
Dialog Manager Reference
Carbon > User Experience

2007-10-31

Apple Inc.
© 2002, 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
Macintosh, QuickDraw, and QuickTime are
trademarks of Apple Inc., registered in the
United States and other countries.

Finder is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Dialog Manager Reference 7

Overview 7
Functions by Task 7

Creating Alert Boxes 7
Creating and Disposing of Dialog Boxes 8
Displaying Dialog Boxes and Items 8
Filtering Dialog Box Events 8
Handling Events in Dialog Boxes 8
Handling Text in Alert and Dialog Boxes 9
Initializing the Dialog Manager 9
Manipulating Items in Dialog Boxes and Alert Boxes 9
Simulating User Responses in Dialog Boxes 10
Using the Standard Filter Function 10
Miscellaneous 11

Functions 12
Alert 12
AppendDialogItemList 13
AppendDITL 14
AutoSizeDialog 16
CautionAlert 17
CloseDialog 18
CloseStandardSheet 19
CountDITL 19
CreateStandardAlert 20
CreateStandardSheet 20
DialogCopy 22
DialogCut 22
DialogDelete 23
DialogPaste 23
DialogSelect 23
DisposeDialog 25
DisposeModalFilterUPP 26
DisposeModalFilterYDUPP 26
DisposeUserItemUPP 27
DrawDialog 27
FindDialogItem 27
GetAlertStage 28
GetDialogCancelItem 29
GetDialogDefaultItem 29
GetDialogFromWindow 30
GetDialogItem 30

3
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

GetDialogItemAsControl 31
GetDialogItemText 32
GetDialogKeyboardFocusItem 32
GetDialogPort 33
GetDialogTextEditHandle 34
GetDialogTimeout 34
GetDialogWindow 35
GetModalDialogEventMask 35
GetNewDialog 36
GetParamText 37
GetStandardAlertDefaultParams 38
GetStdFilterProc 38
HideDialogItem 39
InsertDialogItem 40
InvokeModalFilterUPP 40
InvokeModalFilterYDUPP 41
InvokeUserItemUPP 41
IsDialogEvent 41
ModalDialog 43
MoveDialogItem 45
NewColorDialog 46
NewDialog 48
NewFeaturesDialog 49
NewModalFilterUPP 51
NewModalFilterYDUPP 51
NewUserItemUPP 51
NoteAlert 52
ParamText 53
RemoveDialogItems 54
ResetAlertStage 54
RunStandardAlert 55
SelectDialogItemText 55
SetDialogCancelItem 56
SetDialogDefaultItem 57
SetDialogFont 58
SetDialogItem 59
SetDialogItemText 60
SetDialogTimeout 60
SetDialogTracksCursor 61
SetModalDialogEventMask 62
SetPortDialogPort 62
ShortenDITL 63
ShowDialogItem 63
SizeDialogItem 64
StandardAlert 65
StdFilterProc 66

4
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

StopAlert 67
UpdateDialog 68

Callbacks by Task 68
Accessing and Modifying Low-Memory Data 68
Miscellaneous 69

Callbacks 69
ModalFilterProcPtr 69
ModalFilterYDProcPtr 71
QTModelessCallbackProcPtr 72
SoundProcPtr 72
UserItemProcPtr 73

Data Types 75
AlertStdAlertParamRec 75
AlertStdCFStringAlertParamRec 76
AlertTemplate 77
AlertType 77
DialogItemIndex 78
DialogItemIndexZeroBased 78
DialogItemType 78
DialogPeek 78
DialogRecord 79
DialogRef 79
DialogTemplate 80
ModalFilterUPP 80
ModalFilterYDUPP 80
QTModelessCallbackUPP 81
SoundUPP 81
StageList 81
UserItemUPP 81

Constants 82
Alert Button Constants 82
Alert Default Text Constants 82
Alert Feature Flag Constants 83
Alert Icon Resource ID Constants 84
Alert Type Constants 85
ctrlItem 86
Dialog Feature Flag Constants 87
Dialog Font Flag Constants 88
Dialog Item Constants 90
Dialog Item List Display Constants 91
kDialogFontUseThemeFontIDMask 92
kHICommandOther 92
kOkItemIndex 92
Standard Alert and Sheet Option Flags 93
Standard Alert Structure Version Constant 93
kStdOkItemIndex 94

5
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Result Codes 94
Gestalt Constants 95

Document Revision History 97

Index 99

6
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Carbon/Carbon.h

Declared in Dialogs.h

Overview

Your application can use the Dialog Manager to alert users to unusual situations and to solicit information
from users. For example, in some situations your application might not be able to carry out a command
normally, and in other situations the user must specify multiple parameters before your application can
execute a command. For circumstances like these, the Macintosh user interface includes these two features:

 ■ alerts–including alert sounds and alert boxes–which warn the user whenever an unusual or potentially
undesirable situation occurs within your application

 ■ dialog boxes, which allow the user to provide additional information or to modify settings before your
application carries out a command

Virtually all applications need to implement alerts and dialog boxes. To avoid needless development effort,
use the Dialog Manager to implement alerts and to create most dialog boxes. It is possible, however–and
sometimes desirable–to bypass the Dialog Manager and instead use Window Manager, Control Manager,
QuickDraw, and Event Manager routines to create or respond to events in complex dialog boxes.

Carbon supports the majority of the Dialog Manager. However, your application must access Dialog Manager
data structures only through the supplied accessor functions. Furthermore, your application must use the
functions provided for creating and disposing of Dialog Manager data structures.

Functions by Task

Creating Alert Boxes

StandardAlert (page 65)
Displays a standard alert box.

Alert (page 12)
Displays an alert box and/or plays an alert sound.

StopAlert (page 67)
Displays an alert box with a stop icon and/or plays an alert sound.

NoteAlert (page 52)
Displays an alert box with a note icon and/or plays an alert sound.

Overview 7
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

CautionAlert (page 17)
Displays an alert box with a caution icon and/or plays an alert sound.

GetAlertStage (page 28)
Determines the stage of the last occurrence of an alert.

ResetAlertStage (page 54)
Resets the current alert stage to the first alert stage.

Creating and Disposing of Dialog Boxes

GetNewDialog (page 36)
Creates a dialog box from a resource-based description.

NewFeaturesDialog (page 49)
Creates a dialog box from information passed in memory.

NewDialog (page 48)
Creates a dialog box from information passed in memory.

NewColorDialog (page 46)
Creates a dialog box from information passed in memory.

CloseDialog (page 18)
Dismisses a dialog box without disposing of the dialog structure.

DisposeDialog (page 25)
Dismisses a dialog box for which the Dialog Manager supplies memory and disposes of the dialog
structure.

Displaying Dialog Boxes and Items

DrawDialog (page 27)
Draws the entire contents of a specified dialog box.

HideDialogItem (page 39)
Makes an item in a dialog box invisible.

ShowDialogItem (page 63)
Redisplays an item that has been hidden by HideDialogItem.

Filtering Dialog Box Events

GetModalDialogEventMask (page 35)
Obtains the events to be received by the ModalDialog function.

SetModalDialogEventMask (page 62)
Specifies the events to be received by the ModalDialog function.

Handling Events in Dialog Boxes

ModalDialog (page 43)
Handles events while your application displays a modal or movable modal dialog box.

8 Functions by Task
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

IsDialogEvent (page 41)
Determines whether a modeless dialog box or a movable modal dialog box is active when an event
occurs.

DialogSelect (page 23)
Handles most of the events inside the dialog box after you have determined that an event related to
an active modeless dialog box or an active movable modal dialog box has occurred.

UpdateDialog (page 68)
Redraws the update region of a specified dialog box.

Handling Text in Alert and Dialog Boxes

ParamText (page 53)
Replaces the text strings in the static text items of your alert or dialog boxes while your application
is running.

SetDialogItemText (page 60)
Sets the text string for static text and editable text fields.

GetDialogItemText (page 32)
Obtains the text string contained in an edit text or a static text item.

SelectDialogItemText (page 55)
Selects and highlights text contained in an edit text item.

DialogCut (page 22)
Handles the Cut editing command when a dialog box containing an edit text item is active.

DialogCopy (page 22)
Handles the Copy editing command when a dialog box containing an edit text item is active.

DialogPaste (page 23)
Handles the Paste editing command when a dialog box containing an edit text item is active.

DialogDelete (page 23)
Handles the Delete editing command when a dialog box containing an edit text item is active.

Initializing the Dialog Manager

SetDialogFont (page 58)
Sets the font used in static and edit text items.

Manipulating Items in Dialog Boxes and Alert Boxes

SetDialogCancelItem (page 56)
Sets the cancel item for a dialog box.

GetDialogCancelItem (page 29)
Returns the item number of the cancel item previously set with SetDialogCancelItem.

SetDialogDefaultItem (page 57)
Sets the default item for a dialog box and draws an appropriate border around the default item.

Functions by Task 9
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

GetDialogDefaultItem (page 29)
Returns the item number of the default item currently set for the standard filter function.

GetDialogItemAsControl (page 31)
Obtains the control handle for a dialog item in an embedding hierarchy.

GetDialogItem (page 30)
Obtains a handle to a dialog item.

SetDialogItem (page 59)
Sets or changes information for a dialog item.

GetDialogKeyboardFocusItem (page 32)
Returns the item number of the editable text item in a dialog box that has keyboard focus.

SetDialogTracksCursor (page 61)
Determines whether the Dialog Manager tracks the cursor’s movements and changes the cursor to
an I-beam whenever it is over an edit dialog box.

FindDialogItem (page 27)
Determines the item number of an item at a particular location in a dialog box.

MoveDialogItem (page 45)
Moves a dialog item to a specified location in a window.

SizeDialogItem (page 64)
Sizes a dialog item.

AutoSizeDialog (page 16)
Automatically resizes static text fields and their dialog boxes to accommodate changed static text.

AppendDialogItemList (page 13)
Adds items to an existing dialog box while your program is running.

AppendDITL (page 14)
Adds items to an existing dialog box while your application is running.

ShortenDITL (page 63)
Removes items from an existing dialog box while your application is running.

CountDITL (page 19)
Determines the number of items in a dialog box.

Simulating User Responses in Dialog Boxes

GetDialogTimeout (page 34)
Obtains the original countdown duration, the time remaining, and the item selection to be simulated
for a specified modal dialog box.

SetDialogTimeout (page 60)
Simulates an item selection in a modal dialog box after a specified amount of time elapses.

Using the Standard Filter Function

StdFilterProc (page 66)
Handles standard event filtering for a dialog box.

GetStdFilterProc (page 38)
Returns a pointer to the standard filter function.

10 Functions by Task
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Miscellaneous

CloseStandardSheet (page 19)

CreateStandardAlert (page 20)
Creates an alert containing standard elements and using standard formatting rules.

CreateStandardSheet (page 20)
Creates an alert containing standard elements and using standard formatting rules, and prepares it
to be displayed as a sheet.

DisposeModalFilterUPP (page 26)

DisposeModalFilterYDUPP (page 26)

DisposeUserItemUPP (page 27)

GetDialogFromWindow (page 30)

GetDialogPort (page 33)

GetDialogTextEditHandle (page 34)

GetDialogWindow (page 35)

GetParamText (page 37)

GetStandardAlertDefaultParams (page 38)
Fills out an AlertStdCFStringAlertParamRec with default values: - not movable - no help button
- default button with title "OK" - no cancel or other buttons.

InsertDialogItem (page 40)

InvokeModalFilterUPP (page 40)

InvokeModalFilterYDUPP (page 41)

InvokeUserItemUPP (page 41)

NewModalFilterUPP (page 51)

NewModalFilterYDUPP (page 51)

NewUserItemUPP (page 51)

RemoveDialogItems (page 54)

Functions by Task 11
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

RunStandardAlert (page 55)
Shows and runs a standard alert using a modal dialog loop.

SetPortDialogPort (page 62)

Functions

Alert
Displays an alert box and/or plays an alert sound.

DialogItemIndex Alert (
 SInt16 alertID,
 ModalFilterUPP modalFilter
);

Parameters
alertID

The resource ID of an alert resource and extended alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the requested alert. See ‘alrx’ for a
description of the extended alert resource.

modalFilter
A universal procedure pointer for a filter function that responds to events not handled by the
ModalDialog (page 43) function. If you set this parameter to null, the Dialog Manager uses the
standard event filter function.

Return Value
If no alert box is to be drawn at the current alert stage or the 'ALRT' resource is not found, Alert returns
–1 otherwise, it creates and displays the alert box and returns the item number of the control selected by
the user see “Alert Button Constants” (page 82). See the description of the DialogItemIndex data type.

Discussion
The Alert function displays an alert box or, if appropriate for the alert stage, plays an alert sound instead
of or in addition to displaying the alert box. The Alert function creates the alert defined in the specified
alert resource and its corresponding extended alert resource. The function calls the current alert sound
function and passes it the sound number specified in the alert resource for the current alert stage. If no alert
box is to be drawn at this stage, Alert returns –1 otherwise, it uses the NewDialog function to create and
display the alert box. The default system window colors are used unless your application provides an alert
color table resource with the same resource ID as the alert resource. The Alert function uses the
ModalDialog (page 43) function to get and handle most events for you.

The Alert function does not display a default icon in the upper-left corner of the alert box you can leave
this area blank, or you can specify your own icon in the alert’s item list resource, which in turn is specified in
the alert resource.

The Alert function continues calling ModalDialog until the user selects an enabled control (typically a
button), at which time the Alert function removes the alert box from the screen and returns the item number
of the selected control. Your application then responds as appropriate when the user clicks this item.

12 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Your application should never draw its own default rings. Prior to Mac OS 8, the Alert function would only
redraw the default button ring once and never redraw it on an update event. However, when Appearance
is available, default rings do redraw when you call Alert.

See also the functions NoteAlert (page 52) , CautionAlert (page 17) , and StopAlert (page 67).

Special Considerations

If you need to display an alert box while your application is running in the background or is otherwise invisible
to the user, call AEInteractWithUser

The Dialog Manager uses the system alert sound as the error sound unless you change it by calling the
ErrorSound function .

Version Notes
This function was changed with Appearance Manager 1.0 to support the extended alert ('alrx') resource.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

AppendDialogItemList
Adds items to an existing dialog box while your program is running.

OSErr AppendDialogItemList (
 DialogRef dialog,
 SInt16 ditlID,
 DITLMethod method
);

Parameters
dialog

A pointer to the dialog box to which the items in the item list resource specified in the ditlID
parameter are to be appended.

ditlID
The resource ID of the item list resource whose items are to be appended to the dialog box specified
in the dialog parameter.

Functions 13
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

method
The manner in which the new items are to be displayed in the dialog box.

If you use the overlayDITL constant, AppendDialogItemList superimposes the appended items
over the dialog box by interpreting the coordinates of the display rectangles for the appended items
(as specified in their item list resource) as local coordinates within the dialog box.

If you use the appendDITLRight constant, AppendDialogItemList appends the items to the right
of the dialog box by positioning the display rectangles of the appended items relative to the upper-right
coordinate of the dialog box. The AppendDialogItemList function automatically expands the
dialog box to accommodate the new dialog items.

If you use the appendDITLBottom constant, AppendDialogItemList appends the items to the
bottom of the dialog box by positioning the display rectangles of the appended items relative to the
lower-left coordinate of the dialog box. The AppendDialogItemList function automatically expands
the dialog box to accommodate the new dialog items.

You can append a list of items relative to an existing item by passing a negative number. The absolute
value of this number is interpreted as the item in the dialog box relative to which the new items are
to be positioned. For example, if you pass -2, the display rectangles of the appended items are offset
relative to the upper-left corner of item number 2 in the dialog box.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
To be Appearance-compliant, your program should use the AppendDialogItemList function rather than
the AppendDITL function. Unlike AppendDITL, the AppendDialogItemList function takes a 'DITL'
resource ID instead of a handle as the parameter describing the dialog item list to be appended, and it
properly appends entries from a dialog font table ('dftb') resource, if there is a 'dftb' resource with the
same resource ID as the 'DITL' resource.

The AppendDialogItemList function adds the items in the item list resource specified in the parameter
ditlID to the items of a dialog box. This is especially useful if several dialog boxes share a single item list
resource, because you can use AppendDialogItemList to add items that are appropriate for individual
dialog boxes. Your application can use the Resource Manager function GetResource to get a handle to the
item list resource whose items you wish to add.

You typically create an invisible dialog box, call the AppendDialogItemList function, then make the dialog
box visible by using the Window Manager function ShowWindow.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

AppendDITL
Adds items to an existing dialog box while your application is running.

