprecated in Mac OS X

v10.4) 2366
OTLink structure 2487
OTListen function (Deprecated in Mac OS X v10.4) 2366
OTListSearchProcPtr callback 2419
OTListSearchUPP data type 2488
OTLook function (Deprecated in Mac OS X v10.4) 2367
OTLookupName function (Deprecated in Mac OS X v10.4)

2368
OTMemcmp function (Deprecated in Mac OS X v10.4) 2369
OTMemcpy function (Deprecated in Mac OS X v10.4) 2370
OTMemmove function (Deprecated in Mac OS X v10.4) 2370
OTMemset function (Deprecated in Mac OS X v10.4) 2370
OTMemzero function (Deprecated in Mac OS X v10.4) 2371
OTNameID data type 2489
OTNextOption function (Deprecated in Mac OS X v10.4)

2371
OTNotifyProcPtr callback 2419
OTNotifyUPP data type 2489
OTOpenAppleTalkServicesInContext function

(Deprecated in Mac OS X v10.4) 2372
OTOpenEndpointInContext function (Deprecated in

Mac OS X v10.4) 2373
OTOpenFlags 2669
OTOpenInternetServicesInContext function

(Deprecated in Mac OS X v10.4) 2374
OTOpenMapperInContext function (Deprecated in Mac

OS X v10.4) 2374
OTOptionManagement function (Deprecated in Mac OS

X v10.4) 2375
OTPacketType 2670
OTPCIInfo structure 2489
OTPortCloseStruct structure 2489
OTPortRef data type 2492
OTProcessProcPtr callback 2420
OTProcessUPP data type 2492

OTQLen data type 2492
OTRcv function (Deprecated in Mac OS X v10.4) 2377
OTRcvConnect function (Deprecated in Mac OS X v10.4)

2379
OTRcvDisconnect function (Deprecated in Mac OS X

v10.4) 2379
OTRcvOrderlyDisconnect function (Deprecated in Mac

OS X v10.4) 2380
OTRcvUData function (Deprecated in Mac OS X v10.4)

2381
OTRcvUDErr function (Deprecated in Mac OS X v10.4)

2382
OTReadBuffer function (Deprecated in Mac OS X v10.4)

2383
OTReadInfo structure 2493
OTReason data type 2493
OTRegisterAsClientInContext function (Deprecated

in Mac OS X v10.4) 2383
OTRegisterName function (Deprecated in Mac OS X

v10.4) 2384
OTReleaseBuffer function (Deprecated in Mac OS X

v10.4) 2384
OTRemoveFirst function (Deprecated in Mac OS X v10.4)

2385
OTRemoveLast function (Deprecated in Mac OS X v10.4)

2385
OTRemoveLink function (Deprecated in Mac OS X v10.4)

2386
OTRemoveNotifier function (Deprecated in Mac OS X

v10.4) 2386
OTResolveAddress function (Deprecated in Mac OS X

v10.4) 2387
OTResourceLocator structure 2493
OTResult data type 2494
OTReverseList function (Deprecated in Mac OS X v10.4)

2387
OTScheduleDeferredTask function (Deprecated in Mac

OS X v10.4) 2388
OTScheduleTimerTask function (Deprecated in Mac OS

X v10.4) 2389
OTScriptInfo structure 2494
OTSequence data type 2494
OTSetAddressFromNBPEntity function (Deprecated in

Mac OS X v10.4) 2389
OTSetAddressFromNBPString function (Deprecated in

Mac OS X v10.4) 2390
OTSetAsynchronous function (Deprecated in Mac OS X

v10.4) 2390
OTSetBit function (Deprecated in Mac OS X v10.4) 2391
OTSetBlocking function (Deprecated in Mac OS X v10.4)

2391
OTSetBusTypeInPortRef function (Deprecated in Mac

OS X v10.4) 2392

2887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

OTSetDeviceTypeInPortRef function (Deprecated in
Mac OS X v10.4) 2393

OTSetFirstClearBit function (Deprecated in Mac OS
X v10.4) 2393

OTSetNBPEntityFromAddress function (Deprecated in
Mac OS X v10.4) 2394

OTSetNBPName function (Deprecated in Mac OS X v10.4)
2394

OTSetNBPType function (Deprecated in Mac OS X v10.4)
2395

OTSetNBPZone function (Deprecated in Mac OS X v10.4)
2396

OTSetNonBlocking function (Deprecated in Mac OS X
v10.4) 2396

OTSetSynchronous function (Deprecated in Mac OS X
v10.4) 2397

OTSetupConfiguratorProcPtr callback 2421
OTSInt16Param data type 2494
OTSInt8Param data type 2495
OTSlotNumber data type 2495
OTSMCompleteProcPtr callback 2421
OTSnd function (Deprecated in Mac OS X v10.4) 2397
OTSndDisconnect function (Deprecated in Mac OS X

v10.4) 2399
OTSndOrderlyDisconnect function (Deprecated in Mac

OS X v10.4) 2399
OTSndUData function (Deprecated in Mac OS X v10.4)

2400
OTStateMachine structure 2495
OTStateMachineDataPad data type 2495
OTStateProcPtr callback 2422
OTStrCat function (Deprecated in Mac OS X v10.4) 2401
OTStrCopy function (Deprecated in Mac OS X v10.4) 2402
OTStrEqual function (Deprecated in Mac OS X v10.4)

2402
OTStrLength function (Deprecated in Mac OS X v10.4)

2402
OTSubtractTimeStamps function (Deprecated in Mac

OS X v10.4) 2403
OTSystemTaskRef data type 2496
OTTestBit function (Deprecated in Mac OS X v10.4) 2403
OTTimeout data type 2496
OTTimerTask data type 2496
OTTimeStampInMicroseconds function (Deprecated in

Mac OS X v10.4) 2404
OTTimeStampInMilliseconds function (Deprecated in

Mac OS X v10.4) 2404
OTUInt16Param data type 2497
OTUInt32 data type 2497
OTUInt8Param data type 2497
OTUnbind function (Deprecated in Mac OS X v10.4) 2405
OTUnixErr data type 2497

OTUnregisterAsClientInContext function
(Deprecated in Mac OS X v10.4) 2405

OTUseSyncIdleEvents function (Deprecated in Mac OS
X v10.4) 2406

OTXTILevel data type 2497
OTXTIName data type 2498
ot_bind structure 2478
ot_optmgmt structure 2478
OverallAct constant 1653
O_ASYNC 2664
O_ASYNC constant 2664
O_NDELAY constant 2664
O_NONBLOCK constant 2664

P

P2CStr function (Deprecated in Mac OS X v10.4) 2053
p2cstr function (Deprecated in Mac OS X v10.4) 2053
p2cstrcpy function (Deprecated in Mac OS X v10.4) 2054
pAboutMacintosh 2274
pApplicationFile 2274
PAP_OPT_OPENRETRY constant 2562
ParamBlockRec structure 866
paramErr constant 944
Parity Checking Attribute Selectors 1071
ParityOptionValues 2672
Path Conversion Options 928
PBAllocateAsync function (Deprecated in Mac OS X

v10.4) 564
PBAllocateForkAsync function 565
PBAllocateForkSync function 567
PBAllocateSync function (Deprecated in Mac OS X

v10.4) 568
PBAllocContigAsync function (Deprecated in Mac OS

X v10.4) 569
PBAllocContigSync function (Deprecated in Mac OS X

v10.4) 570
PBCatalogSearchAsync function 572
PBCatalogSearchSync function 573
PBCatMoveAsync function (Deprecated in Mac OS X

v10.4) 575
PBCatMoveSync function (Deprecated in Mac OS X v10.4)

576
PBCatSearchAsync function (Deprecated in Mac OS X

v10.4) 577
PBCatSearchSync function (Deprecated in Mac OS X

v10.4) 580
PBCloseAsync function (Deprecated in Mac OS X v10.5)

582
PBCloseForkAsync function 582
PBCloseForkSync function 583
PBCloseIteratorAsync function 584

2888
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PBCloseIteratorSync function 584
PBCloseSync function (Deprecated in Mac OS X v10.5)

585
PBCompareFSRefsAsync function 586
PBCompareFSRefsSync function 586
PBCreateDirectoryUnicodeAsync function 587
PBCreateDirectoryUnicodeSync function 589
PBCreateFileIDRefAsync function (Deprecated in Mac

OS X v10.5) 590
PBCreateFileIDRefSync function (Deprecated in Mac

OS X v10.5) 591
PBCreateFileUnicodeAsync function 591
PBCreateFileUnicodeSync function 593
PBCreateForkAsync function 594
PBCreateForkSync function 595
PBDeleteFileIDRefAsync function (Deprecated in Mac

OS X v10.5) 596
PBDeleteFileIDRefSync function (Deprecated in Mac

OS X v10.5) 597
PBDeleteForkAsync function 597
PBDeleteForkSync function 598
PBDeleteObjectAsync function 599
PBDeleteObjectSync function 600
PBDirCreateAsync function (Deprecated in Mac OS X

v10.4) 600
PBDirCreateSync function (Deprecated in Mac OS X

v10.4) 601
PBDTAddAPPLAsync function (Deprecated in Mac OS X

v10.4) 602
PBDTAddAPPLSync function (Deprecated in Mac OS X

v10.4) 603
PBDTAddIconAsync function (Deprecated in Mac OS X

v10.4) 604
PBDTAddIconSync function (Deprecated in Mac OS X

v10.4) 605
PBDTCloseDown function (Deprecated in Mac OS X v10.4)

606
PBDTDeleteAsync function (Deprecated in Mac OS X

v10.4) 607
PBDTDeleteSync function (Deprecated in Mac OS X

v10.4) 608
PBDTFlushAsync function (Deprecated in Mac OS X

v10.4) 609
PBDTFlushSync function (Deprecated in Mac OS X v10.4)

610
PBDTGetAPPLAsync function (Deprecated in Mac OS X

v10.4) 611
PBDTGetAPPLSync function (Deprecated in Mac OS X

v10.4) 612
PBDTGetCommentAsync function (Deprecated in Mac OS

X v10.4) 613
PBDTGetCommentSync function (Deprecated in Mac OS

X v10.4) 614

PBDTGetIconAsync function (Deprecated in Mac OS X
v10.4) 615

PBDTGetIconInfoAsync function (Deprecated in Mac
OS X v10.4) 616

PBDTGetIconInfoSync function (Deprecated in Mac OS
X v10.4) 618

PBDTGetIconSync function (Deprecated in Mac OS X
v10.4) 619

PBDTGetInfoAsync function (Deprecated in Mac OS X
v10.4) 620

PBDTGetInfoSync function (Deprecated in Mac OS X
v10.4) 621

PBDTGetPath function (Deprecated in Mac OS X v10.4)
622

PBDTOpenInform function (Deprecated in Mac OS X
v10.4) 623

PBDTRemoveAPPLAsync function (Deprecated in Mac OS
X v10.4) 624

PBDTRemoveAPPLSync function (Deprecated in Mac OS
X v10.4) 625

PBDTRemoveCommentAsync function (Deprecated in Mac
OS X v10.4) 626

PBDTRemoveCommentSync function (Deprecated in Mac
OS X v10.4) 627

PBDTResetAsync function (Deprecated in Mac OS X
v10.4) 627

PBDTResetSync function (Deprecated in Mac OS X v10.4)
628

PBDTSetCommentAsync function (Deprecated in Mac OS
X v10.4) 629

PBDTSetCommentSync function (Deprecated in Mac OS
X v10.4) 630

PBExchangeFilesAsync function (Deprecated in Mac
OS X v10.4) 631

PBExchangeFilesSync function (Deprecated in Mac OS
X v10.4) 633

PBExchangeObjectsAsync function 635
PBExchangeObjectsSync function 636
PBFlushFileAsync function (Deprecated in Mac OS X

v10.4) 636
PBFlushFileSync function (Deprecated in Mac OS X

v10.4) 637
PBFlushForkAsync function 638
PBFlushForkSync function 639
PBFlushVolAsync function (Deprecated in Mac OS X

v10.5) 640
PBFlushVolSync function (Deprecated in Mac OS X

v10.5) 641
PBFlushVolumeAsync function 642
PBFlushVolumeSync function 642
PBFSCopyFileAsync function 643
PBFSCopyFileSync function 643
PBGetCatalogInfoAsync function 643

2889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PBGetCatalogInfoBulkAsync function 644
PBGetCatalogInfoBulkSync function 646
PBGetCatalogInfoSync function 647
PBGetCatInfoAsync function (Deprecated in Mac OS X

v10.4) 648
PBGetCatInfoSync function (Deprecated in Mac OS X

v10.4) 651
PBGetEOFAsync function (Deprecated in Mac OS X v10.4)

654
PBGetEOFSync function (Deprecated in Mac OS X v10.4)

655
PBGetFCBInfoAsync function (Deprecated in Mac OS X

v10.4) 656
PBGetFCBInfoSync function (Deprecated in Mac OS X

v10.4) 658
PBGetForeignPrivsAsync function (Deprecated in Mac

OS X v10.4) 659
PBGetForeignPrivsSync function (Deprecated in Mac

OS X v10.4) 660
PBGetForkCBInfoAsync function 660
PBGetForkCBInfoSync function 661
PBGetForkPositionAsync function 663
PBGetForkPositionSync function 663
PBGetForkSizeAsync function 664
PBGetForkSizeSync function 665
PBGetFPosAsync function (Deprecated in Mac OS X

v10.4) 666
PBGetFPosSync function (Deprecated in Mac OS X v10.4)

666
PBGetUGEntryAsync function (Deprecated in Mac OS X

v10.4) 667
PBGetUGEntrySync function (Deprecated in Mac OS X

v10.4) 668
PBGetVolMountInfo function (Deprecated in Mac OS X

v10.5) 668
PBGetVolMountInfoSize function (Deprecated in Mac

OS X v10.5) 669
PBGetVolumeInfoAsync function 670
PBGetVolumeInfoSync function 671
PBGetXCatInfoAsync function (Deprecated in Mac OS

X v10.4) 672
PBGetXCatInfoSync function (Deprecated in Mac OS X

v10.4) 673
PBHCopyFileAsync function (Deprecated in Mac OS X

v10.5) 673
PBHCopyFileSync function (Deprecated in Mac OS X

v10.5) 675
PBHCreateAsync function (Deprecated in Mac OS X

v10.4) 676
PBHCreateSync function (Deprecated in Mac OS X v10.4)

677
PBHDeleteAsync function (Deprecated in Mac OS X

v10.4) 678

PBHDeleteSync function (Deprecated in Mac OS X v10.4)
679

PBHGetDirAccessAsync function (Deprecated in Mac
OS X v10.5) 680

PBHGetDirAccessSync function (Deprecated in Mac OS
X v10.5) 681

PBHGetFInfoAsync function (Deprecated in Mac OS X
v10.4) 682

PBHGetFInfoSync function (Deprecated in Mac OS X
v10.4) 683

PBHGetLogInInfoAsync function (Deprecated in Mac
OS X v10.4) 685

PBHGetLogInInfoSync function (Deprecated in Mac OS
X v10.4) 686

PBHGetVInfoAsync function (Deprecated in Mac OS X
v10.4) 686

PBHGetVInfoSync function (Deprecated in Mac OS X
v10.4) 690

PBHGetVolAsync function (Deprecated in Mac OS X
v10.4) 693

PBHGetVolParmsAsync function (Deprecated in Mac OS
X v10.5) 694

PBHGetVolParmsSync function (Deprecated in Mac OS
X v10.5) 695

PBHGetVolSync function (Deprecated in Mac OS X v10.4)
695

PBHMapIDAsync function (Deprecated in Mac OS X v10.5)
696

PBHMapIDSync function (Deprecated in Mac OS X v10.5)
698

PBHMapNameAsync function (Deprecated in Mac OS X
v10.5) 698

PBHMapNameSync function (Deprecated in Mac OS X
v10.5) 700

PBHMoveRenameAsync function (Deprecated in Mac OS
X v10.4) 701

PBHMoveRenameSync function (Deprecated in Mac OS X
v10.4) 702

PBHOpenAsync function (Deprecated in Mac OS X v10.4)
703

PBHOpenDenyAsync function (Deprecated in Mac OS X
v10.5) 704

PBHOpenDenySync function (Deprecated in Mac OS X
v10.5) 705

PBHOpenDFAsync function (Deprecated in Mac OS X
v10.4) 706

PBHOpenDFSync function (Deprecated in Mac OS X v10.4)
708

PBHOpenRFAsync function (Deprecated in Mac OS X
v10.4) 709

PBHOpenRFDenyAsync function (Deprecated in Mac OS
X v10.5) 710

2890
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PBHOpenRFDenySync function (Deprecated in Mac OS X
v10.5) 711

PBHOpenRFSync function (Deprecated in Mac OS X v10.4)
713

PBHOpenSync function (Deprecated in Mac OS X v10.4)
714

PBHRenameAsync function (Deprecated in Mac OS X
v10.4) 715

PBHRenameSync function (Deprecated in Mac OS X v10.4)
716

PBHRstFLockAsync function (Deprecated in Mac OS X
v10.4) 717

PBHRstFLockSync function (Deprecated in Mac OS X
v10.4) 718

PBHSetDirAccessAsync function (Deprecated in Mac
OS X v10.5) 719

PBHSetDirAccessSync function (Deprecated in Mac OS
X v10.5) 720

PBHSetFInfoAsync function (Deprecated in Mac OS X
v10.4) 721

PBHSetFInfoSync function (Deprecated in Mac OS X
v10.4) 722

PBHSetFLockAsync function (Deprecated in Mac OS X
v10.4) 723

PBHSetFLockSync function (Deprecated in Mac OS X
v10.4) 724

PBHSetVolAsync function (Deprecated in Mac OS X
v10.4) 725

PBHSetVolSync function (Deprecated in Mac OS X v10.4)
726

PBIterateForksAsync function 726
PBIterateForksSync function 727
PBLockRangeAsync function (Deprecated in Mac OS X

v10.4) 728
PBLockRangeSync function (Deprecated in Mac OS X

v10.4) 730
PBMakeFSRefAsync function (Deprecated in Mac OS X

v10.5) 731
PBMakeFSRefSync function (Deprecated in Mac OS X

v10.5) 732
PBMakeFSRefUnicodeAsync function 733
PBMakeFSRefUnicodeSync function 733
PBMakeFSSpecAsync function (Deprecated in Mac OS X

v10.4) 734
PBMakeFSSpecSync function (Deprecated in Mac OS X

v10.4) 736
PBMoveObjectAsync function 737
PBMoveObjectSync function 738
PBOpenForkAsync function 739
PBOpenForkSync function 740
PBOpenIteratorAsync function 741
PBOpenIteratorSync function 742

PBReadAsync function (Deprecated in Mac OS X v10.5)
743

PBReadForkAsync function 744
PBReadForkSync function 745
PBReadSync function (Deprecated in Mac OS X v10.5)

746
PBRenameUnicodeAsync function 748
PBRenameUnicodeSync function 748
PBResolveFileIDRefAsync function (Deprecated in

Mac OS X v10.5) 749
PBResolveFileIDRefSync function (Deprecated in Mac

OS X v10.5) 750
PBSetCatalogInfoAsync function 751
PBSetCatalogInfoSync function 753
PBSetCatInfoAsync function (Deprecated in Mac OS X

v10.4) 754
PBSetCatInfoSync function (Deprecated in Mac OS X

v10.4) 755
PBSetEOFAsync function (Deprecated in Mac OS X v10.4)

757
PBSetEOFSync function (Deprecated in Mac OS X v10.4)

758
PBSetForeignPrivsAsync function (Deprecated in Mac

OS X v10.4) 759
PBSetForeignPrivsSync function (Deprecated in Mac

OS X v10.4) 759
PBSetForkPositionAsync function 759
PBSetForkPositionSync function 760
PBSetForkSizeAsync function 761
PBSetForkSizeSync function 762
PBSetFPosAsync function (Deprecated in Mac OS X

v10.4) 763
PBSetFPosSync function (Deprecated in Mac OS X v10.4)

764
PBSetVInfoAsync function (Deprecated in Mac OS X

v10.4) 765
PBSetVInfoSync function (Deprecated in Mac OS X

v10.4) 766
PBSetVolumeInfoAsync function 767
PBSetVolumeInfoSync function 768
PBShareAsync function (Deprecated in Mac OS X v10.4)

769
PBShareSync function (Deprecated in Mac OS X v10.4)

769
PBUnlockRangeAsync function (Deprecated in Mac OS

X v10.4) 770
PBUnlockRangeSync function (Deprecated in Mac OS X

v10.4) 771
PBUnmountVol function (Deprecated in Mac OS X v10.4)

772
PBUnshareAsync function (Deprecated in Mac OS X

v10.4) 773

2891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PBUnshareSync function (Deprecated in Mac OS X v10.4)
773

PBVolumeMount function (Deprecated in Mac OS X v10.5)
773

PBWaitIOComplete function (Deprecated in Mac OS X
v10.5) 775

PBWriteAsync function (Deprecated in Mac OS X v10.5)
775

PBWriteForkAsync function 776
PBWriteForkSync function 777
PBWriteSync function (Deprecated in Mac OS X v10.5)

779
PBXGetVolInfoAsync function (Deprecated in Mac OS

X v10.4) 779
PBXGetVolInfoSync function (Deprecated in Mac OS X

v10.4) 782
PBXLockRangeAsync function 785
PBXLockRangeSync function 785
PBXUnlockRangeAsync function 785
PBXUnlockRangeSync function 786
PC Compatibility Card Selectors 1072
PC Exchange Attribute Selectors 1072
pCanConnect 2274
pCapacity 2274
PCI Bus PMIS Power Levels 1641
pComment 2275
pCompletelyExpanded 2275
pDeskAccessoryFile 2275
PEF2ContainerHeader structure 1544
PEF2ExportedSymbolKey data type 1545
PEF2ImportedLibrary structure 1546
PEF2LgExportedSymbol structure 1547
PEF2LgExportedSymbolHashSlot structure 1546
PEF2LgImportedSymbol structure 1548
PEF2LoaderInfoHeader structure 1549
PEF2LoaderRelocationHeader structure 1550
PEF2SectionHeader structure 1551
PEF2SmExportedSymbol data type 1552
PEF2SmExportedSymbolHashSlot data type 1551
PEF2SmImportedSymbol data type 1552
PEFContainerHeader structure 1553
PEFExportedSymbol structure 1554
PEFExportedSymbolHashSlot structure 1554
PEFExportedSymbolKey structure 1555
PEFImportedLibrary structure 1556
PEFImportedSymbol structure 1556
PEFLoaderInfoHeader structure 1557
PEFLoaderRelocationHeader structure 1558
PEFRelocChunk data type 1558
PEFSectionHeader structure 1559
PEFSplitHashWord structure 1560
permErr constant 945
pFile 2275

pFileCreator 2276
pFileShareOn 2276
Physical RAM Size Selector 1073
pi function 1318
pInfoPanel 2276
pInternetLocation 2276
pIsZoomedFull 2276
platform68k 375
platform68k constant 375
platformAIXppc constant 376
platformIA32NativeEntryPoint constant 375
platformInterpreted constant 375
platformIRIXmips 376
platformIRIXmips constant 376
platformLinuxintel constant 376
platformLinuxppc constant 376
platformMacOSx86 constant 377
platformNeXT68k constant 377
platformNeXTIntel constant 376
platformNeXTppc constant 376
platformNeXTsparc constant 376
platformPowerPC constant 375
platformPowerPCNativeEntryPoint constant 375
platformSunOSintel constant 376
platformSunOSsparc constant 376
platformWin32 constant 375
pleaseCacheBit constant 889
pleaseCacheMask constant 889
PLpos function (Deprecated in Mac OS X v10.4) 1535
PLstrcat function (Deprecated in Mac OS X v10.4) 1536
PLstrchr function (Deprecated in Mac OS X v10.4) 1537
PLstrcmp function (Deprecated in Mac OS X v10.4) 1537
PLstrcpy function (Deprecated in Mac OS X v10.4) 1538
PLstrlen function (Deprecated in Mac OS X v10.4) 1538
PLstrncat function (Deprecated in Mac OS X v10.4) 1539
PLstrncmp function (Deprecated in Mac OS X v10.4) 1539
PLstrncpy function (Deprecated in Mac OS X v10.4) 1540
PLstrpbrk function (Deprecated in Mac OS X v10.4) 1541
PLstrrchr function (Deprecated in Mac OS X v10.4) 1541
PLstrspn function (Deprecated in Mac OS X v10.4) 1542
PLstrstr function (Deprecated in Mac OS X v10.4) 1542
pmBusyErr constant 1654
PMFeatures function (Deprecated in Mac OS X v10.5)

1612
PMgrQueueElement structure 1625
PMgrStateChangeProcPtr callback 1621
PMgrStateChangeUPP data type 1626
PMgrStateQInstall function (Deprecated in Mac OS X

v10.0) 1612
PMgrStateQRemove function (Deprecated in Mac OS X

v10.0) 1613
PMgrStateQType constant 1637
pMinAppPartition 2277

2892
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

pmMask constant 420
pmRecvEndErr constant 1654
pmRecvStartErr constant 1654
pmReplyTOErr constant 1654
PMResultCode data type 1626
PMSelectorCount function (Deprecated in Mac OS X

v10.5) 1613
pmSendEndErr constant 1654
pmSendStartErr constant 1654
pNoArrangement 2277
pObject 2277
pollfd structure 2498
PollRef structure 2498
Pop-up Control Selector 1073
pOriginalItem 2277
Port Additional Flags 2640
Port Flags 2639
Port Framing Capabilities 2624
Port-Related Constants 2619
posErr constant 944
Position Mode Constants 928
positiveInfinity constant 1351
pow function 1319
Power Capacity Types 1642
Power Handler Wake Results 1642
Power Manager Attribute Selectors 1074
Power Manager Features Bits 1643
Power Manager Version Selector 1074
Power Source Attribute Bits 1646
Power Source Capacity Usage Types 1647
Power Source State Bits 1648
Power Source Version 1649
Power Summary Flags 1649
PowerHandlerProcPtr callback 1621
PowerLevel data type 1626
PowerPC Attribute Selectors 1075
PowerPC Toolbox Attribute Selectors 1075
PowerSourceID data type 1627
PowerSourceParamBlock structure 1627
PowerSourceParamBlockPtr data type 1628
PowerSummary structure 1628
pOwner 2277
PPPMRULimits structure 2499
PPP_OPT_GETCURRENTSTATE constant 2608
Preemptive Function Atrribute Selectors 1076
PrimeTime function (Deprecated in Mac OS X v10.4) 2142
PrimeTimeTask function (Deprecated in Mac OS X v10.4)

2142
Procedure Descriptors 1454
Procedure Information Size Constants 1455
Processor Clock Speed Selector 1077
Processor Type Selector 1077
ProcInfo Field Offset And Width Constants 1456

ProcInfoType data type 1446
ProviderRef data type 2499
pSeeFiles 2278
pSharableContainer 2278
pShowFolderSize 2278
pShowModificationDate 2278
pSmallIcon 2279
pSound 2279
pStartupDisk 2279
PtrAndHand function 1418
PtrToHand function 1419
PtrToXHand function 1419
PurgeCollection function 292
PurgeCollectionTag function 293
PurgeMem function (Deprecated in Mac OS X v10.4) 1420
PurgeProcPtr callback 1433
PurgeSpace function (Deprecated in Mac OS X v10.4)

