
Event Manager Legacy Reference
(Legacy)

Carbon > Events & Other Input

2007-05-03

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Carbon, Mac, Mac OS,
and Macintosh are trademarks of Apple Inc.,
registered in the United States and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY

DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Event Manager Legacy Reference (Legacy) 5

Overview 5
Functions by Task 5

Deprecated Functions 5
Unsupported Functions 6

Functions 7
AcceptHighLevelEvent 7
Button 8
DisposeFKEYUPP 9
DisposeGetNextEventFilterUPP 9
DisposeGetSpecificFilterUPP 10
GetEvQHdr 10
GetOSEvent 10
GetPortNameFromProcessSerialNumber 11
GetProcessSerialNumberFromPortName 12
GetSpecificHighLevelEvent 13
InvokeFKEYUPP 14
InvokeGetNextEventFilterUPP 14
InvokeGetSpecificFilterUPP 15
NewFKEYUPP 15
NewGetNextEventFilterUPP 15
NewGetSpecificFilterUPP 16
OSEventAvail 16
PostHighLevelEvent 17
PPostEvent 19
StillDown 20
SystemClick 20
SystemEvent 21
SystemTask 22
WaitMouseUp 22

Callbacks 23
FKEYProcPtr 23
GetNextEventFilterProcPtr 24
GetSpecificFilterProcPtr 24

Data Types 26
EvQEl 26
GNEFilterUPP 27
HighLevelEventMsg 27
TargetID 27

Constants 28
Posting Options Constants 28

3
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Result Codes 28

Appendix A Deprecated Event Manager Legacy Reference (Legacy) Functions 31

Deprecated in Mac OS X v10.5 31
GetMouse 31

Document Revision History 33

Index 35

4
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Framework: Carbon/Carbon.h

Declared in Events.h

Overview

Important: The Event Manager is a legacy System 7 technology. You should use the Mac OS X Carbon Event
Manager instead. See Carbon Event Manager Programming Guide.

The Event Manager is a legacy System 7 technology that was created to support the cooperative, multitasking
environment available on Macintosh computers at the time. This environment allowed users to switch
between many open applications and allows other applications to receive background processing time.

The Carbon Event Manager, introduced in Mac OS X, offers a simple yet flexible approach to event handling
that greatly reduces the amount of code needed to write a basic application. Morevover, the Carbon Event
Manager's streamlined event handling enhances system performance on Mac OS X through more efficient
allocation of processing time. Applications that use the Carbon Event Manager not only run better on Mac
OS X, they help improve overall performance and responsiveness.

Carbon supports the majority of the Event Manager.

High-level events APIs (as contained in EPPC.h) are not supported. You should use Apple events instead.

Carbon does not support the diskEvt event. Support for volume mount and unmount events will be available
in the Carbon Event Manager.

Carbon does not set the convertClipboardFlag in the EventRecord to indicate that the scrap has changed
while the application was suspended. You should call the Scrap Manager function GetCurrentScrap instead.

Low-level event queue functions, such as GetEvQHdr and PPostEvent, are no longer supported.

Application-defined function-key procedures are not supported in Carbon.

Functions by Task

Deprecated Functions

Button (page 8)
Determines whether the user pressed the mouse button.

Overview 5
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

StillDown (page 20)
After receiving a mouse-down event, you can use the StillDown function to determine if the mouse
button is still down.

WaitMouseUp (page 22)
After receiving a mouse-down event, determines if the user subsequently released the mouse.

GetMouse (page 31) Deprecated in Mac OS X v10.5
Obtains the current mouse location.

Unsupported Functions
These functions are not supported in Carbon.

AcceptHighLevelEvent (page 7)
Obtains additional information associated with an event after receiving a high-level event (other than
an Apple event).

DisposeFKEYUPP (page 9)

DisposeGetNextEventFilterUPP (page 9)

DisposeGetSpecificFilterUPP (page 10)

GetPortNameFromProcessSerialNumber (page 11)
Obtains the port name of a process.

GetProcessSerialNumberFromPortName (page 12)
Obtains the process serial number of a process.

GetEvQHdr (page 10)
Obtains a pointer to the header of the Operating System event queue.

GetOSEvent (page 10)
Retrieves low-level events stored in the Operating System event queue.

OSEventAvail (page 16)
Retrieves an event from the Operating System event queue without removing it.

GetSpecificHighLevelEvent (page 13)
Selects and optionally retrieves a specific high-level event from your application’s high-level event
queue.

InvokeFKEYUPP (page 14)

InvokeGetNextEventFilterUPP (page 14)

InvokeGetSpecificFilterUPP (page 15)

NewFKEYUPP (page 15)

NewGetNextEventFilterUPP (page 15)

6 Functions by Task
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

NewGetSpecificFilterUPP (page 16)

PostHighLevelEvent (page 17)
Sends a high-level event to another application.

PPostEvent (page 19)
Posts events in the Operating System event queue.

SystemClick (page 20)
Handles an event after FindWindow returns the inSysWindow constant.

SystemEvent (page 21)
Determines if a specific event should be handled by the application or the Operating System.

SystemTask (page 22)
Gives time to each open desk accessory or driver to perform any periodic action.

Functions

AcceptHighLevelEvent
Obtains additional information associated with an event after receiving a high-level event (other than an
Apple event).