14 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

void AppendDITL (
 DialogRef theDialog,
 Handle theHandle,
 DITLMethod method
);

Parameters
theDialog

A pointer to a dialog structure. This is the dialog structure to which you will add the item list resource
specified in the parameter theHandle.

theHandle
A handle to the item list resource whose items you want to append to the dialog box. To avoid item
number conflicts, AppendDITL assigns new numbers to the items you are adding. For example, if
you have a dialog with item numbers 1-5, and you use AppendDITL to add a 'DITL' resource
containing item numbers 1-3, those become item numbers 6-8 in the dialog.

method
The manner in which you want the new items to be displayed in the existing dialog box. You can
pass a negative value to offset the appended items from a particular item in the existing dialog box.
You can also pass one of the values defined by the DITLMethod constant. See “Dialog Item List Display
Constants” (page 91) for possible values.

Discussion
The AppendDITL function adds the items specified in the theHandle parameter to the items of a dialog
box (handle-based). This function is especially useful if several dialog boxes share a single item list resource,
because you can use AppendDITL to add items that are appropriate for individual dialog boxes. Your
application can use the Resource Manager function GetResource to get a handle to the item list resource
whose items you wish to add.

In the parameter method, you specify how to append the new items, as follows:

 ■ If you use the overlayDITL constant, AppendDITL superimposes the appended items over the dialog
box. That is, AppendDITL interprets the coordinates of the display rectangles for the appended items
(as specified in their item list resource) as local coordinates within the dialog box.

 ■ If you use the appendDITLRight constant, AppendDITL appends the items to the right of the dialog
box by positioning the display rectangles of the appended items relative to the upper-right coordinate
of the dialog box. The AppendDITL function automatically expands the dialog box to accommodate
the new dialog items.

 ■ If you use the appendDITLBottom constant, AppendDITL appends the items to the bottom of the
dialog box by positioning the display rectangles of the appended items relative to the lower-left coordinate
of the dialog box. The AppendDITL function automatically expands the dialog box to accommodate
the new dialog items.

 ■ You can also append a list of items relative to an existing item by passing a negative number in the
parameter method. The absolute value of this number is interpreted as the item in the dialog box relative
to which the new items are to be positioned. For example, if you pass –2, the display rectangles of the
appended items are offset relative to the upper-left corner of item number 2 in the dialog box.

You typically create an invisible dialog box, call the AppendDITL function, then make the dialog box visible
by using the Window Manager function ShowWindow.

Functions 15
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Special Considerations

The AppendDITL function modifies the contents of the dialog box (for instance, by enlarging it). To use an
unmodified version of the dialog box at a later time, your application should use the Resource Manager
function ReleaseResource to release the memory occupied by the appended item list resource. Otherwise,
if your application calls AppendDITL to add items to that dialog box again, the dialog box remains modified
by your previous call—for example, it will still be longer at the bottom if you previously used the
appendDITLBottom constant.

Before calling AppendDITL, you should make sure that it is available by using the Gestalt function with
the gestaltDITLExtAttr selector. Test the bit indicated by the gestaltDITLExtPresent constant in
the response parameter. If the bit is set, then AppendDITL is available.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

AutoSizeDialog
Automatically resizes static text fields and their dialog boxes to accommodate changed static text.

OSErr AutoSizeDialog (
 DialogRef inDialog
);

Parameters
inDialog

A pointer to a dialog box.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
The AutoSizeDialog function is useful in situations such as localization, where the size of a static text field
(and the dialog box that contains it) may need to be altered to accommodate a change in the size of the
static text.

For each static text item AutoSizeDialog finds in the item list resource, it adjusts the static text field and
the bottom of the dialog box window to accommodate the text. Any items below a static text field are moved
down. If the dialog box is visible when this function is called, it is hidden, resized, and then shown. If the
dialog box has enough room to show the text as is, no resizing is done.

Note that the AutoSizeDialog function does not process update events for your dialog box, so your program
must call the DrawDialog function or the DialogSelect function to process the update event generated
from showing the window.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

16 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Declared In
Dialogs.h

CautionAlert
Displays an alert box with a caution icon and/or plays an alert sound.

DialogItemIndex CautionAlert (
 SInt16 alertID,
 ModalFilterUPP modalFilter
);

Parameters
alertID

The resource ID of an alert resource and extended alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the requested alert. See ‘alrx’ for a
description of the extended alert resource.

modalFilter
A universal procedure pointer for a filter function that responds to events not handled by the
ModalDialog (page 43) function. If you set this parameter to null, the Dialog Manager uses the
standard event filter function.

Return Value
If no alert box is to be drawn at the current alert stage, CautionAlert returns –1 otherwise, it uses NewDialog
to create and display the alert box and returns the item hit; see “Alert Button Constants” (page 82). See the
description of the DialogItemIndex data type.

Discussion
Displays an alert box with a caution icon in its upper-left corner or, if appropriate for the alert stage, to play
an alert sound instead of or in addition to displaying the alert box.

The CautionAlert function is the same as the Alert (page 12) function except that, before drawing the
items in the alert box, CautionAlert draws the caution icon in the upper-left corner. The caution icon has
resource ID 2, which you can also specify with the constant kCautionIcon. By default, the Dialog Manager
uses the standard caution icon from the System file. You can change this icon by providing your own 'ICON'
resource with resource ID 2.

Use a caution alert to alert the user of an operation that may have undesirable results if it’s allowed to
continue. Give the user the choice of continuing the action (by clicking an OK button) or stopping it (by
clicking a Cancel button).

Your application should never draw its own default rings or alert icons. Prior to Mac OS 8, the CautionAlert
function would only redraw the alert icon and default button ring once and never redraw them on an update
event. However, when Appearance is available, alert icons and default rings do redraw when you call
CautionAlert.

See also the functions NoteAlert (page 52) and StopAlert (page 67).

Special Considerations
Version Notes
This function was changed with Appearance Manager 1.0 to support the extended alert ('alrx') resource.

Availability
Available in Mac OS X v10.0 and later.

Functions 17
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Not available to 64-bit applications.

Declared In
Dialogs.h

CloseDialog
Dismisses a dialog box without disposing of the dialog structure.

void CloseDialog (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Return Value
Discussion
The CloseDialog function removes a dialog box from the screen and deletes it from the window list. The
CloseDialog function releases the memory occupied by

 ■ the data structures associated with the dialog box (such as its structure, content, and update regions)

 ■ all the items in the dialog box (except for pictures and icons, which might be shared by other resources)
and any data structures associated with them

Generally, you should provide memory for the dialog structure of modeless dialog boxes when you create
them. (You can let the Dialog Manager provide memory for modal and movable modal dialog boxes.) You
should then use CloseDialog to close a modeless dialog box when the user clicks the close box or chooses
Close from the File menu.

Because CloseDialog does not dispose of the dialog resource or the item list resource, it is important to
make these resources purgeable. Unlike GetNewDialog (page 36) , NewColorDialog (page 46) does not
use a copy of the item list resource. Thus, if you use NewColorDialog to create a dialog box, you may want
to use CloseDialog to keep the item list resource in memory even if you didn’t supply a pointer to the
memory.

Carbon Porting Notes

The CloseDialog function is not supported because developers do not allocate their own memory for
dialog boxes in Carbon. Use the DisposeDialog function to dismiss a dialog box instead.

Declared In
Dialogs.h

18 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

CloseStandardSheet

OSStatus CloseStandardSheet (
 DialogRef inSheet,
 UInt32 inResultCommand
);

Parameters
inSheet
inResultCommand

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

CountDITL
Determines the number of items in a dialog box.

DialogItemIndex CountDITL (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Return Value
The number of current items in a dialog box. See the description of the DialogItemIndex data type.

Discussion
You typically use CountDITL in conjunction with ShortenDITL (page 63) to remove items from a dialog
box.

Special Considerations

Before calling CountDITL, you should make sure that it is available by using the Gestalt function with the
gestaltDITLExtAttr selector. Test the bit indicated by the gestaltDITLExtPresent constant in the
response parameter. If the bit is set, then CountDITL is available.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 19
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

CreateStandardAlert
Creates an alert containing standard elements and using standard formatting rules.

OSStatus CreateStandardAlert (
 AlertType alertType,
 CFStringRef error,
 CFStringRef explanation,
 const AlertStdCFStringAlertParamRec *param,
 DialogRef *outAlert
);

Parameters
alertType

The type of alert to create. For a list of possible values, see “Alert Type Constants” (page 85).

error
The error string to display.

explanation
The explanation string to display. May be NULL or empty to display no explanation.

param
The parameter block describing how to create the alert. May be NULL.

outAlert
A pointer to a variable that, on return, refers to the new alert.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
This function should be used in conjunction with RunStandardAlert (page 55). After
CreateStandardAlert returns, the alert is still invisible. RunStandardAlert shows the alert and runs a
modal dialog loop to process events in the alert.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

CreateStandardSheet
Creates an alert containing standard elements and using standard formatting rules, and prepares it to be
displayed as a sheet.

20 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

OSStatus CreateStandardSheet (
 AlertType alertType,
 CFStringRef error,
 CFStringRef explanation,
 const AlertStdCFStringAlertParamRec *param,
 EventTargetRef notifyTarget,
 DialogRef *outSheet
);

Parameters
alertType

The type of alert to create. For a list of possible values, see “Alert Type Constants” (page 85).

error
The error string to display.

explanation
The explanation string to display. May be NULL or empty to display no explanation.

param
The parameter block describing how to create the alert. May be NULL.

notifyTarget
The event target to be notified when the user dismisses the sheet. The caller should install an event
handler on this target for the kEventProcessCommand event. May be NULL if the caller does not
need the command event to be sent to any target. For more information, see the Discussion below.

outSheet
A pointer to a variable that, on return, refers to the new alert.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
This function should be used in conjunction with ShowSheetWindow. After CreateStandardSheet returns,
the alert is still invisible. ShowSheetWindow will show the alert as a sheet and then return. Events in the
sheet are handled asynchronously; the application should be prepared for the sheet window to be part of
its window list while running its own event loop.

When a button in the sheet is pressed, the event target passed to CreateStandardSheet will receive a
command event with one of the following commands: kHICommandOK, kHICommandCancel, or
kHICommandOther. The system takes care of closing the sheet and releasing the alert. Therefore after using
ShowSheetWindow, you do not need to call HideSheetWindow or DisposeDialog (page 25).

Typically, the event target you pass in the notifyTarget parameter is the parent window of the sheet. A
standard practice is to install a command event handler on the parent window just before showing the sheet
window, and to remove the handler from the parent window after the sheet has been closed.

It is also possible to install a handler on the sheet window itself, in which case you would pass NULL in the
notifyTarget parameter, since the command event is automatically sent to the sheet window already. If
you install a handler on the sheet itself, make sure to return eventNotHandledErr from your handler,
because CreateStandardSheet installs its own handler on the sheet and that handler must be allowed to
run to close the sheet window and release the alert.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 21
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

DialogCopy
Handles the Copy editing command when a dialog box containing an edit text item is active.

void DialogCopy (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Discussion
The DialogCopy function checks whether the dialog box has any edit text items and, if so, applies the
TextEdit function TECopy to the selected text. Your application should test whether a dialog box is the
frontmost window when handling mouse-down events in the Edit menu and then call this function when
appropriate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

DialogCut
Handles the Cut editing command when a dialog box containing an edit text item is active.

void DialogCut (
 DialogRef theDialog
);

Parameters
theDialog

On input, a pointer to a dialog structure.

Discussion
The DialogCut function checks whether the dialog box has any edit text items and, if so, applies the TextEdit
function TECut to the selected text. Your application should test whether a dialog box is the frontmost
window when handling mouse-down events in the Edit menu and then call this function when appropriate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

22 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

DialogDelete
Handles the Delete editing command when a dialog box containing an edit text item is active.

void DialogDelete (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Discussion
The DialogDelete function checks whether the dialog box has any edit text items and, if so, applies the
TextEdit function TEDelete to the selected text. Your application should test whether a dialog box is the
frontmost window when handling mouse-down events in the Edit menu and then call this function when
appropriate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

DialogPaste
Handles the Paste editing command when a dialog box containing an edit text item is active.

void DialogPaste (
 DialogRef theDialog
);

Parameters
theDialog

On input, a pointer to a dialog structure.

Discussion
The DialogPaste function checks whether the dialog box has any edit text items and, if so, applies the
TextEdit function TEPaste to the selected edit text item. Your application should test whether a dialog box
is the frontmost window when handling mouse-down events in the Edit menu and then call this function
when appropriate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

DialogSelect
Handles most of the events inside the dialog box after you have determined that an event related to an
active modeless dialog box or an active movable modal dialog box has occurred.

Functions 23
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Boolean DialogSelect (
 const EventRecord *theEvent,
 DialogRef *theDialog,
 DialogItemIndex *itemHit
);

Parameters
theEvent

A pointer to an event structure returned by an Event Manager function such as WaitNextEvent.

theDialog
A pointer to a dialog structure for the dialog box where the event occurred.

itemHit
A pointer to a short integer. DialogSelect returns a number corresponding to the position of an
item within the item list resource of the active dialog box.

Return Value
A Boolean value. If the event is an activate or update event for a dialog box, DialogSelect activates or
updates it and returns false. If the event involves an enabled item, DialogSelect returns a function result
of true.

Discussion
The DialogSelect function handles most of the events relating to a dialog box. Through its itemHit
parameter, it returns the item number of the item selected by the user. Through the parameter theDialog,
it returns a pointer to the dialog structure for the dialog box where the event occurred. In all other cases,
the DialogSelect function returns false. When DialogSelect returns true, do whatever is appropriate
as a response to the event involving that item in that particular dialog box; when it returns false, do nothing.

Generally, only controls should be enabled in a dialog box; therefore your application should normally respond
only when DialogSelect returns true after the user clicks an enabled control, such as the OK button.

The DialogSelect function first obtains a pointer to the window containing the event. For update and
activate events, the event structure contains the window pointer. For other types of events, DialogSelect
calls the Window Manager function FrontWindow. The Dialog Manager then makes this window the current
graphics port by calling the QuickDraw function SetPort. Then DialogSelect prepares to handle the
event by setting up text information if there are any edit text items in the active dialog box.

When an item is a control defined in a control resource, the rectangle added to the update region is the
rectangle defined in the control resource, not the display rectangle defined in the item list resource.

The DialogSelect function handles the event as follows:

 ■ In response to an activate or update event for the dialog box, DialogSelect activates or updates its
window and returns false.

 ■ If a key-down event or an auto-key event occurs and there’s an edit text item in the dialog box,
DialogSelect uses TextEdit to handle text entry and editing, and DialogSelect returns true for a
function result. Through its itemHit parameter, DialogSelect returns the item number.

 ■ If a key-down event or an auto-key event occurs and there’s no edit text item in the dialog box,
DialogSelect returns false.

 ■ If the user presses the mouse button while the cursor is in an edit text item, DialogSelect responds
to the mouse activity as appropriate—that is, either by displaying an insertion point or by selecting text.
If the edit text item is disabled, DialogSelect returns false. If the edit text item is enabled,

24 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

DialogSelect returns true and through its itemHit parameter returns the item number. Normally,
edit text items are disabled, and you use the GetDialogItemText function to read the information in
the items only after the OK button is clicked.

 ■ If the user presses the mouse button while the cursor is in a control, DialogSelect tracks the control.
If the user releases the mouse button while the cursor is in an enabled control, DialogSelect returns
true for a function result and through its itemHit parameter returns the control’s item number. Your
application should respond appropriately—for example, by performing a command after the user clicks
the OK button.

 ■ If the user presses the mouse button while the cursor is in any other enabled item in the dialog box,
DialogSelect returns true for a function result and through its itemHit parameter returns the item’s
number. Generally, only controls should be enabled. If your application creates a complex control—such
as one that measures how far a dial is moved—your application must handle mouse events in that item
before passing the event to DialogSelect.

 ■ If the user presses the mouse button while the cursor is in a disabled item, or if it is in no item, or if any
other event occurs, DialogSelect does nothing.

 ■ If the event isn’t one that DialogSelect specifically checks for (if it’s a null event, for example), and if
there’s an edit text item in the dialog box, DialogSelect calls the TextEdit function TEIdle to make
the insertion point blink.

Special Considerations

Because DialogSelect handles only mouse-down events in a dialog box and key-down events in a dialog
box’s edit text items, you should handle other events as appropriate before passing them to DialogSelect.
Likewise, when DialogSelect calls the Control Manager function TrackControl , it does not allow you
to specify any action function necessary for anything more complex than a button, radio button, or checkbox.
If you need a more complex control (for example, one that measures how long the user holds down the
mouse button or how far the user has moved an indicator), you can create your own control or a picture or
an application-defined item that draws a control-like object in your dialog box. You must then test for and
respond to those events yourself.