1421
PurgeSpaceContiguous function (Deprecated in Mac

OS X v10.4) 1421
PurgeSpaceTotal function (Deprecated in Mac OS X

v10.4) 1422
PurgeUPP data type 1439
putp_t callback 2422
pWarnOnEmpty 2279

Q

QBACK constant 2678
QBAD constant 2674
qband structure 2500
qband_t data type 2500
QB_BACK constant 2673
QB_FULL 2673
QB_FULL constant 2673
QB_WANTW constant 2673
QCOUNT constant 2674
QElem structure 1369
QENAB constant 2678
qErr constant 1377
QEXCOPENCLOSE constant 2679
qfields 2673
qfields_t data type 2500
QFIRST constant 2674
QFLAG constant 2674
QFULL constant 2678
QHdr structure 1370
QHIWAT constant 2673
QHLIST constant 2679
qinit structure 2501
QLAST constant 2674
QLOWAT constant 2673

2893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

QMAXPSZ constant 2673
QMINPSZ constant 2674
QNOENB constant 2678
QNORM 2674
QNORM constant 2674
QOLD constant 2678
QPCTL 2676
QPCTL constant 2676
QPROTECTED constant 2679
QREADR 2678
QREADR constant 2678
Quadra Redefinitions 1078
Query Result Change Keys 172
Query Search Scope Keys 172
QueryUnicodeMappings function 1903
queue structure 2502
Queue Types 1374
queue_q_u structure 2503
queue_t data type 2503
Quick Draw 3D Old Attribute Selectors 1078
Quick Draw 3D Version Selector 1078
QuickDraw 3D Attribute Selectors 1078
QuickDraw 3D Viewer Attribute Selectors 1079
QuickDraw 3D Viewer Old Selectors 1082
QuickDraw Attribute Selectors 1079
QuickDraw GX Attribute Selectors 1081
QuickDraw GX Overall Version Selector 1081
QuickDraw GX Printing Version Selector 1081
QuickDraw GX Version Selectors 1081
QuickDraw Text Attribute Selectors 1082
QuickDraw Text Version Selectors 1083
QuickDraw Version Selectors 1080
QuickTime Attribute Selectors 1084
QuickTime Conferencing Information Selector 1084
QuickTime Conferencing Selector 1085
QuickTime Streaming Attribute Selector 1085
QuickTime Streaming Version Selector 1085
QuickTime Version Selectors 1084
QuickTime VR Feature Selectors 1084
QuickTime VR Version Selector 1084
QUNWELDING constant 2679
QUSE constant 2678
QWANTR constant 2678
QWANTW constant 2678
QWELDED constant 2679
q_xtra structure 2499

R

randomx function 1319
Range Checking Region Code 1798
RBV Address Selector 1085

RDFlagsType data type 1447
rdVerify constant 890
rdVerifyBit constant 889
rdVerifyMask constant 890
ReadDateTime function (Deprecated in Mac OS X v10.3)

397
ReadLocation function 1362
ReadPartialResource function 1690
ReallocateHandle function 1422
Realtime Manager Attribute Selectors 1085
RECOPY constant 2687
RecoverHandle function 1423
Reference Number Constants 1706
Region Codes A 1798
Region Codes B 1802
Region Codes C 1803
Region Codes D 1806
Regions Codes E 1807
Register Component Resource flags 377
Register Constants 1459
RegisterComponent function 348
registerComponentAfterExisting constant 377
registerComponentAliasesOnly constant 377
RegisterComponentFile function (Deprecated in Mac

OS X v10.5) 350
RegisterComponentFileEntries function (Deprecated

in Mac OS X v10.5) 350
RegisterComponentFileRef function 351
RegisterComponentFileRefEntries function 351
registerComponentGlobal constant 377
registerComponentNoDuplicates constant 377
RegisterComponentResource function 352
RegisterComponentResourceFile function 352
RegisteredComponentInstanceRecord structure 370
RegisteredComponentRecord structure 370
relation function 1319
Relational Operator 1352
ReleaseCollection function 294
ReleaseFolder function (Deprecated in Mac OS X v10.3)

973
ReleaseMemoryData function (Deprecated in Mac OS X

v10.4) 1423
ReleaseResource function 1691
relop data type 1348
RelString function (Deprecated in Mac OS X v10.4) 2054
relstring function (Deprecated in Mac OS X v10.4) 2055
remainder function 1320
Remote Call Context Option Constants 1527
RemoveCollectionItem function 294
RemoveFolderDescriptor function 974
RemoveFolderRouting function (Deprecated in Mac OS

X v10.4) 975
RemoveIndexedCollectionItem function 295

2894
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

RemoveResource function 1692
RemoveTimeTask function (Deprecated in Mac OS X

v10.4) 2143
remquo function 1320
ReplaceGestalt function (Deprecated in Mac OS X

v10.3) 1009
ReplaceGestaltValue function 1009
ReplaceIndexedCollectionItem function 295
ReplaceIndexedCollectionItemHdl function 297
ReplaceText function (Deprecated in Mac OS X v10.4)

2056
Request Codes 378
Requested-Information Flags 1244
resAttrErr constant 1712
ResAttributes data type 1704
resChanged constant 1709
resChangedBit constant 1708
ResError function 1692
ResErrProcPtr callback 1703
ResErrUPP data type 1704
ReserveMem function (Deprecated in Mac OS X v10.4)

1424
ResetTextToUnicodeInfo function 1905
ResetUnicodeToTextInfo function 1905
ResetUnicodeToTextRunInfo function 1906
ResFileAttributes data type 1705
ResFileRefNum data type 1705
resFNotFound constant 1711
ResID data type 1705
resLocked constant 1708
resLockedBit constant 1707
resNotFound constant 1711
ResolveAlias function (Deprecated in Mac OS X v10.4)

206
ResolveAliasFile function (Deprecated in Mac OS X

v10.4) 208
ResolveAliasFileWithMountFlags function

(Deprecated in Mac OS X v10.5) 209
ResolveAliasFileWithMountFlagsNoUI function

(Deprecated in Mac OS X v10.4) 210
ResolveAliasWithMountFlags function (Deprecated

in Mac OS X v10.4) 211
ResolveComponentAlias function 353
ResolveDefaultTextEncoding function 1906
Resource Attribute Bits 1707
Resource Attribute Masks 1708
Resource Chain Location 1709
Resource Fork Attribute Bits 1710
Resource Fork Attribute Masks 1710
Resource Manager Attribute Selectors 1086
Resource Manager Bug Fixes Attribute Selectors 1086
ResourceEndianFilterPtr callback 1704
resourceInMemory constant 1711

ResourceSpec structure 370
resPreload constant 1709
resPreloadBit constant 1708
resProtected constant 1709
resProtectedBit constant 1707
resPurgeable constant 1708
resPurgeableBit constant 1707
resSysHeap constant 1708
resSysHeapBit constant 1707
resSysRefBit constant 1707
ResType data type 1706
Result Relevance Sorting Key 173
RetainCollection function 298
retryComponentRegistrationErr constant 380
RevertTextEncodingToScriptInfo function 1907
RFILL constant 2679
rfNumErr constant 945
ringDetectBit constant 1639
ringDetectMask constant 1640
ringWakeUpBit constant 1639
ringWakeUpMask constant 1640
rint function 1321
rinttol function 1321
RMSGD constant 2679
RMSGN constant 2679
rmvResFailed constant 1711
RmvTime function (Deprecated in Mac OS X v10.4) 2144
RNORM 2679
RNORM constant 2679
Roles Mask 1241
ROM Size Selector 1087
ROM Version Selector 1087
Root Directory Constants 929
round function 1321
roundtol function 1322
Routine Descriptor Flags 1462
Routine Descriptor Version 1454
Routine Entry Point Flags 1463
Routine Selector Flags 1463
RoutineDescriptor structure 1447
RoutineFlagsType data type 1448
RoutineRecord structure 1448
routingNotFoundErr constant 1001
RoutingResourceEntry structure 2260
RPROTDAT constant 2680
RPROTDIS constant 2680
RPROTNORM 2680
RPROTNORM constant 2680
RS_ALLOWAGAIN constant 2680
RS_DELIMITMSG constant 2680
RS_EXDATA 2680
RS_EXDATA constant 2680
RS_HIPRI 2680

2895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

RS_HIPRI constant 2680
RTA Types 1453

S

S32Set function 1322
S64Absolute function 1322
S64Add function 1323
S64And function 1323
S64BitwiseAnd function 1323
S64BitwiseEor function 1324
S64BitwiseNot function 1324
S64BitwiseOr function 1324
S64Compare function 1325
S64Div function 1325
S64Divide function 1325
S64Eor function 1326
S64Max function 1326
S64Min function 1326
S64Multiply function 1327
S64Negate function 1327
S64Not function 1327
S64Or function 1328
S64Set function 1328
S64SetU function 1328
S64ShiftLeft function 1329
S64ShiftRight function 1329
S64Subtract function 1329
sameFileErr constant 947
scalb function 1330
scArbNBErr constant 1863
scBadParmsErr constant 1863
scBusTOErr constant 1863
SCC Read Address Selector 1087
SCC Write Address Selector 1088
scCommErr constant 1863
scCompareErr constant 1863
scComplPhaseErr constant 1863
SchedulerInfoRec structure 2128
scMgrBusyErr constant 1863
scPhaseErr constant 1863
Scrap Manager Selectors 1088
Screen Capture Selectors 1088
Script Code - Unicode Input 1762
Script Codes 1757
Script Constants 1762
Script Flag Attributes 1765
Script Manager Selectors 1768
Script Manager Version Selector 1089
Script Redraw Selectors 1756
Script Systems Count Selector 1089
Script Token Types 1778

Script Variable Selectors 1773
ScriptCodeRun structure 1957
scriptCurLang constant 2083
scriptDefLang constant 2083
ScriptOrder function (Deprecated in Mac OS X v10.4)

2057
ScriptRunStatus structure 2078
ScriptTokenType data type 1736
scSequenceErr constant 1863
SCSI Flags 1845
SCSI IO Flags 1852
SCSI Manager Attribute Selectors 1088
SCSI Result Flags 1851
SCSI Transfer Types 1855
SCSIAbortCommand constant 1850
SCSIAbortCommandPB structure 1838
SCSIAction function (Deprecated in Mac OS X v10.2)

1824
SCSIAction function selector codes 1849
scsiAutosenseFailed constant 1867
scsiAutosenseValid constant 1852
scsiBadConnID constant 1864
scsiBadConnType constant 1864
scsiBadDataLength constant 1864
scsiBDRsent constant 1867
scsiBusCacheCoherentDMA constant 1856
scsiBusDifferential constant 1857
scsiBusDMAavailables constant 1857
scsiBusErrorsUnsafe constant 1859
scsiBusExternal constant 1856
scsiBusFastSCSI constant 1857
SCSIBusInquiry constant 1849
SCSIBusInquiryPB Data Types 1854
SCSIBusInquiryPB Feature Flags 1855
SCSIBusInquiryPB structure 1834
scsiBusInternal constant 1856
scsiBusInternalExternal constant 1856
scsiBusInternalExternalUnknown constant 1856
scsiBusInvalid constant 1865
scsiBusLinkedCDB constant 1858
scsiBusMDP 1857
scsiBusMDP constant 1857
scsiBusNotFree constant 1852
scsiBusOldCallCapable constant 1857
scsiBusSDTR constant 1858
scsiBusSoftReset constant 1858
scsiBusTagQ constant 1858
scsiBusWide16 constant 1858
scsiBusWide32 constant 1857
scsiBusy constant 1866
SCSICallbackProcPtr callback 1825
SCSICallbackUPP data type 1829
scsiCannotLoadPlugin constant 1864

2896
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

scsiCDBIsPointer constant 1847
scsiCDBLengthInvalid constant 1865
scsiCDBLinked constant 1847
scsiCDBReceived constant 1866
scsiCommandTimeout constant 1868
SCSICreateRefNumXref constant 1850
scsiDataBuffer constant 1854
scsiDataPhysical constant 1848
scsiDataReadyForDMA constant 1848
scsiDataRunError constant 1867
scsiDataSG constant 1854
scsiDataTIB constant 1854
scsiDataTypeInvalid constant 1865
scsiDeviceConflict constant 1866
scsiDeviceNoOldCallAccess constant 1863
scsiDeviceNotThere constant 1866
scsiDeviceSensitive 1862
scsiDeviceSensitive constant 1863
scsiDirectionIn constant 1847
scsiDirectionMask constant 1846
scsiDirectionNone constant 1846
scsiDirectionOut constant 1846
scsiDisableAutosense constant 1847
scsiDisableSelectWAtn constant 1852
scsiDisableSyncData constant 1847
scsiDisableWide constant 1853
scsiDoDisconnect constant 1848
scsiDontDisconnect constant 1848
SCSIDriverPB structure 1843
scsiErrorBase 1862
SCSIExecIO constant 1849
scsiExecutionErrors 1862
scsiFamilyInternalError constant 1864
scsiFireWireBridgeBus constant 1860
scsiFunctionNotAvailable constant 1865
SCSIGetVirtualIDInfo constant 1850
SCSIGetVirtualIDInfoPB structure 1841
scsiIdentifyMessageRejected constant 1868
scsiIDInvalid constant 1865
scsiInitiateSyncData constant 1847
scsiInitiateWide constant 1853
scsiInvalidMsgType constant 1864
scsiIOInProgress constant 1864
SCSILoadDriver constant 1850
SCSILoadDriverPB structure 1842
SCSILookupRefNumXref constant 1850
scsiLUNInvalid constant 1865
scsiMessageRejectReceived constant 1867
scsiMotherboardBus 1860
scsiMotherboardBus constant 1860
scsiNoBucketIn constant 1853
scsiNoBucketOut constant 1853
scsiNoHBA constant 1866

scsiNoNexus constant 1866
scsiNonZeroStatus constant 1868
SCSINop constant 1849
scsiNoParityCheck constant 1852
scsiNoSuchXref constant 1866
scsiNuBus constant 1860
scsiOddDisconnectUnsafeRead1 1858
scsiOddDisconnectUnsafeRead1 constant 1859
scsiOddDisconnectUnsafeWrite1 constant 1859
SCSIOldCall constant 1850
scsiParityError constant 1867
scsiPartialPrepared constant 1864
scsiPBLengthError constant 1865
scsiPCIBus constant 1860
scsiPCMCIABus constant 1860
scsiPDSBus constant 1860
scsiPluginInternalError constant 1864
scsiProvideFail constant 1866
scsiQEnable constant 1847
scsiQLinkInvalid constant 1866
SCSIRegisterWithNewXPT constant 1850
SCSIReleaseQ constant 1849
SCSIRemoveRefNumXref constant 1850
scsiRenegotiateSense constant 1854
scsiRequestAborted constant 1868
scsiRequestInProgress constant 1863
scsiRequestInvalid constant 1865
scsiRequiresHandshake constant 1859
SCSIResetBus constant 1850
SCSIResetDevice constant 1850
scsiSavePtrOnDisconnect constant 1853
scsiSCSIBusReset constant 1867
scsiSelectTimeout constant 1868
scsiSensePhysical constant 1848
scsiSequenceFailed constant 1867
scsiSIMQFreeze constant 1848
scsiSIMQFrozen constant 1851
scsiSIMQHead constant 1848
scsiSIMQNoFreeze constant 1848
scsiTargetDrivenSDTRSafe constant 1859
scsiTargetReserved constant 1864
scsiTerminated constant 1867
SCSITerminateIO constant 1850
SCSITerminateIOPB structure 1839
scsiTIDInvalid constant 1865
scsiTooManyBuses constant 1866
scsiTransferBlind constant 1855
scsiTransferPolled constant 1855
scsiTransferTypeInvalid constant 1865
scsiUnableToAbort constant 1868
scsiUnableToTerminate constant 1868
scsiUnexpectedBusFree constant 1867
scsiUSBBus constant 1861

2897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

scsiVERSION 1862
scsiWrongDirection constant 1867
SCSI_IO Data Types 1854
SCSI_IO structure 1829
SCSI_PB structure 1827
secondMask constant 419
SecondsToDate function (Deprecated in Mac OS X v10.3)

397
SEC_OPT_ID constant 2607
SEC_OPT_OUTAUTHENTICATION constant 2607
SEC_OPT_PASSWORD constant 2607
SegmentedFragment data type 246
SelectorFunctionProcPtr callback 1011
SelectorFunctionUPP data type 1012
SENDZERO 2682
SENDZERO constant 2682
Serial Hardware Attribute Selectors 1089
Serial Port Arbitrator Attribute Selectors 1090
SERIAL_OPT_BAUDRATE 2682
SERIAL_OPT_BAUDRATE constant 2682
SERIAL_OPT_BURSTMODE constant 2683
SERIAL_OPT_DATABITS constant 2682
SERIAL_OPT_DUMMY constant 2683
SERIAL_OPT_ERRORCHARACTER constant 2683
SERIAL_OPT_EXTCLOCK constant 2683
SERIAL_OPT_HANDSHAKE constant 2683
SERIAL_OPT_PARITY constant 2682
SERIAL_OPT_RCVTIMEOUT constant 2683
SERIAL_OPT_STATUS constant 2683
SERIAL_OPT_STOPBITS constant 2682
Set Default Component Flags 379
SetA5 function (Deprecated in Mac OS X v10.4) 1363
SetAliasUserType function 212
SetAliasUserTypeWithPtr function 212
SetCollectionDefaultAttributes function 298
SetCollectionExceptionProc function 299
SetCollectionItemInfo function 299
SetComponentInstanceError function 353
SetComponentInstanceStorage function 354
SetComponentRefcon function 355
SetCurrentA5 function (Deprecated in Mac OS X v10.4)

1364
SetDateTime function (Deprecated in Mac OS X v10.3)

398
SetDebuggerNotificationProcs function 2108
SetDebugOptionValue function 430
SetDefaultComponent function 356
SetDimmingTimeout function (Deprecated in Mac OS X

v10.0) 1614
SetDimSuspendState function (Deprecated in Mac OS

X v10.0) 1614
SetEOF function (Deprecated in Mac OS X v10.4) 786
SetFallbackUnicodeToText function 1908

SetFallbackUnicodeToTextRun function 1909
SetFPos function (Deprecated in Mac OS X v10.4) 787
SetGestaltValue function 1010
SetGrowZone function (Deprecated in Mac OS X v10.4)

1425
SetHandleSize function 1425
SetHardDiskTimeout function (Deprecated in Mac OS

X v10.0) 1615
SetIndexedCollectionItemInfo function 300
SetIntModemState function (Deprecated in Mac OS X

v10.0) 1615
SetLocalDateTime function (Deprecated in Mac OS X

v10.4) 398
SetProcessorSpeed function (Deprecated in Mac OS X

v10.5) 1615
SetPtrSize function 1426
SetResAttrs function 1693
SetResFileAttrs function 1694
SetResInfo function 1694
SetResLoad function 1695
SetResourceSize function 1696
SetResPurge function 1697
SetScriptManagerVariable function (Deprecated in

Mac OS X v10.5) 1731
SetScriptVariable function (Deprecated in Mac OS X

v10.5) 1732
SetSCSIDiskModeAddress function (Deprecated in Mac

OS X v10.0) 1616
SetSleepTimeout function (Deprecated in Mac OS X

v10.0) 1616
SetSoundMixerState function (Deprecated in Mac OS

X v10.0) 1617
SetSpindownDisable function (Deprecated in Mac OS

X v10.5) 1617
SetStartupTimer function (Deprecated in Mac OS X

v10.0) 1617
SetString function (Deprecated in Mac OS X v10.4) 2057
SetSysDirection function (Deprecated in Mac OS X

v10.4) 1733
SetThreadReadyGivenTaskRef function 2110
SetThreadScheduler function 2110
SetThreadState function 2112
SetThreadStateEndCritical function 2113
SetThreadSwitcher function 2114
SetThreadTerminator function 2115
SetTime function (Deprecated in Mac OS X v10.3) 399
Settings Manager Attribute Selectors 1091
Settings Manager Location Selector 1091
Settings Manager Version Selector 1091
SetUTCDateTime function (Deprecated in Mac OS X

v10.4) 400
SetWakeupTimer function (Deprecated in Mac OS X

v10.0) 1618

2898
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

SetWUTime function (Deprecated in Mac OS X v10.0) 1618
short_p data type 2503
Shutdown Attribute Selectors 1091
SIGDIGLEN 1352
SIGDIGLEN constant 1352
SIGHUP 2684
SIGHUP constant 2684
signbit function 1330
SIGPOLL constant 2684
SIGURG constant 2684
sin function 1330
Single Window Mode Selectors 1091
sinh function 1331
SInt64ToUInt64 function 1331
sIQType constant 1375
SKDocumentCopyURL function 2734
SKDocumentCreate function 2734
SKDocumentCreateWithURL function 2735
SKDocumentGetName function 2736
SKDocumentGetParent function 2736
SKDocumentGetSchemeName function 2737
SKDocumentGetTypeID function 2737
SKDocumentID data type 2783
SKDocumentIndexState 2786
SKDocumentRef data type 2781
SKIndexAddDocument function 2738
SKIndexAddDocumentWithText function 2739
SKIndexClose function 2740
SKIndexCompact function 2741
SKIndexCopyDocumentForDocumentID function 2741
SKIndexCopyDocumentIDArrayForTermID function

2742
SKIndexCopyDocumentProperties function 2742
SKIndexCopyDocumentRefsForDocumentIDs function

2743
SKIndexCopyDocumentURLsForDocumentIDs function

2744
SKIndexCopyInfoForDocumentIDs function 2744
SKIndexCopyTermIDArrayForDocumentID function

2745
SKIndexCopyTermStringForTermID function 2746
SKIndexCreateWithMutableData function 2746
SKIndexCreateWithURL function 2747
SKIndexDocumentIteratorCopyNext function 2748
SKIndexDocumentIteratorCreate function 2749
SKIndexDocumentIteratorGetTypeID function 2750
SKIndexDocumentIteratorRef data type 2781
SKIndexFlush function 2750
SKIndexGetAnalysisProperties function 2751
SKIndexGetDocumentCount function 2751
SKIndexGetDocumentID function 2752
SKIndexGetDocumentState function 2753
SKIndexGetDocumentTermCount function 2753

SKIndexGetDocumentTermFrequency function 2754
SKIndexGetIndexType function 2754
SKIndexGetMaximumBytesBeforeFlush function 2755
SKIndexGetMaximumDocumentID function 2755
SKIndexGetMaximumTermID function 2756
SKIndexGetTermDocumentCount function 2756
SKIndexGetTermIDForTermString function 2757
SKIndexGetTypeID function 2757
SKIndexMoveDocument function 2758
SKIndexOpenWithData function 2758
SKIndexOpenWithMutableData function 2759
SKIndexOpenWithURL function 2760
SKIndexRef data type 2782
SKIndexRemoveDocument function 2761
SKIndexRenameDocument function 2761
SKIndexSetDocumentProperties function 2762
SKIndexSetMaximumBytesBeforeFlush function 2763
SKIndexType 2788
SKLoadDefaultExtractorPlugIns function 2763
SKSearchCancel function 2764
SKSearchCreate function 2764
SKSearchFindMatches function 2766
SKSearchGetTypeID function 2768
SKSearchGroupCopyIndexes function (Deprecated in

Mac OS X v10.4) 2768
SKSearchGroupCreate function (Deprecated in Mac OS

X v10.4) 2769
SKSearchGroupGetTypeID function 2769
SKSearchGroupRef data type 2784
SKSearchOptions 2787
SKSearchRef data type 2782
SKSearchResultsCopyMatchingTerms function

(Deprecated in Mac OS X v10.4) 2770
SKSearchResultsCreateWithDocuments function

(Deprecated in Mac OS X v10.4) 2770
SKSearchResultsCreateWithQuery function

(Deprecated in Mac OS X v10.4) 2772
SKSearchResultsFilterCallBack callback 2780
SKSearchResultsGetCount function (Deprecated in

Mac OS X v10.4) 2773
SKSearchResultsGetInfoInRange function

(Deprecated in Mac OS X v10.4) 2773
SKSearchResultsGetTypeID function 2774
SKSearchResultsRef data type 2783
SKSummaryCopyParagraphAtIndex function 2775
SKSummaryCopyParagraphSummaryString function

2775
SKSummaryCopySentenceAtIndex function 2776
SKSummaryCopySentenceSummaryString function

2776
SKSummaryCreateWithString function 2777
SKSummaryGetParagraphCount function 2777
SKSummaryGetParagraphSummaryInfo function 2777

2899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

SKSummaryGetSentenceCount function 2778
SKSummaryGetSentenceSummaryInfo function 2779
SKSummaryGetTypeID function 2779
SKSummaryRef data type 2783
Sleep Commands 1649
sleepDemand constant 1650
sleepQFlags Bits 1650
SleepQInstall function 1619
sleepQProc Commands 1651
SleepQProcPtr callback 1622
SleepQRec structure 1629
SleepQRecPtr data type 1629
SleepQRemove function 1619
sleepQType constant 1650
SleepQUPP data type 1630
sleepRequest constant 1649
sleepRevoke constant 1650
sleepWakeUp constant 1650
Slot Attribute Selectors 1092
Slot Number Selector 1092
SlotDevParam structure 867
slpQType constant 1650
SlpTypeErr constant 1377
SL_CONSOLE constant 2684
SL_ERROR constant 2684
SL_FATAL 2684
SL_FATAL constant 2684
SL_NOTE constant 2684
SL_NOTIFY constant 2684
SL_TRACE constant 2684
SL_WARN constant 2684
smallDateBit constant 420
smAllScripts constant 1754
smArabic constant 1759
smArmenian constant 1761
smBadScript constant 1821
smBadVerb constant 1821
smBengali constant 1760
smBidirect constant 1769
smBurmese constant 1760
smcClassMask constant 1747
smcDoubleMask constant 1747
smCentralEuroRoman constant 1761
smChar1byte constant 1750
smChar2byte constant 1750
smCharAscii constant 1742
smCharBidirect constant 1743
smCharBopomofo constant 1743
smCharContextualLR constant 1743
smCharEuro constant 1742
smCharExtAscii constant 1742
smCharFISGana constant 1744
smCharFISGreek constant 1744

smCharFISIdeo constant 1744
smCharFISKana constant 1744
smCharFISRussian constant 1744
smCharGanaKana constant 1743
smCharHangul constant 1743
smCharHiragana constant 1742
smCharHorizontal constant 1750
smCharIdeographic constant 1743
smCharJamo constant 1743
smCharKatakana constant 1742
smCharLeft constant 1750
smCharLower constant 1750
smCharNonContextualLR constant 1743
smCharPortion constant 1772
smCharPunct constant 1742
smCharRight constant 1750
smCharTwoByteGreek constant 1743
smCharTwoByteRussian constant 1743
smCharUpper constant 1750
smCharVertical constant 1750
smcOrientationMask constant 1747
smcReserved constant 1747
smcRightMask constant 1747
smcTypeMask constant 1747
smcUpperMask constant 1747
smCurrentScript constant 1754
smCyrillic constant 1759
smDefault constant 1770
smDevanagari constant 1759
smDoubleByte constant 1772
smEnabled constant 1769
smEthiopic constant 1761
smExtArabic constant 1761
smfDisableKeyScriptSyncMask constant 1753
smfDualCaret constant 1767
smFirstByte constant 1741
smFISClassLvl1 constant 1746
smFISClassLvl2 constant 1746
smFISClassUser constant 1746
smfNameTagEnab constant 1767
smFontForce constant 1769
smForced constant 1770
smfShowIcon constant 1767
smfUseAssocFontInfo constant 1767
smGeez constant 1761
smGenFlags constant 1771
smGeorgian constant 1761
smGreek constant 1759
smGujarati constant 1759
smGurmukhi constant 1759
smHebrew constant 1759
smIdeographicLevel1 constant 1745
smIdeographicLevel2 constant 1746