Unsupported

OSErr AcceptHighLevelEvent (
 TargetID *sender,
 UInt32 *msgRefcon,
 void *msgBuff,
 UInt32 *msgLen
);

Parameters
sender

A pointer to a structure of type TargetID (page 27) whose contents identify the sender of the event.
The structure referenced through the sender parameter contains the session reference number that
identifies the connection with the other application and the port name and location name of the
sender.

msgRefcon
A pointer to a value that uniquely identifies the communication associated with this event. If you
send a response to this event, you should specify the same value as that referenced through the
msgRefcon parameter so that the sender of the event can associate the reply with the original request.

Functions 7
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

msgBuff
A pointer to a block of memory where the AcceptHighLevelEvent function should return any
additional data associated with the event. Your application is responsible for allocating the memory
for the additional data pointed to by the msgBuff parameter and for setting the msgLen parameter
to the number of bytes that you have allocated for the data.

If the msgBuff parameter points to an area in memory that is not large enough to hold all the data
associated with the event, AcceptHighLevelEvent returns as much data as the specified memory
area can hold, returns the amount of data remaining in the msgLen parameter, and returns the result
code bufferIsSmall.

msgLen
A pointer to a value that specifies the size of the data (in bytes) pointed to by the msgBuff parameter.
If AcceptHighLevelEvent returns the result code bufferIsSmall, the value referenced through
the msgLen parameter contains the number of bytes remaining. You can call AcceptHighLevelEvent
again to receive the rest of the data.

Return Value
A result code. See “Event Manager Result Codes” (page 28).

Discussion
When your application receives a high-level event, you can use the AcceptHighLevelEvent function to
get additional data associated with the event. The AcceptHighLevelEvent function returns information
that identifies the sender of the event and the unique message reference constant of the event.

Your application should allocate memory for any additional data associated with the event, then supply a
pointer to the data area and also provide the length in bytes of the data area.

Special Considerations

The AcceptHighLevelEvent function may move or purge memory. You should not call this function from
within an interrupt, such as in a completion function or VBL task.

Carbon Porting Notes

The High Level Event APIs (EPPC.h) are not supported in Carbon. Instead, use Apple events.

Declared In
EPPC.h

Button
Determines whether the user pressed the mouse button.

Not recommended

Boolean Button ();

Parameters
Return Value
Discussion
The Button function simply checks to see if the mouse button is down. If so, it returns true; otherwise, it
returns false. To determine whether the mouse button is still down after a mouse-down event, use the
StillDown (page 20) function. To check to see if the mouse was released, use the WaitMouseUp (page 22)
function.

8 Functions
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Availability
Supported in Carbon. Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

You should avoid using any calls that poll the state of the mouse button, as they use excessive processor
time and slow down the system. In most cases you are more interested in the transitions of the mouse button
rather than its instantaneous state, so you should adopt Carbon events and take action on mouse-up and
mouse-down events. If you need to track the mouse while down, consider using the Carbon Event Manager
functions TrackMouseLocation or TrackMouseRegion. On Mac OS X v.10.2 and later, if you need to know
the button state, you should call the GetCurrentEventButtonState function.

Declared In
Events.h

DisposeFKEYUPP

Unsupported

void DisposeFKEYUPP (
 FKEYUPP userUPP
);

Parameters
userUPP

Return Value
Carbon Porting Notes

FKEYs are not supported in Carbon because they involve loading code from resources, which isn't supported
under Carbon, and because very few applications use them.

Declared In
Events.h

DisposeGetNextEventFilterUPP

Unsupported

void DisposeGetNextEventFilterUPP (
 GetNextEventFilterUPP userUPP
);

Parameters
userUPP

Return Value
Carbon Porting Notes

GetNextEvent (GNE) filters patch the GetNextEvent function and therefore are not supported in Carbon.

Declared In
Events.h

Functions 9
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

DisposeGetSpecificFilterUPP

Unsupported

void DisposeGetSpecificFilterUPP (
 GetSpecificFilterUPP userUPP
);

Parameters
userUPP

Return Value
Carbon Porting Notes

The High Level Event APIs (EPPC.h) are not supported in Carbon. Instead, use Apple events.

Declared In
EPPC.h

GetEvQHdr
Obtains a pointer to the header of the Operating System event queue.

Unsupported

QHdrPtr GetEvQHdr ();

Parameters
Return Value
See the Memory Management Utilities documentation for a description of the QHdrPtr data type.

Discussion
In most cases, your application should not call the GetEvQHdr function. The GetEvQHdr function returns a
pointer to the header of the Operating System event queue.

Carbon Porting Notes

Returns a global system data structure, so it will not be supported in the future.

Declared In
Events.h

GetOSEvent
Retrieves low-level events stored in the Operating System event queue.

Unsupported

10 Functions
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Boolean GetOSEvent (
 EventMask mask,
 EventRecord *theEvent
);

Parameters
mask

A value that indicates which kinds of events are to be returned; this parameter is interpreted as a sum
of event mask constants. You specify the event mask using one or more values defined in “Event Mask
Constants” in Inside Mac OS X: Event Manager Reference. GetOSEvent returns only low-level events
stored in the Operating System event queue; it does not return activate, update, operating-system,
or high-level events. If no low-level event of any of the designated kinds is available, GetOSEvent
returns a null event.

theEvent
A pointer to an event structure for the next available low-level event of the specified type or types
in the Operating System event queue. The GetOSEvent function removes the returned event from
the Operating System event queue and returns the information about the event in an event structure.
The event structure includes the type of event received and other information.