Within dialog boxes, use the functions DialogCut (page 22), DialogCopy (page 22), DialogPaste (page
23), and DialogDelete (page 23) to support Cut, Copy, Paste, and Clear commands in edit text boxes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

DisposeDialog
Dismisses a dialog box for which the Dialog Manager supplies memory and disposes of the dialog structure.

void DisposeDialog (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Functions 25
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Return Value
Discussion
The DisposeDialog function calls CloseDialog (page 18) and, in addition, releases the memory occupied
by the dialog box’s item list resource and the dialog structure. Call DisposeDialog when you’re done with
a dialog box if you pass null in the dStorage parameter to GetNewDialog (page 36) ,
NewColorDialog (page 46) , or NewDialog (page 48).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ictbSample

Declared In
Dialogs.h

DisposeModalFilterUPP

void DisposeModalFilterUPP (
 ModalFilterUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DisposeModalFilterYDUPP

void DisposeModalFilterYDUPP (
 ModalFilterYDUPP userUPP
);

Parameters
userUPP

Carbon Porting Notes

This function is supported in Carbon because several QuickTime routines require it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

26 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

DisposeUserItemUPP

void DisposeUserItemUPP (
 UserItemUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DrawDialog
Draws the entire contents of a specified dialog box.

void DrawDialog (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Return Value
Discussion
The DrawDialog function draws all dialog items, calls the Control Manager function DrawOneControl to
draw all controls, and calls the TextEdit function TEUpdate to update all static and edit text items and to
draw their display rectangles. The DrawDialog function also calls the application-defined items’ draw
functions if the items’ rectangles are within the update region.

DialogSelect (page 23) , ModalDialog (page 43) , Alert (page 12) , StopAlert (page 67) ,
NoteAlert (page 52) , and CautionAlert (page 17) use DrawDialog automatically. If you use
GetNewDialog (page 36) to create a dialog box but don’t use any of these other Dialog Manager functions
when handling events in the dialog box, you can use DrawDialog to redraw the contents of the dialog box
when it’s visible. If the dialog box is invisible, first use the Window Manager function ShowWindow and then
use DrawDialog.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

FindDialogItem
Determines the item number of an item at a particular location in a dialog box.

Functions 27
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

DialogItemIndexZeroBased FindDialogItem (
 DialogRef theDialog,
 Point thePt
);

Parameters
theDialog

A pointer to a dialog structure.

thePt
The point (in local coordinates) where the mouse-down event occurred.

Return Value
When an embedding hierarchy is established, the FindDialogItem function returns the deepest control
selected by the user corresponding to the point specified in the thePt parameter. When an embedding
hierarchy does not exist, FindDialogItem performs a linear search of the item list resource and returns a
number corresponding to the hit item’s position in the item list resource. For example, it returns 0 for the
first item in the item list, 1 for the second, and 2 for the third. If the mouse is not over a dialog item,
FindDialogItem returns –1. See the description of the DialogItemIndexZeroBased data type.

Discussion
The function FindDialogItem is useful for changing the cursor when the user moves the cursor over a
particular item.

To get the proper item number before calling the GetDialogItem (page 30) function or the
SetDialogItem (page 59) function, add 1 to the result of FindDialogItem, as shown here:

theItem = FindDialogItem(theDialog, thePoint) + 1;

Note that FindDialogItem returns the item number of disabled items as well as enabled items.

Version Notes
This function was changed with Appearance Manager 1.0 to support embedding hierarchies.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetAlertStage
Determines the stage of the last occurrence of an alert.

SInt16 GetAlertStage (
 void
);

Parameters
Return Value
A number from 0 to 3 as the stage of the last occurrence of an alert.

Discussion
You can use the GetAlertStage function to ensure that your application deactivates the active window
only if an alert box is to be displayed at that stage.

28 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogCancelItem
Returns the item number of the cancel item previously set with SetDialogCancelItem.

SInt16 GetDialogCancelItem (
 DialogRef dialog
);

Parameters
dialog

On input, a pointer to the dialog structure for the dialog box whose cancel item you want to get.

Return Value
The item number of the cancel item previously set with the SetDialogCancelItem (page 56) function.

Discussion
If you don’t explicitly call GetDialogCanceltItem, the standard filter function treats item 2 as the cancel
item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogDefaultItem
Returns the item number of the default item currently set for the standard filter function.

SInt16 GetDialogDefaultItem (
 DialogRef dialog
);

Parameters
dialog

On input, a pointer to the dialog structure for the dialog box whose default item you want to get.

Return Value
The item number of the default item currently set for the standard filter function.

Discussion
If you don’t explicitly call GetDialogDefaultItem, the standard filter function treats item 1 as the default
item.

Functions 29
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogFromWindow

DialogRef GetDialogFromWindow (
 WindowRef window
);

Parameters
window

Return Value
See the description of the DialogRef data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogItem
Obtains a handle to a dialog item.

void GetDialogItem (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 DialogItemType *itemType,
 Handle *item,
 Rect *box
);

Parameters
theDialog

A pointer to the dialog box to examine.

itemNo
The position of the item in the dialog box’s item list resource use FindDialogItem (page 27) to
determine this value.

itemType
A pointer to a short value. On return, the value identifies the item type of the dialog item requested
in the itemNo parameter.

item
A pointer to an item handle. On return the handle refers to the item specified in the itemNo parameter
or, for application-defined draw functions, a pointer (coerced to a handle) to the draw function.

30 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

box
A pointer to a rectangle. On return, the rectangle specifies the display rectangle (described in
coordinates local to the dialog box), for the item specified in the itemNo parameter.

Return Value
Discussion
The GetDialogItem function produces the item type, a handle to the item (or, for application-defined draw
functions, the function pointer), and the display rectangle for a specified item in an item list resource. When
a control hierarchy is present in the dialog box, GetDialogItem gets the appropriate information (for
example, a text handle) from the controls. If you wish to get a control handle for a dialog item in an embedding
hierarchy, see GetDialogItemAsControl (page 31).

You should call GetDialogItem before calling functions such as SetDialogItemText (page 60) that need
a handle to a dialog item.

See also the function SetDialogItem (page 59).

Version Notes
This function was changed with Appearance Manager 1.0 to support retrieving item information from controls.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ictbSample

Declared In
Dialogs.h

GetDialogItemAsControl
Obtains the control handle for a dialog item in an embedding hierarchy.

OSErr GetDialogItemAsControl (
 DialogRef inDialog,
 DialogItemIndex inItemNo,
 ControlRef *outControl
);

Parameters
inDialog

A pointer to the dialog box to examine.

inItemNo
The position of an item in the dialog box’s item list.

outControl
A pointer to a control handle that, on return, refers to the embedded control.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94). The Control Manager result code
errItemNotControl indicates that the specified dialog item is not a control.

Functions 31
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Discussion
When an embedding hierarchy is established,GetDialogItemAsControlproduces a handle to the embedded
controls (except Help items). It should be used instead of GetDialogItem (page 30) when an embedding
hierarchy is established.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogItemText
Obtains the text string contained in an edit text or a static text item.

void GetDialogItemText (
 Handle item,
 Str255 text
);

Parameters
item

On input, a handle to an edit text or a static text item. To get this handle, call the “Alert Button
Constants” (page 82) function.

text
On output, a string containing the text of the item that is specified by the item parameter.

Discussion
The GetDialogItemText function will only return the first 255 characters in an edit text item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogKeyboardFocusItem
Returns the item number of the editable text item in a dialog box that has keyboard focus.

SInt16 GetDialogKeyboardFocusItem (
 DialogRef dialog
);

Parameters
dialog

On input, a pointer to the dialog structure for the dialog box whose currently focused item you want
to identify.

32 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Return Value
The number of the editable text item in a dialog box that currently has keyboard focus.

Discussion
When the Appearance Manager is available and an embedding hierarchy is established, you should call the
Control Manager function GetKeyboardFocus instead of GetDialogKeyboardFocusItem to return the
item number of the item in a dialog box that has keyboard focus.

The GetDialogKeyboardFocusItem function accesses the edit field in the dialog structure.
GetDialogKeyboardFocusItem should only be called when there is no embedding hierarchy in the dialog
box.

Version Notes
This function is not recommended with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogPort

CGrafPtr GetDialogPort (
 DialogRef dialog
);

Parameters
dialog

Return Value
See the QuickDraw Manager documentation for a description of the CGrafPtr data type.

Discussion
Special Considerations
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 33
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

GetDialogTextEditHandle

TEHandle GetDialogTextEditHandle (
 DialogRef dialog
);

Parameters
dialog

Return Value
See the TextEdit documentation for a description of the TEHandle data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogTimeout
Obtains the original countdown duration, the time remaining, and the item selection to be simulated for a
specified modal dialog box.

OSStatus GetDialogTimeout (
 DialogRef inDialog,
 DialogItemIndex *outButtonToPress,
 UInt32 *outSecondsToWait,
 UInt32 *outSecondsRemaining
);

Parameters
inDialog

A pointer to the dialog box to be examined.

outButtonToPress
On input, a pointer to a signed 16-bit integer. On return, a value representing the number within the
item list of the item that is to be selected. You may pass NULL for the outButtonToPress parameter
if you do not desire this information.

outSecondsToWait
On input, a pointer to an unsigned 32-bit integer. On return, a value specifying the number of seconds
that were originally set to elapse before the Dialog Manager simulates an item selection. You may
pass NULL for the outSecondsToWait parameter if you do not desire this information.

outSecondsRemaining
On input, a pointer to an unsigned 32-bit integer. On return, a value specifying the number of seconds
remaining before the Dialog Manager simulates an item selection. You may pass NULL for the
outSecondsRemaining parameter if you do not desire this information.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
Also see the function SetDialogTimeout (page 60).

34 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogWindow

WindowRef GetDialogWindow (
 DialogRef dialog
);

Parameters
dialog

Return Value
See the QuickDraw Manager documentation for a description of the WindowRef data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

GetModalDialogEventMask
Obtains the events to be received by the ModalDialog function.

OSStatus GetModalDialogEventMask (
 DialogRef inDialog,
 EventMask *outMask
);

Parameters
inDialog

A pointer to the dialog box for which you wish to obtain the event mask.

outMask
On input, a pointer to a unsigned 16-bit integer of type EventMask. On return, your application may
test the bits of this value to determine the event(s) that the dialog box is currently set to receive.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
Also see the function SetModalDialogEventMask (page 62).

Version Notes
This function is available with Mac OS 8.5 and later.

Functions 35
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetNewDialog
Creates a dialog box from a resource-based description.

DialogRef GetNewDialog (
 SInt16 dialogID,
 void *dStorage,
 WindowRef behind
);

Parameters
dialogID

The resource ID of a dialog resource and an extended dialog resource. The resource IDs for both
resources must be identical. If the dialog resource is missing, the Dialog Manager returns to your
application without creating the requested dialog box. See ‘DLOG’ and ‘dlgx’ for a description of
the dialog resource and the extended dialog resource, respectively.

dStorage
A pointer to the memory for the dialog structure. If you set this parameter to null, the Dialog Manager
automatically allocates a nonrelocatable block in your application heap.

behind
A pointer to the window behind which the dialog box is to be placed on the desktop. Set this parameter
to the window pointer (WindowPtr)-1L to bring the dialog box in front of all other windows.

Return Value
Returns a pointer to a dialog box. If none was created, returns null. See the description of the DialogRef
data type.

Discussion
The GetNewDialog function creates a dialog structure from information in a dialog resource and an extended
dialog resource (if it exists) and returns a pointer to the dialog structure. You can use this pointer with Window
Manager or QuickDraw functions to manipulate the dialog box. If the dialog resource specifies that the dialog
box should be visible, the dialog box is displayed. If the dialog resource specifies that the dialog box should
initially be invisible, use the Window Manager function ShowWindow to display the dialog box.

The dialog resource contains a resource ID that specifies both the dialog box’s item list ('DITL') resource
and its dialog font table ('dftb') resource. After calling the Resource Manager to read these resources into
memory (if they are not already in memory), GetNewDialog makes a copy of the 'DITL' resource and uses
that copy; thus you may have several dialog boxes with identical items.

If you supply a dialog color table ('dctb') resource with the same resource ID as the dialog resource,
GetNewDialog uses NewColorDialog and returns a pointer to a color graphics port. If no dialog color table
resource is present, GetNewDialog uses NewDialog to return a pointer to a black-and-white graphics port,
although system software draws the window frame using the system’s default colors. However, if the
Appearance Manager is available and the kDialogFlagsUseThemeBackground feature bit of the extended
dialog resource is set, then the 'dctb' resource is ignored and a color graphics port is created.

36 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Special Considerations

The GetNewDialog function doesn’t release the memory occupied by the resources. Therefore, your
application should mark all resources used for a dialog box as purgeable or you should release the resources
yourself.

If either the dialog resource or the item list resource can’t be read, the function result is null; your application
should test to ensure that null is not returned before performing any more operations with the dialog box
or its items.

As with all other windows, dialogs are created with an update region equal to their port rectangle. However,
if the dialog’s 'DLOG' resource specifies that the dialog be made visible upon creation, the Dialog Manager
draws the controls immediately and calls ValidRgn for each of their bounding rectangles. Other items are
not drawn until the first update event for the dialog box is serviced.

If you need to display an alert box while your application is running in the background or is otherwise invisible
to the user, call AEInteractWithUser

Version Notes
This function was changed with Appearance Manager 1.0 to support the extended dialog ('dlgx') resource
and the dialog font table ('dftb') resource.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ictbSample

Declared In
Dialogs.h

GetParamText

void GetParamText (
 StringPtr param0,
 StringPtr param1,
 StringPtr param2,
 StringPtr param3
);

Parameters
param0
param1
param2
param3

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 37
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

GetStandardAlertDefaultParams
Fills out an AlertStdCFStringAlertParamRecwith default values: - not movable - no help button - default
button with title "OK" - no cancel or other buttons.

OSStatus GetStandardAlertDefaultParams (
 AlertStdCFStringAlertParamPtr param,
 UInt32 version
);

Parameters
param

The parameter block to initialize.

version
The parameter block version; pass kStdCFStringAlertVersionOne.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

GetStdFilterProc
Returns a pointer to the standard filter function.

OSErr GetStdFilterProc (
 ModalFilterUPP *theProc
);

Parameters
theProc

A universal procedure pointer to a filter function. On output, the Dialog Manager provides a pointer
to its standard filter function.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
The GetStdFilterProc function gets a pointer to the standard filter function. You must dispatch the
function yourself using the CallModalFilterProc macro; see ModalFilterProcPtr (page 69).

You normally don’t need to use GetStdFilterProc unless your development environment doesn’t include
the code required to support StdFilterProc (page 66).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

38 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Declared In
Dialogs.h

HideDialogItem
Makes an item in a dialog box invisible.

void HideDialogItem (
 DialogRef theDialog,
 DialogItemIndex itemNo
);

Parameters
theDialog

A pointer to a dialog structure.

itemNo
A number corresponding to the position of an item in the dialog box’s item list resource.

Return Value
Discussion
The HideDialogItem function hides the item specified by itemNo by giving it a display rectangle that’s off
the screen. Specifically, if the left coordinate of the item’s display rectangle is less than 8192 (hexadecimal
0x2000), HideDialogItem adds 16,384 (hexadecimal 0x4000) to both the left and right coordinates of the
rectangle. If the item is already hidden (that is, if the left coordinate is greater than 8192), HideDialogItem
does nothing. To redisplay an item that’s been hidden by HideDialogItem, you can use the ShowDialogItem
function.

Special Considerations

If your application needs to display a number of dialog boxes that are similar except for one or two items,
it’s generally easier to modify the common elements using the AppendDITL (page 14) and
ShortenDITL (page 63) functions than to use the HideDialogItem and ShowDialogItem (page 63)
functions.