2900
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

smIdeographicUser constant 1746
smIntlForce constant 1769
smJamoBogJaeum constant 1746
smJamoBogMoeum constant 1746
smJamoJaeum constant 1746
smJamoMoeum constant 1746
smJapanese constant 1758
smKanaHardOK constant 1745
smKanaSmall constant 1745
smKanaSoftOK constant 1745
smKannada constant 1760
smKCHRCache constant 1772
smKeyCache constant 1771
smKeyDisableKybds constant 1752
smKeyDisableKybdSwitch constant 1752
smKeyDisableState constant 1773
smKeyEnableKybds constant 1752
smKeyForceKeyScriptBit constant 1751
smKeyForceKeyScriptMask constant 1751
smKeyNextInputMethod constant 1752
smKeyNextKybd constant 1752
smKeyNextScript constant 1751
smKeyRoman constant 1753
smKeyScript constant 1771
smKeySetDirLeftRight constant 1753
smKeySetDirRightLeft constant 1753
smKeySwap constant 1771
smKeySwapInputMethod constant 1752
smKeySwapKybd constant 1752
smKeySwapScript constant 1752
smKeySysScript constant 1751
smKeyToggleDirection constant 1752
smKeyToggleInline constant 1752
smKhmer constant 1760
smKorean constant 1759
smLao constant 1760
smLastByte constant 1741
smLastScript constant 1770
smLayoutCache constant 1754
smMalayalam constant 1760
smMiddleByte constant 1741
smMongolian constant 1761
smMunged constant 1769
smNotInstalled constant 1821
smNumberPartsTable constant 1779
smOldVerbSupport constant 1754
smOriya constant 1759
smOverride constant 1772
smPrint constant 1770
smPunctBlank constant 1745
smPunctGraphic constant 1745
smPunctNormal constant 1745
smPunctNumber constant 1745

smPunctRepeat constant 1745
smPunctSymbol constant 1745
smRedrawChar constant 1757
smRedrawLine constant 1757
smRedrawWord constant 1757
smRegionCode constant 1772
smRoman constant 1758
smRSymbol constant 1759
smScriptAliasStyle constant 1765
smScriptAppBase constant 1755
smScriptAppFond constant 1776
smScriptAppFondSize constant 1765
smScriptBundle constant 1776
smScriptCreator constant 1763
smScriptDate constant 1776
smScriptEnabled constant 1774
smScriptEncoding constant 1777
smScriptFile constant 1763
smScriptFlags constant 1777
smScriptFntBase constant 1755
smScriptHelpFondSize constant 1765
smScriptIcon constant 1763
smScriptJust constant 1775
smScriptKeys constant 1763
smScriptLang constant 1777
smScriptLigatures constant 1755
smScriptMonoFondSize constant 1764
smScriptMunged constant 1774
smScriptName constant 1764
smScriptNumber constant 1776
smScriptNumbers constant 1755
smScriptNumDate constant 1762
smScriptPrefFondSize constant 1764
smScriptPrint constant 1763
smScriptRedraw constant 1775
smScriptRight constant 1774
smScriptSmallFondSize constant 1764
smScriptSort constant 1776
smScriptSysBase constant 1755
smScriptSysFond constant 1775
smScriptSysFondSize constant 1764
smScriptToken constant 1777
smScriptTrap constant 1763
smScriptValidStyles constant 1765
smScriptVersion constant 1774
smSetKashidas constant 1754
smSetKashProp constant 1755
smsfAutoInit constant 1767
smsfB0Digits constant 1766
smsfContext constant 1766
smsfForms constant 1767
smsfIntellCP constant 1766
smsfLigatures constant 1767

2901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

smsfNatCase constant 1766
smsfNoForceFont constant 1766
smsfReverse constant 1767
smsfSingByte constant 1766
smsfSynchUnstyledTE constant 1767
smsfUnivExt constant 1767
smSimpChinese constant 1761
smSingleByte constant 1741
smSinhalese constant 1760
smSysRef constant 1771
smSysScript constant 1770
smSystemScript constant 1753
smTamil constant 1760
smTelugu constant 1760
smThai constant 1760
smTibetan constant 1761
smTradChinese constant 1758
smTransAscii constant 1780
smTransAscii1 constant 1781
smTransAscii2 constant 1781
smTransBopomofo2 constant 1782
smTransCase constant 1780
smTransGana2 constant 1781
smTransHangul2 constant 1781
smTransHangulFormat constant 1782
smTransJamo2 constant 1781
smTransKana1 constant 1781
smTransKana2 constant 1781
smTransLower constant 1782
smTransNative constant 1780
smTransPreDoubleByting constant 1782
smTransPreLowerCasing constant 1782
smTransRuleBaseFormat constant 1782
smTransSystem constant 1780
smTransUpper constant 1782
smUninterp constant 1762
smUnTokenTable constant 1779
smVersion constant 1768
smVietnamese constant 1761
smWhiteSpaceList constant 1779
smWordSelectTable constant 1779
smWordWrapTable constant 1779
SNDZERO 2685
SNDZERO constant 2685
Software Vendor Codes 1093
Sorting Constants 1375
sortsAfter constant 1376
sortsBefore constant 1376
sortsEqual constant 1376
Sound Manager Attribute Selectors 1093
SoundMixerByte Bits 1652
SoundMixerByte data type 1630
SoundMixerByte Masks 1652

Source Masks 1778
SO_ALL 2685
SO_ALL constant 2685
SO_BAND constant 2686
SO_HIWAT constant 2686
SO_ISNTTY constant 2686
SO_ISTTY constant 2686
SO_LOWAT constant 2686
SO_MAXPSZ constant 2685
SO_MINPSZ constant 2685
SO_MREADOFF constant 2686
SO_MREADON constant 2686
SO_NDELOFF constant 2686
SO_NDELON constant 2686
SO_POLL_CLR constant 2686
SO_POLL_SET constant 2686
SO_READOPT constant 2685
SO_TONSTOP constant 2686
SO_TOSTOP constant 2686
SO_WROFF constant 2685
Special Case Calling Convention Constants 1464
Special Case Constant 1454
Special Text Encoding Values 2011
Special Values 1352
Speech Manager Attribute Selectors 1095
Speech Recognition Manager Attribute Selectors 1096
Speech Recognition Version Selector 1096
SpinDownHardDisk function (Deprecated in Mac OS X

v10.0) 1620
sqh_s structure 2503
SQLVL_DEFAULT constant 2687
SQLVL_GLOBAL constant 2687
SQLVL_MODULE constant 2687
SQLVL_QUEUE 2687
SQLVL_QUEUE constant 2687
SQLVL_QUEUEPAIR constant 2687
sqrt function 1331
srvp_t callback 2422
StackSpace function (Deprecated in Mac OS X v10.5)

1427
Standard Directory Find Panel Selector 1096
Standard Directory Prompt Panel Selector 1096
Standard Directory Version Selector 1097
Standard File Attribute Selectors 1097
Standard Options Mask 2183
Startup Disk Attribute Selectors 1097
StartupTime structure 1630
StatusRegisterContents data type 1439
sth_s structure 2504
Storage Media Sleep Modes 1652
str2dec function 1332
strbuf structure 2505
STRCANON 2687

2902
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

STRCANON constant 2687
STRCTLSZ 2687
STRCTLSZ constant 2687
StreamRef data type 2505
streamtab structure 2505
strfdinsert structure 2506
String Comparison Options 2183
String2DateStatus data type 415
StringOrder function (Deprecated in Mac OS X v10.4)

2058
stringOverflow constant 1818
StringToDate function (Deprecated in Mac OS X v10.3)

400
StringToDateStatus data type 415
StringToExtended function (Deprecated in Mac OS X

v10.4) 2059
StringToFormatRec function (Deprecated in Mac OS X

v10.4) 2060
StringToNum function (Deprecated in Mac OS X v10.4)

2062
StringToTime function (Deprecated in Mac OS X v10.3)

401
strioctl structure 2506
StripDiacritics function (Deprecated in Mac OS X

v10.4) 2063
STRMSGSZ constant 2687
stroptions structure 2507
strpeek structure 2507
strpfp structure 2508
strpmsg structure 2508
strrecvfd structure 2509
Structure Types 2689
str_list structure 2504
str_mlist structure 2504
supportsIdleQueue constant 1646
supportsServerModeAPIs constant 1645
supportsUPSIntegration constant 1645
Symbol Class Constants 257
SymClass data type 247
SysEnvRec structure 1371
SysError function 2249
SysParmType structure 1372
System Activity Selectors 1653
System Architecture Selectors 1098
System Update Version Selector 1098
System Version Selectors 1099
systemCurLang constant 2083
systemDefLang constant 2083
S_BANDURG constant 2682
S_ERROR constant 2681
S_HANGUP constant 2681
S_HIPRI constant 2681
S_INPUT 2681

S_INPUT constant 2681
S_MSG constant 2681
S_OUTPUT constant 2681
S_RDBAND constant 2681
S_RDNORM constant 2681
S_WRBAND constant 2681
S_WRNORM constant 2681

T

T8022Address structure 2538
T8022FullPacketHeader structure 2539
T8022Header structure 2539
T8022SNAPHeader structure 2540
Table Selectors 1778
TACCES constant 2715
TADDRBUSY constant 2717
tan function 1332
tanh function 1332
Task Creation Options 1528
Task Exception Disposal Constants 1528
Task IDs 1520
Task Information Structure Version Constant 1529
Task Run State Constants 1530
Task State Constants 1530
TaskLevel function 431
TaskProc callback 1509
TaskStorageIndex data type 1519
TaskStorageValue data type 1519
TBADADDR constant 2715
TBADDATA constant 2716
TBADF constant 2716
TBADFLAG constant 2716
TBADNAME constant 2717
TBADOPT constant 2715
TBADQLEN constant 2717
TBADSEQ constant 2716
TBADSYNC constant 2717
TBind structure 2540
TBUFOVFLW constant 2716
TCall structure 2541
TCANCELED constant 2717
TCP_ABORT_THRESHOLD constant 2709
TCP_CONN_ABORT_THRESHOLD constant 2709
TCP_CONN_NOTIFY_THRESHOLD constant 2709
TCP_KEEPALIVE constant 2709
TCP_MAXSEG constant 2709
TCP_NODELAY 2708
TCP_NODELAY constant 2708
TCP_NOTIFY_THRESHOLD constant 2709
TCP_OOBINLINE constant 2709
TCP_URGENT_PTR_TYPE constant 2709

2903
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

TDiscon structure 2542
TEC Plug-in Signatures 2019
TEC Plugin Dispatch Table Versions 2019
TECBufferContextRec structure 1958
TECClearConverterContextInfo function 1910
TECClearSnifferContextInfo function 1910
TECConversionInfo structure 1959
TECConverterContextRec structure 1959
TECConvertText function 1911
TECConvertTextToMultipleEncodings function 1912
TECCountAvailableSniffers function 1914
TECCountAvailableTextEncodings function 1914
TECCountDestinationTextEncodings function 1915
TECCountDirectTextEncodingConversions function

1916
TECCountMailTextEncodings function 1916
TECCountSubTextEncodings function 1917
TECCountWebTextEncodings function 1918
TECCreateConverter function 1918
TECCreateConverterFromPath function 1919
TECCreateOneToManyConverter function 1920
TECCreateSniffer function 1920
TECDisposeConverter function 1921
TECDisposeSniffer function 1922
TECFlushMultipleEncodings function 1922
TECFlushText function 1924
TECGetAvailableSniffers function 1925
TECGetAvailableTextEncodings function 1926
TECGetDestinationTextEncodings function 1926
TECGetDirectTextEncodingConversions function

1927
TECGetEncodingList function 1928
TECGetInfo function 1929
TECGetMailTextEncodings function 1929
TECGetSubTextEncodings function 1930
TECGetTextEncodingFromInternetName function

1931
TECGetTextEncodingInternetName function 1931
TECGetWebTextEncodings function 1932
TECInfo structure 1961
TECObjectRef data type 1962
TECPluginClearContextInfoPtr callback 1940
TECPluginClearSnifferContextInfoPtr callback

1940
TECPluginConvertTextEncodingPtr callback 1941
TECPluginDispatchTable structure 1962
TECPluginDisposeEncodingConverterPtr callback

1941
TECPluginDisposeEncodingSnifferPtr callback

1942
TECPluginFlushConversionPtr callback 1943
TECPluginGetCountAvailableSniffersPtr callback

1943

TECPluginGetCountAvailableTextEncodingPairsPtr
callback 1944

TECPluginGetCountAvailableTextEncodingsPtr
callback 1945

TECPluginGetCountDestinationTextEncodingsPtr
callback 1946

TECPluginGetCountMailEncodingsPtr callback 1947
TECPluginGetCountSubTextEncodingsPtr callback

1947
TECPluginGetCountWebEncodingsPtr callback 1948
TECPluginGetPluginDispatchTablePtr callback

1949
TECPluginGetTextEncodingFromInternetNamePtr

callback 1949
TECPluginGetTextEncodingInternetNamePtr

callback 1950
TECPluginNewEncodingConverterPtr callback 1951
TECPluginNewEncodingSnifferPtr callback 1952
TECPluginSig data type 1963
TECPluginSignature data type 1963
TECPluginSniffTextEncodingPtr callback 1952
TECPluginStateRec structure 1963
TECPluginVersion data type 1963
TECSnifferContextRec structure 1964
TECSnifferObjectRef data type 1964
TECSniffTextEncoding function 1933
Telephone Manager Attribute Selectors 1100
TempDisposeHandle function (Deprecated in Mac OS X

v10.5) 1427
TempFreeMem function (Deprecated in Mac OS X v10.4)

1428
TempHLock function (Deprecated in Mac OS X v10.4) 1428
TempHUnlock function (Deprecated in Mac OS X v10.4)

1429
TempMaxMem function (Deprecated in Mac OS X v10.4)

1429
TempNewHandle function 1430
TempTopMem function (Deprecated in Mac OS X v10.4)

1430
TEndpointInfo structure 2542
Terminal Manager Attribute Selectors 1100
Text Analysis Keys 2784
Text Boundary Operation Class 2186
Text Break Options 2184
Text Break Types 2185
Text Encoding Formats 2011
Text Encoding Name Selectors 2012
Text Encoding Variants 2013
Text Services Manager Attribute Selectors 1102
Text Services Manager Version Selectors 1103
TextBreakLocatorRef data type 2164
TextEdit Attribute Selectors 1101
TextEdit Version Selectors 1101

2904
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

TextEncoding data type 1965
TextEncodingRun structure 1965
TextEncodingVariant data type 1966
TextOrder function (Deprecated in Mac OS X v10.4) 2064
TextToUnicodeInfo data type 1966
TE_ACCEPT1 constant 2711
TE_ACCEPT2 constant 2711
TE_ACCEPT3 constant 2711
TE_BAD_EVENT constant 2712
TE_BIND constant 2710
TE_CLOSED constant 2710
TE_CONNECT1 constant 2710
TE_CONNECT2 constant 2711
TE_LISTEN constant 2711
TE_OPENED 2710
TE_OPENED constant 2710
TE_OPTMGMT constant 2710
TE_PASS_CONN constant 2712
TE_RCV constant 2711
TE_RCVCONNECT constant 2711
TE_RCVDIS1 constant 2711
TE_RCVDIS2 constant 2711
TE_RCVDIS3 constant 2712
TE_RCVREL constant 2712
TE_RCVUDATA constant 2712
TE_RCVUDERR constant 2712
TE_SND constant 2711
TE_SNDDIS1 constant 2711
TE_SNDDIS2 constant 2711
TE_SNDREL constant 2711
TE_SNDUDATA constant 2711
TE_UNBIND constant 2710
TFLOW constant 2716
The Keepalive Structure structure 2520
The Linger Structure structure 2520
The Option Management Structure structure 2549
The Port Structure structure 2490
The TOption Structure structure 2547
The TOptionHeader Structure structure 2548
Thread ID Constants 2131
Thread Manager Attribute Selectors 1103
Thread Option Constants 2132
Thread State Constants 2133
Thread Style Constants 2133
ThreadBeginCritical function 2116
ThreadCurrentStackSpace function 2117
ThreadEndCritical function 2118
ThreadEntryProcPtr callback 2122
ThreadEntryTPP data type 2128
ThreadEntryUPP data type 2129
threadNotFoundErr constant 2134
threadProtocolErr constant 2134
ThreadSchedulerProcPtr callback 2123

ThreadSchedulerTPP data type 2129
ThreadSchedulerUPP data type 2129
ThreadSwitchProcPtr callback 2124
ThreadSwitchTPP data type 2129
ThreadSwitchUPP data type 2130
ThreadTaskRef data type 2130
ThreadTerminationProcPtr callback 2125
ThreadTerminationTPP data type 2130
ThreadTerminationUPP data type 2131
threadTooManyReqsErr constant 2134
TickCount function 1365
Time Manager Version Selectors 1104
Timer Duration Constants 1531
Timer Option Masks 1532
TimerProcPtr callback 2145
TimerUPP data type 2145
Timestamp Data Type data type 2496
TimeString function (Deprecated in Mac OS X v10.3)

402
TINDOUT constant 2717
TLASTXTIERROR constant 2718
TLOOK constant 2716
TLookupBuffer structure 2544
TLookupReply structure 2545
TLookupRequest structure 2545
tmfoErr constant 944
TMTask structure 2145
tmwdoErr constant 945
TNetbuf structure 2546
TNOADDR constant 2716
TNODATA constant 2716
TNODIS constant 2716
TNOREL constant 2716
TNOSTRUCTYPE constant 2717
TNOTSUPPORT constant 2717
TNOUDERR constant 2716
togChar12HourBit constant 420
togCharZCycleBit constant 420
togDelta12HourBit constant 421
Toggle Results 421
ToggleDate function (Deprecated in Mac OS X v10.3)

403
TogglePB structure 415
Token Results 1818
Token Types 1815
token1Quote constant 1812
token2Equal constant 1810
token2Quote constant 1812
tokenAlpha constant 1816
tokenAltNum constant 1817
tokenAltReal constant 1817
tokenAmpersand constant 1813
tokenAsterisk constant 1809

2905
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

tokenAtSign constant 1813
tokenBackSlash constant 1809
tokenBar constant 1813
TokenBlock structure 1736
tokenCapPi constant 1814
tokenCaret constant 1812
tokenCenterDot constant 1815
tokenColon constant 1814
tokenColonEqual constant 1810
tokenComma constant 1811
tokenDivide constant 1809
tokenDollar constant 1814
tokenEllipsis constant 1815
tokenEmpty constant 1778
tokenEqual constant 1810
tokenEscape constant 1817
tokenExclam constant 1811
tokenExclamEqual constant 1811
tokenFraction constant 1815
tokenGreat constant 1810
tokenGreatEqual1 constant 1810
tokenGreatEqual2 constant 1810
tokenHash constant 1814
tokenInfinity constant 1814
tokenIntegral constant 1814
tokenIntl constant 1778
tokenIntlCurrency constant 1815
tokenLeft1Quote constant 1812
tokenLeft2Quote constant 1812
tokenLeftBracket constant 1818
tokenLeftComment constant 1817
tokenLeftCurly constant 1808
tokenLeftEnclose constant 1809
tokenLeftLit constant 1816
tokenLeftParen constant 1818
tokenLeftSingGuillemet constant 1815
tokenLess constant 1809
tokenLessEqual1 constant 1810
tokenLessEqual2 constant 1810
tokenLessGreat constant 1811
tokenLiteral constant 1817
tokenMicro constant 1814
tokenMinus constant 1809
tokenNewLine constant 1817
tokenNil constant 1815
tokenNoBreakSpace constant 1815
tokenNotEqual constant 1811
tokenNumeric constant 1816
tokenOK constant 1818
tokenOverflow constant 1818
tokenPercent constant 1812
tokenPeriod constant 1812
tokenPerThousand constant 1815

tokenPi constant 1814
tokenPlus constant 1809
tokenPlusMinus constant 1809
tokenQuestion constant 1813
tokenRealNum constant 1817
TokenRec structure 1739
tokenReserve1 constant 1817
tokenReserve2 constant 1817
tokenRight1Quote constant 1812
tokenRight2Quote constant 1812
tokenRightBracket constant 1818
tokenRightComment constant 1817
tokenRightCurly constant 1808
tokenRightEnclose constant 1809
tokenRightLit constant 1816
tokenRightParen constant 1818
tokenRightSingGuillemet constant 1815
tokenRoot constant 1814
Tokens - Mathematical 1808
Tokens - Punctuation 1810
Tokens for Symbols 1813
tokenSemicolon constant 1812
tokenSigma constant 1814
tokenSlash constant 1809
tokenTilde constant 1811
tokenUnderline constant 1813
tokenUnknown constant 1816
tokenWhite constant 1816
Toolbox Trap Table (Second Half) Selector 1105
Toolbox Trap Table Selector 1105
TopMem function (Deprecated in Mac OS X v10.4) 1431
TOTConfiguratorRef data type 2549
TOUTSTATE constant 2716
TPortRecord structure 2550
TPROTO constant 2717
TPROVMISMATCH constant 2717
TQFULL constant 2717
trace_ids structure 2550
Translation Manager Attribute Selectors 1105
TransliterateText function (Deprecated in Mac OS X

v10.4) 1733
Transliteration Target Types 1 1780
Transliteration Target Types 2 1781
TRegisterReply structure 2550
TRegisterRequest structure 2551
TReply structure 2552
TRequest structure 2552
TRESADDR constant 2717
TRESQLEN constant 2717
TripleInt data type 2078
TripleInt Index Values 2081
true32b constant 1373
trunc function 1333

2906
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

TruncateForTextToUnicode function 1934
TruncateForUnicodeToText function 1935
TSME Version Selector 1106
TSMTE Attribute Selectors 1106
TSMTE Version Selectors 1107
tsNextSelectMode constant 2084
tsNormalSelectMode constant 2084
tsPreviousSelectMode constant 2084
TSTATECHNG constant 2717
TSUCCESS 2715
TSUCCESS constant 2715
TSYSERR constant 2716
TS_BAD_STATE constant 2714
TS_DATA_XFER constant 2713
TS_IDLE constant 2713
TS_NOSTATES constant 2714
TS_UNBND 2712
TS_UNBND constant 2712
TS_WACK_BREQ constant 2713
TS_WACK_CREQ constant 2713
TS_WACK_CRES constant 2713
TS_WACK_DREQ10 constant 2714
TS_WACK_DREQ11 constant 2714
TS_WACK_DREQ6 constant 2713
TS_WACK_DREQ7 constant 2713
TS_WACK_DREQ9 constant 2713
TS_WACK_OPTREQ constant 2713
TS_WACK_ORDREL constant 2714
TS_WACK_UREQ constant 2713
TS_WCON_CREQ constant 2713
TS_WIND_ORDREL constant 2713
TS_WREQ_ORDREL constant 2713
TS_WRES_CIND constant 2713
TUDErr structure 2552
TUnitData structure 2553
TUnitReply structure 2554
TUnitRequest structure 2555
TV Tuner Attribute Selectors 1107
Type Select Modes 2083
typeIconFamily 2279
TypeSelectClear function (Deprecated in Mac OS X

v10.4) 2065
TypeSelectCompare function (Deprecated in Mac OS X

v10.4) 2066
TypeSelectFindItem function (Deprecated in Mac OS

X v10.4) 2066
TypeSelectNewKey function (Deprecated in Mac OS X

v10.4) 2067
TypeSelectRecord structure 2078
T_ABSREQ constant 2708
T_ACCEPTCOMPLETE constant 2695
T_ACKNOWLEDGED constant 2703
T_ADDR 2688

T_ADDR constant 2688
T_addr_ack structure 2509
T_addr_req structure 2510
T_ALL constant 2688
T_ALLNODESTAKENEVENT constant 2688
T_ALLOPT constant 2657
T_ATALKBADROUTEREVENT 2688
T_ATALKBADROUTEREVENT constant 2688
T_ATALKCABLERANGECHANGEDEVENT constant 2611
T_ATALKCONNECTIVITYCHANGEDEVENT constant 2611
T_ATALKINTERNETAVAILABLEEVENT constant 2611
T_ATALKROUTERDOWNEVENT constant 2611
T_ATALKROUTERUPEVENT constant 2611
T_ATALKZONENAMECHANGEDEVENT constant 2611
T_BIND constant 2689
T_BINDCOMPLETE constant 2695
T_bind_ack structure 2510
T_bind_req structure 2511
T_CALL constant 2689
t_call structure 2511
T_cancelreply_req structure 2511
T_cancelrequest_req structure 2512
T_CAN_RESOLVE_ADDR constant 2707
T_CAN_SUPPLY_MIB constant 2707
T_CAN_SUPPORT_MDATA constant 2707
T_CHECK constant 2704
T_CLTS constant 2671
T_CONNECT constant 2693
T_conn_con structure 2512
T_conn_ind structure 2513
T_conn_req structure 2513
T_conn_res structure 2514
T_COTS constant 2670
T_COTS_ORD constant 2671
T_CRITIC_ECP constant 2706
T_CURRENT constant 2704
T_DATA constant 2694
T_DATAXFER constant 2672
T_data_ind structure 2514
T_data_req structure 2515
T_DEFAULT constant 2704
T_DELNAMECOMPLETE constant 2697
T_delname_req structure 2515
T_DIS constant 2689
t_discon structure 2515
T_DISCONNECT constant 2694
T_DISCONNECTCOMPLETE constant 2696
T_discon_ind structure 2516
T_discon_req structure 2516
T_DNRADDRTONAMECOMPLETE constant 2690
T_DNRMAILEXCHANGECOMPLETE constant 2691
T_DNRQUERYCOMPLETE constant 2691
T_DNRSTRINGTOADDRCOMPLETE 2690

2907
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

T_DNRSTRINGTOADDRCOMPLETE constant 2690
T_DNRSYSINFOCOMPLETE constant 2690
T_ERROR constant 2694
T_error_ack structure 2517
T_event_ind structure 2517
T_EXDATA constant 2694
T_exdata_ind structure 2518
T_exdata_req structure 2518
T_EXPEDITED constant 2703
T_FAILURE constant 2704
T_FIXEDNODEBADEVENT constant 2689
T_FIXEDNODETAKENEVENT constant 2688
T_FLASH constant 2706
T_GARBAGE 2691
T_GARBAGE constant 2691
T_GETATALKINFOCOMPLETE constant 2611
T_GETINFOCOMPLETE constant 2696
T_GETLOCALZONESCOMPLETE constant 2610
T_GETMYZONECOMPLETE constant 2610
T_GETPROTADDRCOMPLETE constant 2696
T_GETZONELISTCOMPLETE constant 2610
T_GODATA constant 2694
T_GOEXDATA constant 2694
T_HIREL constant 2705
T_HITHRPT constant 2705
T_IDLE constant 2672
T_IMMEDIATE constant 2706
T_INCON constant 2672
T_INETCONTROL constant 2706
T_INFINITE 2691
T_INFINITE constant 2691
T_INFO constant 2690
t_info structure 2518
T_info_ack structure 2519
T_info_req structure 2519
T_INREL constant 2672
T_INVALID constant 2691
T_LDELAY constant 2705
T_LISTEN constant 2693
T_LKUPNAMECOMPLETE constant 2697
T_LKUPNAMERESULT constant 2697
T_lkupname_con structure 2521
T_lkupname_req structure 2521
T_MEMORYRELEASED constant 2697
T_MIB_ack structure 2522
T_MIB_req structure 2522
T_MORE constant 2703
T_MPPCOMPATCFIGEVENT constant 2688
T_NEGOTIATE constant 2704
T_NETCONTROL constant 2706
T_NO constant 2708
T_NORECEIPT constant 2703
T_NOTOS 2705