Return Value
Discussion
In most cases, your application should not use this function. The GetOSEvent function retrieves and removes
an event from the Operating System event queue. GetOSEvent returns false as its function result if the
event being returned is a null event; otherwise, GetOSEvent returns true. GetOSEvent does not intercept
or respond to the event in any way. It also does not process Command–Shift– number key combinations or
process any alarms set by the user through the Alarm Clock desk accessory.

Carbon Porting Notes

GetOSEvent is not supported in Carbon. Use the GetNextEvent function instead.

Declared In
Events.h

GetPortNameFromProcessSerialNumber
Obtains the port name of a process.

Unsupported

OSErr GetPortNameFromProcessSerialNumber (
 PPCPortRec *portName,
 const ProcessSerialNumber *pPSN
);

Parameters
portName

Returns a pointer to a PPC port structure, the contents of which specify the port name of the process
designated by the pPSN parameter. You can use the returned port name to send a high-level event
to that process.

pPSN
A pointer to the process serial number of the process whose port name you want.

Return Value
A result code. See “Event Manager Result Codes” (page 28).

Functions 11
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Discussion
The GetPortNameFromProcessSerialNumber function returns, through the portName parameter, the
port name registered to a process having a specific process serial number.

Special Considerations

The GetPortNameFromProcessSerialNumber function does not move or purge memory but for other
reasons should not be called from within an interrupt, such as in a completion function or VBL task.

Carbon Porting Notes

The High Level Event APIs (EPPC.h) are not supported in Carbon. Instead, use Apple events.

Declared In
EPPC.h

GetProcessSerialNumberFromPortName
Obtains the process serial number of a process.

Unsupported

OSErr GetProcessSerialNumberFromPortName (
 const PPCPortRec *portName,
 ProcessSerialNumber *pPSN
);

Parameters
portName

A pointer to a PPC port structure, the contents of which specify the port name registered to a process
whose serial number you want.

pPSN
Returns a pointer to the process serial number of the process designated through the portName
parameter. You can use the returned process serial number to send a high-level event to that process.
Do not interpret the value of the process serial number.

Return Value
A result code. See “Event Manager Result Codes” (page 28).

Discussion
The GetProcessSerialNumberFromPortName function returns, in the pPSN parameter, a pointer to the
process serial number of the process registered at a specific port.

Special Considerations

The GetProcessSerialNumberFromPortName function does not move or purge memory but for other
reasons should not be called from within an interrupt, such as in a completion function or VBL task.

Carbon Porting Notes

The High Level Event APIs (EPPC.h) are not supported in Carbon. Instead, use Apple events.

Declared In
EPPC.h

12 Functions
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

GetSpecificHighLevelEvent
Selects and optionally retrieves a specific high-level event from your application’s high-level event queue.

Unsupported

Boolean GetSpecificHighLevelEvent (
 GetSpecificFilterUPP aFilter,
 void *contextPtr,
 OSErr *err
);

Parameters
aFilter

A universal function pointer to the application-defined filter function that
GetSpecificHighLevelEvent should use to search for a specific event; see
GetSpecificFilterProcPtr (page 24) for details. GetSpecificHighLevelEvent calls your filter
function once for each event in your application’s high-level event queue until the function returns
true or the end of the queue is reached.

contextPtr
A pointer to a value that specifies the criteria your filter function should use to select a specific event.
For example, you can specify the address of a reference constant to search for a particular event, the
address of a target ID structure to search for a specific sender of an event, or the address of an event
class to search for a specific class of event.

err
GetSpecificHighLevelEvent returns, through this parameter, a value that indicates whether any
errors occurred. The err parameter specifies the noErr constant if no errors occurred or
noOutstandingHLE if no high-level events are pending in your application’s high-level event queue.

Return Value
Discussion
You can use the GetSpecificHighLevelEvent function to search for a specific high-level event in your
application’s high-level event queue. You specify a filter function as one of the parameters to
GetSpecificHighLevelEvent. The GetSpecificHighLevelEvent function calls your filter function
once for every event in your application’s high-level event queue, until your filter function returns true or
the end of the queue is reached.

The GetSpecificHighLevelEvent function passes the value referenced by the contextPtr parameter
to your filter function. Your filter function also receives as parameters the event structure associated with
the high-level event and the target ID structure that identifies the sender of the event. Your filter function
can compare the value referenced by the contextPtr parameter with any of the other information it receives.

If your filter function finds a match, it can call AcceptHighLevelEvent (page 7) if necessary, and then
return true. If your filter function does not find a match, then it should return false.

If your filter function returns true, the GetSpecificHighLevelEvent function returns true. If your filter
function returns false for all high-level events in your application’s event queue, or if there are no high-level
events in the queue, GetSpecificHighLevelEvent returns false.

See GetSpecificFilterProcPtr (page 24) for more information about how to define a filter function
and the parameters that GetSpecificHighLevelEvent passes to your filter function.

Functions 13
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Special Considerations

The GetSpecificHighLevelEvent function may move or purge memory. You should not call this function
from within an interrupt, such as in a completion function or VBL task.

Carbon Porting Notes

The High Level Event APIs (EPPC.h) are not supported in Carbon. Instead, use Apple events.

Declared In
EPPC.h

InvokeFKEYUPP

Unsupported

void InvokeFKEYUPP (
 FKEYUPP userUPP
);

Parameters
userUPP

Return Value
Carbon Porting Notes

FKEYs are not supported in Carbon because they involve loading code from resources, which isn't supported
under Carbon, and because very few applications use them.