If you hid an edit text item, the next visible edit text item will be highlighted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 39
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

InsertDialogItem

OSStatus InsertDialogItem (
 DialogRef theDialog,
 DialogItemIndex afterItem,
 DialogItemType itemType,
 Handle itemHandle,
 const Rect *box
);

Parameters
theDialog
afterItem
itemType
itemHandle
box

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

InvokeModalFilterUPP

Boolean InvokeModalFilterUPP (
 DialogRef theDialog,
 EventRecord *theEvent,
 DialogItemIndex *itemHit,
 ModalFilterUPP userUPP
);

Parameters
theDialog
theEvent
itemHit
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

40 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

InvokeModalFilterYDUPP

Boolean InvokeModalFilterYDUPP (
 DialogRef theDialog,
 EventRecord *theEvent,
 short *itemHit,
 void *yourDataPtr,
 ModalFilterYDUPP userUPP
);

Parameters
theDialog
theEvent
itemHit
yourDataPtr
userUPP

Carbon Porting Notes

This function is supported in Carbon because several QuickTime routines require it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

InvokeUserItemUPP

void InvokeUserItemUPP (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 UserItemUPP userUPP
);

Parameters
theDialog
itemNo
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

IsDialogEvent
Determines whether a modeless dialog box or a movable modal dialog box is active when an event occurs.

Functions 41
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Boolean IsDialogEvent (
 const EventRecord *theEvent
);

Parameters
theEvent

A pointer to an event structure returned by an Event Manager function such as WaitNextEvent.

Return Value
A Boolean value. If any event, including a null event, occurs when your dialog box is active, IsDialogEvent
returns true; otherwise, it returns false.

Discussion
When IsDialogEvent returns false, pass the event to the rest of your event-handling code. When
IsDialogEvent returns true, pass the event to DialogSelect (page 23) after testing for the events that
DialogSelect does not handle.

A dialog structure includes a window structure. When you use the GetNewDialog (page 36) ,
NewDialog (page 48) , NewFeaturesDialog (page 49) , or NewColorDialog (page 46) functions to create
a dialog box, the Dialog Manager sets the windowKind field in the window structure to dialogKind. To
determine whether the active window is a dialog box, IsDialogEvent checks the windowKind field.

Before passing the event toDialogSelect, you should perform the following tests wheneverIsDialogEvent
returns true :

 ■ Check whether the event is a key-down event for the Return, Enter, Esc, or Command-period keystrokes.
When the user presses the Return or Enter key, your application should respond as if the user had clicked
the default button; when the user presses Esc or Command-period, your application should respond as
if the user had clicked the Cancel button. Use the Control Manager function HiliteControl to highlight
the applicable button for 8 ticks.

 ■ At this point, you may also want to check for and respond to any special events that you do not wish to
pass to DialogSelect (page 23) or that require special processing before you pass them to
DialogSelect. You would need to do this, for example, if the dialog box needs to respond to
disk-inserted events.

 ■ Check whether the event is an update event for a window other than the dialog box and, if it is, update
your window.

 ■ For complex items that you create, such as pictures or application-defined items that emulate complex
controls, test for and respond to mouse events inside those items as appropriate. When DialogSelect
calls the Control Manager function TrackControl, it does not allow you to specify the action function
necessary for anything more complex than a button, radio button, or checkbox. If you need a more
complex control (for example, one that measures how long the user holds down the mouse button or
how far the user has moved an indicator), you can create your own control or a picture or an
application-defined item that draws a control-like object in your dialog box. You must then test for and
respond to those events yourself.

If your application uses IsDialogEvent to help handle events when you display a movable modal dialog
box, perform the following additional tests before passing events to DialogSelect :

 ■ Test for mouse-down events in the title bar of the movable modal dialog box and respond by dragging
the dialog box accordingly.

42 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

 ■ Test for and respond to mouse-down events in the Apple menu and, if the movable modal dialog box
includes edit text items, in the Edit menu. (You should disable all other menus when you display a
movable modal dialog box.)

 ■ Play the system alert sound for every other mouse-down event outside the movable modal dialog box.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

ModalDialog
Handles events while your application displays a modal or movable modal dialog box.

void ModalDialog (
 ModalFilterUPP modalFilter,
 DialogItemIndex *itemHit
);

Parameters
modalFilter

A universal procedure pointer for an event filter function. For modal dialog boxes, you can specify
null if you want to use the standard event-handling function. For movable modal dialog boxes, you
should specify your own event filter function.

itemHit
A pointer to a short integer. After receiving an event involving an enabled item, ModalDialog
produces a number representing the position of the selected item in the active dialog box’s item list
resource.

Return Value
Discussion
Call the ModalDialog function immediately after displaying a modal or movable modal dialog box. Your
application should continue calling ModalDialog until the user dismisses your dialog.

For modal dialogs, the ModalDialog function repeatedly handles events until an event involving an enabled
dialog box item—such as a click in a radio button, for example—occurs. If the event is a mouse-down event
outside the content region of the dialog box, ModalDialog plays the system alert sound and gets the next
event.

For movable modal dialogs, if the kDialogFlagsHandleMovableModal feature bit in the extended dialog
resource is set, the ModalDialog function will handle all standard movable modal user interactions, such
as dragging a dialog box by its title bar and allowing the user to switch into another application. However,
a difference between the ModalDialog function’s behavior with movable modal and modal dialogs is that,
with movable modal dialogs, your event filter function receives all events. If you want the Dialog Manager
to assist you in handling events in movable modal dialog boxes, callGetStdFilterProc andStdFilterProc.

For events inside the dialog box, ModalDialog passes the event to the event filter function pointed to in
the modalFilter parameter before handling the event. When the event filter returns false, ModalDialog
handles the event. If the event filter function handles the event, returning true, ModalDialog performs no
more event handling.

Functions 43
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

If you set the modalFilter parameter to null, the standard event filter function is executed. The standard
event filter function checks whether

 ■ the user has pressed the Enter or Return key and, if so, returns the item number of the default button

 ■ the user has pressed the Escape key or Command-period and, if so, returns the item number of the
Cancel button

 ■ the cursor is over an editable text box, and optionally changes the cursor to an I-beam whenever this is
the case

If you set the modalFilter parameter to point to your own event filter function, that function can use the
standard filter function to accomplish the above tasks. (To do so, you can call GetStdFilterProc, and
dispatch the event to the standard filter function yourself, or you can call StdFilterProc, which obtains a
ModalFilterUPP for the standard filter function and then dispatches the function.) Additionally, your own
event filter function should also

 ■ handle update events, so that background processes can receive processor time, and return false

 ■ return false for all events that your event filter function doesn’t handle

You can also use your event filter function to test for and respond to keyboard equivalents and more complex
events—for instance, the user dragging the cursor within an application-defined item. You can use your
same event filter function in most or all of your alert and modal dialog boxes.

If the event filter function does not handle the event (returning false), ModalDialog handles the event as
follows:

 ■ In response to an activate or update event for the dialog box, ModalDialog activates or updates its
window.

 ■ If the user presses the mouse button while the cursor is in an editable text item, ModalDialog responds
to the mouse activity as appropriate—that is, either by displaying an insertion point or by selecting text.
If a key-down event occurs and there’s an editable text item, ModalDialog uses TextEdit to handle text
entry and editing automatically. If the editable text item is enabled, ModalDialog produces its item
number after it receives either the mouse-down or key-down event. Normally, editable text items are
disabled, and you use the GetDialogItemText function to read the information in the items only after
the user clicks the OK button.

 ■ If the user presses the mouse button while the cursor is in a control, ModalDialog calls the Control
Manager function TrackControl. If the user releases the mouse button while the cursor is in an enabled
control, ModalDialog produces the control’s item number. Your application should respond
appropriately—for example, by performing a command after the user clicks the OK button.

 ■ If the user presses the mouse button while the cursor is in any other enabled item in the dialog box,
ModalDialog produces the item’s number, and your application should respond appropriately. Generally,
only controls should be enabled. If your application creates a control more complex than a button, radio
button, or checkbox, your application must handle events inside that item with your event filter function.

 ■ If the user presses the mouse button while the cursor is in a disabled item or in no item, or if any other
event occurs, ModalDialog does nothing.

Special Considerations

The ModalDialog function traps all events. This prevents your event loop from receiving activate events for
your windows. Thus, if one of your application’s windows is active when you use GetNewDialog to create
a modal dialog box, you must explicitly deactivate that window before displaying the modal dialog box.

44 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

When ModalDialog calls the Control Manager function TrackControl, it does not allow you to specify the
action function necessary for anything more complex than a button, radio button, or checkbox. If you need
a more complex control, you can create your own control, a picture, or an application-defined item that
draws a control-like object in your dialog box. You must then provide an event filter function that appropriately
handles events in that item.

Version Notes
This function was changed with Appearance Manager 1.0 to handle events for movable modal dialogs.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ictbSample

Declared In
Dialogs.h

MoveDialogItem
Moves a dialog item to a specified location in a window.

OSErr MoveDialogItem (
 DialogRef inDialog,
 DialogItemIndex inItemNo,
 SInt16 inHoriz,
 SInt16 inVert
);

Parameters
inDialog

A pointer to the dialog box containing the item to move.

inItemNo
The position of the item in the dialog box’s item list resource use FindDialogItem (page 27) to
determine this value.

inHoriz
The new horizontal coordinate for the dialog item.

inVert
The new vertical coordinate for the dialog item.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
The MoveDialogItem function moves a dialog item to a specified location in a window. MoveDialogItem
ensures that if the item is a control, the control rectangle and the dialog item rectangle (maintained by the
Dialog Manager) are always the same.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Functions 45
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

NewColorDialog
Creates a dialog box from information passed in memory.

DialogRef NewColorDialog (
 void *dStorage,
 const Rect *boundsRect,
 ConstStr255Param title,
 Boolean visible,
 SInt16 procID,
 WindowRef behind,
 Boolean goAwayFlag,
 SRefCon refCon,
 Handle items
);

Parameters
dStorage

On input, a pointer to the memory for the dialog structure. If you set this parameter to null, the
Dialog Manager automatically allocates a nonrelocatable block in your application heap.

boundsRect
On input, a pointer to a rectangle, given in global coordinates, that determines the size and position
of the dialog box; these coordinates specify the upper-left and lower-right corners of the dialog box.

title
On input, a text string used for the title of a modeless or movable modal dialog box. You can specify
an empty string (not null) for a title bar that contains no text.

visible
On input, a flag that specifies whether the dialog box should be drawn on the screen immediately.
If you set this parameter to false, the dialog box is not drawn until your application uses the Window
Manager function ShowWindow to display it.

procID
On input, the window definition ID for the type of dialog box, specified with constants defined by
the Window Manager. Use the kWindowModalDialogProc constant to specify modal dialog boxes,
the kWindowDocumentProc constant to specify modeless dialog boxes, and the
kWindowMovableModalDialogProc constant to specify movable modal dialog boxes.

behind
On input, a pointer to the window behind which the dialog box is to be placed on the desktop. Set
this parameter to the window pointer (WindowPtr)-1L to bring the dialog box in front of all other
windows.

goAwayFlag
On input, a flag to specify whether a modeless dialog box can have a close box in its title bar when
the dialog box is active. If you set this parameter to true, the modeless dialog box has a close box
in its title bar when the window is active.

46 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

refCon
On input, a value that the Dialog Manager uses to set the refCon field of the dialog box’s window
structure. Your application may store any value here for any purpose. For example, your application
can store a number that represents a dialog box type, or it can store a handle to a structure that
maintains state information about the dialog box. You can use the Window Manager function
SetWRefCon at any time to change this value in the dialog structure for a dialog box, and you can
use the GetWRefCon function to determine its current value.

items
On input, a handle to an item list resource for the dialog box. You can get the handle by calling the
Resource Manager function GetResource to read the item list resource into memory. Use the Memory
Manager function HNoPurge to make the handle unpurgeable while you use it or use the Operating
System utility function HandToHand to make a copy of the handle and use the copy.

Return Value
A pointer to the new dialog box. If the function doesn’t create a new dialog box, returns null. See the
description of the DialogRef data type.

Discussion
The NewColorDialog function creates a dialog box as specified by its parameters. The first eight parameters
(dStorage through refCon) are passed to the Window Manager function NewWindow, which creates the
dialog box. You can use this pointer with Window Manager or QuickDraw functions to manipulate the dialog
box.

The Dialog Manager uses the default window colors for the dialog box. By using the system’s default colors,
you ensure that your application’s interface is consistent with that of the Finder and other applications.
However, if you absolutely feel compelled to break from this consistency, you can use the Window Manager
function SetWinColor to use your own dialog color table resource that specifies colors other than the default
colors. Be aware, however, that nonstandard colors in your alert and dialog boxes may initially confuse your
users.

The Window Manager creates an auxiliary window structure for the color dialog box. You can access this
structure with the Window Manager function GetAuxWin. If the dialog box’s content color isn’t white, it’s a
good idea to call NewColorDialog with the visible flag set to false. After the color table and color item
list resource are installed, use the Window Manager function ShowWindow to display the dialog box if it’s
the frontmost window. If the dialog box is a modeless dialog box that is not in front, use the Window Manager
function ShowHide to display it.

The NewColorDialog function generates an update event for the entire window contents. Thus, with the
exception of controls, items aren’t drawn immediately. The Dialog Manager calls the Control Manager to
draw controls, and the Control Manager draws them immediately. So that the controls won’t be drawn twice,
the Dialog Manager calls the Window Manager function ValidRect for the enclosing rectangle of each
control. If you find that there is too great a lag between the drawing of controls and the drawing of other
items, try making the dialog box initially invisible and then calling the Window Manager function ShowWindow
to show it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 47
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

NewDialog
Creates a dialog box from information passed in memory.

DialogRef NewDialog (
 void *dStorage,
 const Rect *boundsRect,
 ConstStr255Param title,
 Boolean visible,
 SInt16 procID,
 WindowRef behind,
 Boolean goAwayFlag,
 SRefCon refCon,
 Handle items
);

Parameters
dStorage

On input, a pointer to the memory for the dialog structure. If you set this parameter to null, the
Dialog Manager automatically allocates a nonrelocatable block in your application heap.

boundsRect
On input, a pointer to a rectangle, given in global coordinates, that determines the size and position
of the dialog box; these coordinates specify the upper-left and lower-right corners of the dialog box.

title
On input, a text string used for the title of a modeless or movable modal dialog box. You can specify
an empty string (not null) for a title bar that contains no text.

visible
On input, a flag that specifies whether the dialog box should be drawn on the screen immediately.
If you set this parameter to false, the dialog box is not drawn until your application uses the Window
Manager function ShowWindow to display it.

procID
On input, the window definition ID for the type of dialog box, specified with constants defined by
the Window Manager. Use the kWindowModalDialogProc constant to specify modal dialog boxes,
the kWindowDocumentProc constant to specify modeless dialog boxes, and the
kWindowMovableModalDialogProc constant to specify movable modal dialog boxes.

behind
On input, a pointer to the window behind which the dialog box is to be placed on the desktop. Set
this parameter to the window pointer (WindowPtr)-1L to bring the dialog box in front of all other
windows.

goAwayFlag
On input, a flag to specify whether a modeless dialog box can have a close box in its title bar when
the dialog box is active. If you set this parameter to true, the modeless dialog box has a close box
in its title bar when the window is active.

refCon
On input, a value that the Dialog Manager uses to set the refCon field of the dialog box’s window
structure. Your application may store any value here for any purpose. For example, your application
can store a number that represents a dialog box type, or it can store a handle to a structure that
maintains state information about the dialog box. You can use the Window Manager function
SetWRefCon at any time to change this value in the dialog structure for a dialog box, and you can
use the GetWRefCon function to determine its current value.

48 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

items
On input, a handle to an item list resource for the dialog box. You can get the handle by calling the
Resource Manager function GetResource to read the item list resource into memory. Use the Memory
Manager function HNoPurge to make the handle unpurgeable while you use it or use the Operating
System utility function HandToHand to make a copy of the handle and use the copy.

Return Value
A pointer to the new dialog box. If the function doesn’t create a new dialog box, returns null. See the
description of the DialogRef data type.

Discussion
The NewDialog function is identical to the NewColorDialog function, except that NewDialog returns a
pointer to a black-and-white graphics port. See the discussion of NewColorDialog (page 46) for descriptions
of the parameters that you also pass to NewDialog.

The NewDialog function creates a dialog box as specified by its parameters and returns a pointer to a
black-and-white graphics port for the new dialog box. The first eight parameters (wStorage through refCon)
are passed to the Window Manager function NewWindow, which creates the dialog box.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

NewFeaturesDialog
Creates a dialog box from information passed in memory.

DialogRef NewFeaturesDialog (
 void *inStorage,
 const Rect *inBoundsRect,
 ConstStr255Param inTitle,
 Boolean inIsVisible,
 SInt16 inProcID,
 WindowRef inBehind,
 Boolean inGoAwayFlag,
 SRefCon inRefCon,
 Handle inItemListHandle,
 UInt32 inFlags
);

Parameters
inStorage

A pointer to the memory for the dialog box. If you set this parameter to null, the Dialog Manager
automatically allocates a nonrelocatable block in your application heap.

inBoundsRect
A pointer to a rectangle, given in global coordinates, that determines the size and position of the
dialog box; these coordinates specify the upper-left and lower-right corners of the dialog box.

inTitle
A pointer to a text string used for the title of a modeless or movable modal dialog box. You can specify
an empty string (not null) for a title bar that contains no text.