T_NOTOS constant 2705
T_NOTSUPPORT constant 2705
T_NULL 2705
T_NULL constant 2705
T_ok_ack structure 2522
T_OPENCOMPLETE constant 2696
T_OPT constant 2688
t_opthdr structure 2522
T_OPTMGMT constant 2689
T_OPTMGMTCOMPLETE constant 2696
T_optmgmt_ack structure 2523
T_optmgmt_req structure 2523
T_ORDREL constant 2694
T_ordrel_ind structure 2524
T_ordrel_req structure 2524
T_OUTCON constant 2672
T_OUTREL constant 2672
T_OVERRIDEFLASH constant 2706
T_PARTIALDATA constant 2703
T_PARTSUCCESS constant 2704
T_PASSCON constant 2695
T_primitives structure 2525
T_PRIORITY constant 2706
T_READONLY constant 2704
T_REGNAMECOMPLETE constant 2697
T_regname_ack structure 2527
T_regname_req structure 2527
T_REPLY constant 2695
t_reply structure 2528
T_REPLYCOMPLETE constant 2696
T_REPLYDATA constant 2690
T_reply_ack structure 2528
T_reply_ind structure 2528
T_reply_req structure 2529
T_REQUEST constant 2695
t_request structure 2529
T_REQUESTDATA constant 2690
T_request_ind structure 2530
T_request_req structure 2530
T_RESET constant 2695
T_RESOLVEADDRCOMPLETE constant 2696
T_resolveaddr_ack structure 2531
T_resolveaddr_req structure 2531
T_ROUTINE 2706
T_ROUTINE constant 2706
T_SENDZERO constant 2707
T_sequence_ack structure 2532
T_stream_timer structure 2532
T_stream_timer_1 structure 2532
T_SUCCESS constant 2704
T_SYNCCOMPLETE constant 2696
T_TIMEDOUT constant 2703
T_TRANS constant 2671

2908
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

T_TRANS_CLTS constant 2671
T_TRANS_ORD constant 2671
T_UDATA constant 2688
T_UDERR constant 2694
t_uderr structure 2532
T_UDERROR constant 2690
T_uderror_ind structure 2533
T_UNBINDCOMPLETE constant 2695
T_unbind_req structure 2533
T_UNBND constant 2671
T_UNINIT constant 2671
T_UNITDATA constant 2689
t_unitdata structure 2533
T_unitdata_ind structure 2534
T_unitdata_req structure 2534
T_UNITREPLY constant 2690
t_unitreply structure 2535
T_unitreply_ack structure 2535
T_unitreply_ind structure 2535
T_unitreply_req structure 2536
T_UNITREQUEST constant 2690
t_unitrequest structure 2536
T_unitrequest_ind structure 2537
T_unitrequest_req structure 2538
T_UNSPEC 2707
T_UNSPEC constant 2705
T_UNUSED constant 2708
T_XPG4_1 constant 2707
T_YES 2708
T_YES constant 2708

U

U32SetU function 1333
U64Add function 1333
U64And function 1334
U64BitwiseAnd function 1334
U64BitwiseEor function 1334
U64BitwiseNot function 1335
U64BitwiseOr function 1335
U64Compare function 1335
U64Div function 1336
U64Divide function 1336
U64Eor function 1336
U64Max function 1337
U64Multiply function 1337
U64Not function 1337
U64Or function 1338
U64Set function 1338
U64SetU function 1338
U64ShiftLeft function 1339
U64ShiftRight function 1339

U64Subtract function 1339
UCCollationValue data type 2165
UCCompareCollationKeys function 2150
UCCompareText function 2151
UCCompareTextDefault function 2153
UCCompareTextNoLocale function 2154
UCConvertCFAbsoluteTimeToLongDateTime function

405
UCConvertCFAbsoluteTimeToSeconds function 405
UCConvertCFAbsoluteTimeToUTCDateTime function

406
UCConvertLongDateTimeToCFAbsoluteTime function

406
UCConvertSecondsToCFAbsoluteTime function 407
UCConvertUTCDateTimeToCFAbsoluteTime function

408
UCCreateCollator function 2155
UCCreateTextBreakLocator function 2156
UCDisposeCollator function 2158
UCDisposeTextBreakLocator function 2158
UCFindTextBreak function 2159
UCGetCharProperty function 1936
UCGetCollationKey function 2160
uchar_p data type 2555
UCKeyboardLayout structure 2165
UCKeyboardTypeHeader structure 2166
UCKeyCharSeq data type 2167
UCKeyLayoutFeatureInfo structure 2168
UCKeyModifiersToTableNum structure 2169
UCKeyOutput data type 2169
UCKeySequenceDataIndex structure 2170
UCKeyStateEntryRange structure 2171
UCKeyStateEntryTerminal structure 2172
UCKeyStateRecord structure 2173
UCKeyStateRecordsIndex structure 2174
UCKeyStateTerminators structure 2175
UCKeyToCharTableIndex structure 2176
UCKeyTranslate function 2162
UDF Selector 1107
UDP_CHECKSUM 2718
UDP_CHECKSUM constant 2718
UDP_RX_ICMP constant 2718
uid_t data type 2555
UInt64ToSInt64 function 1340
uint_t data type 2555
UncaptureComponent function 356
UnflattenCollection function 301
UnflattenCollectionFromHdl function 302
UnholdMemory function (Deprecated in Mac OS X v10.4)

1431
UniCharArrayOffset data type 1967
Unicode and ISO UCS Text Encodings 2014
Unicode Character Property Types 2020

2909
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Unicode Character Property Values 2020
Unicode Converter Flags 1977
Unicode Converter Masks 1978
Unicode Fallback Sequencing Flag 1979
Unicode Fallback Sequencing Masks 1979
Unicode Mapping Versions 2024
Unicode Matching Flags 1979
Unicode Matching Masks 1980
UnicodeMapping structure 1967
UnicodeToTextFallbackProcPtr callback 1953
UnicodeToTextFallbackUPP data type 1969
UnicodeToTextInfo data type 1969
UnicodeToTextRunInfo data type 1970
unimpErr constant 1377
Unique1ID function 1698
UniqueID function 1699
Unknown Type or Creator 1250
Unmapped Addresses 435
UnmountVol function (Deprecated in Mac OS X v10.4)

787
UNORDERED constant 1352
UnregisterComponent function 357
Unresolved Symbol Address 257
unresolvedComponentDLLErr constant 380
Unsupported Unicode Variants 2015
Unwanted Data Constants 2025
UpdateAlias function (Deprecated in Mac OS X v10.4)

213
UpdateResFile function 1700
UpdateSystemActivity function 1620
UpgradeScriptInfoToTextEncoding function 1937
UppercaseStripDiacritics function (Deprecated in

Mac OS X v10.4) 2068
UppercaseText function (Deprecated in Mac OS X v10.4)

2069
UpperString function (Deprecated in Mac OS X v10.4)

2070
upperstring function (Deprecated in Mac OS X v10.4)

2071
upsConnected constant 1634
upsIsPowerSource constant 1634
Usage Constants 258
USB Attribute Selectors 1107
USB Printer Sharing Version Selectors 1108
USB Version Selector 1108
User ID Constants 929
User Privileges Constants 930
userCollectionAttributes constant 312
UseResFile function 1700
UserFnProcPtr callback 1435
UserFnUPP data type 1439
ushort_p data type 2556
UsrActivity constant 1653

UTCDateTime structure 416

V

ValidDate function (Deprecated in Mac OS X v10.3) 408
validDateFields constant 421
validInstancesExist constant 380
Values for the MPOpaqueIDClass type 1521
VCB structure 868
vendorUnique 1862
verArabic constant 1801
verAustralia constant 1800
verBelgiumLuxPoint constant 1802
verBengali constant 1806
verBritain constant 1799
verByeloRussian constant 1806
verCanadaComma constant 1802
verCanadaPoint constant 1802
verChina constant 1805
verCyprus constant 1801
verCzech constant 1805
verDenmark constant 1800
verEstonia constant 1804
verFarEastGeneric constant 1806
verFaroeIsl constant 1805
verFinland constant 1801
verFlemish constant 1800
verFrance constant 1799
verFrCanada constant 1800
verFrSwiss constant 1801
verGermany constant 1799
verGreece constant 1801
verGreecePoly constant 1804
verGrSwiss constant 1801
verHungary constant 1804
verIceland constant 1801
verIndiaHindi constant 1803
verInternational constant 1804
verIran constant 1805
verIreland constant 1805
verIsrael constant 1800
verItalianSwiss constant 1804
verItaly constant 1799
verJapan constant 1800
verKorea constant 1805
verLatvia constant 1804
verLithuania constant 1804
verMagyar constant 1806
verMalta constant 1801
verNetherlands constant 1800
verNetherlandsComma constant 1802
verNorway constant 1800

2910
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

verPakistanUrdu constant 1803
verPoland constant 1804
verPortugal constant 1800
verRomania constant 1804
verRussia constant 1805
verSami constant 1804
verScriptGeneric constant 1805
Version Number 259, 1376
verSlovak constant 1806
verSpain constant 1800
verSweden constant 1800
verTaiwan constant 1805
verThailand constant 1805
verTurkey constant 1801
verTurkishModified constant 1803
verUS constant 1799
vervariantDenmark constant 1803
vervariantNorway constant 1802
vervariantPortugal constant 1802
verYugoCroatian constant 1801
VIA1 Base Address Selector 1108
VIA2 Base Address Selector 1108
Video Metadata Attribute Keys 143
Virtual Memory Backing Store Selector 1109
Virtual Memory Information Type Selectors 1109
Virtual Memory Manager Attribute Selectors 1108
vLckdErr constant 944
volGoneErr constant 946
volMountChangedBit constant 943
volMountChangedMask constant 943
volMountExtendedFlagsBit constant 942
volMountExtendedFlagsMask constant 942
volMountFSReservedMask constant 943
VolMountInfoHeader structure 872
volMountInteractBit constant 942
volMountInteractMask constant 942
volMountNoLoginMsgFlagBit constant 942
volMountNoLoginMsgFlagMask constant 942
volMountSysReservedMask constant 943
volOffLinErr constant 945
volOnLinErr constant 945
Volume Attribute Constants 931
Volume Control Block Flags 935
Volume Information Attribute Constants 937
Volume Information Bitmap Constants 938
Volume Information Flags 940
Volume Mount Flags 942
Volume Mount Options 220
VolumeMountInfoHeader structure 873
VolumeParam structure 873
VolumeType data type 875
VolumeVirtualMemoryInfo structure 1439
volVMBusyErr constant 947

vType constant 1375
vTypErr constant 1377

W

WakeupTime structure 1630
WDParam structure 876
WDPBRec structure 877
weekOfYearMask constant 420
WideAdd function 1340
WideBitShift function 1340
WideCompare function 1341
WideDivide function 1341
WideMultiply function 1342
WideNegate function 1342
WideShift function 1342
WideSquareRoot function 1343
WideSubtract function 1343
WideWideDivide function 1343
Win32 Attribute Selectors 1110
Window Manager Attribute Selectors 1110
WorldScriptII Version Selectors 1113
wPrErr constant 944
wrgVolTypErr constant 946
WriteLocation function (Deprecated in Mac OS X v10.0)

1365
WriteParam function (Deprecated in Mac OS X v10.4)

1366
WritePartialResource function 1701
WriteResource function 1702
writingPastEnd constant 1711
wrPermErr constant 945

X

X2Fix function 1344
X2Frac function 1344
x80tod function 1345
XCInfoPBRec structure 879
XIOParam structure 880
XLibContainerHeader structure 1561
XLibExportedSymbol structure 1562
XLibExportedSymbolHashSlot data type 1562
XLibExportedSymbolKey data type 1562
XPG4_1 constant 2682
XTI-Level Options and Generic Options 2718
XTI_DEBUG constant 2718
XTI_GENERIC 2721
XTI_GENERIC constant 2721
XTI_LINGER constant 2719

2911
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

XTI_PROTOTYPE constant 2720
XTI_RCVBUF constant 2719
XTI_RCVLOWAT constant 2719
XTI_SNDBUF constant 2719
XTI_SNDLOWAT constant 2720
XVolumeParam structure 882

Y

yearMask constant 419
YieldToAnyThread function 2118
YieldToThread function 2119

Z

Zone structure 1440

2912
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	Core Services Framework Reference
	Contents
	Tables
	Introduction
	Part I: Opaque Types
	CFFTPStream Reference
	Overview
	Functions
	CFFTPCreateParsedResourceListing
	CFReadStreamCreateWithFTPURL
	CFWriteStreamCreateWithFTPURL

	Constants
	CFStream FTP Property Constants
	CFStream FTP Resource Constants
	Error Domains

	CFHost Reference
	Overview
	Functions by Task
	Creating a host
	CFHost Functions
	Getting the CFHost Type ID

	Functions
	CFHostCancelInfoResolution
	CFHostCreateCopy
	CFHostCreateWithAddress
	CFHostCreateWithName
	CFHostGetAddressing
	CFHostGetNames
	CFHostGetReachability
	CFHostGetTypeID
	CFHostScheduleWithRunLoop
	CFHostSetClient
	CFHostStartInfoResolution
	CFHostUnscheduleFromRunLoop

	Callbacks
	CFHostClientCallBack

	Data Types
	CFHostRef
	CFHostClientContext

	Constants
	CFHostInfoType Constants
	Error Domains

	CFHTTPAuthentication Reference
	Overview
	Functions by Task
	Creating an HTTP authentication
	CFHTTP Authentication Functions
	Getting the CFHTTPAuthentication type ID

	Functions
	CFHTTPAuthenticationAppliesToRequest
	CFHTTPAuthenticationCopyDomains
	CFHTTPAuthenticationCopyMethod
	CFHTTPAuthenticationCopyRealm
	CFHTTPAuthenticationCreateFromResponse
	CFHTTPAuthenticationGetTypeID
	CFHTTPAuthenticationIsValid
	CFHTTPAuthenticationRequiresAccountDomain
	CFHTTPAuthenticationRequiresOrderedRequests
	CFHTTPAuthenticationRequiresUserNameAndPassword

	Data Types
	CFHTTPAuthenticationRef

	Constants
	CFHTTP Authentication Scheme Constants
	CFStream HTTP Authentication Error Constants
	CFHTTPMessageApplyCredentialDictionary Keys

	CFHTTPMessage Reference
	Overview
	Functions by Task
	Creating a Message
	Modifying a message
	Getting information from a message
	Message authentication
	Getting the CFHTTPMessage type identifier

	Functions
	CFHTTPMessageAddAuthentication
	CFHTTPMessageAppendBytes
	CFHTTPMessageApplyCredentialDictionary
	CFHTTPMessageApplyCredentials
	CFHTTPMessageCopyAllHeaderFields
	CFHTTPMessageCopyBody
	CFHTTPMessageCopyHeaderFieldValue
	CFHTTPMessageCopyRequestMethod
	CFHTTPMessageCopyRequestURL
	CFHTTPMessageCopyResponseStatusLine
	CFHTTPMessageCopySerializedMessage
	CFHTTPMessageCopyVersion
	CFHTTPMessageCreateCopy
	CFHTTPMessageCreateEmpty
	CFHTTPMessageCreateRequest
	CFHTTPMessageCreateResponse
	CFHTTPMessageGetResponseStatusCode
	CFHTTPMessageGetTypeID
	CFHTTPMessageIsHeaderComplete
	CFHTTPMessageIsRequest
	CFHTTPMessageSetBody
	CFHTTPMessageSetHeaderFieldValue

	Data Types
	CFHTTPMessageRef

	Constants
	CFHTTP Version Constants
	Authentication Schemes

	CFNetDiagnostics Reference
	Overview
	Functions by Task
	Creating a net diagnostics object
	CFNetDiagnostics Functions

	Functions
	CFNetDiagnosticCopyNetworkStatusPassively
	CFNetDiagnosticCreateWithStreams
	CFNetDiagnosticCreateWithURL
	CFNetDiagnosticDiagnoseProblemInteractively
	CFNetDiagnosticSetName

	Data Types
	CFNetDiagnosticRef
	CFNetDiagnosticStatus

	Constants
	CFNetDiagnosticStatusValues Constants

	CFNetServices Reference
	Overview
	Functions by Task
	Creating net service objects
	CFNetServices Functions
	Modifying a net service
	Getting the net service type IDs

	Functions
	CFNetServiceBrowserCreate
	CFNetServiceBrowserGetTypeID
	CFNetServiceBrowserInvalidate
	CFNetServiceBrowserScheduleWithRunLoop
	CFNetServiceBrowserSearchForDomains
	CFNetServiceBrowserSearchForServices
	CFNetServiceBrowserStopSearch
	CFNetServiceBrowserUnscheduleFromRunLoop
	CFNetServiceCancel
	CFNetServiceCreate
	CFNetServiceCreateCopy
	CFNetServiceCreateDictionaryWithTXTData
	CFNetServiceCreateTXTDataWithDictionary
	CFNetServiceGetAddressing
	CFNetServiceGetDomain
	CFNetServiceGetName
	CFNetServiceGetPortNumber
	CFNetServiceGetProtocolSpecificInformation
	CFNetServiceGetTargetHost
	CFNetServiceGetTXTData
	CFNetServiceGetType
	CFNetServiceGetTypeID
	CFNetServiceMonitorCreate
	CFNetServiceMonitorGetTypeID
	CFNetServiceMonitorInvalidate
	CFNetServiceMonitorScheduleWithRunLoop
	CFNetServiceMonitorStart
	CFNetServiceMonitorStop
	CFNetServiceMonitorUnscheduleFromRunLoop
	CFNetServiceRegister
	CFNetServiceRegisterWithOptions
	CFNetServiceResolve
	CFNetServiceResolveWithTimeout
	CFNetServiceScheduleWithRunLoop
	CFNetServiceSetClient
	CFNetServiceSetProtocolSpecificInformation
	CFNetServiceSetTXTData
	CFNetServiceUnscheduleFromRunLoop

	Callbacks
	CFNetServiceBrowserClientCallBack
	CFNetServiceClientCallBack
	CFNetServiceMonitorClientCallBack

	Data Types
	CFNetServiceBrowserRef
	CFNetServiceClientContext
	CFNetServiceMonitorRef
	CFNetServiceRef

	Constants
	CFNetService Registration Options
	CFNetServiceBrowserClientCallBack Bit Flags
	CFNetServiceMonitorType Constants
	CFNetService Error Constants
	Error Domains

	CFStream Socket Additions
	Overview
	Functions by Task
	Creating Socket Pairs
	Setting the Security Protocol
	Obtaining Errors

	Functions
	CFSocketStreamPairSetSecurityProtocol
	CFSocketStreamSOCKSGetError
	CFSocketStreamSOCKSGetErrorSubdomain
	CFStreamCreatePairWithSocketToCFHost
	CFStreamCreatePairWithSocketToNetService

	Constants
	CFStream Property Keys
	CFStream Property SSL Settings Constants
	CFStream Socket Security Protocol Constants
	CFStream Socket Security Level Constants
	CFStream SOCKS Proxy Key Constants
	Error Domains
	Error Subdomains
	CFStream Errors

	MDItem Reference
	Overview
	Functions by Task
	Creating an MDItem
	Getting the Type Identifier
	Retrieving Metadata Attributes

	Functions
	MDItemCopyAttribute
	MDItemCopyAttributeList
	MDItemCopyAttributeNames
	MDItemCopyAttributes
	MDItemCreate
	MDItemGetTypeID

	Data Types
	MDItemRef

	Constants
	Common Metadata Attribute Keys
	Image Metadata Attribute Keys
	Video Metadata Attribute Keys
	Audio Metadata Attribute Keys
	File System Metadata Attribute Keys

	MDQuery Reference
	Overview
	Functions by Task
	Creating Queries
	Getting and Setting Query Parameters
	Setting Callback Functions
	Starting, Stopping and Pausing Queries
	Getting Query Result Values
	Getting the Type Identifier

	Functions
	MDQueryCopyQueryString
	MDQueryCopySortingAttributes
	MDQueryCopyValueListAttributes
	MDQueryCopyValuesOfAttribute
	MDQueryCreate
	MDQueryCreateSubset
	MDQueryDisableUpdates
	MDQueryEnableUpdates
	MDQueryExecute
	MDQueryGetAttributeValueOfResultAtIndex
	MDQueryGetBatchingParameters
	MDQueryGetCountOfResultsWithAttributeValue
	MDQueryGetIndexOfResult
	MDQueryGetResultAtIndex
	MDQueryGetResultCount
	MDQueryGetTypeID
	MDQueryIsGatheringComplete
	MDQuerySetBatchingParameters
	MDQuerySetCreateResultFunction
	MDQuerySetCreateValueFunction
	MDQuerySetSearchScope
	MDQuerySetSortComparator
	MDQueryStop

	Callbacks
	MDQueryCreateResultFunction
	MDQueryCreateValueFunction
	MDQuerySortComparatorFunction

	Data Types
	Batching Parameters
	MDQueryBatchingParams

	Miscellaneous
	MDQueryRef

	Constants
	Query Option Flags
	MDQueryOptionsFlags

	Notifications
	kMDQueryDidFinishNotification
	kMDQueryDidUpdateNotification
	kMDQueryProgressNotification

	Notification Info Keys
	Query Result Change Keys
	Query Search Scope Keys
	Result Relevance Sorting Key

	Part II: Managers
	Alias Manager Reference
	Overview
	Functions by Task
	Creating and Updating Alias Records
	Getting Alias Size
	Getting and Setting Alias User Types
	Resolving and Reading Alias Records
	Working With Finder Alias Files
	Working With Universal Procedure Pointers to Alias Manager Callbacks
	Deprecated Functions

	Functions
	DisposeAliasFilterUPP
	FollowFinderAlias
	FSCopyAliasInfo
	FSFollowFinderAlias
	FSIsAliasFile
	FSMatchAlias
	FSMatchAliasBulk
	FSMatchAliasNoUI
	FSNewAlias
	FSNewAliasFromPath
	FSNewAliasMinimal
	FSNewAliasMinimalUnicode
	FSNewAliasUnicode
	FSResolveAlias
	FSResolveAliasFile
	FSResolveAliasFileWithMountFlags
	FSResolveAliasWithMountFlags
	FSUpdateAlias
	GetAliasInfo
	GetAliasSize
	GetAliasSizeFromPtr
	GetAliasUserType
	GetAliasUserTypeFromPtr
	InvokeAliasFilterUPP
	IsAliasFile
	MatchAlias
	MatchAliasNoUI
	NewAlias
	NewAliasFilterUPP
	NewAliasMinimal
	NewAliasMinimalFromFullPath
	ResolveAlias
	ResolveAliasFile
	ResolveAliasFileWithMountFlags
	ResolveAliasFileWithMountFlagsNoUI
	ResolveAliasWithMountFlags
	SetAliasUserType
	SetAliasUserTypeWithPtr
	UpdateAlias

	Callbacks
	AliasFilterProcPtr
	FSAliasFilterProcPtr

	Data Types
	AliasInfoType
	AliasFilterUPP
	AliasRecord
	FSAliasInfo

	Constants
	Alias Information Masks
	Volume Mount Options
	Matching Constants
	Alias Resource Type
	Information Type Constants

	Gestalt Constants

	Code Fragment Manager Reference
	Overview
	Functions by Task
	Finding Symbols
	Loading Fragments
	Unloading Fragments
	Converting a Bundle Prelocator

	Functions
	CloseConnection
	ConvertBundlePreLocator
	CountSymbols
	FindSymbol
	GetDiskFragment
	GetIndSymbol
	GetMemFragment
	GetSharedLibrary

	Callbacks
	CFragInitFunction
	CFragTermProcedure

	Data Types
	CFragCFBundleLocator
	CFragClosureID
	CFragConnectionID
	CFragContainerID
	CFragContextID
	CFragHFSDiskFlatLocator
	CFragHFSLocator
	CFragHFSLocatorPtr
	CFragHFSMemoryLocator
	CFragHFSSegmentedLocator
	CFragInitBlock
	CFragInitBlockPtr
	CFragResource
	CFragResourceExtensionHeader
	CFragResourceMember
	CFragResourceSearchExtension
	CFragSystem7DiskFlatLocator
	CFragSystem7InitBlock
	CFragSystem7Locator
	CFragSystem7MemoryLocator
	CFragSystem7SegmentedLocator
	CFragUsage1Union
	CFragUsage2Union
	CFragWhere1Union
	CFragWhere2Union
	ConnectionID
	DiskFragment
	FragmentLocator
	FragmentLocatorPtr
	InitBlock
	InitBlockPtr
	LoadFlags
	MemFragment
	SegmentedFragment
	SymClass

	Constants
	Architecture Constants
	Code Fragment Kind
	Current Resource Version
	Default Name Length
	File Location
	kCFragGoesToEOF
	kCFragLibUsageMapPrivatelyMask
	kCFragResourceSearchExtensionKind
	kCFragResourceType
	kCompiledCFragArch
	kLoadCFrag
	kPowerPC
	Load Flag, Symbol Class, and Fragment Locator Constants
	Load Options
	Locator Kind
	Symbol Class Constants
	Unresolved Symbol Address
	Usage Constants
	Version Number

	Result Codes

	Collection Manager Reference
	Overview
	Functions by Task
	Adding and Replacing Items in a Collection
	Cloning and Copying Collection Objects
	Counting Items in a Collection
	Creating and Disposing of Collection Objects
	Editing Item Attributes
	Flattening and Unflattening a Collection
	Getting and Setting the Default Attributes for a Collection
	Getting and Setting the Exception Procedure for a Collection
	Getting Information About a Collection Item
	Getting Information About Collection Tags
	Reading Collections From Resource Files
	Removing Items From a Collection
	Retrieving the Variable-Length Data From an Item
	Working With Macintosh Memory Manager Handles
	Working With Universal Procedure Pointers
	Retaining And Releasing