Declared In
Events.h

InvokeGetNextEventFilterUPP

Unsupported

void InvokeGetNextEventFilterUPP (
 EventRecord *theEvent,
 Boolean *result,
 GetNextEventFilterUPP userUPP
);

Parameters
theEvent
result
userUPP

Return Value
Carbon Porting Notes

GetNextEvent (GNE) filters patch the GetNextEvent function and therefore are not supported in Carbon.

Declared In
Events.h

14 Functions
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

InvokeGetSpecificFilterUPP

Unsupported

Boolean InvokeGetSpecificFilterUPP (
 void *contextPtr,
 HighLevelEventMsgPtr msgBuff,
 const TargetID *sender,
 GetSpecificFilterUPP userUPP
);

Parameters
contextPtr
msgBuff
sender
userUPP

Return Value
Carbon Porting Notes

The High Level Event APIs (EPPC.h) are not supported in Carbon. Instead, use Apple events.

Declared In
EPPC.h

NewFKEYUPP

Unsupported

FKEYUPP NewFKEYUPP (
 FKEYProcPtr userRoutine
);

Parameters
userRoutine

Return Value
Carbon Porting Notes

FKEYs are not supported in Carbon because they involve loading code from resources, which isn't supported
under Carbon, and because very few applications use them.

Declared In
Events.h

NewGetNextEventFilterUPP

Unsupported

Functions 15
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

GetNextEventFilterUPP NewGetNextEventFilterUPP (
 GetNextEventFilterProcPtr userRoutine
);

Parameters
userRoutine

Return Value
Carbon Porting Notes

Declared In
Events.h

NewGetSpecificFilterUPP

Unsupported

GetSpecificFilterUPP NewGetSpecificFilterUPP (
 GetSpecificFilterProcPtr userRoutine
);

Parameters
userRoutine

Return Value
Carbon Porting Notes

The High Level Event APIs (EPPC.h) are not supported in Carbon. Instead, use Apple events.

Declared In
EPPC.h

OSEventAvail
Retrieves an event from the Operating System event queue without removing it.

Unsupported

Boolean OSEventAvail (
 EventMask mask,
 EventRecord *theEvent
);

Parameters
mask

A value that indicates which kinds of events are to be returned; this parameter is interpreted as a sum
of event mask constants. You specify the event mask using one or more values defined in “Event Mask
Constants” in Inside Mac OS X: Event Manager Reference. OSEventAvail returns only low-level events
stored in the Operating System event queue; it does not return activate, update, operating-system,
or high-level events. If no low-level event of any of the designated types is available, OSEventAvail
returns a null event.

16 Functions
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

theEvent
A pointer to an event structure for the next available event of the specified type or types. The
OSEventAvail function does not remove the returned event from the Operating System event queue
but does return information about the event in an event structure. The event structure includes the
type of event received and other information.

Return Value
Discussion
In most cases your application does not need to use this function. The OSEventAvail function retrieves an
event from the Operating System event queue without removing it from the queue. The OSEventAvail
function returns false as its function result if the event being returned is a null event; otherwise,
OSEventAvail returns true.

OSEventAvail does not intercept or respond to the event in any way. It also does not process
Command–Shift–number key combinations or process any alarms set by the user through the Alarm Clock
desk accessory.

Special Considerations

If the OSEventAvail function returns a low-level event from the Operating System event queue, the event
will not be accessible later if, in the meantime, the event queue becomes full and the event is discarded from
it; however, this is not a common occurrence.

Carbon Porting Notes

OSEventAvail is not supported in Carbon. Use the EventAvail function instead.

Declared In
Events.h

PostHighLevelEvent
Sends a high-level event to another application.

Unsupported

OSErr PostHighLevelEvent (
 const EventRecord *theEvent,
 void *receiverID,
 UInt32 msgRefcon,
 void *msgBuff,
 UInt32 msgLen,
 UInt32 postingOptions
);

Parameters
theEvent

A pointer to the event structure for the event to send. Your application should fill out the what,
message, and where fields of the event structure. Specify the kHighLevelEvent constant in the
what field, the event class of the high-level event in the message field, and the event ID in the where
field. You do not need to fill out the when or modifiers fields; the Event Manager automatically
assigns the appropriate values to these fields when you send the message.

Functions 17
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

receiverID
The recipient of the high-level event. When sending an event to another application on the local
computer, you can specify the recipient of the event by session reference number, process serial
number, signature, or port name and location name. When sending an event to an application on a
remote computer, you can specify the recipient only by the session reference number or by the port
name and location name.

To specify a port name and location name, provide the address of a target ID structure in the
receiverID parameter. To specify a process serial number, provide its address in the receiverID
parameter. To specify a session reference number, or signature, provide the data in the receiverID
parameter.

msgRefcon
A unique number that identifies the communication associated with this event. Your application can
set this field to any value it chooses. If you are replying to a high-level event, you should use the same
value in the msgRefcon parameter as specified in the high-level event that originated the request.

msgBuff
A pointer to a data buffer that contains any additional data for the event.

msgLen
The size (in bytes) of the data buffer pointed to by the msgBuff parameter.

postingOptions
Options associated with the receiverID parameter and delivery options associated with the event.
You can specify one or more delivery options to indicate whether you want the other application to
receive the event at the next opportunity and to indicate whether you want acknowledgment that
the event was received by the other application. You use the options associated with the receiverID
parameter to indicate how you are specifying the recipient of the event—whether by port name and
location name in a target ID structure, by session reference number, by process serial number, or by
signature.