Functions 49
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

inIsVisible
A flag that specifies whether the dialog box should be drawn on the screen immediately. If you set
this parameter to false, the dialog box is not drawn until your application uses the Window Manager
function ShowWindow to display it.

inProcID
The window definition ID for the type of dialog box, specified with constants defined by the Window
Manager. Use the kWindowModalDialogProc constant to specify modal dialog boxes, the
kWindowDocumentProc constant to specify modeless dialog boxes, and the
kWindowMovableModalDialogProc constant to specify movable modal dialog boxes.

inBehind
A pointer to the window behind which the dialog box is to be placed on the desktop. Set this parameter
to the window pointer (WindowPtr)-1L to bring the dialog box in front of all other windows.

inGoAwayFlag
A Boolean value. If true, specifies that an active modeless dialog box has a close box in its title bar.

inRefCon
A value that the Dialog Manager uses to set the refCon field of the dialog box’s window structure.
Your application may store any value here for any purpose. For example, your application can store
a number that represents a dialog box type, or it can store a handle to a structure that maintains state
information about the dialog box. You can use the Window Manager function SetWRefCon at any
time to change this value in the dialog structure for a dialog box, and you can use the GetWRefCon
function to determine its current value.

inItemListHandle
A handle to an item list resource for the dialog box. You can get the handle by calling the Resource
Manager function GetResource to read the item list resource into memory.

inFlags
An unsigned 32-bit mask specifying the dialog box’s Appearance-compliant feature flags see “Dialog
Feature Flag Constants” (page 87). To establish an embedding hierarchy in a dialog box, pass
kDialogFlagsUseControlHierarchy in the inFlags parameter.

Return Value
A pointer to the newly created dialog box. If NewFeaturesDialog doesn’t create a new dialog box, it returns
null. See the description of the DialogRef data type.

Discussion
The NewFeaturesDialog function creates a dialog box without using 'DLOG' or 'dlgx' resources. Although
the inItemListHandle parameter specifies an item list ('DITL') resource for the dialog box, the
corresponding dialog font table ('dftb') resource is not automatically accessed. You must explicitly set the
dialog box’s control font style(s) individually.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

50 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

NewModalFilterUPP

ModalFilterUPP NewModalFilterUPP (
 ModalFilterProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ModalFilterUPP data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

NewModalFilterYDUPP

ModalFilterYDUPP NewModalFilterYDUPP (
 ModalFilterYDProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ModalFilterYDUPP data type.

Carbon Porting Notes

This function is supported in Carbon because several QuickTime routines require it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

NewUserItemUPP

UserItemUPP NewUserItemUPP (
 UserItemProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the UserItemUPP data type.

Functions 51
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Discussion
Special Considerations
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

NoteAlert
Displays an alert box with a note icon and/or plays an alert sound.

DialogItemIndex NoteAlert (
 SInt16 alertID,
 ModalFilterUPP modalFilter
);

Parameters
alertID

The resource ID of an alert resource and extended alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the requested alert. See ‘alrx’ for a
description of the extended alert resource.

modalFilter
A universal procedure pointer for a filter function that responds to events not handled by the
ModalDialog (page 43) function. If you set this parameter to null, the Dialog Manager uses the
standard event filter function.

Return Value
If no alert box is to be drawn at the current alert stage, NoteAlert returns –1 otherwise, it creates and
displays the alert box and returns the item number of the control selected by the user see “Alert Button
Constants” (page 82). See the description of the DialogItemIndex data type.

Discussion
The NoteAlert function displays an alert box with a note icon in its upper-left corner or, if appropriate for
the alert stage, plays an alert sound instead of or in addition to displaying the alert box.

The NoteAlert function is the same as the Alert (page 12) function except that, before drawing the items
in the alert box, NoteAlert draws the note icon in the upper-left corner. The note icon has resource ID 1,
which you can also specify with the constant noteIcon. By default, the Dialog Manager uses the standard
note icon from the System file. You can change this icon by providing your own 'ICON' resource with
resource ID 1.

Use a note alert to inform users of a minor mistake that won’t have any disastrous consequences if left as is.
Usually this type of alert simply offers information, and the user responds by clicking an OK button.
Occasionally, a note alert may ask a simple question and provide a choice of responses.

Your application should never draw its own default rings or alert icons. Prior to Mac OS 8, the NoteAlert
function would only redraw the alert icon and default button ring once and never redraw them on an update
event. However, when Appearance is available, alert icons and default rings do redraw when you call
NoteAlert.

52 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

See also the functions CautionAlert (page 17) and StopAlert (page 67).

Version Notes
This function was changed with Appearance Manager 1.0 to support the extended alert ('alrx') resource.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

ParamText
Replaces the text strings in the static text items of your alert or dialog boxes while your application is running.

void ParamText (
 ConstStr255Param param0,
 ConstStr255Param param1,
 ConstStr255Param param2,
 ConstStr255Param param3
);

Parameters
param0

A text string to substitute for the special string ^0 in the static text items of all subsequently created
alert and dialog boxes.

param1
A text string to substitute for the special string ^1 in the static text items of all subsequently created
alert and dialog boxes.

param2
A text string to substitute for the special string ^2 in the static text items of all subsequently created
alert and dialog boxes.

param3
A text string to substitute for the special string ^3 in the static text items of all subsequently created
alert and dialog boxes.

Discussion
The ParamText function replaces the special strings ^0 through ^3 in the static text items of all subsequently
created alert and dialog boxes with the text strings you pass as parameters. Pass empty strings (not null)
for parameters not used.

Special Considerations

If the user launches a desk accessory (such as a driver) in your application’s partition and the desk accessory
calls ParamText, it may change the text in your application’s dialog box.

You should be very careful about using ParamText in modeless dialog boxes. If a modeless dialog box using
ParamText is onscreen and you display another dialog box or alert box that also uses ParamText, both
boxes will be affected by the latest call to ParamText.

Functions 53
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Note that you should try to store text strings in resource files to facilitate translation into other languages;
therefore, ParamText is best used for supplying text strings, such as document names, that the user specifies.
To avoid problems with grammar and sentence structure when you localize your application, you should
use ParamText to supply only one text string per screen message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

RemoveDialogItems

OSStatus RemoveDialogItems (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 DialogItemIndex amountToRemove,
 Boolean disposeItemData
);

Parameters
theDialog
itemNo
amountToRemove
disposeItemData

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

ResetAlertStage
Resets the current alert stage to the first alert stage.

void ResetAlertStage (
 void
);

Parameters
Return Value
Discussion
The ResetAlertStage function resets every alert to a first-stage alert.

Availability
Available in Mac OS X v10.0 and later.

54 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Not available to 64-bit applications.

Declared In
Dialogs.h

RunStandardAlert
Shows and runs a standard alert using a modal dialog loop.

OSStatus RunStandardAlert (
 DialogRef inAlert,
 ModalFilterUPP filterProc,
 DialogItemIndex *outItemHit
);

Parameters
inAlert

The alert to display. On return, the alert you pass in this parameter has been released and is no longer
valid. You should not call DisposeDialog (page 25) on this alert.

filterProc
An event filter function for handling events that do not apply to the alert. May be NULL.

outItemHit
On exit, contains the item index of the button that was pressed to close the alert.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
This function displays and runs an alert created by CreateStandardAlert (page 20). RunStandardAlert
handles all user interaction with the alert.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

SelectDialogItemText
Selects and highlights text contained in an edit text item.

Functions 55
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

void SelectDialogItemText (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 SInt16 strtSel,
 SInt16 endSel
);

Parameters
theDialog

On input, a pointer to a dialog structure.

itemNo
On input, a number corresponding to the position of an edit text item in the dialog box’s item list
resource.

strtSel
On input, a number representing the position of the first character to begin selecting.

endSel
On input, a number representing one position past the last character to be selected.

Discussion
If the item in the itemNo parameter is an edit text item that contains text, the SelectDialogItemText
function sets the text selection range to extend from the character position specified in the strtSelparameter
up to but not including the character position specified in the endSel parameter. The selection range is
highlighted unless strtSel equals endSel, in which case a blinking vertical bar is displayed to indicate an
insertion point at that position. If the edit text item doesn’t contain text, SelectDialogItemText displays
the insertion point.

You can select the entire text by specifying the number 0 in the strtSel parameter and the number 32767
in the endSel parameter.

For example, if the user makes an unacceptable entry in the edit text item, your application can display an
alert box reporting the problem and then use SelectDialogItemText to select the entire text so it can be
replaced by a new entry. Without this function, the user would have to select the item before making the
new entry.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogCancelItem
Sets the cancel item for a dialog box.

56 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

OSErr SetDialogCancelItem (
 DialogRef theDialog,
 DialogItemIndex newItem
);

Parameters
theDialog

On input, a pointer to the dialog structure for the dialog box whose cancel item you want to set.

newItem
On input, the item number of the item you want to set as the cancel item; see “Alert Button
Constants” (page 82).

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
If you intend to use the standard filter function, you can first use the functions SetDialogDefaultItem
and SetDialogCancelItem to set the items that the standard filter function will treat as the default and
cancel items. You can use GetDialogDefaultItem and GetDialogCancelItem to determine the dialog
item numbers that the standard filter function will treat as the default and cancel items.

If you call the SetDialogCancelItem function before you call the standard filter function, the standard
filter function automatically interprets Escape and Command-period keypresses to mean that the specified
cancel item has been selected.

If you don’t explicitly call SetDialogCancelItem, the standard filter function treats item 2 as the cancel
item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogDefaultItem
Sets the default item for a dialog box and draws an appropriate border around the default item.

OSErr SetDialogDefaultItem (
 DialogRef theDialog,
 DialogItemIndex newItem
);

Parameters
theDialog

On input, a pointer to the dialog structure for the dialog box whose default item you want to set.

newItem
On input, the item number of the item you want to set as the default item.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Functions 57
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Discussion
If you call the SetDialogDefaultItem function before you call the standard filter function, the standard
filter function automatically interprets Return and Enter keypresses to mean that the specified default item
has been selected.

If you don’t explicitly call SetDialogDefaultItem, the standard filter function treats item 1 as the default
item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogFont
Sets the font used in static and edit text items.

void SetDialogFont (
 SInt16 fontNum
);

Parameters
fontNum

A font ID number. Do not rely on font number constants. Instead, use the Font Manager function
GetFNum to find the font number to pass in this parameter.

Discussion
For subsequently created dialog and alert boxes, SetDialogFont sets the font of the dialog or alert box’s
graphics port to the specified font. If you don’t call this function, the system font is used. The SetDialogFont
function does not affect titles of controls, which are always displayed in the system font.

Special Considerations

There are a number of caveats regarding the SetDialogFont function:

1. Most importantly, your application will be much easier to localize if you always use the system font in
your alert and dialog boxes and never use SetDialogFont.

2. The Standard File Package does not always properly calculate the position of the standard file dialog
box once this function has been called; for example, the standard file dialog box may be partially obscured
by a menu bar.

3. Be aware that this function affects all static text and edit text items in all of the alert and dialog boxes
you subsequently display.

4. SetDialogFont does not change the font for control titles.

5. You can’t use SetDialogFont to change the font size or font style.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

58 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Declared In
Dialogs.h

SetDialogItem
Sets or changes information for a dialog item.

void SetDialogItem (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 DialogItemType itemType,
 Handle item,
 const Rect *box
);

Parameters
theDialog

A pointer to the dialog box containing the dialog item.

itemNo
The position of the item in the dialog box’s item list resource use FindDialogItem (page 27) to
determine this value.

itemType
A short value. Pass an item type constant identifying the dialog item specified in the itemNo parameter.
When an embedding hierarchy is established, only the kItemDisableBit item type constant is
honored.

item
Either a handle to the dialog item specified in the itemNo parameter or, for a custom dialog item, a
pointer (coerced to a handle) to an application-defined item drawing function. When an embedding
hierarchy is established, the item parameter is ignored unless you pass a universal procedure pointer
to an application-defined item draw function.

box
A pointer to the display rectangle (in local coordinates) for the item specified in the itemNo parameter.
If you set the control rectangle on an item when an embedding hierarchy is present, SetDialogItem
will move and resize the item appropriately for you, on return.

Return Value
Discussion
The SetDialogItem function sets the item specified by the itemNo parameter for the specified dialog box.
If an embedding hierarchy exists, however, you cannot change the type or handle of an item, although
application-defined item drawing functions can still be set.

See also the function GetDialogItem (page 30).

Version Notes
This function was changed with Appearance Manager 1.0 to work with embedding hierarchies.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 59
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

SetDialogItemText
Sets the text string for static text and editable text fields.

void SetDialogItemText (
 Handle item,
 ConstStr255Param text
);

Parameters
item

A handle to an editable text field or static text field. When embedding is on, you should pass in the
control handle produced by a call to the function . If embedding is not on, pass in the handle produced
by the “Alert Button Constants” (page 82) function.

text
A pointer to a string containing the text to display in the field.

Discussion
The SetDialogItemText function sets and redraws text strings for static text and editable text fields.
SetDialogItemText is useful for supplying a default text string—such as a document name—for an editable
text field while your application is running.

Version Notes
This function was changed with Appearance Manager 1.0 to support embedding hierarchies.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogTimeout
Simulates an item selection in a modal dialog box after a specified amount of time elapses.

OSStatus SetDialogTimeout (
 DialogRef inDialog,
 DialogItemIndex inButtonToPress,
 UInt32 inSecondsToWait
);

Parameters
inDialog

A pointer to the dialog box for which an item selection is to be simulated.

inButtonToPress
A signed 16-bit integer. Pass a value representing the number (within the item list) of the item that
is to be selected.

inSecondsToWait
An unsigned 32-bit integer. Pass a value specifying the number of seconds that are to elapse before
the Dialog Manager simulates an item selection. Pass 0 to clear a preexisting timeout value and cease
the countdown in progress.

60 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
Your application calls the SetDialogTimeout function each time you wish to start a countdown of the
specified duration for a given modal dialog box. When the amount of time specified in the inSecondsToWait
parameter has elapsed, the Dialog Manager simulates a click on the button specified in the inButtonToPress
parameter. If your application calls SetDialogTimeout again, or if any event is received for the dialog box,
the countdown is restarted.

In order to use SetDialogTimeout with a given modal dialog box, your application must handle events for
the dialog box through the ModalDialog function. The Dialog Manager will not simulate an item selection
for the dialog box until ModalDialog processes an event (including null events).

Also see the function GetDialogTimeout (page 34).

Version Notes
This function is available with Mac OS 8.5 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogTracksCursor
Determines whether the Dialog Manager tracks the cursor’s movements and changes the cursor to an I-beam
whenever it is over an edit dialog box.

OSErr SetDialogTracksCursor (
 DialogRef theDialog,
 Boolean tracks
);

Parameters
theDialog

On input, a pointer to the dialog structure for the dialog box containing one or more edit text items
for which you want the Dialog Manager to track the cursor.

tracks
On input, a Boolean value. A value of true indicates you want the Dialog Manager to track the cursor’s
movements and change it to an I-beam whenever the cursor is over an edit dialog box a value of
false indicates you don’t want the Dialog Manager to track the cursor in this manner.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
You should call SetDialogTracksCursor before you call the standard filter function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 61
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Declared In
Dialogs.h

SetModalDialogEventMask
Specifies the events to be received by the ModalDialog function.

OSStatus SetModalDialogEventMask (
 DialogRef inDialog,
 EventMask inMask
);

Parameters
inDialog

A pointer to the dialog box for which you wish to set the event mask.

inMask
The desired mask value(s) for the event(s) you wish the dialog box to receive.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
Your application can use the SetModalDialogEventMask function to specify the events received by the
ModalDialog function for a given modal dialog box. This allows your application to specify additional events
that are not by default received by ModalDialog, such as disk-inserted events and operating-system events.
If you use SetModalDialogEventMask to change the ModalDialog function’s event mask, you should
pass ModalDialog a pointer to your own event filter function to handle any added events.

Also see the function GetModalDialogEventMask (page 35).

Version Notes
This function is available with Mac OS 8.5 and later.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetPortDialogPort

void SetPortDialogPort (
 DialogRef dialog
);

Parameters
dialog

Availability
Available in Mac OS X v10.0 and later.

62 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Not available to 64-bit applications.