	Functions
	AddCollectionItem
	AddCollectionItemHdl
	CloneCollection
	CollectionTagExists
	CopyCollection
	CountCollectionItems
	CountCollectionOwners
	CountCollectionTags
	CountTaggedCollectionItems
	DisposeCollection
	DisposeCollectionExceptionUPP
	DisposeCollectionFlattenUPP
	EmptyCollection
	FlattenCollection
	FlattenCollectionToHdl
	FlattenPartialCollection
	GetCollectionDefaultAttributes
	GetCollectionExceptionProc
	GetCollectionItem
	GetCollectionItemHdl
	GetCollectionItemInfo
	GetCollectionRetainCount
	GetIndexedCollectionItem
	GetIndexedCollectionItemHdl
	GetIndexedCollectionItemInfo
	GetIndexedCollectionTag
	GetNewCollection
	GetTaggedCollectionItem
	GetTaggedCollectionItemInfo
	InvokeCollectionExceptionUPP
	InvokeCollectionFlattenUPP
	NewCollection
	NewCollectionExceptionUPP
	NewCollectionFlattenUPP
	PurgeCollection
	PurgeCollectionTag
	ReleaseCollection
	RemoveCollectionItem
	RemoveIndexedCollectionItem
	ReplaceIndexedCollectionItem
	ReplaceIndexedCollectionItemHdl
	RetainCollection
	SetCollectionDefaultAttributes
	SetCollectionExceptionProc
	SetCollectionItemInfo
	SetIndexedCollectionItemInfo
	UnflattenCollection
	UnflattenCollectionFromHdl

	Callbacks
	CollectionExceptionProcPtr
	CollectionFlattenProcPtr

	Data Types
	Collection
	CollectionExceptionUPP
	CollectionFlattenUPP
	CollectionTag

	Constants
	Attribute Bit Masks
	Attribute Bit Masks (Old)
	Attribute Bit Numbers
	Attribute Bit Numbers (Old)
	Attributes Masks
	Attributes Masks (Old)
	Optional Return Value Constants
	Optional Return Value Constants (Old)

	Result Codes

	Component Manager Reference
	Overview
	Functions by Task
	Finding Components
	Opening and Closing Components
	Getting Information About Components
	Retrieving Component Errors
	Calling Component Functions
	Accessing the Thread Safety Mode
	Creating and Managing Universal Procedure Pointers
	Registering Components
	Dispatching to Component Functions
	Managing Component Connections
	Setting Component Errors
	Working With Component Reference Constants
	Accessing a Component’s Resource File
	Calling Other Components
	Capturing Components
	Changing the Default Search Order

	Functions
	CallComponentCanDo
	CallComponentClose
	CallComponentDispatch
	CallComponentFunction
	CallComponentFunctionWithStorage
	CallComponentFunctionWithStorageProcInfo
	CallComponentGetMPWorkFunction
	CallComponentGetPublicResource
	CallComponentOpen
	CallComponentRegister
	CallComponentTarget
	CallComponentUnregister
	CallComponentVersion
	CaptureComponent
	CloseComponent
	CloseComponentResFile
	ComponentFunctionImplemented
	ComponentSetTarget
	CountComponentInstances
	CountComponents
	CSGetComponentsThreadMode
	CSSetComponentsThreadMode
	DelegateComponentCall
	DisposeComponentFunctionUPP
	DisposeComponentMPWorkFunctionUPP
	DisposeComponentRoutineUPP
	DisposeGetMissingComponentResourceUPP
	FindNextComponent
	GetComponentIconSuite
	GetComponentIndString
	GetComponentInfo
	GetComponentInstanceError
	GetComponentInstanceStorage
	GetComponentListModSeed
	GetComponentPublicIndString
	GetComponentPublicResource
	GetComponentPublicResourceList
	GetComponentRefcon
	GetComponentResource
	GetComponentTypeModSeed
	GetComponentVersion
	InvokeComponentMPWorkFunctionUPP
	InvokeComponentRoutineUPP
	InvokeGetMissingComponentResourceUPP
	NewComponentFunctionUPP
	NewComponentMPWorkFunctionUPP
	NewComponentRoutineUPP
	NewGetMissingComponentResourceUPP
	OpenAComponent
	OpenAComponentResFile
	OpenADefaultComponent
	OpenComponent
	OpenComponentResFile
	OpenDefaultComponent
	RegisterComponent
	RegisterComponentFile
	RegisterComponentFileEntries
	RegisterComponentFileRef
	RegisterComponentFileRefEntries
	RegisterComponentResource
	RegisterComponentResourceFile
	ResolveComponentAlias
	SetComponentInstanceError
	SetComponentInstanceStorage
	SetComponentRefcon
	SetDefaultComponent
	UncaptureComponent
	UnregisterComponent

	Callbacks
	ComponentMPWorkFunctionProcPtr
	ComponentRoutineProcPtr
	GetMissingComponentResourceProcPtr

	Data Types
	ComponentAliasResource
	ComponentDependencyArray
	ComponentDescription
	ComponentFunctionUPP
	ComponentInstanceRecord
	ComponentMPWorkFunctionHeaderRecord
	ComponentMPWorkFunctionUPP
	ComponentParameters
	ComponentPlatformInfo
	ComponentPlatformInfoArray
	ComponentRecord
	ComponentResource
	ComponentResourceExtension
	ComponentResult
	ComponentRoutineUPP
	ExtComponentResource
	GetMissingComponentResourceUPP
	RegisteredComponentInstanceRecord
	RegisteredComponentRecord
	ResourceSpec

	Constants
	cmpAliasNoFlags
	cmpIsMissing
	Component Resource Extension Flags
	CSComponentsThreadMode
	kAnyComponentType
	kAppleManufacturer
	mpWorkFlagDoWork
	platform68k
	platformIRIXmips
	Register Component Resource flags
	Request Codes
	Set Default Component Flags

	Result Codes
	Gestalt Constants

	Date, Time, and Measurement Utilities Reference
	Overview
	Functions by Task
	Converting Between Date-Time Formats
	Converting Between Long Date-Time Format
	Converting Date and Time Strings Into Numeric Representations
	Converting Long Date and Time Values Into Strings
	Converting Numeric Representations Into Date and Time Strings
	Converting Between CF and Carbon Time Types
	Converting Between UTC and Local Time
	Getting the Current Date and Time
	Modifying and Verifying Long Date-Time Records
	Setting the Current Date and Time

	Functions
	ConvertLocalTimeToUTC
	ConvertLocalToUTCDateTime
	ConvertUTCToLocalDateTime
	ConvertUTCToLocalTime
	DateString
	DateToSeconds
	GetDateTime
	GetLocalDateTime
	GetTime
	GetUTCDateTime
	InitDateCache
	LongDateString
	LongDateToSeconds
	LongSecondsToDate
	LongTimeString
	ReadDateTime
	SecondsToDate
	SetDateTime
	SetLocalDateTime
	SetTime
	SetUTCDateTime
	StringToDate
	StringToTime
	TimeString
	ToggleDate
	UCConvertCFAbsoluteTimeToLongDateTime
	UCConvertCFAbsoluteTimeToSeconds
	UCConvertCFAbsoluteTimeToUTCDateTime
	UCConvertLongDateTimeToCFAbsoluteTime
	UCConvertSecondsToCFAbsoluteTime
	UCConvertUTCDateTimeToCFAbsoluteTime
	ValidDate

	Data Types
	DateCacheRecord
	DateDelta
	DateTimeRec
	LocalDateTime
	LongDateCvt
	LongDateRec
	LongDateTime
	String2DateStatus
	StringToDateStatus
	TogglePB
	UTCDateTime

	Constants
	Date Form Constants
	Default Options
	Error Codes
	Long Date Field Constants
	Long Date Mask Constants
	Flags
	Toggle Results

	Result Codes

	Debugger Services Reference
	Overview
	Functions by Task
	Using Debugger Services
	Managing Callback UPPs

	Functions
	DebugAssert
	DisposeDebugAssertOutputHandlerUPP
	DisposeDebugComponent
	DisposeDebugComponentCallbackUPP
	GetDebugComponentInfo
	GetDebugOptionInfo
	InstallDebugAssertOutputHandler
	InvokeDebugAssertOutputHandlerUPP
	InvokeDebugComponentCallbackUPP
	NewDebugAssertOutputHandlerUPP
	NewDebugComponent
	NewDebugComponentCallbackUPP
	NewDebugOption
	SetDebugOptionValue
	TaskLevel

	Callbacks
	DebugAssertOutputHandlerProcPtr
	DebugComponentCallbackProcPtr

	Data Types
	DebugAssertOutputHandlerUPP
	DebugComponentCallbackUPP

	Constants
	Interrupt Level Masks
	Unmapped Addresses
	Debug Option Types
	Commands for Debug Option Callbacks

	Result Codes

	File Manager Reference
	Overview
	Functions by Task
	Accessing Information About Files and Directories
	Accessing the Desktop Database
	Allocating Storage for Files
	Closing Files
	Comparing File System References
	Controlling Directory Access
	Controlling Login Access
	Converting Between Paths and FSRef Structures
	Copying and Moving Files
	Copying and Moving Objects Using Asynchronous High-Level File Operations
	Copying and Moving Objects Using Synchronous High-Level File Operations
	Creating a File System Reference (FSRef)
	Creating and Deleting File ID References
	Creating and Deleting Named Forks
	Creating Directories
	Creating File System Specifications
	Creating Files
	Creating, Calling, and Deleting Universal Procedure Pointers
	Deleting Files and Directories
	Determining the Unicode Names of the Data and Resource Forks
	Exchanging the Contents of Two Files
	Getting and Setting Volume Information
	Getting Volume Attributes
	Iterating Over Named Forks
	Locking and Unlocking File Ranges
	Locking and Unlocking Files and Directories
	Manipulating File and Fork Size
	Manipulating File Position
	Manipulating the Default Volume
	Mounting and Unmounting Volumes
	Mounting Remote Volumes
	Moving and Renaming Files or Directories
	Obtaining File and Directory Information Using a Catalog Iterator on HFS Plus Volumes
	Obtaining File Control Block Information
	Obtaining Fork Control Block Information
	Opening Files
	Opening Files While Denying Access
	Reading and Writing Files
	Resolving File ID References
	Searching a Volume
	Searching a Volume Using a Catalog Iterator
	Updating Files
	Updating Volumes
	Using Change Notifications
	Not Recommended

	Functions
	Allocate
	AllocContig
	CatMove
	DirCreate
	DisposeFNSubscriptionUPP
	DisposeFSVolumeEjectUPP
	DisposeFSVolumeMountUPP
	DisposeFSVolumeUnmountUPP
	DisposeIOCompletionUPP
	FlushVol
	FNGetDirectoryForSubscription
	FNNotify
	FNNotifyAll
	FNNotifyByPath
	FNSubscribe
	FNSubscribeByPath
	FNUnsubscribe
	FSAllocateFork
	FSCancelVolumeOperation
	FSCatalogSearch
	FSClose
	FSCloseFork
	FSCloseIterator
	FSCompareFSRefs
	FSCopyDiskIDForVolume
	FSCopyObjectAsync
	FSCopyObjectSync
	FSCopyURLForVolume
	FSCreateDirectoryUnicode
	FSCreateFileUnicode
	FSCreateFork
	FSCreateVolumeOperation
	FSDeleteFork
	FSDeleteObject
	FSDisposeVolumeOperation
	FSEjectVolumeAsync
	FSEjectVolumeSync
	FSExchangeObjects
	FSFileOperationCancel
	FSFileOperationCopyStatus
	FSFileOperationCreate
	FSFileOperationGetTypeID
	FSFileOperationScheduleWithRunLoop
	FSFileOperationUnscheduleFromRunLoop
	FSFlushFork
	FSFlushVolume
	FSGetAsyncEjectStatus
	FSGetAsyncMountStatus
	FSGetAsyncUnmountStatus
	FSGetCatalogInfo
	FSGetCatalogInfoBulk
	FSGetDataForkName
	FSGetForkCBInfo
	FSGetForkPosition
	FSGetForkSize
	FSGetResourceForkName
	FSGetVolumeInfo
	FSGetVolumeMountInfo
	FSGetVolumeMountInfoSize
	FSGetVolumeParms
	FSIterateForks
	FSLockRange
	FSMakeFSRefUnicode
	FSMakeFSSpec
	FSMountLocalVolumeAsync
	FSMountLocalVolumeSync
	FSMountServerVolumeAsync
	FSMountServerVolumeSync
	FSMoveObject
	FSMoveObjectAsync
	FSMoveObjectSync
	FSMoveObjectToTrashAsync
	FSMoveObjectToTrashSync
	FSOpenFork
	FSOpenIterator
	FSPathCopyObjectAsync
	FSPathCopyObjectSync
	FSPathFileOperationCopyStatus
	FSPathMakeRef
	FSPathMakeRefWithOptions
	FSPathMoveObjectAsync
	FSPathMoveObjectSync
	FSPathMoveObjectToTrashAsync
	FSPathMoveObjectToTrashSync
	FSpCatMove
	FSpCreate
	FSpDelete
	FSpDirCreate
	FSpExchangeFiles
	FSpGetFInfo
	FSpMakeFSRef
	FSpOpenDF
	FSpOpenRF
	FSpRename
	FSpRstFLock
	FSpSetFInfo
	FSpSetFLock
	FSRead
	FSReadFork
	FSRefMakePath
	FSRenameUnicode
	FSSetCatalogInfo
	FSSetForkPosition
	FSSetForkSize
	FSSetVolumeInfo
	FSUnlockRange
	FSUnmountVolumeAsync
	FSUnmountVolumeSync
	FSVolumeMount
	FSWrite
	FSWriteFork
	GetEOF
	GetFPos
	GetVRefNum
	HCreate
	HDelete
	HGetFInfo
	HGetVol
	HOpen
	HOpenDF
	HOpenRF
	HRename
	HRstFLock
	HSetFInfo
	HSetFLock
	HSetVol
	InvokeFNSubscriptionUPP
	InvokeFSVolumeEjectUPP
	InvokeFSVolumeMountUPP
	InvokeFSVolumeUnmountUPP
	InvokeIOCompletionUPP
	NewFNSubscriptionUPP
	NewFSVolumeEjectUPP
	NewFSVolumeMountUPP
	NewFSVolumeUnmountUPP
	NewIOCompletionUPP
	PBAllocateAsync
	PBAllocateForkAsync
	PBAllocateForkSync
	PBAllocateSync
	PBAllocContigAsync
	PBAllocContigSync
	PBCatalogSearchAsync
	PBCatalogSearchSync
	PBCatMoveAsync
	PBCatMoveSync
	PBCatSearchAsync
	PBCatSearchSync
	PBCloseAsync
	PBCloseForkAsync
	PBCloseForkSync
	PBCloseIteratorAsync
	PBCloseIteratorSync
	PBCloseSync
	PBCompareFSRefsAsync
	PBCompareFSRefsSync
	PBCreateDirectoryUnicodeAsync
	PBCreateDirectoryUnicodeSync
	PBCreateFileIDRefAsync
	PBCreateFileIDRefSync
	PBCreateFileUnicodeAsync
	PBCreateFileUnicodeSync
	PBCreateForkAsync
	PBCreateForkSync
	PBDeleteFileIDRefAsync
	PBDeleteFileIDRefSync
	PBDeleteForkAsync
	PBDeleteForkSync
	PBDeleteObjectAsync
	PBDeleteObjectSync
	PBDirCreateAsync
	PBDirCreateSync
	PBDTAddAPPLAsync
	PBDTAddAPPLSync
	PBDTAddIconAsync
	PBDTAddIconSync
	PBDTCloseDown
	PBDTDeleteAsync
	PBDTDeleteSync
	PBDTFlushAsync
	PBDTFlushSync
	PBDTGetAPPLAsync
	PBDTGetAPPLSync
	PBDTGetCommentAsync
	PBDTGetCommentSync
	PBDTGetIconAsync
	PBDTGetIconInfoAsync
	PBDTGetIconInfoSync
	PBDTGetIconSync
	PBDTGetInfoAsync
	PBDTGetInfoSync
	PBDTGetPath
	PBDTOpenInform
	PBDTRemoveAPPLAsync
	PBDTRemoveAPPLSync
	PBDTRemoveCommentAsync
	PBDTRemoveCommentSync
	PBDTResetAsync
	PBDTResetSync
	PBDTSetCommentAsync
	PBDTSetCommentSync
	PBExchangeFilesAsync
	PBExchangeFilesSync
	PBExchangeObjectsAsync
	PBExchangeObjectsSync
	PBFlushFileAsync
	PBFlushFileSync
	PBFlushForkAsync
	PBFlushForkSync
	PBFlushVolAsync
	PBFlushVolSync
	PBFlushVolumeAsync
	PBFlushVolumeSync
	PBFSCopyFileAsync
	PBFSCopyFileSync
	PBGetCatalogInfoAsync
	PBGetCatalogInfoBulkAsync
	PBGetCatalogInfoBulkSync
	PBGetCatalogInfoSync
	PBGetCatInfoAsync
	PBGetCatInfoSync
	PBGetEOFAsync
	PBGetEOFSync
	PBGetFCBInfoAsync
	PBGetFCBInfoSync
	PBGetForeignPrivsAsync
	PBGetForeignPrivsSync
	PBGetForkCBInfoAsync
	PBGetForkCBInfoSync
	PBGetForkPositionAsync
	PBGetForkPositionSync
	PBGetForkSizeAsync
	PBGetForkSizeSync
	PBGetFPosAsync
	PBGetFPosSync
	PBGetUGEntryAsync
	PBGetUGEntrySync
	PBGetVolMountInfo
	PBGetVolMountInfoSize
	PBGetVolumeInfoAsync
	PBGetVolumeInfoSync
	PBGetXCatInfoAsync
	PBGetXCatInfoSync
	PBHCopyFileAsync
	PBHCopyFileSync
	PBHCreateAsync
	PBHCreateSync
	PBHDeleteAsync
	PBHDeleteSync
	PBHGetDirAccessAsync
	PBHGetDirAccessSync
	PBHGetFInfoAsync
	PBHGetFInfoSync
	PBHGetLogInInfoAsync
	PBHGetLogInInfoSync
	PBHGetVInfoAsync
	PBHGetVInfoSync
	PBHGetVolAsync
	PBHGetVolParmsAsync
	PBHGetVolParmsSync
	PBHGetVolSync
	PBHMapIDAsync
	PBHMapIDSync
	PBHMapNameAsync
	PBHMapNameSync
	PBHMoveRenameAsync
	PBHMoveRenameSync
	PBHOpenAsync
	PBHOpenDenyAsync
	PBHOpenDenySync
	PBHOpenDFAsync
	PBHOpenDFSync
	PBHOpenRFAsync
	PBHOpenRFDenyAsync
	PBHOpenRFDenySync
	PBHOpenRFSync
	PBHOpenSync
	PBHRenameAsync
	PBHRenameSync
	PBHRstFLockAsync
	PBHRstFLockSync
	PBHSetDirAccessAsync
	PBHSetDirAccessSync
	PBHSetFInfoAsync
	PBHSetFInfoSync
	PBHSetFLockAsync
	PBHSetFLockSync
	PBHSetVolAsync
	PBHSetVolSync
	PBIterateForksAsync
	PBIterateForksSync
	PBLockRangeAsync
	PBLockRangeSync
	PBMakeFSRefAsync
	PBMakeFSRefSync
	PBMakeFSRefUnicodeAsync
	PBMakeFSRefUnicodeSync
	PBMakeFSSpecAsync
	PBMakeFSSpecSync
	PBMoveObjectAsync
	PBMoveObjectSync
	PBOpenForkAsync
	PBOpenForkSync
	PBOpenIteratorAsync
	PBOpenIteratorSync
	PBReadAsync
	PBReadForkAsync
	PBReadForkSync
	PBReadSync
	PBRenameUnicodeAsync
	PBRenameUnicodeSync
	PBResolveFileIDRefAsync
	PBResolveFileIDRefSync
	PBSetCatalogInfoAsync
	PBSetCatalogInfoSync
	PBSetCatInfoAsync
	PBSetCatInfoSync
	PBSetEOFAsync
	PBSetEOFSync
	PBSetForeignPrivsAsync
	PBSetForeignPrivsSync
	PBSetForkPositionAsync
	PBSetForkPositionSync
	PBSetForkSizeAsync
	PBSetForkSizeSync
	PBSetFPosAsync
	PBSetFPosSync
	PBSetVInfoAsync
	PBSetVInfoSync
	PBSetVolumeInfoAsync
	PBSetVolumeInfoSync
	PBShareAsync
	PBShareSync
	PBUnlockRangeAsync
	PBUnlockRangeSync
	PBUnmountVol
	PBUnshareAsync
	PBUnshareSync
	PBVolumeMount
	PBWaitIOComplete
	PBWriteAsync
	PBWriteForkAsync
	PBWriteForkSync
	PBWriteSync
	PBXGetVolInfoAsync
	PBXGetVolInfoSync
	PBXLockRangeAsync
	PBXLockRangeSync
	PBXUnlockRangeAsync
	PBXUnlockRangeSync
	SetEOF
	SetFPos
	UnmountVol

	Callbacks by Task
	File Operation Callbacks
	Miscellaneous Callbacks

	Callbacks
	FNSubscriptionProcPtr
	FSFileOperationStatusProcPtr
	FSPathFileOperationStatusProcPtr
	FSVolumeEjectProcPtr
	FSVolumeMountProcPtr
	FSVolumeUnmountProcPtr
	IOCompletionProcPtr

	Data Types
	AccessParam
	AFPAlternateAddress
	AFPTagData
	AFPVolMountInfo
	AFPXVolMountInfo
	CatPositionRec
	CInfoPBRec
	CMovePBRec
	CntrlParam
	ConstFSSpecPtr
	ConstHFSUniStr255Param
	CopyParam
	CSParam
	DirInfo
	DrvQEl
	DTPBRec
	FCBPBRec
	FIDParam
	FileParam
	FNSubscriptionRef
	FNSubscriptionUPP
	ForeignPrivParam
	FSCatalogBulkParam
	FSCatalogInfo
	FSCatalogInfoBitmap
	FSEjectStatus
	FSFileOperationClientContext
	FSFileOperationRef
	FSForkCBInfoParam
	FSForkInfo
	FSForkIOParam
	FSIterator
	FSMountStatus
	FSPermissionInfo
	FSRangeLockParam
	FSRangeLockParamPtr
	FSRef
	FSRefParam
	FSSearchParams
	FSSpec
	FSSpecArrayPtr
	FSUnmountStatus
	FSVolumeEjectUPP
	FSVolumeInfo
	FSVolumeInfoBitmap
	FSVolumeInfoParam
	FSVolumeMountUPP
	FSVolumeOperation
	FSVolumeRefNum
	FSVolumeUnmountUPP
	GetVolParmsInfoBuffer
	HFileInfo
	HFileParam
	HFSUniStr255
	HIOParam
	HParamBlockRec
	HVolumeParam
	IOCompletionUPP
	IOParam
	MultiDevParam
	ObjParam
	ParamBlockRec
	SlotDevParam
	VCB
	VolMountInfoHeader
	VolumeMountInfoHeader
	VolumeParam
	VolumeType
	WDParam
	WDPBRec
	XCInfoPBRec
	XIOParam
	XVolumeParam

	Constants
	AFP Tag Length Constants
	AFP Tag Type Constants
	Allocation Flags
	AppleShare Volume Signature
	Authentication Method Constants
	Cache Constants
	Catalog Information Bitmap Constants
	Catalog Information Node Flags
	Catalog Information Sharing Flags
	Catalog Search Bits
	Catalog Search Constants
	Catalog Search Masks
	Extended AFP Volume Mounting Information Flag
	Extended Volume Attributes
	FCB Flags
	File Access Permission Constants
	File and Folder Access Privilege Constants
	File Attribute Constants
	File Operation Options
	File Operation Stages
	File Operation Status Dictionary Keys
	FNMessage
	Foreign Privilege Model Constant
	Group ID Constant
	Icon Size Constants
	Icon Type Constants
	Invalid Volume Reference Constant
	Iterator Flags
	kAsyncMountInProgress
	Notification Subscription Options
	kHFSCatalogNodeIDsReusedBit
	Large Volume Constants
	Mapping Code Constants
	Path Conversion Options
	Position Mode Constants
	Root Directory Constants
	User ID Constants
	User Privileges Constants
	Volume Attribute Constants
	Volume Control Block Flags
	Volume Information Attribute Constants
	Volume Information Bitmap Constants
	Volume Information Flags
	Volume Mount Flags

	Result Codes

	Folder Manager Reference
	Overview
	Functions by Task
	Describing Folders
	Manipulating Folders
	Routing Files
	Working With Folder Manager Notification Functions
	Working With Folder Descriptors
	Finding Files in Special Folders

	Functions
	AddFolderDescriptor
	AddFolderRouting
	DetermineIfPathIsEnclosedByFolder
	DisposeFolderManagerNotificationUPP
	FindFolder
	FindFolderExtended
	FindFolderRouting
	FolderManagerRegisterCallNotificationProcs
	FolderManagerRegisterNotificationProc
	FolderManagerUnregisterNotificationProc
	FSDetermineIfRefIsEnclosedByFolder
	FSFindFolder
	FSFindFolderExtended
	FSpDetermineIfSpecIsEnclosedByFolder
	GetFolderDescriptor
	GetFolderName
	GetFolderRoutings
	GetFolderTypes
	IdentifyFolder
	InvalidateFolderDescriptorCache
	InvokeFolderManagerNotificationUPP
	NewFolderManagerNotificationUPP
	ReleaseFolder
	RemoveFolderDescriptor
	RemoveFolderRouting

	Callbacks
	FolderManagerNotificationProcPtr

	Data Types
	FindFolderUserRedirectionGlobals
	FolderDesc
	FolderManagerNotificationUPP
	FolderRouting
	MultiUserGestalt

	Constants
	Create Folder Flags
	Folder Descriptor Classes
	Folder Descriptor Flags
	Folder Descriptor Locations
	kCurrentUserFolderLocation
	Folder Type Constants
	kDomainTopLevelFolderType
	kAppleshareAutomountServerAliasesFolderType
	kUsersFolderType
	kLocalesFolderType
	Disk and Domain Constants
	Notification Options
	FSFindFolderExtended Flags
	FindFolderUserRedirectionGlobals Flags
	FindFolderUserRedirectionGlobals Structure Version
	Notification Messages
	FolderManagerCallNotificationProcs Options

	Result Codes
	Gestalt Constants

	Gestalt Manager Reference
	Overview
	Functions by Task
	Getting and Setting Gestalt Selector Codes and Values
	Working With Universal Procedure Pointers for Gestalt Selector Functions

	Functions
	DeleteGestaltValue
	DisposeSelectorFunctionUPP
	Gestalt
	InvokeSelectorFunctionUPP
	NewGestalt
	NewGestaltValue
	NewSelectorFunctionUPP
	ReplaceGestalt
	ReplaceGestaltValue
	SetGestaltValue