For descriptions of the enumerators you can use to specify posting options, see “Posting Options
Constants” (page 28).

Return Value
A result code. See “Event Manager Result Codes” (page 28).

Discussion
The PostHighLevelEvent function posts the high-level event to the specified process.

If the application to which you are sending a high-level event terminates, you receive the result code
sessionClosedErr the next time your application calls PostHighLevelEvent to send another high-level
event to the terminated application. If you do not care about any state information about that session, you
can just resend your event. Otherwise, you must restart another session and resend your event.

If your application is running in the background and posts a high-level event that requires the network
authentication dialog box to be displayed, PostHighLevelEvent returns the noUserInteractionAllowed
result code, does not display the network authentication dialog box, and does not send the event. If your
application receives the noUserInteractionAllowed result code, you can use the Notification Manager
to inform the user that your application needs attention. When the user brings your application to the
foreground, you can repost the event. If the reposting is successful, your application can continue to post
high-level events without further user interaction. Note that PostHighLevelEvent can return
noUserInteractionAllowed only on the first posting of a high-level event to a remote target.

Special Considerations

The PostHighLevelEvent function may move or purge memory. You should not call this function from
within an interrupt, such as in a completion function or VBL task.

18 Functions
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Carbon Porting Notes

The High Level Event APIs (EPPC.h) are not supported in Carbon. Instead, use Apple events.

Declared In
EPPC.h

PPostEvent
Posts events in the Operating System event queue.

Unsupported

OSErr PPostEvent (
 EventKind eventCode,
 UInt32 eventMsg,
 EvQElPtr *qEl
);

Parameters
eventCode

A value of type EventKind that indicates the type of event to post into the Operating System event
queue. You specify the event kind using one or more of these event mask values: mouseDown, mouseUp,
keyDown, keyUp, autoKey, and diskEvt. Do not attempt to post any other type of event in the
Operating System event queue.

eventMsg
An unsigned 32-bit integer that contains the contents of the message field for the event that
PPostEvent should post in the queue.

qEl
You specify the address of a pointer to an event queue entry in this parameter. PPostEvent returns
the event queue entry of the posted event through this parameter.

Return Value
A result code. See “Event Manager Result Codes” (page 28).

Discussion
In the eventCode and eventMsg parameters, you specify the value for the what and message fields of the
event’s event structure. The PPostEvent function fills out the when, where, and modifiers fields of the
event structure with the current time, current mouse location, and current state of the modifier keys and
mouse button.

The PPostEvent function returns, through the qEl parameter, a pointer to the event queue entry of the
posted event. You can change any fields of the posted event by changing the fields of its event queue entry.
For example, you can change the posted event’s modifier keys by changing the value of the evtQModifiers
field of the event queue entry.

The PPostEvent function posts only events that are enabled by the system event mask. If the event queue
is full, PPostEvent removes the oldest event in the queue and posts the new event.

Do not post any events other than mouse-down, mouse-up, key-down, key-up, auto-key, and disk-inserted
events in the Operating System event queue. Attempting to post other events into the Operating System
event queue interferes with the internal operation of the Event Manager.

In most cases, your application does not need to post events in the Operating System event queue.

Functions 19
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Carbon Porting Notes

Posting events in the Operating System event queue is not supported in Carbon.

Declared In
Events.h

StillDown
After receiving a mouse-down event, you can use the StillDown function to determine if the mouse button
is still down.

Not recommended

Boolean StillDown ();

Parameters
Return Value
Discussion
The StillDown function looks in the Operating System event queue for a mouse event. If it finds one, the
StillDown function returns false. If it does not find any mouse events pending in the Operating System
event queue, the StillDown function returns true.

Availability
Supported in Carbon. Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Carbon Porting Notes

You should avoid using any calls that poll the state of the mouse button, as they use excessive processor
time and slow down the system. In most cases you are more interested in the transitions of the mouse button
rather than its instantaneous state, so you should adopt Carbon events and take action on mouse-up and
mouse-down events. If you need to track the mouse while down, consider using the Carbon Event Manager
functions TrackMouseLocation or TrackMouseRegion. On Mac OS X v.10.2 and later, if you need to know
the button state, you should call the GetCurrentEventButtonState function.

Declared In
Events.h

SystemClick
Handles an event after FindWindow returns the inSysWindow constant.

Unsupported

void SystemClick (
 const EventRecord *theEvent,
 WindowRef theWindow
);

Parameters
theEvent

A pointer to the event structure for the event.

20 Functions
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

theWindow
A reference to the window in which the mouse-down event occurred. Pass the window pointer
returned by FindWindow in this parameter.

Return Value
Discussion
If a mouse-down event occurred in a desk accessory’s window, the SystemClick function determines which
part of the desk accessory’s window the cursor was in when the mouse button was pressed and routes the
event to the appropriate desk accessory as necessary.

If the mouse button was pressed while the cursor was in the content region of the desk accessory’s window
and the window is active, SystemClick sends the mouse-down event to the desk accessory to process. If
the mouse-down event occurred in the content region of the window and the window is inactive,
SystemClick makes it the active window. It does this by sending your application an activate event to
deactivate its front window and directing an event to the desk accessory to activate its window.