Declared In
Dialogs.h

ShortenDITL
Removes items from an existing dialog box while your application is running.

void ShortenDITL (
 DialogRef theDialog,
 DialogItemIndex numberItems
);

Parameters
theDialog

A pointer to a dialog structure.

numberItems
The number of items to remove (starting from the last item in the item list resource).

Discussion
The ShortenDITL function removes the specified number of items from the dialog box. This function is
especially useful if several dialog boxes share a single item list resource, because you can use ShortenDITL
to remove items as necessary for individual dialog boxes.

You typically create an invisible dialog box, call the ShortenDITL function, then make the dialog box visible
by using the Window Manager function ShowWindow. Note that ShortenDITL does not automatically resize
the dialog box; you can use AutoSizeDialog (page 16) or the Window Manager function SizeWindow if
you need to resize the dialog box.

Special Considerations

The ShortenDITL function is available in System 7 and in earlier versions of the Communications Toolbox.
Before calling ShortenDITL, you should make sure that it is available by using the Gestalt function with
the gestaltDITLExtAttr selector. Test the bit indicated by the gestaltDITLExtPresent constant in
the response parameter. If the bit is set, then ShortenDITL is available.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

ShowDialogItem
Redisplays an item that has been hidden by HideDialogItem.

Functions 63
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

void ShowDialogItem (
 DialogRef theDialog,
 DialogItemIndex itemNo
);

Parameters
theDialog

On input, a pointer to a dialog structure.

itemNo
On input, a number corresponding to the position of an item in the dialog box’s item list resource.

Return Value
Discussion
The ShowDialogItem function redisplays the item specified in the itemNo parameter by restoring the
display rectangle the item had prior to HideDialogItem (page 39). If the left coordinate of the item’s display
rectangle is greater than 8192, ShowDialogItem subtracts 16,384 from both the left and right coordinates
of the rectangle. If the item is already visible (that is, if the left coordinate is less than 8192), ShowDialogItem
does nothing.

The ShowDialogItem function adds the rectangle that contained the item to the update region so that it
will be drawn. Note that if the item is a control you define in a control (' CNTL ') resource, the rectangle
added to the update region is the rectangle defined in the control resource, not the display rectangle defined
in the item list resource. If the item is an edit text item, ShowDialogItem activates it by calling the TextEdit
function TEActivate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SizeDialogItem
Sizes a dialog item.

OSErr SizeDialogItem (
 DialogRef inDialog,
 DialogItemIndex inItemNo,
 SInt16 inWidth,
 SInt16 inHeight
);

Parameters
inDialog

A pointer to the dialog box containing the item to be resized.

inItemNo
The position of the item in the dialog box’s item list resource use FindDialogItem (page 27) to
determine this value.

inWidth
The new width (in pixels) of the dialog item’s control rectangle.

64 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

inHeight
The new height (in pixels) of the dialog item’s control rectangle.

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Discussion
The SizeDialogItem function resizes a dialog item to a specified size. If the dialog item is a control, the
control rectangle and the dialog item rectangle (maintained by the Dialog Manager) are always the same.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

StandardAlert
Displays a standard alert box.

OSErr StandardAlert (
 AlertType inAlertType,
 ConstStr255Param inError,
 ConstStr255Param inExplanation,
 const AlertStdAlertParamRec *inAlertParam,
 SInt16 *outItemHit
);

Parameters
inAlertType

A constant indicating the type of alert box you wish to create; see “Alert Type Constants” (page 85).

inError
A pointer to a Pascal string containing the primary error text you wish to display.

inExplanation
A pointer to a Pascal string containing the secondary text you wish to display; secondary text is
displayed in the small system font. Pass null to indicate no secondary text.

inAlertParam
A pointer to the standard alert structure; see AlertStdAlertParamRec (page 75). Pass null to
specify that you do not wish to your alert box to incorporate any of the features that the standard
alert structure provides.

outItemHit
A pointer to a signed 16-bit integer value. On return, the value indicates the alert button pressed; see
“Alert Button Constants” (page 82).

Return Value
A result code. See “Dialog Manager Result Codes” (page 94).

Functions 65
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Discussion
The StandardAlert function displays an alert box based on the values you pass it. You can pass the error
text you wish displayed in the error and explanation parameters, and customize the alert button text by
filling in the appropriate fields of the standard alert structure passed in the inAlertParam parameter.

StandardAlert automatically resizes the height of a dialog box to fit all static text. It ignores alert stages
and therefore provides no corresponding alert sounds.

Special Considerations

This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
QTMetaData

Declared In
Dialogs.h

StdFilterProc
Handles standard event filtering for a dialog box.

Boolean StdFilterProc (
 DialogRef theDialog,
 EventRecord *event,
 DialogItemIndex *itemHit
);

Parameters
theDialog

On input, a pointer to a dialog structure for an alert box or a modal dialog box.

event
On output, a pointer to an event structure returned by an Event Manager function such as
WaitNextEvent.

itemHit
On output, a pointer to a short integer. StdFilterProc returns a number corresponding to the
position of an item in the item list resource for the alert or modal dialog box.

Return Value
A Boolean value representing whether the standard filter proc handled the event. true means handled;
otherwise false.

Discussion
To use the standard filter function from within your own filter function, you can call GetStdFilterProc (page
38) , then dispatch the event to the standard filter function yourself; or you can call StdFilterProc, which
performs both steps for you. Calling StdFilterProc is equivalent to calling GetStdFilterProc (page
38) and then calling ModalFilterProcPtr (page 69).

66 Functions
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

StopAlert
Displays an alert box with a stop icon and/or plays an alert sound.

DialogItemIndex StopAlert (
 SInt16 alertID,
 ModalFilterUPP modalFilter
);

Parameters
alertID

The resource ID of an alert resource and extended alert resource. The resource ID of both types of
resources must be identical. If the alert resource is missing, the Dialog Manager returns to your
application without creating the requested alert. See ‘alrx’ for a description of the extended alert
resource.

modalFilter
A universal procedure pointer for a filter function that responds to events not handled by the
ModalDialog (page 43) function. If you set this parameter to null, the Dialog Manager uses the
standard event filter function.

Return Value
If no stop alert box is to be drawn at the current alert stage, StopAlert returns –1 otherwise, it creates and
displays the alert box and returns the item number of the control selected by the user see “Alert Button
Constants” (page 82). See the description of the DialogItemIndex data type.

Discussion
The StopAlert function displays an alert box with a stop icon in its upper-left corner or, if appropriate for
the alert stage, plays an alert sound instead of or in addition to displaying the alert box.

The StopAlert function is the same as the Alert (page 12) function except that, before drawing the items
in the alert box, StopAlert draws the stop icon in the upper-left corner. The stop icon has resource ID 0,
which you can also specify with the constant stopIcon . By default, the Dialog Manager uses the standard
stop icon from the System file. You can change this icon by providing your own 'ICON' resource with
resource ID 0.

Use a stop alert to inform the user that a problem or situation is so serious that the action cannot be completed.
Stop alerts typically have only a single button (OK), because all the user can do is acknowledge that the action
cannot be completed.

Your application should never draw its own default rings or alert icons. Prior to Mac OS 8, the StopAlert
function would only redraw the alert icon and default button ring once and never redraw them on an update
event. However, when Appearance is available, alert icons and default rings do redraw when you call
StopAlert.

See also the functions NoteAlert (page 52) and CautionAlert (page 17).

Functions 67
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Version Notes
This function was changed with Appearance Manager 1.0 to support the extended alert ('alrx') resource.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

UpdateDialog
Redraws the update region of a specified dialog box.

void UpdateDialog (
 DialogRef theDialog,
 RgnHandle updateRgn
);

Parameters
theDialog

A pointer to a dialog structure.

updateRgn
A handle to the window region that needs to be updated.

Discussion
The UpdateDialog function redraws only the region in a dialog box specified in the updateRgn parameter.
Your application generally should not use UpdateDialog. The Dialog Manager generally handles update
events in alert and dialog boxes. Alert (page 12). StopAlert (page 67) , NoteAlert (page 52) , and
CautionAlert (page 17) handle update events on their own.

Instead of drawing the entire contents of the specified dialog box, UpdateDialog draws only the items in
the specified update region. You can use UpdateDialog in response to an update event, and you should
usually bracket it by calls to the Window Manager functions BeginUpdate and EndUpdate. UpdateDialog
uses the QuickDraw function SetPort to make the dialog box the current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Callbacks by Task

Accessing and Modifying Low-Memory Data

UserItemProcPtr (page 73)

68 Callbacks by Task
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

ModalFilterProcPtr (page 69)

SoundProcPtr (page 72)
Defines a pointer to your sound callback function.

Miscellaneous

ModalFilterYDProcPtr (page 71)

QTModelessCallbackProcPtr (page 72)

Callbacks

ModalFilterProcPtr

typedef Boolean (*ModalFilterProcPtr)
(
 DialogRef theDialog,
 EventRecord * theEvent,
 DialogItemIndex * itemHit
);

If you name your function MyModalFilterProc, you would declare it like this:

Boolean MyModalFilterProc (
 DialogRef theDialog,
 EventRecord * theEvent,
 DialogItemIndex * itemHit
);

Parameters
theDialog

A pointer to a dialog structure for an alert box or a modal dialog box.

theEvent
A pointer to an event structure returned by an Event Manager function such as WaitNextEvent.

itemHit
A pointer to a short integer. Your event filter function should return a number corresponding to the
position of an item in the item list resource for the alert or modal dialog box.

Return Value
A Boolean value. After receiving an event that it does not handle, your function should return false. When
your function returns false, ModalDialog handles the event, which you pass in the parameter theEvent.
(Your function can also change the event to simulate a different event and return false, which passes the
event to the Dialog Manager for handling.) If your function does handle the event, your function should
return true, and through the itemHit parameter return the number of the item that it handled.

Callbacks 69
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Discussion
To supplement the Dialog Manager’s ability to handle events in the Mac OS multitasking environment, you
should provide an event filter function that the Dialog Manager calls whenever it displays alert boxes and
modal dialog boxes. This function can receive all events that are sent to your application.

The ModalDialog (page 43) function and, in turn, the Alert (page 12) , NoteAlert (page 52) ,
StopAlert (page 67) , and CautionAlert (page 17) functions return the item number that your event
filter function returns in the itemHit parameter in their own itemHit parameters.

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter function that checks
whether

 ■ the user has pressed the Enter or Return key and, if so, returns the item number of the default button

 ■ the user has pressed the Escape key or Command-period and, if so, returns the item number of the
Cancel button

 ■ the cursor is over edit text in a dialog box, and optionally changes the cursor to an I-beam whenever
this is the case

If the dialog box is movable modal and the kDialogHandleMovable bit is set, your filter function will receive
all events (including apple events and update events) that your application receives.

Your own filter function should use the standard filter function to accomplish these tasks. To do so, you can
call GetStdFilterProc (page 38) , and dispatch the event to the standard filter function yourself; or you
can call StdFilterProc (page 66) , which obtains a ModalFilterUPP for the standard filter function and
then dispatches the function.

Your event filter function should also perform the following tasks:

 ■ update your windows in response to update events and return false. If you do not handle update
events for all the windows in your application, other processes won’t get time.

 ■ return false for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents and more complex
events—for instance, the user dragging the cursor in an application- defined item. For example, if you provide
an application-defined item that requires you to measure how long the user holds down the mouse button
or how far the user drags the cursor, use the event filter function to handle events inside that item.

Movable modal dialog boxes receive all events (not just those masked by the Event message mask).

In all alert and dialog boxes, any buttons that are activated by key sequences should highlight to indicate
which item has been selected. Use the Control Manager function HiliteControl to highlight a button for
8 ticks, long enough to be noticeable but not so long as to be annoying. The Control Manager performs this
action whenever users click a button, and your application should do this whenever the user presses the
keyboard equivalent of a button click.

For modal dialog boxes that contain edit text items, your application should handle menu bar access to allow
use of your Edit menu and its Cut, Copy, Paste, Clear, and Undo commands. Your event filter function should
then test for and handle clicks in your Edit menu and keyboard equivalents for the appropriate commands
in your Edit menu. Your application should respond by using the functions DialogCut (page 22) ,
DialogCopy (page 22) , DialogPaste (page 23) , and DialogDelete (page 23) to support the Cut, Copy,
Paste, and Clear commands.

70 Callbacks
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

For an alert box, you specify a universal procedure pointer to your event filter function in a parameter that
you pass to the Alert (page 12) , StopAlert (page 67) , CautionAlert (page 17) , and NoteAlert (page
52) functions. For a modal dialog box, specify a pointer to your event filter function in a parameter that you
pass to UpdateDialog.

The Dialog Manager defines the data type ModalFilterUPP to identify this application-defined function:

typedef UniversalProcPtr ModalFilterUPP;

You typically use the NewModalFilterProc macro like this:

ModalFilterUPP myEventFilterProc;

myEventFilterProc = NewModalFilterProc(MyEventFilter);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

ModalFilterYDProcPtr

typedef Boolean (*ModalFilterYDProcPtr)
(
 DialogRef theDialog,
 EventRecord * theEvent,
 short * itemHit,
 void * yourDataPtr
);

If you name your function MyModalFilterYDProc, you would declare it like this:

Boolean MyModalFilterYDProc (
 DialogRef theDialog,
 EventRecord * theEvent,
 short * itemHit,
 void * yourDataPtr
);

Parameters
theDialog
theEvent
itemHit
yourDataPtr

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

Callbacks 71
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

QTModelessCallbackProcPtr

typedef void (*QTModelessCallbackProcPtr)
(
 EventRecord *theEvent,
 DialogRef theDialog,
 DialogItemIndex itemHit
);

If you name your function MyQTModelessCallbackProc, you would declare it like this:

void MyQTModelessCallbackProc (
 EventRecord *theEvent,
 DialogRef theDialog,
 DialogItemIndex itemHit
);

Parameters
theEvent
theDialog
itemHit

Carbon Porting Notes

This QuickTime function for manipulating dialog boxes is not supported in Carbon.

SoundProcPtr
Defines a pointer to your sound callback function.

typedef void (*SoundProcPtr) (
 SInt16 soundNumber
);

You should provide a sound callback function if you want the Dialog Manager to play sounds other than the
system alert sound. If you name your function MySoundProc, you would declare it like this:

void MySoundProc (
 SInt16 soundNumber
);

Parameters
soundNumber

An integer from 0 to 3, representing the four possible alert stages.

Return Value
Discussion
For each of the four alert stages that can be reported in the soundNumber parameter, your function can emit
any sound that you define. When the Dialog Manager calls your function, it passes 0 as the sound number
for alert sounds specified by the silent constant in the alert resource. The Dialog Manager passes 1 for sounds
specified by the sound1 constant, 2 for sounds specified by the sound2 constant, and 3 for sounds specified
by the sound3 constant.

72 Callbacks
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

The Dialog Manager defines the universal procedure pointer SoundUPP to identify this application-defined
function:

typedef UniversalProcPtr SoundUPP; /

You typically use the NewSoundProc macro like this:

SoundUPP mySoundProc;

mySoundProc = NewSoundProc(MyAlertSound)

Special Considerations

When the Dialog Manager detects a click outside an alert box or a modal dialog box, it uses the Sound
Manager function SysBeep to play the system alert sound. By changing settings in the Sound control panel,
the user can select which sound to play as the system alert sound. For consistency with system software and
other Macintosh applications, your sound function should call SysBeep whenever your sound function receives
sound number 1 (which you can represent with the sound1 constant).

Version Notes
Not recommended with Appearance Manager 1.0 and later.

Carbon Porting Notes

Using custom sounds in dialog boxes is not supported in Carbon.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

UserItemProcPtr

typedef void (*UserItemProcPtr) (
 DialogRef theDialog,
 DialogItemIndex itemNo
);

If you name your function MyUserItemProc, you would declare it like this:

void MyUserItemProc (
 DialogRef theDialog,
 DialogItemIndex itemNo
);

Parameters
theDialog

On input, a pointer to the dialog structure for the dialog box containing an application-defined item.
If your function can draw in more than one dialog box, this parameter tells your function which one
to draw in.

Callbacks 73
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

itemNo
On input, a number corresponding to the position of an item in the item list resource for the specified
dialog box. If your function draws more than one item, this parameter tells your function which one
to draw.

Return Value
Discussion
When the Appearance Manager is available and an embedding hierarchy is established in a dialog box, you
should provide the Control Manager user pane drawing function MyUserPaneDrawCallback instead of the
user item drawing function MyUserItemCallback to draw an application-defined control (a dialog item
becomes a control in a dialog box with an embedding hierarchy).