	Callbacks
	SelectorFunctionProcPtr

	Data Types
	SelectorFunctionUPP

	Constants
	Addressing Mode Attribute Selectors
	Admin Attribute Selectors
	AFP Client Selectors
	Alias Manager Attribute Selectors
	Appearance Manager Attribute Selectors
	Appearance Manager Version Selector
	Apple Event Manager Attribute Selectors
	AppleScript Attribute Selectors
	AppleScript Version Selector
	AppleTalk Driver Version Selector
	AppleTalk Version Selector
	ATSUI Attribute Selectors
	ATSUI Version Selectors
	ATA Manager Attribute Selectors
	AUX Version Selector
	AVL Tree Attribute Selectors
	Bus Clock Version Selector
	Carbon Version Selector
	Classic Compatibility Attribute Selectors
	CloseView Attribute Selectors
	Code Fragment Manager Attribute Selectors
	Collection Manager Version Selector
	Color Picker Version Selectors
	ColorSync Manager Attribute Selectors
	ColorSync Manager Version Selectors
	Communications Toolbox Version Selector
	Communication Resource Manager Attribute Selectors
	Component Manager Version Selectors
	Computer Model Selectors
	Computer Name Selector
	Connection Manager Attribute Selectors
	Control Manager Attribute Selectors
	Control Manager Version Selector
	Control Strip Attribute Selectors
	Control Strip Version Selector
	CPU Selectors for Apollo
	CPU Selectors for Intel and Pentium
	Data Access Manager Attribute Selectors
	Desktop Pictures Attribute Selectors
	Desktop Printing Attribute Selector
	Desktop Printing Driver Attribute Selectors
	Dialog Manager Attribute Selectors
	Dictionary Manager Attribute Selectors
	Dialog Manager Selectors for Mac OS 8.5
	Digital Signature Version Selector
	Direct IO Attribute Selector
	Disk Cache Size Selector
	Display Manager Attribute Selectors
	Display Manager Version Selector
	Drag Manager Attribute Selectors
	Draw Sprocket Version Selectors
	Easy Access Selectors
	Edition Manager Attribute Selectors
	Extension Table Version Selector
	File Mapping Attribute Selectors
	File System Attribute Selectors
	File System Attribute Selectors for Mac OS 9
	File System Manager Version Selector
	File System Transport Manager Attribute Selectors
	Find By Content State Selectors
	Find By Content Version Selectors
	Find Folder Redirection Attribute Selector
	Finder Attribute Selectors
	Floppy Driver Attribute Selectors
	Font Manager Attribute Selectors
	Folder Manager Attribute Selectors
	FPU Type Selectors
	Gestalt Manager Version Selectors
	Hardware Attribute Attribute Selectors
	Hardware Icon Selector
	Hardware Vendor Selectors
	Help Manager Attribute Selectors
	Icon Services Attribute Selectors
	Image Compression Manager Version Selector
	Intel Architecture Selector
	Internal Display Location Selector
	Keyboard Selectors
	Keyboard Selectors for Laptops
	Logical Page Size Selector
	Logical RAM Size Selector
	Low Memory Size Selector
	Machine Name String ID
	Mailer Version Selector
	Mailer Send LetterVersion Selector
	Media Bay Selectors
	Memory Attribute Selectors
	Memory Mapping Attribute Selectors
	Menu Manager Selectors in Mac OS 8.5
	Message Manager Version Selector
	Miscellaneous Attribute Selectors
	Mixed Mode Manager Selectors
	Mixed Mode Manager Version Selector
	MMU Type Selectors
	Multiple Users State Selector
	Name-Binding Protocol Attribute Selectors
	Name Registry Version Selector
	Native CPU Selectors
	Notification Manager Attribute Selectors
	NuBus Location Selector
	NuBus Slot Count Selector
	OCE Toolbox Attribute Selectors
	OCE Toolbox Version Selectors
	Open Firmware Selector
	Open Firmware Safe Selectors
	Open Transport Selectors
	Open Transport Network Setup Selectors
	Open Transport Network Version Selector
	Open Transport Remote Access Selectors
	Opent Transport Remote Access Version Selector
	Open Transport Version Selector
	OS Trap Table Selector
	Parity Checking Attribute Selectors
	PC Compatibility Card Selectors
	PC Exchange Attribute Selectors
	Physical RAM Size Selector
	Pop-up Control Selector
	Power Manager Attribute Selectors
	Power Manager Version Selector
	PowerPC Attribute Selectors
	PowerPC Toolbox Attribute Selectors
	Preemptive Function Atrribute Selectors
	Processor Clock Speed Selector
	Processor Type Selector
	Quadra Redefinitions
	QuickDraw 3D Attribute Selectors
	Quick Draw 3D Old Attribute Selectors
	Quick Draw 3D Version Selector
	QuickDraw 3D Viewer Attribute Selectors
	QuickDraw Attribute Selectors
	QuickDraw Version Selectors
	QuickDraw GX Overall Version Selector
	QuickDraw GX Printing Version Selector
	QuickDraw GX Version Selectors
	QuickDraw GX Attribute Selectors
	QuickDraw 3D Viewer Old Selectors
	QuickDraw Text Attribute Selectors
	QuickDraw Text Version Selectors
	QuickTime VR Feature Selectors
	QuickTime VR Version Selector
	QuickTime Attribute Selectors
	QuickTime Version Selectors
	QuickTime Conferencing Information Selector
	QuickTime Conferencing Selector
	QuickTime Streaming Attribute Selector
	QuickTime Streaming Version Selector
	RBV Address Selector
	Realtime Manager Attribute Selectors
	Resource Manager Bug Fixes Attribute Selectors
	Resource Manager Attribute Selectors
	ROM Size Selector
	ROM Version Selector
	SCC Read Address Selector
	SCC Write Address Selector
	SCSI Manager Attribute Selectors
	Scrap Manager Selectors
	Screen Capture Selectors
	Script Manager Version Selector
	Script Systems Count Selector
	Serial Hardware Attribute Selectors
	Serial Port Arbitrator Attribute Selectors
	Settings Manager Attribute Selectors
	Settings Manager Location Selector
	Settings Manager Version Selector
	Shutdown Attribute Selectors
	Single Window Mode Selectors
	Slot Attribute Selectors
	Slot Number Selector
	Software Vendor Codes
	Sound Manager Attribute Selectors
	Speech Manager Attribute Selectors
	Speech Recognition Version Selector
	Speech Recognition Manager Attribute Selectors
	Standard Directory Find Panel Selector
	Standard Directory Prompt Panel Selector
	Standard Directory Version Selector
	Startup Disk Attribute Selectors
	Standard File Attribute Selectors
	System Architecture Selectors
	System Update Version Selector
	System Version Selectors
	Telephone Manager Attribute Selectors
	Terminal Manager Attribute Selectors
	TextEdit Attribute Selectors
	TextEdit Version Selectors
	Text Services Manager Attribute Selectors
	Text Services Manager Version Selectors
	Thread Manager Attribute Selectors
	Time Manager Version Selectors
	Toolbox Trap Table Selector
	Toolbox Trap Table (Second Half) Selector
	Translation Manager Attribute Selectors
	TSME Version Selector
	TSMTE Attribute Selectors
	TSMTE Version Selectors
	TV Tuner Attribute Selectors
	UDF Selector
	USB Attribute Selectors
	USB Printer Sharing Version Selectors
	USB Version Selector
	VIA1 Base Address Selector
	VIA2 Base Address Selector
	Virtual Memory Manager Attribute Selectors
	Virtual Memory Backing Store Selector
	Virtual Memory Information Type Selectors
	Win32 Attribute Selectors
	Window Manager Attribute Selectors
	WorldScriptII Version Selectors

	Result Codes

	Keychain Manager Reference
	Overview
	Functions by Task
	Getting Information About the Keychain Manager
	Creating and Disposing of Keychain References
	Managing Keychains
	Storing and Retrieving Passwords
	Creating and Disposing of Keychain Item References
	Manipulating Keychain Items
	Setting and Obtaining Keychain Item Data
	Searching for Keychain Items
	Managing User Interaction
	Registering Your Keychain Event Callback Function
	Working With Your Keychain Manager Callback Function
	Unsupported Functions

	Functions
	DisposeKCCallbackUPP
	InvokeKCCallbackUPP
	KCAddAppleSharePassword
	kcaddapplesharepassword
	KCAddCallback
	KCAddGenericPassword
	kcaddgenericpassword
	KCAddInternetPassword
	kcaddinternetpassword
	KCAddInternetPasswordWithPath
	kcaddinternetpasswordwithpath
	KCAddItem
	KCChangeSettings
	KCChooseCertificate
	KCCopyItem
	KCCountKeychains
	KCCreateKeychain
	kccreatekeychain
	KCDeleteItem
	KCFindAppleSharePassword
	kcfindapplesharepassword
	KCFindFirstItem
	KCFindGenericPassword
	kcfindgenericpassword
	KCFindInternetPassword
	kcfindinternetpassword
	KCFindInternetPasswordWithPath
	kcfindinternetpasswordwithpath
	KCFindNextItem
	KCFindX509Certificates
	KCGetAttribute
	KCGetData
	KCGetDefaultKeychain
	KCGetIndKeychain
	KCGetKeychain
	KCGetKeychainManagerVersion
	KCGetKeychainName
	kcgetkeychainname
	KCGetStatus
	KCIsInteractionAllowed
	KCLock
	KCMakeAliasFromKCRef
	KCMakeKCRefFromAlias
	KCMakeKCRefFromFSSpec
	KCNewItem
	KCReleaseItem
	KCReleaseKeychain
	KCReleaseSearch
	KCRemoveCallback
	KCSetAttribute
	KCSetData
	KCSetDefaultKeychain
	KCSetInteractionAllowed
	KCUnlock
	kcunlock
	KCUpdateItem
	NewKCCallbackUPP

	Callbacks
	KCCallbackProcPtr

	Data Types
	AFPServerSignature
	KCAttribute
	KCAttributeList
	KCAttrType
	KCCallbackInfo
	KCCallbackUPP
	KCItemRef
	KCPublicKeyHash
	KCRef
	KCSearchRef
	KCStatus

	Constants
	Authentication Type Constants
	Certificate Search Options
	Certificate Usage Options
	Certificate Verification Criteria
	Default Internet Port Constant
	Default Internet Protocol And Authentication Type Constants
	Keychain Events Constants
	Keychain Events Mask
	Keychain Item Attribute Tag Constants
	Keychain Item Type Constants
	Keychain Protocol Type Constants
	Keychain Status Constants

	Result Codes

	Launch Services Reference
	Overview
	Functions by Task
	Locating an Application
	Opening Items
	Obtaining Information About an Item
	Getting and Setting Filename Extension Information
	Registering an Application
	Working With Role Handlers
	Functions No Longer Used

	Functions
	LSCanRefAcceptItem
	LSCanURLAcceptURL
	LSCopyAllHandlersForURLScheme
	LSCopyAllRoleHandlersForContentType
	LSCopyApplicationForMIMEType
	LSCopyApplicationURLsForURL
	LSCopyDefaultHandlerForURLScheme
	LSCopyDefaultRoleHandlerForContentType
	LSCopyDisplayNameForRef
	LSCopyDisplayNameForURL
	LSCopyItemAttribute
	LSCopyItemAttributes
	LSCopyItemInfoForRef
	LSCopyItemInfoForURL
	LSCopyKindStringForMIMEType
	LSCopyKindStringForRef
	LSCopyKindStringForTypeInfo
	LSCopyKindStringForURL
	LSFindApplicationForInfo
	LSGetApplicationForInfo
	LSGetApplicationForItem
	LSGetApplicationForURL
	LSGetExtensionInfo
	LSGetHandlerOptionsForContentType
	LSInit
	LSOpenApplication
	LSOpenCFURLRef
	LSOpenFromRefSpec
	LSOpenFromURLSpec
	LSOpenFSRef
	LSOpenItemsWithRole
	LSOpenURLsWithRole
	LSRegisterFSRef
	LSRegisterURL
	LSSetDefaultHandlerForURLScheme
	LSSetDefaultRoleHandlerForContentType
	LSSetExtensionHiddenForRef
	LSSetExtensionHiddenForURL
	LSSetHandlerOptionsForContentType
	LSTerm

	Data Types
	LSApplicationParameters
	LSLaunchFSRefSpec
	LSLaunchURLSpec
	LSItemInfoRecord
	LSKindID

	Constants
	Roles Mask
	Launch Flags
	Requested-Information Flags
	Item Attribute Constants
	Item-Information Flags
	Acceptance Flags
	Handler Option Constants
	Invalid Extension Index
	Unknown Type or Creator
	Constants No Longer Used

	Result Codes

	Locale Utilities Reference
	Overview
	Functions by Task
	Obtaining Available Locales
	Obtaining Localized Locale Names
	Converting Among Locale Data Formats

	Functions
	LocaleCountNames
	LocaleGetIndName
	LocaleGetName
	LocaleGetRegionLanguageName
	LocaleOperationCountLocales
	LocaleOperationCountNames
	LocaleOperationGetIndName
	LocaleOperationGetLocales
	LocaleOperationGetName
	LocaleRefFromLangOrRegionCode
	LocaleRefFromLocaleString
	LocaleRefGetPartString
	LocaleStringToLangAndRegionCodes

	Data Types
	LocaleAndVariant
	LocaleNameMask
	LocaleOperationClass
	LocaleOperationVariant
	LocalePartMask
	LocaleRef

	Constants
	Locale Name Masks
	Locale Part Masks

	Mathematical and Logical Utilities Reference
	Overview
	Functions by Task
	Converting Among 32-Bit Numeric Types
	Converting Between Fixed-Point and Floating-Point Values
	Converting Between Fixed-Point and Integral Values
	Getting and Setting Memory Values
	Multiplying and Dividing Fixed-Point Numbers
	Performing Calculations on Fixed-Point Numbers
	Performing Logical Operations
	Testing and Setting Bits
	Miscellaneous Functions

	Functions
	acos
	acosh
	annuity
	asin
	asinh
	atan
	atan2
	atanh
	BitAnd
	BitClr
	BitNot
	BitOr
	BitSet
	BitShift
	BitTst
	BitXor
	ceil
	compound
	copysign
	cos
	cosh
	dec2f
	dec2l
	dec2num
	dec2s
	dec2str
	dtox80
	erf
	erfc
	exp
	exp2
	expm1
	fabs
	fdim
	Fix2Frac
	Fix2Long
	Fix2X
	FixATan2
	FixDiv
	FixedToFloat
	FixMul
	FixRatio
	FixRound
	FloatToFixed
	FloatToFract
	floor
	fmax
	fmin
	fmod
	fpclassify
	Frac2Fix
	Frac2X
	FracCos
	FracDiv
	FracMul
	FracSin
	FracSqrt
	FractToFloat
	frexp
	gamma
	HiWord
	hypot
	isfinite
	isnan
	isnormal
	ldexp
	lgamma
	log
	log10
	log1p
	log2
	logb
	Long2Fix
	LoWord
	modf
	modff
	nan
	nanf
	nearbyint
	nextafterd
	nextafterf
	num2dec
	pi
	pow
	randomx
	relation
	remainder
	remquo
	rint
	rinttol
	round
	roundtol
	S32Set
	S64Absolute
	S64Add
	S64And
	S64BitwiseAnd
	S64BitwiseEor
	S64BitwiseNot
	S64BitwiseOr
	S64Compare
	S64Div
	S64Divide
	S64Eor
	S64Max
	S64Min
	S64Multiply
	S64Negate
	S64Not
	S64Or
	S64Set
	S64SetU
	S64ShiftLeft
	S64ShiftRight
	S64Subtract
	scalb
	signbit
	sin
	sinh
	SInt64ToUInt64
	sqrt
	str2dec
	tan
	tanh
	trunc
	U32SetU
	U64Add
	U64And
	U64BitwiseAnd
	U64BitwiseEor
	U64BitwiseNot
	U64BitwiseOr
	U64Compare
	U64Div
	U64Divide
	U64Eor
	U64Max
	U64Multiply
	U64Not
	U64Or
	U64Set
	U64SetU
	U64ShiftLeft
	U64ShiftRight
	U64Subtract
	UInt64ToSInt64
	WideAdd
	WideBitShift
	WideCompare
	WideDivide
	WideMultiply
	WideNegate
	WideShift
	WideSquareRoot
	WideSubtract
	WideWideDivide
	X2Fix
	X2Frac
	x80tod

	Data Types
	decform
	decimal
	double_t
	fenv_t
	fexcept_t
	Fixed
	Fract
	float_t
	relop
	_scalb_n_type
	_trunc_return_type

	Constants
	DECSTROUTLEN
	FE_INEXACT
	FE_LDBLPREC
	FE_TONEAREST
	fixed1
	FP_SNAN
	Relational Operator
	SIGDIGLEN
	Special Values

	Memory Management Utilities Reference
	Overview
	Functions by Task
	Determining the Measurement System
	Reading and Writing Location Data
	Setting and Restoring the A5 Register
	Getting the User and Computer Name
	Managing a Queue
	Working With Parameter RAM
	Miscellaneous
	Working With Universal Procedure Pointers

	Functions
	CSCopyMachineName
	CSCopyUserName
	Delay
	Dequeue
	DisposeDeferredTaskUPP
	DTInstall
	DTUninstall
	Enqueue
	GetSysPPtr
	InitUtil
	InvokeDeferredTaskUPP
	IsMetric
	MakeDataExecutable
	NewDeferredTaskUPP
	ReadLocation
	SetA5
	SetCurrentA5
	TickCount
	WriteLocation
	WriteParam

	Callbacks
	DeferredTaskProcPtr

	Data Types
	DeferredTask
	DeferredTaskUPP
	MachineLocation
	QElem
	QHdr
	SysEnvRec
	SysParmType

	Constants
	Addressing Errors
	Keyboard Constants
	Macintosh Model Codes
	Microprocessor Codes
	Queue Types
	Sorting Constants
	Assorted Use Constants
	Version Number

	Result Codes

	Memory Manager Reference
	Overview
	Functions by Task
	Allocating and Releasing Nonrelocatable Blocks of Memory
	Allocating and Releasing Relocatable Blocks of Memory
	Allocating Temporary Memory
	Assessing Memory Conditions
	Changing the Sizes of Relocatable and Nonrelocatable Blocks
	Managing Relocatable Blocks
	Manipulating Blocks of Memory
	Setting the Properties of Relocatable Blocks
	Miscellaneous
	Deprecated Functions

	Functions
	BlockMove
	BlockMoveData
	BlockMoveDataUncached
	BlockMoveUncached
	BlockZero
	BlockZeroUncached
	CheckAllHeaps
	CompactMem
	DisposeGrowZoneUPP
	DisposeHandle
	DisposePtr
	DisposePurgeUPP
	DisposeUserFnUPP
	EmptyHandle
	FlushMemory
	FreeMem
	GetGrowZone
	GetHandleSize
	GetPtrSize
	GZSaveHnd
	HandAndHand
	HandToHand
	HClrRBit
	HGetState
	HLock
	HLockHi
	HNoPurge
	HoldMemory
	HPurge
	HSetRBit
	HSetState
	HUnlock
	InvokeGrowZoneUPP
	InvokePurgeUPP
	InvokeUserFnUPP
	IsHandleValid
	IsHeapValid
	IsPointerValid
	LMGetApplZone
	LMGetMemErr
	LMGetSysZone
	LMSetApplZone
	LMSetMemErr
	LMSetSysZone
	MakeMemoryNonResident
	MakeMemoryResident
	MaxBlock
	MaxMem
	MemError
	MoreMasterPointers
	MoreMasters
	MoveHHi
	NewEmptyHandle
	NewGrowZoneUPP
	NewHandle
	NewHandleClear
	NewPtr
	NewPtrClear
	NewPurgeUPP
	NewUserFnUPP
	PtrAndHand
	PtrToHand
	PtrToXHand
	PurgeMem
	PurgeSpace
	PurgeSpaceContiguous
	PurgeSpaceTotal
	ReallocateHandle
	RecoverHandle
	ReleaseMemoryData
	ReserveMem
	SetGrowZone
	SetHandleSize
	SetPtrSize
	StackSpace
	TempDisposeHandle
	TempFreeMem
	TempHLock
	TempHUnlock
	TempMaxMem
	TempNewHandle
	TempTopMem
	TopMem
	UnholdMemory

	Callbacks
	GrowZoneProcPtr
	PurgeProcPtr
	UserFnProcPtr

	Data Types
	BackingFileID
	FileViewAccess
	FileViewID
	FileViewInformation
	FileViewOptions
	GrowZoneUPP
	LogicalToPhysicalTable
	MappedFileAttributes
	MappedFileInformation
	MappingPrivileges
	MemoryBlock
	PurgeUPP
	StatusRegisterContents
	UserFnUPP
	VolumeVirtualMemoryInfo
	Zone

	Constants
	Default Physical Entry Count Constant
	k32BitHeap
	kFileViewInformationVersion1
	kHandleIsResourceBit
	kHandleIsResourceMask
	kMapEntireFork
	kMappedFileInformationVersion1
	kPageInMemory
	kVolumeVirtualMemoryInfoVersion1
	maxSize

	Result Codes

	Mixed Mode Manager Reference
	Overview
	Data Types
	MixedModeStateRecord
	ProcInfoType
	RDFlagsType
	RoutineDescriptor
	RoutineFlagsType
	RoutineRecord

	Constants
	Calling Convention Constants
	Default Routine Flags
	Fragment Flags
	Instruction Set Architectures
	ISA Flags
	Current Mixed Mode State
	RTA Types
	Procedure Descriptors
	Routine Descriptor Version
	Special Case Constant
	kX86ISA
	kX86RTA
	_MixedModeMagic
	Procedure Information Size Constants
	ProcInfo Field Offset And Width Constants
	Register Constants
	Routine Descriptor Flags
	Routine Entry Point Flags
	Routine Selector Flags
	Special Case Calling Convention Constants

	Result Codes
	Gestalt Constants

	Multiprocessing Services Reference
	Overview
	Functions by Task
	Determining Multiprocessing Services And Processor Availability
	Creating and Handling Message Queues
	Creating and Handling Semaphores
	Creating and Scheduling Tasks
	Handling Critical Regions
	Handling Event Groups
	Handling Kernel Notifications
	Accessing Per-Task Storage Variables
	Memory Allocation Functions
	Remote Calling Functions
	Timer Services Functions
	Exception Handling Functions
	Debugger Support Functions

	Functions
	MPAllocate
	MPAllocateAligned
	MPAllocateTaskStorageIndex
	MPArmTimer
	MPBlockClear
	MPBlockCopy
	MPCancelTimer
	MPCauseNotification
	MPCreateCriticalRegion
	MPCreateEvent
	MPCreateNotification
	MPCreateQueue
	MPCreateSemaphore
	MPCreateTask
	MPCreateTimer
	MPCurrentTaskID
	MPDataToCode
	MPDeallocateTaskStorageIndex
	MPDelayUntil
	MPDeleteCriticalRegion
	MPDeleteEvent
	MPDeleteNotification
	MPDeleteQueue
	MPDeleteSemaphore
	MPDeleteTimer
	MPDisposeTaskException
	MPEnterCriticalRegion
	MPExit
	MPExitCriticalRegion
	MPExtractTaskState
	MPFree
	MPGetAllocatedBlockSize
	MPGetNextCpuID
	MPGetNextTaskID
	MPGetTaskStorageValue
	MPModifyNotification
	MPModifyNotificationParameters
	MPNotifyQueue
	MPProcessors
	MPProcessorsScheduled
	MPRegisterDebugger
	MPRemoteCall
	MPRemoteCallCFM
	MPSetEvent
	MPSetExceptionHandler
	MPSetQueueReserve
	MPSetTaskState
	MPSetTaskStorageValue
	MPSetTaskType
	MPSetTaskWeight
	MPSetTimerNotify
	MPSignalSemaphore
	MPTaskIsPreemptive
	MPTerminateTask
	MPThrowException
	MPUnregisterDebugger
	MPWaitForEvent
	MPWaitOnQueue
	MPWaitOnSemaphore
	MPYield
	_MPIsFullyInitialized

	Callbacks
	MPRemoteProcedure
	TaskProc

	Data Types
	MPAddressSpaceID
	MPAddressSpaceInfo
	MPAreaID
	MPCoherenceID
	MPConsoleID
	MPCpuID
	MPCriticalRegionID
	MPCriticalRegionInfo
	MPEventFlags
	MPEventID
	MPEventInfo
	MPExceptionKind
	MPNotificationID
	MPNotificationInfo
	MPOpaqueID
	MPOpaqueIDClass
	MPPageSizeClass
	MPProcessID
	MPQueueID
	MPQueueInfo
	MPSemaphoreCount
	MPSemaphoreID
	MPSemaphoreInfo
	MPTaskID
	MPTaskInfo
	MPTaskInfoVersion2
	MPTaskStateKind
	MPTaskWeight
	MPTimerID
	TaskStorageIndex
	TaskStorageValue

	Constants
	Allocation constants
	Task IDs
	Data Structure Version Constants
	Values for the MPOpaqueIDClass type
	Memory Allocation Alignment Constants
	Memory Allocation Option Constants
	MPDebuggerLevel
	Library Version Constants
	Remote Call Context Option Constants
	Task Creation Options
	Task Exception Disposal Constants
	Task Information Structure Version Constant
	Task Run State Constants
	Task State Constants
	Timer Duration Constants
	Timer Option Masks

	Result Codes
	Gestalt Constants

	Pascal String Utilities Reference
	Overview
	Functions
	PLpos
	PLstrcat
	PLstrchr
	PLstrcmp
	PLstrcpy
	PLstrlen
	PLstrncat
	PLstrncmp
	PLstrncpy
	PLstrpbrk
	PLstrrchr
	PLstrspn
	PLstrstr

	Data Types
	PEF2ContainerHeader
	PEF2ExportedSymbolKey
	PEF2ImportedLibrary
	PEF2LgExportedSymbolHashSlot
	PEF2LgExportedSymbol
	PEF2LgImportedSymbol
	PEF2LoaderInfoHeader
	PEF2LoaderRelocationHeader
	PEF2SectionHeader
	PEF2SmExportedSymbolHashSlot
	PEF2SmExportedSymbol
	PEF2SmImportedSymbol
	PEFContainerHeader
	PEFExportedSymbol
	PEFExportedSymbolHashSlot
	PEFExportedSymbolKey
	PEFImportedLibrary
	PEFImportedSymbol
	PEFLoaderInfoHeader
	PEFLoaderRelocationHeader
	PEFRelocChunk
	PEFSectionHeader
	PEFSplitHashWord
	XLibContainerHeader
	XLibExportedSymbol
	XLibExportedSymbolHashSlot
	XLibExportedSymbolKey

	Constants
	kPEF2IsReexportLibraryMask
	kPEF2LdrInfoLargeImpSymMask
	kPEF2PrivateShare
	kPEF2SectionHasCodeMask
	kPEF2StringsAreASCII
	kPEF2Tag1
	kPEF2WeakImportLibMask
	kPEFAbsoluteExport
	kPEFCodeSection
	kPEFCodeSymbol
	kPEFExpSymClassShift
	kPEFFirstSectionHeaderOffset
	kPEFHashLengthShift
	kPEFHashSlotSymCountShift
	kPEFImpSymClassShift
	kPEFPkDataOpcodeShift
	kPEFPkDataZero
	kPEFProcessShare
	kPEFRelocBasicOpcodeRange
	kPEFRelocBySectDWithSkip
	kPEFRelocIncrPositionMaxOffset
	kPEFRelocLgByImportMaxIndex
	kPEFRelocLgBySectionSubopcode
	kPEFRelocLgRepeatMaxChunkCount
	kPEFRelocLgSetOrBySectionMaxIndex
	kPEFRelocRunMaxRunLength
	kPEFRelocSetPosMaxOffset
	kPEFRelocSmIndexMaxIndex
	kPEFRelocSmRepeatMaxChunkCount
	kPEFRelocWithSkipMaxSkipCount
	kPEFTag1
	kPEFWeakImportLibMask
	kXLibTag1

	Power Manager Reference
	Overview
	Functions by Task
	Controlling the Idle State
	Controlling and Reading the Wakeup Timer
	Controlling the Sleep Queue
	Controlling Serial Power
	Reading the Status of the Internal Modem
	Reading the Status of the Battery and of the Battery Charger
	Miscellaneous