If the mouse button was pressed while the cursor was in the drag region or go-away region, SystemClick
calls the Window Manager function DragWindow or TrackGoAway, as appropriate. If TrackGoAway reports
that the user closed the desk accessory, SystemClick sends a close message to the desk accessory.

Carbon Porting Notes

Desk accessories are not supported in Carbon.

Declared In
Events.h

SystemEvent
Determines if a specific event should be handled by the application or the Operating System.

Unsupported

Boolean SystemEvent (
 const EventRecord *theEvent
);

Parameters
theEvent

A pointer to the event structure for the event.

Return Value
Discussion
The WaitNextEvent and the GetNextEvent functions call the SystemEvent function. In most cases your
application should not call the SystemEvent function.

SystemEvent returns false as its function result if the event should be handled by the application; otherwise,
SystemEvent takes any appropriate actions and returns true.

For activate, update, mouse-up, and keyboard events (including keyboard equivalents of commands),
SystemEvent checks to see whether the active window belongs to a desk accessory and whether that desk
accessory can handle that type of event. If so, SystemEvent sends the event to the desk accessory and
returns true. Otherwise, SystemEvent returns false.

For mouse-down events and null events, SystemEvent returns false.

Functions 21
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

For disk-inserted events, SystemEvent attempts to mount the disk using the PBMountVol function but
returns false so that the application can perform further processing if necessary.

See “Event Kind Constants” in Inside Mac OS X: Event Manager Reference for a discussion of the fields in the
event structure.

Carbon Porting Notes

Desk accessories are not supported in Carbon.

Declared In
Events.h

SystemTask
Gives time to each open desk accessory or driver to perform any periodic action.

Unsupported

void SystemTask ();

Parameters
Return Value
Discussion
The SystemTask function gives time to each open desk accessory or driver to perform the periodic action
defined for it. A desk accessory or device driver specifies how often the periodic action should occur, and
SystemTask gives time to the desk accessory or device driver at the appropriate interval.

If your application calls GetNextEvent , your application should call SystemTask at least every sixtieth of
a second. This usually corresponds to calling SystemTask once each time through your event loop. If your
application does a large amount of processing, you may need to call SystemTask more than once in your
event loop.

Carbon Porting Notes

In Carbon, the Event Manager automatically handles all task scheduling.

Declared In
Events.h

WaitMouseUp
After receiving a mouse-down event, determines if the user subsequently released the mouse.

Not recommended

22 Functions
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Boolean WaitMouseUp ();

Parameters
Return Value
Discussion
The WaitMouseUp function looks in the Operating System event queue for a mouse-up event. If it finds one,
the WaitMouseUp function removes the mouse-up event from the queue and returns false. If it does not
find any mouse up events pending in the Operating System event queue, the WaitMouseUp function returns
true.

Availability
Supported in Carbon. Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Carbon Porting Notes

You should avoid using any calls that poll the state of the mouse button, as they use excessive processor
time and slow down the system. In most cases you are more interested in the transitions of the mouse button
rather than its instantaneous state, so you should adopt Carbon events and take action on mouse-up and
mouse-down events. If you need to track the mouse while down, consider using the Carbon Event Manager
functions TrackMouseLocation or TrackMouseRegion. On Mac OS X v.10.2 and later, if you need to know
the button state, you should call the GetCurrentEventButtonState function.

Declared In
Events.h

Callbacks

FKEYProcPtr
Defines a function-key callback.

Unsupported.

typedef void (*FKEYProcPtr) (
);

If you name your function MyFKEYProc, you would declare it like this:

void FKEYProcPtr ();

Parameters
Return Value
Carbon Porting Notes

Application-defined function-key procedures are not supported in Carbon.

Availability
Available in Mac OS X v10.0 and later.

Callbacks 23
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Declared In
Events.h

GetNextEventFilterProcPtr
Defines an event filter callback.

Unsupported

typedef void (*GetNextEventFilterProcPtr)
(
 EventRecord * theEvent,
 Boolean * result
);

If you name your function MyGetNextEventFilterProc, you would declare it like this:

void GetNextEventFilterProcPtr (
 EventRecord * theEvent,
 Boolean * result
);

Parameters
theEvent
result

Return Value
Carbon Porting Notes

GetNextEvent (GNE) filters patch the GetNextEvent function and therefore are not supported in Carbon.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

GetSpecificFilterProcPtr
Defines a pointer to a filter callback function. The Event Manager calls your filter function once for each event
in the high-level event queue until your filter function returns true or the end of the queue is reached.

Unsupported

If you name your function MyGetSpecificFilterProc, you would declare it like this:

Boolean MyGetSpecificFilterCallback (
 void *contextPtr,
 HighLevelEventMsgPtr msgBuff,
 const TargetID *sender
);

24 Callbacks
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Parameters
contextPtr

The address of data that specifies the criteria your filter function should use to select a specific event.
For example, you can specify in the contextPtr parameter the address of a reference constant to
search for a particular event, the address of a target ID structure to search for a specific sender of an
event, or the address of an event class to search for a specific class of event.

msgBuff
A pointer to a structure of type HighLevelEventMsg, which provides: the event structure for the
high-level event and the reference constant of the event.

sender
The address of the target ID structure of the application that sent the event. The target ID structure
is described in TargetID (page 27).