You can provide other user pane application-defined functions to hit test, track, perform idle processing,
handle keyboard, activate, and deactivate event processing, handle keyboard focus, and set the background
color or pattern in a user pane control.

When calling your draw function, the Dialog Manager sets the current port to the dialog box’s graphics port.
Normally, you create an invisible dialog box and then use the Window Manager function ShowWindow to
display the dialog box.

Before you display the dialog box, use SetDialogItem (page 59) to install this function in the dialog
structure. Before using SetDialogItem, you must first use GetDialogItem to obtain a handle to an item
of type userItem.

If you enable the application-defined item that you draw with this function, UpdateDialog and
StdFilterProc (page 66) return the item’s number when the user clicks that item. If your application needs
to respond to a user action more complex than this (for example, if your application needs to measure how
long the user holds down the mouse or how far the user drags the cursor), your application must track the
cursor itself. If you use ModalDialog, your event filter function must handle events inside the item; if you
use DialogSelect, your application must handle events inside the item before handing events to
DialogSelect.

The Dialog Manager defines the data type UserItemUPP to identify the universal procedure pointer for this
application-defined function:

typedef UniversalProcPtr UserItemUPP;

You typically use the NewUserItemProc macro like this:

UserItemUPP myItemProc;

myItemProc = NewUserItemProc (MyItem);

Version Notes
This function is not recommended with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

74 Callbacks
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Data Types

AlertStdAlertParamRec

struct AlertStdAlertParamRec {
 Boolean movable;
 Boolean helpButton;
 ModalFilterUPP filterProc;
 ConstStringPtr defaultText;
 ConstStringPtr cancelText;
 ConstStringPtr otherText;
 SInt16 defaultButton;
 SInt16 cancelButton;
 UInt16 position;
};
typedef struct AlertStdAlertParamRec AlertStdAlertParamRec;
typedef AlertStdAlertParamRec * AlertStdAlertParamPtr;

Fields
movable

A Boolean value indicating whether or not the alert box is movable.

helpButton
A Boolean value indicating whether or not the alert includes a Help button.

filterProc
If the value in the movable field is true (alert is movable), then specify in this parameter a universal
procedure pointer to an application-defined filter function that responds to events not handled by
ModalDialog (page 43). If you do, all events will get routed to your application-defined event filter
function for handling, even when your alert box window is in the background. If you set this parameter
to null, the Dialog Manager uses the standard event filter function.

defaultText
Text for button in OK position; see “Alert Default Text Constants” (page 82). The button automatically
sizes and positions itself in the alert box. To specify that the default button names should be used,
pass -1. To indicate that no button should be displayed, pass null.

cancelText
Text for button in Cancel position; see “Alert Default Text Constants” (page 82). The button
automatically sizes and positions itself in the alert box. To specify that the default button names
should be used, pass -1. To indicate that no button should be displayed, pass null.

otherText
Text for button in leftmost position; see “Alert Default Text Constants” (page 82). The button
automatically sizes and positions itself in the alert box. To specify that the default button names
should be used, pass -1. To indicate that no button should be displayed, pass null.

defaultButton
Specifies which button acts as the default button; see “Alert Button Constants” (page 82).

cancelButton
Specifies which button acts as the Cancel button (can be 0); see “Alert Button Constants” (page 82).

position
The alert box position, as defined by a window positioning constant. In this structure, the constant
kWindowDefaultPosition is equivalent to the constant
kWindowAlertPositionParentWindowScreen.

Data Types 75
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Discussion
A standard alert structure of type AlertStdAlertParamRec can be used when you call the function
StandardAlert (page 65) to customize the alert box. The AlertStdAlertParamRec type is available with
Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

AlertStdCFStringAlertParamRec
Defines an alert or sheet.

struct AlertStdCFStringAlertParamRec {
 UInt32 version;
 Boolean movable;
 Boolean helpButton;
 CFStringRef defaultText;
 CFStringRef cancelText;
 CFStringRef otherText;
 SInt16 defaultButton;
 SInt16 cancelButton;
 UInt16 position;
 OptionBits flags;
};
typedef struct AlertStdCFStringAlertParamRec AlertStdCFStringAlertParamRec;
typedef AlertStdCFStringAlertParamRec * AlertStdCFStringAlertParamPtr;

Fields
version

The version of this parameter record. Set this field to kStdCFStringAlertVersionOne.

movable
A Boolean value indicating whether or not the alert is movable.

helpButton
A Boolean value indicating whether or not the alert contains a Help button.

defaultText
Text for button in the OK position. The button automatically sizes and positions itself in the alert box.
To specify that the default button names should be used, pass -1 (see “Alert Default Text
Constants” (page 82) for values). To indicate that no button should be displayed, pass null

cancelText
Text for button in the Cancel position; see “Alert Default Text Constants” (page 82). The button
automatically sizes and positions itself in the alert box. To specify that the default button names
should be used, pass -1 see “Alert Default Text Constants” (page 82) for values). To indicate that no
button should be displayed, pass null.

otherText
Text for button in the other (leftmost) position; see “Alert Default Text Constants” (page 82). The
button automatically sizes and positions itself in the alert box. To specify that the default button
names should be used, pass -1. To indicate that no button should be displayed, pass null

76 Data Types
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

defaultButton
Specifies which button acts as the default button; see “Alert Button Constants” (page 82).

cancelButton
Specifies which button acts as the default button; see “Alert Button Constants” (page 82).

position
The alert box position, as defined by a window positioning constant. In this structure, the constant
kWindowDefaultPosition is equivalent to the constant
kWindowAlertPositionParentWindowScreen. See the Window Manager Reference for other
possible positioning constants.

flags
Options for this alert. See “Standard Alert and Sheet Option Flags” (page 93) for possible values.

Discussion
You pass this structure when calling CreateStandardAlert (page 20) or CreateStandardSheet (page
20).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

AlertTemplate

struct AlertTemplate {
 Rect boundsRect;
 SInt16 itemsID;
 StageList stages;
};
typedef struct AlertTemplate AlertTemplate;
typedef AlertTemplate * AlertTPtr;

Fields
boundsRect
itemsID
stages

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

AlertType

typedef SInt16 AlertType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

Data Types 77
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

DialogItemIndex

typedef SInt16 DialogItemIndex;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DialogItemIndexZeroBased

typedef SInt16 DialogItemIndexZeroBased;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DialogItemType

typedef SInt16 DialogItemType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DialogPeek

typedef DialogRecord* DialogPeek;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

78 Data Types
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

DialogRecord

struct DialogRecord {
 WindowRecord window;
 Handle items;
 TEHandle textH;
 SInt16 editField;
 SInt16 editOpen;
 SInt16 aDefItem;
};
typedef struct DialogRecord DialogRecord;

Fields

Discussion
A dialog structure of type DialogRecord is created whenever you call the functions Alert (page 12) or
GetNewDialog (page 36). These functions incorporate information from your item list resource and your
alert resource or dialog resource into this structure. Your application generally should not create a dialog
structure or directly access its fields.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DialogRef

typedef DialogPtr DialogRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

Data Types 79
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

DialogTemplate

struct DialogTemplate {
 Rect boundsRect;
 SInt16 procID;
 Boolean visible;
 Boolean filler1;
 Boolean goAwayFlag;
 Boolean filler2;
 SInt32 refCon;
 SInt16 itemsID;
 Str255 title;
};
typedef struct DialogTemplate DialogTemplate;
typedef DialogTemplate * DialogTPtr;

Fields
boundsRect
procID
visible
filler1
goAwayFlag
filler2
refCon
itemsID
title

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

ModalFilterUPP

typedef ModalFilterProcPtr ModalFilterUPP;

Discussion
For more information, see the description of the ModalFilterUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

ModalFilterYDUPP

typedef ModalFilterYDProcPtr ModalFilterYDUPP;

Discussion
For more information, see the description of the ModalFilterYDUPP () callback function.

80 Data Types
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

QTModelessCallbackUPP

typedef QTModelessCallbackProcPtr QTModelessCallbackUPP;

SoundUPP

typedef SoundProcPtr SoundUPP;

Discussion
For more information, see the description of the SoundUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

StageList

typedef SInt16 StageList;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

UserItemUPP

typedef UserItemProcPtr UserItemUPP;

Discussion
For more information, see the description of the UserItemUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

Data Types 81
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Constants

Alert Button Constants
Define standard button types for alerts and sheets.

enum {
 kAlertStdAlertOKButton = 1,
 kAlertStdAlertCancelButton = 2,
 kAlertStdAlertOtherButton = 3,
 kAlertStdAlertHelpButton = 4
};

Constants
kAlertStdAlertOKButton

The OK button. The default text for this button is “OK”.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertStdAlertCancelButton
The Cancel button (optional). The default text for this button is “Cancel”.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertStdAlertOtherButton
A third button (optional). The default text for this button is “Don’t Save”.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertStdAlertHelpButton
The Help button (optional).

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can use these constants in the defaultButton and cancelButton fields in the standard alert structure
to specify which buttons act as the default and Cancel buttons in the standard alert structure. These constants
are also returned in the itemHit parameter of StandardAlert (page 65). Alert button constants are
available with Appearance Manager 1.0 and later.

Alert Default Text Constants
Defines the default text for alerts and sheets.

82 Constants
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

enum {
 kAlertDefaultOKText = -1,
 kAlertDefaultCancelText = -1,
 kAlertDefaultOtherText = -1
};

Constants
kAlertDefaultOKText

The default text for the default (right) button is “OK” on an English system. The text will vary depending
upon the localization of the user’s system. Use this constant in the defaultText field of the standard
alert structure.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertDefaultCancelText
The default text for the Cancel (middle) button is “Cancel” on an English system. The text will vary
depending upon the localization of your system. Use this constant in the cancelText field of the
standard alert structure.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertDefaultOtherText
The default text for the third (leftmost) button is “Don’t Save” for an English system. The text will vary
depending upon the localization of the user’s system. Use this constant in the otherText field of
the standard alert structure.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can use these constants in the defaultText, cancelText, and otherText fields of the standard alert
structure to specify the default text for the OK, Cancel, and Don’t Save buttons. Alert default text constants
are available with Appearance Manager 1.0 and later.

Alert Feature Flag Constants

enum {
 kAlertFlagsUseThemeBackground = (1 << 0),
 kAlertFlagsUseControlHierarchy = (1 << 1),
 kAlertFlagsAlertIsMovable = (1 << 2),
 kAlertFlagsUseThemeControls = (1 << 3)
};

Constants
kAlertFlagsUseThemeBackground

If this bit (bit 0) is set, the Dialog Manager sets the alert box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Constants 83
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

kAlertFlagsUseControlHierarchy
If this bit (bit 1) is set, the Dialog Manager creates a root control in the alert box and establishes an
embedding hierarchy. Any alert items become controls once the embedding hierarchy is established.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertFlagsAlertIsMovable
If this bit (bit 2) is set, the alert box is movable modal. The Dialog Manager handles movable modal
behavior such as dragging the alert box by its title bar or switching out of the application by clicking
in another one.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertFlagsUseThemeControls
If this bit (bit 3) is set, the Dialog Manager creates Appearance-compliant controls in your alert box.
Otherwise, push buttons, checkboxes, and radio buttons will be displayed in their pre-Appearance
forms when systemwide Appearance is off.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can set these bits in the alert flags field of the extended alert resource to specify the alert box’s
Appearance-compliant features. Alert feature flag constants are available with Appearance Manager 1.0 and
later.

Alert Icon Resource ID Constants

enum {
 kStopIcon = 0,
 kNoteIcon = 1,
 kCautionIcon = 2,
 stopIcon = kStopIcon,
 noteIcon = kNoteIcon,
 cautionIcon = kCautionIcon
};

Constants
kStopIcon

Resource ID for the standard stop icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kNoteIcon
Resource ID for the standard note icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kCautionIcon
Resource ID for the standard caution icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

84 Constants
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

stopIcon
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

noteIcon
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

cautionIcon
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can pass these constants in the alertID parameter of StopAlert (page 67) , NoteAlert (page 52),
and CautionAlert (page 17) to specify the resource ID of the alert box icon you wish displayed.

Alert Type Constants

enum {
 kAlertStopAlert = 0,
 kAlertNoteAlert = 1,
 kAlertCautionAlert = 2,
 kAlertPlainAlert = 3
};

Constants
kAlertStopAlert

Stop alert box.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertNoteAlert
Note alert box.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertCautionAlert
Caution alert box.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertPlainAlert
Alert box with no icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can pass constants of type AlertType in the inAlertType parameter of StandardAlert (page 65)
to specify the type of alert box you wish to create. Alert type constants are available with Appearance Manager
1.0 and later.

Constants 85
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

ctrlItem

enum {
 ctrlItem = 4,
 btnCtrl = 0,
 chkCtrl = 1,
 radCtrl = 2,
 resCtrl = 3,
 statText = 8,
 editText = 16,
 iconItem = 32,
 picItem = 64,
 userItem = 0,
 itemDisable = 128
};

Constants
ctrlItem

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

btnCtrl
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

chkCtrl
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

radCtrl
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

resCtrl
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

statText
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

editText
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

iconItem
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

picItem
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

userItem
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

86 Constants
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

itemDisable
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Dialog Feature Flag Constants

enum {
 kDialogFlagsUseThemeBackground = (1 << 0),
 kDialogFlagsUseControlHierarchy = (1 << 1),
 kDialogFlagsHandleMovableModal = (1 << 2),
 kDialogFlagsUseThemeControls = (1 << 3)
};

Constants
kDialogFlagsUseThemeBackground

If this bit (bit 0) is set, the Dialog Manager sets the dialog box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFlagsUseControlHierarchy
If this bit (bit 1) is set, the Dialog Manager creates a root control in the dialog box and establishes an
embedding hierarchy. Any dialog items become controls once the embedding hierarchy is established.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFlagsHandleMovableModal
If this bit (bit 2) is set, and the dialog box is a movable modal (specify the
kWindowMovableModalDialogProc window definition ID), the Dialog Manager handles movable
modal behavior such as dragging a dialog box by its title bar or switching out of the application by
clicking in another one.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFlagsUseThemeControls
If this bit (bit 3) is set, the Dialog Manager creates Appearance-compliant controls in the dialog box
directly. Otherwise, push buttons, checkboxes, and radio buttons will be displayed in their
pre-Appearance forms when systemwide Appearance is off.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can set these bits in the dialog flags field of the extended dialog resource or pass them in the inFlags
parameter of NewFeaturesDialog (page 49) to specify the dialog box’s Appearance-compliant features.
Dialog feature flag constants are available with Appearance Manager 1.0 and later.

Constants 87
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Dialog Font Flag Constants

enum {
 kDialogFontNoFontStyle = 0,
 kDialogFontUseFontMask = 0x0001,
 kDialogFontUseFaceMask = 0x0002,
 kDialogFontUseSizeMask = 0x0004,
 kDialogFontUseForeColorMask = 0x0008,
 kDialogFontUseBackColorMask = 0x0010,
 kDialogFontUseModeMask = 0x0020,
 kDialogFontUseJustMask = 0x0040,
 kDialogFontUseAllMask = 0x00FF,
 kDialogFontAddFontSizeMask = 0x0100,
 kDialogFontUseFontNameMask = 0x0200,
 kDialogFontAddToMetaFontMask = 0x0400
};

Constants
kDialogFontNoFontStyle

If the kDialogFontNoFontStyle constant is used, no font style information is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseFontMask
If the kDialogFontUseFontMask flag (bit 0) is set, the font ID specified in the Font ID field of the
dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseFaceMask
If the kDialogFontUseFaceMask flag (bit 1) is set, the font style specified in the Style field of the
dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseSizeMask
If the kDialogFontUseSizeMask flag (bit 2) is set, the font size specified in the Font Size field of
the dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseForeColorMask
If the kDialogFontUseForeColorMask flag (bit 3) is set, the text color specified in the Text Color
field of the dialog font table is applied. This flag only applies to static text controls.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseBackColorMask
If the kDialogFontUseBackColorMask flag (bit 4) is set, the background color specified in the
Background Color field of the dialog font table is applied. This flag only applies to static text controls.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

88 Constants
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

kDialogFontUseModeMask
If the kDialogFontUseModeMask flag (bit 5) is set, the text mode specified in the Text Mode field
of the dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseJustMask
If the kDialogFontUseJustMask flag (bit 6) is set, the text justification specified in the Justification
field of the dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseAllMask
If the kDialogFontUseAllMask constant is used, all flags in this mask will be set except
kDialogFontAddFontSizeMask and kDialogFontUseFontNameMask.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontAddFontSizeMask
If the kDialogFontAddFontSizeMask flag (bit 8) is set, the Dialog Manager will add a specified font
size to the existing font size indicated in the Font Size field of the dialog font table resource.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseFontNameMask
If the kDialogFontUseFontNameMask flag (bit 9) is set, the Dialog Manager will use the string in
the Font Name field for the font name instead of a font ID.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontAddToMetaFontMask
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can set the following bits in the dialog font table resource to specify fields in the dialog font table that
should be used. Dialog font flag constants are available with Appearance Manager 1.0 and later.