	Functions
	AOff
	AOn
	AOnIgnoreModem
	AutoSleepControl
	BatteryCount
	BatteryStatus
	BOff
	BOn
	CurrentProcessorSpeed
	DelaySystemIdle
	DimmingControl
	DisableIdle
	DisableWUTime
	DisposeHDSpindownUPP
	DisposePMgrStateChangeUPP
	DisposeSleepQUPP
	EnableIdle
	EnableProcessorCycling
	FullProcessorSpeed
	GetBatteryTimes
	GetBatteryVoltage
	GetCPUSpeed
	GetDimmingTimeout
	GetDimSuspendState
	GetHardDiskTimeout
	GetIntModemInfo
	GetLastActivity
	GetScaledBatteryInfo
	GetSCSIDiskModeAddress
	GetSleepTimeout
	GetSoundMixerState
	GetStartupTimer
	GetWakeupTimer
	GetWUTime
	HardDiskPowered
	HardDiskQInstall
	HardDiskQRemove
	IdleUpdate
	InvokeHDSpindownUPP
	InvokePMgrStateChangeUPP
	InvokeSleepQUPP
	IsAutoSlpControlDisabled
	IsDimmingControlDisabled
	IsProcessorCyclingEnabled
	IsSpindownDisabled
	MaximumProcessorSpeed
	MinimumProcessorSpeed
	ModemStatus
	NewHDSpindownUPP
	NewPMgrStateChangeUPP
	NewSleepQUPP
	PMFeatures
	PMgrStateQInstall
	PMgrStateQRemove
	PMSelectorCount
	SetDimmingTimeout
	SetDimSuspendState
	SetHardDiskTimeout
	SetIntModemState
	SetProcessorSpeed
	SetSCSIDiskModeAddress
	SetSleepTimeout
	SetSoundMixerState
	SetSpindownDisable
	SetStartupTimer
	SetWakeupTimer
	SetWUTime
	SleepQInstall
	SleepQRemove
	SpinDownHardDisk
	UpdateSystemActivity

	Callbacks
	HDSpindownProcPtr
	PMgrStateChangeProcPtr
	PowerHandlerProcPtr
	SleepQProcPtr

	Data Types
	ActivityInfo
	BatteryByte
	BatteryInfo
	BatteryTimeRec
	DevicePowerInfo
	HDQueueElement
	HDSpindownUPP
	ModemByte
	PMgrQueueElement
	PMgrStateChangeUPP
	PMResultCode
	PowerLevel
	PowerSourceID
	PowerSourceParamBlock
	PowerSourceParamBlockPtr
	PowerSummary
	SleepQRec
	SleepQRecPtr
	SleepQUPP
	SoundMixerByte
	StartupTime
	WakeupTime

	Constants
	Apple Event Types and Errors
	BatteryByte Bits
	BatteryByte Masks
	BatteryInfo Bits
	Client Notification Bits
	Client Notification Masks
	DevicePowerInfo Flags
	HDPwrQType Constants
	HDQueueElement Flags
	kMediaPowerCSCode Constants
	kUseDefaultMinimumWakeTime Constants
	Modem State Bits
	ModemByte Bits
	ModemByte Masks
	Net Activity Wake Options
	PCI Bus PMIS Power Levels
	Power Capacity Types
	Power Handler Wake Results
	Power Manager Features Bits
	Power Source Attribute Bits
	Power Source Capacity Usage Types
	Power Source State Bits
	Power Source Version
	Power Summary Flags
	Sleep Commands
	sleepQFlags Bits
	sleepQProc Commands
	SoundMixerByte Bits
	SoundMixerByte Masks
	Storage Media Sleep Modes
	System Activity Selectors

	Result Codes

	Resource Manager Reference
	Overview
	Functions by Task
	Checking for Errors
	Closing Resource Forks
	Counting and Listing Resource Types
	Creating Resource Files and Forks
	Disposing of Resources
	Getting a Unique Resource ID
	Getting and Setting Resource Fork Attributes
	Getting and Setting Resource Information
	Getting and Setting the Current Resource File
	Getting Resource Sizes
	Managing the Resource Chain
	Modifying Resources
	Opening Resource Forks
	Reading and Writing Partial Resources
	Reading Resources Into Memory
	Writing to Resource Forks
	Not Recommended

	Functions
	AddResource
	ChangedResource
	CloseResFile
	Count1Resources
	Count1Types
	CountResources
	CountTypes
	CurResFile
	DetachResource
	DetachResourceFile
	DisposeResErrUPP
	FSCreateResFile
	FSCreateResourceFile
	FSCreateResourceFork
	FSOpenOrphanResFile
	FSOpenResFile
	FSOpenResourceFile
	FSpCreateResFile
	FSpOpenOrphanResFile
	FSpOpenResFile
	FSpResourceFileAlreadyOpen
	FSResourceFileAlreadyOpen
	Get1IndResource
	Get1IndType
	Get1NamedResource
	Get1Resource
	GetIndResource
	GetIndType
	GetMaxResourceSize
	GetNamedResource
	GetNextFOND
	GetNextResourceFile
	GetResAttrs
	GetResFileAttrs
	GetResInfo
	GetResource
	GetResourceSizeOnDisk
	GetTopResourceFile
	HCreateResFile
	HomeResFile
	HOpenResFile
	InsertResourceFile
	InvokeResErrUPP
	LoadResource
	NewResErrUPP
	OpenRFPerm
	ReadPartialResource
	ReleaseResource
	RemoveResource
	ResError
	SetResAttrs
	SetResFileAttrs
	SetResInfo
	SetResLoad
	SetResourceSize
	SetResPurge
	Unique1ID
	UniqueID
	UpdateResFile
	UseResFile
	WritePartialResource
	WriteResource

	Callbacks
	ResErrProcPtr
	ResourceEndianFilterPtr

	Data Types
	ResAttributes
	ResErrUPP
	ResFileAttributes
	ResFileRefNum
	ResID
	ResType

	Constants
	Reference Number Constants
	Resource Attribute Bits
	Resource Attribute Masks
	Resource Chain Location
	Resource Fork Attribute Bits
	Resource Fork Attribute Masks

	Result Codes

	Script Manager Reference (Not Recommended)
	Overview
	Functions by Task
	Analyzing Characters
	Checking and Setting Script Manager Variables
	Checking and Setting Script Variables
	Checking and Setting the System Direction
	Determining Script Codes From Font Information
	Directly Accessing International Resources
	Converting Text

	Functions
	CharacterByteType
	CharacterType
	ClearIntlResourceCache
	FillParseTable
	FontScript
	FontToScript
	GetIntlResource
	GetIntlResourceTable
	GetScriptManagerVariable
	GetScriptVariable
	GetSysDirection
	IntlScript
	IntlTokenize
	SetScriptManagerVariable
	SetScriptVariable
	SetSysDirection
	TransliterateText

	Data Types
	CharByteTable
	CommentType
	DelimType
	ScriptTokenType
	TokenBlock
	TokenRec

	Constants
	Assorted Constants
	Calendar Codes
	Character Byte Types
	Character Types
	Character Type Classes
	Character Type Field Masks
	Character Set Extensions
	Keyboard Script Synchronization
	Glyph Orientations
	Keyboard Script Switching Selectors
	Keyboard Script Values
	Keyboard Synchronization Mask
	Meta Script Codes
	Negative Verbs
	Numeral Codes
	Script Redraw Selectors
	Script Codes
	Script Code - Unicode Input
	Script Constants
	Script Flag Attributes
	Script Manager Selectors
	Script Variable Selectors
	Script Token Types
	Source Masks
	Table Selectors
	Transliteration Target Types 1
	Transliteration Target Types 2

	Language Codes
	Language Codes A
	Language Codes B
	Language Codes C
	Language Codes D
	Language Codes E
	Language Codes F
	Language Code - Unspecified

	Region Codes
	Range Checking Region Code
	Region Codes A
	Region Codes B
	Region Codes C
	Region Codes D
	Regions Codes E

	Token Constants
	Tokens - Mathematical
	Tokens - Punctuation
	Tokens for Symbols
	Token Types
	Token Results

	Obsolete Constants
	Obsolete Language Codes
	Obsolete Regions Codes
	Obsolete Roman Script Constants
	Obsolete Script Codes
	Obsolete System Script Codes
	Obsolete Token Codes

	Result Codes

	SCSI Manager Reference (Not Recommended)
	Overview
	Functions
	DisposeSCSICallbackUPP
	InvokeSCSICallbackUPP
	NewSCSICallbackUPP
	SCSIAction

	Callbacks
	SCSICallbackProcPtr

	Data Types
	CDB
	DeviceIdent
	DeviceIdentATA
	SCSI_PB
	SCSICallbackUPP
	SCSI_IO
	SCSIBusInquiryPB
	SCSIAbortCommandPB
	SCSITerminateIOPB
	SCSIGetVirtualIDInfoPB
	SCSILoadDriverPB
	SCSIDriverPB

	Constants
	SCSI Flags
	SCSIAction function selector codes
	kBusTypeSCSI
	SCSI Result Flags
	SCSI IO Flags
	SCSI_IO Data Types
	SCSIBusInquiryPB Data Types
	SCSI Transfer Types
	SCSIBusInquiryPB Feature Flags
	scsiBusMDP
	scsiOddDisconnectUnsafeRead1
	scsiMotherboardBus
	kDataOutPhase
	scsiErrorBase
	scsiExecutionErrors
	scsiVERSION
	vendorUnique
	scsiDeviceSensitive

	Result Codes

	Text Encoding Conversion Manager Reference
	Overview
	Functions by Task
	Creating a Text Encoding Specification
	Obtaining Information From a Text Encoding Specification
	Converting Between Script Manager Values and Text Encodings
	Obtaining Information About Available Text Encodings
	Identifying Direct Encoding Conversions
	Identifying Possible Destination Encodings
	Obtaining Converter Information
	Creating and Deleting Converter Objects
	Converting Text Between Encodings
	Converting to Multiple Encoding Runs
	Using Sniffers to Investigate Encodings
	Getting Information About Internet and Regional Text Encoding Names
	Converting to Unicode
	Converting From Unicode
	Converting From Unicode to Multiple Encodings
	Converting Between Unicode and Pascal Strings
	Obtaining Unicode Mapping Information
	Truncating Strings Before Converting Them
	Setting the Fallback Handler
	Working With Universal Procedure Pointers
	Getting UniChar Property Values

	Functions
	ChangeTextToUnicodeInfo
	ChangeUnicodeToTextInfo
	ConvertFromPStringToUnicode
	ConvertFromTextToUnicode
	ConvertFromUnicodeToPString
	ConvertFromUnicodeToScriptCodeRun
	ConvertFromUnicodeToText
	ConvertFromUnicodeToTextRun
	CountUnicodeMappings
	CreateTextEncoding
	CreateTextToUnicodeInfo
	CreateTextToUnicodeInfoByEncoding
	CreateUnicodeToTextInfo
	CreateUnicodeToTextInfoByEncoding
	CreateUnicodeToTextRunInfo
	CreateUnicodeToTextRunInfoByEncoding
	CreateUnicodeToTextRunInfoByScriptCode
	DisposeTextToUnicodeInfo
	DisposeUnicodeToTextFallbackUPP
	DisposeUnicodeToTextInfo
	DisposeUnicodeToTextRunInfo
	GetTextEncodingBase
	GetTextEncodingFormat
	GetTextEncodingName
	GetTextEncodingVariant
	InvokeUnicodeToTextFallbackUPP
	NearestMacTextEncodings
	NewUnicodeToTextFallbackUPP
	QueryUnicodeMappings
	ResetTextToUnicodeInfo
	ResetUnicodeToTextInfo
	ResetUnicodeToTextRunInfo
	ResolveDefaultTextEncoding
	RevertTextEncodingToScriptInfo
	SetFallbackUnicodeToText
	SetFallbackUnicodeToTextRun
	TECClearConverterContextInfo
	TECClearSnifferContextInfo
	TECConvertText
	TECConvertTextToMultipleEncodings
	TECCountAvailableSniffers
	TECCountAvailableTextEncodings
	TECCountDestinationTextEncodings
	TECCountDirectTextEncodingConversions
	TECCountMailTextEncodings
	TECCountSubTextEncodings
	TECCountWebTextEncodings
	TECCreateConverter
	TECCreateConverterFromPath
	TECCreateOneToManyConverter
	TECCreateSniffer
	TECDisposeConverter
	TECDisposeSniffer
	TECFlushMultipleEncodings
	TECFlushText
	TECGetAvailableSniffers
	TECGetAvailableTextEncodings
	TECGetDestinationTextEncodings
	TECGetDirectTextEncodingConversions
	TECGetEncodingList
	TECGetInfo
	TECGetMailTextEncodings
	TECGetSubTextEncodings
	TECGetTextEncodingFromInternetName
	TECGetTextEncodingInternetName
	TECGetWebTextEncodings
	TECSniffTextEncoding
	TruncateForTextToUnicode
	TruncateForUnicodeToText
	UCGetCharProperty
	UpgradeScriptInfoToTextEncoding

	Callbacks by Task
	Setting Up a Fallback Handler
	Setting Up a TEC Plug-in

	Callbacks
	TECPluginClearContextInfoPtr
	TECPluginClearSnifferContextInfoPtr
	TECPluginConvertTextEncodingPtr
	TECPluginDisposeEncodingConverterPtr
	TECPluginDisposeEncodingSnifferPtr
	TECPluginFlushConversionPtr
	TECPluginGetCountAvailableSniffersPtr
	TECPluginGetCountAvailableTextEncodingPairsPtr
	TECPluginGetCountAvailableTextEncodingsPtr
	TECPluginGetCountDestinationTextEncodingsPtr
	TECPluginGetCountMailEncodingsPtr
	TECPluginGetCountSubTextEncodingsPtr
	TECPluginGetCountWebEncodingsPtr
	TECPluginGetPluginDispatchTablePtr
	TECPluginGetTextEncodingFromInternetNamePtr
	TECPluginGetTextEncodingInternetNamePtr
	TECPluginNewEncodingConverterPtr
	TECPluginNewEncodingSnifferPtr
	TECPluginSniffTextEncodingPtr
	UnicodeToTextFallbackProcPtr

	Data Types
	ConstScriptCodeRunPtr
	ConstTextEncodingRunPtr
	ConstTextPtr
	ConstTextToUnicodeInfo
	ConstUniCharArrayPtr
	ConstUnicodeMappingPtr
	ConstUnicodeToTextInfo
	ScriptCodeRun
	TECBufferContextRec
	TECConversionInfo
	TECConverterContextRec
	TECInfo
	TECObjectRef
	TECPluginDispatchTable
	TECPluginSig
	TECPluginSignature
	TECPluginStateRec
	TECPluginVersion
	TECSnifferContextRec
	TECSnifferObjectRef
	TextEncoding
	TextEncodingRun
	TextEncodingVariant
	TextToUnicodeInfo
	UniCharArrayOffset
	UnicodeMapping
	UnicodeToTextFallbackUPP
	UnicodeToTextInfo
	UnicodeToTextRunInfo

	Constants
	Feature Selectors
	Conversion Flags
	Conversion Masks
	Directionality Flags
	Directionality Masks
	Unicode Converter Flags
	Unicode Converter Masks
	Unicode Fallback Sequencing Flag
	Unicode Fallback Sequencing Masks
	Unicode Matching Flags
	Unicode Matching Masks
	Fallback Handler Selectors

	Encodings and Variants
	Base Text Encodings
	Compatibility TextEncodings
	EBCDIC and IBM Host Text Encodings
	Encoding Variants for Big-5
	Encoding Variants for Mac OS Encodings
	Encoding Variants for MacArabic
	Encoding Variants for MacCroatian
	Encoding Variants for MacCyrillic
	Encoding Variants for MacFarsi
	Encoding Variants for MacHebrew
	Encoding Variants for MacIcelandic
	Encoding Variants for MacJapanese
	Encoding Variants for MacRoman
	Encoding Variants for MacRoman Related to Currency
	Encoding Variants for MacRomanian
	Encoding Variants for MacRomanLatin1
	Encoding Variants for MacVT100
	Encoding Variants for Unicode
	EUC Text Encodings
	HFS Text Encoding
	ISO 2022 Text Encodings
	ISO 8-bit and 7-bit Text Encodings
	Mac Unicode Text Encoding
	Miscellaneous Text Encoding Standards
	MS-DOS and Windows Text Encodings
	National Standard Text Encodings
	NextStep Platform Encodings
	Special Text Encoding Values
	Text Encoding Formats
	Text Encoding Name Selectors
	Text Encoding Variants
	Unicode and ISO UCS Text Encodings
	Unsupported Unicode Variants

	Assorted Constants
	Bidirectional Character Values
	Common and Special Unicode Values
	TEC Plugin Dispatch Table Versions
	TEC Plug-in Signatures
	Unicode Character Property Types
	Unicode Character Property Values
	Unicode Mapping Versions
	Unwanted Data Constants

	Result Codes

	Text Utilities Reference
	Overview
	Functions by Task
	Comparing Strings for Equality
	Converting Between Integers and Strings
	Converting Between Strings and Floating-Point Numbers
	Converting Between C and Pascal Strings
	Defining and Specifying Strings
	Determining Sorting Order for Strings in Different Languages
	Determining Sorting Order for Strings in the Same Language
	Modifying Characters and Diacritical Marks
	Searching for and Replacing Strings
	Using Number Format Specification Strings for International Number Formatting
	Working With Word, Script, and Line Boundaries
	Working With Universal Procedure Pointers
	Working With Type Select Records

	Functions
	c2pstr
	C2PStr
	c2pstrcpy
	CompareString
	CompareText
	CopyCStringToPascal
	CopyPascalStringToC
	DisposeIndexToStringUPP
	EqualString
	ExtendedToString
	FindScriptRun
	FindWordBreaks
	FormatRecToString
	GetIndString
	GetString
	IdenticalString
	IdenticalText
	InvokeIndexToStringUPP
	LanguageOrder
	LowercaseText
	Munger
	NewIndexToStringUPP
	NewString
	NumToString
	p2cstr
	P2CStr
	p2cstrcpy
	RelString
	relstring
	ReplaceText
	ScriptOrder
	SetString
	StringOrder
	StringToExtended
	StringToFormatRec
	StringToNum
	StripDiacritics
	TextOrder
	TypeSelectClear
	TypeSelectCompare
	TypeSelectFindItem
	TypeSelectNewKey
	UppercaseStripDiacritics
	UppercaseText
	UpperString
	upperstring

	Callbacks
	IndexToStringProcPtr

	Data Types
	BreakTable
	FormatClass
	FormatStatus
	FVector
	IndexToStringUPP
	NBreakTable
	NumFormatString
	NumFormatStringRec
	ScriptRunStatus
	TripleInt
	TypeSelectRecord

	Constants
	Format Result Types
	TripleInt Index Values
	NumFormatString Version
	Implicit Language Codes
	Type Select Modes
	Obsolete Language Code Values

	Thread Manager Reference
	Overview
	Functions by Task
	Creating and Disposing of Threads
	Creating and Getting Information About Thread Pools
	Getting Information About Specific Threads
	Getting Information and Scheduling Threads During Interrupts
	Installing Custom Scheduling, Switching, Terminating, and Debugging Functions
	Preventing Scheduling
	Scheduling Threads
	Miscellaneous

	Functions
	CreateThreadPool
	DisposeDebuggerDisposeThreadUPP
	DisposeDebuggerNewThreadUPP
	DisposeDebuggerThreadSchedulerUPP
	DisposeThread
	DisposeThreadEntryUPP
	DisposeThreadSchedulerUPP
	DisposeThreadSwitchUPP
	DisposeThreadTerminationUPP
	GetCurrentThread
	GetDefaultThreadStackSize
	GetFreeThreadCount
	GetSpecificFreeThreadCount
	GetThreadCurrentTaskRef
	GetThreadState
	GetThreadStateGivenTaskRef
	InvokeDebuggerDisposeThreadUPP
	InvokeDebuggerNewThreadUPP
	InvokeDebuggerThreadSchedulerUPP
	InvokeThreadEntryUPP
	InvokeThreadSchedulerUPP
	InvokeThreadSwitchUPP
	InvokeThreadTerminationUPP
	NewDebuggerDisposeThreadUPP
	NewDebuggerNewThreadUPP
	NewDebuggerThreadSchedulerUPP
	NewThread
	NewThreadEntryUPP
	NewThreadSchedulerUPP
	NewThreadSwitchUPP
	NewThreadTerminationUPP
	SetDebuggerNotificationProcs
	SetThreadReadyGivenTaskRef
	SetThreadScheduler
	SetThreadState
	SetThreadStateEndCritical
	SetThreadSwitcher
	SetThreadTerminator
	ThreadBeginCritical
	ThreadCurrentStackSpace
	ThreadEndCritical
	YieldToAnyThread
	YieldToThread

	Callbacks
	DebuggerDisposeThreadProcPtr
	DebuggerNewThreadProcPtr
	DebuggerThreadSchedulerProcPtr
	ThreadEntryProcPtr
	ThreadSchedulerProcPtr
	ThreadSwitchProcPtr
	ThreadTerminationProcPtr

	Data Types
	DebuggerDisposeThreadUPP
	DebuggerDisposeThreadTPP
	DebuggerNewThreadTPP
	DebuggerNewThreadUPP
	DebuggerThreadSchedulerUPP
	DebuggerThreadSchedulerTPP
	SchedulerInfoRec
	ThreadEntryTPP
	ThreadEntryUPP
	ThreadSchedulerTPP
	ThreadSchedulerUPP
	ThreadSwitchTPP
	ThreadSwitchUPP
	ThreadTaskRef
	ThreadTerminationTPP
	ThreadTerminationUPP

	Constants
	Thread ID Constants
	Thread Option Constants
	Thread State Constants
	Thread Style Constants

	Result Codes
	Gestalt Constants

	Time Manager Reference
	Overview
	Functions by Task
	Installing and Removing Tasks
	Activating Tasks
	Measuring Time
	Working With Your Time Manager Callback Function
	Obsolete Functions

	Functions
	DisposeTimerUPP
	InstallTimeTask
	InstallXTimeTask
	InsTime
	InsXTime
	InvokeTimerUPP
	Microseconds
	NewTimerUPP
	PrimeTime
	PrimeTimeTask
	RemoveTimeTask
	RmvTime

	Callbacks
	TimerProcPtr

	Data Types
	TimerUPP
	TMTask

	Constants
	Active Task Constant

	Result Codes
	Gestalt Constants

	Unicode Utilities Reference
	Overview
	Functions by Task
	Inputting Unicode Text
	Comparing Unicode Strings
	Identifying Unicode Text Boundaries

	Functions
	UCCompareCollationKeys
	UCCompareText
	UCCompareTextDefault
	UCCompareTextNoLocale
	UCCreateCollator
	UCCreateTextBreakLocator
	UCDisposeCollator
	UCDisposeTextBreakLocator
	UCFindTextBreak
	UCGetCollationKey
	UCKeyTranslate

	Data Types
	CollatorRef
	TextBreakLocatorRef
	UCCollationValue
	UCKeyboardLayout
	UCKeyboardTypeHeader
	UCKeyCharSeq
	UCKeyLayoutFeatureInfo
	UCKeyModifiersToTableNum
	UCKeyOutput
	UCKeySequenceDataIndex
	UCKeyStateEntryRange
	UCKeyStateEntryTerminal
	UCKeyStateRecord
	UCKeyStateRecordsIndex
	UCKeyStateTerminators
	UCKeyToCharTableIndex

	Constants
	Fixed Ordering Scheme
	Fixed Ordering Masks 1
	Fixed Ordering Masks 2
	Key Actions
	Key Format Codes
	Key Output Index Masks
	Key State Entry Formats
	Key Translation Options Flag
	Key Translation Options Mask
	Operation Class
	Standard Options Mask
	String Comparison Options
	Text Break Options
	Text Break Types
	Text Boundary Operation Class

	Part III: Other References
	Backup Core Reference
	Overview
	Functions
	CSBackupIsItemExcluded
	CSBackupSetItemExcluded

	Low Memory Accessors Reference
	Overview
	Functions
	LMGetApFontID
	LMGetBootDrive
	LMGetBufPtr
	LMGetBufTgDate
	LMGetBufTgFBkNum
	LMGetBufTgFFlg
	LMGetBufTgFNum
	LMGetCPUFlag
	LMGetCurApName
	LMGetCurApRefNum
	LMGetCurPageOption
	LMGetCurPitch
	LMGetCurStackBase
	LMGetDefltStack
	LMGetDiskFormatingHFSDefaults
	LMGetFinderName
	LMGetGZMoveHnd
	LMGetGZRootHnd
	LMGetHeapEnd
	LMGetHighHeapMark
	LMGetIntlSpec
	LMGetJStash
	LMGetLvl2DT
	LMGetMemTop
	LMGetMinStack
	LMGetMinusOne
	LMGetOneOne
	LMGetPrintErr
	LMGetResErr
	LMGetResLoad
	LMGetRndSeed
	LMGetScrDmpEnb
	LMGetSdVolume
	LMGetSEvtEnb
	LMGetSoundBase
	LMGetSoundLevel
	LMGetSoundPtr
	LMGetStackLowPoint
	LMGetSysFontFam
	LMGetSysFontSize
	LMGetSysMap
	LMGetSysResName
	LMGetTmpResLoad
	LMGetToExtFS
	LMGetToolScratch
	LMSetApFontID
	LMSetBootDrive
	LMSetBufPtr
	LMSetBufTgDate
	LMSetBufTgFBkNum
	LMSetBufTgFFlg
	LMSetBufTgFNum
	LMSetCPUFlag
	LMSetCurApName
	LMSetCurApRefNum
	LMSetCurPageOption
	LMSetCurPitch
	LMSetCurStackBase
	LMSetDefltStack
	LMSetDiskFormatingHFSDefaults
	LMSetFinderName
	LMSetGZMoveHnd
	LMSetGZRootHnd
	LMSetHeapEnd
	LMSetHighHeapMark
	LMSetIntlSpec
	LMSetJStash
	LMSetLvl2DT
	LMSetMemTop
	LMSetMinStack
	LMSetMinusOne
	LMSetOneOne
	LMSetPrintErr
	LMSetResErr
	LMSetResLoad
	LMSetRndSeed
	LMSetScrDmpEnb
	LMSetSdVolume
	LMSetSEvtEnb
	LMSetSoundBase
	LMSetSoundLevel
	LMSetSoundPtr
	LMSetStackLowPoint
	LMSetSysFontFam
	LMSetSysFontSize
	LMSetSysMap
	LMSetSysResName
	LMSetTmpResLoad
	LMSetToExtFS
	LMSetToolScratch

	Core Endian Reference
	Overview
	Functions by Task
	Working With Flippers
	Changing the Endian Format
	Converting from Big-Endian to Native Format
	Converting from Native Format to Big-Endian Format
	Converting from Little-Endian Format to Native Format
	Converting from Native Format to Little-Endian Format
	Converting from Big-Endian to Little-Endian Format
	Converting From Little-Endian to Big-Endian Format