Return Value
Discussion
When you use GetSpecificHighLevelEvent (page 13) to search the high-level event queue of your
application for a specific event, you supply a pointer to a filter function. Your filter function can examine each
event and determine whether that event is the desired event. If so, your filter function should return true.

Your filter function can compare the contents of the contextPtr parameter with the contents of the msgBuff
and sender parameters. If your filter function finds a match, it can call AcceptHighLevelEvent, if necessary,
and your filter function should return true. If your filter function does not find a match, it should return
false.

The Event Manager defines the universal function pointer GetSpecificFilterUPP for an application-defined
filter function.

typedef UniversalProcPtr GetSpecificFilterUPP;

The Event Manager also defines the macro NewGetSpecificFilterProc for obtaining a
GetSpecificFilterUPP :

#define NewGetSpecificFilterProc(userRoutine) \(GetSpecificFilterUPP)

NewRoutineDescriptor((ProcPtr)(userRoutine), uppGetSpecificFilterProcInfo, GetCurrentArchitecture())

You typically use the NewGetSpecificFilterProc macro like this:

GetSpecificFilterUPP myFilterFunctionProc;

myFilterFunctionProc = NewGetSpecificFilterProc(MyGetSpecificFilterCallback);

The Event Manager also defines the macro CallGetSpecificFilterProc for calling a
GetSpecificFilterUPP. You normally don’t need to call this macro directly:

#define CallGetSpecificFilterProc(userRoutine, contextPtr, msgBuff, sender)\
CallUniversalProc((UniversalProcPtr)(userRoutine), uppGetSpecificFilterProcInfo, (contextPtr), (msgBuff),
(sender))

Carbon Porting Notes

The High Level Event APIs (EPPC.h) are not supported in Carbon. Instead, use Apple events.

Callbacks 25
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Data Types

EvQEl
Defines an event queue entry.

struct EvQEl {
 QElemPtr qLink;
 SInt16 qType;
 EventKind evtQWhat;
 UInt32 evtQMessage;
 UInt32 evtQWhen;
 Point evtQWhere;
 EventModifiers evtQModifiers;
};
typedef struct EvQEl EvQEl;
typedef EvQEl * EvQElPtr;

Fields
qLink

Next queue entry.

qType
Queue type (evType).

evtQWhat
Event code.

evtQMessage
Event message.

evtQWhen
Ticks since startup.

evtQWhere
Mouse location.

evtQModifiers
Modifier flags.

Discussion
A structure of type EvQEl defines an entry in the Operating System event queue. Each entry in the event
queue begins with 4 bytes of flags followed by a pointer to the next queue entry. The flags are maintained
by and internal to the Operating System Event Manager. The queue entries are linked by pointers, and the
first field of the EvQEl data type, which represents the structure of a queue entry, begins with a pointer to
the next queue entry. Thus, you cannot directly access the flags using the EvQEl data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

26 Data Types
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

GNEFilterUPP

typedef GetNextEventFilterUPP GNEFilterUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

HighLevelEventMsg
Defines a high-level event message structure.

struct HighLevelEventMsg {
 UInt16 HighLevelEventMsgHeaderLength;
 UInt16 version;
 UInt32 reserved1;
 EventRecord theMsgEvent;
 UInt32 userRefcon;
 UInt32 postingOptions;
 UInt32 msgLength;
};
typedef HighLevelEventMsg* HighLevelEventMsgPtr;
typedef HighLevelEventMsgPtr* HighLevelEventMsgHandle;
typedef HighLevelEventMsgHandle HighLevelEventMsgHdl;

Discussion
You can search your application’s high-level event queue for a specific high-level event by using the
GetSpecificHighLevelEvent (page 13) and providing a filter function. Your filter function receives a
pointer to a high-level event message structure that contains information about a high-level event.

For information on getting a function descriptor for your filter function, see“Resources”. For information on
how to define a filter function, see GetSpecificFilterProcPtr (page 24).

TargetID

struct TargetID {
 SInt32 sessionID;
 PPCPortRec name;
 LocationNameRec location;
 PPCPortRec recvrName;
};
typedef TargetID SenderID;
typedef TargetID* TargetIDPtr;
typedef TargetIDPtr* TargetIDHandle;
typedef TargetIDHandle TargetIDHdl;

Discussion
When you send a high-level event to another application, you can use a target ID structure to specify the
recipient of the event. When you receive a high-level event, the AcceptHighLevelEvent (page 7) uses
a target ID structure to return information about the sender of the event.

Data Types 27
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

Constants

Posting Options Constants
Options for posting an event to the queue.

enum {
 receiverIDMask = 61440,
 receiverIDisPSN = 32768,
 receiverIDisSignature = 28672,
 receiverIDisSessionID = 24576,
 receiverIDisTargetID = 20480,
 systemOptionsMask = 3840,
 nReturnReceipt = 512,
 priorityMask = 255,
 nAttnMsg = 1
};

Constants
receiverIDMask

The posting enumerator indicating that the receiver ID consists of the bits for the event to be delivered.

receiverIDisPSN
The posting enumerator indicating that the receiver ID is the process serial number for the event to
be delivered.

receiverIDisSignature
The posting enumerator indicating that the receiver ID is a creator signature.

receiverIDisSessionID
The posting enumerator indicating that the receiver ID is a PPC session reference number.

receiverIDisTargetID
The posting enumerator indicating that the receiver ID is a port name and location name.

systemOptionsMask
The posting enumerator indicating that the system options mask.

nReturnReceipt
The posting enumerator indicating that a return receipt has been requested.

priorityMask
The posting enumerator indicating priority.

nAttnMsg
The posting enumerator indicating that this message should be given priority.