Constants 89
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Dialog Item Constants

enum {
 kControlDialogItem = 4,
 kButtonDialogItem = kControlDialogItem | 0,
 kCheckBoxDialogItem = kControlDialogItem | 1,
 kRadioButtonDialogItem = kControlDialogItem | 2,
 kResourceControlDialogItem = kControlDialogItem | 3,
 kStaticTextDialogItem = 8,
 kEditTextDialogItem = 16,
 kIconDialogItem = 32,
 kPictureDialogItem = 64,
 kUserDialogItem = 0,
 kHelpDialogItem = 1,
 kItemDisableBit = 128
};

Constants
kControlDialogItem

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kButtonDialogItem
Standard button control.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kCheckBoxDialogItem
Standard checkbox control.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kRadioButtonDialogItem
Standard radio button control.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kResourceControlDialogItem
Control defined in control resource.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kStaticTextDialogItem
Static text item.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kEditTextDialogItem
Edit text item.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

90 Constants
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

kIconDialogItem
Icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kPictureDialogItem
QuickDraw picture.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kUserDialogItem
Application-defined item.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kHelpDialogItem
Help balloon, as defined by the Help Manager.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kItemDisableBit
Add to disable any other constant, except kHelpDialogItem.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
These constants are returned in the itemType parameter of GetDialogItem (page 30) and can be passed
to SetDialogItem (page 59) and the dialog item list resource to specify dialog item type.

Dialog Item List Display Constants
Specify methods of appending new items to a dialog.

typedef SInt16 DITLMethod;
enum {
 overlayDITL = 0,
 appendDITLRight = 1,
 appendDITLBottom = 2
};

Constants
overlayDITL

Superimpose the appended items over the dialog box.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

appendDITLRight
Position the items to the right of the dialog box and relative to its upper-right coordinate.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Constants 91
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

appendDITLBottom
Position the items below the dialog box and relative to its lower-left coordinate.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can pass a constant value of type DITLMethod to the function AppendDITL (page 14) to specify how
you want appended dialog items displayed.

kDialogFontUseThemeFontIDMask

enum {
 kDialogFontUseThemeFontIDMask = 0x0080
};

Constants
kDialogFontUseThemeFontIDMask

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kHICommandOther

enum {
 kHICommandOther = 'othr'
};

Constants
kHICommandOther

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kOkItemIndex

enum {
 kOkItemIndex = 1,
 kCancelItemIndex = 2
};

Constants
kOkItemIndex

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kCancelItemIndex
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

92 Constants
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Standard Alert and Sheet Option Flags
Define flags used in the AlertStdCFStringAlertParamRec (page 76) structure.

enum {
 kStdAlertDoNotDisposeSheet = 1 << 0,
 kStdAlertDoNotAnimateOnDefault = 1 << 1,
 kStdAlertDoNotAnimateOnCancel = 1 << 2,
 kStdAlertDoNotAnimateOnOther = 1 << 3,
 kStdAlertDoNotCloseOnHelp = 1 << 4
};

Constants
kStdAlertDoNotDisposeSheet

Do not dispose of the sheet window after closing it. This option allows the sheet to be used again
when calling the Window Manager function ShowSheetWindow.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kStdAlertDoNotAnimateOnDefault
Do not animate hiding the sheet window when the user presses the default button.

Available in Mac OS X v10.1 and later.

Declared in Dialogs.h.

kStdAlertDoNotAnimateOnCancel
Do not animate hiding the sheet window when the user presses the Cancel button.

Available in Mac OS X v10.1 and later.

Declared in Dialogs.h.

kStdAlertDoNotAnimateOnOther
Do not animate hiding the sheet window when the user presses the other button.

Available in Mac OS X v10.1 and later.

Declared in Dialogs.h.

kStdAlertDoNotCloseOnHelp
Specifies that the alert stay up even after the user clicks the Help button. Normally, it would close
immediately. It is not necessary to set this option for sheets, as they merely send the HICommandHelp
command to the event target provided. When you specify this option, RunStandardAlert (page
55) returns with the Help button item in the outItemHit parameter, but the alert remains up. You
can then perform whatever help function you wish and then call RunStandardAlert again.

Declared in Dialogs.h.

Available in Mac OS X 10.4 or later.

Standard Alert Structure Version Constant
Indicates the version of the AlertStdCFStringAlertParamRec (page 76) structure.

Constants 93
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

enum {
 kStdCFStringAlertVersionOne = 1
};

Constants
kStdCFStringAlertVersionOne

First version. Pass this into the version field of the AlertStdCFStringAlertParamRec structure.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kStdOkItemIndex

enum {
 kStdOkItemIndex = 1,
 kStdCancelItemIndex = 2,
 ok = kStdOkItemIndex,
 cancel = kStdCancelItemIndex
};

Constants
kStdOkItemIndex

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kStdCancelItemIndex
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

ok
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

cancel
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Result Codes

The result codes defined for the Dialog Manager are listed below.

DescriptionValueResult Code

No timeout has been set for this dialog.-5640dialogNoTimeoutErr

Available in Mac OS X v10.0 and later.

94 Result Codes
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

Gestalt Constants

You can check for version and feature availability information by using the Dialog Manager selectors defined
in the Gestalt Manager. For more information, see Gestalt Manager Reference.

Gestalt Constants 95
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

96 Gestalt Constants
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Dialog Manager Reference

This table describes the changes to Dialog Manager Reference.

NotesDate

Made minor technical corrections and format changes.2007-10-31

Added bug fixes. Documented AlertStdCFStringAlertParamRec structure.2005-07-07

Added note to RunStandardAlert (page 55) indicating that the function
disposes of the dialog you pass to it before returning.

2003-05-20

Updated formatting and linking.2003-02-15

97
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

98
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

Alert Button Constants 82
Alert Default Text Constants 82
Alert Feature Flag Constants 83
Alert function 12
Alert Icon Resource ID Constants 84
Alert Type Constants 85
AlertStdAlertParamRec structure 75
AlertStdCFStringAlertParamRec structure 76
AlertTemplate structure 77
AlertType data type 77
AppendDialogItemList function 13
AppendDITL function 14
appendDITLBottom constant 92
appendDITLRight constant 91
AutoSizeDialog function 16

B

btnCtrl constant 86

C

cancel constant 94
CautionAlert function 17
cautionIcon constant 85
chkCtrl constant 86
CloseDialog function 18
CloseStandardSheet function 19
CountDITL function 19
CreateStandardAlert function 20
CreateStandardSheet function 20
ctrlItem 86
ctrlItem constant 86

D

Dialog Feature Flag Constants 87
Dialog Font Flag Constants 88
Dialog Item Constants 90
Dialog Item List Display Constants 91
DialogCopy function 22
DialogCut function 22
DialogDelete function 23
DialogItemIndex data type 78
DialogItemIndexZeroBased data type 78
DialogItemType data type 78
dialogNoTimeoutErr constant 94
DialogPaste function 23
DialogPeek data type 78
DialogRecord structure 79
DialogRef data type 79
DialogSelect function 23
DialogTemplate structure 80
DisposeDialog function 25
DisposeModalFilterUPP function 26
DisposeModalFilterYDUPP function 26
DisposeUserItemUPP function 27
DrawDialog function 27

E

editText constant 86

F

FindDialogItem function 27

G

GetAlertStage function 28
GetDialogCancelItem function 29

99
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

Index

GetDialogDefaultItem function 29
GetDialogFromWindow function 30
GetDialogItem function 30
GetDialogItemAsControl function 31
GetDialogItemText function 32
GetDialogKeyboardFocusItem function 32
GetDialogPort function 33
GetDialogTextEditHandle function 34
GetDialogTimeout function 34
GetDialogWindow function 35
GetModalDialogEventMask function 35
GetNewDialog function 36
GetParamText function 37
GetStandardAlertDefaultParams function 38
GetStdFilterProc function 38

H

HideDialogItem function 39

I

iconItem constant 86
InsertDialogItem function 40
InvokeModalFilterUPP function 40
InvokeModalFilterYDUPP function 41
InvokeUserItemUPP function 41
IsDialogEvent function 41
itemDisable constant 87

K

kAlertCautionAlert constant 85
kAlertDefaultCancelText constant 83
kAlertDefaultOKText constant 83
kAlertDefaultOtherText constant 83
kAlertFlagsAlertIsMovable constant 84
kAlertFlagsUseControlHierarchy constant 84
kAlertFlagsUseThemeBackground constant 83
kAlertFlagsUseThemeControls constant 84
kAlertNoteAlert constant 85
kAlertPlainAlert constant 85
kAlertStdAlertCancelButton constant 82
kAlertStdAlertHelpButton constant 82
kAlertStdAlertOKButton constant 82
kAlertStdAlertOtherButton constant 82
kAlertStopAlert constant 85
kButtonDialogItem constant 90
kCancelItemIndex constant 92

kCautionIcon constant 84
kCheckBoxDialogItem constant 90
kControlDialogItem constant 90
kDialogFlagsHandleMovableModal constant 87
kDialogFlagsUseControlHierarchy constant 87
kDialogFlagsUseThemeBackground constant 87
kDialogFlagsUseThemeControls constant 87
kDialogFontAddFontSizeMask constant 89
kDialogFontAddToMetaFontMask constant 89
kDialogFontNoFontStyle constant 88
kDialogFontUseAllMask constant 89
kDialogFontUseBackColorMask constant 88
kDialogFontUseFaceMask constant 88
kDialogFontUseFontMask constant 88
kDialogFontUseFontNameMask constant 89
kDialogFontUseForeColorMask constant 88
kDialogFontUseJustMask constant 89
kDialogFontUseModeMask constant 89
kDialogFontUseSizeMask constant 88
kDialogFontUseThemeFontIDMask 92
kDialogFontUseThemeFontIDMask constant 92
kEditTextDialogItem constant 90
kHelpDialogItem constant 91
kHICommandOther 92
kHICommandOther constant 92
kIconDialogItem constant 91
kItemDisableBit constant 91
kNoteIcon constant 84
kOkItemIndex 92
kOkItemIndex constant 92
kPictureDialogItem constant 91
kRadioButtonDialogItem constant 90
kResourceControlDialogItem constant 90
kStaticTextDialogItem constant 90
kStdAlertDoNotAnimateOnCancel constant 93
kStdAlertDoNotAnimateOnDefault constant 93
kStdAlertDoNotAnimateOnOther constant 93
kStdAlertDoNotCloseOnHelp constant 93
kStdAlertDoNotDisposeSheet constant 93
kStdCancelItemIndex constant 94
kStdCFStringAlertVersionOne constant 94
kStdOkItemIndex 94
kStdOkItemIndex constant 94
kStopIcon constant 84
kUserDialogItem constant 91

M

ModalDialog function 43
ModalFilterProcPtr callback 69
ModalFilterUPP data type 80
ModalFilterYDProcPtr callback 71

100
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

ModalFilterYDUPP data type 80
MoveDialogItem function 45

N

NewColorDialog function 46
NewDialog function 48
NewFeaturesDialog function 49
NewModalFilterUPP function 51
NewModalFilterYDUPP function 51
NewUserItemUPP function 51
NoteAlert function 52
noteIcon constant 85

O

ok constant 94
overlayDITL constant 91

P

ParamText function 53
picItem constant 86

Q

QTModelessCallbackProcPtr callback 72
QTModelessCallbackUPP data type 81

R

radCtrl constant 86
RemoveDialogItems function 54
resCtrl constant 86
ResetAlertStage function 54
RunStandardAlert function 55

S

SelectDialogItemText function 55
SetDialogCancelItem function 56
SetDialogDefaultItem function 57
SetDialogFont function 58
SetDialogItem function 59

SetDialogItemText function 60
SetDialogTimeout function 60
SetDialogTracksCursor function 61
SetModalDialogEventMask function 62
SetPortDialogPort function 62
ShortenDITL function 63
ShowDialogItem function 63
SizeDialogItem function 64
SoundProcPtr callback 72
SoundUPP data type 81
StageList data type 81
Standard Alert and Sheet Option Flags 93
Standard Alert Structure Version Constant 93
StandardAlert function 65
statText constant 86
StdFilterProc function 66
StopAlert function 67
stopIcon constant 85

U

UpdateDialog function 68
userItem constant 86
UserItemProcPtr callback 73
UserItemUPP data type 81

101
2007-10-31 | © 2002, 2007 Apple Inc. All Rights Reserved.

INDEX

	Dialog Manager Reference
	Contents
	Dialog Manager Reference
	Overview
	Functions by Task
	Creating Alert Boxes
	Creating and Disposing of Dialog Boxes
	Displaying Dialog Boxes and Items
	Filtering Dialog Box Events
	Handling Events in Dialog Boxes
	Handling Text in Alert and Dialog Boxes
	Initializing the Dialog Manager
	Manipulating Items in Dialog Boxes and Alert Boxes
	Simulating User Responses in Dialog Boxes
	Using the Standard Filter Function
	Miscellaneous

	Functions
	Alert
	AppendDialogItemList
	AppendDITL
	AutoSizeDialog
	CautionAlert
	CloseDialog
	CloseStandardSheet
	CountDITL
	CreateStandardAlert
	CreateStandardSheet
	DialogCopy
	DialogCut
	DialogDelete
	DialogPaste
	DialogSelect
	DisposeDialog
	DisposeModalFilterUPP
	DisposeModalFilterYDUPP
	DisposeUserItemUPP
	DrawDialog
	FindDialogItem
	GetAlertStage
	GetDialogCancelItem
	GetDialogDefaultItem
	GetDialogFromWindow
	GetDialogItem
	GetDialogItemAsControl
	GetDialogItemText
	GetDialogKeyboardFocusItem
	GetDialogPort
	GetDialogTextEditHandle
	GetDialogTimeout
	GetDialogWindow
	GetModalDialogEventMask
	GetNewDialog
	GetParamText
	GetStandardAlertDefaultParams
	GetStdFilterProc
	HideDialogItem
	InsertDialogItem
	InvokeModalFilterUPP
	InvokeModalFilterYDUPP
	InvokeUserItemUPP
	IsDialogEvent
	ModalDialog
	MoveDialogItem
	NewColorDialog
	NewDialog
	NewFeaturesDialog
	NewModalFilterUPP
	NewModalFilterYDUPP
	NewUserItemUPP
	NoteAlert
	ParamText
	RemoveDialogItems
	ResetAlertStage
	RunStandardAlert
	SelectDialogItemText
	SetDialogCancelItem
	SetDialogDefaultItem
	SetDialogFont
	SetDialogItem
	SetDialogItemText
	SetDialogTimeout
	SetDialogTracksCursor
	SetModalDialogEventMask
	SetPortDialogPort
	ShortenDITL
	ShowDialogItem
	SizeDialogItem
	StandardAlert
	StdFilterProc
	StopAlert
	UpdateDialog

	Callbacks by Task
	Accessing and Modifying Low-Memory Data
	Miscellaneous

	Callbacks
	ModalFilterProcPtr
	ModalFilterYDProcPtr
	QTModelessCallbackProcPtr
	SoundProcPtr
	UserItemProcPtr

	Data Types
	AlertStdAlertParamRec
	AlertStdCFStringAlertParamRec
	AlertTemplate
	AlertType
	DialogItemIndex
	DialogItemIndexZeroBased
	DialogItemType
	DialogPeek
	DialogRecord
	DialogRef
	DialogTemplate
	ModalFilterUPP
	ModalFilterYDUPP
	QTModelessCallbackUPP
	SoundUPP
	StageList
	UserItemUPP

	Constants
	Alert Button Constants
	Alert Default Text Constants
	Alert Feature Flag Constants
	Alert Icon Resource ID Constants
	Alert Type Constants
	ctrlItem
	Dialog Feature Flag Constants
	Dialog Font Flag Constants
	Dialog Item Constants
	Dialog Item List Display Constants
	kDialogFontUseThemeFontIDMask
	kHICommandOther
	kOkItemIndex
	Standard Alert and Sheet Option Flags
	Standard Alert Structure Version Constant
	kStdOkItemIndex

	Result Codes
	Gestalt Constants

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	M
	N
	O
	P
	Q
	R
	S
	U