	Functions
	CoreEndianFlipData
	CoreEndianGetFlipper
	CoreEndianInstallFlipper
	Endian16_Swap
	Endian32_Swap
	Endian64_Swap
	EndianS16_BtoL
	EndianS16_BtoN
	EndianS16_LtoB
	EndianS16_LtoN
	EndianS16_NtoB
	EndianS16_NtoL
	EndianS32_BtoL
	EndianS32_BtoN
	EndianS32_LtoB
	EndianS32_LtoN
	EndianS32_NtoB
	EndianS32_NtoL
	EndianS64_BtoL
	EndianS64_BtoN
	EndianS64_LtoB
	EndianS64_LtoN
	EndianS64_NtoB
	EndianS64_NtoL
	EndianU16_BtoL
	EndianU16_BtoN
	EndianU16_LtoB
	EndianU16_LtoN
	EndianU16_NtoB
	EndianU16_NtoL
	EndianU32_BtoL
	EndianU32_BtoN
	EndianU32_LtoB
	EndianU32_LtoN
	EndianU32_NtoB
	EndianU32_NtoL
	EndianU64_BtoL
	EndianU64_BtoN
	EndianU64_LtoB
	EndianU64_LtoN
	EndianU64_NtoB
	EndianU64_NtoL

	Callbacks
	CoreEndianFlipProc

	Data Types
	BigEndianLong
	BigEndianUnsignedLong
	BigEndianShort
	BigEndianUnsignedShort
	BigEndianFixed
	BigEndianUnsignedFixed
	BigEndianOSType

	Constants
	Domain Types

	Error Handler Reference
	Overview
	Functions
	SysError

	Data Types
	OSErr
	OSStatus

	Finder Interface Reference
	Overview
	Data Types
	CustomBadgeResource
	ExtendedFolderInfo
	FolderInfo
	DInfo
	DXInfo
	ExtendedFileInfo
	FileInfo
	FInfo
	FXInfo
	RoutingResourceEntry

	Constants
	Finder Flags
	Extended Finder Flags
	Finder Error Codes
	Finder Events
	kAEDatabaseSuite
	kAEFinderSuite
	cAliasFile
	cInternalFinderObject
	enumAllDocuments
	enumArrangement
	enumDate
	enumIconSize
	enumInfoWindowPanel
	enumPrefsWindowPanel
	enumSortDirection
	enumViewBy
	enumWhere
	fOnDesk
	formAlias
	fTrash
	Clipping File Creator and Types
	kContainerFolderAliasType
	kCustomBadgeResourceType
	kCustomIconResource
	kExportedFolderAliasType
	keyASPrepositionHas
	keyIconAndMask
	kFirstMagicBusyFiletype
	kInternetLocationCreator
	kIsStationary
	kMagicBusyCreationDate
	kRoutingResourceType
	kSystemFolderAliasType
	pAboutMacintosh
	pApplicationFile
	pCanConnect
	pCapacity
	pComment
	pCompletelyExpanded
	pDeskAccessoryFile
	pFile
	pFileCreator
	pFileShareOn
	pInfoPanel
	pInternetLocation
	pIsZoomedFull
	pMinAppPartition
	pNoArrangement
	pObject
	pOriginalItem
	pOwner
	pSeeFiles
	pSharableContainer
	pShowFolderSize
	pShowModificationDate
	pSmallIcon
	pSound
	pStartupDisk
	pWarnOnEmpty
	typeIconFamily

	Result Codes

	MDImporter Reference
	Overview
	Callbacks
	ImporterImportData

	Constants
	kMDImporterTypeID
	kMDImporterInterfaceID

	MDSchema Reference
	Overview
	Functions
	MDSchemaCopyAllAttributes
	MDSchemaCopyAttributesForContentType
	MDSchemaCopyDisplayDescriptionForAttribute
	MDSchemaCopyDisplayNameForAttribute
	MDSchemaCopyMetaAttributesForAttribute

	Constants
	Available Metadata Attribute Keys
	Metadata Attribute Schema Description Keys

	Open Transport Reference
	Overview
	Functions by Task
	Initializing and Closing Open Transport
	Creating, Cloning, and Disposing of a Configuration Structure
	Opening and Closing Providers
	Controlling a Provider’s Modes of Operation
	Using Notifier Functions with Providers
	Sending Module-Specific Commands to Providers
	Creating Endpoints
	Binding and Unbinding Endpoints
	Obtaining Information About an Endpoint
	Allocating Structures for Endpoints
	Determining if Bytes Are Available for Endpoints
	Functions for Connectionless Transactionless Endpoints
	Establishing Connection for Endpoints
	Functions for Connection-Oriented Transactionless Endpoints
	Tearing Down an Endpoint Connection
	Checking Synchronous Calls
	Working With Timer Tasks
	Working With Deferred Tasks
	Creating Mappers
	Registering and Deleting Names with Mappers
	Looking Up Names for Mappers
	Determining and Changing Option Values
	Finding Options
	Getting Information About Ports
	Registering New Ports
	Registering as a Client
	Allocating and Freeing Memory
	Memory Manipulation Utility Functions
	Idling and Delaying Processing
	String Manipulation Utility Functions
	Timestamp Utility Functions
	OTLIFO List Utility Functions
	OTFIFO List Utility Functions
	Adding and Removing List Elements
	Atomic Operations
	Handling No-Copy Receives
	Resolving Internet Addresses
	Opening a TCP/IP Service Provider
	Getting Information About an Internet Host
	Retrieving DNS Query Information
	Internet Address Utilities
	Single Link Multi-Homing
	AppleTalk Utility Functions
	Opening an AppleTalk Service Provider
	Obtaining Information About Zones
	Obtaining Information About Your AppleTalk Environment
	Miscellaneous Functions

	Functions
	CloseOpenTransportInContext
	DisposeOTListSearchUPP
	DisposeOTNotifyUPP
	DisposeOTProcessUPP
	InitOpenTransportInContext
	InvokeOTListSearchUPP
	InvokeOTNotifyUPP
	InvokeOTProcessUPP
	NewOTListSearchUPP
	NewOTNotifyUPP
	NewOTProcessUPP
	OTAccept
	OTAckSends
	OTAddFirst
	OTAddLast
	OTAllocInContext
	OTAllocMemInContext
	OTAsyncOpenAppleTalkServicesInContext
	OTAsyncOpenEndpointInContext
	OTAsyncOpenInternetServicesInContext
	OTAsyncOpenMapperInContext
	OTATalkGetInfo
	OTATalkGetLocalZones
	OTATalkGetMyZone
	OTATalkGetZoneList
	OTAtomicAdd16
	OTAtomicAdd32
	OTAtomicAdd8
	OTAtomicClearBit
	OTAtomicSetBit
	OTAtomicTestBit
	OTBind
	OTBufferDataSize
	OTCancelSynchronousCalls
	OTCancelTimerTask
	OTCanMakeSyncCall
	OTClearBit
	OTCloneConfiguration
	OTCloseProvider
	OTCompareAndSwap16
	OTCompareAndSwap32
	OTCompareAndSwap8
	OTCompareAndSwapPtr
	OTCompareDDPAddresses
	OTConnect
	OTCountDataBytes
	OTCreateConfiguration
	OTCreateDeferredTaskInContext
	OTCreatePortRef
	OTCreateTimerTaskInContext
	OTDelay
	OTDeleteName
	OTDeleteNameByID
	OTDequeue
	OTDestroyConfiguration
	OTDestroyDeferredTask
	OTDestroyTimerTask
	OTDontAckSends
	OTElapsedMicroseconds
	OTElapsedMilliseconds
	OTEnqueue
	OTEnterNotifier
	OTExtractNBPName
	OTExtractNBPType
	OTExtractNBPZone
	OTFindAndRemoveLink
	OTFindLink
	OTFindOption
	OTFindPort
	OTFindPortByRef
	OTFree
	OTFreeMem
	OTGetBusTypeFromPortRef
	OTGetClockTimeInSecs
	OTGetDeviceTypeFromPortRef
	OTGetEndpointInfo
	OTGetEndpointState
	OTGetFirst
	OTGetIndexedLink
	OTGetIndexedPort
	OTGetLast
	OTGetNBPEntityLengthAsAddress
	OTGetProtAddress
	OTGetSlotFromPortRef
	OTGetTimeStamp
	OTIdle
	OTInetAddressToName
	OTInetGetInterfaceInfo
	OTInetGetSecondaryAddresses
	OTInetHostToString
	OTInetMailExchange
	OTInetQuery
	OTInetStringToAddress
	OTInetStringToHost
	OTInetSysInfo
	OTInitDDPAddress
	OTInitDDPNBPAddress
	OTInitDNSAddress
	OTInitInetAddress
	OTInitNBPAddress
	OTInitNBPEntity
	OTInstallNotifier
	OTIoctl
	OTIsAckingSends
	OTIsBlocking
	OTIsInList
	OTIsSynchronous
	OTLeaveNotifier
	OTLIFODequeue
	OTLIFOEnqueue
	OTLIFOStealList
	OTListen
	OTLook
	OTLookupName
	OTMemcmp
	OTMemcpy
	OTMemmove
	OTMemset
	OTMemzero
	OTNextOption
	OTOpenAppleTalkServicesInContext
	OTOpenEndpointInContext
	OTOpenInternetServicesInContext
	OTOpenMapperInContext
	OTOptionManagement
	OTRcv
	OTRcvConnect
	OTRcvDisconnect
	OTRcvOrderlyDisconnect
	OTRcvUData
	OTRcvUDErr
	OTReadBuffer
	OTRegisterAsClientInContext
	OTRegisterName
	OTReleaseBuffer
	OTRemoveFirst
	OTRemoveLast
	OTRemoveLink
	OTRemoveNotifier
	OTResolveAddress
	OTReverseList
	OTScheduleDeferredTask
	OTScheduleTimerTask
	OTSetAddressFromNBPEntity
	OTSetAddressFromNBPString
	OTSetAsynchronous
	OTSetBit
	OTSetBlocking
	OTSetBusTypeInPortRef
	OTSetDeviceTypeInPortRef
	OTSetFirstClearBit
	OTSetNBPEntityFromAddress
	OTSetNBPName
	OTSetNBPType
	OTSetNBPZone
	OTSetNonBlocking
	OTSetSynchronous
	OTSnd
	OTSndDisconnect
	OTSndOrderlyDisconnect
	OTSndUData
	OTStrCat
	OTStrCopy
	OTStrEqual
	OTStrLength
	OTSubtractTimeStamps
	OTTestBit
	OTTimeStampInMicroseconds
	OTTimeStampInMilliseconds
	OTUnbind
	OTUnregisterAsClientInContext
	OTUseSyncIdleEvents

	Callbacks by Task
	Notifier Callbacks
	System, Timer, and Deferred Task Callbacks
	Linked List Callbacks
	Miscellaneous Callbacks

	Callbacks
	admin_t
	bufcallp_t
	bufcall_t
	closeOld_t
	closep_t
	esbbcallProc
	FreeFuncType
	old_closep_t
	old_openp_t
	openOld_t
	openp_t
	OTAllocMemProcPtr
	OTCanConfigureProcPtr
	OTCFConfigureProcPtr
	OTCFCreateStreamProcPtr
	OTCFHandleSystemEventProcPtr
	OTCreateConfiguratorProcPtr
	OTGateProcPtr
	OTGetPortIconProcPtr
	OTGetPortNameProcPtr
	OTHashProcPtr
	OTHashSearchProcPtr
	OTListSearchProcPtr
	OTNotifyProcPtr
	OTProcessProcPtr
	OTSetupConfiguratorProcPtr
	OTSMCompleteProcPtr
	OTStateProcPtr
	putp_t
	srvp_t

	Data Types
	AppleTalkInfo
	ATSvcRef
	bandinfo
	boolean_p
	caddr_t
	CCMiscInfo
	CFMLibraryInfo
	char_p
	copyreq
	copyresp
	cred
	cred_t
	datab
	datab_db_f
	dblk_t
	DDPAddress
	DDPNBPAddress
	dev_t
	dl_attach_req_t
	dl_bind_ack_t
	dl_bind_req_t
	dl_connect_con_t
	dl_connect_ind_t
	dl_connect_req_t
	dl_connect_res_t
	dl_data_ack_ind_t
	dl_data_ack_req_t
	dl_data_ack_status_ind_t
	dl_detach_req_t
	dl_disabmulti_req_t
	dl_disconnect_ind_t
	dl_disconnect_req_t
	dl_enabmulti_req_t
	dl_error_ack_t
	dl_get_statistics_ack_t
	dl_get_statistics_req_t
	dl_info_ack_t
	dl_info_req_t
	dl_ok_ack_t
	dl_phys_addr_ack_t
	dl_phys_addr_req_t
	DL_primitives
	dl_priority_t
	dl_promiscoff_req_t
	dl_promiscon_req_t
	dl_protect_t
	dl_qos_cl_range1_t
	dl_qos_cl_sel1_t
	dl_qos_co_range1_t
	dl_qos_co_sel1_t
	dl_reply_ind_t
	dl_reply_req_t
	dl_reply_status_ind_t
	dl_reply_update_req_t
	dl_reply_update_status_ind_t
	dl_reset_con_t
	dl_reset_ind_t
	dl_reset_req_t
	dl_reset_res_t
	dl_resilience_t
	dl_set_phys_addr_req_t
	dl_subs_bind_ack_t
	dl_subs_bind_req_t
	dl_subs_unbind_req_t
	dl_test_con_t
	dl_test_ind_t
	dl_test_req_t
	dl_test_res_t
	dl_through_t
	dl_token_ack_t
	dl_token_req_t
	dl_transdelay_t
	dl_uderror_ind_t
	dl_udqos_req_t
	dl_unbind_req_t
	dl_unitdata_ind_t
	dl_unitdata_req_t
	dl_xid_con_t
	dl_xid_ind_t
	dl_xid_req_t
	dl_xid_res_t
	DNS Address Structure
	DNS Query Information Structure
	EndpointRef
	EnetPacketHeader
	free_rtn
	frtn_t
	gid_t
	Internet Address Structure
	InetDHCPOption
	InetDomainName
	InetHost
	Internet Host Information Sructure
	Internet Interface Information Structure
	Internet Mail Exchange Structure
	InetPort
	InetSvcRef
	InetSysInfo
	install_info
	int_t
	iocblk
	LCPEcho
	linkblk
	log_ctl
	major_t
	MapperRef
	mblk_t
	minor_t
	module_info
	module_stat
	MPS_INTR_STATE
	msgb
	NBPAddress
	NBPEntity
	netbuf
	ot_bind
	ot_optmgmt
	OTAddress
	OTAddressType
	OTAutopushInfo
	OTBand
	OTBooleanParam
	No-Copy Receive Buffer Structure
	Buffer Information Structure
	OTByteCount
	OTClient
	OTClientContextPtr
	OTClientList
	OTClientName
	OTCommand
	OTConfigurationRef
	OTData Structure
	OTDataSize
	OTDeferredTaskRef
	OTEventCode
	OTError
	OTGate
	OTHashList
	OTInt32
	OTISDNAddress
	OTItemCount
	LIFO List Structure
	OTLink
	FIFO List Structure
	OTListSearchUPP
	Lock Data Type
	OTNameID
	OTNotifyUPP
	OTPCIInfo
	OTPortCloseStruct
	The Port Structure
	OTPortRef
	OTProcessUPP
	OTQLen
	OTReadInfo
	OTReason
	OTResourceLocator
	OTResult
	OTScriptInfo
	OTSequence
	OTSInt16Param
	OTSInt8Param
	OTSlotNumber
	OTStateMachine
	OTStateMachineDataPad
	OTSystemTaskRef
	OTTimeout
	OTTimerTask
	Timestamp Data Type
	OTUInt16Param
	OTUInt32
	OTUInt8Param
	OTUnixErr
	OTXTILevel
	OTXTIName
	pollfd
	PollRef
	PPPMRULimits
	ProviderRef
	q_xtra
	qband
	qband_t
	qfields_t
	qinit
	queue
	queue_q_u
	queue_t
	short_p
	sqh_s
	sth_s
	str_list
	str_mlist
	strbuf
	StreamRef
	streamtab
	strfdinsert
	strioctl
	stroptions
	strpeek
	strpfp
	strpmsg
	strrecvfd
	T_addr_ack
	T_addr_req
	T_bind_ack
	T_bind_req
	t_call
	T_cancelreply_req
	T_cancelrequest_req
	T_conn_con
	T_conn_ind
	T_conn_req
	T_conn_res
	T_data_ind
	T_data_req
	T_delname_req
	t_discon
	T_discon_ind
	T_discon_req
	T_error_ack
	T_event_ind
	T_exdata_ind
	T_exdata_req
	t_info
	T_info_ack
	T_info_req
	The Keepalive Structure
	The Linger Structure
	T_lkupname_con
	T_lkupname_req
	T_MIB_ack
	T_MIB_req
	T_ok_ack
	t_opthdr
	T_optmgmt_ack
	T_optmgmt_req
	T_ordrel_ind
	T_ordrel_req
	T_primitives
	T_regname_ack
	T_regname_req
	t_reply
	T_reply_ack
	T_reply_ind
	T_reply_req
	t_request
	T_request_ind
	T_request_req
	T_resolveaddr_ack
	T_resolveaddr_req
	T_sequence_ack
	T_stream_timer
	T_stream_timer_1
	t_uderr
	T_uderror_ind
	T_unbind_req
	t_unitdata
	T_unitdata_ind
	T_unitdata_req
	t_unitreply
	T_unitreply_ack
	T_unitreply_ind
	T_unitreply_req
	t_unitrequest
	T_unitrequest_ind
	T_unitrequest_req
	T8022Address
	T8022FullPacketHeader
	T8022Header
	T8022SNAPHeader
	TBind
	TCall
	TDiscon
	TEndpointInfo
	IP Multicast Address Structure
	TLookupBuffer
	TLookupReply
	TLookupRequest
	TNetbuf
	The TOption Structure
	The TOptionHeader Structure
	The Option Management Structure
	TOTConfiguratorRef
	TPortRecord
	trace_ids
	TRegisterReply
	TRegisterRequest
	TReply
	TRequest
	TUDErr
	TUnitData
	TUnitReply
	TUnitRequest
	uchar_p
	uid_t
	uint_t
	ushort_p

	Constants
	AF_8022
	AF_ATALK_FAMILY
	AF_DNS
	AF_INET
	AF_ISDN
	ANYMARK
	ATALK_IOC_FULLSELFSEND
	ATK_DDP
	BPRI_LO
	CE_CONT
	CLONEOPEN
	COM_ISDN
	COM_PPP
	COM_SERIAL
	DDP_OPT_CHECKSUM
	DDP_OPT_HOPCOUNT
	DL_ACCESS
	DL_AUTO_XID
	DL_CMD_MASK
	DL_CODLS
	DL_CONREJ_DEST_UNKNOWN
	DL_CSMACD
	DL_CURRENT_VERSION
	DL_FACT_PHYS_ADDR
	DL_INFO_REQ
	DL_INFO_REQ_SIZE
	DL_IOC_HDR_INFO
	DL_NONE
	DL_PEER_BIND
	DL_POLL_FINAL
	DL_PROMISC_OFF
	DL_PROMISC_PHYS
	DL_PROVIDER
	DL_QOS_CO_RANGE1
	DL_RESET_FLOW_CONTROL
	DL_RQST_RSP
	DL_STYLE1
	DL_UNATTACHED
	DL_UNKNOWN
	DVMRP_INIT
	EAddrType
	EPERM
	FLUSHALL
	FLUSHR
	FMNAMESZ
	I_NREAD
	I_OTGetMiscellaneousEvents
	I_OTISDNAlerting
	I_SAD_SAP
	I_SetSerialDTR
	I_TRCLOG
	INET_IP
	INFPSZ
	INFTIM
	IP_OPTIONS
	IPCP_OPT_GETREMOTEPROTOADDR
	ISDN_OPT_COMMTYPE
	k8022BasicAddressLength
	kAF_ISDN
	kAllATalkRoutersDown
	kAllDHCPOptions
	kAppleTalkEvent
	kARARouterOnline
	kATalkInfoIsExtended
	kCCReminderTimerDisabled
	kDDPAddressLength
	kDefaultAppleTalkServicesPath
	kDefaultInetInterface
	kDefaultInternetServicesPath
	kE164Address
	kECHO_TSDU
	kEnetPacketHeaderLength
	kFirstMinorNumber
	kInetInterfaceInfoVersion
	kIP_OPTIONS
	kIPCPTCPHdrCompressionDisabled
	kISDNModuleID
	kMaxHostAddrs
	Port-Related Constants
	kMaxServices
	kMulticastLength
	kNBPMaxNameLength
	kNetbufDataIsOTData
	kO_ASYNC
	kOTAnyInetAddress
	kOTAutopushMax
	kOTCFMClass
	kOTDefaultConfigurator
	kOTFLUSHBAND
	Port Framing Capabilities
	kOTGenericName
	kOTGetDataSymbol
	kOTInitialScan
	kOTInvalidPortRef
	kOTInvalidRef
	kOTInvalidStreamRef
	kOTISDNDefaultCommType
	kOTISDNFramingTransparent
	kOTISDNFramingTransparentSupported
	kOTISDNMaxPhoneSize
	kOTISDNMaxUserDataSize
	kOTISDNNot56KAdaptation
	kOTISDNTelephoneALaw
	kOTISDNUnallocatedNumber
	kOTLastSlotNumber
	kOTLvlFatal
	kOTMinimumTimerValue
	kOTModIsDriver
	kOTNetbufDataIsOTBufferStar
	kOTNetbufIsRawMode
	kOTNoMemoryConfigurationPtr
	kOTNoMessagesAvailable
	kOTOptionHeaderSize
	kOTPCINoErrorStayLoaded
	Port Flags
	Port Additional Flags
	kOTPrintOnly
	kOTRawRcvOn
	kOTSerialDefaultBaudRate
	kOTSerialFramingAsync
	kOTSerialSwOverRunErr
	kOTSerialXOnOffInputHandshake
	kOTSpecificConfigPass
	kOTT_BIND_REQ
	kOTT_TIMER_REQ
	kOTTRANSPARENT
	kPPPAsyncMapCharsNone
	kPPPCompressionDisabled
	kPPPConnectionStatusDialogsFlag
	kPPPConnectionStatusIdle
	kPPPEvent
	kPPPMaxIDLength
	kPPPMinMRU
	kPPPNoOutAuthentication
	kPPPScriptTypeModem
	kPPPStateInitial
	kRAProductClientOnly
	kSAP_ONE
	kSerialABModuleID
	kSIGHUP
	kT_UNSPEC
	kT8022HeaderLength
	kT8022ModuleID
	kZIPMaxZoneLength
	LNK_ENET
	LOGMSGSZ
	M_MI
	MIOC_ISDN
	MIOC_STREAMIO
	MORECTL
	MSG_HIPRI
	MSGMARK
	MUXID_ALL
	NOERROR
	O_ASYNC
	OPT_ADDMCAST
	Bus Type Constants
	Hardware Device Types
	OTInitializationFlags
	OTOpenFlags
	OTPacketType
	Endpoint Service Types
	Endpoint States
	ParityOptionValues
	QB_FULL
	qfields
	QNORM
	QPCTL
	QREADR
	RNORM
	RPROTNORM
	RS_EXDATA
	RS_HIPRI
	S_INPUT
	SENDZERO
	SERIAL_OPT_BAUDRATE
	SIGHUP
	SL_FATAL
	SNDZERO
	SO_ALL
	SQLVL_QUEUE
	STRCANON
	STRCTLSZ
	T_ADDR
	T_ATALKBADROUTEREVENT
	Structure Types
	T_DNRSTRINGTOADDRCOMPLETE
	T_GARBAGE
	T_INFINITE
	Event Codes
	Open Transport Flags and Status Codes
	T_NOTOS
	T_NULL
	T_ROUTINE
	Endpoint Flags
	T_UNSPEC
	T_YES
	TCP_NODELAY
	TE_OPENED
	TS_UNBND
	TSUCCESS
	UDP_CHECKSUM
	XTI-Level Options and Generic Options
	XTI_GENERIC

	Result Codes

	Search Kit Reference
	Overview
	Functions by Task
	Creating, Opening, and Closing Indexes
	Managing Indexes
	Working With Text Importers
	Working with Documents and Terms
	Fast Asynchronous Searching
	Working With Summarization
	Legacy Support for Synchronous Searching

	Functions
	SKDocumentCopyURL
	SKDocumentCreate
	SKDocumentCreateWithURL
	SKDocumentGetName
	SKDocumentGetParent
	SKDocumentGetSchemeName
	SKDocumentGetTypeID
	SKIndexAddDocument
	SKIndexAddDocumentWithText
	SKIndexClose
	SKIndexCompact
	SKIndexCopyDocumentForDocumentID
	SKIndexCopyDocumentIDArrayForTermID
	SKIndexCopyDocumentProperties
	SKIndexCopyDocumentRefsForDocumentIDs
	SKIndexCopyDocumentURLsForDocumentIDs
	SKIndexCopyInfoForDocumentIDs
	SKIndexCopyTermIDArrayForDocumentID
	SKIndexCopyTermStringForTermID
	SKIndexCreateWithMutableData
	SKIndexCreateWithURL
	SKIndexDocumentIteratorCopyNext
	SKIndexDocumentIteratorCreate
	SKIndexDocumentIteratorGetTypeID
	SKIndexFlush
	SKIndexGetAnalysisProperties
	SKIndexGetDocumentCount
	SKIndexGetDocumentID
	SKIndexGetDocumentState
	SKIndexGetDocumentTermCount
	SKIndexGetDocumentTermFrequency
	SKIndexGetIndexType
	SKIndexGetMaximumBytesBeforeFlush
	SKIndexGetMaximumDocumentID
	SKIndexGetMaximumTermID
	SKIndexGetTermDocumentCount
	SKIndexGetTermIDForTermString
	SKIndexGetTypeID
	SKIndexMoveDocument
	SKIndexOpenWithData
	SKIndexOpenWithMutableData
	SKIndexOpenWithURL
	SKIndexRemoveDocument
	SKIndexRenameDocument
	SKIndexSetDocumentProperties
	SKIndexSetMaximumBytesBeforeFlush
	SKLoadDefaultExtractorPlugIns
	SKSearchCancel
	SKSearchCreate
	SKSearchFindMatches
	SKSearchGetTypeID
	SKSearchGroupCopyIndexes
	SKSearchGroupCreate
	SKSearchGroupGetTypeID
	SKSearchResultsCopyMatchingTerms
	SKSearchResultsCreateWithDocuments
	SKSearchResultsCreateWithQuery
	SKSearchResultsGetCount
	SKSearchResultsGetInfoInRange
	SKSearchResultsGetTypeID
	SKSummaryCopyParagraphAtIndex
	SKSummaryCopyParagraphSummaryString
	SKSummaryCopySentenceAtIndex
	SKSummaryCopySentenceSummaryString
	SKSummaryCreateWithString
	SKSummaryGetParagraphCount
	SKSummaryGetParagraphSummaryInfo
	SKSummaryGetSentenceCount
	SKSummaryGetSentenceSummaryInfo
	SKSummaryGetTypeID

	Callbacks
	SKSearchResultsFilterCallBack

	Data Types
	SKDocumentRef
	SKIndexDocumentIteratorRef
	SKIndexRef
	SKSearchRef
	SKSummaryRef
	SKDocumentID
	SKSearchResultsRef
	SKSearchGroupRef

	Constants
	Text Analysis Keys
	SKDocumentIndexState
	SKSearchOptions
	SKIndexType
	Deprecated Text Analysis Keys
	Deprecated Search Keys

	Spotlight Metadata Attributes

	Revision History
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