Discussion
You use posting option enumerators with PostHighLevelEvent (page 17) to indicate how you are specifying
the receiver of the high-level event and how you want the event to be delivered.

Result Codes

The most common result codes returned by Event Manager are listed below.

28 Constants
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.1evtNotEnb

No error0noErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-600procNotFound

Available in Mac OS X v10.0 and later.-607bufferIsSmall

Available in Mac OS X v10.0 and later.-608noOutstandingHLE

Available in Mac OS X v10.0 and later.-609connectionInvalid

Available in Mac OS X v10.0 and later.-610noUserInteractionAllowed

Available in Mac OS X v10.0 and later.-903noPortErr

Result Codes 29
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

30 Result Codes
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Event Manager Legacy Reference (Legacy)

A function identified as deprecated has been superseded and may become unsupported in the future.

Deprecated in Mac OS X v10.5

GetMouse
Obtains the current mouse location. (Deprecated in Mac OS X v10.5.)

Not recommended

void GetMouse (
 Point * mouseLoc
);

Parameters
mouseLoc

Returns a pointer to a point describing the current mouse location in local coordinates of the current
graphics port (for example, the active window). Note that this value differs from the value of the
where field of the event structure, which specifies the mouse location in global coordinates.

Return Value
Availability
Supported in Carbon. Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Carbon Porting Notes

You should adopt Carbon events and take action on mouse-moved events rather than poll the mouse position
directly.

Declared In
Events.h

Deprecated in Mac OS X v10.5 31
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Event Manager Legacy Reference
(Legacy) Functions

32 Deprecated in Mac OS X v10.5
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

APPENDIX A

Deprecated Event Manager Legacy Reference (Legacy) Functions

This table describes the changes to Event Manager Legacy Reference.

NotesDate

Moved to legacy area of ADC Reference Library.2007-05-03

Split this document out from Inside Mac OS X: Event Manager Reference.2003-02-01

33
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

34
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

AcceptHighLevelEvent function 7

B

bufferIsSmall constant 29
Button function 8

C

connectionInvalid constant 29

D

DisposeFKEYUPP function 9
DisposeGetNextEventFilterUPP function 9
DisposeGetSpecificFilterUPP function 10

E

EvQEl structure 26
evtNotEnb constant 29

F

FKEYProcPtr callback 23

G

GetEvQHdr function 10
GetMouse function (Deprecated in Mac OS X v10.5) 31

GetNextEventFilterProcPtr callback 24
GetOSEvent function 10
GetPortNameFromProcessSerialNumber function 11
GetProcessSerialNumberFromPortName function 12
GetSpecificFilterProcPtr callback 24
GetSpecificHighLevelEvent function 13
GNEFilterUPP data type 27

H

HighLevelEventMsg structure 27

I

InvokeFKEYUPP function 14
InvokeGetNextEventFilterUPP function 14
InvokeGetSpecificFilterUPP function 15

N

nAttnMsg constant 28
NewFKEYUPP function 15
NewGetNextEventFilterUPP function 15
NewGetSpecificFilterUPP function 16
noErr constant 29
noOutstandingHLE constant 29
noPortErr constant 29
noUserInteractionAllowed constant 29
nReturnReceipt constant 28

O

OSEventAvail function 16

35
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

Index

P

PostHighLevelEvent function 17
Posting Options Constants 28
PPostEvent function 19
priorityMask constant 28
procNotFound constant 29

R

receiverIDisPSN constant 28
receiverIDisSessionID constant 28
receiverIDisSignature constant 28
receiverIDisTargetID constant 28
receiverIDMask constant 28

S

StillDown function 20
SystemClick function 20
SystemEvent function 21
systemOptionsMask constant 28
SystemTask function 22

T

TargetID structure 27

W

WaitMouseUp function 22

36
Legacy Document | 2007-05-03 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	Event Manager Legacy Reference
	Contents
	Event Manager Legacy Reference (Legacy)
	Overview
	Functions by Task
	Deprecated Functions
	Unsupported Functions

	Functions
	AcceptHighLevelEvent
	Button
	DisposeFKEYUPP
	DisposeGetNextEventFilterUPP
	DisposeGetSpecificFilterUPP
	GetEvQHdr
	GetOSEvent
	GetPortNameFromProcessSerialNumber
	GetProcessSerialNumberFromPortName
	GetSpecificHighLevelEvent
	InvokeFKEYUPP
	InvokeGetNextEventFilterUPP
	InvokeGetSpecificFilterUPP
	NewFKEYUPP
	NewGetNextEventFilterUPP
	NewGetSpecificFilterUPP
	OSEventAvail
	PostHighLevelEvent
	PPostEvent
	StillDown
	SystemClick
	SystemEvent
	SystemTask
	WaitMouseUp

	Callbacks
	FKEYProcPtr
	GetNextEventFilterProcPtr
	GetSpecificFilterProcPtr

	Data Types
	EvQEl
	GNEFilterUPP
	HighLevelEventMsg
	TargetID

	Constants
	Posting Options Constants

	Result Codes

	Appendix A: Deprecated Event Manager Legacy Reference (Legacy) Functions
	Deprecated in Mac OS X v10.5
	GetMouse

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	N
	O
	P
	R
	S
	T
	W

